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a b s t r a c t

We propose Vuong-type tests to select between two moment inequality models based on their Kull-
back–Leibler distances to the true data distribution. The candidate models can be either non-overlapping
or overlapping. For each case, we develop a testing procedure that has correct asymptotic size in a uni-
form sense despite the potential lack of point identification. We show both procedures are consistent
against fixed alternatives and local alternatives converging to the null at rates arbitrarily close to n−1/2.
We demonstrate the finite-sample performance of the testswithMonte Carlo simulation of amissing data
example. The tests are relatively easy to implement.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Models defined by moment inequalities (and possibly some
equalities) have gained substantial popularity over recent years
as researchers try to move away from ad hoc structural assump-
tions in various areas of economics.1 Model selection problems in
this context arise naturally when researchers consider more than
one economic theory, each generating a set of moment inequali-
ties, or when they consider different parametrizations to form the
moment functions. While there is an emerging literature on pa-
rameter inference for moment inequality models, a procedure for
model selection has not been available.2 Existing model selection
methods for standard models (e.g. Vuong, 1989, Kitamura, 2000,
AIC, or BIC) are not applicable because moment inequality models
are non-traditional in the ways discussed shortly below.

E-mail address: xshi@ssc.wisc.edu.
1 They have been used to model discrete games with multiple equilibria

(Andrews et al., 2004, Ciliberto and Tamer, 2009), to deal with missing or interval
data (Manski, 2005), to study dynamic games that are otherwise too complicated to
analyze empirically (Pakes et al., 2007, Pakes, 2010) and to increase the precision of
estimators in dynamic macroeconomics models (Moon and Schorfheide, 2009).
2 A non-exhaustive list of papers on parameter inference of moment inequality

models includes Chernozhukov et al. (2007), Andrews and Barwick (2012), Bugni
(2010), Canay (2010), Romano and Shaikh (2010), Andrews and Guggenberger
(2009), Andrews and Soares (2010) and Andrews and Shi (2013a,b).

http://dx.doi.org/10.1016/j.jeconom.2015.01.004
0304-4076/© 2015 Elsevier B.V. All rights reserved.
This paper provides a way to select the better model from
two competing moment inequality models. We design quasi-
likelihood-ratio tests for the null hypothesis that both models
are equally close to the true data distribution in terms of the
Kullback–Leibler (KL) divergence. When the null does not hold,
the tests direct the researcher to the model that is closer to the
true distribution with probability approaching one. Our tests are
relatively easy to compute for two reasons. First, they use standard
normal critical values. Second, although the sample criterion
functions can have multiple (or even a continuum of) maximizers
due to partial identification, one does not need to compute all the
maximizers to implement the tests.

Moment inequality models are non-traditional in two ways.
First, parameters in thesemodels typically are not point-identified.
For that reason, the maximizers of a sample criterion function do
not converge to a point in the parameter space. Thus, traditional
model selection methods that rely on the asymptotic normality of
the maximizers do not apply. Second, moment inequality models
have slackness parameters whose (pseudo-) true values may be
on the boundary of the parameter space.3 The parameter-on-the-
boundary problem makes the criterion function for the original

3 One can view the moment inequality model Em(Xi, θ) ≥ 0 as a moment
equality model with an additional parameter a: Em(Xi, θ) − a = 0. The additional
parameter is the slackness parameter. The space of a is Rdm

+ . The true value of a is on
the boundary of Rdm

+ whenever a moment inequality holds as an equality under the

http://dx.doi.org/10.1016/j.jeconom.2015.01.004
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2015.01.004&domain=pdf
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http://dx.doi.org/10.1016/j.jeconom.2015.01.004
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model parameters non-differentiable even in the limit. The non-
differentiability can occur anywhere in the original parameter
space. Thus, the first-order-condition method or the standard
quadratic approximation method cannot be used to derive the
convergence rate of the estimators.

The first nontraditional feature prompts us to develop a new
technique utilizing the stochastic equicontinuity of certain em-
pirical processes to show the asymptotic normality of the quasi-
likelihood ratio statistic and the consistency of an estimator of its
asymptotic variance. The technique does not require any conver-
gence rate of the sample maximizers. We only need a weak notion
of consistency: the sample maximizers approach the pseudo-true
set as the sample size goes to infinity. This technique potentially is
useful to establish the asymptotic distribution of the Vuong (1989)
test statistic in parametric models andmoment equality models as
well when the Hessian matrix of the likelihood ratio is not invert-
ible.

The asymptotic normality and the consistency results men-
tioned above are sufficient for developing a valid model selection
test if the asymptotic variance of the quasi-likelihood ratio statis-
tic is bounded away from zero. The latter condition holds when the
twomodels compared are non-overlapping in the sense defined in
latter sections. When the two models are overlapping, the conver-
gence rate of the sample maximizers is needed.

The secondnontraditional feature ofmoment inequalitymodels
made the traditional approaches to derive convergence rate not ap-
plicable.Wemodify the standard quadratic approximationmethod
and construct quadratic upper and lower bounds for the sample
and population criterion functions. Combining those bounds, we
show that the sample maximizers approach the pseudo-true set at
n−1/2-rate. The rate is then used to motivate an adjustment factor
to the studentized quasi-likelihood ratio statistic. The adjustment
factor guarantees that the adjusted test is uniformly valid for over-
lapping models.

The tests proposed in this paper extend theVuong test (formax-
imum likelihood models) proposed in the seminal paper Vuong
(1989) to models defined by moment inequalities. As such, this
paper belongs to the literature that extends Vuong (1989) to
various other types of models. Kitamura (2000) and Rivers and
Vuong (2002) extend the Vuong test to models defined by mo-
ment equalities. In particular, Kitamura (2000) employs expo-
nential tilting criterion, which is adapted to moment inequality
models in the current paper. Chen et al. (2007) propose a Vuong-
type procedure to select between a parametric model and a mo-
ment equality model. All these previous papers assume that the
true parameters are point-identified and are in the interior of the
parameter space. These assumptions are suitable for parametric
models and moment equality models, but not for the moment in-
equality models considered in this paper. On the other hand, this
paper does not make those assumption. Thus, our tests apply to
point or partially identified moment inequality or equality models
with or without parameter on the boundary. In the special case of
non-overlapping point identified moment equality models with-
out parameter on the boundary, our test is the same as Kitamura’s
(2000).

In addition to addressing the partial identification and para-
meter-on-the-boundary problems, another important feature dis-
tinguishing our tests from the other Vuong-type tests is that we
choose the critical values based on uniform asymptotics which
guarantee correct asymptotic sizes of the tests. Vuong-type tests
with critical values chosen based on pointwise asymptotics may
have size distortion when the candidate models are overlapping.

true data distribution. In this example, {Xi} is the data, m is a Rdm -valued moment
function and θ is a finite-dimensional parameter.
The reason is that the pointwise asymptotic distributions of the test
statistics are discontinuous in the data generating process. When
the data generating process is close to the discontinuity point, the
finite sample distributions of the test statistics are not well ap-
proximated by their pointwise asymptotic distributions. The poor
approximation causes size distortion in finite samples (Shi, forth-
coming).We adjust the test statistic in the overlapping case to take
into account the discontinuity and by doing so control the asymp-
totic size of the tests uniformly.

An alternative to our Vuong-type framework is the Cox (1961)-
type nonnested hypothesis testing framework. For a Cox-type test,
the null hypothesis is that a model P is correctly specified and
the alternative hypothesis is that an alternative model Q is cor-
rectly specified. Though frequently used to choose one model
from multiple candidate models, Cox-type tests are intended as
a procedure for model evaluation rather than model selection. A
Cox-type test does not have a clear interpretationwhen bothmod-
els are misspecified. For details on Cox-type tests, see the sem-
inal paper by Cox (1961), the survey papers by Gourieroux and
Monfort (1994) and Pesaran and Weeks (1999), generalizations
to the encompassing principle by Mizon and Richard (1986), and
the extension to moment equality models by Ramalho and Smith
(2002). It is of interest to extend themoment encompassing princi-
ple to partially-identified moment inequality models possibly us-
ing some of the techniques developed in this paper. We leave this
to a separate project.

The rest of the paper is organized as follows. Section 2 in-
troduces the model selection problem for moment inequality
models and gives a few examples. Section 3 presents prelimi-
naries on the pseudo-distance measure and the solution to the
distance-minimizing problem. Section 4 describes the tests, one
for non-overlapping models and the other for overlapping models.
Sections 5 and 6 establish the asymptotic size of the test for non-
overlapping models and that for overlapping models, respectively.
Section 7 determines the power properties of the tests. Section 8
presents Monte Carlo simulation results for a missing data exam-
ple. The proofs are in the appendix.

We useNδ(θ) to denote a closed ball centered at θ with radius δ,
∥·∥ to denote the Euclidean norm, and ‘‘≪’’ to denote ‘‘is absolutely
continuous with respect to (w.r.t., hereafter)’’. We use Xi to denote
an observation, X to denote the space on which Xi is defined. We
useP andQ to denote the candidatemodels, and P andQ to denote
generic distributions in P and Q, respectively. We useµ to denote
a generic true distribution onX, which does not necessarily belong
to either of the models. We use Greek letters θ and β to denote the
finite-dimensional parameters in the models, Θ and B to denote
the corresponding parameter spaces, and m and g to denote the
moment functions.

2. Model selection problems

We consider two moment inequality/equality models P =
θ∈Θ Pθ and Q =


β∈B Qβ , where Pθ and Qβ are the set of

distributions that are consistent with the moment conditions for
parameters θ and β , respectively:

Pθ =


P : EPmj(Xi, θ) = 0 for j = 1, . . . , dp,

EPmj(Xi, θ) ≥ 0 for j = dp + 1, . . . , dm


Qβ =


Q : EQ gj(Xi, β) = 0 for j = 1, . . . , dq,

EQ gj(Xi, β) ≥ 0 for j = dq + 1, . . . , dg


. (2.1)

In the above equation, {Xi ∈ X}
n
i=1 is a random sample

generated from µ, m = (m1, . . . ,mdp ,mdp+1, . . . ,mdm)
′ and g =

(g1, . . . , gdq , gdq+1, . . . , gdg )
′ are Rdm and Rdg -valued moment

functions known up to the finite-dimensional parameters θ and β ,
respectively, Θ ⊂ Rdθ , B ⊂ Rdβ , and EP denotes the expectation
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under the distribution P . Either model can be over, just or under-
identified, that is, dp or dm (dq or dg ) can be smaller than, larger
than, or equal to dθ (dβ ). The true distribution µ may or may not
belong to either model. Model P is called correctly specified if
µ ∈ P and is calledmisspecified otherwise.

The goal of this paper is to compare models P and Q and select
the one that is closer to the true distributionµ in terms of a pseudo-
distance measure. Let d(P, µ) be a pseudo-distance between a
distribution P and µ. The pseudo distance from a model P to µ is
defined by d(P , µ) = infP∈P d(P, µ). Wewant to construct model
selection tests for the null hypothesis

H0 : d(P , µ) = d(Q, µ). (2.2)

The choice of d is discussed in the next section.
Now, we give a few illustrative examples of model selection

problems in the context of moment inequalities. Special cases of
Example 1 are studied in the Monte Carlo section (Section 8).

Example 1 (Interval Outcome in Regression Models). Consider the
regression models with interval outcomes in Manski (2005). A
model selection problem of potential interest is selecting different
regressors or functional forms for the regression functions. Let
Y be a latent random variable (e.g. wealth) that is not perfectly
observed. Only an upper bound, Y , and a lower bound, Y , on Y
are observed. Let X be a vector of explanatory variables and Y =

r(X, θ)+ε, where r is a function known up to a finite-dimensional
parameter θ . Let Z be a vector of potential instrument variables
such that E(ε ·I(Z)) = 0 for some positive (vector-valued) function
I of Z . Then, the models P = ∪θ∈Θ Pθ and Q = ∪β∈B Qβ where

Pθ = {P : EP [(Y − r1(X, θ))I(Z)] ≥ 0 & EP [(r1(X, θ)− Y )I(Z)] ≥ 0}

Qβ = {Q : EQ [(Y − r2(X, β))I(Z)] ≥ 0 & EQ [(r2(X, β)− Y )I(Z)] ≥ 0}, (2.3)

where r1 and r2 are two regression functions. Note that the
distributions P and Q are defined on the space of the observed
random variables (Y , Y , X, Z).

Another model selection problem arises when one considers a
different choice of instruments. The formulation of the competing
models is similar to (2.3), except that r1 and r2 are the same andwe
have I1 instead of I in model P and I2 in model Q.

Example 2 (Interval Regressor in Regression Models). Consider the
regression models with interval regressors in Manski and Tamer
(2002). Let Y be a continuous dependent variable, v be a regressor
that is not observed perfectly but in intervals [v, v]. Let X represent
other regressors. Assume that E(Y |X, v) = f (x, v, θ), where f
is a function known up to the finite-dimensional parameter θ .
As in Manski and Tamer (2002), if we assume that f is weakly
increasing in v, we obtain the moment inequality model P =

∪θ∈Θ Pθ , where

Pθ = {P : EP [(Y − f (X, v, θ))I(X, v, v)] ≥ 0

& EP [(f (X, v, θ)− Y )I(X, v, v)] ≥ 0}, (2.4)

where I(X, v, v) can be any vector of positive instrument func-
tions.4 On the other hand, if we assume that f is weakly decreasing
in v, we have a different moment inequality model Q = ∪β∈B Qβ ,
where

Qβ = {Q : EQ [(f (X, v, β)− Y )I(X, v, v)] ≥ 0

& EQ [(Y − f (X, v, β))I(X, v, v)] ≥ 0, β ∈ B}. (2.5)

By comparing models P and Q, one can determine which sign
assumption on ∂ f /∂v is more consistent with the data.

4 Note that the probability measure P ′s are defined on the space of (Y , X, v, v).
Example 3 (Entry Game — Cross-firm Effect). Consider the entry
game example discussed in Tamer (2003), Andrews et al. (2004)
and Ciliberto and Tamer (2009). Consider a 2 × 2 version with the
following payoff matrix:

Firm 2
0 1

Firm 1 0 0, 0 0, X ′

2θ2 − ε2

1 X ′

1θ1 − ε1 , 0 X ′

1θ1 + a1 − ε1, X ′

2θ2 + a2 − ε2

The observable random variables are themarket characteristics
X ≡ (X1, X2)

′ and the game outcome Y . The variable Y may take
four values: (0, 0), (0, 1), (1, 0) and (1, 1), where the two numbers
in the parenthesis are the equilibrium actions of firm 1 and firm
2, respectively. The coefficients θ1 and θ2 are the marginal effects
of the characteristics X on profits, and ε1 and ε2 are profit shocks
unobservable to the econometrician. The parameters a1 and a2 are
the cross-firm effects, which are the effects of the firms on their
opponents’ profit when they form a duopoly.

