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SIMPLE TWO-STAGE INFERENCE
FOR A CLASS OF PARTIALLY
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This paper proposes a new two-stage estimation and inference procedure for a class
of partially identified models. The procedure can be considered an extension of
classical minimum distance estimation procedures to accommodate inequality con-
straints and partial identification. It involves no tuning parameter, is nonconserva-
tive, and is conceptually and computationally simple. The class of models includes
models of interest to applied researchers, including the static entry game, a vot-
ing game with communication, and a discrete mixture model. Besides, a technical
contribution is an implicit correspondence lemma which generalizes the implicit
function theorem to multivalued implicit maps.

The recent literature on partially identified models has focused on general econo-
metric formulations requiring complicated procedures. Examples of the general
formulations include the moment inequality models and the models defined by in-
tersection bounds.1 In these general formulations, several difficulties for estima-
tion and inference are recognized: (1) available set estimators that are consistent
in Hausdorff distance take the form of a level set of a criterion function, where
the level is arbitrary (see Chernozhukov, Hong, Tamer, 2007); such arbitrariness
arguably constitutes the reason that consistent estimation of the identified set has
been overshadowed by confidence set construction in this literature; (2) valid in-
ference procedures often require simulation of either the test statistic or the critical
values, as well as tuning parameters that are hard to choose.2 Also, in the general
models, there is a nearly theological debate on whether we should focus on confi-
dence sets that cover the whole identified set, or those that cover each point in the
identified set, with a fixed probability.3

In this paper, we show that, for a special yet meaningful class of partially iden-
tified models, the difficulties above do not arise. These models are of a two-stage
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nature and we propose new two-stage procedures for the consistent estimation
of the identified set and for constructing the confidence set. We show that (1) a
sample analog estimator for the identified set is consistent in Hausdorff distance
and the estimator does not rely on an arbitrarily chosen level; (2) asymptotically
valid confidence sets can be constructed by inverting simple squared-error type
tests with χ2 critical values, so that no tuning parameter is needed; moreover,
the test underlying the confidence set is nonconservative and similar; and finally,
(3) confidence sets covering the identified set and those covering each point in the
identified set with a given probability coincide in a large subclass.

The class of models considered here includes entry games, voting games, and
discrete mixture models, all of which have been of interest to applied researchers.
These models are allowed to have continuous or discrete covariates as discussed
in Section 4.2. But we note that continuous covariates that enter the model para-
metrically are generally not allowed in our framework.

The main contribution of this paper is to provide a new consistent set estima-
tor and a simple confidence set for this class of models. Our procedure can be
considered an extension of classical minimum distance estimation procedures to
accommodate partial identification and inequality constraints. In addition, a tech-
nical contribution of this paper is a new proof of consistency for set estimators.
The new proof utilizes an Implicit Correspondence Lemma (ICL) which we prove
by generalizing the implicit function theorem to multivalued implicit maps. Both
the new consistency proof technique and the ICL may be useful in more general
models. In particular, the ICL contributes to a literature providing generalizations
of the textbook implicit function theorem (e.g., Rudin, 1976, Thm. 9.28); see, for
example, Zhang and Ge (2006) and Phillips (2012). The ICL here differs from the
previous results in that it applies to the cases where neither the global or the local
univalence of the implicit map is guaranteed to hold.

There are a small number of papers that address the consistent estimation prob-
lem under partial identification. These include Andrews, Berry, and Jia (2004),
Chernozhukov et al. (2007), Yildiz (2012), and Kaido and Santos (2011). The
class of models treated in our paper is different from those treated in those pa-
pers. Thus, the assumptions made are not exactly comparable. Nevertheless, we
will compare these conditions briefly below, after stating our main consistency
result. Moreover, our proof technique is different from that of all the papers men-
tioned above.

The literature on constructing confidence sets for partially identified models
is much larger. For a current survey, see the introduction of Andrews and Shi
(2013). Our benchmark confidence set is similar in spirit to that of Andrews
and Soares (2010) applying to moment equality models. Our profiled confi-
dence set where we concentrate out the nuisance parameter offers a new and
simple approach to subvector inference in a certain type of partially identified
models.

In the next section, we describe our model framework and provide several
examples. Section 2 establishes the Hausdorff consistency of our estimated set;
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Section 3 presents results on confidence set and gives conditions under which
confidence sets covering the whole identified set and each point in the set coin-
cide. Assumptions required for the results in Sections 2 and 3 are minimal and
we illustrate the verification of them using the entry game example. Section 4 dis-
cusses how to profile out nuisance parameters and how to handle covariates in our
framework. Section 5 reports Monte Carlo simulation results for the entry game
model. Proofs for the theorems are given in the Appendix.

1. THE TWO-STAGE MODEL

The model considered consists of two stages. In the first stage, a parameter β ∈
B⊂ Rdβ is point identified and has a consistent and asymptotically normal (CAN)
estimator β̂n . In the second stage, the model relates the true value β0 of β to
a structural parameter θ (with true value θ0), through some inequality/equality
restrictions:

ge(θ0,β0) = 0

gie(θ0) ≥ 0, (1.1)

where gie : � → Rd1 and ge : �×B→ Rd2 are known functions, and θ ∈ � ⊂ Rdθ

is the unknown parameter. The parameter θ is potentially partially identified. The
identified set of θ is

�0 = {θ ∈ � : ge(θ,β0) = 0 and gie(θ) ≥ 0}. (1.2)

The two-stage model is closely related to the classical minimum distance problem,
but differs from the latter in the partial (vs. point) identification of θ and in the
presence of the inequality constraints.4

In the model (1.1), the inequality constraints do not depend on β0. This is not
particularly restrictive because one can always convert an inequality constraint
into an equality constraint by introducing a slackness parameter, say γ , and adding
an inequality constraint: γ ≥ 0. This trick is used in Example 1.1. Introducing the
slackness parameter does not affect consistent set estimation. However, for confi-
dence set construction this can lead to conservative inference for the “real” struc-
tural parameters. We discuss this problem in more detail and provide a solution in
Section 4.1.

The two-stage model includes several useful examples which have been stud-
ied in the empirical literature on partially identified models. We describe the first
example—an entry game—in detail to illustrate the applicability our framework.
The other three are described only briefly, for the purpose of space. We note that
our two-stage model, in general, is not a special case of moment inequality mod-
els. The first three examples below are moment inequality models, but not the last
example.



496 XIAOXIA SHI AND MATTHEW SHUM

Example 1.1 (Entry game)
Following Andrews et al. (2004) and Ciliberto and Tamer (2009), consider a
two-firm entry game with complete information, and allow only pure strat-
egy equilibria. Player j , j = 1,2 enters the market if the profit of entering
exceeds 0: yj = {πj ≥ 0}. The profit πj = aj +δj y− j +εj , where aj is the expected
monopoly profit, δj is the competition effect which is assumed to be nonpositive,
and (ε1,ε2) follows a distribution known up to a parameter σ : F(·, ·; σ). Then
the model predicts the probabilities of (0,0) and (1,1): p00 = g00(a,δ,σ ) and
p11 = g11(a,δ,σ ) and the upper bounds for the probabilities of (0,1) and (1,0):
p01 ≤ g01(a,δ,σ ) and p10 ≤ g10(a,δ,σ ), where a = (a1,a2)

′
and δ = (δ1,δ2)

′
.

The outcome probabilities p00, p11, p01, p10 are the first stage point identified pa-
rameters. In the second stage, the structural parameters (a,δ,σ ) are identified by
the equalities/inequalities:

g00(a,δ,σ )− p00 = 0

g11(a,δ,σ )− p11 = 0

g01(a,δ,σ )− p01 ≥ 0

g10(a,δ,σ )− p10 ≥ 0. (1.3)

The equalities/inequalities in (1.3) do not fall immediately into our general
framework because the inequalities involve the first-stage parameters. How-
ever, we can introduce a nuisance second stage parameter γ , add the restriction
γ = g01(a,δ,σ ) − p01, and rewrite the inequalities to only involve (a,δ,σ,γ ).
Specifically, let β = (p00, p11, p01, p10), θ = (a,δ,σ,γ ) for a nuisance parameter
γ ∈ [0,1],

ge(θ,β) =
⎛
⎝ g00(a,δ,σ )− p00

g11(a,δ,σ )− p11

g01(a,δ,σ )− p01 −γ

⎞
⎠ , and

gie(θ) =
(

γ
g10(a,δ,σ )+ g00(a,δ,σ )+ g11(a,δ,σ )+ g01(a,δ,σ )−1−γ

)
. (1.4)

Then the entry game model is written in the form of (1.1).5

Example 1.2 (Deliberative voting model)
Iaryczower, Shi, and Shum (2012) estimate a committee voting model in which
judges have the opportunity to communicate their private information before sub-
mitting their votes. In this model, the vector of probabilities of the different vote
profiles 	pv is identified from the first stage. In the second stage, given 	pv , the
structural parameters, θ , describing the judges’ preferences, information quali-
ties, and prior beliefs are identified through a finite number of incentive compat-
ibility (IC) constraints of the judges—corresponding to gie, and the equilibrium
conditions (EC)—corresponding to the equality constraints ge—which match the
equilibrium voting outcomes predicted by the model with the 	pv estimated in the
first-stage.
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Example 1.3 (Discrete mixture model)
Consider a structural model with discrete unobserved heterogeneity, where a
(discrete) outcome variable y is drawn according to a known parametric mix-
ture distribution f (y|σ,η) characterized by structural parameters σ and mixing
parameter η. Assuming that y takes K distinct values, and η takes M distinct
values, the model is given by the equality constraints

P(y = k) =
M∑

m=1

f (k|σ,η = m)pm, for k = 1, . . . , K ;
M∑

m=1

pm = 1.

