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1 Introduction

Models defined by moment inequalities (and possibly some equalities) have gained substantial

popularity over recent years as researchers try to move away from ad hoc structural assumptions

in various areas of economics.1 Model selection problems in this context arise naturally when

researchers consider more than one economic theory, each generating a set of moment inequalities,

or when they consider different parametrizations to form the moment functions. While there is an

emerging literature on parameter inference for moment inequality models, a procedure for model

selection has not been available.2 Existing model selection methods for standard models (e.g. Vuong

(1989), Kitamura (2000), AIC, or BIC) are not applicable because moment inequality models are

non-traditional in the ways discussed shortly below.

This paper provides a way to select the better model from two competing moment inequality

models. We design quasi-likelihood-ratio tests for the null hypothesis that both models are equally

close to the true data distribution in terms of the Kullback-Leibler (KL) divergence. When the null

does not hold, the tests direct the researcher to the model that is closer to the true distribution

with probability approaching one. Our tests are relatively easy to compute for two reasons. First,

they use standard normal critical values. Second, although the sample criterion functions can have

multiple (or even a continuum of) maximizers due to partial identification, one does not need to

compute all the maximizers to implement the tests.

Moment inequality models are non-traditional in two ways. First, parameters in these models

typically are not point-identified. For that reason, the maximizers of a sample criterion function

do not converge to a point in the parameter space. Thus, traditional model selection methods

that rely on the asymptotic normality of the maximizers do not apply. Second, moment inequality

models have slackness parameters whose (pseudo-) true values may be on the boundary of the

parameter space.3 The parameter-on-the-boundary problem makes the criterion function for the

original model parameters non-differentiable even in the limit. The non-differentiability can occur

anywhere in the original parameter space. Thus, the first-order-condition method or the standard

quadratic approximation method cannot be used to derive the convergence rate of the estimators.

The first nontraditional feature prompts us to develop a new technique utilizing the stochas-

tic equicontinuity of certain empirical processes to show the asymptotic normality of the quasi-

likelihood ratio statistic and the consistency of an estimator of its asymptotic variance. The tech-

1They have been used to model discrete games with multiple equilibria (Andrews, Berry and Jia (2004), Ciliberto
and Tamer (2009)), to deal with missing or interval data (Manski (2005)), to study dynamic games that are otherwise
too complicated to analyze empirically (Pakes, Porter, Ho and Ishii (2007), Pakes (2010)) and to increase the precision
of estimators in dynamic macroeconomics models (Moon and Schorfheide (2009)).

2A non-exhaustive list of papers on parameter inference of moment inequality models includes Chernozhukov,
Hong and Tamer (2007), Andrews and Barwick (2012), Bugni (2010), Canay (2010), Romano and Shaikh (2010),
Andrews and Guggenberger (2009), Andrews and Soares (2010) and Andrews and Shi ((2013a),(2013b)).

3One can view the moment inequality model Em(Xi, θ) ≥ 0 as a moment equality model with an additional
parameter a: Em(Xi, θ)− a = 0. The additional parameter is the slackness parameter. The space of a is Rdm+ . The

true value of a is on the boundary of Rdm+ whenever a moment inequality holds as an equality under the true data

distribution. In this example, {Xi} is the data, m is a Rdm -valued moment function and θ is a finite-dimensional
parameter.
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nique does not require any convergence rate of the sample maximizers. We only need a weak notion

of consistency: the sample maximizers approach the pseudo-true set as the sample size goes to in-

finity. This technique potentially is useful to establish the asymptotic distribution of the Vuong

(1989) test statistic in parametric models and moment equality models as well when the Hessian

matrix of the likelihood ratio is not invertible.

The asymptotic normality and the consistency results mentioned above are sufficient for devel-

oping a valid model selection test if the asymptotic variance of the quasi-likelihood ratio statistic

is bounded away from zero. The latter condition holds when the two models compared are non-

overlapping in the sense defined in latter sections. When the two models are overlapping, the

convergence rate of the sample maximizers is needed.

The second nontraditional feature of moment inequality models made the traditional approaches

to derive convergence rate not applicable. We modify the standard quadratic approximation method

and construct quadratic upper and lower bounds for the sample and population criterion functions.

Combining those bounds, we show that the sample maximizers approach the pseudo-true set at

n−1/2-rate. The rate is then used to motivate an adjustment factor to the studentized quasi-

likelihood ratio statistic. The adjustment factor guarantees that the adjusted test is uniformly

valid for overlapping models.

The tests proposed in this paper extend the Vuong test (for maximum likelihood models)

proposed in the seminal paper Vuong (1989) to models defined by moment inequalities. As such,

this paper belongs to the literature that extends Vuong (1989) to various other types of models.

Kitamura (2000) and Rivers and Vuong (2002) extend the Vuong test to models defined by moment

equalities. In particular, Kitamura (2000) employs exponential tilting criterion, which is adapted to

moment inequality models in the current paper. Chen, Hong and Shum (2007) propose a Vuong-

type procedure to select between a parametric model and a moment equality model. All these

previous papers assume that the true parameters are point-identified and are in the interior of

the parameter space. These assumptions are suitable for parametric models and moment equality

models, but not for the moment inequality models considered in this paper. On the other hand, this

paper does not make those assumption. Thus, our tests apply to point or partially identified moment

inequality or equality models with or without parameter on the boundary. In the special case of

non-overlapping point identified moment equality models without parameter on the boundary, our

test is the same as Kitamura’s (2000).

In addition to addressing the partial identification and parameter-on-the-boundary problems,

another important feature distinguishing our tests from the other Vuong-type tests is that we

choose the critical values based on uniform asymptotics which guarantee correct asymptotic sizes

of the tests. Vuong-type tests with critical values chosen based on pointwise asymptotics may

have size distortion when the candidate models are overlapping. The reason is that the pointwise

asymptotic distributions of the test statistics are discontinuous in the data generating process.

When the data generating process is close to the discontinuity point, the finite sample distributions

of the test statistics are not well approximated by their pointwise asymptotic distributions. The
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poor approximation causes size distortion in finite samples (Shi (forthcoming)). We adjust the test

statistic in the overlapping case to take into account the discontinuity and by doing so control the

asymptotic size of the tests uniformly.

An alternative to our Vuong-type framework is the Cox (1961)-type nonnested hypothesis testing

framework. For a Cox-type test, the null hypothesis is that a model P is correctly specified and the

alternative hypothesis is that an alternative model Q is correctly specified. Though frequently used

to choose one model from multiple candidate models, Cox-type tests are intended as a procedure for

model evaluation rather than model selection. A Cox-type test does not have a clear interpretation

when both models are misspecified. For details on Cox-type tests, see the seminal paper by Cox

(1961), the survey papers by Gourieroux and Monfort (1994) and Pesaran and Weeks (1999),

generalizations to the encompassing principle by Mizon and Richard (1986), and the extension to

moment equality models by Ramalho and Smith (2002). It is of interest to extend the moment

encompassing principle to partially-identified moment inequality models possibly using some of the

techniques developed in this paper. We leave this to a separate project.

The rest of the paper is organized as follows. Section 2 introduces the model selection problem

for moment inequality models and gives a few examples. Section 3 presents preliminaries on the

pseudo-distance measure and the solution to the distance-minimizing problem. Section 4 describes

the tests, one for non-overlapping models and the other for overlapping models. Sections 5 and

6 establish the asymptotic size of the test for non-overlapping models and that for overlapping

models, respectively. Section 7 determines the power properties of the tests. Section 8 presents

Monte Carlo simulation results for a missing data example. The proofs are in the appendix.

We use Nδ(θ) to denote a closed ball centered at θ with radius δ, ‖ · ‖ to denote the Euclidean

norm, and “<<” to denote “is absolutely continuous with respect to (w.r.t., hereafter)”. We use Xi

to denote an observation, X to denote the space on which Xi is defined. We use P and Q to denote

the candidate models, and P and Q to denote generic distributions in P and Q, respectively. We

use µ to denote a generic true distribution on X , which does not necessarily belong to either of the

models. We use greek letters θ and β to denote the finite-dimensional parameters in the models, Θ

and B to denote the corresponding parameter spaces, and m and g to denote the moment functions.

2 Model Selection Problems

We consider two moment inequality/equality models P =
⋃
θ∈Θ Pθ and Q =

⋃
β∈B Qβ, where Pθ

and Qβ are the set of distributions that are consistent with the moment conditions for parameters

θ and β, respectively:

Pθ =

{
P : EPmj(Xi, θ) = 0 for j = 1, ..., dp,

EPmj(Xi, θ) ≥ 0 for j = dp + 1, ..., dm

}

Qβ =

{
Q : EQgj(Xi, β) = 0 for j = 1, ..., dq,

EQgj(Xi, β) ≥ 0 for j = dq + 1, ..., dg

}
. (2.1)
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In the above equation, {Xi ∈ X}ni=1 is a random sample generated from µ, m = (m1, ...,mdp ,

mdp+1, ...,mdm)′ and g = (g1, ..., gdq , gdq+1, ..., gdg)
′ are Rdm and Rdg -valued moment functions

known up to the finite-dimensional parameters θ and β, respectively, Θ ⊂ Rdθ , B ⊂ Rdβ , and

EP denotes the expectation under the distribution P . Either model can be over, just or under-

identified, that is, dp or dm (dq or dg) can be smaller than, larger than, or equal to dθ (dβ). The

true distribution µ may or may not belong to either model. Model P is called correctly specified

if µ ∈ P and is called misspecifed otherwise.

The goal of this paper is to compare models P and Q and select the one that is closer to

the true distribution µ in terms of a pseudo-distance measure. Let d(P, µ) be a pseudo-distance

between a distribution P and µ. The pseudo distance from a model P to µ is defined by d(P, µ) =

infP∈P d(P, µ). We want to construct model selection tests for the null hypothesis

H0 : d(P, µ) = d(Q, µ). (2.2)

The choice of d is discussed in the next section.

Now, we give a few illustrative examples of model selection problems in the context of moment

inequalities. Special cases of Example 1 are studied in the Monte Carlo section (Section 8).

Example 1 (Interval Outcome in Regression Models). Consider the regression models with

interval outcomes in Manski (2005). A model selection problem of potential interest is selecting

different regressors or functional forms for the regression functions. Let Y be a latent random

variable (e.g. wealth) that is not perfectly observed. Only an upper bound, Y , and a lower bound,

Y , on Y are observed. Let X be a vector of explanatory variables and Y = r(X, θ) +ε, where r is a

function known up to a finite-dimensional parameter θ. Let Z be a vector of potential instrument

variables such that E(ε · I(Z)) = 0 for some positive (vector-valued) function I of Z. Then, the

models P = ∪θ∈ΘPθ and Q = ∪β∈BQβ where

Pθ = {P : EP [(Y − r1(X, θ))I(Z)] ≥ 0 & EP [(r1(X, θ)− Y )I(Z)] ≥ 0}

Qβ = {Q : EQ[(Y − r2(X,β))I(Z)] ≥ 0 & EQ[(r2(X,β)− Y )I(Z)] ≥ 0}, (2.3)

where r1 and r2 are two regression functions. Note that the distributions P and Q are defined on

the space of the observed random variables (Y , Y , X, Z).

Another model selection problem arises when one considers a different choice of instruments.

The formulation of the competing models is similar to (2.3), except that r1 and r2 are the same

and we have I1 instead of I in model P and I2 in model Q .

Example 2 (Interval Regressor in Regression Models). Consider the regression models with

interval regressors in Manski and Tamer (2002). Let Y be a continuous dependent variable, v be

a regressor that is not observed perfectly but in intervals [v, v]. Let X represent other regressors.

Assume that E(Y |X, v) = f(x, v, θ), where f is a function known up to the finite-dimensional

parameter θ. As in Manski and Tamer (2002), if we assume that f is weakly increasing in v, we
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obtain the moment inequality model P = ∪θ∈ΘPθ, where

Pθ = {P : EP [(Y − f(X, v, θ))I(X, v, v)] ≥ 0

& EP [(f(X, v, θ)− Y )I(X, v, v)] ≥ 0}, (2.4)

where I(X, v, v) can be any vector of positive instrument functions.4 On the other hand, if we

assume that f is weakly decreasing in v, we have a different moment inequality model Q = ∪β∈BQβ,

where

Qβ = {Q : EQ[(f(X, v, β)− Y )I(X, v, v)] ≥ 0

& EQ[(Y − f(X, v, β))I(X, v, v)] ≥ 0, β ∈ B }. (2.5)

By comparing models P and Q, one can determine which sign assumption on ∂f/∂v is more

consistent with the data.

Example 3 (Entry Game – Cross-firm Effect). Consider the entry game example discussed

in Tamer (2003), Andrews et al. (2004) and Ciliberto and Tamer (2009). Consider a 2× 2 version

with the following payoff matrix:

Firm 2

0 1

Firm 1 0 0, 0 0, X ′2θ2 − ε2

1 X ′1θ1 − ε1, 0 X ′1θ1 + a1 − ε1, X ′2θ2 + a2 − ε2

The observable random variables are the market characteristics X ≡ (X1, X2)′ and the game

outcome Y . The variable Y may take four values: (0, 0), (0, 1), (1, 0) and (1, 1), where the two

numbers in the parenthesis are the equilibrium actions of firm 1 and firm 2, respectively. The

coefficients θ1 and θ2 are the marginal effects of the characteristics X on profits, and ε1 and ε2

are profit shocks unobservable to the econometrician. The parameters a1 and a2 are the cross-firm

effects, which are the effects of the firms on their opponents’ profit when they form a duopoly.

Let Fε1,ε2(·, ·; θε) denote the joint c.d.f. of ε1 and ε2, Fε1(·; θε) the marginal c.d.f. of ε1, and

Fε2(·; θε) the marginal c.d.f. of ε2. The c.d.f.s are known to the econometrician up to the finite-

dimensional parameter θε. Assume that the firms have full information about their own and their

opponents’ payoffs and play a simultaneous-move Nash game. Andrews et al. (2004) assume a1 ≤ 0

and a2 ≤ 0 and obtain the moment inequality model P = ∪θ∈ΘPθ, where

Pθ = {P : EP [(pj(X, θ)− 1(Y = j))I(X)] = 0, for j = (0, 0) or (1, 1)

EP [(pj(X, θ)− 1(Y = j))I(X)] ≥ 0, j = (0, 1), or (1, 0)}, (2.6)

4Note that the probability measure P ′s are defined on the space of (Y,X, v, v).

6



θ ≡ (θ′1, θ
′
2, a1, a2, θ

′
ε)
′, I(X) is a vector of positive instrument functions, and

p(0,0)(X, θ) = 1− Fε1(X ′1θ1; θε)− Fε2(X ′2θ2; θε) + Fε1,ε2(X ′1θ1, X
′
2θ2; θε)

p(0,1)(X, θ) = Fε2(X ′2θ2; θε)− Fε1,ε2(X ′1θ1 + a1, X
′
2θ2; θε)

p(1,0)(X, θ) = Fε1(X ′1θ1; θε)− Fε1,ε2(X ′1θ1, X
′
2θ2 + a2; θε)

p(1,1)(X, θ) = Fε1,ε2(X ′1θ1 + a1, X
′
2θ2 + a2; θε). (2.7)

On the other hand, if we assume a1 ≥ 0 and a2 ≥ 0, we obtain a different model Q = ∪β∈BQβ,

where

Qβ = {Q : EQ[(pj(X,β)− 1(Y = j))I(X)] ≥ 0, for j = (0, 0) or (1, 1)

EQ[(pj(X,β)− 1(Y = j))I(X)] = 0, j = (0, 1), or (1, 0)}, (2.8)

β ≡ (θ′1, θ
′
2, a1, a2, θ

′
ε)
′ and pj for j = (0, 0), (1, 1), (0, 1) and (1, 0) are defined in (2.7).

In some industries, for example the shopping center industry studied in Vitorino (2012), the

sign of the cross-firm effect is uncertain. A model selection test comparing the two models above

can determine which sign of the cross-firm effects is more consistent with the data.

Example 4 (Entry Game – Testing Equilibrium Selection Mechanism) Instead of being

agnostic about the equilibrium selection mechanism, one can also specify such a mechanism, as

done in Tamer (2003) among others. For example, in the case of negative cross-firm effects, one

can assume that the probability of (1, 0) is H(X, γ) in case of multiple equilibria. That yields a

moment equality model:

P2 = {P : EP [(pj(X, θ)− 1(Y = j))I(X)] = 0, for j = (0, 0) or (1, 1)

EP [(pj(X, θ)− pm(X, θ)H(X, γ)− 1(Y = j))I(X)] = 0, j = (0, 1)

for some (θ, γ) ∈ Θ× Γ}, (2.9)

where pm(X, θ) = Fε1,ε2(X ′1θ1, X
′
2θ2; θε)−Fε1,ε2(X ′1θ1−a1, X

′
2θ2; θε)−Fε1,ε2(X ′1θ1, X

′
2θ2−a2; θε) +

Fε1,ε2(X ′1θ1 − a1, X
′
2θ2 − a2; θε) is the probability that multiple equilibria occur.

The equilibrium selection rule H(X, γ) can be flexibly specified. But even then, it imposes the

fundamental assumption that equilibrium selection only depends on observables. A model selection

test between P and P2 can help to determine whether this assumption is consistent with the data.

In this example, the two models are nested.

Example 5 (Entry Game – Choosing Information Structure) Model selection test also can

be used to choose the information structure of a game-theoretical model. Berry and Tamer (2006)

show that the entry game described in Example 3 can be modeled by a different set of moment

inequalities, if we assume that the firms do not know their competitors’ idiosyncratic profits (ε1, ε2)

but have beliefs about the distributions of (ε1, ε2). By comparing the new moment inequality model
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to P (or Q) in Example 3, one can determine which information structure is more appropriate.

