We follow Kline (2011) in specifying models with two and three observed variables and direct effects among the variables.
With two observed variables we have two means and three variance/covariances. With three observed variables we have three means and six variance/covariances. Keeping track of how many "observations" (pieces of information) we start with is helpful in understanding when a model is saturated.
Continuing with our example data.
In our model output we will see one mean ("x2 <- _cons"), one variance (the error variance, "var(e.x2"), and one regression path ("x2 <- x1"). Not shown in our output are the mean and variance of the exogenous variable, x1. Having used all our degrees of freedom, this model is saturated: it perfectly predicts the observed covariance matrix and the observed means.
infile x1-x3 using "Z:\PUBLIC_WEB\MPlus\Basics\Sample stats\ex3.1.dat"
sem (x1 -> x2)
(500 observations read)
Endogenous variables
Observed: x2
Exogenous variables
Observed: x1
Fitting target model:
Iteration 0: log likelihood = -1515.201
Iteration 1: log likelihood = -1515.201
Structural equation model Number of obs = 500
Estimation method = ml
Log likelihood = -1515.201
------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural |
x2 <- |
x1 | .4479402 .0225188 19.89 0.000 .4038042 .4920762
_cons | -.2158931 .0366072 -5.90 0.000 -.2876418 -.1441444
-------------+----------------------------------------------------------------
var(e.x2)| .6104389 .0386075 .5392715 .6909982
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = .
A similar example, but note here the parameter estimates are not significant - x2 does not predict x3. (But in terms of overall model fit, this is still an example of a saturated model.)
sem (x2 -> x3)
Endogenous variables
Observed: x3
Exogenous variables
Observed: x2
Fitting target model:
Iteration 0: log likelihood = -1430.0543
Iteration 1: log likelihood = -1430.0543
Structural equation model Number of obs = 500
Estimation method = ml
Log likelihood = -1430.0543
------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural |
x3 <- |
x2 | .0257818 .041816 0.62 0.538 -.056176 .1077395
_cons | -.0421945 .0437277 -0.96 0.335 -.1278991 .0435102
-------------+----------------------------------------------------------------
var(e.x3)| .956053 .0604661 .8445926 1.082223
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = .
This model is not saturated, we have three variances and two regression paths.
sem (x1 -> x2 x3)
Endogenous variables
Observed: x2 x3
Exogenous variables
Observed: x1
Fitting target model:
Iteration 0: log likelihood = -2163.2588
Iteration 1: log likelihood = -2163.2588
Structural equation model Number of obs = 500
Estimation method = ml
Log likelihood = -2163.2588
------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural |
x2 <- |
x1 | .4479402 .0225188 19.89 0.000 .4038042 .4920762
_cons | -.2158931 .0366072 -5.90 0.000 -.2876418 -.1441444
-----------+----------------------------------------------------------------
x3 <- |
x1 | .2692816 .0254907 10.56 0.000 .2193207 .3192425
_cons | -.1727214 .0414384 -4.17 0.000 -.2539393 -.0915036
-------------+----------------------------------------------------------------
var(e.x2)| .6104389 .0386075 .5392715 .6909982
var(e.x3)| .7821991 .0494706 .6910072 .8854255
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(1) = 77.74, Prob > chi2 = 0.0000
A saturated version of this model would have correlated error terms.
sem (x1 -> x2 x3), cov(e.x2*e.x3)
Endogenous variables
Observed: x2 x3
Exogenous variables
Observed: x1
Fitting target model:
Iteration 0: log likelihood = -2124.388
Iteration 1: log likelihood = -2124.388
Structural equation model Number of obs = 500
Estimation method = ml
Log likelihood = -2124.388
------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural |
x2 <- |
x1 | .4479402 .0225188 19.89 0.000 .4038042 .4920762
_cons | -.2158931 .0366072 -5.90 0.000 -.2876418 -.1441444
-----------+----------------------------------------------------------------
x3 <- |
x1 | .2692816 .0254907 10.56 0.000 .2193207 .3192425
_cons | -.1727214 .0414384 -4.17 0.000 -.2539393 -.0915036
-------------+----------------------------------------------------------------
var(e.x2)| .6104389 .0386075 .5392715 .6909982
var(e.x3)| .7821991 .0494706 .6910072 .8854255
-------------+----------------------------------------------------------------
cov(e.x2,|
e.x3)| -.2622158 .0330527 -7.93 0.000 -.326998 -.1974336
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = .
This model, with both direct effects and an indirect effect, is saturated.
sem (x1 -> x2 x3)(x2 -> x3)
Endogenous variables
Observed: x2 x3
Exogenous variables
Observed: x1
Fitting target model:
Iteration 0: log likelihood = -2124.388
Iteration 1: log likelihood = -2124.388
Structural equation model Number of obs = 500
Estimation method = ml
Log likelihood = -2124.388
------------------------------------------------------------------------------
| OIM
| Coef. Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
Structural |
x2 <- |
x1 | .4479402 .0225188 19.89 0.000 .4038042 .4920762
_cons | -.2158931 .0366072 -5.90 0.000 -.2876418 -.1441444
-----------+----------------------------------------------------------------
x3 <- |
x2 | -.4295529 .0468371 -9.17 0.000 -.5213519 -.3377539
x1 | .4616956 .0315655 14.63 0.000 .3998284 .5235628
_cons | -.2654589 .0396501 -6.70 0.000 -.3431716 -.1877463
-------------+----------------------------------------------------------------
var(e.x2)| .6104389 .0386075 .5392715 .6909982
var(e.x3)| .6695635 .0423469 .5915032 .7579255
------------------------------------------------------------------------------
LR test of model vs. saturated: chi2(0) = 0.00, Prob > chi2 = .
Previous: Covariance models Next: Confirmatory Factor Analysis