Let Fε1,ε2(·, ·; θε) denote the joint c.d.f. of ε1 and ε2, Fε1(·; θε) the
marginal c.d.f. of ε1, and Fε2(·; θε) themarginal c.d.f. of ε2. The c.d.f.s
are known to the econometrician up to the finite-dimensional
parameter θε . Assume that the firms have full information about
their own and their opponents’ payoffs and play a simultaneous-
move Nash game. Andrews et al. (2004) assume a1 ≤ 0 and a2 ≤ 0
and obtain the moment inequality model P = ∪θ∈Θ Pθ , where

Pθ = {P : EP [(pj(X, θ)− 1(Y = j))I(X)] = 0, for j = (0, 0) or (1, 1)

EP [(pj(X, θ)− 1(Y = j))I(X)] ≥ 0, j = (0, 1), or (1, 0)}, (2.6)

θ ≡ (θ ′

1, θ
′

2, a1, a2, θ
′
ε)

′, I(X) is a vector of positive instrument
functions, and

p(0,0)(X, θ) = 1 − Fε1(X
′

1θ1; θε)− Fε2(X
′

2θ2; θε)

+ Fε1,ε2(X
′

1θ1, X
′

2θ2; θε)

p(0,1)(X, θ) = Fε2(X
′

2θ2; θε)− Fε1,ε2(X
′

1θ1 + a1, X ′

2θ2; θε)

p(1,0)(X, θ) = Fε1(X
′

1θ1; θε)− Fε1,ε2(X
′

1θ1, X
′

2θ2 + a2; θε)

p(1,1)(X, θ) = Fε1,ε2(X
′

1θ1 + a1, X ′

2θ2 + a2; θε). (2.7)

On the other hand, if we assume a1 ≥ 0 and a2 ≥ 0, we obtain
a different model Q = ∪β∈B Qβ , where

Qβ = {Q : EQ [(pj(X, β)− 1(Y = j))I(X)] ≥ 0, for j = (0, 0) or (1, 1)

EQ [(pj(X, β)− 1(Y = j))I(X)] = 0, j = (0, 1), or (1, 0)}, (2.8)

β ≡ (θ ′

1, θ
′

2, a1, a2, θ
′
ε)

′ and pj for j = (0, 0), (1, 1), (0, 1) and (1, 0)
are defined in (2.7).

In some industries, for example the shopping center industry
studied in Vitorino (2012), the sign of the cross-firm effect is
uncertain. A model selection test comparing the two models
above can determine which sign of the cross-firm effects is more
consistent with the data.

Example 4 (Entry Game — Testing Equilibrium Selection Mecha-
nism). Instead of being agnostic about the equilibrium selection
mechanism, one can also specify such a mechanism, as done
in Tamer (2003) among others. For example, in the case of negative
cross-firm effects, one can assume that the probability of (1, 0) is
H(X, γ ) in case of multiple equilibria. That yields amoment equal-
ity model:

P2 = {P : EP [(pj(X, θ)− 1(Y = j))I(X)] = 0, for j = (0, 0) or (1, 1)

EP [(pj(X, θ)− pm(X, θ)H(X, γ )− 1(Y = j))I(X)] = 0, j = (0, 1)

for some (θ, γ ) ∈ Θ × Γ }, (2.9)

where pm(X, θ) = Fε1,ε2(X
′

1θ1, X
′

2θ2; θε) − Fε1,ε2(X
′

1θ1 − a1, X ′

2θ2;
θε)− Fε1,ε2(X

′

1θ1, X
′

2θ2 − a2; θε)+ Fε1,ε2(X
′

1θ1 − a1, X ′

2θ2 − a2; θε)
is the probability that multiple equilibria occur.
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The equilibrium selection ruleH(X, γ ) can be flexibly specified.
But even then, it imposes the fundamental assumption that
equilibrium selection only depends on observables. A model
selection test between P and P2 can help to determine whether
this assumption is consistent with the data. In this example, the
two models are nested.

Example 5 (Entry Game — Choosing Information Structure). Model
selection test also can be used to choose the information structure
of a game-theoretical model. Berry and Tamer (2006) show that
the entry game described in Example 3 can be modeled by a
different set of moment inequalities, if we assume that the firms
do not know their competitors’ idiosyncratic profits (ε1, ε2) but
have beliefs about the distributions of (ε1, ε2). By comparing the
new moment inequality model to P (or Q) in Example 3, one can
determine which information structure is more appropriate.

3. Preliminaries on the pseudo-distance measure

There are many possible choices of pseudo-distances on the
space of probability distributions. One may prefer one distance
to another in a specific problem. Since we deal with a generic
problem, we choose the Kullback–Leibler (KL) divergence. The KL
divergence from P to µ is

d(P, µ) =


pµ log pµdµ if P ≪ µ

∞ otherwise,
(3.1)

where pµ is the density of P with respect to µ.5 The pseudo-
distance above also is called the I-divergence, or the relative
entropy of P toµ. Formoment conditionmodels, I-divergencemo-
tivates the exponential tilting estimation (Kitamura and Stutzer,
1997).

The rest of the discussions in this section – with the exclusion
of the formal assumptions and lemmas – are in terms of model P ,
but they apply to model Q as well.

In order to measure the distance from the model to the
true distribution, one needs to solve the minimization problem
infP∈P d(P, µ). The problem is solved in two steps:

inf
P∈P

d(P, µ) = inf
θ∈Θ

inf
P∈Pθ

d(P, µ), (3.2)

where Pθ is defined in (2.1). The first step infP∈Pθ d(P, µ) is an
infinite dimensional minimization problem and can be solved
through a finite-dimensional dual problem. The second step
is a finite-dimensional minimization problem which may have
multiple solutions because model P may be partially-identified.
We discuss both steps in the following subsections.

3.1. The dual problem

The first step minimization infP∈Pθ d(P, µ) has a unique
solution, if the solution exists. The reason is that d(P, µ) is strictly
convex in P and the set Pθ is defined by constraints linear in P
and thus is convex. We follow Csiszár (1975) and call the solution
to infP∈Pθ d(P, µ) the I-projection of µ on Pθ . Denote the I-
projection as P∗

µ,θ . For models defined by equality constraints,

5 Note that the KL divergence is directional, that is d(P, µ) ≠ d(µ, P). Thismakes
our hypothesis different from that in Vuong (1989), which is based on d(µ, P). The
duality results in this section are specific to our KL-divergence, but if one assumes
the duality as given, the testwe develop later in Section 4 can be extendedwith ease
to the KL-divergence of the reversed direction, as well as to generalized empirical
likelihood distance measures. For brevity, we do not carry out the generalization,
but note that the general distance measure is used in Hsu and Shi (2013) in the
context of conditional moment inequalities.
Csiszár (1975) gives sufficient conditions for the existence of
P∗

µ,θ and shows that infP∈Pθ d(P, µ) has a finite-dimensional
dual problem under those conditions. We adapt Csiszár’s (1975)
approach to the context of moment inequality models.

We introduce some notation first. For a data distribution µ,
define the dual criterion functions as

Mµ(γ , θ) := Eµ exp

γ ′m(Xi, θ)


and

Nµ(λ, β) := Eµ exp

λ′g(Xi, β)


.

(3.3)

Let the Lagrange multipliers for each θ and β be

γ ∗

µ(θ) = arg min
γ∈R

dp
∞×R

dm−dp
+,∞

Mµ(γ , θ), and

λ∗

µ(β) = arg min
λ∈R

dq
∞×R

dg−dq
+,∞

Nµ(λ, β),
(3.4)

where R∞ = R ∪ {∞,−∞} and R+,∞ = R+ ∪ {∞}. For every
θ ∈ Θ , γ ∗

µ(θ) is uniquely defined under Assumption 1(a).

Assumption 1. (a) For all θ ∈ Θ , Eµ∥m(Xi, θ)∥
2 < ∞ and

Eµ[m(Xi, θ)m(Xi, θ)
′
] is positive definite,

(b) for all θ ∈ Θ , ∥γ ∗
µ(θ)∥ < ∞, and

(c) parts (a)–(b) hold with g , β and λ in place of m, θ and γ .

Although Assumption 1(a) is not a standard assumption in the
moment inequality literature, it is standard in the (generalized)
empirical likelihood literature and is imposed in other model
selection test papers based on generalized empirical likelihood, for
example, Kitamura (2000). In the context of moment inequalities,
Canay (2010) also imposes this assumption in order to apply
the empirical likelihood approach. Assumption 1(b) requires the
model not to be too misspecified. A sufficient condition for
Assumption 1(b) that is easier to verify is Assumption 1(b)∗

below.6

Assumption 1(b)∗. For all θ ∈ Θ and all γ ∈ Rdp × Rdm−dp
+ ,

Prµ(γ ′m(Xi, θ) > 0) > 0.

To show the sufficiency, let γ := (γ1, . . . , γdm)
′ be an arbi-

trary element in (Rdp
∞ × Rdm−dp

+,∞ ) such that ∥γ ∥ = ∞. Let γ 0
:=

(γ 0
1 , . . . , γ

0
dm) where γ 0

j = 1 (γj = ∞) − 1 (γj = −∞), and
γ 1

:= (γ 1
1 , . . . , γ

1
dm)

′ where γ 1
j = γj · 1(γj ∈ R). By Assump-

tion 1(b)∗, p0 := Prµ(γ 0,′m(Xi, θ) > 0) > 0. But γ ′m(x, θ) =

∞×γ 0,′m(x, θ)+γ 1,′m(x, θ), which implies that γ ′m(x, θ) = ∞

if γ 0,′m(x, θ) > 0.7 Thus, Prµ(γ ′m(Xi, θ) = ∞) ≥ p0 > 0.
This implies that Prµ(exp(γ ′m(Xi, θ)) = ∞) ≥ p0 > 0. There-
fore, Eµ exp(γ ′m(Xi, θ)) ≥ p0 × ∞ = ∞ for the γ ’s that
have infinite norm. Now notice that Eµ exp(γ ∗

µ(θ)
′m(Xi, θ)) :=

min
γ∈R

dp
∞×R

dm−dp
+,∞

Eµ exp(γ ′m(Xi, θ)) ≤ Eµ exp(0′m(Xi, θ)) = 1,

where the second inequality holds because 0 ∈ Rdp
∞ × Rdm−dp

+,∞ .
This implies that γ ∗

µ(θ) cannot have infinite norm, that is, Assump-
tion 1(b) holds.

Lemma 1 establishes that infP∈Pθ d(P, µ) is attained and can
be solved through a finite-dimensional dual problem under
Assumption 1.

6 Assumption 1(b)∗ is violated, for example, when the model is P = {P :

EP (X1,i − θ) ≥ 0, EP (θ −X2,i) ≥ 0}, and X1,i < X2,i a.s. [µ]. To check, let a = (1, 1)′ .
Then, Prµ(a′m(Xi, θ) > 0) = Prµ(X1,i − X2,i > 0) = 0.
7 Here we define ∞ · 0 = 0.
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Lemma 1. Suppose Assumption 1 holds. Then,
(a) for all θ ∈ Θ , the I-projection, P∗

µ,θ , of µ on Pθ exists and its
density w.r.t. µ is

p∗

θ,µ(x) = exp

γ ∗

µ(θ)
′m(x, θ)


/Mµ


γ ∗

µ(θ), θ

,

(b) for all θ ∈ Θ , d(Pθ , µ) = − log[Mµ(γ
∗
µ(θ), θ)],

(c) parts (a)–(b) hold with g, β , λ, Q , Q and N in place of m, θ ,
γ , P , P and M.

3.2. The pseudo-true set and the pseudo-true distribution

The second step infimum in (3.2), infθ∈Θ d(Pθ , µ), is attained if
d(Pθ , µ) is continuous in θ andΘ is compact. These are guaranteed
by Assumption 2.

Assumption 2. (a) The parameter spacesΘ andB are compact, and
(b) with probability one, m(Xi, ·) and g(Xi, ·) are continuous in

Θ and B, respectively.

Lemma 2 shows that the infimum infθ∈Θ d(Pθ , µ) is attained
and has a saddle-point dual representation.

Lemma 2. Suppose Assumptions 1 and 2 hold. Then,
(a) there exists a θ∗

∈ Θ such that Mµ(γ
∗
µ(θ

∗), θ∗) = supθ∈Θ
Mµ(γ

∗
µ(θ), θ),

(b) d(P , µ) = − log

maxθ∈Θ min

γ∈Rdp×R
dm−dp
+

Mµ(γ , θ)


,

and
(c) parts (a)–(b) hold with g, β , λ, q, Q , Q and N in place of m,

θ , γ , p, P, P and M.

Remark. The function γ ∗
µ(θ) usually has kinks because of the non-

negativity constraints in the minimization problem that defines it.
This reflects the parameter-on-the-boundary problem discussed
in the introduction. At the kinks, γ ∗

µ(θ) is not differentiable in θ .
The kinks can occur anywhere inΘ . Thus, the population criterion
function, Mµ(γ

∗
µ(·), ·) is non-differentiable.

Because model P can be partially-identified, Mµ(γ
∗
µ(θ), θ)

can have multiple maximizers. We call the set of maximizers the
pseudo-true set:

Θ∗

µ = argmax
θ∈Θ

Mµ(γ
∗

µ(θ), θ). (3.5)

The concept of ‘‘pseudo-true set’’ is generalized from the
‘‘pseudo-true parameter’’ concept in the literature of misspecified
point-identifiedmodels. The prefix ‘‘pseudo’’ signifies the possibil-
ity that the model may be misspecified.

Similarly, we call the distributions that achieve minP∈P d(P, µ)
the pseudo-true distributions of model P under µ. Lemma 1
implies that the set of all pseudo-true distributions of model P
under µ equals P ∗

µ := {P∗

θ,µ : θ ∈ Θ∗
µ}. This set needs not be

a singleton in general (i.e., the pseudo-true distribution might not
be unique), but it is guaranteed to be a singleton in these important
cases:

(i) µ ∈ P . In this case, P ∗
µ = {µ}. This is simply because

d(µ,µ) = 0 and d(P, µ) > 0 for any P ≠ µ by the property of
the pseudo-true distance d. Notice that in this case thepseudo-
true setΘ∗

µ can still contain multiple values.
(ii) µ ∉ P , but Θ∗

µ is a singleton. This is a natural assumption
if the moment equality/inequality model contains no fewer
equality restrictions than the number of parameters. For
example, our Examples 3 and 4 falls into this scenario if the
dimension of I(X) is at least half of the dimension of θ .
(iii) µ ∉ P , but the moment function m(Xi, θ) depends on θ
only through a lower dimensional function of θ : β = b(θ),
and {b(θ) : θ ∈ Θ∗

µ} is a singleton. In other words, if the
partial identification is only caused by over-parametrization,
the pseudo-true distribution, which does not depend on
parametrization, is unique.

The uniqueness of the pseudo-true distribution combined with
Lemma 1(a) implies that

γ ∗

µ(θ)
′m(Xi, θ) = γ ∗

µ(θ
∗)′m(Xi, θ

∗)

a.s. [µ] for all θ, θ∗
∈ Θ∗

µ. (3.6)

Eq. (3.6) is crucial for the quasi-likelihood ratio statistic defined
later to be asymptotically normal under H0. Thus, we maintain the
following assumption for data distributions µ that satisfy the null
hypothesis (2.2).

Assumption 3. The pseudo-true distributions, P∗
µ and Q ∗

µ , of
models P and Q, respectively, are unique under µ.

Remark. The assumption will only be imposed for µ under H0
and will not be imposed under the alternative hypothesis. This
makes it relatively weak.8 In fact, based on the discussion above,
this assumption is guaranteed to hold under H0 in the following
important testing scenarios:

(i) P and Q are nested and the correct specification of the
nesting model is maintained. In standard models, researchers
are explicitly or implicitly in this testing scenario whenever
the textbook likelihood ratio test with a chi-squared critical
value is used. Thus, we believe this is a typical nested testing
scenario.