3 Preliminaries on the Pseudo-distance Measure

There are many possible choices of pseudo-distances on the space of probability distributions. One

may prefer one distance to another in a specific problem. Since we deal with a generic problem, we

choose the Kullback-Leibler (KL) divergence. The KL divergence from P to µ is

d(P, µ) =

{ ∫
pµ log pµdµ if P << µ

∞ otherwise
, (3.1)

where pµ is the density of P with respect to µ.5 The pseudo-distance above also is called the I-

divergence, or the relative entropy of P to µ. For moment condition models, I-divergence motivates

the exponential tilting estimation (Kitamura and Stutzer (1997)).

The rest of the discussions in this section – with the exclusion of the formal assumptions and

lemmas – are in terms of model P, but they apply to model Q as well.

In order to measure the distance from the model to the true distribution, one needs to solve

the minimization problem infP∈P d(P, µ). The problem is solved in two steps:

inf
P∈P

d(P, µ) = inf
θ∈Θ

inf
P∈Pθ

d(P, µ), (3.2)

where Pθ is defined in (2.1). The first step infP∈Pθ d(P, µ) is an infinite dimensional minimization

problem and can be solved through a finite-dimensional dual problem. The second step is a finite-

dimensional minimization problem which may have multiple solutions because model P may be

partially-identified. We discuss both steps in the following subsections.

3.1 The Dual Problem

The first step minimization infP∈Pθ d(P, µ) has a unique solution, if the solution exists. The reason

is that d(P, µ) is strictly convex in P and the set Pθ is defined by constraints linear in P and thus

is convex. We follow Csiszár (1975) and call the solution to infP∈Pθ d(P, µ) the I-projection of

µ on Pθ. Denote the I-projection as P ∗µ,θ. For models defined by equality constraints, Csiszár

(1975) gives sufficient conditions for the existence of P ∗µ,θ and shows that infP∈Pθ d(P, µ) has a

finite-dimensional dual problem under those conditions. We adapt Csiszár’s (1975) approach to the

context of moment inequality models.

5Note that the KL divergence is directional, that is d(P, µ) 6= d(µ, P ). This makes our hypothesis different from
that in Vuong (1989), which is based on d(µ, P ). The duality results in this section are specific to our KL-divergence,
but if one assumes the duality as given, the test we develope later in Section 4 can be extended with ease to the
KL-divergence of the reversed direction, as well as to generalized empirical likelihood distance measures. For brevity,
we do not carry out the generalization, but note that the general distance measure is used in Hsu and Shi (2013) in
the context of conditional moment inequalities.
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We introduce some notation first. For a data distribution µ, define the dual criterion functions

as

Mµ(γ, θ) := Eµ exp
(
γ′m(Xi, θ)

)
and Nµ(λ, β) := Eµ exp

(
λ′g(Xi, β)

)
. (3.3)

Let the Lagrange multipliers for each θ and β be

γ∗µ(θ) = arg min
γ∈Rdp∞×R

dm−dp
+,∞

Mµ(γ, θ), and λ∗µ(β) = arg min
λ∈Rdq∞×R

dg−dq
+,∞

Nµ(λ, β), (3.4)

where R∞ = R ∪ {∞,−∞} and R+,∞ = R+ ∪ {∞}. For every θ ∈ Θ, γ∗µ(θ) is uniquely defined

under Assumption 1(a) below.

Assumption 1. (a) For all θ ∈ Θ, Eµ‖m(Xi, θ)‖2 < ∞ and Eµ[m(Xi, θ)m(Xi, θ)
′] is positive

definite,

(b) for all θ ∈ Θ, ‖γ∗µ(θ)‖ <∞, and

(c) parts (a)-(b) hold with g, β and λ in place of m, θ and γ.

Although Assumption 1(a) is not a standard assumption in the moment inequality literature,

it is standard in the (generalized) empirical likelihood literature and is imposed in other model

selection test papers based on generalized empirical likelihood, for example, Kitamura (2000). In

the context of moment inequalities, Canay (2010) also imposes this assumption in order to apply

the empirical likelihood approach. Assumption 1(b) requires the model not to be too misspecified.

A sufficient condition for Assumption 1(b) that is easier to verify is Assumption 1(b)∗ below.6

Assumption 1(b)*. For all θ ∈ Θ and all γ ∈ Rdp ×Rdm−dp+ , Prµ(γ′m(Xi, θ) > 0) > 0.

To show the sufficiency, let γ := (γ1, · · · , γdm)′ be an arbitrary element in (R
dp
∞ × R

dm−dp
+,∞ )

such that ‖γ‖ = ∞. Let γ0 := (γ0
1 , · · · , γ0

dm
) where γ0

j = 1(γj = ∞) − 1(γj = −∞), and γ1 :=

(γ1
1 , · · · , γ1

dm
)′ where γ1

j = γj · 1(γj ∈ R). By Assumption 1(b)*, p0 := Prµ(γ0,′m(Xi, θ) > 0) > 0.

But γ′m(x, θ) =∞×γ0,′m(x, θ)+γ1,′m(x, θ), which implies that γ′m(x, θ) =∞ if γ0,′m(x, θ) > 0.7

Thus, Prµ(γ′m(Xi, θ) = ∞) ≥ p0 > 0. This implies that Prµ(exp(γ′m(Xi, θ)) = ∞) ≥ p0 > 0.

Therefore, Eµ exp(γ′m(Xi, θ)) ≥ p0 ×∞ =∞ for the γ’s that have infinite norm. Now notice that

Eµ exp(γ∗µ(θ)′m(Xi, θ)) := min
γ∈Rdp∞×R

dm−dp
+,∞

Eµ exp(γ′m(Xi, θ)) ≤ Eµ exp(0′m(Xi, θ)) = 1, where

the second inequality holds because 0 ∈ Rdp∞×Rdm−dp+,∞ . This implies that γ∗µ(θ) cannot have infinite

norm, that is, Assumption 1(b) holds.

Lemma 1 below establishes that infP∈Pθ d(P, µ) is attained and can be solved through a finite-

dimensional dual problem under Assumption 1.

Lemma 1. Suppose Assumption 1 holds. Then,

6Assumption 1(b)* is violated, for example, when the model is P = {P : EP (X1,i − θ) ≥ 0, EP (θ −X2,i) ≥ 0},
and X1,i < X2,i a.s. [µ]. To check, let a = (1, 1)′. Then, Prµ(a′m(Xi, θ) > 0) = Prµ(X1,i −X2,i > 0) = 0.

7Here we define ∞ · 0 = 0.
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(a) for all θ ∈ Θ, the I-projection, P ∗µ,θ, of µ on Pθ exists and its density w.r.t. µ is

p∗θ,µ(x) = exp
(
γ∗µ(θ)′m(x, θ)

)
/Mµ

(
γ∗µ(θ), θ

)
,

(b) for all θ ∈ Θ, d(Pθ, µ) = − log[Mµ(γ∗µ(θ), θ)],

(c) parts (a)-(b) hold with g, β, λ, Q, Q and N in place of m, θ, γ, P , P and M.

3.2 The Pseudo-true Set and the Pseudo-true Distribution

The second step infimum in (3.2), infθ∈Θ d(Pθ, µ), is attained if d(Pθ, µ) is continuous in θ and Θ

is compact. These are guaranteed by Assumption 2 below.

Assumption 2. (a) The parameter spaces Θ and B are compact, and

(b) with probability one, m(Xi, ·) and g(Xi, ·) are continuous in Θ and B, respectively.

Lemma 2 below shows that the infimum infθ∈Θ d(Pθ, µ) is attained and has a saddle-point dual

representation.

Lemma 2. Suppose Assumptions 1 and 2 hold. Then,

(a) there exists a θ∗ ∈ Θ such that Mµ(γ∗µ(θ∗), θ∗) = supθ∈ΘMµ(γ∗µ(θ), θ),

(b) d(P, µ) = − log

[
maxθ∈Θ min

γ∈Rdp×Rdm−dp+

Mµ(γ, θ)

]
, and

(c) parts (a)-(b) hold with g, β, λ, q, Q, Q and N in place of m, θ, γ, p, P , P and M.

Remark. The function γ∗µ(θ) usually has kinks because of the nonnegativity constraints in the min-

imization problem that defines it. This reflects the parameter-on-the-boundary problem discussed

in the introduction. At the kinks, γ∗µ(θ) is not differentiable in θ. The kinks can occur anywhere

in Θ. Thus, the population criterion function, Mµ(γ∗µ(·), ·) is non-differentiable.

Because model P can be partially-identified, Mµ(γ∗µ(θ), θ) can have multiple maximizers. We

call the set of maximizers the pseudo-true set:

Θ∗µ = arg max
θ∈Θ
Mµ(γ∗µ(θ), θ). (3.5)

The concept of “pseudo-true set” is generalized from the “pseudo-true parameter” concept in the

literature of misspecified point-identified models. The prefix “pseudo” signifies the possibility that

the model may be misspecified.

Similarly, we call the distributions that achieve minP∈P d(P, µ) the pseudo-true distributions of

model P under µ. Lemma 1 implies that the set of all pseudo-true distributions of model P under

µ equals P∗µ := {P ∗θ,µ : θ ∈ Θ∗µ}. This set needs not be a singleton in general (i.e., the pseudo-true

distribution might not be unique), but it is guaranteed to be a singleton in these important cases:

(i) µ ∈ P. In this case, P∗µ = {µ}. This is simply because d(µ, µ) = 0 and d(P, µ) > 0 for any

P 6= µ by the property of the pseudo-true distance d. Notice that in this case the pseudo-true

set Θ∗µ can still contain multiple values.
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(ii) µ /∈ P, but Θ∗µ is a singleton. This is a natural assumption if the moment equality/inequality

model contains no fewer equality restrictions than the number of parameters. For example,

our Examples 3 and 4 falls into this scenario if the dimension of I(X) is at least half of the

dimension of θ.

(iii) µ /∈ P, but the moment function m(Xi, θ) depends on θ only through a lower dimensional

function of θ: β = b(θ), and {b(θ) : θ ∈ Θ∗µ} is a singleton. In other words, if the partial

identification is only caused by over-parametrization, the pseudo-true distribution, which does

not depend on parametrization, is unique.

The uniqueness of the pseudo-true distribution combined with Lemma 1(a) implies that

γ∗µ(θ)′m(Xi, θ) = γ∗µ(θ∗)′m(Xi, θ
∗) a.s. [µ] for all θ, θ∗ ∈ Θ∗µ. (3.6)

Equation (3.6) is crucial for the quasi-likelihood ratio statistic defined later to be asymptotically

normal under H0. Thus, we maintain the following assumption for data distributions µ that satisfy

the null hypothesis (2.2).

Assumption 3. The pseudo-true distributions, P ∗µ and Q∗µ, of models P and Q, respectively, are

unique under µ.

Remark. The assumption will only be imposed for µ under H0 and will not be imposed under the

alternative hypothesis. This makes it relatively weak.8 In fact, based on the discussion above, this

assumption is guaranteed to hold under H0 in the following important testing scenarios:

(i) P and Q are nested and the correct specification of the nesting model is maintained. In

standard models, researchers are explicitly or implicitly in this testing scenario whenever the

textbook likelihood ratio test with a chi-squared critical value is used. Thus, we believe this

is a typical nested testing scenario.

(ii) P and Q are nonnested, but the econometrician has the prior knowledge that one of them is

correctly specified. Then under H0, both are correctly specified and hence the pseudo-true

distributions are unique.

(iii) Both models are point identified (Θ∗µ and B∗µ are singleton sets), which is plausible when both

models contain enough number of equality restrictions.

(iv) Partial identification of both models can be reduced to point identification by reparameteri-

zation.

8 In Supplemental Appendix E, we discuss how to remove this already weak assumption completely using a
sample-splitting technique.
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4 Model Selection Tests

In this section we introduce the test statistics first. Then, we formally define non-overlapping

models and overlapping models and discuss how the relationship between candidate models affects

the asymptotic distributions of the test statistics. Finally, we describe the model selection tests.

4.1 Test statistics

We define the test statistics in this section and give informal discussions on the asymptotics in order

to introduce the tests. First, observe that, by Lemma 2(b) above, the null (2.2) can be written as

H0 : max
θ∈Θ
Mµ(γ∗µ(θ), θ) = max

β∈B
Nµ(λ∗µ(β), β). (4.1)

The test statistics are based on the sample analogue of the above quantities.

Let the sample criterion functions be

M̂n(γ, θ) = n−1
n∑
i=1

exp(γ′m(Xi, θ)) and N̂n(λ, β) = n−1
n∑
i=1

exp(λ′g(Xi, β)). (4.2)

Let the sample saddle points be

γ̂n(θ) = arg min
γ∈Rdp×Rdm−dp+

M̂n(γ, θ), λ̂n(β) = arg min
λ∈Rdq×Rdg−dq+

N̂n(λ, β),

Θ̂n = arg max
θ∈Θ
M̂n(γ̂n(θ), θ), and B̂n = arg max

β∈B
N̂n(λ̂n(β), β), (4.3)

where Θ̂n and B̂n are not necessarily singletons.

We use the quasi-likelihood ratio (QLR) statistic:

Q̂LRn = max
θ∈Θ
M̂n(γ̂n(θ), θ)−max

β∈B
N̂n(λ̂n(β), β). (4.4)

As we show in later sections, under H0 and appropriate conditions,

n1/2Q̂LRn →d N(0, ω2
µ), where

ω2
µ = Eµ

[
exp

(
γ∗µ(θ∗)′m(Xi, θ

∗)
)
− exp

(
λ∗µ(β∗)′g(Xi, β

∗)
)]2

, (4.5)

with θ∗ ∈ Θ∗µ and β∗ ∈ B∗µ.9

To form the tests, we also use a variance statistic: ω̂2
n = ω̂2

n(θ̂n, β̂n), where

ω̂2
n(θ, β) = n−1

n∑
i=1

[
exp

(
γ̂n(θ)′m(Xi, θ)

)
− exp

(
λ̂n(β)′g(Xi, β)

)]2
9By (3.6), ω2

µ is invariant to the choice of θ∗ ∈ Θ∗µ and β∗ ∈ B∗µ.
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−

(
n−1

n∑
i=1

[
exp

(
γ̂n(θ)′m(Xi, θ)

)
− exp

(
λ̂n(β)′g(Xi, β)

)])2

, (4.6)

and θ̂n and β̂n are arbitrary points in Θ̂n and B̂n, respectively.10 In practice, different choices of

θ̂n and β̂n in Θ̂n and B̂n typically give the same value for ω̂2
n(θ̂n, β̂n) as we find in the Monte Carlo

experiments.

Under H0 and appropriate conditions

ω̂2
n →p ω

2
µ. (4.7)

At this point, it seems that a simple test can be obtained using the studentized QLR statistic:
√
nQ̂LRn/ω̂n and the standard normal critical value. This is indeed true if we know that ω2

µ is

bounded away from zero for all relevant data generating processes µ. This is not true if we cannot

rule out the µ’s for which ω2
µ is arbitrarily close or equal to zero. To see why, notice that both Q̂LRn

and ω̂2
n are sample analogue estimators with estimated parameters plugged in. The estimation error

in the parameter estimators is dominated by the leading terms in the expansions of Q̂LRn and ω̂2
n

if the leading terms are nondegenerate, that is, if ω2
µ is bounded away from zero. But when ω2

µ

gets arbitrarily close to zero, the estimation error cannot be dominated and will show up in the

asymptotic distribution of
√
nQ̂LRn/ω̂n, causing it to be non-normal.

In light of this, we distinguish two testing situations according to whether or not ω2
µ is bounded

away from zero across all data generating processes µ. The two are specified in Definition NO

below. In the definition, we use the variation distance between two probability measures:

|P −Q| :=
∫
|dP/dR− dQ/dR|dR, (4.8)

where R is any probability measure with respect to which both P and Q are absolutely continuous.11

Definition NO. The models P and Q are non-overlapping if infP∈P, Q∈Q |P −Q| > 0 and are

overlapping otherwise.

Remarks. (a) Our categorization of the model relationships is similar to but different from that

in Vuong (1989). We distinguish the two types based on uniform asymptotics – whether N(0, 1)

can uniformly approximate the finite sample distribution of the studentized quasi-likelihood ratio

statistic. Vuong (1989) distinguishes the two types – “strictly nonnested” and “overlapping” – based

on pointwise asymptotics. In particular, we treat models P and Q as overlapping if it is possible

for P ∗µ and Q∗µ to get arbitrarily close to each other, while Vuong (1989) does not treat them as

10Notice that the arbitrarily selected points θ̂n and β̂n do not necessarily form a random sequence that converges
in probability to any points in Θ∗µ and B∗µ. This differs from the point selection used in Santos (2010).

11We use the variation distance in the definition NO because a uniform lower bound on ω2
µ can be conveniently

written in terms of a multiple of the variation distance between the two models. One property of variation distance
that leads to such convenience is that it is in variant to the dominating measure, and thus is not tied to a particular
µ (ref. Csiszár (1975)). Another property is that it is a lower bound for the L2 distance for the densities of P and Q
with respect to any µ, and the latter distance forms the main component of ω2

µ. See the proof of Lemma 4 for details.

13



overlapping as long as P ∗µ 6= Q∗µ under every null distribution µ. Thus our “non-overlapping”

concept is stronger than Vuong’s (1989) “strictly-nonnested”concept (i.e. P ∩ Q = ∅). On the

other hand, when both models are variation-closed (that is, closed in the topology defined by the

variation metric defined above), being strictly nonnested implies being non-overlapping. A sufficient

condition for a moment inequality model P to be variation-closed is that the moment functions are

bounded and continuous in the parameters, as shown in Supplemental Appendix D.

(b) The overlapping case includes the nested case, i.e. P ⊂ Q or Q ⊂ P. The results in this

paper for overlapping models hold for nested models except for Theorem 2(b).