In this example, β corresponds to the probabilities P(y = k),k = 1, . . . , K , which
can be estimated from the data, while θ = (σ, 	pη) where 	pη = (p1, . . . , pM )

′
.

Examples of such models are the entry game with multiple equilibria in Bajari,
Hahn, Hong, and Ridder (2011) and the structural nonlinear panel data models in
Bonhomme (2012).

Example 1.4 (Dynamic game)
In the dynamic game model of Bajari, Benkard, and Levin (2007) (BBL),
β denotes parameters in the policy function and the law of motion of the state vari-
ables, which are estimated using flexible parametric functions in the first stage.
In the second stage the remaining structural parameters θ—typically parameters
in agent’s utility functions, or entry/exit costs—are related to the first stage pa-
rameters through an equation arising from the equilibrium optimality conditions.
Written in our notation, they have one equality constraint: ge(θ,β) = 0, where

ge(θ,β) = ∂
∫

min{h(x,θ,β),0}2d H(x)

∂θ
, (1.5)

where h and H are both known and can be simulated. There are no inequality
constraints. Standard theory for minimum distance estimators apply if θ0 is point
identified, but our approach allows θ0 to be partially identified.

Remark. Example 1.1 shows how one can convert models into our framework
by introducing nuisance “slackness” parameters. We discuss this procedure in
more generality here. Consider a model composed of the following restrictions:
ge(θ s,β) = 0, gie,1(θ s,β) ≥ 0, gie,2(θ s) ≥ 0. We can introduce a γ parame-
ter of the same dimension as gie,1 and convert the model into ge(θ s,β) = 0,
gie,1(θ s,β)−γ = 0, gie,2(θ s) ≥ 0, γ ≥ 0. Typically, this is the only way to con-
vert the model. But in some models, gie,1(θ s,β) and ge(θ s,β) satisfy a relation-
ship of the form (ge(θ s,β)′,gie,1(θ s,β)′)c = r(θ s) for some constant vector c,
some function r(θ s), and all θ s and β. This causes (ge(θ s, β̂n)′,gie,1(θ s, β̂n)′ −
γ ′)′ to have a singular asymptotic covariance matrix, preventing the application
of our confidence set proposed in Section 3. In this case, one should drop one
coordinate in gie,1(θ s, β̂) − γ (and hence drop one slackness parameter), solve
for the dropped coordinate of γ from (0′,γ ′)c = r(θ s), and add the nonnegativity
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of that coordinate as an inequality restriction. Indeed, Example 1.1 illustrates this
case; as we saw there, it does not make a difference which coordinate to drop
since dropping a different coordinate is equivalent to a reparametrization.

2. CONSISTENT ESTIMATION

To define the estimated set, let

Q(θ,β; W ) = ge(θ,β)
′
Wge(θ,β), (2.1)

where W is a positive definite matrix. Then it is clear that

�0 = argmin
θ∈�

Q(θ,β0; W ) s.t. gie(θ) ≥ 0. (2.2)

Let Ŵn be a consistent estimator of W . The sample analog estimator of �0 is
defined as

�̂n = argmin
θ∈�

Q(θ, β̂n ; Ŵn)

s.t. gie(θ) ≥ 0. (2.3)

Our set estimator is the argmin set of a criterion function, and in this sense closely
resembles the point estimator in a traditional point identified model. This estima-
tor has two features: (1) it is never empty and (2) it does not rely on an arbitrarily
chosen “level”.

A new technique is developed to prove the consistency of our estimator. The
basic idea is to define a correspondence from the space of β to that of θ so that
�̂n is the correspondence evaluated at β̂n . Then, we establish the continuity of
the correspondence with the help of an implicit correspondence lemma. We prove
this lemma by generalizing the implicit function theorem.

The consistency result is summarized in the following theorem. The proof of
the theorem as well as the implicit correspondence lemma are deferred to the
Appendix. In the theorem, cl(A) denotes the closure of set A and int (A) denotes
the interior of set A. Let the inequality-constraint parameter space of θ be �ie =
{θ ∈ � : gie(θ) ≥ 0}.

THEOREM 2.1. Suppose that

(1) β̂n →p β0 and Ŵn →p W0 as n → ∞ for some positive definite matrix W0;
(2) B and � are compact;
(3) ge(·,β) is continuously differentiable on � for all β ∈ B, gie is continuous

on �; and either
(4) cl(int (�ie) ∩ �0) = �0, and ∂ge(θ,β0)/∂θ

′
has full row rank for all

θ ∈ �0; or
(4*) �0 is a singleton.



TWO-STAGE INFERENCE FOR PARTIALLY IDENTIFIED MODELS 499

Then

dH (�̂n,�0) := max

{
sup
θ∈�̂n

inf
θ0∈�0

‖θ − θ0‖, sup
θ0∈�0

inf
θ∈�̂n

‖θ − θ0‖
}

→p 0.

The proof of the theorem is given in the Appendix. For the rest of this section,
we first illustrate how to apply the theorem to Example 1.1, and then discuss some
of the important assumptions of the theorem.

Example (1.1 Cont.). In the entry game example, β̂n consists of the empirical
frequencies of the entry outcomes observed in the data; that is, empirical estimates
of p11, p10, p01 (with p00 = 1− p11 − p10 − p01). The set B= 
3 is by definition
compact. The compactness of � is a typical assumption maintained in most ex-

tremum estimation problems. The function ge(·,β) =
⎛
⎝ g00(a,δ,σ )− p00

g11(a,δ,σ )− p11
g01(a,δ,σ )− p01 −γ

⎞
⎠

is continuously differentiable in θ as long as F is a continuous distribution and
is continuously differentiable in σ . The function gie(θ) is continuous under the
same condition. The assumption that the first derivative ∂ge(θ,β0)/∂θ

′
has full

row rank can be verified directly because g00, g11, and g01 are known functions
given F . The assumption cl(int (�ie)∩�0) = �0 can be verified by numerical
calculation. Specifically, given any β0, one can compute �ie and �0. By vary-
ing β0 in a reasonable range, one can assess the shape of �ie and �0 reasonably
accurately.

Remarks on Theorem 2.1 (i) Condition (4) of the theorem: cl(int (�ie) ∩
�0) = �0 is worth some discussion. The condition is not restrictive relative to the
seemingly similar conditions in the literature (discussed in more detail below). It
is guaranteed if either (i) �0 lies in the interior of �ie or (ii) cl(int (�0)) = �0,
but neither condition is necessary. For example, �0 can be a union of sets, some
of which satisfy (i) and others satisfy (ii). In particular, �0 does not need to have
nonempty interior.

However condition (4) does rule out two cases: (a) int (�ie) = ∅ and (b) �0
contains isolated points on the boundary of �ie. Case (a) occurs usually because
some pair of inequality restrictions imply an equality constraint and can be han-
dled by a slight modification of our proofs. To do so, let gie∗(θ) be the remaining
inequality constraints after removing the pairs that imply equality constraints and
let �∗

ie = {θ ∈ � : gie∗(θ) ≥ 0}. Append the equality constraints extracted from
gie(θ) ≥ 0 to the original equality constraints to form the new equality constraint
ge∗(θ,β) = 0. Then, the theorem holds with gie and ge replaced by gie∗ and ge∗
respectively and with �ie replaced by �∗

ie.
Case (b), on the other hand, has more substantive implication and should be

ruled out if one aims for Hausdorff consistency of the argmin set �̂n . To see
why, we give a stylized example that falls into the second case and in which
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Hausdorff consistency of �̂n fails. Consider the two-stage model with ge(θ,β) =(
θ1 − θ2

2+β − θ1 − θ3

)
, gie(θ) =

⎛
⎝(θ1 −1)2 −1

θ2
θ3

⎞
⎠, and � = [−B, B]3 for a large

B > 0. Then �ie = ([−B,0] ∪ [2, B]) × [0, B] × [0, B]. Suppose β0 = 0; then
�0 = {(0,0,2), (2,2,0)}. The identified set falls entirely on the boundary of �ie.
Let β̂n = −1/n. Clearly, β̂n is a consistent estimator of β0. For any Ŵn →p W
with W positive definite, Q(θ0, β̂n ; Ŵn) = 0 is solved uniquely at θ0 = (0,0,2 −
1/n). Thus, �̂n = {(0,0,2 − 1/n)}, and dH (�̂n,�0) → 2

√
3 > 0, implying that

�̂n is not consistent.
(ii) Formally testing condition (4) is possible. To do so, one first obtains a

confidence set C Sβ for β0; then, for each β ∈ C Sβ , we compute C(β, Id2) :=
argminθ∈�ie Q(θ,β; Id2) and check whether the Hausdorff distance between
int (�ie)∩C(β, Id2) and C(β, Id2) is zero. One rejects the null that condition (4)
is violated if for all β ∈ C Sβ , we have dH (int (�ie)∩ C(β, Id2),C(β, Id2)) = 0.
The resulting test has the same significance level as one minus the confidence
level of C Sβ .

If condition (4) does not hold, our argmin set estimator can be inconsistent.
To retain consistency, one can follow Chernozhukov et al. (2007) to define an
extended set estimator: �̂

εn
n := {θ ∈ �ie : Q(θ, β̂n; Ŵn) ≤ εn}, where εn is a se-

quence of tuning parameters that satisfies τ−2
n ε−1

n + εn → 0 for τn defined in the
next section. We will not discuss this well-known approach in this paper.