(ii) P and Q are nonnested, but the econometrician has the prior
knowledge that one of them is correctly specified. Then under
H0, both are correctly specified and hence the pseudo-true
distributions are unique.

(iii) Both models are point identified (Θ∗
µ and B∗

µ are singleton
sets), which is plausible when both models contain enough
number of equality restrictions.

(iv) Partial identification of both models can be reduced to point
identification by reparametrization.

4. Model selection tests

In this section we introduce the test statistics first. Then, we
formally define non-overlapping models and overlapping models
and discuss how the relationship between candidate models
affects the asymptotic distributions of the test statistics. Finally, we
describe the model selection tests.

4.1. Test statistics

We define the test statistics in this section and give informal
discussions on the asymptotics in order to introduce the tests. First,
observe that, by Lemma 2(b), the null (2.2) can be written as

H0 : max
θ∈Θ

Mµ(γ
∗

µ(θ), θ) = max
β∈B

Nµ(λ
∗

µ(β), β). (4.1)

The test statistics are based on the sample analogue of the above
quantities.

8 In Supplemental Appendix E, we discuss how to remove this already weak
assumption completely using a sample-splitting technique.
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Let the sample criterion functions be

Mn(γ , θ) = n−1
n

i=1

exp(γ ′m(Xi, θ)) and

Nn(λ, β) = n−1
n

i=1

exp(λ′g(Xi, β)).

(4.2)

Let the sample saddle points be

γ̂n(θ) = arg min
γ∈Rdp×R

dm−dp
+

Mn(γ , θ),

λ̂n(β) = arg min
λ∈Rdq×R

dg−dq
+

Nn(λ, β),

Θn = argmax
θ∈Θ

Mn(γ̂n(θ), θ), and

Bn = argmax
β∈B

Nn(λ̂n(β), β),
(4.3)

where Θn andBn are not necessarily singletons.
We use the quasi-likelihood ratio (QLR) statistic:QLRn = max

θ∈Θ

Mn(γ̂n(θ), θ)− max
β∈B

Nn(λ̂n(β), β). (4.4)

As we show in later sections, under H0 and appropriate
conditions,

n1/2QLRn →d N(0, ω2
µ),

where ω2
µ = Eµ


exp


γ ∗

µ(θ
∗)′m(Xi, θ

∗)


− exp

λ∗

µ(β
∗)′g(Xi, β

∗)
2, (4.5)

with θ∗
∈ Θ∗

µ and β∗
∈ B∗

µ.
9

To form the tests, we also use a variance statistic: ω2
n =ω2

n(θ̂n, β̂n), where

ω2
n(θ, β) = n−1

n
i=1


exp


γ̂n(θ)

′m(Xi, θ)

− exp


λ̂n(β)

′g(Xi, β)
2

−


n−1

n
i=1


exp


γ̂n(θ)

′m(Xi, θ)


− exp

λ̂n(β)

′g(Xi, β)
2

, (4.6)

and θ̂n and β̂n are arbitrary points in Θn and Bn, respectively.10

In practice, different choices of θ̂n and β̂n in Θn andBn typically
give the same value for ω2

n(θ̂n, β̂n) as we find in the Monte Carlo
experiments.

Under H0 and appropriate conditions

ω2
n →p ω

2
µ. (4.7)

At this point, it seems that a simple test can be obtained using the
studentized QLR statistic:

√
nQLRn/ωn and the standard normal

critical value. This is indeed true if we know that ω2
µ is bounded

away from zero for all relevant data generating processes µ. This
is not true if we cannot rule out the µ’s for which ω2

µ is arbitrarily
close or equal to zero. To see why, notice that bothQLRn andω2

n are
sample analogue estimators with estimated parameters plugged

9 By (3.6), ω2
µ is invariant to the choice of θ∗

∈ Θ∗
µ and β∗

∈ B∗
µ .

10 Notice that the arbitrarily selected points θ̂n and β̂n do not necessarily form a
random sequence that converges in probability to any points in Θ∗

µ and B∗
µ . This

differs from the point selection used in Santos (2011).
in. The estimation error in the parameter estimators is dominated
by the leading terms in the expansions ofQLRn andω2

n if the leading
terms are nondegenerate, that is, if ω2

µ is bounded away from
zero. But when ω2

µ gets arbitrarily close to zero, the estimation
error cannot be dominated and will show up in the asymptotic
distribution of

√
nQLRn/ωn, causing it to be non-normal.

In light of this, we distinguish two testing situations according
to whether or not ω2

µ is bounded away from zero across all data
generating processes µ. The two are specified in Definition NO
below. In the definition,we use the variation distance between two
probability measures:

|P − Q | :=


|dP/dR − dQ/dR|dR, (4.8)

where R is any probability measure with respect to which both P
and Q are absolutely continuous.11

Definition NO. The models P and Q are non-overlapping if
infP∈P , Q∈Q |P − Q | > 0 and are overlapping otherwise.

Remarks. (a) Our categorization of themodel relationships is sim-
ilar to but different from that in Vuong (1989). We distinguish
the two types based on uniform asymptotics—whether N(0, 1)
can uniformly approximate the finite sample distribution of the
studentized quasi-likelihood ratio statistic. Vuong (1989) distin-
guishes the two types – ‘‘strictly nonnested’’ and ‘‘overlapping’’ –
based on pointwise asymptotics. In particular, we treat models P
and Q as overlapping if it is possible for P∗

µ and Q ∗
µ to get arbitrar-

ily close to each other, while Vuong (1989) does not treat them
as overlapping as long as P∗

µ ≠ Q ∗
µ under every null distribution

µ. Thus our ‘‘non-overlapping’’ concept is stronger than Vuong’s
(1989) ‘‘strictly-nonnested’’concept (i.e. P ∩ Q = ∅). On the other
hand, when both models are variation-closed (that is, closed in
the topology defined by the variation metric defined above), be-
ing strictly nonnested implies being non-overlapping. A sufficient
condition for a moment inequality model P to be variation-closed
is that the moment functions are bounded and continuous in the
parameters, as shown in Supplemental Appendix D.

(b) The overlapping case includes the nested case, i.e.P ⊂ Q or
Q ⊂ P . The results in this paper for overlapping models hold for
nested models except for Theorem 2(b).

According to our definition, the two models in (2.3) in Exam-
ple 1 are non-overlapping if r1(X, θ) ≠ r2(X, β) for any θ ∈ Θ and
β ∈ B and are overlapping otherwise. The two models in Exam-
ple 2 are overlapping because both models are consistent with a
constant f . The models in Example 3 are overlapping because both
models are consistent with zero competition effect. The models in
Example 4 are overlapping because they are nested. However, it
is hard to tell whether or not the models in Example 5 are over-
lapping or non-overlapping because the moment conditions in the
two models have very different structure. It is difficult to know
whether the two sets of moment conditions can be simultaneously
compatible with one data generating process. In this case, we rec-
ommend assuming them to be overlapping to be on the safe side.

11 We use the variation distance in the Definition NO because a uniform lower
bound on ω2

µ can be conveniently written in terms of a multiple of the variation
distance between the two models. One property of variation distance that leads to
such convenience is that it is in variant to the dominating measure, and thus is not
tied to a particularµ (Ref. Csiszár, 1975). Another property is that it is a lower bound
for the L2 distance for the densities of P and Q with respect to any µ, and the latter
distance forms the main component of ω2

µ . See the proof of Lemma 4 for details.
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4.2. Tests

Letα ∈ (0, 1). Let zα/2 denote the (1−α/2) quantile of the stan-
dard normal distribution. We propose tests for non-overlapping
models and overlapping models. The test for non-overlapping
models does not require a tuning parameter and needs weaker
differentiability andmoment existence assumptions. However, for
the test to have correct asymptotic size, the candidate models
should be non-overlapping according to Definition NO. If one ap-
plies this test on overlapping models, there may be severe over-
rejection as our Monte Carlo results show. On the other hand,
the test for overlapping models is more general and can be ap-
plied to non-overlapping models as well. For easy reference, we
name the tests the ‘‘non-overlapping test’’ and the ‘‘overlapping
test’’, respectively. Both tests have a one-sided version and a two-
sided version, where the two-sided alternative hypothesis is H1 :

d(P , µ) ≠ d(Q, µ) and the one-sided alternative hypothesis is set
to be H1 : d(P , µ) < d(Q, µ)without loss of generality.

The non-overlapping test. The one-sided version is defined as
ϕNO−1
n (α) = 1(n1/2QLRn/ωn > zα), and the two-sided version is

defined as ϕNO−2
n (α) = 1(n1/2

|QLRn|/ωn > zα/2), where α is the
nominal size.

The overlapping test. Let bn be a sequence of positive numbers
such that b−1

n + n−1/2bn → 0. The one-sided version is defined as
ϕOL−1
n (α) = 1(n1/2QLRn/(ωn ∨ n−1/2bn) > zα), and the two-sided

version is defined as ϕOL−2
n (α) = 1(n1/2

|QLRn|/(ωn ∨ n−1/2bn) >
zα/2), where a ∨ b := max{a, b}.

It is worthwhile to discuss the intuition behind the asymptotic
size control of the two tests. First, the non-overlapping test has
correct asymptotic size when applied to non-overlapping models
because ω2

µ is bounded away from zero for non overlapping
models, guaranteeing n1/2QLR/ωn →d N(0, 1) under H0. When the
models are overlapping, ω2

µ is not bounded away from zero,
and consequently n1/2QLR/ωn →d N(0, 1) may or may not hold
depending on the unknown data generating process. When it
does not hold, the non-overlapping test can overreject. On the
other hand, the overlapping tests never overreject asymptotically,
thanks to the regularization parameter bn. Specifically, we show
later that nQLRn = Op(1) whenever n1/2QLR/ωn 9d N(0, 1). This
and the fact that bn is chosen to be a diverging sequence implies
that n1/2QLRn/(n−1/2bn)→p 0. As a result, the asymptotic rejection
probability of the overlapping test is controlled (below α) even
when n1/2QLR/ωn 9d N(0, 1).

The regularization parameter is in some sense a critical value for
a pretest for H00 : ω2

µ = 0. We do not take it to be a finite quantile
of the asymptotic distribution of the pretest statistic n1/2ωn (under
H00) for two reasons. First, the asymptotic distribution of n1/2ωn is
complicated and difficult to estimate due to both the partial iden-
tification and the moment inequalities. Second, a converging criti-
cal value in the pretest may not control the asymptotic size of the
overall test forH0. See Shi (forthcoming) for detailed discussions in
a related testing problem.

One practical difficulty with the diverging bn is that there is
certain arbitrariness in its choice. The theory in this paper implies
that it should satisfy the rate condition b−1

n + n−1/2bn → 0.
However, for a fixed n, this rate condition is not of much help. An
optimal finite n choice of bn should depend on the distributions
of the high-order terms in nQLRn and nω2

n . However, in moment
inequality models, their distributions are difficult to obtain even
asymptotically both due to partial identification, and due to (the
unknown slackness of) the inequalities.

Nonetheless, we can borrow some intuition from the point-
identifiedmoment equalitymodels. Shi (forthcoming) studies such
models and the findings therein imply that bn is neededmostwhen
|(dθ − dm)− (dβ − dg)| is large, and least if (dθ − dm) = (dβ − dg).
Based on this, we propose the following data-dependent rule-of-
thumb choice of bn:

bn = c · (1 ∨ |(dθ − d̂bm)− (dβ − d̂bg)|) · log(log(n)), (4.9)

where d̂bm is the number of non-zero components in γ̂n(θ̂n) and
is used to estimate the number of binding moment conditions
for model P , and d̂bg is the analogous quantity for model Q. The
constant c will be investigated in the Monte Carlo section. Notice
that when c is set to zero, the overlapping test reduces to the non-
overlapping test.

5. Asymptotic size — non-overlapping case

In this section, we show that the asymptotic size of the non-
overlapping test, when applied to non-overlapping models, is
correct. To begin, let Hno

0 denote the set of null distributions in the
case of non-overlapping models. We define Hno

0 below. The size of
the test for non-overlapping models of nominal size α over Hno

0 is

SZno
n (α) = sup

µ∈Hno
0

EµϕNO−j
n (α), (5.1)

where j = 1, 2, recall, stands for the one-sided test and the two-
sided test, respectively.We approximate SZno

n (α) using the asymp-
totic size:

AsySZno(α) = lim sup
n→∞

SZno
n (α). (5.2)

The following assumption is imposed on the moment functions
and is satisfied for all of our examples.

Assumption 4. The moment functions m(x, θ) and g(x, β) are
continuously differentiable in θ and β over Θ and B, respectively,
for all x ∈ X.

LetM∗
µ = maxθ∈Θ Mµ(γ

∗
µ(θ), θ) andN ∗

µ = maxβ∈B Nµ(λ
∗
µ(β),

β). Let mi(θ) = m(Xi, θ) and gi(β) = g(Xi, β). For a data distribu-
tion µ, and parameters θ ∈ Θ and β ∈ B, let

Smµ (γ , θ) = Eµeγ
′mi(θ)mi(θ)mi(θ)

′

Sgµ(λ, β) = Eµeλ
′gi(β)gi(β)gi(β)′. (5.3)

Let eigmin(A) denote the smallest eigenvalue of a matrix A. For a
positive numberM , letΓ m

M denoteNM(0dm)∩(R
dp ×Rdm−dp

+ ), where
Na(b) for a positive scalar a and a db-vector b is a closed ball in Rdb

centered at bwith radius a. LetΓ g
M denoteNM(0dg )∩(R

dq ×Rdg−dq
+ ).

Let φ = (γ ′, θ ′)′ and ψ = (λ′, β ′)′. Let ‘‘∧’’ and ‘‘∨’’ denote the
minimum operator and the maximum operator, respectively. Let
Nε(Θ∗

µ) =

θ∈Θ∗

µ
Nε(θ) and Nε(B∗

µ) =

β∈B∗

µ
Nε(β). We first

define the µ space under consideration under both H0 and H1 and
then define the subset of it for which H0 holds.

Definition H. The set H is the set of µ such that

(i) {Xi}
n
i=1 is an i.i.d. sample from µ,

(ii) for all ε > 0, there exists δε > 0 not dependent on µ
such that sup

θ∈Θ\Nε(Θ∗
µ)

Mµ(γ
∗

µ(θ), θ) < M∗

µ − δε and

sup
β∈B\Nε(B∗

µ)

Nµ(λ
∗

µ(β), β) < N ∗

µ − δε ,

(iii) sup
θ∈Θ

∥γ ∗

µ(θ)∥ ∨ sup
β∈B

∥λ∗

µ(β)∥ ≤ M − δ,

(iv) inf
φ∈Γm

M ×Θ
eigmin(Smµ (φ)) ∧ inf

ψ∈Γ
g
M×B

eigmin(Sgµ(ψ)) > δ, and (5.4)
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(v) Eµ sup
φ∈Γm

M ×Θ

e(2+δ)γ
′mi(θ) +

∂eγ
′mi(θ)

∂φ


2+δ

+

∂2eγ
′mi(θ)

∂γ ∂φ


2+δ

+

dm
j=1

 ∂3eγ
′mi(θ)

∂γj∂γ ∂φ′




+ Eµ sup
ψ∈Γ

g
M×B

e(2+δ)λ
′gi(β) +

∂eλ
′gi(β)

∂ψ


2+δ

+

∂2eλ
′gi(β)

∂λ∂ψ ′


2+δ

+

dg
j=1

 ∂3eλ
′gi(β)

∂λj∂λ∂ψ ′


 < M,

where M and δ are positive constants. The set Hno
0 depends on

those constants, but for notational simplicity, we suppress their
dependence.

