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Abstract

In this paper, we propose a two-step semi-nonparametric estimator for the widely

used random coefficients logit demand model. The approach applies to the same setup

as Berry, Levinsohn, and Pakes (1995, BLP)-type of models with many products, but

has the advantage of not requiring computing demand inversion. In particular, the

first step of our approach estimates the fixed coefficients via a computationally very

easy linear sieve generalized method of moments (GMM). The second step uncovers the

distribution of the random coefficient via a sieve minimum distance or GMM procedure.

We show identification and derive the asymptotic properties of the estimator in a large

market environment. Monte Carlo simulations and empirical illustrations support the

theoretical results and demonstrate the usefulness of our estimator in practice.
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1 Introduction

Demand estimation for differentiated products plays a central role in modern empirical

industrial organization. The groundbreaking works of Berry (1994) and Berry et al. (1995)

(henceforth, BLP) provide an important framework for analyzing aggregate demand by

jointly modeling consumer preference heterogeneity and addressing price endogeneity. In

this framework, consumer preference heterogeneity is represented by random coefficients,

and price endogeneity is explicitly modeled by the dependence of price on a market/product

level demand shock. By inverting the demand system and imposing a mean independence

assumption on the demand shock with instrumental variables, a nested fixed point generalized

method of moment (GMM) estimator can be employed to estimate the model. The framework

has been used extensively to estimate demand in various markets/industries, which in turn

provides bases for analyzing market outcomes and policy issues, see Berry and Haile (2014)

for a synthesis of the empirical literature applying the BLP framework.

Nevertheless, estimating a flexible model within the BLP framework is still a challenging

task for many empirical applications. First, the standard estimation procedure, nested

fixed point GMM, is computationally intensive and can be numerically unstable (see the

discussions in Knittel and Metaxoglou (2014)). Although there has been important progress

on this issue, e.g., Dubé et al. (2012), Lee and Seo (2015), and Conlon and Gortmaker

(2020), among others, computational complexity is a hurdle for many applied researchers.

Furthermore, largely because of this difficulty, researchers have to impose strong parametric

assumptions on the distribution of random coefficients, e.g., normal distribution (almost

exclusively used in practice) to reduce the number of parameters and thus to simplify the

estimation problem.

The main contribution of this paper is a two-step semi-nonparametric estimator for

the random coefficients logit model that is computationally easy to implement, and as a

result, makes more flexible parametric and even nonparametric specifications of random

coefficients feasible. The approach applies to BLP-type models with many products but has
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the advantage of not requiring costly numerical demand inversion.

In the first step, we transform the original demand system into a partial linear model,

where the linear part captures the utility contribution of the product/market characteristics

with fixed (non-random) coefficients, and the nonparametric part captures that of those

with random coefficients. Approximating the nonparametric part with a linear sieve, one

can easily estimate the partial linear model with 2SLS or linear GMM. This step formalizes an

approach for researchers to quickly estimate the fixed (non-random) coefficients on product/market

characteristics without even specifying the distribution of the random coefficients. In fact, it

is a common practice among empirical researchers to add polynomial terms of the product

characteristics in a logit regression. Our theory confirms that this is a useful way to control

the effects of the random coefficients.1 2

In the second step, we substitute the estimated mean utility from the first step back into

the original demand system and estimate the distribution of random coefficients by minimum

distance (MD) or GMM. The random coefficient distribution can be parametric or non-

parametric. When it is non-parametric, we propose suitable sieve approximations designed

for distribution functions. Since our approach avoids costly numerical demand inversion,

allowing a flexible sieve approximation for the random coefficient distribution is much more

computationally tractable than in the standard approach. We believe this is valuable in

many applications. For example, the shape of the random coefficient distribution itself may

be of central interest when we want to understand the distributional impacts of product

characteristics on demand or to analyze the welfare implications of certain event or policy.

Moreover, the shape of the random coefficients distribution may have important implications

on the substitution patterns among products such as cross-product price elasticities. In some

cases, normal random coefficients may have undesirable implications for the substitution

1Bordley (2013) provides a justification for adding quadratic terms under the assumptions that both the
random coefficients and the product characteristics with random coefficients are normally distributed and
that the inclusive value converges to a deterministic limit. We do not impose either assumption.

2Recently, Salanié and Wolak (2019) propose a fully linear model to approximate the BLP model; their
estimator can be interpreted as a second-order truncation of ours.
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pattern in large markets. A more flexible random coefficient distribution may then be

necessary to generate realistic substitution patterns.3

The key for our approach to work is the logit preference shock and the large number of

products (J) framework. The logit shock is needed to write the demand model as a partial

linear equation in the first step. It rules out interesting models like probit, ordered logit,

or pure characteristic models. But since the mixed multinomial logit model is a workhorse

model in empirical IO, our specification does cover a large class of models used in empirical

work.4 The large J framework is necessary to treat the non-linear part of the partial linear

equation as a functional parameter. The large J asymptotic theory is less straightforward

than the large T (number of markets) one, simply because products in the same markets

interact with each other and as a result, it is difficult to characterize the dependence among

them. We adopt the triangular array framework of Berry et al. (2004), which relies on

the conditional independence of the unobservable product characteristics for deriving the

asymptotic properties of the estimator.5 Simulations show that our estimator works well for

J ’s as small as 5. In demand estimation data sets, it is common to have J bigger than 5.6

Our estimator draws on the nonparametric instrumental variable literature (e.g. Ai and

Chen (2003), Chen and Pouzo (2015), Newey and Powell (2003), Hall and Horowitz (2005),

and Chen and Christensen (2018)). We modify the standard asymptotic theory to handle two

special features of our setting. The first is that products in oligopoly markets are dependent

by design and the dependence may not resemble time series or standard spatial dependence.

As mentioned above, we deal with this using the triangular array framework of Berry et al.

3For example, in Supplemental Appendix S3, we show that all the cross-product elasticities go to zero at
the rate 1/J as the number of products J goes to infinity if random coefficients are normally distributed, but
that needs not to be the case with a thicker-tailed distribution for the random coefficients. A model with
all cross-product elasticities drifting to zero at the same rate provides a poor approximation to many of the
large markets studied in industrial organization; see Ackerberg and Rysman (2005) for related discussions.

4Indeed, multinomial probit models can get computationally prohibitive fast as J increases, which
partially explains the popularity of logit-based models. In supplemental Appendix S4.4, we investigate
the performance of our estimator when the logit shock is misspecified.

5It may be possible to generalize this to allow appropriate weak dependence between the unobserved
product quality ξjt’s, possibly using techniques in Chiang et al. (2021). We leave this for future work.

6For other papers on the asymptotic theory for BLP models, see Freyberger (2015), Armstrong (2016)
and Moon et al. (2018).
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(2004). The second special feature is that the true value of the functional parameter in the

partial linear equation, although constant across products, is random. As unconventional as

a random true value may seem, we show that it can be handled by similar arguments as those

in the seminal works of Ai and Chen (2003) and Chen and Pouzo (2015) after strengthening

the identification condition to a uniform one (over a deterministic functional space). We

verify the uniform identification condition using the spectrum decomposition approach of

Hall and Horowitz (2005) in Supplemental Appendix S2.1.

In the growing J environment, the identification of the random coefficients logit model

has not been studied in the literature. We provide a simple argument for the nonparametric

point identification of the distribution of random coefficients. The argument is inspired by

that in Fox et al. (2011, 2012) and Fox et al. (2016). However, our approach is very different

from Fox et al. (2011, 2012) and Fox et al. (2016): While they require an appropriate supply-

side model in order to handle price endogeneity, we address the endogeneity problem in the

first step using instrumental variables obviating the need to specify a supply-side model.

Our identification result also contributes to the growing literature on semi/non-parametric

identification of the aggregate demand model including Berry and Haile (2014), Dunker et al.

(2017), Compiani (2018), Reynaert and Verboven (2014), Gandhi and Houde (2016). None of

these papers study the large J setting that we do. More generally, the result also contributes

to the literature on non-parametric identification of discrete choice models including Fox and

Gandhi (2016) and Lewbel (2000).

We conduct Monte Carlo simulations to examine the finite sample performance of our

estimator and to compare it with the standard parametric BLP estimator. We find that

our semi-nonparametric estimator achieves similar performance to the parametric version

when the parametric assumption on the distribution of random coefficients is correct, which

suggests that giving up the parametric assumption does not result in much efficiency loss.

More importantly, the semi-nonparametric estimator outperforms the parametric version

when the parametric assumption is incorrect, and thus has the virtue of being robust to
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misspecification. The findings are robust across different choices of sieve spaces and criterion

functions. Finally, we apply our approach to estimating demand using data from Berry et al.

(1995)’s application as well as the Chinese new car market and obtain meaningful results.

The rest of the paper is organized as follows. Section 2 lays out the basic setup. Section

3 describes our semi-nonparametric estimator. Section 4 develops the asymptotic theory.

Sections 5 and 6 report the results of Monte Carlo experiments and the first empirical

application. And Section 7 concludes. Additional identification results, technical proofs,

and the second empirical application are in the Supplemental Appendix.

2 Random Coefficients Logit Demand Model

2.1 Setup

We consider the standard BLP framework for aggregate demand. Each market t = 1, ..., T

consists of a cross-section of differentiated products, labeled by j = 0, 1, ..., Jt, and a population

of ex-ante identical consumers. The product labeled by 0 is the outside option; each

inside product j ≥ 1 in market t is characterized by a K-dimensional vector of observable

characteristics Xjt (typically including price) and an unobserved characteristic ξjt ∈ R. To

simplify notation, we suppress the subscript t in Jt in the following discussions but our

method applies to the case with varying Jt without a problem.

Consumer preference is represented by a standard linear random utility model as in Berry

(1994), i.e., the utility that consumer i derives from choosing product j in market t is

uijt = δjt +X ′
2,jtvi + εijt, (1)

where the mean utility takes the form of a linear index

δjt = X ′
1,jtβ

0 + ξjt. (2)
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Here, we have partitioned Xjt into (X1,jt, X2,jt) ∈ X1 × X2 ⊆ Rdx1 × Rdx2 , dx1 + dx2 = K,

to distinguish product characteristics without and with random coefficients; the vector β0

represents the fixed coefficients, the vector vi comprises random coefficients that jointly follow

an unknown distribution (CDF) F 0 (·) (with PDF f 0 (·)) and εijt is a Type I extreme value

distributed preference shock.7 As a convention, we normalize the location of the model by

setting both the mean utility δ0t and characteristics of the outside option X2,0t to zeroes,

that is to make ui0t = εi0t.

Each consumer i chooses a product in market t that maximizes her/his utility. The

aggregation of individual choices yields the aggregate choice probability (i.e., market share)

for each product j = 0, 1, ..., J , i.e.,

σj
(
δt, X2,t; f

0
)
=

∫
exp

(
δjt +X ′

2,jtv
)

1 +
∑J

k=1 exp
(
δkt +X ′

2,ktv
)f 0(v)dv, (3)

where δt := (δ1t, ..., δJt) and X2,t :=
(
X ′

2,1t, . . . , X
′
2,Jt

)′
is a J × dx2 matrix.

The primary empirical objective is to estimate the parameters of interest θ0 = (β0, f 0 (·))

based on the demand system

sjt = σj
(
δt, X2,t; f

0
)
, j = 1, ..., J, ∀t, (4)

where st := (s1t, ..., sJt) (with s0t = 1−
∑J

j=1 sjt > 0) are observed market shares.

2.2 The Standard BLP Estimator

The standard BLP estimator is constructed based on two building blocks:

1. Assume that f 0(·) has a parametric form f(·|λ0) known up to λ0. For any θ0 = (β0, λ0)

and market t, invert the demand system (based on the invertibility results in Berry

7We could extend the model to allow for market-specific distributions of random coefficients, i.e., F 0
t (·),

with more cumbersome notation. The identification of F 0
t (·) would then require sufficient variation of X2,jt

within each market t.
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(1994) and Berry et al. (2013))

sjt = σj
(
δt, X2,t; f(·|λ0)

)
, j = 1, ..., J

to obtain

δjt = σ−1
j

(
st, X2,t; f(·|λ0)

)
, j = 1, ..., J,

where σ−1
j (·, X2,t; f(·|λ0)) is the inverse demand function.

2. Find a set of instrumental variables Zjt such that

E [ξjt|Zjt] = 0, j = 1, ..., J, ∀t. (5)

Condition (5), together with (2), in turn, implies the following moment condition

E
[
σ−1
j

(
st, X2,t; f(·|λ0)

)
−X ′

1,jtβ
0
∣∣Zjt] = 0, j = 1, ..., J, ∀t. (6)

Thus the standard BLP GMM estimator with a parametrically specified f (· |λ) can be

defined as

(β̂, λ̂) = argmin
(β,λ)

∥∥∥∥∥ 1

JT

∑
j,t

{[
σ−1
j (st, X2,t; f (· |λ))−X ′

1,jtβ
]
Zjt
}∥∥∥∥∥

W

, (7)

where ∥g∥2W = g′Wg with a weight matrix W .

In practice, the main hurdle of implementing the BLP estimator comes from the fact that

the inversion
{
σ−1
j (·, X2,t; f (· |λ)) : j = 1, ..., J

}
, which can only be solved numerically (via

e.g. the BLP contraction mapping) for each trial of the parameter λ, is nested in the nonlinear

optimization problem. Getting a stable solution to the nonlinear optimization problem

requires the inversion to be solved repeatedly with high precision which is computationally

expensive; see Knittel and Metaxoglou (2014) for more detailed discussion. In the next
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section, we introduce our semi-nonparametric estimator which offers a new way to address

these challenges.