(iii) Next we discuss some connection of our consistency conditions with the
existing literature. To begin, we note that the existing papers consider moment
equality/inequality models which are, for the most part, more complicated than
the models we consider here, and that the extra complication of these models
may justify the stronger assumptions made in some of these papers. Andrews
et al.’s (2004) condition cl(int (�0)) = �0 implies our condition cl(int (�ie) ∩
�0) = �0. Kaido and Santos’s (2011) conditions imply those of Andrews et al.
(2004). Our conditions are weaker in that we allow �0 to have empty interior as
long as �0 lies in int (�ie). Our conditions are lower level sufficient conditions
for the degeneracy condition in Chernozhukov et al. (2007) which requires the
existence of a random set �n on which Q(θ, β̂n, Ŵn)− infθ∈�ie Q(θ, β̂n, Ŵn) = 0
and dH (�n,�0) = op(1). Clearly, our �̂n is such a random set. Finally, our rank
conditions are similar to those in Yildiz (2012) but other conditions are different
and nonnested.

(iv) The full row-rank part of condition (4) is similar to the full-rank condition
for global univalence of implicit maps (see e.g., Phillips, 2012), but is weaker than
the latter because the number of rows of the Jacobian matrix here is allowed to be
smaller than the numbers of columns. In typical applications of our approach, the
number of equalities (i.e., number of rows) indeed are smaller than the dimension
of the parameter (i.e., number of columns), in which case the global univalence
does not hold, and the implicit function theorems for univalued implicit maps do
not apply.
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3. CONFIDENCE SET

To define the confidence set, we choose a specific weighting matrix Ŵn :

Ŵ ∗
n (θ) =

[
G(θ, β̂n)V̂β,nG(θ, β̂n)

′]−1
, (3.1)

where G(θ,β) = ∂ge(θ,β)/∂β
′

and V̂β,n is a consistent estimator of the asymp-
totic variance, Vβ , of τn(β̂n − β0), where τn is a normalizing sequence, e.g.,
τn = √

n. Let the confidence set be

C Sn = {θ ∈ � : gie(θ) ≥ 0, τ 2
n Q(θ, β̂n ; Ŵ ∗

n (θ)) ≤ χ2
d2

(1−α)}, (3.2)

where χ2
d2

(1 −α) is the 1 −α quantile of the χ2 distribution with d2 degrees of
freedom and 1−α ∈ (0,1) is the confidence level.

The following theorem shows that C Sn covers each point in �0 with probabil-
ity approaching 1 −α, and if G(θ,β0) does not depend on θ given that θ ∈ �0,
C Sn also covers the whole identified set with probability approaching 1 − α.
We note that Theorem 3.1 does not inherit the assumptions made in Theorem 2.1.

THEOREM 3.1. Suppose that τn(β̂n −β0) →d Zβ ∼ N (0,Vβ), ge(θ,β) is con-
tinuously differentiable in β in B for all θ ∈ �, G(θ,β) is continuous in θ for all
β in B, G(θ,β0)VβG(θ,β0)

′
is invertible for all θ ∈ � and V̂β →p Vβ . Also sup-

pose that � is compact and ge and gie are continuous in θ in � for all β in B.
Then

(a) liminfn→∞ infθ∈�0 Pr(θ ∈ C Sn) = limsupn→∞ supθ∈�0
Pr(θ ∈ C Sn) =

1 − α;
(b) in addition, if the following condition (***) holds

G(θ1,β0) = G(θ2,β0) for all θ1,θ2 ∈ �0, (***)

then limn→∞ Pr(�0 ⊆ C Sn) = 1−α.

Remark. (i) The additional assumption (***) for part (b) is immediately sat-
isfied if θ and β are additively separable in ge. Additive separability is likely to
hold in models in which the equality restrictions take the form of “matching” em-
pirical frequencies to outcome probabilities predicted by the model, which is a
common feature of Examples 1.1–1.3.6 Of course, there are models in which this
additional assumption is not satisfied; for these models, part (a) still holds and can
be useful.

(ii) Part (a) shows that our confidence sets have asymptotic correct coverage
probability uniformly over points in the identified set. It is straightforward to
strengthen this to uniform validity over a space of data generating processes, at
the cost of assuming uniform convergence of τn(β̂n − β0) and V̂β,n and a uni-
form lower bound on the minimum eigenvalue of G(θ,β0)VβG(θ,β0)

′
. This is

because both types of uniformity can be established using the same sort of local
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asymptotic arguments and address the same sort of discontinuity of the pointwise
asymptotic distribution of the test statistic.7 For briefness, we do not give the for-
mal arguments.

Example (1.1 Cont.). In the entry game example without covariates, τn =
√

n and Vβ = diag(β) − ββ
′
. The matrix G(θ,β0) =

⎛
⎝−1 0 0 0

0 −1 0 0
0 0 −1 0

⎞
⎠, and

G(θ,β0)VβG(θ,β0)
′ =

⎛
⎝ p00(1− p00) −p00 p11 −p00 p01

−p00 p11 p11(1− p11) −p11 p01
−p00 p01 −p11 p01 p01

⎞
⎠ is invertible as

long as p00, p10, p11 > 0. The compactness of �×B and the continuity of ge and
gie are discussed in the previous section.

4. EXTENSIONS AND DISCUSSIONS

In this section, we discuss some practical issues with the methods proposed above.

4.1. Concentrating out Nuisance Parameters

Both the argmin set estimator and the confidence set proposed above are designed
for the full vector θ0. An immediate question is: what if only a subvector of θ0,
say θ s

0 , is of interest to the applied researcher? The answer depends on the objec-
tive and the nuisance parameter.

If the objective is to obtain a consistent estimator for the identified set of θ s
0 ,

then one only needs to obtain the projection of the argmin set �̂n to the space
of θ s

0 . This projection is a good consistent set estimator, in the sense that it does
not involve an arbitrarily chosen tuning parameter.

If the objective is to obtain a confidence set for either the true value of the
subvector or the identified set of it, one can obtain the projection of C Sn to the
space of θ s

0 . The projection, denoted C Ss,proj
n , will inherit the properties of C Sn

described in the “limsup” part of Theorem 3.1(a) and in 3.1(b), except with “= 1−
α” replaced by “≥ 1−α”. The “≥” means that the C Ss,proj

n may be conservative.
On the other hand, obtaining a nonconservative confidence set for the subvector

is a more complicated problem. A general treatment is beyond the scope of this
paper.8 However, simplifications arise in the case (as in Example 1.1) in which the
nuisance parameters are the slackness parameters γ which we introduced earlier
in order to transform a model into the form of (1.1). The solution is a new profiled
confidence set which we now describe.

The new confidence set is defined for the parameter θ s for the following model

ge(θ s,β) = 0

gie,1(θ s,β)−γ = 0

gie,2(θ s,γ ) ≥ 0 and γ ∈ R
dγ

+ , (4.1)
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where ge(θ s,β), gie,1(θ s,β), and gie,2(θ s,γ ) are respectively Rde , Rdγ , and
Rdie,2 -valued known functions, β is the parameter that is estimated in the first
step, and γ is the nuisance slackness parameter. Let �s be the parameter space
of θ s . For any θ s ∈ �s , let the inequality-restricted parameter space of γ :

�(θ s) = {γ ∈ R
dγ

+ : gie,2(θ s,γ ) ≥ 0} and let the inequality-restriced parame-
ter space of θ : �s

ie = {θ s ∈ �s : �(θ s) �= ∅}. Let the identified set of θ s be
�s

0 = {θ s ∈ �s : ge(θ s,β0) = 0 and gie,1(θ s,β0) ∈ �(θ s)}.
The new confidence set is based on the following criterion function

Q(θ s, β̂n) = min
γ∈�(θ s )

(
ge(θ s, β̂n)

gie,1(θ s, β̂n)−γ

)′
Ŵ ∗

n (θ s)

(
ge(θ s, β̂n)

gie,1(θ s, β̂n)−γ

)
, (4.2)

where the weight matrix Ŵ ∗
n (θ s) = [Gs(θ s, β̂n)V̂β,nGs(θ s, β̂n)′]−1, with V̂β,n de-

fined as in the previous section and

Gs(θ s,β) = ∂

∂β ′

(
ge(θ s,β)

gie,1(θ s,β)

)
. (4.3)

The critical value, cn(θ s,1 − α), is the 1 − α quantile of the following random
variable

Jn(θ s) := min
t∈�(θ s )−γ̂ (θ s )

(
Ze

n
Zie

n −κ−1
n τnt

)′
Ŵ ∗

n (θ s)

(
Ze

n
Zie

n −κ−1
n τnt

)
, (4.4)

where the random vector (Ze,′
n , Zie,′

n )′ ∼ N (0, Ŵ ∗
n (θ s)−1), γ̂ (θ s) =

argminγ∈�(θ s ) ‖γ − gie,1(θ s, β̂n)‖, and {κn} is a sequence of tuning param-
eters that diverges to ∞.

The following theorem shows that the confidence set C Ss
n = {θ s ∈ �s

ie :
τ 2

n Q(θ s, β̂n) ≤ cn(θ
s,1−α)} asymptotically covers the true value of θ s with prob-

ability no less than 1−α, and under additional assumptions, equal to 1−α.