Definition H0NO. The set Hno
0 is the set of µ ∈ H such that

(i) d(P , µ), d(Q, µ) ≤ M1, for a constant M1 that does not
depend on µ,

(ii) d(P , µ) = d(Q, µ), and
(iii) µ satisfies Assumption 3.

Remarks. (a) Condition (iii) of Definition H and condition (i) of
Definition H0NO are uniform versions of Assumption 1(b), the ver-
ification of which is discussed in Section 3.1. Condition (ii) of Defi-
nition H rules out weak identification and is standard in the model
selection test literature. Condition (iv) of Definition H is the uni-
form version of Assumption 1(a). Condition (v) of Definition H im-
poses moment restrictions. The exponential moment restrictions
may exclude some interesting cases in practice, but are satisfied in
many other cases. For example, they are satisfied by models in Ex-
amples 3–5 and by models in Examples 1 and 2 if the variables do
not have heavy tails.

(b) Assumption 4 implies Assumption 2(b). Conditions (iii)-(v)
of Definition H imply Assumption 1. Therefore, the duality results
in Lemma 2 hold for µ ∈ H under Assumptions 2(a) and 4.

In order to derive the asymptotic size of the test, we show
the consistency of the set estimators Θn and Bn first. Lemma 3
establishes the consistency of Θn andBn w.r.t. the left Hausdorff
distance. The left Hausdorff distance between two subsets, A1, A2,
of a Euclidean space is the maximum distance of any point in A1 to
A2:

ρlh(A1, A2) = sup
a∈A1

inf
a′∈A2

∥a − a′
∥. (5.5)

We call it the left Hausdorff distance because its symmetrized
version is the Hausdorff distance: ρh(A1, A2) = ρlh(A1, A2) ∨

ρlh(A2, A1). Also define ρlh(a, A2) = ρlh({a}, A2) for a vector a.

Lemma 3. Suppose Assumptions 2(a) and 4 hold. Then, under all
sequences {µn}

∞

n=1 such that each µn ∈ H , we have ρlh(Θn,Θ
∗
µn
)+

ρlh(Bn, B∗
µn
)→p 0.

Remark. Lemma 3 shows that all points in Θn approach Θ∗
µn

. It
does not imply that the neighborhoods of all points in Θ∗

µn
are

visited by Θn eventually. Thus, Θn is not necessarily consistent
w.r.t. the standard Hausdorff distance. Consistency w.r.t. ρlh is
sufficient for our purpose.

The following lemma guarantees that the asymptotic variance
of n1/2QLRn is bounded away from zero with non-overlapping
models.
Lemma 4. If the models P and Q are non-overlapping, then ω2
:=

infµ∈Hno
0
ω2
µ > 0.

The following theorem describes the asymptotic distribution of
n1/2QLRn/ωn and shows that the asymptotic size of the test for non-
overlapping models is correct.

Theorem 1. Suppose Assumptions 2(a) and 4 hold and the models
are non-overlapping. Then,
(a)under all sequences {µn ∈ Hno

0 }
∞

n=1, we have n1/2QLRn/ωn →d
N(0, 1), and
(b) for α ∈ (0, 1), AsySZno(α) = α.

6. Asymptotic size — overlapping case

Let Hol
0 denote the set of null distributions in the case of

overlapping models. We define Hol
0 below. The size of the test for

overlapping models of nominal size α over Hol
0 , is

SZol
n (α) = sup

µ∈Hol
0

EµϕOL−j
n (α), (6.1)

where, recall, j = 1, 2 indicates ‘‘one-sided’’ and ‘‘two-sided’’
respectively. We approximate it using the asymptotic size:

AsySZol(α) = lim sup
n→∞

SZol
n (α). (6.2)

In the definition of the asymptotic size, the limsup is taken af-
ter the supµ∈Hol

0
. Thus, in order to obtain AsySZol(α), we need to

approximate the distribution of the test statistics uniformly well
over Hol

0 . This is harder to achieve with overlapping models be-
cause the asymptotic distributions of n1/2QLRn/ωn and nω2

n under
H0 are discontinuous in ω2

µ, as discussed in Section 4.1. We seek
to approximate the finite sample distributions of the test statistics
at all values of ω2

µ by deriving the asymptotic distributions under
drifting sequences of null distributions {µn}

∞

n=1. In particular, nω2
µn

can drift to a finite number or infinity, each case approximating the
finite sample situation where ω2

µ is close or equal to zero, or ω2
µ is

bounded away from zero. The idea of using drifting sequences is
adopted from Andrews and Guggenberger (2009).

A stronger assumption on the smoothness of the moment
functions than Assumption 4 is needed:

Assumption 5. The moment functions m(x, θ) and g(x, β) are
three times continuously differentiable in θ and β over Θ and B,
respectively, for all x ∈ X.

Let Λ∗

µ,i = eγ
∗
µ(θ

∗)′mi(θ
∗)

− eλ
∗
µ(β

∗)′gi(β∗) for arbitrary θ∗
∈ Θ∗

µ

and β∗
∈ B∗

µ. Now we define Hol
0 .

Definition H0OL. The set Hol
0 is the set of µ ∈ H such that

(i) d(P , µ) = d(Q, µ),
(ii) µ satisfies Assumption 3,
(iii) Eµ(ω−1

µ Λ
∗

µ,i)
2+δ < M if ω2

µ > 0,

(iv) M∗

µ − Mµ(γ
∗

µ(θ), θ) > C · (ρ2
lh(θ,Θ

∗

µ) ∧ δ),

N ∗

µ − Nµ(λ
∗

µ(β), β) > C · (ρ2
lh(β, B

∗

µ) ∧ δ), and

(v) Eµ sup
φ∈Γm

M ×Θ

e(2+δ)γ
′mi(θ) +

∂eγ
′mi(θ)

∂φ


2+δ

+

∂2eγ
′mi(θ)

∂φ∂φ


1+δ

+

dm+dθ
j=1

 ∂3eγ
′mi(θ)

∂φj∂φ∂φ′



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+ Eµ sup
ψ∈Γ

g
M×B

e(2+δ)λ
′gi(β) +

∂eλ
′gi(β)

∂ψ


2+δ

+

∂2eλ
′gi(β)

∂ψ∂ψ ′


1+δ

+

dg+dβ
j=1

 ∂3eλ
′gi(β)

∂ψj∂ψ∂ψ ′


 < M, (6.3)

where M , C and δ are positive constants. The set Hol
0 depends

on M , C and δ, but for notational simplicity, we suppress these
arguments.

Remarks. (a) Condition (iv) of Definition H0OL strengthens condi-
tion (ii) of Definition H. Such a condition is standard in the model
selection literature for point identifiedmodels, and is similar to the
quadratic minorant condition used in Chernozhukov et al. (2007).
It gives us the n−1/2-consistency of the set estimators. Condition (v)
of Definition H0OL strengthens condition (v) of Definition H, and is
usually verified by inspecting the differentiability of the moment
functions and the moment existence of the relevant functions of
the data.

(b) Condition (iii) of Definition of H0OL helps to characterize
the asymptotic behavior of the studentized quasi-likelihood ratio
statistic when the standard deviation ofQLRn converges to zero in
probability. It is not restrictive because when ω2

µ is small, Λ∗

µ,i is
typically small.

The following Lemma derives the convergence rate of the set
estimators under drifting sequences of distributions. The lemma
is obtained using the quadratic bounding approach described
in the introduction. This approach takes into account the non-
differentiability of the population and the sample criterion
functions.

Lemma 5. Suppose Assumptions 2(a) and 5 hold. Then, under any
drifting sequence {µn ∈ H}

∞

n=1 such that conditions(iv)–(v) of Def-
inition H0OL are satisfied, we have ρlh(Θn,Θ

∗
n ) + ρlh(Bn, B∗

n) =

Op(n−1/2).

Let ω2
n abbreviate ω2

µn
. We define the drifting sequences of µ’s

under which the asymptotic behavior of the QLR and variance
statistics are studied below. These are the important sequences
that determine the asymptotic size of the test.

Definition SEQ. For σ ∈ [0,∞], let Seqσ be the set of sequences
{µun ∈ Hol

0 }
∞

n=1, such that {un}
∞

n=1 is a subsequence of {n}, and

unω
2
un → σ 2. (6.4)

Let Seq =

σ∈[0,∞]

Seqσ . Notice that we allow σ to take values
in the extended real space.

Lemma 6 establishes the asymptotic distributions of the test
statistics under drifting sequences in Seq. Part (a) of the lemma
includes the completely degenerate case that ωn = 0 for all n and
is analogous to Theorem 3.3(i) of Vuong (1989), while part (b) of
the lemma includes the nondegenerate case that ωn = ω for some
ω > 0 for all n and is analogous to Theorem3.3(ii) of Vuong (1989).

Lemma 6. Suppose Assumptions 2(a) and 5 hold. Then for σ ∈

[0,∞] and any subsequence {un}
∞

n=1 of {n}, under any drifting
sequence {µun}

∞

n=1 ∈ Seqσ ,
(a) if σ ∈ [0,∞), unω2

un = Op(1) and unQLRun = Op(1), and

(b) if σ = ∞, u1/2
n QLRun/ωun →d N(0, 1) andω2

un/ω
2
un →p 1.
It follows easily from Lemma 6 that AsySZol(α) ≤ α. An
extra condition is needed for the test not to be asymptotically
conservative and is stated as Assumption 6. Assumption 6 requires
the existence of at least oneµ ∈ Hol

0 under which the pseudo-true
distributions from the twomodels are not the same. Assumption 6
is not restrictive for nonnested models because for a µ ∈ Hol

0 that
belongs to neither P or Q, the pseudo-true distributions typically
are different except in some pathological cases. Assumption 6 is
violated when P and Q are nested.

Assumption 6. There exists µ ∈ Hol
0 , such that P∗

µ ≠ Q ∗
µ .

Theorem 2 summarizes the null properties for our test for
overlapping models.

Theorem 2. Suppose Assumptions 2(a) and 5 holds. Then, for all α ∈

(0, 1),
(a) AsySZol(α) ≤ α, and
(b) if Assumption 6 also holds, then AsySZol(α) = α.

7. Power properties of the tests

We now show that our model selection tests are consistent
against general fixed alternatives and local alternatives that
converge to the null at a rate arbitrarily close to n−1/2. The results
apply to both the overlapping test and the non-overlapping test.

First, we show that our test is consistent against all fixed
alternatives under which d(P , µ) ≠ d(Q, µ). That is, for any
µ ∈ H such that d(P , µ) < d(Q, µ), the test rejects H0 in favor of
model P with probability approaching one.

Theorem 3. Suppose Assumptions 2(a) and 4 hold. Then for anyµ ∈

H such that d(P , µ) < d(Q, µ),
(a) limn→∞ Prµ


n1/2QLRn/ωn > zα/2


= 1, and

(b) limn→∞ Prµ

n1/2QLRn/(ωn ∨ n−1/2bn) > zα/2


= 1.

Next, we show that our test is consistent against drifting
sequences of alternatives under which

√
n(d(P , µn) − d(Q, µn))

diverges to infinity.

Theorem 4. Suppose Assumptions 2(a) and 4 hold. Then for any
sequence {µn ∈ H} such that µn converges weakly to a µ0 such that
d(P , µ0) = d(Q, µ0) < ∞. Suppose also d(P , µn) → d(P , µ0),
d(Q, µn) → d(Q, µ0) and

√
n(d(P , µn) − d(Q, µn)) → −∞;

then,
(a) limn→∞ Prµn


n1/2QLRn/ωn > zα/2


= 1, and

(b) limn→∞ Prµn


n1/2QLRn/(ωn ∨ n−1/2bn) > zα/2


= 1.

8. Simulation

This section reports Monte Carlo results for the missing data
example. In this exercise, we investigate (a) the finite sample
performance of our tests, (b) the sensitivity of the overlapping test
to the tuning parameter c in the data-dependent formula of bn in
(4.9), and (c) the sensitivity ofω2

n(θ̂n, β̂n) to the choice of θ̂n and β̂n

in Θn andBn. In the Supplemental Appendix we report additional
Monte Carlo results to compare theperformance of the overlapping
test with the standard χ2-based test for nested point identified
models moment equality models.

The missing data example is a special case of Example 1. Let Yi
be a binary variable that is observed if a selection variable Di = 1
and is missing if Di = 0. The parameter of interest is θ = EYi.
Let X1,i and X2,i be two candidate instrumental variables, both
taking a finite number of values. Let Ȳi = YiDi + (1 − Di) and
Y i = YiDi. Then by definition Yi ∈


Y i, Ȳi


. We consider two model
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Table 1
Rejection probability in the symmetric nonnested case (α = 10%).

c\(a1, a2) (0, 0) (0.2, 0.2) (0.5, 0.5) (0.5, 0) (0.5, 0.8)

n = 250
0 (.000, .000) (.008, .009) (.037, .039) (.000, .505) (.398, .001)
0.4 (.000, .000) (.008, .009) (.037, .039) (.000, .505) (.398, .001)

n = 500
0 (.000, .000) (.016, .015) (.044, .047) (.000, .921) (.658, .000)
0.4 (.000, .000) (.016, .015) (.044, .047) (.000, .921) (.658, .000)

n = 1000
0 (.000, .000) (.033, .028) (.049, .048) (.000, 1.000) (.895, .000)
0.4 (.000, .000) (.033, .028) (.049, .048) (.000, 1.000) (.895, .000)

The two probabilities in each pair of parentheses are the probability of rejecting H0 in
favor of P1 and that of rejecting H0 in favor of P2 , respectively.
comparison problems. In the first problem, the models compared
are nonnested (but overlapping).12 That is, for j = 1, 2

Pj = {P : EP(θ − Y i|Xj,i) ≥ 0 & EP(Ȳi − θ |Xj,i) ≥ 0}. (8.1)

In the second problem, the models compared are nested, in
particular, P2 ⊆ P1:

P1 = {P : EP(θ − Y i|X1,i) ≥ 0 & EP(Ȳi − θ |X1,i) ≥ 0},

P2 = {P : EP(θ − Y i|X1,i, X2,i) ≥ 0
& EP(Ȳi − θ |X1,i, X2,i) ≥ 0}. (8.2)

For both problems, we consider the general data generating
process (DGP):

Yi = 1{1 + 1.51/2 a1X1,i + a2X2,i

+ ui ≥ 0}

Di = 1{1.5 + 0.5

X1,i + X2,i


+ vi ≥ 0}, (ui, vi) ∼ N(0, I), (8.3)

where X1,i and X2,i follow independent multinomial distributions.
The parameters a1 and a2 measure how endogenous the two
instruments are and thus indicate how far each model is from
the DGP. Both the nonnested and the nested problems fit in the
framework of Example 1 because Pj can be written as

Pj = {P : EP [(θ − Y i)1(Zj,i = z)] ≥ 0 & EP [(Ȳi − θ)1(Zj,i = z)]

≥ 0 ∀z ∈ Zj}, (8.4)

where Zj,i is the conditioning variable/vector of model j and Zj is
the known discrete support of Zj,i. For the nonnested problem, we
consider the test of H0 against the two-sided alternative, while for
the nested problem, we test H0 against the one-sided alternative
H1 : d(P1, µ) < d(P2, µ).