3 Our Semi-Nonparametric Estimator

3.1 A Transformation to A Partially Linear Model

A key observation that leads to our estimation strategy is the following separability property

of the random coefficients logit model,

sjt =

∫
exp

(
δjt +X ′

2,jtv
)

1 +
∑J

k=1 exp
(
δkt +X ′

2,ktv
)f 0(v)dv

= exp (δjt) ·
∫

exp
(
X ′

2,jtv
)

1 +
∑J

k=1 exp
(
δkt +X ′

2,ktv
)f 0(v)dv. (8)

Next, we divide both sides of (8) by the outside share and take logarithm to obtain

log

(
sjt
s0t

)
= X ′

1,jtβ
0 + log


∫ exp(X′

2,jtv)

1+
∑J

k=1 exp(δkt+X
′
2,ktv)

f 0(v)dv∫
1

1+
∑J

k=1 exp(δkt+X
′
2,ktv)

f 0(v)dv

+ ξjt. (9)

Now observe that log

∫ exp(X′
2,jtv)

1+
∑J

k=1
exp(δkt+X′

2,kt
v)
f0(v)dv∫

1

1+
∑J

k=1
exp(δkt+X′

2,kt
v)
f0(v)dv

 varies across j only via X2,jt. It depends

on the other products’ characteristics δkt and X2,kt only through the so-called inclusive value

(see McFadden (1974))): SJ,t = SJ,t(v) := log
(
1 +

∑J
k=1 exp(δkt +X ′

2,ktv)
)
which does not

vary across j.8 Define

ψ0(x2,jt;SJ,t) = log

∫ exp(x′2,jtv)

exp(SJ,t)
f 0(v)dv∫

1
exp(SJ,t)

f 0(v)dv

 .
8This feature resembles that of the market-specific “price function” proposed by Bajari and Benkard

(2005), in which a product’s price could be written as a function of its own characteristics. The price
function also depends on all the primitives, such as consumer preferences and product characteristics, in a
given market, through terms that do not vary across products.
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Then we have,

log(sjt/s0t) = X ′
1,jtβ

0 + ψ0(X2,jt;SJ,t) + ξjt. (10)

We treat ψ0(·, SJ,t) as a functional parameter, and estimate it along with β0 using partially

linear instrumental variable (PLIV) methods as we detail in later sections. Before going into

the estimation, we would like to remark on the random parameter ψ0(·, SJ,t), which arguably

is an unconventional feature of the partially linear model (10).

First, treating ψ0(·, SJ,t) as a functional parameter is the key to the simple linear structure

of the first step of the estimation procedure that we describe in the next subsection. The

linearity is not preserved if we instead treat SJ,t(·), or δkt : k = 1, . . . , J as the parameter(s).

Also importantly, ψ0(·, SJ,t) subsumes all the unknown δkt : k = 1, . . . , J which would be

incidental parameters and would cause estimation to break down if we insisted on estimating

them individually. Although it is unconventional for a parameter to have a random true

value (at least in the frequentist framework that we adopt), we show in Section 4 below that

standard sieve estimation theory still goes through with some modifications.9

Second, the identification of ψ0(·, SJ,t) is based on the integral equation

∫ ∫
(x′1β

0 + ψ0(x2;SJ,t))fX1,jt,X2,jt|Zjt
(x1, x2|Zjt)dx1dx2

=

∫ ∫
(x′1β + ψ(x2;SJ,t))fX1,jt,X2,jt|Zjt

(x1, x2|Zjt)dx1dx2,

where the left-hand side is identified from the sample joint distribution of log(sjt/s0t) and

Zjt. This differs from the integral equation that standard PLIV models solves in that the left-

hand side is not E[log(sjt/s0t)|Zjt]. In fact, in the large J environment, E[log(sjt/s0t)|Zjt]

may not be identified from the sample distribution of log(sjt/s0t) and Zjt because log(sjt/s0t)

may be strongly dependent across j.

The inclusive value SJ,t is useful to conceptualize our random functional parameter

9To illustrate the usefulness of the idea of a random parameter in the simplest setting possible, we include
an example of a mean estimation in Supplemental Appendix S7.
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ψ0(·, SJ,t), but will serve no purpose beyond that. Thus, to simplify notation, we will from

now on write

ψ0
J,t(·) = ψ0(·, SJ,t)

and treat ψ0
J,t(·) as a function-valued market fixed effect to be estimated.

3.2 A Two-Step Estimator

After writing out the partially linear form, we estimate the structural parameter of interest

(β0, f 0) in two steps. In the first step, we estimate β0, as well as the “reduced form” functions

ψ0
J,t(·)’s; and in the second step, we estimate f 0. If the mean and standard deviation of the

random coefficients are of primary interest, their estimators can be easily deduced from the

estimators of f 0.

To begin, we define some notation. First, we approximate the space of the realizations of

ψ0
J,t(·), denoted as Ψ (Ψ will be rigorously defined in Section 4) by a sieve space ΨkJ ,t, where

kJ is the dimension of the sieve space. In particular, we use the linear sieve ψkJ ,t(X2,jt) :=∑kJ
ℓ=1 ϑℓ,tψℓ(X2,jt), where (ϑ1,t, . . . , ϑkJ ,t) are unknown sieve coefficients to be estimated, and

(ψ1(·), . . . , ψkJ (·)) are user-specified basis functions. The commonly used basis functions

include the polynomial series, the Fourier series, splines and so on. Let β ∈ B ⊆ Rdx1 , θkJ ,t =

(β, ψkJ ,t(·)) and θkJ = (β, ψkJ ,1, . . . , ψkJ ,T ) ∈ ΘkJ , where ΘkJ := B×ΨkJ ,1×· · ·×ΨkJ ,T is the

sieve space for the parameter space Θ := B × ΨT . Also, note that the sieve approximation

should satisfy the restriction that ψkJ ,t(0) = 0 because ψ0
J,t(0) = 0 by definition.

Second, with the conditional mean restriction in (5), we have the freedom to choose the

basis functions of Zjt as instruments. Suppose that we use a vector of functions I ςJ (Zjt) :=

(I1(Zjt)
′, . . . , IςJ (Zjt)

′)′. Then we can define the sample moments as

ḡt(θkJ ,t) :=
1

J

J∑
j=1

gjt(θkJ ,t), (11)

gjt(θkJ ,t) :=
{
log (sjt/s0t)−X ′

1,jtβ − ψkJ ,t(X2,jt)
}
· I ςJ (Zjt).
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Note that the function ψkJ ,t(·) and its associated sieve coefficients (ϑ1,t, . . . , ϑkJ ,t), are free

to vary across markets (t).

Step 1

In the first step, we obtain the estimator of θ0J :=
(
β0, ψ0

J,1(·), ..., ψ0
J,T (·)

)
as the minimizer of

the following GMM criterion function in the space ΘkJ :

θ̂J :=
(
β̂J , ψ̂kJ ,1, . . . , ψ̂kJ ,T

)
= arg min

θkJ∈ΘkJ

L̂(θkJ ), (12)

where

L̂J(θkJ ) :=
T∑
t=1

ḡt(θkJ ,t)
′Ω̂t(θ̃J,t)

−1ḡt (θkJ ,t) ,

Ω̂t(θ̃J,t) := 1
J

∑J
j=1 gjt(θ̃J,t)gjt

(
θ̃J,t

)′
, t = 1, . . . , T , and θ̃t = (β̃J , ψ̃kJ ,t) is a preliminary

GMM estimator with positive definite weighting matrices W1, . . . ,WT , that is,

θ̃J := (β̃J , ψ̃kJ ,1 . . . , ψ̃kJ ,T ) = arg min
θkJ∈ΘkJ

T∑
t=1

ḡt(θkJ ,t)
′Wtḡt(θkJ ,t). (13)

A particularly convenient weight matrix to use when obtaining the preliminary GMM estimator

is W 2sls
t =

[
J−1

∑J
j=1 (I

ςJ (Zjt)I
ςJ (Zjt)

′)
]−1

because this leads to the two-stage least square

estimator of regressing log(sjt/s0t) onX1,jt, and (ψ1(X2,jt), ..., ψkJ (X2,jt)) using the interactions

of I ςJ (Zjt) and the market dummies as instrumental variables. Again, note that this first

step estimation effectively deals with a linear model and thus can be easily implemented in

programs like STATA.

Note that after the first stage estimation, we can obtain the demand shock estimates

ξ̂jt = log
(
sjt
s0t

)
−X ′

1,jtβ̂J−ψ̂kJ ,t(X2,jt) and hence the mean utility estimates δ̂jt = X ′
1,jtβ̂J+ξ̂jt,

which will be used in the second stage estimation. Finally, we define θ̂J,t = (β̂J , ψ̂kJ ,t) for

later use.
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Step 2

In the second step, we estimate f 0(·) nonparametrically. We first approximate f (·) by a

sieve fMJ
(·) in a sieve space FMJ

, and hence use the following approximation:

∫
exp(X ′

2,jtv)

1 +
∑J

k=1 exp(δkt +X ′
2,ktv)

f(v)dv ≃
∫

exp(X ′
2,jtv)

1 +
∑J

k=1 exp(δkt +X ′
2,ktv)

fMJ
(v)dv.

Then we can define a MD estimator as

f̂MD := arg min
fMJ

∈FMJ

T∑
t=1

J∑
j=1

ψ̂kJ t(X2,jt)− log


∫ exp(X′

2,jtv)

1+
∑J

k=1 exp(δ̂kt+X
′
2,ktv)

fMJ
(v)dv∫

1

1+
∑J

k=1 exp(δ̂kt+X
′
2,ktv)

fMJ
(v)dv




2

, (14)

where δ̂jt is obtained from Step 1. Alternatively, we could estimate f 0 by minimizing a GMM

criterion. The GMM criterion has two variants in our case:

f̂GMM1 := arg min
fMJ

∈FMJ

T∑
t=1

¯̂gt(β̂J , fMJ
)′Ω̂t(θ̃J,t)

−1 ¯̂gt(β̂J , fMJ
), (15)

f̂GMM2 := arg min
fMJ

∈FMJ

min
β

T∑
t=1

¯̂gt(β, fMJ
)′Ω̂t(θ̃J,t)

−1 ¯̂gt(β, fMJ
), (16)

where

¯̂gt(β, fMJ
) =

1

J

J∑
j=1

log

(
sjt
s0t

)
−X ′

1,jtβ − log


∫ exp(X′

2,jtv)

1+
∑J

k=1 exp(δ̂kt+X
′
2,ktv)

fMJ
(v)dv∫

1

1+
∑J

k=1 exp(δ̂kt+X
′
2,ktv)

fMJ
(v)dv


·I ςJ (Zjt).

The only difference between the two GMM estimators of f 0 is that (15) takes the first step

estimate β̂J as given while (16) treats β as a nuisance parameter. GMM2 is somewhat more

difficult to compute, but we find in Monte Carlos that it yields better performing estimates

for the mean and standard deviation of the random coefficient distribution.

We would also like to point out that the second step estimation of f 0(·) can be parametric

as well: we just need to replace the sieve approximation fMJ
(·) with a certain parametrization
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f (· |λ) (as in (7)) when implementing our estimator (14). In the Monte Carlo section, we

examine this estimation strategy and find that it achieves a very similar performance as the

standard BLP parametric estimator when f (· |λ) is correctly specified.

3.3 Remarks on the Large J Asymptotic Framework

Before we move on to the formal asymptotic justification for our model in the next section,

a few remarks regarding the asymptotic framework are in order.

As in Berry et al. (2004), we study the limiting behavior of our estimator as the number

of products J → ∞, while keeping T fixed. In our case, the reasons for considering the

large J environment are twofold. From the applied perspective, large markets are common

for many empirical scenarios, e.g., national auto market (Berry et al. (1995)), PC market

(Goeree (2008), Bajari and Benkard (2005)), housing market (Bayer et al. (2007)), online

marketplace (Quan and Williams (2018)), and scanner data with products defined at UPC

level. From the theoretical perspective, the key to the linear structure of the first step of

our estimation procedure is to use the variation within each market for identification as we

treat ψ0
J,t(·) as a parameter.

Despite being empirically relevant, the large J asymptotic framework is controversial in

the literature. The main fear is that as J → ∞, the model could approach a limiting model

which has no meaningful cross-product substitution and hence fails to capture the oligopoly

competition that is central to industrial organization questions.10 However, our asymptotic

framework does not require the model to converge to a limiting model. In particular, the

inclusive value does not need to converge to a deterministic limit. Moreover, even when

there is a limiting model, cross-product substitutions need not vanish as we demonstrate in

an example in Appendix S3. Lastly, even if a limiting model exists in which cross-product

substitutions vanish, this limiting feature is not used in our identification arguments. The

asymptotic framework is only used as a mathematical tool to justify finite J approximations

10Armstrong (2016) quantifies one aspect of this concern by showing that the markup approaches a constant
as J → ∞ under a specific set of assumptions.
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to certain sample statistics. Our Monte Carlo results suggest that even a small J like 5 or

10 is large enough for the estimator to perform well, while J ≥ 5 is very common in practice

and is far from large enough to make cross-product substitution disappear.

4 Asymptotic Theory

In this section, we prove the consistency and asymptotic normality of β̂J and the consistency

of the random coefficients distribution estimator. To begin, we introduce some notation as

follows.

For column vector a, let ∥a∥ be the Euclidean norm. For matrixA, let ||A∥ = (tr(A′A))1/2 .

For X ⊆ Rdx , for any vector a = (a1, . . . , ad)
′ of d integers the differential operator is defined

as

▽a =
∂a.

∂xa11 . . . ∂xadd
,

where a. =
∑d

i=1 ai. For a constant δ0 ∈ R and an integer m0, define the weighted Sobolev

L2 norm on Cm0(X ), the space of m0-times differentiable functions mapping X into R, as

∥g∥m0,2,δ0 :=

( ∑
0≤a.≤m0

∫
X
|▽a.g(x)|2 (1 + x′x)δ0dx

)1/2

,

and let the corresponding weighted Sobolev space of ψt(·) associated with these norms be

Wm0,δ0(X2) := {ψ ∈ Cm0(X2) s.t. ∥ψ∥m0,2,δ0 <∞} (17)

for X2 ⊆ Rdx2 . Let

Ψ = {ψ ∈ Wm0,δ0(X2) : ∥ψ∥m0,2,δ0 ≤ B} (18)

for a finite constant B > 0. Let the square of the “strong norm” on the space of the
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parameter θ := (β, ψ1, . . . , ψT ) ∈ B ×ΨT be

∥θ∥2s = T∥β∥2 +
T∑
t=1

∥ψt∥20,2,δ0 = T∥β∥2 +
T∑
t=1

∫
X2

ψt(x2)
2(1 + x′2x2)

δ0dx2. (19)

4.1 First-Step Estimation: Consistency and Asymptotic Normality

In this subsection, we prove the consistency and asymptotic normality of the estimator

defined in (12) as J → ∞ and T stays fixed. We treat {(Xjt, Zjt, ξjt)}Jj=1 as a triangular

array as the number of products J increases to infinity, which is natural because the marginal

distribution of (Xjt, Zjt, ξjt) may change and the dependence across j may also change as

J increases due to equilibrium firm response to changing market structure as the number of

products increases. We introduce the following assumption on the triangular array.

Assumption 1. (i) The unobserved product characteristics ξjt are conditionally independent

across j given {Zjt}Jj=1 and satisfy E[ξjt|{Zjt}Jj=1] = 0 a.s. for each j and t;

(ii) the random variables {Xjt, Zjt, ξjt}Jj=1 are independent across t.