According to our definition, the two models in (2.3) in Example 1 are non-overlapping if

r1(X, θ) 6= r2(X,β) for any θ ∈ Θ and β ∈ B and are overlapping otherwise. The two models

in Example 2 are overlapping because both models are consistent with a constant f . The models in

Example 3 are overlapping because both models are consistent with zero competition effect. The

models in Example 4 are overlapping because they are nested. However, it is hard to tell whether

or not the models in Example 5 are overlapping or non-overlapping because the moment conditions

in the two models have very different structure. It is difficult to know whether the two sets of

moment conditions can be simultaneously compatible with one data generating process. In this

case, we recommend assuming them to be overlapping to be on the safe side.

4.2 Tests

Let α ∈ (0, 1). Let zα/2 denote the (1 − α/2) quantile of the standard normal distribution. We

propose tests for non-overlapping models and overlapping models. The test for non-overlapping

models does not require a tuning parameter and needs weaker differentiability and moment existence

assumptions. However, for the test to have correct asymptotic size, the candidate models should

be non-overlapping according to Definition NO. If one applies this test on overlapping models,

there may be severe over-rejection as our Monte Carlo results show. On the other hand, the

test for overlapping models is more general and can be applied to non-overlapping models as

well. For easy reference, we name the tests the “non-overlapping test” and the “overlapping test”,

respectively. Both tests have a one-sided version and a two-sided version, where the two-sided

alternative hypothesis is H1 : d(P, µ) 6= d(Q, µ) and the one-sided alternative hypothesis is set to

be H1 : d(P, µ) < d(Q, µ) without loss of generality.

The non-overlapping test. The one-sided version is defined as ϕNO−1
n (α) = 1(n1/2Q̂LRn/ω̂n >

zα), and the two-sided version is defined as ϕNO−2
n (α) = 1(n1/2|Q̂LRn|/ω̂n > zα/2), where α is the

nominal size.

The overlapping test. Let bn be a sequence of positive numbers such that b−1
n +n−1/2bn → 0. The

one-sided version is defined as ϕOL−1
n (α) = 1(n1/2Q̂LRn/(ω̂n ∨ n−1/2bn) > zα), and the two-sided

version is defined as ϕOL−2
n (α) = 1(n1/2|Q̂LRn|/(ω̂n ∨ n−1/2bn) > zα/2), where a ∨ b := max{a, b}.

It is worthwhile to discuss the intuition behind the asymptotic size control of the two tests.

First, the non-overlapping test has correct asymptotic size when applied to non-overlapping models
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because ω2
µ is bounded away from zero for non overlapping models, guaranteeing n1/2Q̂LR/ω̂n →d

N(0, 1) under H0. When the models are overlapping, ω2
µ is not bounded away from zero, and

consequently n1/2Q̂LR/ω̂n →d N(0, 1) may or may not hold depending on the unknown data

generating process. When it does not hold, the non-overlapping test can overreject. On the other

hand, the overlapping tests never overreject asymptotically, thanks to the regularization parameter

bn. Specifically, we show later that nQ̂LRn = Op(1) whenever n1/2Q̂LR/ω̂n 9d N(0, 1). This and

the fact that bn is chosen to be a diverging sequence implies that n1/2Q̂LRn/(n
−1/2bn) →p 0. As

a result, the asymptotic rejection probability of the overlapping test is controlled (below α) even

when n1/2Q̂LR/ω̂n 9d N(0, 1).

The regularization parameter is in some sense a critical value for a pretest for H00 : ω2
µ = 0.

We do not take it to be a finite quantile of the asymptotic distribution of the pretest statistic

n1/2ω̂n (under H00) for two reasons. First, the asymptotic distribution of n1/2ω̂n is complicated

and difficult to estimate due to both the partial identification and the moment inequalities. Second,

a converging critical value in the pretest may not control the asymptotic size of the overall test for

H0. See Shi (forthcoming) for detailed discussions in a related testing problem.

One practical difficulty with the diverging bn is that there is certain arbitrariness in its choice.

The theory in this paper implies that it should satisfy the rate condition b−1
n + n−1/2bn → 0.

However, for a fixed n, this rate condition is not of much help. An optimal finite n choice of

bn should depend on the distributions of the high-order terms in nQ̂LRn and nω̂2
n. However, in

moment inequality models, their distributions are difficult to obtain even asymptotically both due

to partial identification, and due to (the unknown slackness of) the inequalities.

Nonetheless, we can borrow some intuition from the point-identified moment equality models.

Shi (forthcoming) studies such models and the findings therein imply that bn is needed most when

|(dθ − dm)− (dβ − dg)| is large, and least if (dθ − dm) = (dβ − dg). Based on this, we propose the

following data-dependent rule-of-thumb choice of bn:

bn = c · (1 ∨ |(dθ − d̂bm)− (dβ − d̂bg)|) · log(log(n)), (4.9)

where d̂bm is the number of non-zero components in γ̂n(θ̂n) and is used to estimate the number

of binding moment conditions for model P, and d̂bg is the analogous quantity for model Q. The

constant c will be investigated in the Monte Carlo section. Notice that when c is set to zero, the

overlapping test reduces to the non-overlapping test.

5 Asymptotic Size – Non-overlapping Case

In this section, we show that the asymptotic size of the non-overlapping test, when applied to

non-overlapping models, is correct. To begin, let Hno0 denote the set of null distributions in the

case of non-overlapping models. We define Hno0 below. The size of the test for non-overlapping
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models of nominal size α over Hno0 is

SZnon (α) = sup
µ∈Hno0

Eµϕ
NO−j
n (α), (5.1)

where j = 1, 2, recall, stands for the one-sided test and the two-sided test, respectively. We

approximate SZnon (α) using the asymptotic size:

AsySZno(α) = lim sup
n→∞

SZnon (α). (5.2)

The following assumption is imposed on the moment functions and is satisfied for all of our

examples.

Assumption 4. The moment functions m(x, θ) and g(x, β) are continuously differentiable in θ

and β over Θ and B, respectively, for all x ∈ X .

Let M∗µ = maxθ∈ΘMµ(γ∗µ(θ), θ) and N ∗µ = maxβ∈B Nµ(λ∗µ(β), β). Let mi(θ) = m(Xi, θ) and

gi(β) = g(Xi, β). For a data distribution µ, and parameters θ ∈ Θ and β ∈ B, let

Smµ (γ, θ) = Eµe
γ′mi(θ)mi(θ)mi(θ)

′

Sgµ(λ, β) = Eµe
λ′gi(β)gi(β)gi(β)′. (5.3)

Let eigmin(A) denote the smallest eigenvalue of a matrix A. For a positive number M , let ΓmM
denote NM (0dm)∩ (Rdp ×Rdm−dp+ ), where Na(b) for a positive scalar a and a db-vector b is a closed

ball in Rdb centered at b with radius a. Let ΓgM denote NM (0dg)∩ (Rdq ×Rdg−dq+ ). Let φ = (γ′, θ′)′

and ψ = (λ′, β′)′. Let “∧” and “∨” denote the minimum operator and the maximum operator,

respectively. Let Nε(Θ
∗
µ) =

⋃
θ∈Θ∗µ

Nε(θ) and Nε(B
∗
µ) =

⋃
β∈B∗µ Nε(β). We first define the µ space

under consideration under both H0 and H1 and then define the subset of it for which H0 holds.

Definition H. The set H is the set of µ such that

(i) {Xi}ni=1 is an i.i.d. sample from µ,

(ii) for all ε > 0, there exists δε > 0 not dependent on µ such that

sup
θ∈Θ\Nε(Θ∗µ)

Mµ(γ∗µ(θ), θ) <M∗µ − δε and sup
β∈B\Nε(B∗µ)

Nµ(λ∗µ(β), β) < N ∗µ − δε ,

(iii) sup
θ∈Θ
‖γ∗µ(θ)‖ ∨ sup

β∈B
‖λ∗µ(β)‖ ≤M − δ ,

(iv) inf
φ∈ΓmM×Θ

eigmin(Smµ (φ)) ∧ inf
ψ∈ΓgM×B

eigmin(Sgµ(ψ)) > δ, and (5.4)

(v) Eµ sup
φ∈ΓmM×Θ

e(2+δ)γ′mi(θ) + ‖∂e
γ′mi(θ)

∂φ
‖2+δ+ ‖∂

2eγ
′mi(θ)

∂γ∂φ
‖2+δ+

dm∑
j=1

‖∂
3eγ

′mi(θ)

∂γj∂γ∂φ′
‖

+

Eµ sup
ψ∈ΓgM×B

e(2+δ)λ′gi(β) + ‖∂e
λ′gi(β)

∂ψ
‖2+δ+ ‖∂

2eλ
′gi(β)

∂λ∂ψ′
‖2+δ+

dg∑
j=1

‖ ∂
3eλ

′gi(β)

∂λj∂λ∂ψ′
‖

 < M,
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where M and δ are positive constants. The set Hno0 depends on those constants, but for notational

simplicity, we suppress their dependence.

Definition H0NO. The set Hno0 is the set of µ ∈ H such that

(i) d(P, µ), d(Q, µ) ≤M1, for a constant M1 that does not depend on µ,

(ii) d(P, µ) = d(Q, µ), and

(iii) µ satisfies Assumption 3.

Remarks. (a) Condition (iii) of Definition H and condition (i) of Definition H0NO are uniform

versions of Assumption 1(b), the verification of which is discussed in Section 3.1. Condition (ii)

of Definition H rules out weak identification and is standard in the model selection test literature.

Condition (iv) of Definition H is the uniform version of Assumption 1(a). Condition (v) of Definition

H imposes moment restrictions. The exponential moment restrictions may exclude some interesting

cases in practice, but are satisfied in many other cases. For example, they are satisfied by models

in Examples 3, 4 and 5 above and by models in Examples 1 and 2 if the variables do not have

heavy tails.

(b) Assumption 4 implies Assumption 2(b). Conditions (iii)-(v) of Definition H imply Assump-

tion 1. Therefore, the duality results in Lemma 2 hold for µ ∈ H under Assumptions 2(a) and 4.

In order to derive the asymptotic size of the test, we show the consistency of the set estimators

Θ̂n and B̂n first. Lemma 3 below establishes the consistency of Θ̂n and B̂n w.r.t. the left Hausdorff

distance. The left Hausdorff distance between two subsets, A1, A2, of a Euclidean space is the

maximum distance of any point in A1 to A2:

ρlh(A1, A2) = sup
a∈A1

inf
a′∈A2

‖a− a′‖. (5.5)

We call it the left Hausdorff distance because its symmetrized version is the Hausdorff distance:

ρh(A1, A2) = ρlh(A1, A2) ∨ ρlh(A2, A1). Also define ρlh(a,A2) = ρlh({a}, A2) for a vector a.

Lemma 3. Suppose Assumptions 2(a) and 4 hold. Then, under all sequences {µn}∞n=1 such that

each µn ∈ H, we have ρlh(Θ̂n,Θ
∗
µn) + ρlh(B̂n, B

∗
µn)→p 0.

Remark. Lemma 3 shows that all points in Θ̂n approach Θ∗µn . It does not imply that the neigh-

borhoods of all points in Θ∗µn are visited by Θ̂n eventually. Thus, Θ̂n is not necessarily consistent

w.r.t. the standard Hausdorff distance. Consistency w.r.t. ρlh is sufficient for our purpose.

The following lemma guarantees that the asymptotic variance of n1/2Q̂LRn is bounded away

from zero with non-overlapping models.

Lemma 4. If the models P and Q are non-overlapping, then ω2 := infµ∈Hno0 ω2
µ > 0.

The following theorem describes the asymptotic distribution of n1/2Q̂LRn/ω̂n and shows that

the asymptotic size of the test for non-overlapping models is correct.
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Theorem 1. Suppose Assumptions 2(a) and 4 hold and the models are non-overlapping. Then,

(a) under all sequences {µn ∈ Hno0 }∞n=1, we have n1/2Q̂LRn/ω̂n →d N(0, 1), and

(b) for α ∈ (0, 1), AsySZno(α) = α.

6 Asymptotic Size – Overlapping Case

Let Hol0 denote the set of null distributions in the case of overlapping models. We define Hol0 below.

The size of the test for overlapping models of nominal size α over Hol0 , is

SZoln (α) = sup
µ∈Hol0

Eµϕ
OL−j
n (α), (6.1)

where, recall, j = 1, 2 indicates “one-sided” and “two-sided” respectively. We approximate it using

the asymptotic size:

AsySZol(α) = lim sup
n→∞

SZoln (α). (6.2)

In the definition of the asymptotic size, the limsup is taken after the supµ∈Hol0
. Thus, in order

to obtain AsySZol(α), we need to approximate the distribution of the test statistics uniformly well

over Hol0 . This is harder to achieve with overlapping models because the asymptotic distributions

of n1/2Q̂LRn/ω̂n and nω̂2
n under H0 are discontinuous in ω2

µ, as discussed in Section 4.1. We seek

to approximate the finite sample distributions of the test statistics at all values of ω2
µ by deriving

the asymptotic distributions under drifting sequences of null distributions {µn}∞n=1. In particular,

nω2
µn can drift to a finite number or infinity, each case approximating the finite sample situation

where ω2
µ is close or equal to zero, or ω2

µ is bounded away from zero. The idea of using drifting

sequences is adopted from Andrews and Guggenberger (2009).

A stronger assumption on the smoothness of the moment functions than Assumption 4 is needed:

Assumption 5. The moment functions m(x, θ) and g(x, β) are three times continuously differen-

tiable in θ and β over Θ and B, respectively, for all x ∈ X .

Let Λ∗µ,i = eγ
∗
µ(θ∗)′mi(θ∗) − eλ∗µ(β∗)′gi(β∗) for arbitrary θ∗ ∈ Θ∗µ and β∗ ∈ B∗µ. Now we define Hol0 .

Definition H0OL. The set Hol0 is the set of µ ∈ H such that

(i) d(P, µ) = d(Q, µ),

(ii) µ satisfies Assumption 3,

(iii) Eµ(ω−1
µ Λ∗µ,i)

2+δ < M if ω2
µ > 0,

(iv) M∗µ −Mµ(γ∗µ(θ), θ) > C · (ρ2
lh(θ,Θ∗µ) ∧ δ),

N ∗µ −Nµ(λ∗µ(β), β) > C · (ρ2
lh(β,B∗µ) ∧ δ), and

(v) Eµ sup
φ∈ΓmM×Θ

e(2+δ)γ′mi(θ) + ‖∂e
γ′mi(θ)

∂φ
‖2+δ+ ‖∂

2eγ
′mi(θ)

∂φ∂φ
‖1+δ+

dm+dθ∑
j=1

‖∂
3eγ

′mi(θ)

∂φj∂φ∂φ′
‖

+
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Eµ sup
ψ∈ΓgM×B

e(2+δ)λ′gi(β) + ‖∂e
λ′gi(β)

∂ψ
‖2+δ+ ‖∂

2eλ
′gi(β)

∂ψ∂ψ′
‖1+δ+

dg+dβ∑
j=1

‖ ∂
3eλ

′gi(β)

∂ψj∂ψ∂ψ′
‖


< M , (6.3)

where M, C and δ are positive constants. The set Hol0 depends on M, C and δ, but for notational

simplicity, we suppress these arguments.

Remarks. (a) Condition (iv) of Definition H0OL strengthens condition (ii) of Definition H. Such

a condition is standard in the model selection literature for point identified models, and is similar

to the quadratic minorant condition used in Chernozhukov et al. (2007). It gives us the n−1/2-

consistency of the set estimators. Condition (v) of Definition H0OL strengthens condition (v) of

Definition H, and is usually verified by inspecting the differentiability of the moment functions and

the moment existence of the relevant functions of the data.

(b) Condition (iii) of Definition of H0OL helps to characterize the asymptotic behavior of the

studentized quasi-likelihood ratio statistic when the standard deviation of Q̂LRn converges to zero

in probability. It is not restrictive because when ω2
µ is small, Λ∗µ,i is typically small.

The following Lemma derives the convergence rate of the set estimators under drifting sequences

of distributions. The lemma is obtained using the quadratic bounding approach described in the

introduction. This approach takes into account the non-differentiability of the population and the

sample criterion functions.

Lemma 5. Suppose Assumptions 2(a) and 5 hold. Then, under any drifting sequence {µn ∈ H}∞n=1

such that conditions (iv)-(v) of Definition H0OL are satisfied, we have ρlh(Θ̂n,Θ
∗
n)+ρlh(B̂n, B

∗
n) =

Op(n
−1/2).

Let ω2
n abbreviate ω2

µn . We define the drifting sequences of µ’s under which the asymptotic

behavior of the QLR and variance statistics are studied below. These are the important sequences

that determine the asymptotic size of the test.

Definition SEQ. For σ ∈ [0,∞], let Seqσ be the set of sequences {µun ∈ Hol0 }∞n=1, such that

{un}∞n=1 is a subsequence of {n}, and

unω
2
un → σ2. (6.4)

Let Seq =
⋃
σ∈[0,∞] Seqσ. Notice that we allow σ to take values in the extended real space.

Lemma 6 below establishes the asymptotic distributions of the test statistics under drifting

sequences in Seq. Part (a) of the lemma includes the completely degenerate case that ωn = 0 for

all n and is analogous to Theorem 3.3(i) of Vuong (1989), while part (b) of the lemma includes the

nondegenerate case that ωn = ω for some ω > 0 for all n and is analogous to Theorem 3.3(ii) of

Vuong (1989).

Lemma 6. Suppose Assumptions 2(a) and 5 hold. Then for σ ∈ [0,∞] and any subsequence

{un}∞n=1 of {n}, under any drifting sequence {µun}∞n=1 ∈ Seqσ,
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(a) if σ ∈ [0,∞), unω̂
2
un = Op(1) and unQ̂LRun = Op(1), and

(b) if σ =∞, u
1/2
n Q̂LRun/ωun →d N(0, 1) and ω̂2

un/ω
2
un →p 1.

It follows easily from Lemma 6 that AsySZol(α) ≤ α. An extra condition is needed for the

test not to be asymptotically conservative and is stated as Assumption 6 below. Assumption 6

requires the existence of at least one µ ∈ Hol0 under which the pseudo-true distributions from the

two models are not the same. Assumption 6 is not restrictive for nonnested models because for a

µ ∈ Hol0 that belongs to neither P or Q, the pseudo-true distributions typically are different except

in some pathological cases. Assumption 6 is violated when P and Q are nested.