THEOREM 4.1. Suppose that τn(β̂n − β0) →d Zβ ∼ N (0,Vβ), Gs(θ s,β)
in (4.3) is well defined and continuous in θ s and β for β in B,
Gs(θ s,β0)VβGs(θ s,β0)

′
is invertible for all θ s ∈ �s and V̂β,n →p Vβ . Also sup-

pose that �s is compact, ge, gie,1 are continuous in θ s ∈ �s for all β in B and
gie,2 is continuous in θ and γ . Lastly assume that �(θ s) is convex for all θ s ∈ �s

0
and that de ≥ 1. Then

(a) if κn → ∞, then liminfn→∞ infθ s∈�s
0

Pr(θ s ∈ C Ss
n) ≥ 1−α;

(b) if in addition, κ−1
n τn → ∞, then we have limn→∞ infθ s∈�s

0
Pr(θ s ∈ C Ss

n) =
1−α.

Remark. (i) The special condition imposed for this theorem (compared to
Theorem 3.1) is the convexity of �(θ s) and de ≥ 1. This condition guarantees
that Jn(θ s) converges to a distribution that first order stochastically dominates
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the asymptotic distribution of Q(θ s, β̂n), which is important for establishing the
lower bound for the limiting coverage probability. The convexity of �(θ s) is typ-
ically satisfied if one follows the guideline in the remark at the end of Section 1
to transform a raw model into our framework. The de ≥ 1 condition is important
for Jn(θ s) to have continuous asymptotic distribution.

(ii) The new profiled confidence set C Ss
n is always weakly smaller than

C Ss,proj
n , the projection of C Sn to the space of θ s . This can be seen easily by

first observing that

C Ss,proj
n = {θ s ∈ �s

ie : τ 2
n Q(θ s, β̂n) ≤ χ2

de+dγ
(1−α)}. (4.5)

The critical value χ2
de+dγ

(1 − α) is weakly bigger than cn(θ s,1 − α) because

0 ∈ �(θ s) − γ̂n(θ s) and the random variable following “min” in (4.4) is χ2
de+dγ

distributed when t = 0. Thus, C Ss
n ⊆ C Ss,proj

n . The profiling approach shrinks the
confidence set because it uses a critical value that is adaptive to the size of each
element of γ , rather than a larger χ2 bound. The cost of course is that one needs
to choose κn . A smaller κn shrinks the confidence set more because cn(θ s,1−α)
is monotonically increasing in κn . Yet, one cannot use too small a κn because κ−1

n
must be small enough to dominate an asymptotically Gaussian term to guarantee
good coverage probability. We use κn = √

log(n) in the Monte Carlo in Section 5
and it performs well.

(iii) Remark (ii) on Theorem 3.1 applies here too, except the content in the
footnote therein.

4.2. Introducing Covariates

Up to now, we have not considered models with covariates. However, this frame-
work is broad enough to accommodate covariates in several ways.

The framework can allow any covariate to enter fully nonparametrically. Con-
sider a covariate X with support X . Suppose that in the first stage, the function
β(x) :X → B can be estimated, and that the structural parameter, θ(x) :X → �,
satisfies:

ge(θ(x),β(x)) = 0, and gie(θ(x)) ≥ 0,∀x ∈ X . (4.6)

Then the argmin set estimator and the confidence set proposed above apply point-
wise for the function θ(x). This fully nonparametric approach cannot make use of
any shape restriction on θ(x) directly, although shape restrictions can be imposed
on β(x) in the first stage estimation.

The framework can allow covariates with finite support points to enter
either nonparametrically or parametrically. Consider a covariate X with finite
support set X = {x1, . . . , xm}, where m < ∞. Again, assume that the first
stage function β(x) : X → B can be estimated; for θ(x), we assume a para-
metric functional form; for instance, we may have θ(x) = θ(x,λ), where
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λ ∈ � ⊆ Rdλ and θ(·, ·) is known. Let 	β = (β(x1)
′, . . . ,β(xm)′)′,

ge(λ, 	β) = (ge(θ(x1,λ),β(x1)), . . . ,ge(θ(xk,λ),β(xk)))
′, and gie(λ, 	β) =

(gie(θ(x1,λ)), . . . ,gie(θ(xk,λ)))′. Then we have

ge(λ, 	β) = 0 and gie(λ) ≥ 0. (4.7)

Then the set estimator and the confidence sets proposed above can be used for λ.9

Example (1.1 Cont). We illustrate the parametric approach of allowing for
covariates in the context of the entry game example. Suppose that X is
some market and/or firm characteristics on which the profit function depends.
Suppose that X takes m values. A plausible model assumes that aj (x) =
xλj , δj (x) = δj , and σj (x) = σj , that is, the monopoly profit depends on
X linearly and the competition effects and the error variances are constants.
Let p00(x) = Pr(0,0|X = x), . . . , p10(x) = Pr(1,0|X = x) be the conditional
probabilities of each entry outcome. These conditional probabilities can be
estimated using their sample counterparts. Then the model falls into the
framework of (4.7) with λ = (λ′

1,λ
′
2,δ1,δ2,σ1,σ2,γ (x1), . . . ,γ (xm))′ and 	β =

(p00(x1), . . . , p10(x1), . . . , p00(xm), . . . , p10(xm))′.

5. MONTE CARLO SIMULATION

In this section, we present Monte Carlo results for the entry game example to illus-
trate the performance of our argmin set estimator and confidence sets. Our results
show that (i) the Hausdorff distance between the argmin set estimator and the
identified set declines at an encouraging speed as the sample size increases and
(ii) the confidence sets have good coverage probabilities as the theory predicts.
Because the entry game example is also a moment inequality/equality model, an
alternative to ours is the Andrews and Soares (2010) (hereafter “AS”) confidence
sets. We compare the coverage probability and false coverage probability of our
confidence sets to the AS ones and find that the performance of ours is competi-
tive.

We consider the entry game described in Example 1.1. Let (ε1,ε2) ∼ N (0, I2)
so that F(e1,e2) = �(e1)�(e2). The full set of model parameters are θ =
(θ s,′,γ )′, but the structural parameters of interest are just θ s := (a1,a2,δ1,δ2)

′.
We write out the functions g00,g11,g01,g10 as follows:

g00(a,δ) = (1−�(a1))(1−�(a2))

g11(a,δ) = �(a1 + δ1)�(a2 + δ2)

g10(a,δ) = �(a1)(1−�(a2 + δ2))

g01(a,δ) = �(a2)(1−�(a1 + δ1)). (5.1)

The two-step model to estimate is (1.4) with g00,g11,g10,g01 in the above display.
The first stage estimators p̂00, p̂11, p̂10, p̂01 are frequencies of the equilibrium

outcomes for sample size n. For both the consistent estimation and the confidence
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sets, we use the weight matrix W = Ŵ ∗
n = [V̂β,n]−1, where

V̂β,n =
⎛
⎝ p̂00(1− p̂00) − p̂00 p̂11 − p̂00 p̂01

− p̂00 p̂11 p̂11(1− p̂11) − p̂11 p̂01
− p̂00 p̂01 − p̂11 p̂01 (1− p̂01) p̂01

⎞
⎠ .

In generating the sample, we set the parameters (a10,a20) = (1,1) and
(δ10,δ20) = (−0.5,−0.5). In case of multiple equilibria, the equilibrium that max-
imizes the joint profit is selected.

In Figure 1, we plot the two-dimensional projections for the identified set
(IDset) and various set estimators for the parameters (α10,α20,δ10,δ20), for sam-
ple sizes n = 250 and n = 1000. We see that (1) the identified set does not have
nonempty interior because the projection onto the a1-a2 space is a line, (2) the
estimated sets have similar shape as the identified set, and (3) as the sample size
increases from 250 to 1000, the estimated sets become notably more concentrated
around the identified set.

To formally check the consistency of our set estimators, we compute the Haus-
dorff distance between the estimated set and the identified set for 5000 samples
and report several measures of closeness: the median Hausdorff distance (HD)
between the estimated set and the identified set, the 90% quantile of HD, and the
probability that the HD exceeds some fixed levels. Table 1 shows the results. It
is easy to see that the HD decreases both at the median and the 90% quantile as
the sample size n grows. The last three columns directly confirm the consistency
result of Theorem 2.1.10

Next, we investigate the finite sample performance of the confidence sets.
Figure 2 shows the two-dimensional projections of one finite sample realization
of C Sn and the profiled confidence set C Ss

n , as well as the realization in the same
sample of AS’s SUM/PA and SUM/GMS confidence sets.11 As the figure shows,
all four confidence sets have very similar shape and cover the identified set. AS’s
GMS confidence set is slightly smaller than their PA version; our profile con-
fidence set C Ss

n is smaller than our projection confidence set C Ss,proj
n . In the

sample with n = 250, our confidence sets are strictly smaller than the AS ones.
But this is not generally true. For example, in the sample with n = 1000, our
confidence sets are nonnested with the AS ones.

To formally check the finite sample coverage properties of the confidence sets,
we compute various types of coverage probabilities using 5000 Monte Carlo
repetitions. The first type of coverage probability is that of the true parameter
θ s

0 = (1,1,−0.5,−0.5)′. We abbreviate this coverage probability by “CP-Point”.
The second type of coverage probability is that of parameter values outside the
identified set. We consider two such points: θ s

1 = (0.85,1.15,−0.5,−0.5)′ and
θ s

2 = (1.18,0.60,−0.92,0.00)′, both approximately 0.14 units away from the
identified set.12 We abbreviate these false coverage probabilities by “FCP-θ s

1 ” and
“FCP-θ s

2 ”, respectively. We compute the first two types of coverage probabilities

for C Ss,proj
n , C Ss

n , AS-SUM/PA, and AS-SUM/GMS. The third type of coverage
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FIGURE 1. Two-dimensional projections of the identified set and estimated set (dark red
line/area: identified set; pink dot: true parameter; blueish-greenish lines/areas: estimated
sets from 10 random samples).

probability is that of the identified set. We denote it by “CP-IDset” and compute
it for C Ss,proj

n only because this is the only confidence set for θ s that is designed
to cover the identified set with a prespecified probability.