Remark. Part (i) is identical to the assumptions imposed on the unobserved characteristic

ξ as in Berry et al. (2004). Part (ii) assumes independence across market t but does not

require Xjt and Zjt to be independent across products. The independence across t is not

essential but allows us to write down a relatively simple formula for the asymptotic variance

of β̂J below.

We also impose the following assumption that regulates the parameter space for the first-

stage estimation of β, as well as the moments of relevant variables. Let Zjt be the support

of Zjt. Let Zt be the support of {Zjt}Jj=1.

Assumption 2. (i)For all t and J , ψ0
J,t(·) ∈ Ψ almost surely;

(ii) B is compact with β0 ∈ int(B);

(iii) for m0 in (18): (a) X2 has the uniform cone property defined in Section 4.4 of Adams

(1975); and (b) for X2 bounded, δ0 = 0 and m0 > dx2/2, while for X2 unbounded, m0 > dx2/2
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and δ0 < −1/2;

(iv) For some constants C, c > 0, supj,tE
[
ξ4jt
]
< C, supj,t supz∈Zt

E[ξ2jt|{Zjt}Jj=1 = z] <

C, and infj,t infz∈Zt E[ξ
2
jt|{Zjt}Jj=1 = z] > c;

(v) supj,t supz∈Zjt
E [∥X1,jt∥2|Zjt = z] <∞; and

(vi) supj,t supx2∈X2
|fX2,jt

(x2)/(1 + x′2x2)
δ0| <∞.

Remark. Part (i) is a standard assumption in semi/non-parametric estimation, except that we

need the modifier “almost surely” because our functional parameter is random. Part (ii) and

(iii) are needed to show that the parameter space Θ = B×ΨT is ∥ · ∥s-compact. When X2 is

bounded, Theorem 1 in Freyberger and Masten (2017) implies that Wm0,δ0(X2) is compactly

embedded in the space W0,δ0(X2), and thus Ψ is relatively ∥ · ∥0,2,δ0−compact. Moreover,

Theorem 2 of Freyberger and Masten (2017) implies that Wm0,δ0(X2) is ∥ · ∥0,2,δ0−closed.

Thus, Ψ is ∥ · ∥0,2,δ0−compact and consequently, Θ is compact under ∥ · ∥s because B is

compact. When X2 is unbounded, Theorem 3 of Freyberger and Masten (2017) implies

that Wm0,δ0(X2) is compactly embedded in the space W0,δ0(X2). Moreover, by Lemma 3

of Freyberger and Masten (2017), which reflects Lemma A.1 in Santos (2012), Wm0,δ0 is

∥ · ∥0,2,δ0−closed, and therefore also compact under the norm ∥ · ∥0,2,δ0 , so Θ is compact

under ∥ · ∥s. The bound on δ0 in the unbounded case makes sure that the constant function

belongs to Ψ. Part (iv) is a standard finite moment condition on the error term. Part (v)

imposes mild restrictions on the moments of the covariates. This part together with parts

(i), (ii), and (iv) implies that log(sj/s0) has a bounded second moment.11 And Part (vi)

gives a relationship between the density of x2 and the weight (1 + x′2x2)
δ0 . This is a weak

assumption and allows rather general tail behavior for X2.

By allowing the instrumental function vector I ςJ (Zjt) to grow in dimension as J → ∞, we

are adopting the approach of Donald et al. (2003) to use a growing number of unconditional

11Note that this implies that the inside shares and the outside shares go to zero at the same rate as J
increases, which Berry et al. (2004) impose directly as an assumption. Our Monte Carlo design satisfies this
assumption, as illustrated in the histograms in Figure 3 in Section S6 in the Supplemental Appendix. In
the empirical application reported in Section 6, | log(sjt/s0t)| has a maximum value of 14 with a standard
deviation of 1.38, and in the empirical application reported in Supplemental Appendix S5, it has a maximum
value of 17.5 with a standard deviation of 3.19.
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moments to approximate the conditional moments. The following assumption regulates how

fast the dimension of the sieve space may grow. Let eigmin and eigmax denote the minimum

and the maximum eigenvalues respectively.

Assumption 3. (i) For each ςJ (implicitly dependent on t), there is a constant ζz and matrix

Sz such that for Ĩ ςJ (z) = SzI
ςJ (z), supz∈Zjt

∥Ĩ ςJ (z)∥ ≲ ζz for all j, t, eigmax(Ĩ
ςJ (z)Ĩ ςJ (z)′) ≤

λ̄, and eigmin(Ĩ
ςJ (z)Ĩ ςJ (z)′) > 0 for some constant λ̄;

(ii) for some c > 0, ζ
(2+c)/c
z

√
log ςJ/J = o(1), ζz ≲

√
ςJ ; and ςJ/

√
J → 0.

Remark. Assumption 3 contains mild restrictions on the basis functions, which is commonly

imposed for series estimators. Under Assumption 3, it is without loss of generality to assume

that E [I ςJ (Zjt)I
ςJ (Zjt)

′] is a ςJ×ςJ identity matrix, which we do for the rest of the discussion.

We define the following notation to facilitate our discussion:

ρjt(θt|θ∗t ) := ξjt +X ′
1,jt(β

∗ − β) + (ψ∗
t (X2,jt)− ψt(X2,jt)) (20)

for any θt, θ
∗
t ∈ Θt := B ×Ψ. Let θ0J =

(
β0, ψ0

J,1, . . . , ψ
0
J,T

)
and let θ0J,t = (β0, ψ0

J,t).

The standard consistency proof requires the uniform convergence of the criterion function

L̂J(θ) defined in (12), which is cumbersome to verify due to the estimated weight matrix

Ω̂t(θ̃J,t). Instead, to show the consistency of θ̂J = argminθkJ∈ΘkJ
L̂J(θkJ ), we use a similar

argument as Lemma A1 of Newey and Powell (2003), which only requires us to verify the

uniform convergence of a simpler criterion function

L̃J(θ) :=
T∑
t=1

ḡt(θt)
′W 2sls

t ḡt(θt), (21)

to its population counterpart L̄J(θ|θ0J), where for any (deterministic) pair θ, θ∗ ∈ Θ,

L̄J(θ|θ∗) =
1

J

T∑
t=1

J∑
j=1

E
[
(E [ρjt(θt|θ∗t )|Zjt])

2] . (22)
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We then impose the following conditions which we verify in Supplemental Appendix S2.

Assumption 4. (i) For the sieve approximation of θ0J,t, θ
0
J,kJ ,t

:= argminθ∈ΘkJ ,t=B×ΨkJ
∥θ −

θ0J,t∥s, we have ∥ḡt(θ0J,kJ ,t)∥ = op(1);

(ii) for some generic positive constant C, 1/C ≤ eigmin(Ω̂t(θ̃J,t)) ≤ eigmax(Ω̂t(θ̃J,t)) ≤ C

and 1/C ≤ eigmin

(
W 2sls
t

)
≤ eigmax

(
W 2sls
t

)
≤ C w.p.a.1. for each t = 1, . . . , T .

Remark. Part (i) defines the sieve approximation θ0J,kJ ,t, of θ
0
J,t and posits that the approximation

error vanishes as J → ∞ so that the sample moment evaluated at θ0J,kJ ,t converges to zero,

as if it is evaluated at θ0J,t. Part (ii) requires the eigenvalues of the estimated variance-

covariance matrix Ω̂t(θ̃J,t) with preliminary estimator θ̃J,t and W 2sls
t to be bounded. Both

parts are verified in Supplemental Appendix S2.2.

Assumption 5. (i) For any ε > 0, we have infJ=1,...,∞ infθ,θ∗∈Θ:∥θ−θ∗∥s>ε L̄J(θ|θ∗) > 0;

(ii) supθkJ∈ΘkJ
|L̃J(θkJ )− L̄J(θkJ |θ0J)|

p→ 0 as J → ∞.

Remark. Part (i) is a global identification condition. In this assumption lies our first

key modification to the standard sieve estimation theory to accommodate the random

parameter ψ0
Jt(·): instead of focusing on the identification at one deterministic point in

the parameter space Θ, we require the identification to hold uniformly over the entire

Θ. This accommodates the different values that ψ0
Jt(·) may take in different states of the

world. Part (i) is verified in Section S2.1 in the Supplemental Appendix. Part (ii) is a

uniform convergence condition on the sieve space. Note that the “population” criterion

function L̄J(·|θ0J) is a random function due to the randomness in θ0J , which is our second key

modification to accommodate the random parameter ψ0
Jt(·). Part (ii) is verified in Section

S2.2 in the Supplemental Appendix.

Theorem 1 (Consistency). Suppose that Assumptions 1-5 hold and that the preliminary

estimator θ̃J,t satisfies ∥Ω̂t(θ̃J,t)− 1
J

∑J
j=1 ξ

2
jtI

ςJ (Zjt)I
ςJ (Zjt)

′∥ = op(1) for all t. Then for the

estimator θ̂J defined in (12) , we have
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∥θ̂J − θ0J∥s = op(1).

A well-known fact in the semi-parametric literature is that consistency of the non-

parametric part alone is not enough to establish the asymptotic normality of β̂J , which

typically needs that θ̂J converges to θ0J at a rate faster than J−1/4 under a weaker norm. To

obtain the convergence rate of θ̂J and derive the limiting distribution of β̂J , we introduce

the following notation and some high-level conditions:

Let W̄ be the closure of the linear span of Ψ. Note that by Assumption 2(i) and 0 ∈ Ψ,

the closure of the linear span of Ψ− ψ0
J,t :=

{
ψ − ψ0

J,t : ψ ∈ Ψ
}
is equal to W̄ almost surely.

Let

Σj,J,o = E[ξ2jt|{Zjt}Jj=1], (23)

and ω†
J,t =

(
ω†
J,t,1, . . . , ω

†
J,t,ℓ, . . . , ω

†
J,t,dx1

)
be the solution to

min
ωJ,t,ℓ∈W̄

1

J

J∑
j=1

E
[
E [X1ℓ,jt − ωJ,t,ℓ (X2,jt) |Zjt]2 /Σj,J,o

]

for ℓ = 1, . . . , dx1 . Let Dj,J,t(Zjt) = E
[
X1,jt − ω†

J,t(X2,jt)|Zjt
]
,

V −1
J,t =

1

J

J∑
j=1

E [Dj,J,t(Zjt)Dj,J,t(Zjt)
′/Σj,J,o] , (24)

VJ,β = (
∑T

t=1 V
−1
J,t )

−1, and Idx1 be a dx1 × dx1 identity matrix. Let ω̂†
J,t = (ω̂†

J,t,1, . . . , ω̂
†
J,t,dx1

)

be an estimator of ω†
J,t such that

ω̂†
J,t := min

ωJ,t∈ΨkJ

(
1

J

J∑
j=1

(X1,jt − ωJ,t(X2,jt)) I
ςJ (Zjt)

)′

Ω̂J,t(θ̃J,t)
−1

(
1

J

J∑
j=1

(X1,jt − ωJ,t(X2,jt)) I
ςJ (Zjt)

)
,
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and V̂J,β = (
∑T

t=1 V̂
−1
J,t )

−1 with

V̂ −1
J,t =

(
1

J

J∑
j=1

(
X1,jt − ω̂†

J,t(X2,jt)
)
I ςJ (Zjt)

)′

Ω̂J,t(θ̂t)
−1

(
1

J

J∑
j=1

(
X1,jt − ω̂†

J,t(X2,jt)
)
I ςJ (Zjt)

)
,

where Ω̂J,t(θ̂t) =
1
J

∑J
j=1 gjt(θ̂t)gjt(θ̂t)

′ for t = 1, . . . , T .

Assumption 6. (i) For any sequence λJ ∈ Rdx1 such that supJ ∥λJ∥ <∞,we have

√
Jλ′J

(
β̂J − β0

)
= −λ′JVJ,β

T∑
t=1

{(
1√
J

J∑
j=1

Dj,J,t(Zjt)Σ
−1
j,J,oξjt

)}
+ op(1);

(ii) V̂J,β − VJ,β
p→ 0.

Remark. Part (i) assumes a local linearization of the estimator for β0 and Part (ii) assumes

that V̂J,β is a consistent estimator of VJ,β. We verify Assumption 6 in Supplemental Appendix

S2.2.

Theorem 2. Suppose that Assumptions 1-6 hold. Suppose that for each t, we have both

eigmin(
1
J

∑J
j=1E[Dj,J,t(Zjt)Dj,J,t(Zjt)

′])−1 = O(1) and supj,J,t supz∈Zjt
∥Dj,J,t(z)∥ = O(1).

Then
√
JV̂

−1/2
J,β

(
β̂J − β0

)
d→ N

(
0, Idx1

)
,

where Idx1 is a dx1 × dx1 identity matrix.

Remark. Theorem 2 provides the asymptotic distribution of β̂J when the number of products

J goes to infinity. One can use the above result to construct a 100τ% valid confidence region

for β0 by

[
β̂J ± c1−τ

√
V̂J,β/J

]
, where c1−τ is the 100τ% critical value from a standard normal

distribution.

4.2 Second-Stage Estimation: Consistency

In this section, we show that the MD estimator and the GMM2 estimator proposed in (14)

are consistent estimators of f 0. The GMM1 estimator proposed therein is similar and thus
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omitted. We make heavy use of the norm introduced in Section 4.1. We first introduce the

definition of the density space as follows. Let the parameter space F of f 0 be the space of

probability density functions such that ∥f∥α0,2,µ0 < B0 for some integer α0 > dx2/2, some

bound B0, and some µ0 ∈ R, and let F1 ⊆ · · · ⊆ FMJ
· · · ⊆ F be a sequence of sieve

approximations of F . Define a sup-norm on F as ∥f∥∞ = max0≤a.≤α supv∈V |▽a.f(v)| (1 +

v′v)µ/2, for a µ < µ0.

Let φ0
J,t(v) =

1
J

(
1 +

∑J
j=1 exp

(
δjt +X ′

2,jtv
))

and let gJ,t(x2, v) =
exp(x′2v)

φ0
J,t(v)

. Similarly, let

φ̂J,t(v) =
1
J

(
1 +

∑J
j=1 exp

(
δ̂jt +X ′

2,jtv
))

and ĝJ,t(x2, v) =
exp(x′2v)

φ̂J,t(v)
. Let

GJ,t(x2; f) =

∫
gJ,t(x2, v)f(v)dv and ĜJ,t(x2; f) =

∫
ĝJ,t(x2, v)f(v)dv. (25)

Define the following population criterion function:

QJ(f) = J−1

J∑
j=1

T∑
t=1

EX

[{
ψ0
J,t(X2,jt)− log (GJ,t(X2,jt; f)/GJ,t(0; f))

}2]
, (26)

where EXhJ(X2,jt) =
∫
hJ(x2)dFX2,jt

(x2) for any possibly random function hJ . We make

the following assumption to ensure the point identification of f 0.