Assumption 6. There exists µ ∈ Hol0 , such that P ∗µ 6= Q∗µ.

Theorem 2 below summarizes the null properties for our test for overlapping models.

Theorem 2. Suppose Assumptions 2(a) and 5 holds. Then, for all α ∈ (0, 1),

(a) AsySZol(α) ≤ α, and

(b) if Assumption 6 also holds, then AsySZol(α) = α.

7 Power Properties of the Tests

We now show that our model selection tests are consistent against general fixed alternatives and

local alternatives that converge to the null at a rate arbitrarily close to n−1/2. The results apply

to both the overlapping test and the non-overlapping test.

First, we show that our test is consistent against all fixed alternatives under which d(P, µ) 6=
d(Q, µ). That is, for any µ ∈ H such that d(P, µ) < d(Q, µ), the test rejects H0 in favor of model

P with probability approaching one.

Theorem 3. Suppose Assumptions 2(a) and 4 hold. Then for any µ ∈ H such that d(P, µ) <

d(Q, µ),

(a) limn→∞ Prµ
(
n1/2Q̂LRn/ω̂n > zα/2

)
= 1, and

(b) limn→∞ Prµ
(
n1/2Q̂LRn/(ω̂n ∨ n−1/2bn) > zα/2

)
= 1.

Next, we show that our test is consistent against drifting sequences of alternatives under which
√
n(d(P, µn)− d(Q, µn)) diverges to infinity.

Theorem 4. Suppose Assumptions 2(a) and 4 hold. Then for any sequence {µn ∈ H} such that

µn converges weakly to a µ0 such that d(P, µ0) = d(Q, µ0) <∞. Suppose also d(P, µn)→ d(P, µ0),

d(Q, µn)→ d(Q, µ0) and
√
n(d(P, µn)− d(Q, µn))→ −∞; then,

(a) limn→∞ Prµn
(
n1/2Q̂LRn/ω̂n > zα/2

)
= 1, and

(b) limn→∞ Prµn
(
n1/2Q̂LRn/(ω̂n ∨ n−1/2bn) > zα/2

)
= 1.
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8 Simulation

This section reports Monte Carlo results for the missing data example. In this exercise, we in-

vestigate (a) the finite sample performance of our tests, (b) the sensitivity of the overlapping test

to the tuning parameter c in the data-dependent formula of bn in (4.9), and (c) the sensitivity of

ω̂2
n(θ̂n, β̂n) to the choice of θ̂n and β̂n in Θ̂n and B̂n. In the Supplemental Appendix we report ad-

ditional Monte Carlo results to compare the performance of the overlapping test with the standard

χ2-based test for nested point identified models moment equality models.

The missing data example is a special case of Example 1. Let Yi be a binary variable that

is observed if a selection variable Di = 1 and is missing if Di = 0. The parameter of interest is

θ = EYi. Let X1,i and X2,i be two candidate instrumental variables, both taking a finite number

of values. Let Ȳi = YiDi + (1−Di) and Y i = YiDi. Then by definition Yi ∈
[
Y i, Ȳi

]
. We consider

two model comparison problems. In the first problem, the models compared are nonnested (but

overlapping).12 That is, for j = 1, 2

Pj = {P : EP (θ − Y i|Xj,i) ≥ 0 & EP (Ȳi − θ|Xj,i) ≥ 0}. (8.1)

In the second problem, the models compared are nested, in particular, P2 ⊆ P1:

P1 = {P : EP (θ − Y i|X1,i) ≥ 0 & EP (Ȳi − θ|X1,i) ≥ 0},

P2 = {P : EP (θ − Y i|X1,i, X2,i) ≥ 0 & EP (Ȳi − θ|X1,i, X2,i) ≥ 0}. (8.2)

For both problems, we consider the general data generating process (DGP):

Yi = 1{1 + 1.51/2 (a1X1,i + a2X2,i) + ui ≥ 0}

Di = 1{1.5 + 0.5 (X1,i +X2,i) + vi ≥ 0}, (ui, vi) ∼ N(0, I), (8.3)

where X1,i and X2,i follow independent multinomial distributions. The parameters a1 and a2

measure how endogenous the two instruments are and thus indicate how far each model is from the

DGP. Both the nonnested and the nested problems fit in the framework of Example 1 because Pj
can be written as

Pj = {P : EP [(θ − Y i)1(Zj,i = z)] ≥ 0 & EP [(Ȳi − θ)1(Zj,i = z)] ≥ 0 ∀z ∈ Zj}, (8.4)

where Zj,i is the conditioning variable/vector of model j and Zj is the known discrete support of

Zj,i. For the nonnested problem, we consider the test of H0 against the two-sided alternative, while

for the nested problem, we test H0 against the one-sided alternative H1 : d(P1, µ) < d(P2, µ).

12Even though without additional information the two models are overlapping, they become non-overlapping if we
add the maintained assumption that min{cov(X1,i, Yi), cov(X2,i, Yi)} > η for some η > 0. Adding this maintained
assumption does not affect how our tests should be implemented. Thus, the non-nested results below when this
maintained assumption are satisfied (i.e. when a1, a2 > 0) also demonstrate how the tests perform in a non-overlapping
testing scenario.
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For the nonnested problem, we consider two designs of (X1,i, X2,i), a symmetric one and an

asymmetric one. In the symmetric design, X1,i and X2,i both follow a multinomial distribution

that puts equal probability on the points in {0, 1}. The symmetry of the two models makes it easy

to specify the null DGP’s: to impose H0 , we can simply set a1 = a2. Varying the magnitude of a1

(=a2) allows us to vary the magnitude of ω2
µ. In particular, the larger a1(= a2) is, the further away

ω2
µ is from zero. The alternative DGP’s are also easy to specify: when a1 > a2 ≥ 0, P2 is better (less

misspecified) than P1, and vice versa. To cover a variety of cases, we consider five pairs of (a1, a2):

(0, 0), (0.2, 0.2), (0.5, 0.5), (0.5, 0), (0.5, 0.8), three different sample sizes: n = 250, 500, 1000 and

two different choices of tuning parameter c = 0 and 0.4. Note that for c = 0, the test is the

non-overlapping test and for c > 0, it is the overlapping one. The number of simulation repetitions

is 5000. The nominal size of the tests is 10%.

Table 1: Rejection Probability in the Symmetric Nonnested Case (α = 10%)

c \ (a1, a2) (0, 0) (0.2, 0.2) (0.5, 0.5) (0.5, 0) (0.5, 0.8)

n = 250

0 (.000, .000) (.008, .009) (.037, .039) (.000, .505) (.398, .001)
0.4 (.000, .000) (.008, .009) (.037, .039) (.000, .505) (.398, .001)

n = 500

0 (.000, .000) (.016, .015) (.044, .047) (.000, .921) (.658, .000)
0.4 (.000, .000) (.016, .015) (.044, .047) (.000, .921) (.658, .000)

n = 1000

0 (.000, .000) (.033, .028) (.049, .048) (.000, 1.000) (.895, .000)
0.4 (.000, .000) (.033, .028) (.049, .048) (.000, 1.000) (.895, .000)

Note: the two probabilities in each pair of parentheses are the probability of rejecting H0

in favor of P1 and that of rejecting H0 in favor of P2, respectively.

Table 1 shows the rejection probabilities for the symmetric nonnested design. The first three

columns show the rejection probabilities under the null. Ideally, under H0, the probability of

rejecting H0 in favor of either model should be at or below 5%. As we can see from the first three

columns, this requirement is satisfied, indicating that our test controls size well in finite samples.

The last two columns show the rejection probability under the alternative. For the fourth column,

P2 is better and for the last column, P1 is better. As we can see, our test selects the better model

with nontrivial probability while rarely selects the worse model. Also the probability of rejecting H0

in favor of the better model increases with the sample size as expected from the power results. In

addition, varying the tuning parameter c in the range that we consider has no effect on the rejection

probabilities. The robustness to c is a result of the symmetry of the two models compared, and

unfortunately is not a generic feature of our test, as shown in the next design.

Now we consider the asymmetric nonnested design, where X1,i has the same distribution as

above, but X2,i follows a multinomial distribution that puts equal probability on J equally spaced

points in the interval [−1, 1] (including the end points). In this case, setting a1 = a2 does not

guarantee that H0 hold due to the asymmetry of the two models. However, we can still ensure H0
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by setting a1 = a2 = 0, and ensure that H0 does not hold by setting a1 6= 0 and a2 = 0. The

parameter J controls the degree of the asymmetry. We report Monte Carlo results for two values

of (a1, a2): (0, 0) and (0.5, 0), three values of J : 3, 7 and 11 and four c values: 0, 0.2, 0.25 and 0.3.

The sample sizes and number of simulation repetitions are the same as the previous design.

Table 2: Rejection Probability in the Asymmetric Nonnested Case (α = 10%)

(a1, a2) = (0, 0) (a1, a2) = (0.5, 0)

c J = 3 J = 7 J = 11 J = 3 J = 7 J = 11

n = 250

0 (.002, .000) (.044, .000) (.226, .000) (.000, .346) (.001, .138) (.009, .047)
0.2 (.002, .000) (.044, .000) (.188, .000) (.000, .346) (.001, .138) (.007, .046)
0.25 (.002, .000) (.043, .000) (.124, .000) (.000, .346) (.001, .138) (.005, .041)
0.3 (.002, .000) (.041, .000) (.069, .000) (.000, .346) (.001, .137) (.004, .029)

n = 500

0 (.001, .000) (.031, .000) (.194, .000) (.000, .815) (.000, .559) (.000, .347)
0.2 (.001, .000) (.031, .000) (.166, .000) (.000, .815) (.000, .559) (.000, .347)
0.25 (.001, .000) (.031, .000) (.102, .000) (.000, .815) (.000, .559) (.000, .337)
0.3 (.001, .000) (.029, .000) (.049, .000) (.000, .815) (.000, .559) (.000, .301)

n = 1000

0 (.002, .000) (.028, .000) (.165, .000) (.000, .996) (.000, .973) (.000, .910)
0.2 (.002, .000) (.028, .000) (.139, .000) (.000, .996) (.000, .973) (.000, .910)
0.25 (.002, .000) (.027, .000) (.078, .000) (.000, .996) (.000, .973) (.000, .910)
0.3 (.002, .000) (.025, .000) (.039, .000) (.000, .996) (.000, .973) (.000, .905)

Note: the two probabilities in each pair of parentheses are the probability of rejecting H0 in
favor of P1 and that of rejecting H0 in favor of P2, respectively.

Table 2 shows the rejection probabilities for the asymmetric nonnested design. The first three

columns show the rejection probabilities under the null and the last three columns show those

under the alternative. Comparing to the previous table, we first observe that the over-lapping test

(c = 0) has over-rejection for the most asymmetric design (J = 11) at all three sample sizes. For

the non-overlapping test (c > 0), the rejection probabilities are somewhat sensitive to c both under

the null and under the alternative in the most asymmetric design, but not so much in the less

asymmetric designs. Overall, Table 2 shows that the overlapping test with c = 0.25 and c = 0.3

has decent performance.

Lastly, we consider the nested problem in (8.2). We let the distribution of X1i and X2i be

the same as the asymmetric nonnested design above. We consider two values of (a1, a2): (0, 0)

and (0, 0.25), each representing the null and the alternative respectively. The same J values and c

values as above are considered. Note that for the same J , the two nested models in (8.2) are much

more asymmetric than the two nonnested models in (8.1) because the model 2 in the nested case

involves 2J rather than J unconditional moment restrictions while the model 1 still only contains

2 unconditional moment restrictions. Because our data-dependent choice of bn is adaptive to the

asymmetry, we shall see that the large asymmetry does not have much ill-effect on the size property

of our test.
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Table 3 shows the results. Since the models are nested (P2 ⊆ P1), only the one-sided alternative

H1 : d(P1, µ) > d(P2, µ) is of interest. Thus, the table reports the rejection probabilities for the

one-sided tests. As we can see, the pattern is similar to the nonnested asymmetric design. Both the

non-overlapping test and the overlapping test have good size and power in the mildly asymmetric

design (J = 3). The non-overlapping test (c = 0) starts to over-reject as the asymmetry increases.

Similar behavior is also observed for the overlapping test with small c (c = 0.2). We find that

c = 0.25 has acceptable performance at all sample sizes across all J ’s considered.

Table 3: Rejection Probability of the One-sided Tests in
the Nested Case (α = 5%)

(a1, a2) = (0, 0) (a1, a2) = (0, 0.25)

c J = 3 J = 7 J = 11 J = 3 J = 7 J = 11

n = 250

0 .025 .523 .948 .477 .826 .987
0.2 .025 .249 .274 .477 .557 .484
0.25 .025 .116 .113 .476 .360 .259
0.3 .024 .049 .040 .467 .216 .129

n = 500

0 .020 .465 .924 .825 .936 .994
0.2 .020 .204 .186 .825 .752 .616
0.25 .020 .086 .056 .824 .567 .349
0.3 .020 .032 .013 .818 .386 .160

n = 1000

0 .017 .400 .886 .994 .994 1.000
0.2 .017 .163 .137 .994 .947 .844
0.25 .017 .062 .031 .994 .854 .627
0.3 .017 .023 .006 .993 .718 .383

Note: the probabilities are the probability of the one-sided tests
rejecting H0 in favor of P1.

To sum up, the Monte Carlo shows that (a) both the overlapping test and the non-overlapping

test have good finite sample size and power properties and the performance for the non-overlapping

test is not sensitive to c, when the two models compared have similar dimensions; and (b) the

overlapping test and the non-overlapping test with small c over-reject when the two models are

very different in their numbers of restrictions. In the latter cases, we recommend c = 0.25.

In the Monte Carlo exercises above, to find θ̂n and β̂n, we use the fminbnd function in Matlab.

The fminbnd function takes an upper and a lower bound for the parameter. When the bounds are

set differently, the function can converge to different minimizers of the criterion function when the

minimizer is not unique. That allows us to investigate the sensitivity of our test to the choice of θ̂n

and β̂n by comparing
√
nQ̂LRn/ω̂n computed using two different sets of bounds in fminbnd. We

find that θ̂n (or β̂n) can be sensitive to the bounds when the model is correctly specified, i.e., when

a1 = 0 (or a2 = 0) but not sensitive otherwise. Even when θ̂n is sensitive, we find
√
nQ̂LRn/ω̂n

barely differs across the two sets of bounds. For example, in the nested design with (α1, α2) = (0, 0),
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J = 11 and n = 1000, the frequency that θ̂n from the two sets of bounds differ by more than 0.001

is 32%, while the frequency that
√
nQ̂LRn/ω̂n differ by more than 0.0001 is 0%. This confirms

that we do not need to compute all the maximizers to implement the test.

The computational cost of the test is relatively low. In the simulation example described above,

it takes around one second to run one simulation iteration on a regular desktop. The speed does not

increase with the sample size in the range that we considered. Of course, for models with covariates

and more parameters, computation time can be longer, but we expect it to be in a reasonable range

for the reasons discussed in the introduction.
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APPENDIX

Throughout the appendix, we replace µn with n when µn is in a subscript and it does not

cause confusion to do so. For example, we write γ∗µn(θ) as γ∗n(θ). Let φ̂n(θ) = (γ̂n(θ)′, θ′)′ and

φ∗n(θ) = (γ∗n(θ)′, θ′)′, and ψ̂n(β) and ψ∗n(β) be defined analogously. We let “r.h.s.” denote “right-

hand-side” and “l.h.s.” denote “left-hand-side”.

Let “LLN” denote the weak law of large number for row-wise i.i.d. triangular arrays. The weak

law of large number we use here is Theorem 2 in Andrews (1988). Theorem 2 in Andrews (1988)

is a law of large numbers for L1-mixingale triangular arrays. Row-wise i.i.d. triangular arrays are

trivially L1-mixingales. The uniform integrability condition required in that theorem is guaranteed

by the moment existence conditions in this paper.

A Auxiliary Lemmas

We first present a few auxiliary lemmas, the proofs of which are given in Supplemental Appendix G.

Lemma A.1 is an instrumental result for the uniform stochastic boundedness of empirical processes,

which is useful for establishing Lemmas A.2-A.3. Lemma A.2 establishes the uniform convergence

and rate of convergence of various stochastic processes, which is useful for proving the main lemmas

and theorems. Lemma A.3 establishes the uniform consistency of γ̂n(θ), the rate of convergence of

γ̂n(θ), and the continuity of γ∗n(θ).

Lemmas A.2-A.4 are stated in terms of {n}, but because they only require termwise assumptions

on the sequence {µn}∞n=1, their conclusions hold with {n} replaced with any subsequence of {n}.

Lemma A.1. Consider the triangular array of empirical processes {νn(φ) : φ ∈ Φ}∞n=1. If (i)

(Φ, ρ) is a totally bounded pseudo-metric space, (ii) νn(φ) is stochastically equicontinuous w.r.t. ρ

and (iii) for every φ ∈ Φ, ‖νn(φ)‖ = Op(1), then supφ∈Φ ‖νn(φ)‖ = Op(1).13

Lemma A.2. Suppose Assumptions 2(a) and 4 hold. Under any sequence {µn}∞n=1 such that each

µn satisfies conditions (i) and (iii)-(v) of Definition H, we have

(a) the triangular array of empirical processes {ν0
n(φ) := n1/2(M̂n(φ)−Mµn(φ)) : φ ∈ ΓmM ×Θ}

is stochastically equicontinuous w.r.t. the Euclidean distance,

(b) supφ∈ΓmM×Θ |n1/2(M̂n(φ)−Mµn(φ))| = Op(1),

(c) the triangular array of empirical processes {ν1
n(φ) := n1/2(∂M̂n(φ)/∂γ − ∂Mµn(φ)/∂γ) :

φ ∈ ΓmM ×Θ} is stochastically equicontinuous w.r.t. the Euclidean distance,

(d) supφ∈ΓmM×Θ ‖n1/2(∂M̂n(φ)/∂γ − ∂Mµn(φ)/∂γ)‖ = Op(1),

(e) for all random sequences {φ1,n ∈ ΓmM × Θ}∞n=1 and {φ2,n ∈ ΓmM × Θ}∞n=1 such that ‖φ1,n −
φ2,n‖ →p 0, we have

‖∂2M̂n(φ1,n)/∂γ∂γ′ − ∂2Mµn(φ2,n)/∂γ∂γ′‖ → p 0

13Note that here, Φ denotes the space of φ. In the main sections of this paper, Φ stands for the c.d.f. of the
standard normal distribution. Hopefully, there is no confusion caused by this abuse of notation.
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|M̂n(φ1,n)−Mµn(φ2,n)| → p 0, and

(f) parts (a)-(e) hold with Θ, γ, φ, M and m replaced with B, λ, ψ, N and g, respectively.