For our profiling confidence set C Ss
n , the baseline tuning parameter value κn

is chosen to be
√

logn, a choice adopted from Andrews and Soares (2010).
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FIGURE 2. Two-dimensional projections of the confidence sets. (Area enclosed by the
dotted line with solid dot markers: AS-PA; area enclosed by the dash-dotted line with
circle markers: AS-GMS; area enclosed by the solid line with triangle markers: C Sn ; area
enclosed by the dashed line with square markers: C Ss

n ; area enclosed by the thick solid
line with no marker: �0.).

In addition, we also report results for two other κn values which are respectively
half and twice the baseline value. The purpose of this is to get some idea about
how sensitive our approach is to different tuning parameter choices.
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TABLE 1. Consistency of the set estimators

n Median HD 90% quantile Pr(HD > 0.5) Pr(HD > 0.4) Pr(HD > 0.3)

250 .269 .559 .141 .250 .424
500 .194 .397 .041 .098 .224
750 .162 .324 .010 .038 .134

1,000 .149 .283 .002 .018 .079
10,000 .084 .128 .000 .000 .000

TABLE 2. Coverage probability of true parameter value (1−α = 90%)

n = 250 n = 500 n = 750 n = 1000

CP-Point C Ss,proj
n .905 .923 .938 .941

C Ss
n : κn = √

logn .894 .912 .919 .922

C Ss
n : κn =

√
logn
2 .889 .901 .914 .912

C Ss
n : κn = 2

√
logn .899 .917 .928 .930

AS-PA .904 .921 .938 .936
AS-GMS .898 .915 .934 .931

CP-IDset C Ss,proj
n .872 .877 .886 .890

The results are reported in Tables 2 and 3. As Table 2 shows, the CP-Points are
close to or bigger than the nominal level (90%) for confidence sets considered.
Our C Ss,proj

n also covers the identified set with probability close to 90%. For
our profiling confidence set, the coverage probability of the true parameter value
changes slightly with different choices of κn . As predicted by theory, smaller κn

reduces the CP, while larger κn increases it.
In terms of FCPs, our profiled confidence set C Ss

n is slightly better than the

projection C Ss,proj
n for θ s

1 and is about the same as the latter for θ s
2 .13 For AS’s

confidence set, the GMS version strictly improves upon the PA version uniformly
across all cases. For our profiling confidence set, the effect of the tuning parameter
choice on FCP is similar to that on the CP of the true parameter value.

It is notable that both of our confidence sets have uniformly lower (better) FCPs
than the AS confidence sets across the two points and across sample sizes. This
implies that introducing the slackness parameter γ to fit the moment inequal-
ity/equality model into our framework does not hurt the power, at least not in this
example. It appears that the contrary is true. One intuition for the finding is that
writing the model into our framework allows us to use the inverse of the covari-
ance matrix as the weight matrix, and such a weight matrix works better than the
diagonal weight matrix used in the AS SUM test statistic.
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TABLE 3. False coverage probability (1−α = 90%)

n = 250 n = 500 n = 750 n = 1000

FCP-θ s
1 C Ss,proj

n .502 .222 .089 .033
C Ss

n : κn = √
logn .477 .194 .074 .025

C Ss
n : κn =

√
logn
2 .461 .184 .071 .024

C Ss
n : κn = 2

√
logn .488 .204 .079 .028

AS-PA .718 .482 .294 .160
AS-GMS .666 .399 .219 .109

FCP-θ s
2 C Ss,proj

n .550 .313 .158 .076
C Ss

n .551 .313 .159 .078

C Ss
n : κn =

√
logn
2 .551 .313 .159 .078

C Ss
n : κn = 2

√
logn .551 .313 .159 .078

AS-PA .684 .479 .304 .185
AS-GMS .662 .452 .274 .158

NOTES

1. e.g., Chernozhukov et al. (2007), Andrews and Soares (2010), Bugni (2010), Canay (2010),
Romano and Shaikh (2008, 2010), and Chernozhukov, Lee and Rosen (2013).

2. See e.g., Stoye (2010), Andrews and Soares (2010), and Chernozhukov et al. (2013).
3. The distinction was first pointed out by Imbens and Manski (2004). Subsequently authors in this

literature either advocate for one or propose separate procedures for both. Andrews and his coauthors
are representative of the former approach, while Romano and Shaikh (2008, 2010) have taken the
latter approach.

4. If the parameter is point identified, there are no inequality constraints, and θ0 lies in the interior
of �, then the classical minimum distance estimator is consistent and asymptotically normal. In this
case, our set estimator will be a singleton and coincide with the classical minimum distance estimator.
However, our confidence set projected to each coordinate of θ is wider than the standard profile like-
lihood ratio confidence interval for the same coordinate because the critical value χ2

d2
(1−α) exceeds

the univariate critical value (χ2
1 (1−α)).

5. Generalizing the example to a game with more than 2 players can be done following Ciliberto
and Tamer (2009).

6. The condition may also be satisfied when ge is not additively separable, but can be rewritten
into an additively separable form by taking a nonlinear (e.g., logarithmic) transformation.

7. In fact, the pointwise asymptotic distribution of the test statistic τn Q(θ, β̂n ; Ŵ∗
n (θ)) is

constant—χ2
d2

—regardless of the data generating process or the true value of θ , and thus does not
have a discontinuity. This is because the inequality constraints are by design not dependent on the
estimated quantity β̂n and do not enter the test statistic.

8. See Bugni, Canay, and Shi (2012) for a general treatment of the moment inequality model.
9. It would be interesting to extend the current framework to allow continuous X to enter the

model parametrically. But the extension requires substantial change to the current method and we
plan to explore it in future work.

10. As it turned out, the HD numbers for θ ≡ (θ s,′,γ )′ and those for θ s are identical up to the
accuracy level we report. Thus, Table 1 can be seen as the results for both θ and θ s . The reason that
the numbers are identical is that the γ values in both the estimated set and the identified set are of
much smaller magnitude than the a and δ values.
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11. The AS’s SUM/PA confidence set uses their SUM test statistic and the plug-in asymptotic (PA)
critical value. The AS’s SUM/GMS confidence set uses their SUM test statistic and the generalized
moment selection critical value. The GMS critical value uses the ϕ(x) = +∞1(x > 1) moment se-
lection function (assuming ∞ · 0 = 0), and κn = √

log(n). The κn = √
log(n) is recommended by

Andrews and Soares (2010).
12. We pick the first point to be a simple deviation from the true value and the second point to be a

simple deviation from one extreme point of the identified set. Our results are not likely dependent on
the points picked.

13. In theory, the FCPs of C Ss
n should not be bigger than those of C Ss,proj

n , as discussed in
Remark(ii) of Theorem 4.1. Yet in the table, the former appear to be slightly bigger than the latter
at n = 250,750, and 1000. This is due to simulation error in the critical value procedure for the pro-

filed confidence set. The critical value for C Sn (and thus for its projection C Ss,proj
n ) is χ2

3 (90%) and
does not involve simulation error.
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APPENDIX: Proofs

The proof of Theorem 2.1 makes uses of the following implicit correspondence lemma.

LEMMA A.1 (Implicit Correspondence Lemma). Let f (x, y) :X ×Y→ Rdf be a con-
tinuously differentiable function defined on the set X ×Y ⊆ Rdx +dy , where X is open, Y
is compact, and cl(int (Y)) = Y . Let the equation f (x, y) = 0 define the correspondence
y(x) : x → y implicitly, i.e., y(x) = {y ∈ Y : f (x, y) = 0}. Let X1 = {x ∈ X : y(x) �= ∅}.
Consider a x0 ∈ X1. Suppose furthermore that ∂ f (x0, y0)/∂y′ has full row-rank for any
y0 ∈ y(x0)∩ int (Y) and cl(y(x0)∩ int (Y)) = y(x0). Then, the correspondence y(x) re-
stricted to X1 is continuous at x0.

Proof. First, we prove the upper hemicontinuity. Consider an arbitrary sequence
{xm ∈ X1}∞m=1 such that limm→∞ xm = x0 and an arbitrary converging sequence {ym ∈
y(xm)}∞m=1 such that limm→∞ ym = y∞. Because f (x, y) is continuous, we have
limm→∞ f (xm , ym) = f (x0, y∞). By the definition of the sequence {ym}, f (xm , ym) = 0
for any m. Thus, f (x0, y∞) = 0, i.e., y∞ ∈ y(x0). This combined with the compactness
of Y (so that every sequence {ym ∈ Y} has a converging subsequence) shows the upper
hemicontinuity.

The lower hemicontinuity is trickier and we show it using a combination of the implicit
function theorem and normalization of parameters. Again, consider an arbitrary sequence
{xm ∈ X1}∞m=1 such that limm→∞ xm = x0 and an arbitrary point y0 ∈ y(x0). The lower
hemicontinuity is proved if we can find a sequence {ym ∈ y(xm)}∞m=1 such limn→∞ ym =
y0. We discuss two cases below: y0 ∈ int (Y) and y0 /∈ int (Y).