Assumption 7. (i) The support of X2,jt, denoted X2,t, contains a bounded open Rdx2 -ball

for some t; denote this open ball by B0.

(ii) supx2∈B0

∫
exp(x′2v)f

0(v)dv <∞.

Remark. Part (i) rules out discrete variables in X2,jt. This is expected because it is not

possible to nonparametrically identify the distribution of a continuous random coefficient

based on discrete variation of the covariate. Part (ii) of the assumption requires that the

random coefficient distribution has an exponential or subexponential tail. This is satisfied

by Gaussian distributions, for example.

Lemma 1. Suppose that Assumptions 1 and 7 hold. Then
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(a) for any distribution f ∈ F such that f ̸= f 0, we have that for some x2 ∈ X2,t for the

t’s such that X2,t contains an open Rdx2 -ball,

log

∫
exp(x′2v)

φ0
J,t(v)

f(v)dv − log

∫
1

φ0
J,t(υ)

f(v)dv ̸= ψ0
J,t(x2) almost surely, and

(b) QJ(f) > QJ(f
0) for all f ∈ F such that f ̸= f 0.

Remark. Lemma 1 provides a simple argument for the nonparametric point identification of

the random coefficients distribution in the growing J environment.

Define the intermediate and the sample criterion functions respectively as:

Q̃J(f) =
1

J

T∑
t=1

J∑
j=1

{
ψ0
J,t(X2,jt)− log (GJ,t(X2,jt; f)/GJ,t(0; f))

}2
, and

Q̂J(f) =
1

J

T∑
t=1

J∑
j=1

{
ψ̂kJ ,t(X2,jt)− log(ĜJ,t(X2,jt; f)/ĜJ,t(0; f))

}2

. (27)

We introduce the following condition that is required for the consistency of the second-step

nonparametric estimator.

Assumption 8. (i) For any ε > 0, there exists δε > 0 such that with probability approaching

one, inff∈F :∥f−f0∥∞>ε {QJ(f)−QJ(f
0)} > δε;

(ii) 1
J

∑T
t=1

∑J
j=1

[
ψ̂kJ ,t(X2,jt)− ψ0

J,t(X2,jt)
]2 p→ 0 and supf∈FMJ

∣∣∣Q̃J(f)−QJ(f)
∣∣∣ p→ 0;

(iii) supf∈FMJ
QJ(f) = Op(1);

(iv) for the sieve approximation of f 0: f 0
MJ

= argminf∈FMJ
∥f − f 0∥∞, we have that

∥f 0
MJ

− f 0∥∞ → 0 and
∣∣QJ(f

0
MJ

)−QJ(f
0)
∣∣ p→ 0 as MJ → ∞ with J → ∞.

Remark. Part (i) is a uniform identification condition, a weaker version of which is verified

in Lemma 1. We need this uniform version because we are in a triangular array asymptotic

framework. In this framework, the population criterion function drifts with J . Part (ii) can

be verified using Theorem 1 combined with a uniform law of large number under suitable

dependence assumption on {X2,jt} across j in each market t. This part is verified in Section
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S2.3 in the Supplemental Appendix under the independence assumption, which can be a

reasonable assumption when the firms determine their X2,jt based on independent private

information. Common shocks can be accommodated if the expectations with respect to X2,jt

are understood as conditional expectations given the common shocks. Part (iii) requires the

population criterion function to be uniformly bounded on the sieve space; this is a weak

assumption given that the space of f 0 is already assumed to be compact. Finally, Part (iv)

assumes the convergence of sieve approximation f 0
MJ

to the true parameter f 0.

Theorem 3. Suppose that Assumptions in Theorem 1 and Assumption 8 hold. Then for

f̂J = f̂MD defined in (14) and f̂J = f̂GMM2 defined in (16), we have

∥f̂J − f 0∥∞
p→ 0. (28)

Remark. Theorem 3 shows the consistency of the nonparametric estimators f̂MD and f̂GMM2.

Compared to Fox et al. (2016), we account for the estimation effect of ξjt from the first stage.

We provide the proof of Theorem 3 in Appendix S1.4. The consistency of f̂GMM1 defined in

(15) can be derived similarly to that of f̂GMM2.

After obtaining an estimator for the distribution of the random coefficients, other parameters

of interest may also be recovered such as the CDF function, the substitution pattern among

products such as cross-product elasticities, and many others. It is worth mentioning that

the GMM estimator in Berry et al. (2004) could achieve semi-parametric efficiency when the

model is correctly specified and the optimal weighting matrix is used in a limited information

sense12. In contrast, our two-step estimator provides a computationally attractive alternative

that could sacrifice efficiency. We will investigate the extent of the efficiency loss in the Monte

Carlo simulations.

12See the discussion on pp. 633 of Berry et al. (2004).
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5 Monte Carlo Simulations

In this section, we perform a series of Monte Carlo simulations to examine the performance

of our semi-nonparametric estimator and compare it with several alternative estimation

strategies. We first focus on the case of a single random coefficient in Section 5.1-5.3 and

then extend to the setting with multiple random coefficients in Section 5.5. In all simulation

exercises, the number of Monte Carlo repetitions is 1000.

5.1 Data Generating Process

We simulate T markets, each of which has J products. A product j ∈ {0, 1, ..., J} in market

t ∈ {1, ..., T} is associated with an exogenous characteristic Xjt ∼ N (0, 1), an unobserved

characteristic ξjt ∼ N (0, .32) and an endogenous price.13 For simplicity, we assume that

price equals marginal cost:

Pjt = mcjt = 0.5Xjt +Wjt + ξjt + ζjt,

where mcjt is the marginal cost of product j in market t that is a linear function of Xjt, ξjt,

an exogenous observable cost shifter Wjt ∼ N (0, 1) and cost shock ζjt ∼ N (0, .12). Note

that price is endogenous in the sense that it depends on the demand shock ξjt. Also, we

have introduced Wjt to make it available as an IV for price in the demand estimation, which

provides a convenient way to handle the price endogeneity issue.

The demand specification follows Section 2 closely with a random coefficient on price, so

the market share of product j in market t is

σj
(
δt, Pt;F

0
)
=

∫
exp (δjt + υPjt)

1 +
∑J

k=1 exp (δkt + υPkt)
dF 0 (υ) ,

13Unreported Monte Carlo simulation shows that increasing the variance of ξjt (and ζjt below) causes
both the BLP and the SN estimators to have larger variances, but the comparison between estimators is
qualitatively unchanged.
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where δjt = α0 + β0Xjt + ξjt and Pt = (P1t, ..., PJt). Given this formula, the market share

data are simulated as

sjt =
1

R

R∑
i=1

exp (δjt + υiPjt)

1 +
∑J

k=1 exp (δkt + υiPkt)
,

where R = 10, 000 is the number of random draws υi’s from F 0 (·). We consider two designs

with distinct F 0’s, one is the commonly used normal distribution (symmetric and uni-modal),

i.e., N (−2, .52) and the other one is an asymmetric, bi-modal mixed normal distribution,

i.e., .5×N (−1, .22) + .5×N (−2, .52).

Thus, a simulated data set can be written as {(sjt, Xjt, Pjt,Wjt) : j = 1, ..., J ; t = 1, ..., T},

on which we implement our proposed estimator as well as alternative estimation strategies.

5.2 Implementation Details

The implementation of our semi-nonparametric estimator follows closely the description in

Section 3.2. In the first step, we estimate θJ = (α, β, ψkJ ,1 (·) , ..., ψkJ ,T (·)) using the two-

step GMM procedure defined by (12) with the 2SLS estimator used as the initial estimator.

Here, the market-specific sieve approximation ψkJ ,t(Pjt) (for any market t) is specified as

kJ -order power series, and I ςJ (Wjt) is defined as a cubic spline (with ςJ knots).14 We also

tried alternative combinations, say power series for both ψkJ ,t(Pjt) and I ςJ (Wjt), and they

yield virtually identical results (not shown here).

In the second step, we implement the MD and GMM estimators defined by (14), (15),

and (16), coupled with three alternative sieve approximations to f 0 (or F 0):

1. The first sieve approximates the inverse CDF and directly generates random draws

from F 0
MJ

: As suggested by Fosgerau and Mabit (2013), we draw u ∼ U [0, 1] and use a

power series (with a set of coefficients to be estimated) to transform u to a new random

variable υMJ
, i.e.,

υMJ
=

MJ∑
k=1

bku
k.

14We imposed the restriction ψkJ ,t(0) = 0 by setting the constant term in the power series to zero.
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Note that υMJ
is a draw from an approximate distribution F 0

MJ
because the above

polynomial can be regarded as a sieve approximation to the inverse of F 0.

2. The second sieve approximates F 0 by a discrete distribution that is characterized by a

set of grid points GJ and probability weight on each point υm ∈ GJ modeled by a logit

formula
exp

[∑MJ

k=1 bkυ
k
m

]
∑

υl∈GJ
exp

[∑MJ

k=1 bkυ
k
l

] .
This approximation is proposed in Train (2016) and is computationally attractive

thanks to the smoothness of the logit formula.

3. The third sieve approximation adopts Fosgerau and Bierlaire (2007)’s approach. First

of all, we can rewrite F 0 as

F 0 (υ) = Q (Φ (υ;µ, σ)) ,

whereQ is an unknown CDF function from [0, 1] to [0, 1] and the normal CDF Φ (·;µ, σ)

is chosen as a base distribution. Then we can differentiate the above expression to

obtain

f 0 (υ) = q (Φ (υ;µ, σ))ϕ (υ;µ, σ) ,

where f 0 (·) and q (·) are density functions. Next, following Bierens (2008), the unknown

density function q (·) is approximated by

qk (x) =

[
1 +

∑k
i=1 biLi (x)

]2
1 +

∑k
i=1 b

2
i

,

where Li’s are transformed Legendre polynomials and bi’s are the sieve coefficients.

Finally, with a few manipulations, the market share of product j in market t can be
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written as

σ̃j (δt, Pt;FMJ
) =

∫ 1

0

exp (δjt + Φ−1 (z;µ, σ)Pjt)

1 +
∑J

k=1 exp (δkt + Φ−1 (z;µ, σ)Pkt)
qMJ

(z) dz.

And this integral is approximated by simulation with z ∼ U [0, 1].

For comparison purposes, we also implement a parametric version of our second step estimation

as well as the standard BLP estimator (7), and both assume that F 0 is normal. For the

BLP estimator, we use the same choice of instrumental variables as our semi-nonparametric

estimator (12); the demand inversion is computed using the standard BLP contraction

mapping in the estimation procedure.

5.3 Baseline Results

We shall present the simulation results with a series of tables. In these tables, we label

our semi-nonparametric estimator as “SN” and the standard parametric BLP estimator as

“BLP”. Also, the three alternative sieve approximations to F 0 described in the previous

subsection are labeled as “I”, “II”, and “III”, respectively; the parametric version of our

second step estimation is labeled as “Para”. Also, we consider the minimum distance (MD)

estimator defined in (14) and two alternative GMM implementations for the second step:

“GMM1” refers to the estimator defined in (15); “GMM2” refers to the estimator defined

in (16). Hence, a particular specification, say our semi-nonparametric estimator with sieve

approximation “I” and criterion “GMM1”, is denoted by “SN-I-GMM1”. Also, to save

space, we only show second-step results from our preferred specification “SN-III-GMM2” in

the main text and delegate the full set of results to Appendix S4.

To examine the performance of our estimator with varying sample sizes, we consider

different J ’s and T ’s. In the case of the BLP estimator and the SN-Para estimator, we

approximate the integral by simulating from the (assumed) normal random coefficient distribution.
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The number of simulation draws R̃ is related to J and T in the way described in Table 115

– the table that also describes our choices of the number of sieve terms in both steps. In

the case of SN-I and SN-III estimators, we simulate the integral according to the description

in Section 5.2 also using R̃ in Table 1. In the case of SN-II, we approximate the integral

according to the description in Section 5.2 using 100 grid points.

Table 1: Tuning Parameter Choices Across Specifications
T = 10 20 40

J 25 50 100 25 50 100 25 50 100

R̃ = J2T
40

156 625 2,500 313 1250 5,000 625 2,500 10,000
kJ and ςJ 3 4 5 3 4 5 3 4 5

MJ 3 4 5 4 5 6 5 6 7

5.3.1 Design I: F 0 is Normal

In the first set of experiments, we let the true distribution of random coefficient F 0 be normal

(i.e., N (−2, .5)), which is the most commonly used distribution in the empirical application.

Table 2 shows the Monte Carlo results for the estimation of the fixed coefficients in the

model, i.e, the coefficient on the exogenous characteristic X and the constant term. The

BLP estimator shown in this table is for the benchmark case with a correctly specified F 0,

i.e., a normal distribution with mean and variance as parameters to be estimated.

From the table, we can see that the RtMSE of our semi-nonparametric estimator is rather

close to (though slightly larger than) the benchmark BLP estimator, which means that we do

not lose much efficiency (in terms of estimating the fixed coefficients) by relaxing parametric

assumptions on F . And we would like to emphasize again that the SN estimators of α and

β are obtained from estimating a linear model, which is very easy to compute.

In Table 3, we report the average (across repetitions) GMM standard errors (labeled

“Ave. S.E.”) of our SN estimator and compare them with the actual standard deviations

(labeled “True S.D.”). Overall we can see that the Ave. S.E. is smaller than its corresponding

15This choice of R̃ follows the theoretical results of Berry et al. (2004).
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Table 2: Monte Carlo Results: Fixed Coefficients
T = 10 20 40

Parameter Estimator J 25 50 100 25 50 100 25 50 100

SN
RtMSE .0249 .0169 .0116 .0176 .0119 .0080 .0125 .0085 .0059

β
Bias -.0026 4.08E-4 .0013 -.0020 5.34E-4 .0018 -.0014 .0012 .0014

BLP
RtMSE .0218 .0153 .0104 .0174 .0116 .0076 .0144 .0090 .0061
Bias -.0106 -.0062 -.0037 -.0105 -.0064 -.0034 -.0107 -.0061 -.0036

SN
RtMSE .0318 .0285 .0234 .0222 .0215 .0166 .0164 .0155 .0120

α
Bias -9.55E-4 -9.70E-5 -2.27E-4 3.95E-4 -7.23E-4 -.0011 3.99E-5 -6.96E-4 2.05E-5

BLP
RtMSE .0228 .0172 .0131 .0165 .0118 .0090 .0117 .0088 .0061
Bias -.0024 -.0014 -.0048 -7.67E-4 -.0018 -.0026 -.0022 -.0017 -.0018

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is N (−2, .5).
2. The distribution of random coefficient for the BLP estimator is correctly specified.