Lemma A.3. Suppose Assumptions 2(a) and 4 hold. Under any sequence {µn}∞n=1 such that each

µn satisfies conditions (i) and (iii)-(v) of Definition H, we have

(a) for any two random sequences {θ1,n ∈ Θ}∞n=1 and {θ2,n ∈ Θ}∞n=1 such that ‖θ1,n−θ2,n‖ →p 0,

‖γ̂n(θ1,n)− γ∗n(θ2,n)‖ →p 0,

(b) supθ∈Θ ‖γ̂n(θ)− γ∗n(θ)‖ = Op(n
−1/2),

(c) for any two random sequences {θ1,n ∈ Θ}∞n=1 and {θ2,n ∈ Θ}∞n=1 such that ‖θ1,n−θ2,n‖ →p 0,

‖γ∗n(θ1,n)− γ∗n(θ2,n)‖ = Op(‖θ1,n − θ2,n‖), and

(d) parts (a)-(c) hold with θ, Θ, γ, φ, M, m replaced with β, B, λ, ψ, N , g.

Lemma A.4. Suppose Assumptions 2(a) and 5 hold. Then, under any sequence {µn}∞n=1 such

that each µn satisfies conditions (i) and (iii)-(v) of Definition H and condition (v) of Definition

H0OL,

(a) for any two random sequences {φ1,n ∈ ΓmM × Θ}∞n=1 and {φ2,n ∈ ΓmM × Θ}∞n=1 such that

‖φ1,n − φ2,n‖ →p 0,

‖∂2M̂n(φ1,n)/∂φ∂φ′ − ∂2Mµn(φ2,n)/∂φ∂φ′‖ →p 0, and

(b) part (a) hold with Θ, φ, M and m replaced with B, ψ, N and g.

B Proof of the Theorems

Proof of Theorem 1. (a) Let θ̂n ∈ Θ̂n and β̂n ∈ B̂n be those that satisfy ω̂2
n(θ̂n, β̂n) = ω̂2

n. Then,

part (a) is implied by:

n1/2Q̂LRn/ωn →d N(0, 1), and (B.1)

ω̂2
n(θ̂n, β̂n)/ω2

n →p 1. (B.2)

Next, we show (B.1) and (B.2).

Let θ∗n ∈ Θ∗n and β∗n ∈ B∗n satisfy ‖θ̂n − θ∗n‖ ≤ ρlh(θ̂n,Θ
∗
n) + o(1) and ‖β̂n − β∗n‖ ≤ ρlh(β̂n, B

∗
n) +

o(1). Then, Lemmas 3 and A.3(a) imply that

‖φ̂n(θ̂n)− φ∗n(θ∗n)‖ →p 0 and ‖ψ̂n(β̂n)− ψ∗n(β∗n)‖ →p 0. (B.3)
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First, we show (B.1). Observe that

ω−1
n n1/2Q̂LRn = ω−1

n n−1/2
n∑
i=1

[
exp(γ̂n(θ̂n)′mi(θ̂n))− exp(λ̂n(β̂n)′gi(β̂n)

]
= ω−1

n n−1/2
n∑
i=1

(Λ∗n,i) +An,1 +An,2, (B.4)

where Λ∗n,i = eγ
∗
n(θ∗n)′mi(θ∗n) − eλ∗n(β∗n)′gi(β∗n), An,1 = 1√

nω2
n

∑n
i=1

[
eγ̂n(θ̂n)′mi(θ̂n) − eγ∗n(θ∗n)′mi(θ∗n)

]
and

An,2 = 1√
nω2

n

∑n
i=1

[
eλ
∗
n(β∗n)′gi(β∗n) − eλ̂n(β̂n)′gi(β̂n)

]
.

By the Lyapounov CLT for triangular arrays,

ω−1
n n−1/2

n∑
i=1

(Λ∗n,i)→d N(0, 1). (B.5)

The CLT applies because (a) EnΛ∗n,i = 0 by Definition H0NO and Lemma 1(b), (b) ω−2
n En(Λ∗n,i −

EnΛ∗n,i)
2 = 1 by the definition of ω2

n and (c) the Lyapounov condition holds, that is to say,

En(ω−1
n Λ∗n,i)

2+δ ≤ ω−2−δEn(Λ∗n,i)
2+δ <∞ by Lemma 4 and condition (v) in (5.4).

It is left to show An,1 = op(1) and An,2 = op(1) before we can conclude that (B.1) holds. It

suffices to show An,1 = op(1) since the arguments for An,2 = op(1) are analogous. Because we do

not have convergence rates for Θ̂n and B̂n under the conditions of the current theorem, the usual

approach of doing a second-order Taylor expansion of exp(γ̂n(θ̂n)′mi(θ̂n)) around φ∗n(θ∗n) does not

go through. Instead, we show An,1 = op(1) by bounding An,1 from both above and below by op(1).

The lower bound of An,1 is obtained by replacing θ̂n with θ∗n in the expression of An,1 and using

the convergence rate result for γ̂n(·) (Lemma A.3(b)):

An,1 ≥ ω−1
n n−1/2

n∑
i=1

[
exp(γ̂n(θ∗n)′mi(θ

∗
n))− exp(γ∗n(θ∗n)′mi(θ

∗
n))
]

= ω−1
n

[
∂M̂n(φ∗n(θ∗n))/∂γ′

][
n1/2(γ̂n(θ∗n)− γ∗n(θ∗n))

]
+ω−1

n n1/2
(
γ̂n(θ∗n)− γ∗n(θ∗n)

)′[
∂2M̂n(φ̃n)/∂γ∂γ′

](
γ̂n(θ∗n)− γ∗n(θ∗n)

)
≥ ω−1

n

[
∂M̂n(φ∗n(θ∗n))/∂γ′ − ∂Mµn(φ∗n(θ∗n))/∂γ′

][
n1/2(γ̂n(θ∗n)− γ∗n(θ∗n))

]
+ω−1

n n1/2
(
γ̂n(θ∗n)− γ∗n(θ∗n)

)′[
∂2M̂n(φ̃n)/∂γ∂γ′

](
γ̂n(θ∗n)− γ∗n(θ∗n)

)
= op(1), (B.6)

where φ̃n lies on the line segment joining φ∗n(θ∗n) and φ̂n(θ∗n), the first inequality holds because Θ̂n

is a maximizer of M̂n(γ̂n(·), ·), the first equality holds by a Taylor expansion of exp(γ̂n(θ∗n)′mi(θ
∗
n))

around γ∗n(θ∗n), and the second inequality holds because (∂Mµn(φ∗n(θn∗))/∂γ′) γ∗n(θ∗n) = 0 and

∂Mµn(φ∗n(θn∗))/∂γj

{
= 0 for j ≤ dp
≥ 0 for j > dp

, both being the Kuhn-Tucker conditions from the min-

imization problem min
γ∈Rdp×Rdm−dp+

Mµn(γ, θ∗n), and the second equality holds by Lemmas 4,

A.2(d)-(e), A.3(b) and condition (v) of (5.4).

The upper bound of An,1 is obtained by replacing γ̂n with γ∗n in the expression of An,1 and
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applying Lemma A.2(a):

An,1 ≤ ω−1
n n−1/2

n∑
i=1

[
exp(γ∗n(θ̂n)′mi(θ̂n))− exp(γ∗n(θ∗n)′mi(θ

∗
n))
]

= ω−1
n

[
ν0
n(φ∗n(θ̂n)) + n1/2

(
Mµn(φ∗n(θ̂n))−Mµn(φ∗n(θ∗n))

)
− ν0

n(φ∗n(θ∗n))
]

≤ ω−1
n [ν0

n(φ∗n(θ̂n))− ν0
n(φ∗n(θ∗n))] = op(1), (B.7)

where the first inequality holds because γ̂n(θ̂n) is the minimizer of M̂n(·, θ̂n), the first equality holds

by adding and subtracting terms to form the empirical process {ν0
n(φ) : φ ∈ ΓmM ×Θ}∞n=1 (defined

in Lemma A.2(a)), the second inequality holds because θ∗n is a maximizer of Mµn(φ∗n(θ)), and the

second equality holds by Lemmas 3, 4, A.2(a) and A.3(c).

Therefore, An,1 = op(1).

Next, we show (B.2). By a mean-value expansion of exp(γ̂n(θ̂n)′mi(θ̂n)) around φ∗n(θ∗n), we have

ω−2
n ω̂2

n(θ̂n, β̂n)

= −ω−2
n Q̂LR

2

n + ω−2
n n−1

n∑
i=1

(Λ∗n,i)
2+

2ω−2
n n−1

n∑
i=1

[
∂eγ̃

′
nmi(θ̃n)

∂φ′
(φ̂n(θ̂n)− φ∗n(θ∗n))− ∂eλ̃

′
ngi(β̃n)

∂ψ′
(ψ̂n(β̂n)− ψ∗n(β∗n))

]
(Λ∗n,i)+

ω−2
n n−1

n∑
i=1

[
∂eγ̃

′
nmi(θ̃n)

∂φ′
(φ̂n(θ̂n)− φ∗n(θ∗n))− ∂eλ̃

′
ngi(β̃n)

∂ψ′
(ψ̂n(β̂n)− ψ∗n(β∗n))

]2

≡Wn,0 +Wn,1 +Wn,2 +Wn,3, (B.8)

where (γ̃′n, θ̃
′
n)′ lies on the line segment joining φ̂n(θ̂n) and φ∗n(θ∗n) and (λ̃′n, β̃

′
n)′ lies on the line

segment joining ψ̂n(β̂n) and ψ∗n(β∗n).

The first summand Wn,0 ≡ −ω−2
n Q̂LR

2

n = op(1) by (B.1). The second summand Wn,1 ≡
ω−2
n n−1

∑n
i=1(Λ∗n,i)

2 →p 1 by LLN. The LLN applies because (a) Enω
−2
n (Λ∗n,i)

2 = 1, and (b)

supn≥1En(ω−1
n Λ∗n,i)

2+δ ≤ ω−2−δ supn≥1En(Λ∗n,i)
2+δ <∞, by condition (v) in (5.4) and Lemma 4.

The summand Wn,3 in the last line of (B.8) is op(1) because

0 ≤ Wn,3

≤ 2ω−2(φ̂n(θ̂n)− φ∗n(θ∗n))

(
n−1

n∑
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′

)
(φ̂n(θ̂n)− φ∗n(θ∗n))

+2ω−2(ψ̂n(β̂n)− ψ∗n(β∗n))

(
n−1

n∑
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ′

)
(ψ̂n(β̂n)− ψ∗n(β∗n))

= op(1), (B.9)

where the second inequality holds by the inequality, (a + b)2 ≤ 2a2 + 2b2 and Lemma 4, and the

29



equality holds by (B.3) and

En

∥∥∥∥∥n−1
n∑
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′

∥∥∥∥∥ ≤ En‖∂eγ̃
′
nmi(θ̃n)/∂φ‖2 ≤M

En

∥∥∥∥∥n−1
n∑
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ′

∥∥∥∥∥ ≤ En‖∂eλ̃
′
ngi(β̃n)/∂ψ′‖2 ≤M , (B.10)

which holds by the triangular inequality, the equality ‖aa′‖ = ‖a‖2 and condition (v) in (5.4).

The summand Wn,2 in the last line of (B.8) is op(1) because, by the Cauchy-Schwartz inequality,

0 ≤ |Wn,2| ≤ 2[Wn,1 ·Wn,3]1/2.

Therefore, (B.2) holds.

(b) For this part, we focus on the two-sided test. Arguments for the one-sided test is the same.

Let {µn ∈ Hno0 }∞n=1 satisfy Prn
(
n1/2|Q̂LRn|/ω̂n > zα/2

)
≥ SZnon (α)−o(1). Such a sequence always

exists. Then,

lim sup
n→∞

Prn
(
n1/2|Q̂LRn|/ω̂n > zα/2

)
= AsySZno(α). (B.11)

By part (a), the l.h.s. of the equation above equals α. Therefore, AsySZno(α) = α.

Proof of Theorem 2. In this proof, we focus on the two-sided test. Arguments for the one-sided

test is the same.

(a) Let {an} be a subsequence of {n} such that AsySZol(α) = limn→∞ SZ
ol
an(α). Such a

sequence always exists. Let {µn ∈ Hol0 }∞n=1 be a sequence such that for each n,

Prn
(
n1/2|Q̂LRn|/(ω̂n ∨ n−1/2bn) > zα/2

)
≥ SZoln (α)− o(1). (B.12)

Let {un} be a subsequence of {an} such that unω
2
un → σ, σ ∈ [0,∞]. Such subsequences always

exist because we allow σ to take values in the extended real space. Then,

AsySZol(α) = lim
n→∞

Prun
(
u1/2
n |Q̂LRun |/(ω̂un ∨ u

−1/2
n bun) > zα/2

)
. (B.13)

If σ <∞, then by Lemma 6(a) and bn →∞,

lim
n→∞

Prun
(
u1/2
n |Q̂LRun |/(ω̂un ∨ u

−1/2
n bun) > zα/2

)
≤ lim

n→∞
Prun

(
un|Q̂LRun | > bunzα/2

)
= 0 < α. (B.14)

If σ =∞, then by Lemma 6(b) and n−1/2bn → 0,

lim
n→∞

Prun
(
u1/2
n |Q̂LRun |/(ω̂un ∨ u

−1/2
n bun) > zα/2

)
≤ lim

n→∞
Prun

(
u1/2
n |Q̂LRun |/ω̂un > zα/2

)
= α. (B.15)
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Therefore, by (B.13)-(B.15), AsySZol(α) ≤ α.

(b) Let µ ∈ Hol0 satisfy P ∗µ 6= Q∗µ. By Assumption 6, such a µ exists. Then, ω2
µ > 0. By Lemma

6(b), under µ, ω̂2
n →p ω

2
µ > 0. Also, by Lemma 6(b), under µ, n1/2Q̂LRn/ω̂n →d N(0, 1). Because

n−1/2bn → 0, we have

lim
n→∞

Prµ
(
n1/2|Q̂LRn|/(ω̂n ∨ n−1/2bn) > zα/2

)
= α. (B.16)

By definition, AsySZol(α) ≥ limn→∞ Prµ
(
n1/2|Q̂LRn|/(ω̂n ∨ n−1/2bn) > zα/2

)
. Thus, we have

AsySZol(α) ≥ α. Combining this with part (a), we obtain the desired result.

Proof of Therem 3. First by Lemma A.3(b) and condition (iii) Definition H, we have {γ̂n(θ) :

θ ∈ Θ} ⊆ ΓmM and {λ̂n(β) : β ∈ B} ⊆ ΓgM with probability approaching one. Thus, with probability

approaching one,

√
nQ̂LRn =

√
n(maxθ∈Θ minγ∈ΓmM

M̂n(γ, θ)−maxβ∈B minλ∈ΓgM
N̂n(λ, β)). (B.17)

Rewrite the r.h.s. by adding and subtracting terms, and we get

√
nQ̂LRn =

√
n(maxθ∈Θ minγ∈ΓmM

M̂n(γ, θ)−maxθ∈Θ minγ∈ΓmM
Mµ(γ, θ))−

√
n(maxβ∈B minλ∈ΓgM

N̂n(λ, β)−maxβ∈B minλ∈ΓgM
Nµ(λ, β))+

√
n(M∗µ −N ∗µ), (B.18)

where the first equality holds by Lemma A.3(b) and condition (iii) Definition H. By Lemma A.2(a),

we have ∣∣∣√n(maxθ∈Θ minγ∈ΓmM
M̂n(γ, θ)−maxθ∈Θ minγ∈ΓmM

Mµ(γ, θ))
∣∣∣

≤ supφ∈Θ×ΓmM

∣∣ν0
n(φ)

∣∣ = Op(1). (B.19)

Similarly,
∣∣∣√n(maxβ∈B minλ∈ΓgM

N̂n(λ, β)−maxβ∈B minλ∈ΓgM
Nµ(λ, β))

∣∣∣ = Op(1). Also, by Lemma

2(b),
√
n(M∗µ −N ∗µ) =

√
n(exp(−d(P, µ))− exp(−d(Q, µ)))→∞. (B.20)

Therefore, for any C > 0, limn→∞ Prµ(
√
nQ̂LRn > C) = 1.

Now for the denominator ω̂n, we have

Eµ[ω̂2
n] ≤ Eµ

[
sup

(θ′,γ′,β′,λ′)∈Θ×ΓmM×B×ΓgM

n−1
n∑
i=1

(
exp(γ′mi(θ))− exp(λ′gi(β))

)2]

≤ Eµ

[
2 sup

(θ′,γ′,β′,λ′)′∈Θ×ΓmM×B×ΓgM

n−1
n∑
i=1

(
exp(2γ′mi(θ)) + exp(2λ′gi(β))

)]
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≤ 2n−1
n∑
i=1

(
Eµ sup

(θ′,γ′)′∈Θ×ΓmM

exp(2γ′mi(θ)) + Eµ sup
(β′,λ′)′∈B×ΓgM

exp(2λ′gi(β))

)
≤ 2M, (B.21)

where last inequality holds by condition (v) of Definition H. Therefore, ω̂2
n = Op(1).

