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Nonlinear Cointegrating Regression

We deal with the nonlinear regression model:

Yt = β0g(Xt ,π0) + εt .

g is known up to parameter π0,

Xt is I (1): Xt = Xt�1 + vt , vt stationary.

εt : martingale di¤erence sequence.

β0: loading coe¢ cient, unknown.

Yt may or may not be I (1): nonlinear transform relates variables with
di¤erent memory status.
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Weak Identi�cation

If β0 = 0, π0 is not identi�ed

If β0 is close to zero, π0 is weakly identi�ed.

β0 close to zero: Yt is local to a martingale di¤erence sequence.

A potentially good model for stock market returns, as Yt is only
weakly predictable by an integrated Xt .
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What�s the Problem?

Park and Phillips (2001) study NLS estimators of such a model
assuming strong ID.

Their asymptotic results are misleading under weak ID.

Extreme case: β0 = 0:

�π0 is not identi�ed,

Nonlinear least square estimator π̂n should be no where near π0.

But strong ID asymptotics would suggest: π̂n !p π0.
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What�s the Problem?

In a less extreme case, β0 is close to zero.

π0 is weakly identi�ed.

The exact distribution of π̂n is not approximated well by the
asymptotic distributions derived under strong ID.

Not only π̂n is a¤ected. β̂n is also a¤ected because the estimation of
β depends on the quality of the estimation of π0.

Con�dence intervals based on the strong ID asymptotic theory are
useless under weak ID.
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Contributions

Develop a new local limit theory that approximate the distributions of
π̂n and β̂n uniformly well regardless of identi�cation strength.

Construct weak identi�cation-robust con�dence intervals.

Show that the minimum coverage probability of those robust
con�dence intervals converges to the nominal level.

Uniform weak convergence of (properly scaled) ∑n
t=1 g(Xt ,π)ut is

proved on the way.
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Local Limit Theory

Let the true parameters to drift with sample size: denote the true
parameter sequence by βn

Allow βn to drift to zero.

By doing this, we can mimic the weak identi�cation situation.

Derive the asymptotic distribution of the properly scaled and centered
NLS estimators under the drifting sequences.
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Nonlinear Least Square

We consider the NLS estimators:�
β̂n, π̂n

�
= argmin

β,π
Qn(β,π)

Qn(β,π) = n�1 ∑n
t=1 (Yt � βg(Xt ,π))2.

Concentrate π out:

Qn(π) = n�1 ∑n
t=1

�
Yt � β̂n (π) g(Xt ,π

�
)2,

where

β̂n (π) =
∑n
t=1 Ytg(Xt ,π)

∑n
t=1 g2(Xt ,π)
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Consistency and Asymptotic Distributions

It turns out:

�
Qn(π)� n�1 ∑n

t=1 Y
2
t

�
= �n

�1 (∑n
t=1 Ytg(Xt ,π))

2

∑n
t=1 g2(Xt ,π)

=
n�1 (∑n

t=1 utg(Xt ,π) + βn ∑n
t=1 g(Xt ,πn)g(Xt ,π))

2

∑n
t=1 g2(Xt ,π)

If βn drifts to zero slow, the second term dominates, π̂n !p π0.

If βn drifts to zero fast, the second term does not dominate, π̂n has
random limit.
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Consistency and Asymptotic Distributions

Asymptotic distributions of π̂n � π0 (properly scaled) are derived
with more tedious algebra.

So are the consistency and asymptotic distribution of β̂n.

Note that I haven�t told you what counts as "slow" or "fast".
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Drifting Rates

n�1 (∑n
t=1 utg(Xt ,π) + βn ∑n

t=1 g(Xt ,πn)g(Xt ,π))
2

∑n
t=1 g2(Xt ,π)

The threshold drifting rates of βn depends on the convergence rates
of ∑n

t=1 utg(Xt ,π) and ∑n
t=1 g(Xt ,πn)g(Xt ,π).

Those depend on the functional form of g ,

because Xt is I (1).

This di¤ers from the stationary case (Andrews and Cheng (2010))
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Drifting Rates

We study two types of functions g .

Integrable functions:
R
g(x ,π)dx < ∞.

n�1/4 ∑nt=1 utg(Xt ,π)!d L (1, 0)
1/2 Z (π)

n�1/2 ∑nt=1 g(Xt ,πn)g(Xt ,π)!d L (0, 1)
R
g(x ,πn)g(x ,π)dx

Therefore, n�1/4 is the threshold drifting rate.

n1/4βn ! ∞: "slow" "near strong ID"

n1/4βn ! c < ∞: "fast" "weak ID"
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Drifting Rates

Asymptotically Homogeneous functions: functions that are
asymptotically equivalent to xκ.

Asymptotic order usually depends on π

Convergence rates of those covariance processes depend on the
asymptotic order

Thus, the threshold drifting rate of βn depends on the asymptotic
order of g (and through which depends on π)
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Con�dence Intervals

The asymptotic distributions of π̂n are rather tedious looking, but we
can characterize it in the following way:

dn β̂n(π̂n � π0)!d

�
T (c ,π0) if dnβn ! c 2 R
T (∞,π0) if dn jβn j ! ∞.

Thus, the critical value for a robust C.I. can be:

q̂ =
�
supc q1�α (jT (c , π̂n) j) if kn

��β̂n�� � 1
q1�α (jT (∞, π̂n) j) if kn

��β̂n�� > 1.
where kn = o (dn).
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Con�dence Intervals

The con�dence interval is asymptotically valid:

infβ,π Prβ,π
���dn β̂n(π̂n � π0)

�� � q̂�! α.

Robust con�dence intervals for β maybe constructed in a similar
fashion.
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A Technical Contribution

We show for integrable functions:

n�1/4 ∑n
t=1 utg(Xt , �) =) L (1, 0)1/2 Z (�) ,

where Z (�) is a Gaussian process with covariance kernel
σ2u
R
g(x ,π)g(x ,π0)dx .

We show for asymptotically homogeneous functions:

n�1/2κ�1n (�)∑n
t=1 utg(Xt , �) =)

Z
h (V , �) dU,

where κn (�) is the asymptotic order of the function, (U,V ) is a
vector Brownian motion.
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Summary

We developed a local limit theory for NLS estimators of the weakly
identi�ed cointegrating regression model.

We constructed weak-identi�cation-robust con�dence intervals for the
parameters based on the local limit theory.

We showed the uniform weak convergence of the covariance process
between g(Xt ,π) and ut , strengthening the results in Park and
Phillips (2001).
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