For the nonnested problem, we consider two designs of
(X1,i, X2,i), a symmetric one and an asymmetric one. In the sym-
metric design, X1,i and X2,i both follow a multinomial distribution
that puts equal probability on the points in {0, 1}. The symmetry of
the two models makes it easy to specify the null DGP’s: to impose
H0, we can simply set a1 = a2. Varying the magnitude of a1 (=a2)
allows us to vary the magnitude of ω2

µ. In particular, the larger
a1(=a2) is, the further away ω2

µ is from zero. The alternative DGP’s
are also easy to specify: when a1 > a2 ≥ 0, P2 is better (less mis-
specified) than P1, and vice versa. To cover a variety of cases, we
consider five pairs of (a1, a2): (0, 0), (0.2, 0.2), (0.5, 0.5), (0.5, 0),
(0.5, 0.8), three different sample sizes: n = 250, 500, 1000 and
two different choices of tuning parameter c = 0 and 0.4. Note that

12 Even though without additional information the two models are overlapping,
they become non-overlapping if we add the maintained assumption that
min{cov(X1,i, Yi), cov(X2,i, Yi)} > η for some η > 0. Adding this maintained
assumption does not affect how our tests should be implemented. Thus, the non-
nested results below when this maintained assumption are satisfied (i.e. when
a1, a2 > 0) also demonstrate how the tests perform in a non-overlapping testing
scenario.
for c = 0, the test is the non-overlapping test and for c > 0, it is
the overlapping one. The number of simulation repetitions is 5000.
The nominal size of the tests is 10%.

Table 1 shows the rejection probabilities for the symmetric
nonnested design. The first three columns show the rejection prob-
abilities under the null. Ideally, under H0, the probability of reject-
ing H0 in favor of either model should be at or below 5%. As we can
see from the first three columns, this requirement is satisfied, indi-
cating that our test controls sizewell in finite samples. The last two
columns show the rejection probability under the alternative. For
the fourth column, P2 is better and for the last column, P1 is bet-
ter. As we can see, our test selects the better model with nontrivial
probability while rarely selects the worse model. Also the proba-
bility of rejectingH0 in favor of the bettermodel increases with the
sample size as expected from the power results. In addition, vary-
ing the tuning parameter c in the range that we consider has no
effect on the rejection probabilities. The robustness to c is a result
of the symmetry of the two models compared, and unfortunately
is not a generic feature of our test, as shown in the next design.

Nowwe consider the asymmetric nonnested design, where X1,i
has the same distribution as above, but X2,i follows a multinomial
distribution that puts equal probability on J equally spaced points
in the interval [−1, 1] (including the end points). In this case, set-
ting a1 = a2 does not guarantee that H0 hold due to the asymme-
try of the two models. However, we can still ensure H0 by setting
a1 = a2 = 0, and ensure that H0 does not hold by setting a1 ≠ 0
and a2 = 0. The parameter J controls the degree of the asymmetry.
We report Monte Carlo results for two values of (a1, a2): (0, 0) and
(0.5, 0), three values of J: 3, 7 and 11 and four c values: 0, 0.2, 0.25
and 0.3. The sample sizes and number of simulation repetitions are
the same as the previous design.

Table 2 shows the rejection probabilities for the asymmetric
nonnested design. The first three columns show the rejection prob-
abilities under the null and the last three columns show those
under the alternative. Comparing to the previous table, we first ob-
serve that the over-lapping test (c = 0) has over-rejection for the
most asymmetric design (J = 11) at all three sample sizes. For the
non-overlapping test (c > 0), the rejection probabilities are some-
what sensitive to c both under the null and under the alternative in
themost asymmetric design, but not somuch in the less asymmet-
ric designs. Overall, Table 2 shows that the overlapping test with
c = 0.25 and c = 0.3 has decent performance.

Lastly, we consider the nested problem in (8.2). We let the dis-
tribution of X1i and X2i be the same as the asymmetric nonnested
design above. We consider two values of (a1, a2): (0, 0) and
(0, 0.25), each representing the null and the alternative respec-
tively. The same J values and c values as above are considered. Note
that for the same J , the two nested models in (8.2) are much more
asymmetric than the two nonnested models in (8.1) because the
model 2 in the nested case involves 2J rather than J unconditional
moment restrictions while themodel 1 still only contains 2 uncon-
ditional moment restrictions. Because our data-dependent choice
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Table 2
Rejection probability in the asymmetric nonnested case (α = 10%).

c (a1, a2) = (0, 0) (a1, a2) = (0.5, 0)
J = 3 J = 7 J = 11 J = 3 J = 7 J = 11

n = 250
0 (.002, .000) (.044, .000) (.226, .000) (.000, .346) (.001, .138) (.009, .047)
0.2 (.002, .000) (.044, .000) (.188, .000) (.000, .346) (.001, .138) (.007, .046)
0.25 (.002, .000) (.043, .000) (.124, .000) (.000, .346) (.001, .138) (.005, .041)
0.3 (.002, .000) (.041, .000) (.069, .000) (.000, .346) (.001, .137) (.004, .029)

n = 500
0 (.001, .000) (.031, .000) (.194, .000) (.000, .815) (.000, .559) (.000, .347)
0.2 (.001, .000) (.031, .000) (.166, .000) (.000, .815) (.000, .559) (.000, .347)
0.25 (.001, .000) (.031, .000) (.102, .000) (.000, .815) (.000, .559) (.000, .337)
0.3 (.001, .000) (.029, .000) (.049, .000) (.000, .815) (.000, .559) (.000, .301)

n = 1000
0 (.002, .000) (.028, .000) (.165, .000) (.000, .996) (.000, .973) (.000, .910)
0.2 (.002, .000) (.028, .000) (.139, .000) (.000, .996) (.000, .973) (.000, .910)
0.25 (.002, .000) (.027, .000) (.078, .000) (.000, .996) (.000, .973) (.000, .910)
0.3 (.002, .000) (.025, .000) (.039, .000) (.000, .996) (.000, .973) (.000, .905)

The two probabilities in each pair of parentheses are the probability of rejecting H0 in favor of P1 and that of rejecting H0 in favor of P2 , respectively.
Table 3
Rejection probability of the one-sided tests in the nested case (α = 5%).

c (a1, a2) = (0, 0) (a1, a2) = (0, 0.25)
J = 3 J = 7 J = 11 J = 3 J = 7 J = 11

n = 250
0 .025 .523 .948 .477 .826 .987
0.2 .025 .249 .274 .477 .557 .484
0.25 .025 .116 .113 .476 .360 .259
0.3 .024 .049 .040 .467 .216 .129

n = 500
0 .020 .465 .924 .825 .936 .994
0.2 .020 .204 .186 .825 .752 .616
0.25 .020 .086 .056 .824 .567 .349
0.3 .020 .032 .013 .818 .386 .160

n = 1000
0 .017 .400 .886 .994 .994 1.000
0.2 .017 .163 .137 .994 .947 .844
0.25 .017 .062 .031 .994 .854 .627
0.3 .017 .023 .006 .993 .718 .383

The probabilities are the probability of the one-sided tests rejecting H0 in favor of
P1 .

of bn is adaptive to the asymmetry,we shall see that the large asym-
metry does not havemuch ill-effect on the size property of our test.

Table 3 shows the results. Since the models are nested (P2 ⊆

P1), only the one-sided alternative H1 : d(P1, µ) > d(P2, µ)
is of interest. Thus, the table reports the rejection probabilities
for the one-sided tests. As we can see, the pattern is similar to
the nonnested asymmetric design. Both the non-overlapping test
and the overlapping test have good size and power in the mildly
asymmetric design (J = 3). The non-overlapping test (c = 0) starts
to over-reject as the asymmetry increases. Similar behavior is also
observed for the overlapping test with small c (c = 0.2). We find
that c = 0.25has acceptable performance at all sample sizes across
all J ’s considered.

To sum up, theMonte Carlo shows that (a) both the overlapping
test and the non-overlapping test have good finite sample size and
power properties and the performance for the non-overlapping
test is not sensitive to c , when the two models compared have
similar dimensions; and (b) the overlapping test and the non-
overlapping test with small c over-reject when the twomodels are
very different in their numbers of restrictions. In the latter cases,
we recommend c = 0.25.

In the Monte Carlo exercises above, to find θ̂n and β̂n, we use
the fminbnd function in Matlab. The fminbnd function takes an
upper and a lower bound for the parameter. When the bounds are
set differently, the function can converge to different minimizers
of the criterion function when the minimizer is not unique. That
allows us to investigate the sensitivity of our test to the choice of
θ̂n and β̂n by comparing

√
nQLRn/ωn computed using two different

sets of bounds in fminbnd. We find that θ̂n (or β̂n) can be sensitive
to the bounds when the model is correctly specified, i.e., when
a1 = 0 (or a2 = 0) but not sensitive otherwise. Even when θ̂n is
sensitive, we find

√
nQLRn/ωn barely differs across the two sets of

bounds. For example, in the nested design with (α1, α2) = (0, 0),
J = 11 and n = 1000, the frequency that θ̂n from the two sets of
bounds differ by more than 0.001 is 32%, while the frequency that√
nQLRn/ωn differ by more than 0.0001 is 0%. This confirms that

we do not need to compute all the maximizers to implement the
test.

The computational cost of the test is relatively low. In the
simulation example described above, it takes around one second to
run one simulation iteration on a regular desktop. The speed does
not increase with the sample size in the range that we considered.
Of course, for models with covariates and more parameters,
computation time can be longer, but we expect it to be in a
reasonable range for the reasons discussed in the introduction.
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Appendix

Throughout the appendix, we replace µn with n when µn is in
a subscript and it does not cause confusion to do so. For example,
we write γ ∗

µn
(θ) as γ ∗

n (θ). Let φ̂n(θ) = (γ̂n(θ)
′, θ ′)′ and φ∗

n (θ) =

(γ ∗
n (θ)

′, θ ′)′, and ψ̂n(β) and ψ∗
n (β) be defined analogously. We

let ‘‘r.h.s.’’ denote ‘‘right-hand-side’’ and ‘‘l.h.s.’’ denote ‘‘left-hand-
side’’.

Let ‘‘LLN’’ denote the weak law of large number for row-wise
i.i.d. triangular arrays. The weak law of large number we use here
is Theorem 2 in Andrews (1988). Theorem 2 in Andrews (1988)
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is a law of large numbers for L1-mixingale triangular arrays. Row-
wise i.i.d. triangular arrays are trivially L1-mixingales. The uniform
integrability condition required in that theorem is guaranteed by
the moment existence conditions in this paper.

Appendix A. Auxiliary lemmas

We first present a few auxiliary lemmas, the proofs of which are
given in Supplemental Appendix G. Lemma A.1 is an instrumental
result for the uniform stochastic boundedness of empirical
processes, which is useful for establishing Lemmas A.2–A.3.
Lemma A.2 establishes the uniform convergence and rate of
convergence of various stochastic processes, which is useful for
proving the main lemmas and theorems. The proof of Lemma A.2
makes use of the uniform generic convergence results in Andrews
(1992) and the empirical process results reviewed in Andrews
(1994). Lemma A.3 establishes the uniform consistency of γ̂n(θ),
the rate of convergence of γ̂n(θ), and the continuity of γ ∗

n (θ).
Lemmas A.2–A.4 are stated in terms of {n}, but because they

only require termwise assumptions on the sequence {µn}
∞

n=1, their
conclusions hold with {n} replaced with any subsequence of {n}.

Lemma A.1. Consider the triangular array of empirical processes
{νn(φ) : φ ∈ Φ}

∞

n=1. If (i) (Φ, ρ) is a totally bounded pseudo-metric
space, (ii) νn(φ) is stochastically equicontinuous w.r.t. ρ and (iii) for
every φ ∈ Φ , ∥νn(φ)∥ = Op(1), then supφ∈Φ ∥νn(φ)∥ = Op(1).13

Lemma A.2. Suppose Assumptions 2(a) and 4 hold. Under any se-
quence {µn}

∞

n=1 such that eachµn satisfies conditions (i) and (iii)–(v)
of Definition H, we have
(a) the triangular array of empirical processes {ν0n (φ) := n1/2

( Mn(φ) − Mµn(φ)) : φ ∈ Γ m
M × Θ} is stochastically equicontin-

uous w.r.t. the Euclidean distance,
(b) supφ∈Γm

M ×Θ |n1/2( Mn(φ)− Mµn(φ))| = Op(1),
(c) the triangular array of empirical processes {ν1n (φ) := n1/2

(∂ Mn(φ)/∂γ − ∂Mµn(φ)/∂γ ) : φ ∈ Γ m
M × Θ} is stochastically

equicontinuous w.r.t. the Euclidean distance,
(d) supφ∈Γm

M ×Θ ∥n1/2(∂ Mn(φ)/∂γ − ∂Mµn(φ)/∂γ )∥ = Op(1),
(e) for all random sequences {φ1,n ∈ Γ m

M × Θ}
∞

n=1 and {φ2,n ∈

Γ m
M ×Θ}

∞

n=1 such that ∥φ1,n − φ2,n∥ →p 0, we have

∥∂2 Mn(φ1,n)/∂γ ∂γ
′
− ∂2Mµn(φ2,n)/∂γ ∂γ

′
∥ →p 0

| Mn(φ1,n)− Mµn(φ2,n)| →p 0, and

(f) parts(a)–(e) hold with Θ , γ , φ, M and m replaced with
B, λ, ψ,N and g, respectively.

Lemma A.3. Suppose Assumptions 2(a) and 4 hold. Under any se-
quence {µn}

∞

n=1 such that eachµn satisfies conditions (i) and (iii)–(v)
of Definition H, we have
(a) for any two random sequences {θ1,n ∈ Θ}

∞

n=1 and {θ2,n ∈

Θ}
∞

n=1 such that ∥θ1,n − θ2,n∥ →p 0,

∥γ̂n(θ1,n)− γ ∗

n (θ2,n)∥ →p 0,

(b) supθ∈Θ ∥γ̂n(θ)− γ ∗
n (θ)∥ = Op(n−1/2),

(c) for any two random sequences {θ1,n ∈ Θ}
∞

n=1 and {θ2,n ∈

Θ}
∞

n=1 such that ∥θ1,n − θ2,n∥ →p 0,

∥γ ∗

n (θ1,n)− γ ∗

n (θ2,n)∥ = Op(∥θ1,n − θ2,n∥), and

(d) parts (a)–(c) hold with θ, Θ , γ , φ, M, m replaced with β , B,
λ, ψ , N , g.

13 Note that here, Φ denotes the space of φ. In the main sections of this paper,
Φ stands for the c.d.f. of the standard normal distribution. Hopefully, there is no
confusion caused by this abuse of notation.
Lemma A.4. Suppose Assumptions 2(a) and 5 hold. Then, under
any sequence {µn}

∞

n=1 such that each µn satisfies conditions (i)
and (iii)–(v) of Definition H and condition (v) of Definition H0OL,
(a) for any two random sequences {φ1,n ∈ Γ m

M × Θ}
∞

n=1 and
{φ2,n ∈ Γ m

M ×Θ}
∞

n=1 such that ∥φ1,n − φ2,n∥ →p 0,

∥∂2 Mn(φ1,n)/∂φ∂φ
′
− ∂2Mµn(φ2,n)/∂φ∂φ

′
∥ →p 0, and

(b) part (a) hold with Θ , φ, M and m replaced with B, ψ , N
and g.