Therefore, for any C > 0, limn→∞ Prµ(
√
nQ̂LRn/ω̂n > C) = 1. This shows part (a).

Part (b) follows because ω̂n ∨ (n−1/2bn) ≥ ω̂n.

Proof of Theorem 4. The proof is the same as that for Theorem 3 except with µn in place of µ

and with (B.20) modified as follows:

√
n(M∗µn −N

∗
µ) = exp(−d̃n)(

√
n(−d(P, µn) + d(Q, µn))

= −(exp(−d(P, µ0)) + op(1))
√
n(d(P, µn)− d(Q, µn)), (B.22)

where d̃n lies in between d(P, µn) and d(Q, µn). Because d(P, µ0) <∞, exp(−d(P, µ0)) + o(1) > ε

eventually as n→∞ for some ε > 0. Therefore,

√
n(M∗µn −N

∗
µn)→∞. (B.23)

C Proof of the Main Lemmas

Proof of Lemma 1. We only need to show parts(a)-(b) because part (c) is analogous.

(a) By Assumption 1(a)-(b), p∗θ,µ is a well defined density function. The proof here is similar to

that of the second part of Theorem 3.1 in Csiszár (1975). Let P be a distribution in Pθ such that

P << µ and let pµ denote the density of P with respect to µ, then

d(P, µ)− d(P, P ∗θ,µ) =

∫
log pµdP −

∫
log(pµ/p

∗
θ,µ)dP

=

∫
log p∗θ,µdP

= − log
[
Eµ exp(γ∗µ(θ)′m(Xi, θ))

]
+ γ∗µ(θ)′EPm(Xi, θ)

≥ − logEµ exp(γ∗µ(θ)′m(Xi, θ)), (C.1)

where the inequality holds because for j ≤ dp, EPmj(Xi, θ) = 0, and for j ≥ dp+1, EPmj(Xi, θ) ≥ 0

and γ∗µ,j(θ) ≥ 0. Equation (C.1) implies that

d(P, µ) ≥ − logEµ exp(γ∗µ(θ)′m(Xi, θ)). (C.2)
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By definition,

d(P ∗θ,µ, µ) =

∫
log p∗θ,µdP

∗
θ

= − logEµ exp(γ∗µ(θ)′m(Xi, θ)) + γ∗µ(θ)′EP ∗θm(Xi, θ)

= − logEµ exp(γ∗µ(θ)′m(Xi, θ)), (C.3)

where the last equality holds by the Kuhn-Tucker conditions from the minimization problem:

min
γ∈Rdp×Rdm−dp+

Mµ(γ, θ). The Kuhn-Tucker conditions are

0 = ∂Mµ(γ∗µ(θ), θ)/∂γj ≡ EP ∗θmj(Xi, θ) for j ≤ dp
0 = γ∗µ,j(θ)

(
∂Mµ(γ∗µ(θ), θ)/∂γj

)
≡ γ∗µ,j(θ)EP ∗θmj(Xi, θ) for j ≥ dp + 1. (C.4)

By (C.2) and (C.3), we have d(P ∗θ,µ, µ) = minP∈Pθ d(P, µ), that is, P ∗θ,µ is the I-projection of µ

on P .

(b) Part (b) is implied by (C.3).

Proof of Lemma 2. (a) By Assumptions 1(a)-(b) and 2(b), γ∗µ(θ) is the unique minimizer of

the function Mµ(γ, θ) and Mµ(γ, θ) is continuous in (γ, θ). The maximum theorem then implies

that γ∗µ(θ) is continuous in θ. Consequently, Mµ(γ∗µ(θ), θ) is continuous in θ. The continuity of

Mµ(γ∗µ(θ), θ) combined with Assumption 2(a) implies part (a)

(b) By part (a), supθ∈ΘMµ(γ∗µ(θ), θ) = maxθ∈ΘMµ(γ∗µ(θ), θ). By Lemma 1(b) and the defini-

tion of γ∗µ(·), we have part (b).

(c) The arguments for part (c) are analogous to those for parts (a)-(b).

Proof of Lemma 3. It suffices to show ρlh(Θ̂n,Θ
∗
n) →p 0 because ρlh(B̂n, B

∗
n) →p 0 can be

obtained by analogous arguments.

For an arbitrary ε > 0 and an arbitrary sequence {θ̂n ∈ Θ̂n}∞n=1, and arbitrary θ∗n ∈ Θ∗n,

Prn
(
ρlh(Θ̂n,Θ

∗
n) > ε

)
≤ Prn

(
Mµn(φ∗n(θ∗n))−Mµn(φ∗n(θ̂n)) > δε

)
= Prn

(
[Mµn(φ∗n(θ∗n))− M̂n(φ̂n(θ∗n))] + [M̂n(φ̂n(θ∗n))− M̂n(φ̂n(θ̂n))]

+[M̂n(φ̂n(θ̂n))−Mµn(φ∗n(θ̂n))] > δε
)

= Prn
(
op(1) + M̂n(φ̂n(θ∗n))− M̂n(φ̂n(θ̂n)) + op(1) > δε

)
≤ Prn(op(1) + op(1) > δε)→ 0, (C.5)

where the first inequality holds by condition (ii) in (5.4), the second equality holds by Lemmas

A.2(e) and A.3(a), and the second inequality holds because θ̂n maximizes M̂n(γ̂n(θ), θ). Thus,

ρlh(Θ̂n,Θ
∗
n)→p 0.
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Proof of Lemma 4. The lemma follows from the derivation belows. For any µ ∈ Hno0 and θ∗ ∈
Θ∗µ, we have

ω2
µ = M2

µ(γ∗µ(θ∗), θ∗)Eµ[dP ∗µ/dµ− dQ∗µ/dµ]2

≥ Eµ[dP ∗µ/dµ− dQ∗µ/dµ]2 · exp(−2M1)

≥
[
Eµ|dP ∗µ/dµ− dQ∗µ/dµ|

]2 · exp(−2M1)

=

[∫
|dP ∗µ/dνP ∗µ ,Q∗µ − dQ

∗
µ/dνP ∗µ ,Q∗µ |dνP ∗µ ,Q∗µ

]2

· exp(−2M1)

≥ inf
P∈P,Q∈Q

[ ∫
|dP/dνP,Q − dQ/dνP,Q|dνP,Q

]2
· exp(−2M1) > 0, (C.6)

where the first equality holds by Lemma 1(a) and Definition H0NO (Mµ(γ∗µ(θ∗), θ∗) = Nµ(λ∗µ(β∗), β∗)),

the first inequality holds because Mµ(γ∗µ(θ∗), θ∗) = exp(−d(P, µ)) ≥ exp(−M1) by Lemma 2(b)

and condition (i) in Definition H0NO, the second inequality holds by the convexity of f(x) = x2,

the second equality holds because P ∗µ and Q∗µ are absolutely continuous w.r.t. νP ∗µ ,Q∗µ , the third

inequality holds because P ∗µ ∈ P and Q∗µ ∈ Q, and the last inequality holds by Definition NO.

Proof of Lemma 5. It suffices to show that ρlh(Θ̂n,Θ
∗
n) = Op(n

−1/2) because the remainder is

analogous. We use the consistency already shown in Lemma 3: ρlh(Θ̂n,Θ
∗
n)→p 0.

Take an arbitrary sequence {θ̂n ∈ Θ̂n}∞n=1. Let {θ∗n ∈ Θ∗n}∞n=1 be a sequence such that

‖θ∗n − θ̂n‖2 ≤ ρ2
lh(θ̂n,Θ

∗
n) + o(n−1/2). The proof is based on the quadratic approximation of

M̂n(φ̂n(θ̂n)) − M̂n(φ∗n(θ∗n)) and that of Mµn(φ̂n(θ̂n)) − Mµn(φ∗n(θ∗n)). The basic idea is from

Andrews (1999), but the procedure is more involved here because (a) we deal with a saddle-

point estimation problem instead of a extremum estimation problem, (b) after profiling out the

first step minimization parameter γ, the criterion functions M̂n(φ̂n(θ)) and Mµn(φ∗n(θ)) are non-

differentiable in θ, and (c) there is no straightforward way of writing down the left/right derivatives

w.r.t. θ. We construct quadratic bounds for the centralized population and sample criterion func-

tions. Specifically, we show below that

(i)
[
M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n))

]
−
[
Mµn(φ̂n(θ̂n))−Mµn(φ∗n(θ∗n))

]
= Op(n

−1) +Op(n
−1/2) · ‖θ̂n − θ∗n‖+ op(1) · ‖θ̂n − θ∗n‖2,

(ii) M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n)) ≥ Op(n−1) , and (C.7)

(iii)Mµn(φ̂n(θ̂n))−Mµn(φ∗n(θ∗n)) ≤ Op(n−1)− C ·
(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
,

where C and δ are the positive constants in condition (iv) of Definition H0OL. Conditions (i)-(iii)

in (C.7) imply that

Op(n
−1) ≤ Op(n−1/2) · ‖θ̂n − θ∗n‖+ op(1) · ‖θ̂n − θ∗n‖2 − C ·

(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
= −C‖θ̂n − θ∗n‖2 +Op(n

−1/2) · ‖θ̂n − θ∗n‖+ op(1) · ‖θ̂n − θ∗n‖2 + C · o(n−1), (C.8)
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where the equality holds with probability approaching one because ‖θ̂n − θ∗n‖2 − o(n−1) →p 0 by

Lemma 3. The above equation implies that ‖θ̂n − θ∗n‖ = Op(n
−1/2). Therefore, the desired result,

ρlh(Θ̂n,Θ
∗
n) = Op(n

−1/2), holds since θ̂n is arbitrarily chosen from Θ̂n.

Now, we show condition (i) in (C.7). We have

[
M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n))

]
−
[
Mµn(φ̂n(θ̂n))−Mµn(φ∗n(θ∗n))

]
=
[
∂M̂n(φ∗n(θ∗n))/∂φ′ − ∂Mµn(φ∗n(θ∗n))/∂φ′

][
φ̂n(θ̂n)− φ∗n(θ∗n)

]
+

2−1
[
φ̂n(θ̂n)− φ∗n(θ∗n)

]′[
∂2M̂n(φ̃n)/∂φ∂φ′ − ∂2Mµn(φ̄n)/∂φ∂φ′

][
φ̂n(θ̂n)− φ∗n(θ∗n)

]
= Op(n

−1/2) · ‖φ̂n(θ̂n)− φ∗n(θ∗n)‖+ op(1) · ‖φ̂n(θ̂n)− φ∗n(θ∗n)‖2 (C.9)

where both φ̃n and φ̄n lie on the line segment joining φ̂n(θ̂n) and φ∗n(θ∗n) and they are not nec-

essarily the same, the first equality holds by second-order Taylor expansions of M̂n(φ̂n(θ̂n)) and

Mµn(φ̂n(θ̂n)) around φ∗n(θ∗n), the second equality holds by Lemmas A.2(d) and A.4(a). Now observe

that

‖φ̂n(θ̂n)− φ∗n(θ∗n)‖2 = ‖γ̂n(θ̂n)− γ∗n(θ∗n)‖2 + ‖θ̂n − θ∗n‖2

≤ 2‖γ̂n(θ̂n)− γ∗n(θ̂n)‖2 + 2‖γ∗n(θ̂n)− γ∗n(θ∗n)‖2 + ‖θ̂n − θ∗n‖2

≤ (
√

2‖γ̂n(θ̂n)− γ∗n(θ̂n)‖+
√

2‖γ∗n(θ̂n)− γ∗n(θ∗n)‖+ ‖θ̂n − θ∗n‖)2

= (Op(n
−1/2) +Op(‖θ̂n − θ∗n‖))2 (C.10)

where the first inequality holds by the triangular inequality and the convexity of the square function,

the second inequality holds by (a+ b+ c)2 ≥ a2 + b2 + c2 for a, b, c ≥ 0 and the equality holds by

Lemma A.3(b)-(c). This combined with Equation (C.9) implies condition (i) in (C.7).

Condition (ii) in (C.7) is implied by

M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n))

≥ M̂n(φ̂n(θ∗n))− M̂n(φ∗n(θ∗n))

= [∂M̂n(φ∗n(θ∗n))/∂γ′]
[
γ̂n(θ∗n)− γ∗n(θ∗n)

]
+

2−1
[
γ̂n(θ∗n)− γ∗n(θ∗n)

]′
[∂2M̂n(φ̃n)∂γ∂γ′]

[
γ̂n(θ∗n)− γ∗n(θ∗n)

]
= [∂M̂n(φ∗n(θ∗n))/∂γ′]

[
γ̂n(θ∗n)− γ∗n(θ∗n)

]
+Op(n

−1)

≥
[
∂M̂n(φ∗n(θ∗n))/∂γ′ − ∂Mµn(φ∗n(θ∗n))/∂γ′

][
γ̂n(θ∗n)− γ∗n(θ∗n)

]
+Op(n

−1)

= Op(n
−1), (C.11)

where φ̃n lies on the line segment joining φ̂n(θ∗n) and φ∗n(θ∗n), the first inequality holds because Θ̂n

is a maximizer of M̂n(φ̂n(θ)), the first equality holds by a Taylor expansion, the second equality

holds by Lemmas A.2(e) and A.3(b) and condition (v) of Definition H, the second inequality holds

by the same arguments as those for the second inequality in (B.6) and the last equality holds by

Lemmas A.2(d) and A.3(b).

35



Condition (iii) in (C.7) is implied by

Mµn(φ̂n(θ̂n))−Mµn(φ∗n(θ∗n))

=
[
Mµn(φ̂n(θ̂n))−Mµn(φ∗n(θ̂n))

]
+
[
Mµn(φ∗n(θ̂n))−Mµn(φ∗n(θ∗n))

]
≤
[
Mµn(φ̂n(θ̂n))−Mµn(φ∗n(θ̂n))

]
− C ·

(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
= −C ·

(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
+ [∂Mµn(φ̂n(θ̂n))/∂γ′][γ̂n(θ̂n)− γ∗n(θ̂n)]−

2−1
[
γ̂n(θ̂n)− γ∗n(θ̂n)

]′
[∂2Mµn(φ̃n)∂γ∂γ′]

[
γ̂n(θ̂n)− γ∗n(θ̂n)

]
= Op(n

−1)− C ·
(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
+ [∂Mµn(φ̂n(θ̂n))/∂γ′]

[
γ̂n(θ̂n)− γ∗n(θ̂n)

]
≤ Op(n

−1)− C ·
(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
+
[
∂Mµn(φ̂n(θ̂n))/∂γ′ − ∂M̂n(φ̂n(θ̂n))/∂γ′

][
γ̂n(θ̂n)− γ∗n(θ̂n)

]
= Op(n

−1)− C ·
(
(‖θ̂n − θ∗n‖2 − o(n−1)) ∧ δ

)
, (C.12)

where φ̃n lies on the line segment joining φ∗n(θ̂n) and φ̂n(θ̂n), the first inequality holds by con-

dition (iv) of Definition H0OL and ‖θ̂n − θ∗n‖2 − o(n−1) ≤ ρ2
lh(Θ̂n,Θ

∗
n) by design, the second

equality holds by a Taylor expansion of Mµn(φ∗n(θ̂n)) around φ̂n(θ̂n), the third equality holds by

Lemmas A.2(e) and A.3(b), the second inequality holds by (∂M̂n(φ̂n(θ̂n))/∂γ′)γ̂n(θ̂n) = 0 and

∂M̂n(φ̂n(θ̂n))/∂γj

{
= 0 for j ≤ dp
≥ 0 for j > dp

both being the Kuhn-Tucker conditions of the minimiza-

tion problem: min
γ∈Rdp×Rdm−dp+

M̂n(γ, θ̂n), and the last equality holds by Lemmas A.2(d) and

A.3(b).

Proof of Lemma 6. The lemma is stated in terms of subsequences {un}∞n=1. For notational

simplicity, we prove it for the sequence {n}. All of the arguments go through with {un} in place of

{n}. Let θ̂n ∈ Θ̂n and β̂n ∈ B̂n be those that satisfy ω̂2
n(θ̂n, β̂n) = ω̂2

n.

(a) Let {θ∗n ∈ Θ∗n}∞n=1 be a sequence such that ‖θ∗n − θ̂n‖2 ≤ ρ2
lh(Θ̂n,Θ

∗
n) + o(n−1). Then by

Lemma 5, ‖θ∗n − θ̂n‖ = Op(n
−1/2). We first show nω̂2

n(θ̂n, β̂n) = Op(1). Observe that

nω̂2
n(θ̂n, β̂n)

≤
n∑
i=1

(eγ̂nmi(θ̂n) − eλ̂ngi(β̂n))2

≤ 3
n∑
i=1

(Λ∗n,i)
2

+3n(φ̂n(θ̂n)− φ∗n(θ∗n))′

(
n−1

n∑
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′

)
(φ̂n(θ̂n)− φ∗n(θ∗n))

+3n(ψ̂n(β̂n)− ψ∗n(β∗n))′

(
n−1

n∑
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ′

)
(ψ̂n(β̂n)− ψ∗n(β∗n))

≡ 3(Wn,1 +Wn,2 +Wn,3), (C.13)
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where φ̃n and ψ̃n lie on the lie segment joining φ̂n(θ̂n) and φ∗n(θ∗n) and the one joining ψ̂n(β̂n) and

ψ∗n(β∗n), respectively, the second inequality holds by a mean-value expansion and the inequality

(a + b + c)2 ≤ 3(a2 + b2 + c2). In (C.13), Wn,1 = Op(1) because En |Wn,1| = nω2
n → σ2 < ∞.

Also, Wn,2 = Op(1) by (B.10), (C.10) and Lemma 5. Finally, Wn,3 = Op(1) for analogous reasons.

Therefore, nω̂2
n(θ̂n, β̂n) = Op(1) when σ <∞.

