We follow Kline (2011) in specifying models with two and three observed variables and direct effects among the variables.
With two observed variables we have two means and three variance/covariances. With three observed variables we have three means and six variance/covariances. Keeping track of how many "observations" (pieces of information) we start with is helpful in understanding when a model is saturated.
Continuing with our example data.
In our model output we will see one mean ("x2 <- _cons"), one variance (the error variance, "var(e.x2"), and one regression path ("x2 <- x1"). Not shown in our output are the mean and variance of the exogenous variable, x1. Having used all our degrees of freedom, this model is saturated: it perfectly predicts the observed covariance matrix and the observed means.
infile x1-x3 using "Z:\PUBLIC_WEB\MPlus\Basics\Sample stats\ex3.1.dat"
sem (x1 -> x2)(500 observations read)
Endogenous variables
Observed:  x2
Exogenous variables
Observed:  x1
Fitting target model:
Iteration 0:   log likelihood =  -1515.201  
Iteration 1:   log likelihood =  -1515.201  
Structural equation model                       Number of obs     =        500
Estimation method  = ml
Log likelihood     =  -1515.201
------------------------------------------------------------------------------
             |                 OIM
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural   |
  x2 <-      |
          x1 |   .4479402   .0225188    19.89   0.000     .4038042    .4920762
       _cons |  -.2158931   .0366072    -5.90   0.000    -.2876418   -.1441444
-------------+----------------------------------------------------------------
    var(e.x2)|   .6104389   .0386075                      .5392715    .6909982
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      .A similar example, but note here the parameter estimates are not significant - x2 does not predict x3. (But in terms of overall model fit, this is still an example of a saturated model.)
sem (x2 -> x3)Endogenous variables
Observed:  x3
Exogenous variables
Observed:  x2
Fitting target model:
Iteration 0:   log likelihood = -1430.0543  
Iteration 1:   log likelihood = -1430.0543  
Structural equation model                       Number of obs     =        500
Estimation method  = ml
Log likelihood     = -1430.0543
------------------------------------------------------------------------------
             |                 OIM
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural   |
  x3 <-      |
          x2 |   .0257818    .041816     0.62   0.538     -.056176    .1077395
       _cons |  -.0421945   .0437277    -0.96   0.335    -.1278991    .0435102
-------------+----------------------------------------------------------------
    var(e.x3)|    .956053   .0604661                      .8445926    1.082223
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      .This model is not saturated, we have three variances and two regression paths.
sem (x1 -> x2 x3)Endogenous variables
Observed:  x2 x3
Exogenous variables
Observed:  x1
Fitting target model:
Iteration 0:   log likelihood = -2163.2588  
Iteration 1:   log likelihood = -2163.2588  
Structural equation model                       Number of obs     =        500
Estimation method  = ml
Log likelihood     = -2163.2588
------------------------------------------------------------------------------
             |                 OIM
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural   |
  x2 <-      |
          x1 |   .4479402   .0225188    19.89   0.000     .4038042    .4920762
       _cons |  -.2158931   .0366072    -5.90   0.000    -.2876418   -.1441444
  -----------+----------------------------------------------------------------
  x3 <-      |
          x1 |   .2692816   .0254907    10.56   0.000     .2193207    .3192425
       _cons |  -.1727214   .0414384    -4.17   0.000    -.2539393   -.0915036
-------------+----------------------------------------------------------------
    var(e.x2)|   .6104389   .0386075                      .5392715    .6909982
    var(e.x3)|   .7821991   .0494706                      .6910072    .8854255
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(1)   =     77.74, Prob > chi2 = 0.0000A saturated version of this model would have correlated error terms.
sem (x1 -> x2 x3), cov(e.x2*e.x3)Endogenous variables
Observed:  x2 x3
Exogenous variables
Observed:  x1
Fitting target model:
Iteration 0:   log likelihood =  -2124.388  
Iteration 1:   log likelihood =  -2124.388  
Structural equation model                       Number of obs     =        500
Estimation method  = ml
Log likelihood     =  -2124.388
------------------------------------------------------------------------------
             |                 OIM
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural   |
  x2 <-      |
          x1 |   .4479402   .0225188    19.89   0.000     .4038042    .4920762
       _cons |  -.2158931   .0366072    -5.90   0.000    -.2876418   -.1441444
  -----------+----------------------------------------------------------------
  x3 <-      |
          x1 |   .2692816   .0254907    10.56   0.000     .2193207    .3192425
       _cons |  -.1727214   .0414384    -4.17   0.000    -.2539393   -.0915036
-------------+----------------------------------------------------------------
    var(e.x2)|   .6104389   .0386075                      .5392715    .6909982
    var(e.x3)|   .7821991   .0494706                      .6910072    .8854255
-------------+----------------------------------------------------------------
    cov(e.x2,|
        e.x3)|  -.2622158   .0330527    -7.93   0.000     -.326998   -.1974336
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      .This model, with both direct effects and an indirect effect, is saturated.
sem (x1 -> x2 x3)(x2 -> x3)Endogenous variables
Observed:  x2 x3
Exogenous variables
Observed:  x1
Fitting target model:
Iteration 0:   log likelihood =  -2124.388  
Iteration 1:   log likelihood =  -2124.388  
Structural equation model                       Number of obs     =        500
Estimation method  = ml
Log likelihood     =  -2124.388
------------------------------------------------------------------------------
             |                 OIM
             |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural   |
  x2 <-      |
          x1 |   .4479402   .0225188    19.89   0.000     .4038042    .4920762
       _cons |  -.2158931   .0366072    -5.90   0.000    -.2876418   -.1441444
  -----------+----------------------------------------------------------------
  x3 <-      |
          x2 |  -.4295529   .0468371    -9.17   0.000    -.5213519   -.3377539
          x1 |   .4616956   .0315655    14.63   0.000     .3998284    .5235628
       _cons |  -.2654589   .0396501    -6.70   0.000    -.3431716   -.1877463
-------------+----------------------------------------------------------------
    var(e.x2)|   .6104389   .0386075                      .5392715    .6909982
    var(e.x3)|   .6695635   .0423469                      .5915032    .7579255
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0)   =      0.00, Prob > chi2 =      .Previous: Covariance models Next: Confirmatory Factor Analysis