Table 3: Monte Carlo Results: Inference on Fixed Coefficients
T = 10 20 40

Parameter J 25 50 100 25 50 100 25 50 100

β
True S.D. .0248 .0169 .0115 .0175 .0119 .0078 .0125 .0084 .0057
Ave. S.E. .0191 .0152 .0116 .0140 .0111 .0084 .0100 .0080 .0061

α
True S.D. .0318 .0285 .0234 .0222 .0215 .0166 .0164 .0155 .0120
Ave. S.E. .0254 .0267 .0222 .0181 .0192 .0158 .0128 .0136 .0113

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is N (−2, .5).
2. The distribution of random coefficient for the BLP estimator is correctly specified.

True S.D., but the discrepancy gets smaller as the sample size gets large. This pattern in

effect resembles the findings in the sieve literature (Chen et al. (2014)). Hence, empirical

researchers should be cautious about the potential downward bias of the GMM standard

errors when the sample size is not large enough.

Next, we summarize the estimation results of random coefficients in Tables 4 and 5.

The first thing to note is that the performance of the BLP estimator and the SN-Para

estimator are quite close, which is encouraging since both estimators use the same functional

form assumption for the random coefficients distribution. The SN estimators with sieve

approximations of F have somewhat larger RtMSEs than BLP and the SN estimator with

(correctly specified) parametric F . This is also expected since the sieve estimators do not use

the parametric assumption. Finally, from the comparisons of different SN estimators (with

nonparametric F ) in Table 15 in Appendix S4 we find that the combination “SN-III-GMM2”

have an overall better performance (in terms of RtMSEs and biases) than others.16

16In Appendix S4.5, we document the average computational time (across repetitions) of BLP and SN
estimators in Table 22, which illustrates the computational advantage of avoiding demand inversion.
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Table 4: Monte Carlo Results: Mean of Random Coefficient
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-III-GMM2
RtMSE .0379 .0240 .0186 .0255 .0189 .0153 .0204 .0144 .0143
Bias -.0035 -.0033 -.0069 .0015 -.0061 -.0087 -.0039 -.0067 -.0103

SN-Para-GMM2
RtMSE .0318 .0177 .0105 .0263 .0127 .0075 .0214 .0098 .0054
Bias .0267 .0126 .0036 .0234 .0068 2.35E-5 .0187 .0068 -1.73E-4

BLP
RtMSE .0330 .0192 .0118 .0277 .0150 .0092 .0249 .0136 .0080
Bias .0280 .0147 .0072 .0249 .0118 .0068 .0232 .0122 .0066

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is N (−2, .5).
2. The distribution of the random coefficient for the BLP estimator and SN-Para estimators is correctly specified.

Table 5: Monte Carlo Results: Standard Deviation of Random Coefficient
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-III-GMM2
RtMSE .0379 .0240 .0186 .0255 .0189 .0153 .0204 .0144 .0143
Bias -.0035 -.0033 -.0069 .0015 -.0061 -.0087 -.0039 -.0067 -.0103

SN-Para-GMM2
RtMSE .0318 .0177 .0105 .0263 .0127 .0075 .0214 .0098 .0054
Bias .0267 .0126 .0036 .0234 .0068 2.35E-5 .0187 .0068 -1.73E-4

BLP
RtMSE .0330 .0192 .0118 .0277 .0150 .0092 .0249 .0136 .0080
Bias .0280 .0147 .0072 .0249 .0118 .0068 .0232 .0122 .0066

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is N (−2, .5).
2. The distribution of random coefficient for the BLP estimator and SN-Para estimators is correctly specified.

5.3.2 Design II: F 0 is Mixed Normal

To further investigate the performance of our estimator, we deviate from the normal case

and let the true distribution of random coefficient F 0 be an asymmetric mixed normal

.5×N (−1, .22)+ .5×N (−2, .52) . Note that the BLP and SN-Para estimators, which impose

normality, are misspecified in this case.

The results for the fixed coefficients, shown in Tables 13 and 14 in Appendix S4 to conserve

space, are very similar to those in Tables 2 and 3. This suggests that the BLP estimator

of fixed coefficients is not sensitive to the type of misspecification considered here. Our SN

estimators work very similarly to the BLP estimator. Moreover, the first step standard errors

of the SN estimator for the fixed coefficients seem to be fairly accurate, as shown in Table

14.

Next, we present the estimation results for the random coefficient in Tables 6 and 7.

For both mean and standard deviation, we can see that the SN works better than the BLP

estimator and SN-Para. In addition, since F 0 is asymmetric, it is useful to examine the
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skewness of the estimated random coefficient, the results of which are reported in Table 17

in Appendix S4. From the table, it is clear that the biases of our SN estimators decrease

quickly as the sample size gets large, while the parametric estimators have a fixed bias

because of the incorrect normality (symmetric) assumption. Finally, “SN-III-GMM2” again

has an overall better performance than alternative implementations, so we shall use it for

the empirical application.

Table 6: Monte Carlo Results: Mean of Random Coefficient
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-III-GMM2
RtMSE .0416 .0305 .0245 .0301 .0246 .0200 .0231 .0202 .0176
Bias -.0094 -.0117 -.0113 -.0133 -.0135 -.0119 -.0109 -.0138 -.0125

SN-Para-GMM2
RtMSE .0448 .0579 .0632 .0494 .0618 .0636 .0500 .0609 .0641
Bias -.0403 -.0562 -.0623 -.0474 -.0610 -.0632 -.0490 -.0605 -.0639

BLP
RtMSE .0419 .0547 .0597 .0466 .0585 .0597 .0473 .0574 .0602
Bias -.0383 -.0533 -.0590 -.0450 -.0578 -.0594 -.0465 -.0571 -.0601

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is .5×N (−1, .22) + .5×N (−2, .52).
2. The distribution of random coefficient for the BLP and SN-Para estimators is mis-specified.

Table 7: Monte Carlo Results: S.D. of Random Coefficient
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-III-GMM2
RtMSE .0527 .0437 .0275 .0446 .0304 .0192 .0316 .0219 .0156
Bias -.0195 -.0200 -.0075 -.0165 -.0123 -.0029 -.0126 -.0088 -8.88E-4

SN-Para-GMM2
RtMSE .0400 .0381 .0377 .0426 .0374 .0356 .0372 .0337 .0367
Bias -.0301 -.0321 -.0342 -.0389 -.0343 -.0337 -.0350 -.0319 -.0358

BLP
RtMSE .0385 .0430 .0439 .0466 .0451 .0435 .0408 .0419 .0449
Bias -.0324 -.0399 -.0422 -.0440 -.0436 -.0425 -.0394 -.0410 -.0445

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is .5×N (−1, .22) + .5×N (−2, .52).
2. The distribution of random coefficient for the BLP and SN-Para estimators is mis-specified.

Besides the mean and standard deviation of the RC, we also examine the whole estimated

distribution. In particular, we report the mean and median integrated squared errors (ISEs)

of the estimated distribution in Table 8. We can see that, in most cases for the mean and in

all cases for the median, the SN-III estimator of the RC distribution has smaller ISEs than

the SN-Para and the BLP estimators which mis-specify the random coefficient distribution.

In addition, we plot the estimated PDFs of BLP and SN-III-GMM2 for the case with

T = 40 and J = 100. The PDFs are shown in Figure 1; the solid ones are point-wise averages

32



Table 8: Monte Carlo Results: Mean- and Median-Integrated Sequared Errors
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100
SN-III-GMM2 Mean-ISE .0986 .1150 .1215 .1065 .1198 .0983 .1304 .0964 .0934

Median-ISE .0969 .0807 .0785 .0811 .0769 .0655 .0817 .0646 .0623
SN-Para-GMM2 Mean-ISE .1136 .1181 .1199 .1164 .1197 .1203 .1161 .1193 .1204

Median-ISE .1133 .1180 .1197 .1163 .1195 .1202 .1159 .1192 .1202
BLP Mean-ISE .1137 .1183 .1200 .1165 .1199 .1203 .1162 .1194 .1203

Median-ISE .1134 .1182 .1198 .1164 .1197 .1202 .1160 .1194 .1202
Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is .5×N (−1, .22) + .5×N (−2, .52).
2. The distribution of random coefficient for the BLP and SN-Para estimators is mis-specified.

3. The ISEs are calculated as
∫ [

f̂J (v)− f 0 (v)
]2
f 0 (v) dv (weighted by the true density) for each

repetition. The reported numbers are the means and medians of the ISEs across 1000 repetitions.

across repetitions and the two dashed ones are the 5th and 95th point-wise percentiles of

the SN estimator. Looking at the mean, we see that SN estimator can approximate the true

bimodal distribution better than the BLP estimator with normal RC. Although the variance

of the SN estimator seems rather large, the 5th and 95th confidence band can still rule out

the misspecified BLP estimator for some regions in the support of the distribution.17

Figure 1: Estimated PDFs of Random Coefficient

17The 5% and 95% percentile band of the BLP estimator is very narrow around the mean so is omitted
to avoid clutter.
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5.4 Results with Small J

Previous results show that our approach works well with a moderate J , e.g., 25; so a natural

question is whether it can handle small J ’s, say less than 10. In Table 9, we show some

simulation results for J = 5, 10,18 using the same design as that in 5.3.1. We can see that

overall our estimator still performs very well in these cases, though the asymptotic theory

requires “large” J . Compared to BLP estimator, the only notable difference is that SN

estimator has larger RtMSE and bias for the SD of random coefficient, which is expected

and similar to the previous moderate and large J cases.

Table 9: Monte Carlo Results: Small J
T = 10 20 40

Parameter Estimator J 5 10 5 10 5 10

SN
RtMSE .0701 .0532 .0565 .0381 .0508 .0274

β
Bias -.0400 -.0199 -.0400 -.0180 -.0426 -.0143

BLP
RtMSE .0960 .0416 .0584 .0358 .0551 .0302
Bias -.0393 -.0259 -.0377 -.0270 -.0414 -.0256

SN
RtMSE .0635 .0585 .0424 .0418 .0310 .0301

α
Bias 3.45E-4 .0024 5.45E-4 .0010 -1.46E-4 .0010

BLP
RtMSE .1052 .0368 .0724 .0269 .0498 .0193
Bias -.0021 6.11E-4 .0030 -3.70E-5 .0050 -.0011

SN-III-GMM2
RtMSE .1069 .0609 .0954 .0515 .0925 .0422
Bias .0849 .0382 .0839 .0379 .0855 .0337

Mean of RC SN-Para-GMM2
RtMSE .0915 .0581 .0849 .0562 .0855 .0525
Bias .0830 .0519 .0807 .0526 .0828 .0507

BLP
RtMSE .0921 .0583 .0846 .0569 .0854 .0530
Bias .0812 .0521 .0799 .0533 .0824 .0513

SN-III-GMM2
RtMSE .0751 .0585 .0529 .0528 .0490 .0403
Bias -.0219 -.0153 -.0093 -.0185 -.0121 -.0124

SD of RC SN-Para-GMM2
RtMSE .0488 .0353 .0328 .0247 .0233 .0172
Bias -.0014 .0025 7.69E-4 .0026 .0010 .0043

BLP
RtMSE .0738 .0356 .0360 .0253 .0259 .0168
Bias -.0117 8.19E-4 -.0018 7.20E-4 -4.45E-4 .0024

Note: 1. The design and specification in this set of simulations are the same as those in “Design I:
F 0 is Normal” in the Monte Carlo section.
2. For J = 10, we set kJ and ςJ to be 3. For J = 5, we let kJ and ςJ be 2 so that there are
sufficient number of observations to estimate unknown parameters.
3. We setMJ to be 3, 4, 5 for T = 10, 20, 40, respectively.
4. For J = 5, the first stage estimates of SN estimator are obtained via 2SLS instead of 2-step
GMM because the former is numerically more stable in the small J cases.

18Our approach cannot work with too small J ’s, say J = 3, because we need a sufficient number of
observations to estimate the market-specific sieve coefficients (usually 3 or more of these).
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5.5 Extension to Multiple Random Coefficients

In this subsection, we extend the above simulation exercise to the cases with multiple random

coefficients. Here we consider a design with three independent random coefficients. A case

with two correlated random coefficients is presented in Supplemental Appendix S4.3

We add two exogenous characteristics, X2,jt and X3,jt, each of which is associated with

new random coefficients, to the data generating process in Section 5.1. And we assume the

three random coefficients are independent19 both in the data generating process and in the

estimation.

Given that the random coefficients are independent, the market share equation becomes

σj (δt, Pt, X2,t, X3,t;F ) =

∫
exp

(
δjt +

∑3
ℓ=1 υℓXℓ,jt

)
1 +

∑J
k=1 exp

(
δkt +

∑3
ℓ=1 υℓXℓ,kt

)dF 0
1 (υ1)F

0
2 (υ2)F

0
3 (υ3) ,

where X1,jt ≡ Pjt is generated as in Section 5.1, X2,jt and X3,jt are both drawn from a

standard normal distribution, and F 0
i (υi) (i = 1, 2, 3) is normal with means µi and standard

deviations σi. Thus the market share is simulated as

sjt =
1

R

R∑
i=1

exp
(
δjt +

∑3
ℓ=1 υℓ,iXℓ,jt

)
1 +

∑J
k=1 exp

(
δkt +

∑3
ℓ=1 υℓ,iXℓ,kt

) , (29)

where {vi,r : r = 1, ..., R} is drawn from F 0
i (υi) for i = 1, 2, 3.

The implementation of our SN estimator is adjusted to accommodate the three independent

random coefficients. For the first stage estimation defined by (12), we use power series

to approximate the three dimensional functions {ψkJ ,t(Pjt, X2,jt, X3,jt) : t = 1, ..., T} and

I ςJ (Wjt, X2,jt, X3,jt).
20 For the second stage estimation, we focus on the preferred specification

“SN-III-GMM2” and apply the third sieve approximation described in Section 5.2 to each

19This is a commonly imposed assumption in empirical applications, see among others, Berry et al. (1995);
Nevo (2001); Petrin (2002).