Case 1. y0 ∈ int (Y). The fact that ∂ f (x0, y0)/∂y
′

has full row-rank implies that df ≤
dy . If df = dy , then ∂ f (x0, y0)/∂y

′
is invertible. By the implicit function theorem (see

e.g., Theorem 9.28 of Rudin (1976)), there exists an open set Ux ⊆ X containing x0, an
open set Uy ⊆ int (Y) containing y0, and a unique y∗(x) ∈ Uy for every x ∈ Ux such that
y∗(x) ∈ y(x). Also, y∗(x) is a continuous function on Ux by the same theorem. Simply
set ym = y∗(xm) and we have limm→∞ ym = y0.
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If df < dy , one cannot apply the implicit function theorem directly. But observe that
when df < dy , y0 is “underidentified” by the equation system f (x0, y) = 0. We add a few
normalization equations to force y0 to be identified. Let E be a (dy −df )×dy dimensional
matrix, each row of which is an element in the standard orthogonal basis (e1, . . . ,edy ) and

the rows are orthogonal to each other and orthogonal to the rows of ∂ f (x0, y0)/∂y
′
. Then,

[∂ f (x0, y0)
′
/∂y|E ′

]
′

is invertible. We add the following normalization equations to the
original equation system:

E × y = E × y0. (A.1)

Let f̄ (x, y) =
(

f (x, y)
E × (y − y0)

)
. Then f̄ (x, y) is continuously differentiable and its Jaco-

bian ∂ f̄ (x0, y0)/∂y = [∂ f (x0, y0)
′
/∂y|E ′

]
′

is invertible. The arguments in the previous
paragraph go through with f replaced by f̄ .

Case 2. y0 /∈ int (Y). Because cl(y(x0)∩ int (Y)) = y(x0), we can find a sequence yn ∈
y(x0)∩ int (Y) such that limn→∞ yn = y0. For each yn , we can find a sequence ym,n ∈
y(xm) such that limm→∞ ym,n = yn by arguments in Case 1. Let nm be such that |ym,nm −
y0| ≤ infn |ym,n − y0|+ 2−m . We next show that limm→∞ ym,nm = y0, which completes
the proof of lower hemicontinuity. Consider an arbitrary ε > 0, then there exists a N such
that for all n ≥ N , |yn − y0| < ε/3. Since limm→∞ ym,N = yN , there exists M1 such
that for all m ≥ M1, such that |ym,N − yN | < ε/3. Let M2 be an integer for all m ≥ M2,
2−m < ε/3. Then for any m > max{M1, M2}, we have

|ym,nm − y0| ≤ |ym,N − y0|+2−m ≤ |ym,N − yN |+ |yN − y0|+2−m

≤ ε/3+ ε/3+ ε/3 = ε. (A.2)

This shows that limn→∞ ym,nm = y0 and by definition, ym,nm ∈ y(xm).
Therefore, y(x) is both lower and upper hemicontinuous at x0. The lemma is proved. n

Proof of Theorem 2.1. The proof makes use of the following set-valued function: C :
B×W → K(�) defined by C(β,W ) = argminθ∈�ie Q(θ,β,W ), where W is the set of
d2 × d2 positive definite matrices and K(�) is the set of subsets of �. Clearly, �0 =
C(β0,W0), and �̂n = C(β̂n, Ŵn). Consider the metric spaces (K(�),dH ) and (B×W,‖·
‖) where ‖(β1,W1)‖2 = ‖β1‖2 + trace(W ′

1W1). Below we show that the mapping C :B×
W→K(�) is continuous at (β0,W0) under the metrics we consider. Once the continuity
is established, the continuous mapping theorem (e.g., van der Vaart and Wellner, 1996,
Thm. 1.9.5) applies and yields the desired result.

We now prove the continuity of C(·, ·). Consider a (deterministic) sequence (βn,Wn) ∈
B×W such that (βn,Wn) → (β0,W0) and we want to show that

dH (C(βn,Wn),C(β0,W0)) → 0. (A.3)

The proof of the continuity of (A.3) contains four steps. For clarity, we first sketch the steps
and afterward give detailed arguments for each step.

STEP 1. Let θ̄n be an arbitrary point in C(βn,Wn) and θn ∈ argminθ∈�0 ||θ − θ̄n ||. We
show that ||θ̄n − θn || → 0. This implies that

sup
θ∈C(βn ,Wn)

inf
θ0∈�0

||θ − θ0|| → 0. (A.4)
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If �0 is a singleton, the proof is finished. Otherwise, the following steps are needed.
STEP 2. Let r(β,ζ ) = {θ ∈ �ie : ge(θ,β) = ζ }. Then r(β,ζ ) is a correspondence from

B×Z to �ie defined by the implicit function ge(θ,β) − ζ = 0, where Z is a compact
Rd2 -ball around the origin. We show that r restricted to {(β,ζ ) ∈ B×Z : r(β,ζ ) �= ∅} is
both upper and lower hemicontinuous at (β,ζ ) = (β0,0). In this step, we make use of the
Implicit Correspondence Lemma mentioned above.

STEP 3. Let �̃n = r(βn,ge(θ̄n,βn)) for an arbitrary θ̄n ∈ C(βn,Wn). Then clearly
�̃n �= ∅ and �̃n ⊆ C(βn,Wn). Also, by (A.4), there exists a sequence θn ∈ �0 such that
‖θ̄n − θn‖ → 0. By this, βn → β0, ge(θn,β0) = 0, and the uniform continuity of ge on
� ×B, we have ge(θ̄n,βn) → 0. This combined with βn → β0 and the continuity of
r shown in STEP 2 implies that dH (�̃n,�0) → 0.

STEP 4. Because �̃n ⊆ C(βn,Wn), STEP 3 implies that supθ0∈�0
infθ∈C(βn ,Wn)

||θ − θ0|| → 0. This combined with (A.4) shows (A.3).
Now we give detailed arguments for STEPS 1–3. STEP 4 is self-evident.
The proof for STEP 1 takes the form of a standard consistency proof. Two major com-

ponents of it are the uniform convergence of Q and global identification:

sup
θ∈�ie

|Q(θ,βn ; Wn)− Q(θ,β0; W0)| → 0, and

∀ε > 0,∃δε > 0 s.t. inf
θ∈�:infθ0∈�0 ||θ−θ0||>ε

Q(θ,β0; W0) > δε. (A.5)

The uniform convergence is implied by the continuity of ge on the compact set � ×B,
βn → β0, and Wn → W0. In more detail, observe that

sup
θ∈�ie

|Q(θ,βn ; Wn)− Q(θ,β0; W0)|

≤ sup
θ∈�ie

|(ge(θ,βn)− ge(θ,β0))′Wn ge(θ,βn)|

+ sup
θ∈�ie

|(ge(θ,βn)− ge(θ,β0))′Wnge(θ,β0)|+ sup
θ∈�ie

|ge(θ,β0)′(Wn − W0)ge(θ,β0)|

≤ 2 sup
θ∈�ie

‖ge(θ,βn)− ge(θ,β0)‖‖Wn‖ sup
θ∈�ie,β∈B

‖ge(θ,β)‖

+ sup
θ∈�ie

‖ge(θ,β0)‖2‖Wn − W0‖. (A.6)

The first summand on the right-hand side converges to zero in probability because ge(θ,β)
is uniformly continuous on �ie ×B (which holds because it is continuous and �ie ×B
is compact) and because ‖Wn‖ = O(1) and supθ∈�ie,β∈B ‖ge(θ,β)‖ < ∞ (which holds
because ge is continuous and �ie ×B is compact). The second summand on the right-hand
side converges to zero due to similar argument. This shows the uniform convergence.

The global identification condition is implied by the definition of �0, the continuity of
Q(·,β0; W0), and the compactness of �.

Using the uniform convergence result, we have

Q(θ̄n,β0; W0) = Q(θ̄n,β0; W0)− Q(θ̄n,βn ; Wn)

+ Q(θ̄n,βn ; Wn)− Q(θn,βn ; Wn)

+ Q(θn,βn ; Wn)− Q(θn,β0; W0)

≤ 2 sup
θ∈�ie

|Q(θ,β0; W0)− Q(θ,βn ; Wn)| → 0. (A.7)
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Above, the equality holds by adding and subtracting terms and by Q(θn,β0,W ) = 0 (which
holds because θn ∈ �0). The inequality holds because Q(θ̄n,βn,Wn) ≤ Q(θn,βn,Wn)
(by θ̄n ∈ C(βn,Wn)) and because both θ̄n and θn are in �ie. Finally, the convergence holds
by the first line of (A.5). This combined with the second line of (A.5) shows ‖θ̄n −θn‖ → 0,
which in turn shows (A.4).

In STEP 2, θ corresponds to y in Lemma A.1, �ie corresponds to Y , (β,ζ ) corresponds
to x , and an arbitrary open set containing B×Z corresponds to X , and ge(θ,β) − ζ
corresponds to f (x, y). The set �ie is compact because � is compact and gie is
continuous. The function ge(θ,β) − ζ is continuously differentiable because ge is con-
tinuously differentiable. The Jacobian ∂(ge(θ,β)− ζ )/∂θ

′ = ∂ge(θ,β)/∂θ
′

has full row-
rank by assumption. Therefore, Lemma A.1 applies and shows that the correspondence
r : {(β,ζ ) ∈ B×Z : r(β,ζ ) �= ∅} → �ie is continuous at (β0,0).