Appendix B. Proof of the theorems

Proof of Theorem 1. (a) Let θ̂n ∈ Θn and β̂n ∈ Bn be those that
satisfyω2

n(θ̂n, β̂n) = ω2
n . Then, part (a) is implied by:

n1/2QLRn/ωn →d N(0, 1), and (B.1)ω2
n(θ̂n, β̂n)/ω

2
n →p 1. (B.2)

Next, we show (B.1) and (B.2).
Let θ∗

n ∈ Θ∗
n and β∗

n ∈ B∗
n satisfy ∥θ̂n −θ∗

n ∥ ≤ ρlh(θ̂n,Θ
∗
n )+o(1)

and ∥β̂n − β∗
n∥ ≤ ρlh(β̂n, B∗

n) + o(1). Then, Lemmas 3 and A.3(a)
imply that

∥φ̂n(θ̂n)− φ∗

n (θ
∗

n )∥ →p 0 and

∥ψ̂n(β̂n)− ψ∗

n (β
∗

n )∥ →p 0.
(B.3)

First, we show (B.1). Observe that

ω−1
n n1/2QLRn = ω−1

n n−1/2
n

i=1


exp(γ̂n(θ̂n)′mi(θ̂n))

− exp(λ̂n(β̂n)
′gi(β̂n))


= ω−1

n n−1/2
n

i=1

(Λ∗

n,i)+ An,1 + An,2, (B.4)

where Λ∗

n,i = eγ
∗
n (θ

∗
n )

′mi(θ
∗
n ) − eλ

∗
n(β

∗
n )

′gi(β∗
n ), An,1 =

1√
nω2

n

n
i=1

eγ̂n(θ̂n)
′mi(θ̂n)−eγ

∗
n (θ

∗
n )

′mi(θ
∗
n )

and An,2 =

1√
nω2

n

n
i=1


eλ

∗
n(β

∗
n )

′gi(β∗
n )−

eλ̂n(β̂n)
′gi(β̂n)


.

By the Lyapunov CLT for triangular arrays,

ω−1
n n−1/2

n
i=1

(Λ∗

n,i)→d N(0, 1). (B.5)

The CLT applies because (a) EnΛ∗

n,i = 0 by Definition H0NO
and Lemma 1(b), (b) ω−2

n En(Λ∗

n,i − EnΛ∗

n,i)
2

= 1 by the defini-
tion of ω2

n and (c) the Lyapunov condition holds, that is to say,
En(ω−1

n Λ∗

n,i)
2+δ

≤ ω−2−δEn(Λ∗

n,i)
2+δ < ∞ by Lemma 4 and condi-

tion (v) in (5.4).
It is left to show An,1 = op(1) and An,2 = op(1) before we can

conclude that (B.1) holds. It suffices to show An,1 = op(1) since the
arguments for An,2 = op(1) are analogous. Because we do not have
convergence rates forΘn andBn under the conditions of the current
theorem, the usual approach of doing a second-order Taylor ex-
pansion of exp(γ̂n(θ̂n)′mi(θ̂n)) around φ∗

n (θ
∗
n ) does not go through.

Instead, we show An,1 = op(1) by bounding An,1 from both above
and below by op(1). The lower bound of An,1 is obtained by replac-
ing θ̂n with θ∗

n in the expression of An,1 and using the convergence
rate result for γ̂n(·) (Lemma A.3(b)):

An,1 ≥ ω−1
n n−1/2

n
i=1


exp(γ̂n(θ∗

n )
′mi(θ

∗

n ))− exp(γ ∗

n (θ
∗

n )
′mi(θ

∗

n ))

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= ω−1
n


∂ Mn(φ

∗

n (θ
∗

n ))/∂γ
′

n1/2(γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n ))


+ω−1
n n1/2γ̂n(θ∗

n )− γ ∗

n (θ
∗

n )
′
∂2 Mn(φ̃n)/∂γ ∂γ

′


×

γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n )


≥ ω−1
n


∂ Mn(φ

∗

n (θ
∗

n ))/∂γ
′
− ∂Mµn(φ

∗

n (θ
∗

n ))/∂γ
′


×

n1/2(γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n ))


+ω−1
n n1/2γ̂n(θ∗

n )− γ ∗

n (θ
∗

n )
′
∂2 Mn(φ̃n)/∂γ ∂γ

′


×

γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n )


= op(1), (B.6)

where φ̃n lies on the line segment joining φ∗
n (θ

∗
n ) and φ̂n(θ

∗
n ), the

first inequality holds because Θn is a maximizer of Mn(γ̂n(·), ·),
the first equality holds by a Taylor expansion of exp(γ̂n(θ∗

n )
′mi(θ

∗
n ))

aroundγ ∗
n (θ

∗
n ), and the second inequality holds because


∂Mµn(φ

∗
n

(θn∗))/∂γ
′

γ ∗
n (θ

∗
n ) = 0 and ∂Mµn(φ

∗
n (θn∗))/∂γj


= 0 for j ≤ dp
≥ 0 for j > dp ,

both being the Kuhn–Tucker conditions from the minimization
problem min

γ∈Rdp×R
dm−dp
+

Mµn(γ , θ
∗
n ), and the second equality

holds by Lemmas 4 and A.2(d)–(e), A.3(b) and condition (v) of (5.4).
The upper bound of An,1 is obtained by replacing γ̂n with γ ∗

n in
the expression of An,1 and applying Lemma A.2(a):

An,1 ≤ ω−1
n n−1/2

n
i=1


exp(γ ∗

n (θ̂n)
′mi(θ̂n))− exp(γ ∗

n (θ
∗

n )
′mi(θ

∗

n ))


= ω−1
n


ν0n (φ

∗

n (θ̂n))+ n1/2Mµn(φ
∗

n (θ̂n))− Mµn(φ
∗

n (θ
∗

n ))


− ν0n (φ
∗

n (θ
∗

n ))


≤ ω−1
n [ν0n (φ

∗

n (θ̂n))− ν0n (φ
∗

n (θ
∗

n ))] = op(1), (B.7)

where the first inequality holds because γ̂n(θ̂n) is the minimizer ofMn(·, θ̂n), the first equality holds by adding and subtracting terms
to form the empirical process {ν0n (φ) : φ ∈ Γ m

M × Θ}
∞

n=1 (defined
in Lemma A.2(a)), the second inequality holds because θ∗

n is a max-
imizer ofMµn(φ

∗
n (θ)), and the second equality holds by Lemmas 3,

4 and A.2(a) and A.3(c).
Therefore, An,1 = op(1).
Next, we show (B.2). By a mean-value expansion of exp(γ̂n(θ̂n)′

mi(θ̂n)) around φ∗
n (θ

∗
n ), we have

ω−2
n ω2

n(θ̂n, β̂n) = −ω−2
n
QLR2

n + ω−2
n n−1

n
i=1

(Λ∗

n,i)
2

+ 2ω−2
n n−1

n
i=1


∂eγ̃

′
nmi(θ̃n)

∂φ′
(φ̂n(θ̂n)− φ∗

n (θ
∗

n ))

−
∂eλ̃

′
ngi(β̃n)

∂ψ ′
(ψ̂n(β̂n)− ψ∗

n (β
∗

n ))


(Λ∗

n,i)

+ω−2
n n−1

n
i=1


∂eγ̃

′
nmi(θ̃n)

∂φ′
(φ̂n(θ̂n)− φ∗

n (θ
∗

n ))

−
∂eλ̃

′
ngi(β̃n)

∂ψ ′
(ψ̂n(β̂n)− ψ∗

n (β
∗

n ))

2

≡ Wn,0 + Wn,1 + Wn,2 + Wn,3, (B.8)

where (γ̃ ′
n, θ̃

′
n)

′ lies on the line segment joining φ̂n(θ̂n) and φ∗
n (θ

∗
n )

and (λ̃′
n, β̃

′
n)

′ lies on the line segment joining ψ̂n(β̂n) and ψ∗
n (β

∗
n ).

The first summand Wn,0 ≡ −ω−2
n
QLR2

n = op(1) by (B.1).
The second summand Wn,1 ≡ ω−2

n n−1n
i=1(Λ

∗

n,i)
2
→p 1 by LLN.

The LLN applies because (a) Enω−2
n (Λ∗

n,i)
2

= 1, and (b) supn≥1 En
(ω−1
n Λ∗

n,i)
2+δ

≤ ω−2−δ supn≥1 En(Λ∗

n,i)
2+δ < ∞, by condition (v)

in (5.4) and Lemma 4.
The summandWn,3 in the last line of (B.8) is op(1) because

0 ≤ Wn,3

≤ 2ω−2(φ̂n(θ̂n)− φ∗

n (θ
∗

n ))


n−1

n
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′


× (φ̂n(θ̂n)− φ∗

n (θ
∗

n ))+ 2ω−2(ψ̂n(β̂n)− ψ∗

n (β
∗

n ))

×


n−1

n
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ ′


(ψ̂n(β̂n)− ψ∗

n (β
∗

n ))

= op(1), (B.9)

where the second inequality holds by the inequality, (a + b)2 ≤

2a2 + 2b2 and Lemma 4, and the equality holds by (B.3) and

En

n−1
n

i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′

 ≤ En∥∂eγ̃
′
nmi(θ̃n)/∂φ∥

2
≤ M

En

n−1
n

i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ ′

 ≤ En∥∂eλ̃
′
ngi(β̃n)/∂ψ ′

∥
2

≤ M , (B.10)

which holds by the triangular inequality, the equality ∥aa′
∥ = ∥a∥2

and condition (v) in (5.4).
The summand Wn,2 in the last line of (B.8) is op(1) because, by

the Cauchy–Schwarz inequality, 0 ≤
Wn,2

 ≤ 2[Wn,1 · Wn,3]
1/2.

Therefore, (B.2) holds.
(b) For this part, we focus on the two-sided test. Arguments

for the one-sided test is the same. Let {µn ∈ Hno
0 }

∞

n=1 satisfy
Prn

n1/2

|QLRn|/ωn > zα/2


≥ SZno
n (α) − o(1). Such a sequence

always exists. Then,

lim sup
n→∞

Prn

n1/2

|QLRn|/ωn > zα/2


= AsySZno(α). (B.11)

By part (a), the l.h.s. of the equation above equals α. Therefore,
AsySZno(α) = α. �

Proof of Theorem 2. In this proof, we focus on the two-sided test.
Arguments for the one-sided test is the same.

(a) Let {an} be a subsequence of {n} such that AsySZol(α) =

limn→∞ SZol
an(α). Such a sequence always exists. Let {µn ∈ Hol

0 }
∞

n=1
be a sequence such that for each n,

Prn

n1/2

|QLRn|/(ωn ∨ n−1/2bn) > zα/2


≥ SZol
n (α)− o(1). (B.12)

Let {un} be a subsequence of {an} such that unω
2
un → σ , σ ∈

[0,∞]. Such subsequences always exist becausewe allowσ to take
values in the extended real space. Then,

AsySZol(α) = lim
n→∞

Prun

u1/2
n |QLRun |/(ωun ∨ u−1/2

n bun) > zα/2

.

(B.13)

If σ < ∞, then by Lemma 6(a) and bn → ∞,

lim
n→∞

Prun

u1/2
n |QLRun |/(ωun ∨ u−1/2

n bun) > zα/2


≤ lim
n→∞

Prun

un|QLRun | > bunzα/2


= 0 < α. (B.14)

If σ = ∞, then by Lemma 6(b) and n−1/2bn → 0,

lim
n→∞

Prun

u1/2
n |QLRun |/(ωun ∨ u−1/2

n bun) > zα/2


≤ lim
n→∞

Prun

u1/2
n |QLRun |/ωun > zα/2


= α. (B.15)

Therefore, by (B.13)–(B.15), AsySZol(α) ≤ α.
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(b) Let µ ∈ Hol
0 satisfy P∗

µ ≠ Q ∗
µ . By Assumption 6, such a µ

exists. Then, ω2
µ > 0. By Lemma 6(b), under µ, ω2

n →p ω
2
µ > 0.

Also, by Lemma 6(b), under µ, n1/2QLRn/ωn →d N(0, 1). Because
n−1/2bn → 0, we have

lim
n→∞

Prµ

n1/2

|QLRn|/(ωn ∨ n−1/2bn) > zα/2


= α. (B.16)

By definition, AsySZol(α) ≥ limn→∞ Prµ

n1/2

|QLRn|/(ωn ∨

n−1/2bn) > zα/2

. Thus, we have AsySZol(α) ≥ α. Combining this

with part (a), we obtain the desired result. �

Proof of Theorem 3. First by Lemma A.3(b) and condition (iii)
Definition H, we have {γ̂n(θ) : θ ∈ Θ} ⊆ Γ m

M and {λ̂n(β) : β ∈

B} ⊆ Γ
g
M with probability approaching one. Thus, with probability

approaching one,
√
nQLRn =

√
n(max

θ∈Θ
min
γ∈Γm

M

Mn(γ , θ)

− max
β∈B

min
λ∈Γ

g
M

Nn(λ, β)). (B.17)

Rewrite the r.h.s. by adding and subtracting terms, and we get
√
nQLRn =

√
n(max

θ∈Θ
min
γ∈Γm

M

Mn(γ , θ)− max
θ∈Θ

min
γ∈Γm

M

Mµ(γ , θ))

−
√
n(max

β∈B
min
λ∈Γ

g
M

Nn(λ, β)− max
β∈B

min
λ∈Γ

g
M

Nµ(λ, β))

+
√
n(M∗

µ − N ∗

µ ), (B.18)

where the first equality holds by Lemma A.3(b) and condition (iii)
Definition H. By Lemma A.2(a), we have√n(max

θ∈Θ
min
γ∈Γm

M

Mn(γ , θ)− max
θ∈Θ

min
γ∈Γm

M

Mµ(γ , θ))


≤ sup

φ∈Θ×Γm
M

ν0n (φ) = Op(1). (B.19)

Similarly,
√n(maxβ∈B minλ∈Γ g

M
Nn(λ, β) − maxβ∈B minλ∈Γ g

M

Nµ(λ, β))

 = Op(1). Also, by Lemma 2(b),

√
n(M∗

µ − N ∗

µ ) =
√
n(exp(−d(P , µ))− exp(−d(Q, µ)))

→ ∞. (B.20)

Therefore, for any C > 0, limn→∞ Prµ(
√
nQLRn > C) = 1.

Now for the denominatorωn, we have

Eµ[ω2
n] ≤ Eµ


sup

(θ ′,γ ′,β ′,λ′)∈Θ×Γm
M ×B×Γ g

M

n−1
n

i=1


exp(γ ′mi(θ))

− exp(λ′gi(β))
2 

≤ Eµ


2 sup
(θ ′,γ ′,β ′,λ′)′∈Θ×Γm

M ×B×Γ g
M

n−1
n

i=1


exp(2γ ′mi(θ))

+ exp(2λ′gi(β))
 

≤ 2n−1
n

i=1


Eµ sup

(θ ′,γ ′)′∈Θ×Γm
M

exp(2γ ′mi(θ))

+ Eµ sup
(β ′,λ′)′∈B×Γ g

M

exp(2λ′gi(β))



≤ 2M, (B.21)

where last inequality holds by condition (v) of Definition H.
Therefore,ω2

n = Op(1).
Therefore, for any C > 0, limn→∞ Prµ(

√
nQLRn/ωn > C) = 1.