20We use third order polynomials to approximate these functions.
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F 0
i (υi) for i = 1, 2, 3. So the market share of product j in market t can be written as

σ̃j (δt, Pt;FMJ
)

=

∫ 1

0

∫ 1

0

∫ 1

0

exp
(
δjt +

∑3
ℓ=1 Φ

−1 (zℓ; µ̃ℓ, σ̃ℓ)Xℓ,jt

)
1 +

∑J
k=1 exp

(
δkt +

∑3
ℓ=1Φ

−1 (zℓ; µ̃ℓ, σ̃ℓ)Xℓ,kt

) 3∏
i=1

qi,MJ
(zi) dz,

where qi,MJ
(zi)’s (i = 1, 2, 3) have the same functional form but different sieve coefficients,

and each zi follows U [0, 1]. For comparison, we also include the “SN-Para-GMM2” with a

parametric F 0 in the second stage estimation.

The results for the fixed coefficients are very similar to the previous cases so we defer

them to the Appendix (see Table 18) to save space. Here in Table 10, we show the estimation

results for the mean and standard deviations of the three random coefficients. Although we

have only tried a small subset of the extensive list of specifications examined in the previous

cases (with a single random coefficient), the results are still informative to give us a sense of

how our SN estimator works in the case of multiple random coefficients.

From the results, we can see that the RtMSEs and biases of our SN estimator for random

coefficients are larger than those of the correctly specified parametric estimators, including

BLP and SN-Para. And the difference is larger than the previous cases with a single random

coefficient. This is not surprising given that there are three functions approximated by

sieves and the sample sizes are relatively small. Also, the SN estimator performs better for

the standard deviations (σi’s) than the means (µi’s) of the random coefficients in terms of

both RtMSE and bias, which suggests potential rooms for improvement on the estimation

of the means. Finally, the SN-Para estimator performs well and is rather similar to the BLP

estimator, which reminds us that our estimation strategy with a parametric F in the second

step is a valuable complement to the full-blown SN estimator with a nonparametric F 0.
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Table 10: Monte Carlo Results: Independent Random Coefficients
T = 10 20 T = 10 20

Parameter Estimator J = 50 100 50 100 Parameter Estimator J = 50 100 50 100

µ1

BLP
RtMSE .0345 .0183 .0335 .0167

σ1

BLP
RtMSE .0183 .0162 .0128 .0120

Bias .0323 .0154 .0323 .0154 Bias .0014 .0032 .0024 .0038

SN-Para-GMM2
RtMSE .0349 .0167 .0357 .0146

SN-Para-GMM2
RtMSE .0414 .0174 .0435 .0144

Bias .0291 .0115 .0309 .0119 Bias -.0098 .0055 -.0170 .0052

SN-III-GMM2
RtMSE .1919 .1522 .1787 .1205

SN-III-GMM2
RtMSE .0496 .0331 .0444 .0233

Bias .1293 .0937 .1188 .0708 Bias -.0081 .0030 -.0162 -.0034

µ2

BLP
RtMSE .0127 .0094 .0091 .0064

σ2

BLP
RtMSE .0208 .0163 .0143 .0111

Bias -.0008 .0002 .0001 .0002 Bias -.0001 .0017 .0009 .0023

SN-Para-GMM2
RtMSE .0155 .0100 .0127 .0070

SN-Para-GMM2
RtMSE .0330 .0169 .0321 .0125

Bias .0011 .0014 .0014 .0011 Bias -.0082 .0028 -.0122 .0028

SN-III-GMM2
RtMSE .0916 .0764 .0846 .0602

SN-III-GMM2
RtMSE .0457 .0281 .0404 .0218

Bias -.0607 -.0491 -.0554 -.0383 Bias -.0211 -.0071 -.0223 -.0062

µ3

BLP
RtMSE .0128 .0091 .0089 .0064

σ3

BLP
RtMSE .0203 .0161 .0145 .0114

Bias .0003 -.0001 -.0002 .0003 Bias -.0001 .0008 .0001 .0023

SN-Para-GMM2
RtMSE .0156 .0097 .0126 .0072

SN-Para-GMM2
RtMSE .0323 .0166 .0325 .0126

Bias .0024 .0011 .0008 .0014 Bias -.0080 .0019 -.0128 .0027

SN-III-GMM2
RtMSE .0877 .0748 .0821 .0582

SN-III-GMM2
RtMSE .0402 .0272 .0366 .0221

Bias -.0553 -.0469 -.0517 -.0350 Bias -.0084 -.0022 -.0133 .0007
Note: 1. True parameter values in DGP: α = −10, β = 1, µ1 = −2, µ2 = µ3 = 1, σ1 = σ2 = σ3 = .5.
2. The distribution of random coefficients for the BLP and SN-Para estimators is correctly specified.

6 Empirical Illustrations

To further illustrate our approach, we consider two empirical applications. The first one

revisits the original BLP’s application to the US auto market, and the second one applies

the proposed estimator to the Chinese auto market. In the first application, we find that

the random coefficient on price has a bimodal distribution and that the BLP estimates,

which assumes a normal random coefficient distribution, bias toward zero. In the second

application, we find that the BLP and the SN give nearly identical results. The first

application is presented next, while the second in Appendix S5 to conserve space.

The BLP data records the price, quantity, as well as product characteristics of car models

on the US market for each year from 1971 to 1990. As in BLP, a market is naturally defined

by a year: there are 20 markets and on average, a market has about 110 models (see the last

two rows in Table 11).21

We consider a specification with one random coefficient on price and fixed coefficients on

other product characteristics. The first two columns in Table 11, labeled “BLP”, show results

obtained using the standard BLP estimators with simple logit and random coefficient logit

specifications, respectively. Also, we implement our SN estimator using the SN-III-GMM2

21See Berry et al. (1995) for detailed descriptions of the data.
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implementation, which is the preferred choice from the simulation results in the Monte Carlo

section. In addition, we use the standard BLP IVs to handle the price endogeneity problem

for all the estimators; the F-statistic for these IVs from a price regression, reported in the

table, suggests that these IVs are not weak.

From the results, we can see that our SN estimator yields a larger mean (in absolute value)

and standard deviation of price coefficient than the BLP estimator, which translates into

an overall more elastic demand. Also, we plot the density functions of the price coefficient

based on BLP and SN estimates in Figure 2. Besides the obvious difference in the location

of the two distributions, the SN estimator exhibits a bimodal shape (with some very elastic

consumers) that indicates a deviation from normality.

Table 11: BLP Auto Data Revisited
BLP SN

Fixed Coefficient Logit RC-Logit
HP/Weight (log) .78

(.15)
.76
(.12)

1.37
(.25)

Size (log) 3.31
(.21)

3.53
(.21)

3.82
(.52)

Dollar per Miles (log) −.22
(.11)

−.33
(.11)

−.42
(.36)

A/C .69
(.12)

.62
(.08)

1.01
(.27)

Power Steering .19
(.08)

.22
(.07)

.55
(.12)

Automatic .33
(.07)

.30
(.07)

.41
(.10)

FWD .19
(.06)

.21
(.06)

.18
(.10)

Constant −3.56
(.25)

−2.43
(.46)

−8.39
(7.57)

RC on Price (log)
Mean −2.60

(.17)
−3.36
(.29)

-4.76

Std. Dev. - .65
(.12)

.81

Ave. No. of Prod. per Mkt. 110.85
No. of Mkt. 20

F-statistic for BLP IV 62.96

We further examine the implications of the estimation results on price elasticities, which

is a key output of demand estimation. To compute the price elasticities, we need not only

the parameter estimates θ̂ but also the residuals ξ̂’s. We obtain ξ̂’s by inverting the demand
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Figure 2: Estimated PDF of Random Coefficient

system (4) evaluated at θ̂ via the standard BLP contraction mapping algorithm.22

Table 12 reports a sample of price elasticities. Regarding to the own-price elasticities,

the SN estimator implies a much more elastic demand than the BLP estimator. Moreover,

the pattern of cross-price elasticities is different: compared to the BLP estimator, the SN

estimator implies that cars are more substitutable to others, especially for economy cars like

Accord. Hence, the rather different patterns of elasticities implied by BLP and SN estimators

highlight the importance of the shape of the random coefficients distribution in determining

the substitution patterns among products.

22The ξ̂’s obtained in this way are less noisy than the residuals from the first stage estimation because
the former approach takes the full structure of the demand model into account while the latter treats the
function ψ0

J,t (·) as a reduced-form, nuisance function. Note that calculating the price elasticity requires
solving the contraction mapping only once, and thus it is feasible to obtain a highly precise solution.
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Table 12: Price Elasticities for Selected Models in 1990 Market
735i Century Seville Escort Taurus Accord LS400 323 Maxima Sentra

BMW BLP -2.1163 .0109 .0057 .0183 .0294 .0381 .0076 .0013 .0120 .0031
735i SN -3.9038 .0122 .0056 .0245 .0334 .0438 .0075 .0019 .0125 .0042
Buick BLP .0010 -2.6209 .0029 .0157 .0208 .0273 .0037 .0012 .0075 .0027

Century SN .0011 -4.1714 .0033 .0209 .0259 .0341 .0042 .0016 .0089 .0036
Cadillac BLP .0018 .0099 -2.2843 .0177 .0269 .0349 .0062 .0013 .0105 .0030
Seville SN .0018 .00113 -4.0174 .0236 .0310 .0408 .0060 .0018 .0112 .0040
Ford BLP .0007 .0061 .0020 -2.8271 .0169 .0223 .0026 .0011 .0057 .0024
Escort SN .0009 .0081 .0027 -4.2623 .0225 .0298 .0034 .0015 .0076 .0033
Ford BLP .0010 .0075 .0028 .0155 -2.6256 .0269 .0036 .0012 .0073 .0027
Taurus SN .0011 .0093 .0033 .0208 -4.1632 .0338 .0042 .0016 .0088 .0036
Honda BLP .0010 .0074 .0028 .0154 .0202 -2.6344 .0035 .0012 .0072 .0026
Accord SN .0011 .0092 .0032 .0206 .0254 -4.1621 .0041 .0016 .0087 .0035
Lexus BLP .0019 .0102 .0050 .0179 .0276 .0359 -2.2337 .0013 .0109 .0031
LS400 SN .0019 .0116 .0048 .0239 .0318 .0417 -3.9879 .0018 .0116 .0041
Mazda BLP .0006 .0058 .0019 .0134 .0161 .0213 .0024 -2.8807 .0054 .0023
323 SN .0008 .0079 .0026 .0186 .0219 .0290 .0033 -4.3006 .0073 .0032

Nissan BLP .0013 .0084 .0035 .0165 .0229 .0300 .0045 .0012 -2.5059 .0028
Maxima SN .0013 .0100 .0037 .0219 .0276 .0364 .0047 .0017 -4.1199 .0037
Nissan BLP .0007 .0061 .0020 .0138 .0169 .0223 .0026 .0011 .0057 -2.8387
Sentra SN .0009 .0081 .0027 .0190 .0225 .0298 .0034 .0015 .0076 -4.2781

7 Concluding Remarks

In this paper, we propose a semi-nonparametric approach to estimating the widely used BLP

model. The approach is easy to implement and allows for the nonparametric specification of

random coefficients. We establish the asymptotic theory of the proposed estimator and show

the semi-nonparametric identification of the random coefficients logit demand (BLP) model

under the large J framework. Results from simulation studies and empirical applications

demonstrate the usefulness of our estimator.
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Online Supplemental Appendix for the “Semi-Nonparametric

Estimation of Random Coefficients Logit Model for Aggregate

Demand”

Zhentong Lu, Xiaoxia Shi, and Jing Tao

In this supplemental appendix, we include additional proofs and results for “Semi-

Nonparametric Estimation of Random Coefficients Logit Model for Aggregate Demand”

by Zhentong Lu, Xiaoxia Shi, and Jing Tao (LST for short).

Section S1 proves the theorems and lemmas in LST.

Section S2 gives sufficient conditions for and verifies Assumptions 4-6 and Assumption 8 (ii) in

LST.

Section S3 reports some theoretical results on cross-product elasticity in a random coefficients

logit model when the number of products grows to infinity.

Section S4 reports additional Monte Carlo simulation results.

Section S5 contains the second empirical application.

Section S6 plots the distribution of log(sjt/s0t) at various J values under the Monte Carlo design

of Section 5.

Section S7 presents a simple location estimation example to illustrate the idea of a random true

parameter value.
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S1 Proof of Theorems and Lemmas in LST

In this section, we prove the theorems and lemmas in LST. The proofs are arranged in the

order that the corresponding results appear in LST.

S1.1 Proof of Theorem 1

The proof of this theorem uses Lemma S1 below. The lemma is proved at the end of this

subsection.

Lemma S1. Let (Θ, ∥ · ∥) be a compact metric space and ΘkJ be a sieve space of Θ such

that Θk1 ⊆ Θk2 ⊆...⊆ Θ. Let θ̂J = argminθ∈ΘkJ
R̂J(θ) for a sample criterion function

R̂J : Θ → R. Suppose that

(a) there is an auxiliary criterion function R̃J(θ) such that supθkJ∈ΘkJ
|R̃J(θkJ )−RJ(θkJ )|

p→

0 for a population criterion function RJ(θ) which may still be random;

(b) there exists a sequence of random variables θ0J ∈ Θ such that RJ(θ
0
J) = 0 for all J .

(c) for any ε > 0 there exists δε > 0 such that infθ∈Θ:∥θ−θ0J∥>ε(RJ(θ)−RJ(θ
0
J)) > δε with

probability approaching one, and

(d)
∣∣∣R̃J(θ̂J)

∣∣∣ p→ 0.

Then we have ∥θ̂J − θ0J∥
p→ 0 as J → ∞.

Proof of Theorem 1. We prove the theorem by verifying the conditions in Lemma S1. Mapping

the notation of this theorem to that of Lemma S1, we note that the population criterion

function isRJ(θ) = L̄J(θ|θ0J) and the auxiliary criterion function is R̃J(θ) = L̃J(θ). Condition

(a) in Lemma S1 is guaranteed by Assumption 5(ii). Condition (b) holds because L̄(θ0J |θ0J) =

0 by definition. Condition (c) is guaranteed by Assumption 5(i). It is only left to verify

Condition (d) of Lemma S1.