In STEP 3, first by the upper hemicontinuity of r(·), for any ε > 0, there exists a N large
enough such that for all n ≥ N , we have �̃n ≡ r(βn,ge(θ̄n,βn)) ⊆ r(β0,0)ε := {θ ∈ � :
infθ∗∈r(β0,0) ‖θ − θ∗‖ ≤ ε}. This implies that

lim
n→∞ sup

θ∈�̃n

inf
θ∗∈r(β0,0)

‖θ − θ∗‖ = 0. (A.8)

Now consider θ∗
n ∈ r(β0,0) such that infθ∈�̃n

‖θ∗
n − θ‖ = o(1) + supθ∗∈r(β0,0)

infθ∈�̃n
‖θ∗ − θ‖. Let {un} be a subsequence of {n} such that limn→∞ infθ∈�̃un‖θ∗

un
− θ‖ = limsupn→∞ infθ∈�̃n

‖θ∗
n − θ‖ and θ∗

un
→ θ∗∞ for some θ∗∞ ∈ �. Such a sub-

sequence always exists by the property of limsup and the compactness of �. By the lower-
semicontinuity of r(·), for any ε > 0 and the open ballNε(θ

∗∞), there exists N large enough
such that for all n ≥ N , �̃un ∩Nε(θ

∗∞) �= ∅, which implies that infθ∈�̃un
‖θ − θ∗∞‖ < ε.

Therefore, limn→∞ infθ∈�̃un
‖θ − θ∗∞‖ = 0. But by the definition of θ∗∞, we have

limsup
n→∞

sup
θ∗∈r(β0,0)

inf
θ∈�̃n

‖θ∗ − θ‖ = lim
n→∞ inf

θ∈�̃un

‖θ∗
un

− θ‖

= lim
n→∞ inf

θ∈�̃un

‖θ − θ∗∞‖ = 0. (A.9)

Lastly observe that r(β0,0) = �0. This along with (A.8) and (A.9) implies
dH (�̃n,�0) → 0. n

Proof of Theorem 3.1. (a) By the definition of inf, there exists a sequence {θn ∈ �0}
such that Pr(θn ∈ C Sn) = infθ∈�0 Pr(θ ∈ C Sn)+o(1). Thus,

liminf
n→∞ inf

θ∈�0
Pr(θ ∈ C Sn) = liminf

n→∞ Pr(θn ∈ C Sn). (A.10)

By the definition of liminf, there exists a subsequence {un} of {n} such that

liminf
n→∞ Pr(θn ∈ C Sn) = lim

n→∞Pr(θun ∈ C Sun ). (A.11)

Because � is compact, there is a further subsequence {an} of {un} such that θan → θ0 for
some θ0 ∈ �. Because ge and gie are continuous in θ , θ0 ∈ �0. We then show that

τ2
an

Q(θan , β̂an ; Ŵ∗
an

(θan )) →d χ2
d2

. (A.12)
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To show this observe that

τ2
an

Q(θan , β̂an ; Ŵ∗
an

(θan )) = τ2
an

[ge(θan , β̂an )− ge(θan ,β0)]′Ŵ∗
an

(θan )

× [ge(θan , β̂an )− ge(θan ,β0)]. (A.13)

By the continuity of G, we have G(θan , β̂an ) →p G(θ0,β0). Thus,

[Ŵ∗
an

(θan )]−1 ≡ G(θan , β̂an )V̂β,an G(θan , β̂an )
′ →p G(θ0,β0)Vβ G(θ0,β0)

′
. (A.14)

Because G(θ0,β0)
′
Vβ G(θ0,β0) is invertible, by Slutsky’s theorem,

Ŵ∗
an

(θan ) →p [G(θ0,β0)Vβ G(θ0,β0)
′
]−1. (A.15)

Also, by mean-value expansion,

τan (ge(θan , β̂an )− ge(θan ,β0)) = τan G(θan , β̃an )(β̂an −β0)

→d G(θ0,β0)Zβ ∼ N (0,G(θ0,β0)Vβ G(θ0,β0)′,
(A.16)

where the convergence holds by the continuity of G(·, ·), τan (β̂an − β0) → Zβ and the
continuous mapping theorem. Therefore,

τ2
an

Q(θan , β̂an , Ŵ∗
an

(θan ))

→d Z
′
β G(θ0,β0)

′
[G(θ0,β0)Vβ G(θ0,β0)

′
]−1G(θ0,β0)Zβ ∼ χ2

d2
. (A.17)

This implies that limn→∞ Pr(θan ∈ C San ) = 1 −α. Then by the definition of {θan } given
at the beginning of the proof, we have

liminf
n→∞ inf

θ∈�0
Pr(θ ∈ C Sn) = 1−α. (A.18)

Analogous arguments can be used to show limsupn→∞ supθ∈�0
Pr(θ ∈ C Sn) = 1−α.

(b) There exists a possibly random sequence {θn ∈ �0} such that

sup
θ∈�0

τ2
n Q(θ, β̂n, Ŵ∗

n (θ)) = τ2
n Q(θn, β̂n, Ŵ∗

n (θn))+op(1). (A.19)

Like in (A.13), we can write

τ2
n Q(θn, β̂n, Ŵ∗

n (θn)) = τ2
n (β̂n −β0)

′
G(θn, β̃n)

′
Ŵ∗

n (θn)G(θn, β̃n)(β̂n −β0). (A.20)

Because G(θ,β) is continuous on the compact space �×B, G(θ,β) is uniformly con-
tinuous on �×B. Thus,

sup
θ∈�0

‖G(θ, β̃n)− G(θ,β0)‖ →p 0 and sup
θ∈�0

‖G(θ, β̂n)− G(θ,β0)‖ →p 0. (A.21)

Let θ0 be an arbitrary point in �0. By the additional assumption that G(θ1,β0) =
G(θ2,β0) for all θ1,θ2 ∈ �0, and (A.21), for any random sequence {θn ∈ �0},
[G(θn, β̃n)

′
Ŵ∗

n (θn)G(θn, β̃n)]

→p G(θ0,β0)
′
[G(θ0,β0)Vβ G(θ0,β0)

′
]−1G(θ0,β0). (A.22)
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Therefore,

τ2
n Q(θn, β̂n, Ŵ∗

n (θn))

→d Z
′
β G(θ0,β0)

′
[G(θ0,β0)Vβ G(θ0,β0)

′
]−1G(θ0,β0)Zβ ∼ χ2

d2
. (A.23)

Combining this with (A.19), we get

Pr(�̂n ⊆ C Sn) = Pr( sup
θ∈�0

τ2
n Q(θ, β̂n, Ŵ∗

n (θ)) ≤ χ2
d2

(1−α))

= Pr(τ2
n Q(θn, β̂n, Ŵ∗

n (θn))+op(1) ≤ χ2
d2

(1−α))

→ Pr(χ2
d2

≤ χ2
d2

(1−α)) = 1−α. (A.24)

n

The proof of Theorem 4.1 makes use of the following lemma:

LEMMA A.2 (Continuity of Extreme Value). Consider metric spaces (X ,dX ), (Y,dY )
and a function f (x, y) : X ×Y→ R ∪{∞}. Suppose that f (x, y) is continuous in X ×Y
at any (x, y) ∈X ×Y; that is, for any sequence xn → x and yn → y, we have f (xn, yn) →
f (x, y), whether f (x, y) ∈ R or f (x, y) = ∞. Also suppose that (X ,dX ) is compact. Let
{Xn} be a sequence of compact subsets of (X ,dX ) and {yn} be a sequence of elements in
Y , such that Xn → X in the Hausdorff distance based on dX and yn → y in dY , for some
compact subset X of (X ,dX ) and some y ∈ Y .

Then

min
x∈Xn

f (x, yn) → min
x∈X

f (x, y). (A.25)

Proof. First, because Xn is compact and f (·, yn) is continuous on Xn , there exists
x∗

n ∈ Xn such that f (x∗
n , yn) = minx∈Xn f (x, yn) by the extreme value theorem. Let {un}

be a subsequence of {n} such that limn→∞ f (x∗
un

, yun ) = liminfn→∞ f (x∗
n , yn). Such a

subsequence always exists by the definition of liminf. Let {vn} be a further subsequence of
{un} such that x∗

vn
→ x∗ for some x∗ ∈ X . Such a subsequence also exists because (X ,dX )

is compact and Xn → X in Hausdorff distance. Then

liminf
n→∞ min

x∈Xn
f (x, yn) = liminf

n→∞ f (x∗
n , yn)

= lim
n→∞ f (x∗

vn
, yvn ) = f (x∗, y) ≥ min

x∈X
f (x, y). (A.26)

If minx∈X f (x, y) = ∞, then the proof is done. If minx∈X f (x, y) ∈ R, we also need to
show limsupn→∞ minx∈Xn f (x, yn) ≤ minx∈X f (x, y).

Let x∗ be a point in X such that f (x∗, y) = minx∈X f (x, y). Then there exists a se-
quence {x∗

n ∈ Xn} such that x∗
n → x∗. By construction, for every n, minx∈Xn f (x, yn) ≤

f (x∗
n , yn). Therefore,

limsup
n→∞

min
x∈Xn

f (x, yn) ≤ limsup
n→∞

f (x∗
n , yn)

= lim
n→∞ f (x∗

n , yn) = f (x∗, y) = min
x∈X

f (x, y). (A.27)

This concludes the proof. n
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Proof of Theorem 4.1. (a) Similar to the proof of Theorem 3.1(a), consider a sequence
{θ s

n ∈ �s
0} and a subsequence {un} of {n} such that liminfn→∞ infθ s∈�s

0
Pr(θ ∈ C Ss

n) =
limn→∞ Pr(θun ∈ C Ss

un
). Such a subsequence always exists. Then, because �s is compact,

there must exist a further subsequence {vn} of {un} such that θ s
vn

→ θ s∞ for some θ s∞ ∈ �s .