Now we show nQ̂LRn = Op(1). Observe that

nQ̂LRn =

n∑
i=1

Λ∗n,i + n
(
M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n)

)
− n

(
N̂n(ψ̂n(β̂n))− N̂n(ψ∗n(β∗n))

)
= Op(1) + n

(
M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n)

)
− n

(
N̂n(ψ̂n(β̂n))− N̂n(ψ∗n(β∗n))

)
= Op(1) +Op(1)− n

(
N̂n(ψ̂n(β̂n))− N̂n(ψ∗n (β∗n))

)
= Op(1) +Op(1)−Op(1) = Op(1), (C.14)

where the second equality holds because En

(∑n
i=1 Λ∗n,i

)2
=
∑n

i=1

(
EnΛ∗n,i

)2
= nω2

n → σ2 < ∞,

the third equality holds by (C.15) below, and the fourth equality holds for analogous reasons as

the third. Therefore, nQ̂LRn = Op(1).

(b) The proof here is of the same structure as, but slightly different from, the proof of Theorem

1(a). The difference is caused by the fact that (i) ω2
n is not bounded away from zero in this lemma

while it is under the conditions of Theorem 1(a), and (ii) the set estimators are n−1/2-consistent in

this lemma while they are not in Theorem 1(a).

First, we show n1/2Q̂LRn/ωn →d N(0, 1). Let An,1 and An,2 be the same as in (B.4). Then,

by (B.4), the desired result is implied by (i) ω−1
n n−1/2

∑n
i=1 Λ∗n,i →d N(0, 1), (ii) An,1 = op(1) and

(iii) An,2 = op(1). Conditions (i)-(ii) are shown below. Condition (iii) holds for analogous reasons

as condition (ii).

By the Lyapounov CLT, (i) holds. The CLT applies because (a) EnΛ∗n,i = 0 by condition (ii)

of Definition H0OL and Lemma 2(b), (b) ω−2
n En(Λ∗n,i)

2 = 1, and (c) En(ω−1
n Λ∗n,i)

2+δ < ∞ by

condition (iii) of Definition H0OL.

Now we show (ii) An,1 = op(1). Because An,1 = n1/2ω−1
n

(
M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n))

)
, (ii) is

implied by nω2
n →∞ and the following derivation:

Op(n
−1) ≤ M̂n(φ̂n(θ̂n))− M̂n(φ∗n(θ∗n))

≤ Op(n
−1/2) · ‖θ̂n − θ∗n‖+ op(1) · ‖θ̂n − θ∗n‖2 +Op(n

−1)− C · ((‖θ̂n − θ∗n‖2 − o(n−1/2)) ∧ δ)

= Op(n
−1), (C.15)

where the first inequality holds by condition (ii) in (C.7) in the proof of Lemma 5, the second

inequality holds by conditions (i) and (iii) in (C.7), and the equality holds by Lemma 5.

Next, we show ω̂2
n(θ̂n, β̂n)/ω2

n →p 1. Decompose ω̂2
n(θ̂n, β̂n)/ω2

n in the same way as in (B.8). We

show below that Wn,0 = op(1), Wn,1 →p 1, Wn,2 = op(1) and Wn,3 = op(1) when σ = ∞. These

results together imply ω̂2
n(θ̂n, β̂n)/ω2

n →p 1.
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The first summand Wn,0 →p 0 by n1/2Q̂LRn/ωn →d N(0, 1). The second summand Wn,1 ≡
ω−2
n n−1

∑n
i=1[Λ∗n,i]

2 →p 1 by LLN. The LLN applies because (a) Enω
−2
n [Λ∗n,i]

2 = 1 and (b)

supn≥1En[ω−1
n Λ∗n,i]

2+δ <∞ by condition (ii) of Definition H0OL.

The term Wn,3 is op(1) because

0 ≤ Wn,3

≤ 2ω−2
n (φ̂n(θ̂n)− φ∗n(θ∗n))

(
n−1

n∑
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′

)
(φ̂n(θ̂n)− φ∗n(θ∗n))

+2ω−2
n (ψ̂n(β̂n)− ψ∗n(β∗n))

(
n−1

n∑
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ′

)
(ψ̂n(β̂n)− ψ∗n(β∗n))

= op(1), (C.16)

where the inequality holds by the inequality, (a+b)2 ≤ 2a2+2b2 and the equality holds by nω2
n →∞,

(B.10), (C.10) and Lemma 5.

The termWn,2 is op(1) because 0 ≤ |Wn,2| ≤ 2[Wn,1·Wn,3]1/2 by the Cauchy-Schwartz inequality.
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This supplemental appendix contains three sections. In section D, we prove a lemma that gives

a sufficient condition for the variation closedness of the moment inequality model. In section E,

we describe an approach to relax the unique pseudo-true distribution assumption (Assumption 3).

Section F reports additional Monte Carlo results to compare the performance of our overlapping

test to that of the standard quasi-likelihood ratio test when the candidate models are nested point

identified moment equality models. Section G collects the proof for the auxiliary lemmas introduced

in Appendix A of the paper.

D Sufficient Condition for Variation Closedness of Moment In-

equality Model

Lemma D.1. Suppose Assumption 2 holds and the moment functions m(x, θ) and g(x, β) are

bounded, then P and Q are variation closed.

Proof of Lemma D.1. We focus on model P only because Q will be analogous. Let {Pn}n≥1 be

a sequence of probability distributions such that Pn ∈ P for all n. Suppose that this sequence

converges in the variation distance to P∞, that is,

lim
n→∞

∫
|dPn/dR− dP∞/dR|dR = 0, (D.1)

where R is a probability measure with respect to which Pn for every n and P∞ are absolutely

continuous. It suffices to show that P∞ ∈ P, which we do next.

Because Pn ∈ P for every n, there exists θn ∈ Θ for each n such that∫
mj(·, θn)dPn = 0 for j = 1, · · · , dp and

∫
mj(·, θn)dPn ≥ 0 for j = dp + 1, · · · , dm. (D.2)

By the compactness of Θ (Assumption 2(a)), there is a subsequence {un} of {n} s.t. limn→∞ θun =

θ∞ for some θ∞ ∈ Θ. For each j = 1, · · · , dm, we have∣∣∣∣∫ mj(·, θun)dPun −
∫
mj(·, θ∞)dP∞

∣∣∣∣
≤
∣∣∣∣∫ mj(·, θun)dPun −

∫
mj(·, θun)dP∞

∣∣∣∣+

∣∣∣∣∫ mj(·, θun)dP∞ −
∫
mj(·, θ∞)dP∞

∣∣∣∣ .
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(D.3)

The first summand on the r.h.s. ≤
∫
|mj(·, θun)(dPun/dR− dP∞/dR)| dR ≤ C|Pun − P∞| → 0,

where C is the upper bound of mj(x, θ) and it is finite due to the boundedness of mj(x, θ). The

second summand on the r.h.s. ≤
∫
|mj(·, θun)−mj(·, θ∞)|dP∞ and this integral converges to zero

by the dominated convergence theorem, which applies because θun → θ∞ and mj(x, θ) is bounded

and continuous in θ. Therefore, for every j,

lim
n→∞

∫
mj(·, θun)dPun =

∫
mj(·, θ∞)dP∞. (D.4)

This implies that∫
mj(·, θ∞)dP∞ = 0 for j = 1, · · · , dp and

∫
mj(·, θ∞)dP∞ ≥ 0 for j = dp + 1, · · · , dm. (D.5)

Therefore, P∞ ∈ P.

E Testing Without Uniqueness of Pseudo-true Distribution

In the null distribution sets Hno0 and Hol0 , we imposed Assumption 3. For null µ’s that do not

satisfy Assumption 3, our size-control results Theorems 1 and 2 are not informative about the

asymptotic rejection probability of our tests under those µ’s. Such µ’s do not exist in in the

four testing scenarios described in the remark below Assumption 3, but they may exist in other

testing scenarios. Thus, it is useful to learn about the rejection probability of our tests under the

troublesome µ’s, and to design a test that controls the asymptotic rejection probability even under

those µ’s if our already proposed tests do not.

The exact asymptotic null rejection probability under the troublesome µ’s is difficult to learn.

To see why, consider the decomposition similar to (B.4):

√
nQ̂LRn = n−1/2

∑n

i=1
Λi(θ

∗
n, β

∗
n)+

n−1/2
∑n

i=1
[eγ̂n(θ̂n)′mi(θ̂n) − eγ∗n(θ∗n)′mi(θ∗n)]+

n−1/2
∑n

i=1
[eλ̂n(β̂n)′gi(β̂n) − eλ∗n(β∗n)′gi(β∗n)], (E.1)

where (θ∗n, β
∗
n) ∈ Θ∗µ × B∗µ satisfies ρlh(θ∗n, Θ̂n) = infθ∈Θ∗µ ρlh(θ, Θ̂n) + o(1) and ρlh(β∗n, B̂n) =

infβ∈B∗µ ρlh(β, B̂n) + o(1), and Λi(θ, β) = eγ
∗(θ)′mi(θ) − eλ

∗(β)′gi(β). It is not hard to show that

the second and the third summands on the r.h.s. of (E.1) are op(1). But it is difficult to study

the asymptotic behavior of the first summand. This is because θ∗n and β∗n is random and, without

Assumption 3, Λi(θ, β) is not constant on Θ∗µ × B∗µ. The random θ∗n and β∗n can be correlated

with {W1, · · · ,Wn}, causing {Λi(θ∗n, β∗n)}ni=1 not to be an independent sample, and possibly also

E[Λi(θ
∗
n, β

∗
n)] 6= 0.
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To see why E[Λi(θ
∗
n, β

∗
n)] 6= 0 is a plausible case, imagine a Θ∗µ that contains two points θ∗a, θ

∗
b

and a B∗µ that is a singleton. Suppose that θ̂n is close to θ∗a if
∑

i Λi(θ
∗
a, β
∗) <

∑
i Λi(θ

∗
b , β
∗), and

is close to θ∗b otherwise. Then θ∗n = θ∗a if
∑

i Λi(θ
∗
a, β
∗) <

∑
i Λi(θ

∗
b , β
∗) and θ∗n = θ∗b otherwise.

Then,
∑

i Λi(θ
∗
n, β

∗) = (
∑

i(Λi(θ
∗
a, β
∗))) ∨ (

∑
i(Λi(θ

∗
b , β
∗))). This implies that Eµ[

∑
i Λi(θ

∗
n, β

∗)] >

Eµ[
∑

i(Λi(θ
∗
a, β
∗)))] = 0 for some dependent structures between

∑
i(Λi(θ

∗
a, β
∗)) and

∑
i(Λi(θ

∗
b , β
∗)).

When this happens, our test statistic have a biased asymptotic distribution under the null and our

tests may over-reject.

Since the tests proposed in the main text may be size-distorted without Assumption 3, we

proceed to design new tests that are robust to the non-uniqueness of the pseudo-true distribution.

Observe from the discussion above that Eµ[Λi(θ
∗
n, β

∗
n)] 6= 0 is caused by the correlation between

(θ∗n, β
∗
n) and the data. This correlation is caused by the correlation between Θ̂n and B̂n and the

data. If we can break this correlation, we can then recover the asymptotic normality of
√
nQ̂LRn

under nonuniqueness of the pseudo-true distribution. We achieve this by a split-sample technique.

First split the sample into two equal halves. Use the first half sample to get Θ̂1,n and B̂1,n. Let

(θ̂1,n, β̂1,n) be an arbitrary point in Θ̂1,n × B̂1,n. Then use the remaining half sample to construct

the statistcs:

Q̂LRn = 2n−1
n∑

i=n/2+1

[eγ̂n(θ̂1,n)′mi(θ̂1,n) − eλ̂n(β̂1,n)′gi(β̂1,n)], where (E.2)

γ̂n(θ) = arg minγ∈ΓmM
2n−1

∑n
i=n/2+1 e

γ′mi(θ) and λ̂n(β) = arg minλ∈ΓgM
2n−1

∑n
i=n/2+1 e

λ′gi(β), and

ω̂2
n = 2n−1

n∑
i=1

[eγ̂n(θ̂1,n)′mi(θ̂1,n) − eλ̂n(β̂1,n)′gi(β̂1,n)]2 − Q̂LR
2

n. (E.3)

Let both the overlapping test and the non-overlapping test be defined as in section 4.2 but with

the new Q̂LRn and ω̂2
n. Also define the null data distribution set for the robust test as follows.

Definition H0R. The set HR0 is the set of µ ∈ H such that conditions (i) and (iii)-(v) of Definition

H0OLand condition (i) in Definition H0NO hold.

Note that we do not distinguish the null distribution set for the overlapping case and the non-

overlapping case here. This is because even for the non-overlapping case, we need the stronger

differentiability and moment existence conditions imposed in Definition H0OL because the argu-

ments for Theorem 1 does not work for the new test statistic. We thus need to use the arguments

for Lemma 6 and Theorem 2, which utilize the stronger conditions.

The following theorem shows that the new tests have correct asymptotic size.

Theorem 5. Suppose that Assumptions 2(a) and 5 hold. Then,

(a) limn→∞ supµ∈HR0
Prµ(
√
n|Q̂LRn|/(ω̂n ∨ n−1/2) > zα/2) ≤ α, and

(b) if the models are non-overlapping, then limn→∞ supµ∈HR0
Prµ(
√
n|Q̂LRn|/ω̂n > zα/2) = α.

Proof. The proof of part (a) combines the arguments for Lemma 6 and Theorem 2, except that the

analyses of the leading terms are done conditional on the first half-sample. The proof of part (b)
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also uses Lemma 4 to establish nω2
µn →∞ for all µn ∈ HR0 . For brevity, the details are omitted.

F Additional Monte Carlo Results

The tests proposed in this paper apply to the comparison between two general moment inequal-

ity/equality models, and thus natually apply to the special case of standard point identified moment

equality models. When two strictly nonnested standard moment equality models are to be com-

pared, our appropriate test (the non-overlapping test) is numerically the same as the test proposed

in Kitamura (2000). When two overlapping but nonnested such models are to be compared, our

overlapping test is the only option that has been shown to achieve uniform size control. Finally,

when two nested such models are to be compared, both our overlapping test and the standard

quasi-likelihood ratio test (e.g. Kitamura and Stutzer (1997)) can be applied.

Suppose that one is interested in the comparison of two nested standard moment equality

models. In this case, one may wonder how the overlapping test and the standard quasi-likelihood

ratio test compare to each other. This section offers some Monte Carlo evidence for this comparison.

For concreteness, we focus on the quasi-likelihood ratio test based on the exponential tilting criterion

function. Such a test is studied in detail in Kitamura and Stutzer (1997) and is of the form:

ϕKSn (α) = 1

{
2n

(
log

(
max
θ∈Θ
M̂n(γ̂n(θ), θ)

)
− log

(
max
β∈B
N̂n(λ̂(β), β)

))
> χ2

r,1−α

}
, (F.1)

where χ2
r,1−α is the 1 − α quantile of the chi-squared distribution with r degrees of freedom, and

r = dθ − dm + dg − dβ.14 15

We consider the missing data example investigated in Section 8 and let there be no missing

data. Then, in the nested case, we have two models:

P1 = {P : EP (θ − Yi|X1,i) = 0}

P2 = {P : EP (θ − Yi|X1,i, X2,i) = 0}. (F.2)

We consider the same generating process for Yi as in Section 8:

Yi = 1{1 + 1.51/2(a1X1,i + a2X2,i + ui ≥ 0}, ui ∼ N(0, 1). (F.3)

We consider the same generating processes for X1,i and X2,i as those in the nested case in Section

8. Specifically, we let X1,i take two values {0, 1} each with probability 1/2, and we let X2,i follow

a multinomial distribution that puts equal probability on J equally spaced points in the interval

[−1, 1] (including the end points).

The rejection probabilities of our one-sided overlapping test with two c choices chosen based

14Since we consider moment equality models here, dm = dp and dg = dq.
15The chi-squared critical value is valid if one maintains the correct specification of the nesting model (Model P1).

If correct specification for P1 is not maintained, one can use a mixed chi-squared critical value instead.
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on previous Monte Carlos and those of the quasi-likelihood ratio (QLR) test ϕKSn are reported in

Table 4 below. The table shows that our test has similar power as the QLR test when its null-

rejection probabilities are close to those of the later. This is not surprising because our test can be

viewed as a test that compares a quasi-likelihood ratio statistic and a critical value (in particular,

zα((n1/2ω̂)∨bn)), just like the standard QLR test. When the nested model contains a small number

of extra constraints than the nesting model (i.e. J = 3), our test indeed has similar null rejection

probabilities as the standard test at all sample sizes considered. However, when the nested model

contains many extra constraints, our test under-reject and the power of our test under-perform the

standard test at large sample sizes. This is because, by design, our effective critical value for the

quasi-likelihood ratio statistic diverges with n while that of the standard test is always χ2
r,1−α.

These Monte Carlo results and the fact that the standard test is free from tuning parameters

suggest that one should use the standard test when the candidate models are moment equality

models that has regular point identification, especially when n is large and when the two candidate

models are highly asymmetric in their number of constraints and number of parameters. One

should of course use our test when either regular point identification fails or when the model

involves inequality moment conditions as the standard test is not shown to be valid in such cases.

Table 4: Comparison with the Standard Test in the Point-Identified Nested
Case (α = 5%)

(a1, a2) = (0, 0) (a1, a2) = (0, 0.2)

Test J = 3 J = 7 J = 11 J = 3 J = 7 J = 11

n = 250

ϕKS .060 .080 .144 .496 .255 .288
ϕOL−1 w/ c = 0.25 .033 .187 .202 .403 .446 .370
ϕOL−1 w/ c = 0.3 .033 .086 .080 .403 .273 .190

n = 500

ϕKS .054 .065 .086 .831 .453 .370
ϕOL−1 w/ c = 0.25 .031 .137 .098 .765 .603 .402
ϕOL−1 w/ c = 0.3 .031 .052 .026 .765 .411 .191

n = 1000

ϕKS .052 .056 .063 .993 .801 .654
ϕOL−1 w/ c = 0.25 .031 .092 .056 .986 .861 .632
ϕOL−1 w/ c = 0.3 .031 .034 .011 .986 .730 .373

Note: the probabilities are the probability of the one-sided tests rejecting H0 in
favor of P1.