Note that for the two-stage GMM estimator θ̂J , for some generic positive constants C ′,

C ′′, and C ′′′, we have
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L̃J(θ̂J) =
T∑
t=1

ḡt(θ̂J,t)
′W 2SLS

t ḡt(θ̂J,t) ≤ C ′
T∑
t=1

∥ḡt(θ̂J,t)∥2 ≤ C ′′
T∑
t=1

ḡt(θ̂J,t)
′Ω̂t

(
θ̃J,t

)−1

ḡJ,t

(
θ̂t

)
≤ C ′′

T∑
t=1

ḡt
(
θ0J,kJ ,t

)′
Ω̂t(θ̃J,t)

−1ḡt(θ
0
J,kJ ,t

) ≤ C ′′′
T∑
t=1

∥ḡt(θ0J,kJ ,t)∥
2 = op(1), (S1)

where the first two inequalities follow by Assumption 4(ii), the third inequality follows by the

definition of θ̂J , the last inequality follows by Assumption 4(ii) again, and the last equality

follows by Assumption 4(i). This verifies Condition (d) of Lemma S1.

Next we prove the asymptotic normality result for the parametric estimator β̂J .

S1.2 Proof of Theorem 2

Proof of Theorem 2. First recall that

V −1
J,β =

T∑
t=1

V −1
J,t =

T∑
t=1

1

J

J∑
j=1

E [Dj,J,t(Zjt)Dj,J,t(Zjt)
′/Σj,J,o] ,

and that T is fixed as we take J → ∞. By Assumption 2 (iv) and the conditions in the

theorem, we have

inf
J,t
eigmin(VJ,t) ≥

(
inf
J

inf
z∈Zt

E[ξ2jt|{Zjt}Jj=1 = z]

)(
sup
J,t

eigmax

(
1

J

J∑
j=1

E [Dj,J,t(Zjt)Dj,J,t(Zjt)
′]

))−1

> 0. (S2)

Thus,

inf
J
eigmin(VJ,β) ≥ T−1 inf

J,t
eigmin(VJ,t) > 0 (S3)
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which implies that for any λJ ∈ Rdx1with supJ ∥λJ∥ <∞,

sup
J
λ′JV

−1
J,β λJ ≤ sup

J
T 2λ′JλJ

(
inf
J,t
eigmin(VJ,t)

)−1

<∞.

Then Assumption 6 (i) applies and gives us

√
Jλ′JV

−1/2
J,β

(
β̂J − β0

)
=− λ′JV

1/2
J,β

T∑
t=1

{(
1√
J

J∑
j=1

Dj,J,t(Zjt)
′Σ−1

j,J,oξjt

)}
+ op(1). (S4)

For each market t let Cj,J,t, be the σ-field generated by {{ξj′t}jj′=1, {Zjt}Jj=1} and let

Aj,J,t =
λ′JV

1/2
J,β Dj,J,t(Zjt)

Σj,J,o

√
λ′JV

1/2
J,β V

−1
J,t V

1/2
J,β λJ

. (S5)

Then for each t,{{(Aj,J,tξjt, Cj,J,t)}Jj=1}∞J=1 is a martingale difference array by Assumption

1(i). We first show that

1√
J

J∑
j=1

Aj,J,tξjt
d→ N(0, 1). (S6)

To show this, we follow Theorem 1.3 in Alj et al. (2014), which requires us to verify that (i)

E
[
|Aj,J,tξjt|2+c

]
< B < ∞ for some constants B > 0 and c > 0 for j = 1, . . . , J and for all

J , and (ii) 1
J

∑J
j=1E [|Aj,J,tξjt|2|Cj−1,J,t]

p→ 1.

To verify (i), first note that supj,J,t supz∈Zjt
∥DJ,t(z)∥ < ∞ by the condition in the

theorem. Let σ2 = infz∈Zt,j=1,...,J ;J≥1,t≥1E[ξ
2
jt|{Zjt} = z]. Then σ > 0 with probability

one by Assumption 2(iv). Let

C = sup
j,J,t

sup
z∈Zjt

∥Dj,J,t(z)∥/σ2.
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Then for each J, t, we have with probability one,

sup
j,J,t

∥Aj,J,t∥ ≤ C ×
√
λ′JVJ,βλJ√

λ′JV
1/2
J,β V

−1
J,t V

1/2
J,β λJ

≤ C ×
√
eigmax(VJ,t). (S7)

By Assumption 2 (iv) and the condition in the theorem, we have

sup
J,t

eigmax(VJ,t)

= sup
J,t

(
eigmin

(
1

J

J∑
j=1

E [Dj,J,t(Zjt)Dj,J,t(Zjt)
′/Σj,J,o]

))−1

≤ sup
j,J,t

sup
z∈Zt

E[ξ2jt|{Zj′t}Jj′=1 = z]

(
inf
J,t
eigmin

(
1

J

J∑
j=1

E [Dj,J,t(Zjt)Dj,J,t(Zjt)
′]

))−1

<∞. (S8)

Therefore,

sup
J,t

E[|Aj,J,tξjt|4] = sup
j,J,t

E[E[ξ4jt|{Zjt}Jj=1]∥Aj,J,t∥4]

≤ C4(eigmax(VJ,t))
2 sup
J,t

E[E[ξ4jt|{Zjt}Jj=1]]

= C4(eigmax(VJ,t))
2 sup
J,t

E[ξ4jt]

<∞,

where the two equalities hold by the law of iterated expectations, the first inequality holds

by (S7), the second inequality holds by (S8) and Assumption 2(iv). This verifies condition

(i) above by setting c = 2.

To verify (ii), note that

1

J

J∑
j=1

E
[
A2
jJ,tξ

2
jt|Cj−1,J,t

]
=

1

J

J∑
j=1

A2
j,J,tE[ξ

2
jt|Cj−1,J,t] =

1

J

J∑
j=1

A2
j,J,tE[ξ

2
jt|{Zjt}Jj=1]
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=
1

J

J∑
j=1

λ′JV
1/2
J,β Dj,J,t(Zjt)Dj,J,t(Zjt)

′V
1/2
J,β λJ

Σ2
j,J,oλ

′
JV

1/2
J,β V

−1
J,t V

1/2
J,β λJ

Σj,J,o = 1,

where the first equality holds because Aj,J,t is measurable with respect to {Zjt}Jj=1 (since Σj,J,o

is a function of {Zjt}Jj=1, the second equality holds by Assumption 1(i), the third equality

holds by the definitions of Ajt and Σj,J,o, and the last equality holds by the definition of VJ,t.

Thus, (ii) is verified. Therefore, (S6) holds.

Next note that

√
Jλ′JV

−1/2
J,β (β̂J − β0)√
λ′JλJ

=
−λ′JV

1/2
J,β

∑T
t=1

{(
1√
J

∑J
j=1Dj,J,t(Zjt)

′Σ−1
j,J,oξjt

)}
√
λ′JλJ

+ op(1)

=

−
∑T

t=1

{√
λ′JV

1/2
J,β V

−1
J,t V

1/2
J,β λJ

(
1√
J

∑J
j=1AJ,t(Zjt)ξjt

)}
√
λ′JλJ

+ op(1),

where the first equality follows from Assumption 6(i).

For each t, since VJ,t is bounded and ∥λJ∥ = 1, for any subsequence of ({VJ,t}, λJ),

there exists a further subsequence that converges to some (V∞,t, λ∞). For a given converging

subsequence, let V∞,β = (
∑T

t=1 V
−1
∞,t)

−1. Then along this converging subsequence,
√
Jλ′JV

−/2
J,β (β̂J−β0)√
λ′JλJ

converges in distribution to

−
∑T

t=1

{√
λ′∞V

1/2
∞,βV

−1
∞,tV

1/2
∞,βλ∞Φt

}
√
λ′∞λ∞

∼ N (0, 1) , (S9)

where (Φ1,Φ2, . . . ,ΦT )
′ ∼ N(0, IT ), where the independence across t follows from Assumption

1(ii). That is, we have shown, any subsequence of the sequence
√
Jλ′JV

−1/2
J,β (β̂J−β0)√
λ′JλJ

has a

subsequence that converges in distribution to N(0, 1). This implies that

√
Jλ′JV

−1/2
J,β (β̂J − β0)/

√
λ′JλJ

d→ N(0, 1).

Then the Cramer-Wold device implies that
√
JV

−1/2
J,β (β̂J − β0)

d→ N(0, Idx1 ). This and

6



Assumption 6(ii) as well as (S3) together proves the theorem.

S1.3 Proof of Lemma 1

Proof of Lemma 1. Part (a): By Assumption 7(i), there exists t0 such that the support of

X2,jt0 contains the bounded open Rdx2 -ball B0. Suppose that the center of B0 is x20.

Observe that MF,t0(y) :=

∫ exp(y′υ) exp(x′20υ)
φ0
J,t0

(υ)
dF (υ)∫

1

φ0
J,t0

(υ)
dF (υ)

is the moment generating function of the

density function

f̃(υ) :=
exp(x′20υ)f(υ)

φ0
J,t0

(υ)
∫

1
φ0
J,t0

(u)
dF (u)

,

andMF 0,t0(y) exists for all values of y in an open ball around the origin by Assumption 7(ii).

Then by Theorem 2.3.11(b) of Casella and Berger (2001), ifMF,t0(x2−x20) =MF 0,t0(x2−x20)

for all x2 in an open ball around x20, we have

exp(x′20υ)f(υ)∫
1

φ0
J,t(u)

dF (u)
=

exp(x′20υ)f
0(υ)∫

1
φ0
J,t(u)

dF 0(u)
for all υ. (S10)

Now suppose that f ̸= f 0, we show that (S10) cannot hold. Suppose the contrary. Since

f ̸= f 0, there exists υ0 such that f(υ0) ̸= f 0(υ0). Without loss of generality, suppose that

f(υ0) < f 0(υ0). Let λ = f(υ0)/f
0(υ0) < 1. Equation (S10) implies that,

∫
1

φ0
J,t(u)

dF (u)∫
1

φ0
J,t(u)

dF 0(u)
= λ < 1. (S11)

Applying (S10) again, we have f(υ) = λf 0(υ) for all υ. But this contradicts the fact that

both f and f 0 are density functions and thus must both integrate up to 1. Therefore, for

f ̸= f 0, (S10) cannot hold, which in turn implies that it cannot be true thatMF,t0(x2−x20) =

MF 0,t0(x2 − x20) for all x2 ∈ B0. Therefore, there exists x2 ∈ B0 such that

logMF,t0(x2 − x20) := log

∫
exp(x′2υ)

φ0
J,t0

(υ)
dF (υ)− log

∫
1

φ0
J,t0

(υ)
dF (υ)

7



̸= ψ0
J,t(x2)

:= log

∫
exp(x′2υ)

φ0
J,t0

(υ)
dF 0(υ)− log

∫
1

φ0
J,t0

(υ)
dF 0(υ)

:= logMF 0,t0(x2 − x20). (S12)

Therefore,

log

∫
exp(x′2υ)

φ0
J,t0

(υ)
dF (υ)− log

∫
1

φ0
J,t0

(υ)
dF (υ) ̸= ψ0

J,t(x2) almost surely, (S13)

proving Part (a).

Part (b): By Part (a), f ̸= f 0 implies that for some t and some x2 ∈ X2,t,

log

∫
exp(x′2υ)

φ0
J,t(υ)

dF (υ)− log

∫
1

φ0
J,t(υ)

dF (υ) ̸= ψ0
J,t(x2) almost surely .

Due to the continuity of the functions on both sides in x2, the inequality holds for x2 in a

subset of X2,t with positive X2,jt-measure. Thus,

QJ(f) =
1

J

J∑
j=1

T∑
t=1

EX

[log ∫ exp(X ′
2,jtυ)

φ0
J,t(υ)

f(v)dυ − log

∫
1

φ0
J,t(υ)

f(v)dυ − ψ0
J,t(X2,jt)

]2
> 0

almost surely.

S1.4 Proof of Theorem 3

Proof of Theorem 3. We first show the consistency of f̂J = f̂MD defined in (14) as follows.

We obtain the consistency of f̂J by verifying the conditions in Lemma S1. Specifically,

we show that

(i) supf∈FMJ

∣∣∣Q̂J(f)−QJ(f)
∣∣∣ p→ 0,

8



(ii) QJ(f
0) = 0,

(iii) for any ε > 0 there exists δε > 0 such that inff∈F :∥f−f0∥∞>ε (QJ(f)−QJ(f
0)) > δε

with probability approaching one, and

(iv)
∣∣∣Q̂J(f̂J)

∣∣∣ p→ 0.

Condition (ii) holds by definition. Condition (iii) is guaranteed by Assumption 8(i). To

verify Condition (i), first note that the triangular inequality implies that

∣∣∣Q̂J(f)−QJ(f)
∣∣∣ ≤ ∣∣∣Q̂J(f)− Q̃J(f)

∣∣∣+ ∣∣∣Q̃J(f)−QJ(f)
∣∣∣ . (S14)

Assumption 8(ii) implies that the second term is op(1) uniformly over f ∈ FMJ
. Thus, it is

left to show

sup
f∈FMJ

|Q̂J(f)− Q̃J(f)|
p→ 0. (S15)

Note that

∣∣∣Q̂J(f)− Q̃J(f)
∣∣∣ ≤IJ(f) + 2

√
Q̃J(f)

√
IJ(f), (S16)

where

IJ(f) :=
1

J

T∑
j=1

J∑
j=1

{
ψ̂kJ ,t(X2,jt)− ψ0

J,t(X2,jt) + log

[
GJ,t(X2,jt; f)

GJ,t(0; f)

]
− log

[
ĜJ,t(X2,jt; f)

ĜJ,t(0; f)

]}2

.

For IJ(f), we have

IJ(f) ≤
2

J

T∑
t=1

J∑
j=1

[
ψ̂kJ ,t(X2,jt)− ψ0

J,t(X2,jt)
]2

+
4

J

T∑
t=1

J∑
j=1

(
logGJ,t(X2,jt; f)− log ĜJ,t(X2,jt; f)

)2
+

4

J

T∑
t=1

J∑
j=1

(
logGJ,t(0; f)− log ĜJ,t(0; f)

)2
(S17)
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where we use the inequality that (a+ b)2 ≤ 2a2 + 2b2. Moreover,

1

J

T∑
t=1

J∑
j=1

[
ψ̂kJ ,t(X2,jt)− ψ0

J,t(X2,jt)
]2

= op(1) (S18)

by Assumption 8(ii). In addition, by Taylor expansion and the fact that δ̂jt − δjt =

ψ0
J,t(X2,jt)− ψ̂kJ ,t(X2,jt), we have, uniformly over f ∈ FMJ

,

1

J

T∑
t=1

J∑
j=1

(
logGJ,t(X2,jt; f)− log ĜJ,t(X2,jt; f)

)2
=op(1) +O(∥ψ̂kJ ,t − ψ0

J,t∥20,2,δ0) = op(1), (S19)

where the last equality follows from Theorem 1. Similarly, uniformly over f ∈ FMJ
,

1

J

T∑
t=1

J∑
j=1

(
logGJ,t(0; f)− log ĜJ,t(0; f)

)2
= op(1) +O(∥ψ̂kJ ,t − ψ0

J,t∥20,2,δ0) = op(1). (S20)

Equations (S17)-(S20) together imply that supf∈FMJ
IJ(f) = op(1). This and (S16), combined

with Assumptions 8(ii)-(iii), yield (S15) and in turn verify Condition (i).