This shows part (a).
Part (b) follows becauseωn ∨ (n−1/2bn) ≥ ωn. �

Proof of Theorem 4. The proof is the same as that for Theorem 3
except with µn in place of µ and with (B.20) modified as follows:
√
n(M∗

µn
− N ∗

µ ) = exp(−d̃n)
√
n(−d(P , µn)+ d(Q, µn))

= −(exp(−d(P , µ0))+ op(1))
√
n(d(P , µn)− d(Q, µn)),

(B.22)

where d̃n lies in between d(P , µn) and d(Q, µn). Because d(P , µ0)
< ∞, exp(−d(P , µ0))+ o(1) > ε eventually as n → ∞ for some
ε > 0. Therefore,
√
n(M∗

µn
− N ∗

µn
) → ∞. � (B.23)

Appendix C. Proof of the main lemmas

Proof of Lemma 1. We only need to show parts (a)–(b) because
part (c) is analogous.

(a) By Assumption 1(a)–(b), p∗

θ,µ is a well defined density
function. The proof here is similar to that of the second part of
Theorem 3.1 in Csiszár (1975). Let P be a distribution in Pθ such
that P ≪ µ and let pµ denote the density of P with respect to µ,
then

d(P, µ)− d(P, P∗

θ,µ) =


log pµdP −


log(pµ/p∗

θ,µ)dP

=


log p∗

θ,µdP

= − log

Eµ exp(γ ∗

µ(θ)
′m(Xi, θ))


+ γ ∗

µ(θ)
′EPm(Xi, θ)

≥ − log Eµ exp(γ ∗

µ(θ)
′m(Xi, θ)), (C.1)

where the inequality holds because for j ≤ dp, EPmj(Xi, θ) = 0, and
for j ≥ dp + 1, EPmj(Xi, θ) ≥ 0 and γ ∗

µ,j(θ) ≥ 0. Eq. (C.1) implies
that

d(P, µ) ≥ − log Eµ exp(γ ∗

µ(θ)
′m(Xi, θ)). (C.2)

By definition,

d(P∗

θ,µ, µ) =


log p∗

θ,µdP
∗

θ

= − log Eµ exp(γ ∗

µ(θ)
′m(Xi, θ))+ γ ∗

µ(θ)
′EP∗

θ
m(Xi, θ)

= − log Eµ exp(γ ∗

µ(θ)
′m(Xi, θ)), (C.3)

where the last equality holds by the Kuhn–Tucker conditions
from the minimization problem: min

γ∈Rdp ×R
dm −dp
+

Mµ(γ , θ). The

Kuhn–Tucker conditions are

0 = ∂Mµ(γ
∗

µ(θ), θ)/∂γj ≡ EP∗
θ
mj(Xi, θ) for j ≤ dp

0 = γ ∗

µ,j(θ)

∂Mµ(γ

∗

µ(θ), θ)/∂γj


≡ γ ∗

µ,j(θ)EP∗
θ
mj(Xi, θ)

for j ≥ dp + 1. (C.4)
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By (C.2) and (C.3), we have d(P∗

θ,µ, µ) = minP∈Pθ d(P, µ), that
is, P∗

θ,µ is the I-projection of µ on P .
(b) Part (b) is implied by (C.3). �

Proof of Lemma 2. (a) By Assumptions 1(a)–(b) and 2(b), γ ∗
µ(θ)

is the unique minimizer of the function Mµ(γ , θ) and Mµ(γ , θ)
is continuous in (γ , θ). The maximum theorem then implies
that γ ∗

µ(θ) is continuous in θ . Consequently, Mµ(γ
∗
µ(θ), θ) is

continuous in θ . The continuity of Mµ(γ
∗
µ(θ), θ) combined with

Assumption 2(a) implies part (a)
(b) By part (a), supθ∈Θ Mµ(γ

∗
µ(θ), θ) = maxθ∈Θ Mµ(γ

∗
µ(θ), θ).

By Lemma 1(b) and the definition of γ ∗
µ(·), we have part (b).

(c) The arguments for part (c) are analogous to those for parts
(a)–(b). �

Proof of Lemma 3. It suffices to show ρlh(Θn,Θ
∗
n )→p 0 because

ρlh(Bn, B∗
n)→p 0 can be obtained by analogous arguments.

For an arbitrary ε > 0 and an arbitrary sequence {θ̂n ∈ Θn}
∞

n=1,
and arbitrary θ∗

n ∈ Θ∗
n ,

Prn

ρlh(Θn,Θ

∗

n ) > ε


≤ Prn

Mµn(φ

∗

n (θ
∗

n ))− Mµn(φ
∗

n (θ̂n)) > δε


= Prn

[Mµn(φ

∗

n (θ
∗

n ))− Mn(φ̂n(θ
∗

n ))]

+ [ Mn(φ̂n(θ
∗

n ))− Mn(φ̂n(θ̂n))]

+ [ Mn(φ̂n(θ̂n))− Mµn(φ
∗

n (θ̂n))] > δε


= Prn

op(1)+ Mn(φ̂n(θ

∗

n ))− Mn(φ̂n(θ̂n))+ op(1) > δε


≤ Prn(op(1)+ op(1) > δε) → 0, (C.5)

where the first inequality holds by condition (ii) in (5.4), the
second equality holds by Lemmas A.2(e) and A.3(a), and the
second inequality holds because θ̂n maximizes Mn(γ̂n(θ), θ). Thus,
ρlh(Θn,Θ

∗
n )→p 0. �

Proof of Lemma 4. The lemma follows from the derivation be-
lows. For any µ ∈ Hno

0 and θ∗
∈ Θ∗

µ, we have

ω2
µ = M2

µ(γ
∗

µ(θ
∗), θ∗)Eµ[dP∗

µ/dµ− dQ ∗

µ/dµ]
2

≥ Eµ[dP∗

µ/dµ− dQ ∗

µ/dµ]
2
· exp(−2M1)

≥

Eµ|dP∗

µ/dµ− dQ ∗

µ/dµ|
2

· exp(−2M1)

=


|dP∗

µ/dνP∗
µ,Q∗

µ
− dQ ∗

µ/dνP∗
µ,Q∗

µ
|dνP∗

µ,Q∗
µ

2
· exp(−2M1)

≥ inf
P∈P ,Q∈Q


|dP/dνP,Q − dQ/dνP,Q |dνP,Q

2
· exp(−2M1) > 0, (C.6)

where the first equality holds by Lemma 1(a) and Definition H0NO
(Mµ(γ

∗
µ(θ

∗), θ∗) = Nµ(λ
∗
µ(β

∗), β∗)), the first inequality holds
because Mµ(γ

∗
µ(θ

∗), θ∗) = exp(−d(P , µ)) ≥ exp(−M1) by
Lemma 2(b) and condition (i) in Definition H0NO, the second
inequality holds by the convexity of f (x) = x2, the second equality
holds because P∗

µ and Q ∗
µ are absolutely continuous w.r.t. νP∗

µ,Q∗
µ
,

the third inequality holds because P∗
µ ∈ P and Q ∗

µ ∈ Q, and the
last inequality holds by Definition NO. �

Proof of Lemma 5. It suffices to show that ρlh(Θn,Θ
∗
n ) = Op

(n−1/2) because the remainder is analogous. We use the consis-
tency already shown in Lemma 3: ρlh(Θn,Θ

∗
n )→p 0.

Take an arbitrary sequence {θ̂n ∈ Θn}
∞

n=1. Let {θ∗
n ∈ Θ∗

n }
∞

n=1 be
a sequence such that ∥θ∗

n − θ̂n∥
2

≤ ρ2
lh(θ̂n,Θ

∗
n ) + o(n−1/2). The

proof is based on the quadratic approximation of Mn(φ̂n(θ̂n)) −
Mn(φ
∗
n (θ

∗
n )) and that of Mµn(φ̂n(θ̂n)) − Mµn(φ

∗
n (θ

∗
n )). The ba-

sic idea is from Andrews (1999), but the procedure is more in-
volved here because (a) we deal with a saddle-point estimation
problem instead of a extremum estimation problem, (b) after pro-
filing out the first step minimization parameter γ , the criterion
functions Mn(φ̂n(θ)) and Mµn(φ

∗
n (θ)) are non-differentiable in

θ , and (c) there is no straightforward way of writing down the
left/right derivatives w.r.t. θ . We construct quadratic bounds for
the centralized population and sample criterion functions. Specif-
ically, we show below that

(i)
 Mn(φ̂n(θ̂n))− Mn(φ

∗

n (θ
∗

n ))


−

Mµn(φ̂n(θ̂n))− Mµn(φ

∗

n (θ
∗

n ))


= Op(n−1)+ Op(n−1/2) · ∥θ̂n − θ∗

n ∥

+ op(1) · ∥θ̂n − θ∗

n ∥
2,

(ii) Mn(φ̂n(θ̂n))− Mn(φ
∗

n (θ
∗

n )) ≥ Op(n−1), and
(iii) Mµn(φ̂n(θ̂n))− Mµn(φ

∗

n (θ
∗

n )) ≤ Op(n−1)− C
·

(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


,

(C.7)

where C and δ are the positive constants in condition (iv) of Defi-
nition H0OL. Conditions (i)–(iii) in (C.7) imply that

Op(n−1) ≤ Op(n−1/2) · ∥θ̂n − θ∗

n ∥ + op(1) · ∥θ̂n − θ∗

n ∥
2

− C ·

(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


= −C∥θ̂n − θ∗

n ∥
2
+ Op(n−1/2) · ∥θ̂n − θ∗

n ∥

+ op(1) · ∥θ̂n − θ∗

n ∥
2
+ C · o(n−1), (C.8)

where the equality holds with probability approaching one be-
cause ∥θ̂n − θ∗

n ∥
2
− o(n−1)→p 0 by Lemma 3. The above equation

implies that ∥θ̂n − θ∗
n ∥ = Op(n−1/2). Therefore, the desired result,

ρlh(Θ̂n,Θ
∗
n ) = Op(n−1/2), holds since θ̂n is arbitrarily chosen fromΘn.

Now, we show condition (i) in (C.7). We have Mn(φ̂n(θ̂n))− Mn(φ
∗

n (θ
∗

n ))

−

Mµn(φ̂n(θ̂n))− Mµn(φ

∗

n (θ
∗

n ))


=

∂ Mn(φ

∗

n (θ
∗

n ))/∂φ
′
− ∂Mµn(φ

∗

n (θ
∗

n ))/∂φ
′


×

φ̂n(θ̂n)− φ∗

n (θ
∗

n )


+ 2−1φ̂n(θ̂n)− φ∗

n (θ
∗

n )
′
∂2 Mn(φ̃n)/∂φ∂φ

′

− ∂2Mµn(φ̄n)/∂φ∂φ
′

φ̂n(θ̂n)− φ∗

n (θ
∗

n )


= Op(n−1/2) · ∥φ̂n(θ̂n)− φ∗

n (θ
∗

n )∥

+ op(1) · ∥φ̂n(θ̂n)− φ∗

n (θ
∗

n )∥
2 (C.9)

where both φ̃n and φ̄n lie on the line segment joining φ̂n(θ̂n) and
φ∗
n (θ

∗
n ) and they are not necessarily the same, the first equal-

ity holds by second-order Taylor expansions of Mn(φ̂n(θ̂n)) and
Mµn(φ̂n(θ̂n)) around φ∗

n (θ
∗
n ), the second equality holds by Lem-

mas A.2(d) and A.4(a). Now observe that

∥φ̂n(θ̂n)− φ∗

n (θ
∗

n )∥
2

= ∥γ̂n(θ̂n)− γ ∗

n (θ
∗

n )∥
2
+ ∥θ̂n − θ∗

n ∥
2

≤ 2∥γ̂n(θ̂n)− γ ∗

n (θ̂n)∥
2

+ 2∥γ ∗

n (θ̂n)− γ ∗

n (θ
∗

n )∥
2
+ ∥θ̂n − θ∗

n ∥
2

≤ (
√
2∥γ̂n(θ̂n)− γ ∗

n (θ̂n)∥

+
√
2∥γ ∗

n (θ̂n)− γ ∗

n (θ
∗

n )∥ + ∥θ̂n − θ∗

n ∥)2

= (Op(n−1/2)+ Op(∥θ̂n − θ∗

n ∥))2 (C.10)

where the first inequality holds by the triangular inequality and
the convexity of the square function, the second inequality holds
by (a + b + c)2 ≥ a2 + b2 + c2 for a, b, c ≥ 0 and the equality
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holds by Lemma A.3(b)–(c). This combined with Eq. (C.9) implies
condition (i) in (C.7).

Condition (ii) in (C.7) is implied byMn(φ̂n(θ̂n))− Mn(φ
∗

n (θ
∗

n )) ≥ Mn(φ̂n(θ
∗

n ))− Mn(φ
∗

n (θ
∗

n ))

= [∂ Mn(φ
∗

n (θ
∗

n ))/∂γ
′
]

γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n )


+ 2−1γ̂n(θ∗

n )− γ ∗

n (θ
∗

n )
′
[∂2 Mn(φ̃n)∂γ ∂γ

′
]

×

γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n )


= [∂ Mn(φ
∗

n (θ
∗

n ))/∂γ
′
]

γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n )

+ Op(n−1)

≥

∂ Mn(φ

∗

n (θ
∗

n ))/∂γ
′
− ∂Mµn(φ

∗

n (θ
∗

n ))/∂γ
′


×

γ̂n(θ

∗

n )− γ ∗

n (θ
∗

n )

+ Op(n−1)

= Op(n−1), (C.11)

where φ̃n lies on the line segment joining φ̂n(θ
∗
n ) and φ

∗
n (θ

∗
n ), the

first inequality holds because Θn is a maximizer of Mn(φ̂n(θ)), the
first equality holds by a Taylor expansion, the second equality holds
by Lemmas A.2(e) and A.3(b) and condition (v) of Definition H,
the second inequality holds by the same arguments as those for
the second inequality in (B.6) and the last equality holds by Lem-
mas A.2(d) and A.3(b).