G Proof of the Auxiliary Lemmas

Proof of Lemma A.1. Consider an ε > 0. It suffices to show there exists Cε large enough such

that

lim sup
n→∞

Prn

(
sup
φ∈Φ
‖νn(φ)‖ > Cε

)
< ε. (G.1)
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Because Φ is totally bounded w.r.t. ρ, for all η > 0, there exists a finite subset of Φ, {φ1, ..., φJη}
such that supφ∈Φ minj≤Jη ρ(φ, φj) < η. Choose η such that

lim sup
n→∞

Prn
(

sup
φ,φ′∈Φ:ρ(φ,φ′)≤η

‖νn(φ)− νn(φ′)‖ > 1
)
< ε/2. (G.2)

Such an η exists because νn(φ) is stochastically equicontinuous w.r.t. ρ.

Because ‖νn(φ)‖ = Op(1), for every φ ∈ Φ, maxj≤Jη ‖νn(φj)‖ = Op(1). Then, we can choose Cε

large enough such that

lim sup
n→∞

Prn
(

max
j≤Jη
‖νn(φj)‖ > Cε − 1

)
< ε/2. (G.3)

Therefore, we have

lim sup
n→∞

Prn
(

sup
φ∈Φ
‖νn(φ)‖ > Cε

)
≤ lim sup

n→∞
Prn

(
sup
φ∈Φ

min
j≤Jη
‖νn(φ)− νn(φj)‖+ max

j≤Jη
‖νn(φj)‖ > Cε

)
≤ lim sup

n→∞
Prn

(
sup

φ,φ′∈Φ:ρ(φ,φ′)≤η
‖νn(φ)− νn(φ′)‖+ max

j≤Jη
‖νn(φj)‖ > Cε

)
≤ lim sup

n→∞
Prn

(
sup

φ,φ′∈Φ:ρ(φ,φ′)≤η
‖νn(φ)− νn(φ′)‖ > 1

)
+ Prµn

(
max
j≤Jη
‖νn(φj)‖ > Cε − 1

)
≤ ε, (G.4)

where the first inequality holds by the triangle inequality, the second inequality holds by the

definition of {φ1, ..., φJη}, the third inequality holds by P (A ∪ B) ≤ P (A) + P (B), and the last

inequality holds by (G.2) and (G.3).

Equation (G.1) is implied by (G.4).

Proof of Lemma A.2. It suffices to show parts (a)-(e) because part (f) can be obtained by

analogous arguments. The following notation is useful in the proof: let ρ0, ρ1 be pseudo-metrics

on ΓmM ×Θ defined by:

ρ0(φ1, φ2) = sup
n≥1

[
En(eγ

′
1mi(θ1) − eγ′2mi(θ2))2

]1/2
ρ1(φ1, φ2) = sup

n≥1

[
En‖∂eγ

′
1mi(θ1)/∂φ− ∂eγ′2mi(θ2)/∂φ‖2

]1/2
,

where φ1, φ2 ∈ ΓmM ×Θ and φj = (γ′j , θ
′
j)
′, j = 1, 2.

(a) It suffices to show that the empirical process is stochastic equicontinuous w.r.t. ρ0 because

the Euclidean distance dominates ρ0: for all φ1, φ2 ∈ ΓmM ×Θ,

ρ(φ1, φ2) = sup
n≥1

[En(∂eγ̃
′mi(θ̃)/∂φ′)(φ1 − φ2))2]1/2

47



≤ ‖φ1 − φ2‖ · sup
n≥1

[En‖∂eγ̃
′mi(θ̃)/∂φ′‖2]1/2 ≤M1/2‖φ1 − φ2‖, (G.5)

where (γ̃′, θ̃′)′ lies on the line segment joining φ1 and φ2, the equality holds by a mean-value

expansion, the first inequality holds by the Cauchy-Schwartz inequality and the second inequality

holds by condition (v) in (5.4).

The proof of the stochastic equicontinuity w.r.t. ρ0 is an application of Theorem 1 in Andrews

(1994). Let F denote the class of functions {eγ′m(·,θ) : φ ∈ ΓmM × Θ}. We verify the three as-

sumptions of that theorem: (i) F satisfies Pollard’s entropy condition with some envelope F̄ , (ii)

lim supn→∞EnF̄
2+δ(Xi) < ∞ for some δ > 0, and (iii) {Xi : i ≤ n, n ≥ 1} is an m-dependent

triangular array of random variables. Assumption (iii) holds trivially by condition (i) in (5.4). As-

sumption (i) holds because the class F is a type II class (i.e., a class of Lipschitz functions indexed

by finite-dimensional parameters, see Andrews (1994)). It is a type II class because ΓmM × Θ is a

bounded subset of the Euclidean space and eγ
′m(·,θ) is Lipschitz in φ:

|eγ′1m(·,θ1) − eγ′2m(·,θ2)| ≤ B(·)‖φ1 − φ2‖, (G.6)

where B(·) = supφ∈ΓmM×Θ ‖∂eγ
′m(·,θ)/∂φ‖. The inequality holds by a mean value expansion of

eγ
′
1m(·,θ1) around φ2. Then, by Theorem 2 in Andrews (1994), F satisfies Pollard’s entropy condition

with envelope 1 ∨ supφ∈Φ e
γ′m(·,θ) ∨B(·).

Assumption (ii) above holds because, for some δ1 > 0,

lim sup
n→∞

En[1 ∨ sup
φ∈ΓmM×Θ

eγ
′mi(θ) ∨B(Xi)]

2+δ1

≤ lim sup
n→∞

En[1 + sup
φ∈ΓmM×Θ

eγ
′mi(θ) +B(Xi)]

2+δ1

≤ C · lim sup
n→∞

[1 + En sup
φ∈ΓmM×Θ

e(2+δ1)γ′mi(θ) + En sup
φ∈ΓmM×Θ

‖∂eγ′m(·,θ)/∂φ‖2+δ1 ]

< ∞, (G.7)

where C is a constant, the second inequality holds by the convexity of the function f(x) = x2+δ1 ,

and the third inequality holds by conditions and (v) of (5.4).

Therefore, Theorem 1 in Andrews (1994) applies and ν0
n(φ) is stochastically equicontinuous

w.r.t. ρ0.

(b) By Lemma A.1 and Lemma A.2(a), it suffices to show that the metric space (ΓmM × Θ, ρ0)

is totally bounded and ν0
n(φ) = Op(1) for every φ ∈ ΓmM ×Θ. We show these two conditions below.

The pseudo-metric space (ΓmM ×Θ, ‖ · ‖) is totally bounded because ΓmM ×Θ endowed with the

Euclidean metric ‖ · ‖ is compact.

For every φ ∈ ΓmM ×Θ, ν0
n(φ) = Op(1) because

En(ν0
n(φ))2 = En

[
n−1/2

n∑
i=1

(eγ
′mi(θ) − Eneγ

′mi(θ))
]2
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= En(eγ
′mi(θ) − Eneγ

′mi(θ))2

≤ Ene
2γ′mi(θ) <∞, (G.8)

where the second equality holds by condition (i) in (5.4), and the second inequality holds by

condition (v) in (5.4).

(c) & (d) The proof of parts (c) and (d) is essentially the same as that of parts (a) and (b) and

is omitted for brevity.

(e) The proofs for the two convergence results of part (e) are similar. For brevity, we only

present the proof for the first convergence result:

‖∂2M̂n(φ1,n)/∂γ∂γ′ − ∂2Mµn(φ2,n)/∂γ∂γ′‖ →p 0. (G.9)

Equation (G.9) is implied by the following two results:

(i) sup
φ∈ΓmM×Θ

‖∂2M̂n(φ)/∂γ∂γ′ − ∂2Mµn(φ)/∂γ∂γ′‖ →p 0 and

(ii) ‖∂2Mµn(φ1,n)/∂γ∂γ′ − ∂2Mµn(φ2,n)/∂γ∂γ′‖ →p 0. (G.10)

Thus, it suffices to show results (i) and (ii).

Result (i) in (G.10) is shown using Theorem 4 in Andrews (1992). This theorem requires four

conditions: BD (boundedness), P-WLLN (pointwise weak law of large number), DM (domination)

and TSE (termwise stochastic equicontinuity). We verify these conditions one by one. Let ΓmM ×Θ

be endowed with the usual Euclidean metric, ‖ · ‖. Then,
(
ΓmM × Θ, ‖ · ‖

)
is totally bounded

because ΓmM and Θ are compact subsets of the Euclidean space. Thus, the BD condition holds.

The P-WLLN condition holds by the LLN. The DM condition holds because, by condition (v) in

(5.4),

lim sup
n→∞

En sup
φ∈ΓmM×Θ

‖∂2eγ
′mi(θ)/∂γ∂γ′‖1+δ <∞. (G.11)

The TSE condition holds because, for every ε > 0 and every j, j′ ≤ dm,

lim
ζ→0

lim sup
n→∞

Prn

(
sup

φ∈ΓmM×Θ
sup

φ∗:‖φ−φ∗‖<ζ
|∂2eγ

∗′mi(θ∗)/∂γj∂γj′ − ∂2eγ
′mi(θ)/∂γj∂γj′ | > ε

)

≤ lim
ζ→0

lim sup
n→∞

Prn

(
sup

φ∈ΓmM×Θ
‖∂3eγ

′mi(θ)/∂γj∂γj′∂φ‖ · sup
φ∗:‖φ−φ∗‖<ζ

‖φ− φ∗‖ > ε

)

≤ lim
ζ→0

lim sup
n→∞

En

[
sup

φ∈ΓmM×Θ
‖∂3eγ

′mi(θ)/∂γj∂γj′∂φ‖ · ζ/ε

]
= 0, (G.12)

where the first inequality holds by a mean-value expansion and ‖a′b‖ ≤ ‖a‖ · ‖b‖, the second in-

equality holds by the Markov inequality and the equality holds by condition (v) in (5.4). Therefore,

all four conditions of Theorem 4 in Andrews (1992) hold and (i) is shown.
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Result (ii) in (G.10) is shown by a mean-value expansion similar to the one used to show the

TSE condition above. We omit the details for brevity.

Proof of Lemma A.3. (a) Let γ̂Mn (θ) = arg minγ∈ΓmM
M̂n(γ, θ). It suffices to show that ‖γ̂Mn (θ1,n)−

γ∗n(θ2,n)‖ →p 0 because M̂n(γ, θ) is strictly convex in γ by condition (iv) in (5.4) and ‖γ∗n(θ2,n)‖ ≤
M − δ by condition (iii) of (5.4).

Below we show

Mµn(γ̂Mn (θ1,n), θ2,n)−Mµn(γ∗n(θ2,n), θ2,n) ≥ 2−1δ‖γ̂Mn (θ1,n)− γ∗n(θ2,n)‖2, (G.13)

where δ is the constant in condition (ii) of (5.4). Then, ‖γ̂Mn (θ1,n) − γ∗n(θ2,n)‖ →p 0 is implied by

the following equation: for all ε > 0,

Prn
(
‖γ̂Mn (θ1,n)− γ∗n(θ2,n)‖ ≥ ε

)
≤ Prn

(
Mµn(γ̂Mn (θ1,n), θ2,n)−Mµn(γ∗n(θ2,n), θ2,n) ≥ 2−1δε2

)
= Prn

(
Mµn(γ̂Mn (θ1,n), θ2,n)− M̂n(γ̂Mn (θ1,n), θ1,n)

+ M̂n(γ̂Mn (θ1,n), θ1,n)− M̂n(γ∗µn(θ2,n), θ1,n)

+ M̂n(γ∗n(θ2,n), θ1,n)−Mµn(γ∗n(θ2,n), θ2,n) ≥ 2−1δε2
)

≤ Prn

(
Mµn(γ̂Mn (θ1,n), θ2,n)− M̂n(γ̂Mn (θ1,n), θ1,n)

+ M̂n(γ∗n(θ2,n), θ1,n)−Mµn(γ∗n(θ2,n), θ2,n) ≥ 2−1δε2
)

→ 0, (G.14)

where the first inequality holds by (G.13), the second inequality holds by the definition of γ̂Mn (θ1,n),

and the convergence holds by Lemma A.2(e).

Now, it is left to show (G.13). A Taylor expansion ofMµn(γ̂Mn (θ1,n), θ2,n) around γ∗n(θ2,n) gives

Mµn(γ̂Mn (θ1,n), θ2,n)−Mµn(γ∗n(θ2,n), θ2,n)

=
(
∂Mµn(γ∗n(θ2,n), θ2,n)/∂γ′

) (
γ̂Mn (θ1,n)− γ∗n(θ2,n)

)
+2−1

(
γ̂Mn (θ1,n)− γ∗n(θ2,n)

)′
Smµn(γ̃n, θ2,n)

(
γ̂Mn (θ1,n)− γ∗n(θ2,n)

)
≥ 2−1

(
γ̂Mn (θ1,n)− γ∗n(θ2,n)

)′
Smµn(γ̃n, θ2,n)

(
γ̂Mn (θ1,n)− γ∗n(θ2,n)

)
≥ 2−1δ‖γ̂Mn (θ1,n)− γ∗n(θ2,n)‖2, (G.15)

where γ̃n lies on the line segment joining γ̂Mn (θ1,n) and γ∗n(θ2,n), the first inequality holds by the

same arguments as those for the second inequality of (B.6) and the second inequality holds by

condition (vi) of (5.4). Thus, (G.13) holds.

(b) Let {θn ∈ Θ}∞n=1 be a random sequence such that we have ‖γ̂n(θn)−γ∗n(θn)‖ ≥ supθ∈Θ ‖γ̂n(θ)−
γ∗n(θ)‖−o(n−1/2). Then, by part (a), ‖γ̂n(θn)−γ∗n(θn)‖ →p 0. Part (b) holds if ‖γ̂n(θn)−γ∗n(θn)‖ =
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Op(n
−1/2), which is immediately implied by the following derivation:

0 ≥ M̂n(γ̂n(θn), θn)− M̂n(γ∗n(θn), θn)

=
[
∂M̂n(γ∗n(θn), θn)/∂γ′

]
(γ̂n(θn)− γ∗n(θn))

+2−1 (γ̂n(θn)− γ∗n(θn))′
[
∂2M̂n(γ̃n, θn)/∂γ∂γ′

]
(γ̂n(θn)− γ∗n(θn))

≥
[
∂M̂n(γ∗n(θn), θn)/∂γ′ − ∂Mµn(γ∗n(θn), θn)/∂γ′

]
(γ̂n(θn)− γ∗n(θn))

+2−1 (γ̂n(θn)− γ∗n(θn))′
[
∂2M̂n(γ̃n, θn)/∂γ∂γ′

]
(γ̂n(θn)− γ∗n(θn))

= Op
(
n−1/2 · ‖γ̂n(θn)− γ∗n(θn)‖

)
+ op

(
‖γ̂n(θn)− γ∗n(θn)‖2

)
+2−1 (γ̂n(θn)− γ∗n(θn))′ Smµn(γ∗n(θn), θn) (γ̂n(θn)− γ∗n(θn))

≥ Op
(
n−1/2 · ‖γ̂n(θn)− γ∗n(θn)‖

)
+ op

(
‖γ̂n(θn)− γ∗n(θn)‖2

)
+2−1δ‖γ̂n(θn)− γ∗n(θn)‖2, (G.16)

where the first inequality holds because γ̂n(θn) minimizes M̂n(γ, θn), the first equality holds by a

Taylor expansion with γ̃n lying on the line segment joining γ̂n(θn) and γ∗n(θn), the second inequality

holds by the same arguments as those for the second inequality in (B.6), the second equality holds

by Lemmas A.2(b) and (e), and the last inequality holds by condition (iv) in (5.4).

(c) By the Kuhn-Tucker conditions from the problem min
γ∈Rdp×Rdm−dp+

Mµn(γ, θ), we have

[
∂Mµn(γ∗n(θ1,n), θ1,n)/∂γ′ − ∂Mµn(γ∗n(θ2,n), θ2,n)/∂γ′

]
(γ∗n(θ1,n)− γ∗n(θ2,n)) ≤ 0. (G.17)

A mean-value expansion of ∂Mµn(γ∗n(θ1,n), θ1,n)/∂γ′ around
(
γ∗n(θ2,n)′, θ′2,n

)′
gives

∂Mµn(γ∗n(θ1,n), θ1,n)/∂γ − ∂Mµn(γ∗n(θ2,n), θ2,n)/∂γ (G.18)

= Smµn(γ̃n, θ̃n) (γ∗n(θ1,n)− γ∗n(θ2,n)) +
[
∂2Mµn(γ̃n, θ̃n)/∂γ∂θ′

]
(θ1,n − θ2,n),

where (γ̃′n, θ̃
′
n)′ lies on the line segment joining φ∗n(θ1,n) and φ∗n(θ2,n).

By (G.17) and (G.18), we have

0 ≥ (γ∗n(θ1,n)− γ∗n(θ2,n))′ Smµn(γ̃n, θ̃n) (γ∗n(θ1,n)− γ∗n(θ2,n))

+ (γ∗n(θ1,n)− γ∗n(θ2,n))′ [∂Mµn(γ̃n, θ̃n)/∂γ∂θ′](θ1,n − θ2,n) (G.19)

≥ δ‖γ∗n(θ1,n)− γ∗n(θ2,n)‖2 +Op (‖γ∗n(θ1,n)− γ∗n(θ2,n)‖ · ‖θ1,n − θ2,n‖) ,

where the second inequality holds by conditions (iv) and (v) in (5.4). The desired result is implied.

Proof of Lemma A.4. The proof is similar to that for Lemma A.2(e) and omitted for brevity.
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