By the continuity of ge,gie,1,gie,2, the limit point θ s∞ must be a point in �s
0.

Define the metric d� on [−∞,∞]dγ as

d�(�,�∗) = ‖�̄(�)− �̄(�∗)‖, ∀�,�∗ ∈ [−∞,∞]dγ (A.28)

where �̄(�) = (�(�1), . . . ,�(�dγ ))′ for � = (�1, . . . ,�dγ )′, and �(x) is the standard
normal cumulative distribution function (cdf) function for x ∈ R and �(∞) = 1 and
�(−∞) = −1. It is easy to verify that the metric space ([−∞,∞]dγ ,d�) is compact
and so are its subspaces (Ln,d�) and (L ′

n,d�), where

Ln := {τn(γ −γ0(θ s
n )) : γ ∈ �(θ s

n ), γ0(θ s
n ) = gie,1(θ s

n ,β0)}
L ′

n := {κ−1
n τn(γ −γ0(θ s

n )) : γ ∈ �(θ s
n ), γ0(θ s

n ) = gie,1(θ s
n ,β0)}. (A.29)

Then by Theorem 6.1.16 of Corbae, Stinchcombe, and Zeman (2009), there exists a sub-
sequence {an} of {vn} and sets L∞, L ′∞ ⊆ [0,∞]dγ compact under the d� metric such
that

dH,�(Lan , L∞) := max

{
sup

�∈Lan

inf
�∗∈L∞

d�(�,�∗), sup
�∗∈L∞

inf
�∈Lan

d�(�,�∗)

}
→ 0, and

dH,�(L ′
an

, L ′∞) → 0. (A.30)

Next we focus on this subsequence {an} and derive the asymptotic distribution of
τ2

an
Q(θ s

an
, β̂an ). Observe that

τ 2
an

Q(θ s
an

, β̂an ) = min
γ∈�(θ s

an )

(
τan (g

e(θ s
an

, β̂an )− ge(θ s
an

,β0))

τan (g
ie,1(θ s

an
, β̂an )− gie,1(θ s

an
,β0))− τan (γ −γ0(θ

s
an

))

)′

× Ŵ ∗
an

(θ s
an

)

(
τan (g

e(θ s
an

, β̂an )− ge(θ s
an

,β0))

τan (g
ie,1(θ s

an
, β̂an )− gie,1(θ s

an
,β0))− τan (γ −γ0(θ

s
an

))

)

= min
�∈Lan

(
Ẑ e

an

Ẑ ie
an

−�

)′
Ŵ ∗

an
(θ s

an
)

(
Ẑ e

an

Ẑ ie
an

−�

)
, (A.31)

where Ẑ e
an

= τan (ge(θ s
an

, β̂an ) − ge(θ s
an

,β0)), and Ẑ ie
an

= τan (gie,1(θ s
an

, β̂an ) −
gie,1(θ s

an
,β0)). It is clear from the last line of the above display that τ2

an
Q(θ s

an
, β̂an ) is

following functional evaluated at
(

Lan , Ẑ e
an

, Ẑ ie
an

, Ŵ∗(θ s
an

)
)

:

ϕ
(

L , ze, zie,W
)

= min
�∈L

(
ze

zie −�

)′
W

(
ze

zie −�

)
. (A.32)

By Lemma A.2, for any sequence (Ln, ze
n, zie

n ,Wn) ∈K([−∞,∞]dγ )× Rde × Rdγ ×W ,
where K is the set of compact subsets of ([−∞,∞]dγ ,d�), if (Ln, ze

n, zie
n ,Wn) →
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(L , ze, zie,Wn) ∈ K([−∞,∞]dγ ) × Rde × w × Rdγ , then ϕ(Ln, ze
n, zie

n ,Wn) →
ϕ(L , ze, zie,W ). Arguments identical to those that show (A.15) and (A.16) can be used
to show:

(Ẑ e,′
an , Ẑ ie,′

an )′ →d (Ze,′, Zie,′)′ ∼ N (0,W∗(θ s∞)−1),

Ŵ∗
an

(θ s
an

) →p W∗(θ s∞). (A.33)

With these results and (A.30), the extended continuous mapping theorem (van der Vaart
and Wellner, 1996, Thm. 1.11.1) applies and shows that

τ2
an

Q(θ s
an

, β̂an ) →d ϕ(L∞, Ze, Zie,W∗(θ s∞)). (A.34)

Similar to (A.31), we can write

Jn(θ s
n ) = min

�∈L ′
n

(
Ze

n
Zie

n +κ−1
n (γ̂ (θ s)−γ0(θ s))−�

)′
Ŵ∗(θ s

n )

×
(

Ze
n

Zie
n +κ−1

n (γ̂ (θ s)−γ0(θ s))−�

)′
. (A.35)

We see that Jn(θ s
n ) = ϕ(L ′

n, Ze
n, Zie

n +κ−1
n (γ̂ (θ s)−γ0(θ s)), Ŵ∗(θ s

n )). Also,

‖κ−1
n (γ̂ (θ s)−γ0(θ s))‖ ≤ ‖κ−1

n (gie,1(θ s , β̂n)−γ0(θ s)‖ = op(1), (A.36)

where the inequality holds due to the convexity of �(θ s) and the definition of γ̂ (θ s) (below
equation (4.4)), and the equality holds by κn → ∞ and (A.33). Then by similar arguments
as those for (A.34), we can show that

Jan (θ s
an

) →d ϕ(L ′∞, Ze, Zie,W∗(θ s∞)). (A.37)

Because de > 0, the cdf of ϕ(L ′∞, Ze, Zie,W∗(θ s∞)) is continuous and strictly increas-
ing. Thus, by standard arguments,

can (θ s
an

,1−α) →p q1−α, (A.38)

where q1−α is the 1−α quantile of ϕ(L ′∞, Ze, Zie,W∗(θ s∞)).
Because �(θ s) is convex and contains γ0(θ s), the sets Ln is closed to multiplication of

numbers from [0,1]. That is, for any � ∈ Ln , c ×� ∈ Ln as long as c ∈ [0,1]. This implies
that L ′

n ⊂ Ln for all large enough n because κ−1
n → 0. This then implies that L ′∞ ⊆ L∞.

Then, by the definition of the function ϕ, with probability one,

ϕ(L ′∞, Ze, Zie,W∗(θ s∞)) ≥ ϕ(L∞, Ze, Zie,W∗(θ s∞)). (A.39)

Therefore,

liminf
n→∞ Pr(θ s

n ∈ C Ss
n) = lim

n→∞Pr(τ2
an

Q(θ s
an

, β̂an ) ≤ can (θ s
an

,1−α))

= Pr(ϕ(L∞, Ze, Zie,W∗(θ s∞)) ≤ q1−α)

≥ Pr(ϕ(L ′∞, Ze, Zie,W∗(θ s∞)) ≤ q1−α) = 1−α. (A.40)
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(b) To show part (b), we consider a fixed θ s ∈ �s
0. Let Ln and L ′

n be defined as in (A.29)
except with θ s

n replaced by the fixed θ s . Then both {Ln} and {L ′
n} are increasing sequences

of sets. Let L∞ = cl(∪∞
n=1Ln) and L ′∞ = cl(∪∞

n=1L ′
n). It is straightforward to show that

dH,�(Ln, L∞) → 0 and dH,�(L ′
n, L ′∞) → 0.

Then, all the steps in part (a) from (A.31) to (A.38) go through with {an} replaced by {n}
and θ s

n and θ s∞ replaced by the fixed θ s . Below we show L∞ = L ′∞. With this, we have

limsup
n→∞

inf
θ s∈�s

0

Pr(θ s ∈ C Sn) ≤ limsup
n→∞

Pr(τ2
n Q(θ s , β̂n) ≤ cn(θ s

n ,1−α))

= Pr(ϕ(L∞, Ze, Zie,W∗(θ s∞)) ≤ q1−α)

= Pr(ϕ(L ′∞, Ze, Zie,W∗(θ s∞)) ≤ q1−α) = 1−α. (A.41)

To show that L∞ = L ′∞, consider a point � ∈ L∞. Then there is a sequence �n ∈ Ln
such that d�(�n,�) → 0. By the definition of Ln , there is a γn ∈ �(θ s) such that τn(γn −
γ0(θ s)) = �n for every n. For each n, let an be the smallest integer such that κ−1

an τan ≥ τn .

Such an an always exists because κ−1
a τa → ∞ as a → ∞. Then by the definition of L ′

an
,

�′
an

= κ−1
an τan (γn − γ0(θ s)) ∈ L ′

an
. Also, because κ−1

an τan ≥ τn , the vector �n lies on the
line segment connecting �′

an
and 0. Because the set �(θ s) is convex, which implies that

L ′
an

is convex, we have �n ∈ L ′
an

. This holds for every n. Thus, we have found a sequence
of points in L ′

an
such that the sequence converges to �. Because dH,�(L ′

an
, L ′∞) → 0, we

have � ∈ L ′∞. This shows that L∞ ⊆ L ′∞. This combined with L ′∞ ⊆ L∞ shown in part
(a) gives us L∞ = L ′∞. n