Condition (iii) in (C.7) is implied by

Mµn(φ̂n(θ̂n))− Mµn(φ
∗

n (θ
∗

n )) =

Mµn(φ̂n(θ̂n))− Mµn(φ

∗

n (θ̂n))


+

Mµn(φ

∗

n (θ̂n))− Mµn(φ
∗

n (θ
∗

n ))


≤

Mµn(φ̂n(θ̂n))− Mµn(φ

∗

n (θ̂n))


− C ·

(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


= −C ·


(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


+ [∂Mµn(φ̂n(θ̂n))/∂γ

′
][γ̂n(θ̂n)− γ ∗

n (θ̂n)]

− 2−1γ̂n(θ̂n)− γ ∗

n (θ̂n)
′
[∂2Mµn(φ̃n)∂γ ∂γ

′
]

×

γ̂n(θ̂n)− γ ∗

n (θ̂n)


= Op(n−1)− C ·

(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


+ [∂Mµn(φ̂n(θ̂n))/∂γ

′
]

γ̂n(θ̂n)− γ ∗

n (θ̂n)


≤ Op(n−1)− C ·

(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


+

∂Mµn(φ̂n(θ̂n))/∂γ

′
− ∂ Mn(φ̂n(θ̂n))/∂γ

′


×

γ̂n(θ̂n)− γ ∗

n (θ̂n)


= Op(n−1)− C ·

(∥θ̂n − θ∗

n ∥
2
− o(n−1)) ∧ δ


, (C.12)

where φ̃n lies on the line segment joining φ∗
n (θ̂n) and φ̂n(θ̂n),

the first inequality holds by condition (iv) of Definition H0OL
and ∥θ̂n − θ∗

n ∥
2

− o(n−1) ≤ ρ2
lh(
Θn,Θ

∗
n ) by design, the sec-

ond equality holds by a Taylor expansion of Mµn(φ
∗
n (θ̂n)) around

φ̂n(θ̂n), the third equality holds by Lemmas A.2(e) and A.3(b), the
second inequality holds by (∂ Mn(φ̂n(θ̂n))/∂γ

′)γ̂n(θ̂n) = 0 and
∂ Mn(φ̂n(θ̂n))/∂γj


= 0 for j ≤ dp
≥ 0 for j > dp both being the Kuhn–Tucker con-

ditions of the minimization problem: min
γ∈Rdp×R

dm−dp
+

Mn(γ , θ̂n),

and the last equality holds by Lemmas A.2(d) and A.3(b). �

Proof of Lemma 6. The lemma is stated in terms of subsequences
{un}

∞

n=1. For notational simplicity, we prove it for the sequence
{n}. All of the arguments go through with {un} in place of {n}. Let
θ̂n ∈ Θn and β̂n ∈Bn be those that satisfyω2

n(θ̂n, β̂n) = ω2
n .

(a) Let {θ∗
n ∈ Θ∗

n }
∞

n=1 be a sequence such that ∥θ∗
n − θ̂n∥

2
≤

ρ2
lh(
Θn,Θ

∗
n ) + o(n−1). Then by Lemma 5, ∥θ∗

n − θ̂n∥ = Op(n−1/2).
We first show nω2
n(θ̂n, β̂n) = Op(1). Observe that

nω2
n(θ̂n, β̂n) ≤

n
i=1

(eγ̂nmi(θ̂n) − eλ̂ngi(β̂n))2

≤ 3
n

i=1

(Λ∗

n,i)
2
+ 3n(φ̂n(θ̂n)− φ∗

n (θ
∗

n ))
′

×


n−1

n
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′


(φ̂n(θ̂n)− φ∗

n (θ
∗

n ))

+ 3n(ψ̂n(β̂n)− ψ∗

n (β
∗

n ))
′


n−1

n
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ ′


× (ψ̂n(β̂n)− ψ∗

n (β
∗

n ))

≡ 3(Wn,1 + Wn,2 + Wn,3), (C.13)

where φ̃n and ψ̃n lie on the lie segment joining φ̂n(θ̂n) and φ∗
n (θ

∗
n )

and the one joining ψ̂n(β̂n) and ψ∗
n (β

∗
n ), respectively, the second

inequality holds by a mean-value expansion and the inequality
(a + b + c)2 ≤ 3(a2 + b2 + c2). In (C.13), Wn,1 = Op(1) because
En
Wn,1

 = nω2
n → σ 2 < ∞. Also, Wn,2 = Op(1) by (B.10),

(C.10) and Lemma 5. Finally, Wn,3 = Op(1) for analogous reasons.
Therefore, nω̂2

n(θ̂n, β̂n) = Op(1)when σ < ∞.
Now we show nQLRn = Op(1). Observe that

nQLRn =

n
i=1

Λ∗

n,i + n
 Mn(φ̂n(θ̂n))− Mn(φ

∗

n (θ
∗

n ))


− n
 Nn(ψ̂n(β̂n))− Nn(ψ

∗

n (β
∗

n ))


= Op(1)+ n
 Mn(φ̂n(θ̂n))− Mn(φ

∗

n (θ
∗

n ))


− n
 Nn(ψ̂n(β̂n))− Nn(ψ

∗

n (β
∗

n ))


= Op(1)+ Op(1)− n
 Nn(ψ̂n(β̂n))− Nn(ψ

∗

n


β∗

n


)


= Op(1)+ Op(1)− Op(1) = Op(1), (C.14)

where the second equality holds because En
n

i=1Λ
∗

n,i

2
=n

i=1


EnΛ∗

n,i

2
= nω2

n → σ 2 < ∞, the third equality holds by
(C.15), and the fourth equality holds for analogous reasons as the
third. Therefore, nQLRn = Op(1).

(b) The proof here is of the same structure as, but slightly
different from, the proof of Theorem 1(a). The difference is caused
by the fact that (i)ω2

n is not bounded away from zero in this lemma
while it is under the conditions of Theorem 1(a), and (ii) the set
estimators are n−1/2-consistent in this lemma while they are not
in Theorem 1(a).

First, we show n1/2QLRn/ωn →d N(0, 1). Let An,1 and An,2 be
the same as in (B.4). Then, by (B.4), the desired result is implied
by (i) ω−1

n n−1/2n
i=1Λ

∗

n,i →d N(0, 1), (ii) An,1 = op(1) and (iii)
An,2 = op(1). Conditions (i)–(ii) are shown below. Condition (iii)
holds for analogous reasons as condition (ii).

By the Lyapunov CLT, (i) holds. The CLT applies because (a)
EnΛ∗

n,i = 0 by condition (ii) of Definition H0OL and Lemma 2(b),
(b) ω−2

n En(Λ∗

n,i)
2

= 1, and (c) En(ω−1
n Λ∗

n,i)
2+δ < ∞ by condition

(iii) of Definition H0OL.
Now we show (ii) An,1 = op(1). Because An,1 = n1/2ω−1

n Mn(φ̂n(θ̂n))− Mn(φ
∗
n (θ

∗
n ))

, (ii) is implied by nω2

n → ∞ and the
following derivation:

Op(n−1) ≤ Mn(φ̂n(θ̂n))− Mn(φ
∗

n (θ
∗

n ))

≤ Op(n−1/2) · ∥θ̂n − θ∗

n ∥ + op(1) · ∥θ̂n − θ∗

n ∥
2
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+Op(n−1)− C · ((∥θ̂n − θ∗

n ∥
2
− o(n−1/2)) ∧ δ)

= Op(n−1), (C.15)

where the first inequality holds by condition (ii) in (C.7) in the proof
of Lemma 5, the second inequality holds by conditions (i) and (iii)
in (C.7), and the equality holds by Lemma 5.

Next, we showω2
n(θ̂n, β̂n)/ω

2
n →p 1. Decomposeω2

n(θ̂n, β̂n)/ω
2
n

in the same way as in (B.8). We show below that Wn,0 = op(1),
Wn,1 →p 1, Wn,2 = op(1) and Wn,3 = op(1) when σ = ∞. These
results together implyω2

n(θ̂n, β̂n)/ω
2
n →p 1.

The first summand Wn,0 →p 0 by n1/2QLRn/ωn →d N(0, 1).
The second summand Wn,1 ≡ ω−2

n n−1n
i=1[Λ

∗

n,i]
2
→p 1 by

LLN. The LLN applies because (a) Enω−2
n [Λ∗

n,i]
2

= 1 and (b)
supn≥1 En[ω−1

n Λ∗

n,i]
2+δ < ∞ by condition (ii) of Definition H0OL.

The termWn,3 is op(1) because

0 ≤ Wn,3

≤ 2ω−2
n (φ̂n(θ̂n)− φ∗

n (θ
∗

n ))


n−1

n
i=1

∂eγ̃
′
nmi(θ̃n)

∂φ

∂eγ̃
′
nmi(θ̃n)

∂φ′


× (φ̂n(θ̂n)− φ∗

n (θ
∗

n ))

+2ω−2
n (ψ̂n(β̂n)− ψ∗

n (β
∗

n ))


n−1

n
i=1

∂eλ̃
′
ngi(β̃n)

∂ψ

∂eλ̃
′
ngi(β̃n)

∂ψ ′


× (ψ̂n(β̂n)− ψ∗

n (β
∗

n ))

= op(1), (C.16)

where the inequality holds by the inequality, (a+ b)2 ≤ 2a2 + 2b2
and the equality holds by nω2

n → ∞, (B.10), (C.10) and Lemma 5.
The term Wn,2 is op(1) because 0 ≤

Wn,2
 ≤ 2[Wn,1 · Wn,3]

1/2

by the Cauchy–Schwarz inequality. �

Appendix D. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.jeconom.2015.01.004.

References

Andrews, DonaldW.K., 1988. Laws of large numbers for dependent non-identically
distributed random variables. Econometric Theory 4, 458–467.

Andrews, DonaldW.K., 1992. Generic uniform convergence. Econometric Theory 8,
241–257.

Andrews, Donald W.K., 1994. Empirical process methods in econometrics.
In: Engle, R.F., McFadden, D. (Eds.), Handbook of Econometrics, Vol. 4.
pp. 2247–2294 (Chapter 37).

Andrews, Donald W.K., 1999. Estimation when a parameter is on a boundary.
Econometrica 67, 1341–1383.

Andrews, Donald W.K., Soares, Gustavo, 2010. Inference for parameters defined by
moment inequalities using generalized moment selection. Econometrica 78,
119–157.

Andrews, Donald W.K., Barwick, Panle Jia, 2012. Inference for parameters defined
by moment inequalities: a recommended moment selection procedure.
Econometrica 80, 2805–2826.
Andrews, Donald W.K., Guggenberger, Patrik, 2009. Validity of subsampling and
plug-in asymptotic inference for parameters defined by moment inequalities.
Econometric Theory 25, 669–709.

Andrews, DonaldW.K., Shi, Xiaoxia, 2013a. Inference based on conditionalmoment
inequality models. Econometrica 81, 609–666.

Andrews, Donald W.K., Shi, Xiaoxia, 2013b. Supplement to ‘inference based on
conditional moment inequalities’. Econometrica 81, 609–666.

Andrews, Donald W.K., Berry, Steven, Jia, Panle, 2004. Confidence Regions for
Parameters in Discrete Games with Multiple Equilibria, with an Application to
Discount Chain Store Location. Department of Economics, Yale University.

Berry, Steve, Tamer, Elie, 2006. Identification in models of oligopoly entry.
In: Blundel, Newey, Persson (Eds.), Advances in Economics and Econometrics:
Theory and Applications, Ninth World Congress, Vol. 2. pp. 46–85.

Bugni, F.A., 2010. Bootstrap inference in partially identified models defined by
moment inequalities: Coverage of the identified set. Econometrica 78, 735–753.

Canay, I.A., 2010. El inference for partially identified models: Large deviations
optimality and bootstrap validity. J. Econometrics 156, 408–425.

Chen, Xiaohong, Hong, Han, Shum, Matthew, 2007. Nonparametric likelihood ratio
model selection tests between parametric likelihood and moment condition
models. J. Econometrics 141, 109–140.

Chernozhukov, Victor, Hong, Han, Tamer, Elie, 2007. Estimation and confidence re-
gions for parameter sets in econometric models. Econometrica 75, 1243–1284.

Ciliberto, Federico, Tamer, Elie, 2009. Market structure and multiple equilibria in
the airline industry. Econometrica 77, 1791–1828.

Cox, D.R., 1961. Tests of separate families of hypotheses. In: Proceedings of
the Fourth Berkeley Symposium in Mathematical Statistics and Probability.
University of California Press, Berkeley.

Csiszár, I., 1975. I-divergence geometry of probability distributions and minimiza-
tion problems. Ann. Probab. 3, 146–158.

Gourieroux, Christian, Monfort, Alain, 1994. Testing non-nested hypotheses.
In: Engle, R.F., McFadden, D. (Eds.), Handbook of Econometrics, Vol. 4.
pp. 2583–2637 (Chapter 44).

Hsu, Yu-Chin, Shi, Xiaoxia, 2013. Model Selection Test for Conditional Moment
Inequality Models. Department of Economics, University of Wisconsin at
Madison.

Kitamura, Yuichi, 2000. Comparing Misspecified Dynamic Econometric Models
Using Nonparametric Likelihood, November. Department of Economics,
University of Pennsylvania.

Kitamura, Yuichi, Stutzer, Michael, 1997. An information-theoretic alternative to
generalized method of moments estimation. Econometrica 65, 861–874.

Manski, Charles F., 2005. Partial identification with missing data: Concepts and
findings. Int. J. Approx. Reason. 39, 151–165.

Manski, Charles F., Tamer, Elie, 2002. Inference on regressions with interval data on
a regressor or outcome. Econometrica 70, 519–546.

Mizon, Grayham E., Richard, Jean-Francois, 1986. The encompassing principle and
its application to testing non-nested hypotheses. Econometrica 54, 657–678.

Moon, Hyungsik Roger, Schorfheide, Frank, 2009. Estimation with overidentifying
inequality moment conditions. J. Econometrics 153, 136–154.

Pakes, Arial, 2010. Alternative models for moment inequalities. Econometrica 78,
1783–1822.

Pakes, Ariel, Porter, J., Ho, Kate, Ishii, Joy, 2007. Moment inequalities and their
application. CeMMAP Working Paper No. CWP16/07. Centre for Microdata
Methods and Practice, Institute for Fiscal Studies.

Pesaran, M.H., Weeks, M., 1999. Non-nested hypothesis testing: an overview.
Cambridge Working Paper in Economics No. 9918. Faculty of Economics,
University of Cambridge.

Ramalho, Joaquim J.S., Smith, Richard J., 2002. Generalized empirical likelihood
non-nested tests. J. Econometrics 107, 99–125.

Rivers, Douglas, Vuong, Quang, 2002. Model selection tests for nonlinear dynamic
models. Econom. J. 5, 1–39.

Romano, J.P., Shaikh, A.M., 2010. Inference for the identified set in partially
identified econometric models. Econometrica 78, 169–211.

Santos, Andres, 2011. Instrumental variable methods for recovering continuous
linear functionals. J. Econometrics 161, 129–146.

Shi, Xiaoxia, 2015. A nondegenerate vuong test. Quant. Econ. (forthcoming).
Tamer, Elie, 2003. Incomplete simultaneous discrete responsemodel withmultiple

equilibria. Rev. Econom. Stud. 70, 147–165.
Vitorino, Maria A., 2012. Empirical entry games with complementarities: An

application to the shopping center industry. J. Marketing Res. 49, 175–191.
Vuong, Quang H., 1989. Likelihood ratio tests for model selection and non-nested

hypotheses. Econometrica 57, 307–333.

http://dx.doi.org/10.1016/j.jeconom.2015.01.004
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref1
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref2
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref3
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref4
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref5
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref6
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref7
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref8
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref9
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref10
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref11
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref12
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref13
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref14
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref15
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref16
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref17
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref18
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref19
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref20
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref21
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref22
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref23
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref24
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref25
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref26
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref27
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref30
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref31
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref32
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref33
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref34
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref35
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref36
http://refhub.elsevier.com/S0304-4076(15)00013-5/sbref37

	Model selection tests for moment inequality models
	Introduction
	Model selection problems
	Preliminaries on the pseudo-distance measure
	The dual problem
	The pseudo-true set and the pseudo-true distribution

	Model selection tests
	Test statistics
	Tests

	Asymptotic size --- non-overlapping case
	Asymptotic size --- overlapping case
	Power properties of the tests
	Simulation
	Acknowledgments
	Appendix
	Auxiliary lemmas
	Proof of the theorems
	Proof of the main lemmas
	Supplementary data
	References