For Condition (iv), note that QJ(f
0) = 0. This and Assumption 8(iv) together imply

that QJ(f
0
MJ

) = op(1). Subsequently, Condition (i) implies that Q̂J(f
0
MJ

) = op(1). By the

definition of f̂J , Q̂J(f̂J) ≤ Q̂J(f
0
MJ

), we have Q̂J(f̂J) = op(1) verifying Condition (iv). The

conclusion of the theorem follows from Lemma S1.

Let

QJ,GMM2(β, f) =
1

J

T∑
t=1

J∑
j=1

E

[(
E

[{
log

(
sjt
s0t

)
−X ′

1,jtβ − log

(
GJ,t(X2,jt; f)

GJ,t(0; f)

)}
|Zjt
])2

]
,

Q̃J,GMM2(β, f) =
T∑
t=1

¯̂gt(β, fMJ
)′W 2sls

t
¯̂gt(β, fMJ

),

10



where

¯̂gt(β, fMJ
) =

1

J

J∑
j=1

{
log

(
sjt
s0t

)
−X ′

1,jtβ − log

(
ĜJ,t (X2,jt; fMJ

)

ĜJ,t (0; fMJ
)

)}
.

Let α = (β, f) ∈ B ×F , α0
MJ

= (β, f 0
MJ

) ∈ B ×FMJ
and α0 = (β0, f 0). In this proof, for

α ∈ B × F , we write

∥α∥2s = ∥β∥2 + ∥f∥2∞.

Mapping the notation of this corollary to that of Lemma S1, we note thatRJ(α) = QJ,GMM2(α)

and R̃J(α) = Q̃J,GMM2(α). Specifically, we need to show that

(i) supα∈B×F

∣∣∣Q̃J,GMM2(α)−QJ,GMM2(α)
∣∣∣ p→ 0,

(ii) QJ,GMM2(α
0) = QJ,GMM2(β

0, f 0) = 0,

(iii) for any ε > 0 there exists δε > 0 such that

inf
α∈B×F :∥α−α0∥s>ε

(
QJ,GMM2(α)−QJ,GMM2(α

0)
)
> δε

with probability approaching one, and

(iv)
∣∣∣Q̃J(α̂GMM2)

∣∣∣ p→ 0.

Condition (ii) holds by definition. Condition (iii) is guaranteed by Assumption 1 and

Assumption 7 following the argument in Lemma 1 To verify Condition (i), the proof of

Theorem 3 shows that uniformly over f ∈ F ,

1

J

T∑
t=1

J∑
j=1

{
log

(
ĜJ,t(X2,jt; f)

ĜJ,t(0; f)

)
− log

(
GJ,t(X2,jt; f)

GJ,t(0; f)

)}2

p→ 0.

Then using a similar argument in Step 2 of Proposition 1, we can verify Condition (i). For

Condition (iv), note that
∑T

t=1
¯̂gt(β

0, f 0
MJ

) = op(1) by Assumption 8 (iv), which implies that

Q̂J(α
0
MJ

) = op(1). Thus, following the proof of Theorem 1, we have

Q̂J (α̂GMM2) ≤ Q̂J(α
0
MJ

) = op(1)
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and Condition (iv) is verified. The conclusion follows from Lemma S1.

S1.5 Proof of Lemma S1

Proof of Lemma S1. Define an arbitrary ε > 0. Consider the following derivation:

Pr(∥θ̂J − θ0J∥ > ε)

≤ Pr(RJ(θ̂J)−RJ(θ
0
J) > δε) + Pr(∥θ̂J − θ0J∥ > ε,RJ(θ̂J)−RJ(θ

0
J) ≤ δε)

= Pr(RJ(θ̂J)− R̃J(θ̂J) + R̃J(θ̂J) > δε) + o(1)

≤ Pr(|RJ(θ̂J)− R̃J(θ̂J)| > δε/2) + Pr(|R̃J(θ̂J)| > δε/2) + o(1)

→ 0, (S21)

where the first inequality holds by basic set operation, the equality holds by conditions (b)

and (c), the second inequality holds by P (A∪B) ≤ P (A)+P (B), and the convergence holds

by conditions (a) and (d).

S2 Verification of Assumptions in LST

S2.1 Verification of Assumption 5(i)

For notational simplicity, in this subsection, we assume that the joint distribution of (X ′
1,jt, X

′
2,jt, Zjt)

′

does not vary across j. It can still vary across t and can change as J changes.

The uniform completeness/rank conditions in Assumption 5(i) are adapted from Hall and

Horowitz (2005),23 following whom we define the operator kernel:

τJ,t(x,w) =

∫
fXZ,J,t(x, z)fXZ,J,t(w, z)(1 + x′2x2)

−δ0/2(1 + w′
2w2)

−δ0/2

fZ,J,t(z)fX1|X2,J,t(x1|x2)1/2fX1|X2,J,t(w1|w2)1/2
dz,

where x stands for the concatenation of the dx1-vector x1 and the dx2-vector x2, and w has the

23We thank Andres Santos for suggesting this approach.
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same structure, fXZ,J,t(·, ·) stands for the joint density function of Xjt and Zjt, fX1|X2,J,t(·)

stands for the conditional density function of X1,jt given X2,jt, and fZ,J,t(·) stands for the

marginal density function of Zjt. These densities are allowed to vary with J . We assume

below that
∫ ∫

|τJ,t(x,w)|2dxdw < ∞. Then the operator TJ,tg(x) =
∫
τJ,t(x,w)g(w)dw is

a self-adjoint Hilbert-Schmidt integral operator. Then following Chapter 5.3 of Horowitz

(2009), we note that there exist eigenvalues {λℓ,J,t ≥ 0}∞ℓ=1 and eigen functions {ϕℓ,J,t :

Rdx1+dx2 → R}∞ℓ=1 such that
∫
ϕ2
ℓ,J,t(x)dx = 1 and

∫
ϕℓ,J,t(x)ϕℓ̃,J,t(x)dx = 0 for all ℓ ̸= ℓ̃, and

τJ,t(x,w) =
∞∑
ℓ=1

λℓ,J,tϕℓ,J,t(x)ϕℓ,J,t(w), (S22)

and for any function g : Rdx1+dx2 → R such that
∫
g2(x)(1 + x′2x2)

δ0fX1|X2,J,t(x1|x2)dx <∞,

g(x)fX1|X2,J,t(x1|x2)1/2(1 + x′2x2)
δ0/2 =

∞∑
ℓ=1

⟨g, ϕℓ,J,t⟩ϕℓ,J,t(x), (S23)

where ⟨g, ϕℓ,J,t⟩ =
∫
g(x)ϕℓ,J,t(x)fX1|X2,J,t(x1|x2)1/2(1 + x′2x2)

δ0/2dx.

Assumption 9 (Uniform Completeness). (i) 1
J

∑J
j=1E[∥X1,jt∥2|X2,jt] < ∞ almost surely

for all t, J , and for all t,J , and x2 ∈ X2, we have

eigmin

(
E
[
(X1,jt − E(X1,jt|X2,jt = x2)) (X1,jt − E(X1,jt|X2,jt = x2))

′∣∣X2,jt = x2
])
> c0,

and
∫
X2

∥E(X1,jt|X2,jt = x2)∥2(1 + x′2x2)
δ0dx2 < c−1

0 for a constant c0 > 0 not dependent on

t, J or x2.

(ii)
∫ ∫

|τJ,t(x,w)|2dxdw <∞ for all J , t.

(iii) λℓ,J,t ≥ c1ℓ
−c2 for all ℓ, t,J and constant c1, c2 > 0 that do not depend on t or J .

(iv) For any (β, ψ) ∈ B × Ψ, and g(x) = β′x1 + ψ(x2), we have |⟨g, ϕℓ,J,t⟩| ≤ c3ℓ
−c4 for

all ℓ,t,J and constants 0 ≤ c3 <∞ and c4 > 1/2 that do not depend on ℓ, t, or J .

Remark. Part (i) is the full-rank condition for identifying β0. Part (ii) makes sure that

τJ,t(x,w) is the kernel of a self-adjoint Hilbert-Schmidt integral operator which is compact
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and admits the spectral decomposition shown in (S22). Parts (iii) and (iv) together imply a

uniform version of the completeness condition needed for identifying X1β
0 + ψ0

J,t(X2) using

instrument Z. These two conditions are similar to Condition A.3 in Hall and Horowitz

(2005).

Lemma S2. Suppose that Assumptions 1 and 9 hold. Then Assumption 5(i) holds.

Proof. First note that for arbitrary θ, θ∗ ∈ Θ,

L̄J(θ|θ∗) =
1

J

T∑
t=1

J∑
j=1

E
[
(E [ρjt(θt|θ∗t )|Zjt])

2]
=

1

J

T∑
t=1

J∑
j=1

E
[(
E
[
ξjt +X ′

1,jt(β
∗ − β) + (ψ∗

t (X2,jt)− ψt(X2,jt))|Zjt
])2]

=
T∑
t=1

E
[(
E
[
X ′

1,jt(β
∗ − β) + (ψ∗

t (X2,jt)− ψt(X2,jt))|Zjt
])2]

, (S24)

where the first two qualities hold by the definition and the third equality holds by Assumption

1(i). Let g∗t (x) = x′1β
∗ + ψ∗

t (x2) and gt(x) = x′1β + ψt(x2). Then, by Assumptions 2(i), 2(ii)

and 2(iii)(b), and 1
J

∑J
j=1E[∥X1,jt∥2|X2,jt] <∞ (Assumption 9(i)), we have that for all J, t,

∫
g2t (x)(1 + x′2x2)

δ0fX1|X2,J,t(x1|x2)dx <∞∫
g∗t (x)

2(1 + x′2x2)
δ0fX1|X2,J,t(x1|x2)dx <∞ a.s. (S25)

Thus, they admit the following spectrum decomposition:

gt(x) =
∞∑
ℓ=1

⟨gt, ϕℓ,J,t⟩ϕℓ,J,t(x)(1 + x′2x2)
−δ0/2fX1|X2,J,t(x1|x2)−1/2

g∗t (x) =
∞∑
ℓ=1

⟨g∗t , ϕℓ,J,t⟩ϕℓ,J,t(x)(1 + x′2x2)
−δ0/2fX1|X2,J,t(x1|x2)−1/2, (S26)
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where ϕℓ,J,t(x) : ℓ = 1, . . . ,∞ are the eigen functions of the operator

TJ,tg(x) =
∫
τJ,t(x,w)g(w)dw,

where τJ,t(x,w) is defined in (S22). Let bℓ,J,t = ⟨gt, ϕℓ,J,t⟩ − ⟨g∗t , ϕℓ,J,t⟩. Then

L̄J(θ|θ∗)

=
1

J

T∑
t=1

J∑
j=1

EZ

(EX [ ∞∑
ℓ=1

bℓ,J,tϕℓ,J,t(Xjt)(1 +X ′
2,jtX2,jt)

−δ0/2

fX1|X2,J,t(X1,jt|X2,jt)1/2

∣∣∣∣∣Zjt
])2


=

1

J

T∑
t=1

J∑
j=1

EZ

( ∞∑
ℓ=1

bℓ,J,t

∫
ϕℓ,J,t(x)(1 + x′2x2)

−δ0/2fXZ,J,t(x, Zjt)

fX1|X2,J,t(x1|x2)1/2fZ,J,t(Zjt)
dx

)2


=
1

J

T∑
t=1

J∑
j=1


∞∑
ℓ,ℓ̃

bℓ,J,tbℓ̃,J,t

∫ ∫
ϕℓ,J,t(x)ϕℓ̃,J,t(w)τJ,t(x,w)dxdw


=

T∑
t=1

{
∞∑
ℓ=1

λℓ,J,tb
2
ℓ,J,t

}
, (S27)

where λℓ,J,t : ℓ = 1, . . . ,∞ are the eigenvalues of the integral operator TJ,t, and the last

equality holds by (S22).

Using (S26), we can derive

∫
(gt(x)− g∗t (x))

2(1 + x′2x2)
δ0fX1|X2,J,t(x1|x2)dx

=

∫ ( ∞∑
ℓ=1

bℓ,J,tϕℓ,J,t(x)

)2

dx

=
∑
ℓ,ℓ̃

bℓ,J,tbℓ̃,J,t

∫
ϕℓ,J,t(x)ϕℓ̃,J,t(x)dx

=
∞∑
ℓ=1

b2ℓ,J,t. (S28)
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Assumption 9(iv) implies that

|bℓ,J,t| < 2c3ℓ
−c4 for all J, t.

Since c4 > 1/2, the infinite sum
∑∞

ℓ=1 b
2
ℓ,J,t converges uniformly over J ,t. Thus, for any

positive number e1, there exists an ℓe1 (not dependent on J, t) large enough so that

ℓe1∑
ℓ=1

b2ℓ,J,t >

∞∑
ℓ=1

b2ℓ,J,t − e1/T, (S29)

where T is finite in our setting. Equation (S29) implies that, for an arbitrary e1 > 0, we

have

L̄J(θ|θ∗) ≥
T∑
t=1

ℓe1∑
ℓ=1

λℓ,J,tb
2
ℓ,J,t ≥

T∑
t=1

ℓe1∑
ℓ=1

c1ℓ
−c2
e1
b2ℓ,J,t ≥ c1ℓ

−c2
e1

(
T∑
t=1

∞∑
ℓ=1

b2ℓ,J,t − e1

)
. (S30)

where the first inequality holds by (S27) and the fact that the eigenvalues λℓ,J,t are non-

negative and the second inequality holds by Assumption 9(iii).

It is left to construct a lower bound for
∑T

t=1

∑∞
ℓ=1 b

2
ℓ,J,t using ∥θ − θ∗∥2s. Note that

∞∑
ℓ=1

b2ℓ,J,t

=

∫
(gt(x)− g∗t (x))

2(1 + x′2x2)
δ0fX1|X2,J,t(x1|x2)dx

=

∫
(x′1(β − β∗) + ψt(x2)− ψ∗

t (x2))
2(1 + x′2x2)

δ0fX1|X2,J,t(x1|x2)dx

=

∫
E[(X ′

1,jt(β − β∗) + ψt(x2)− ψ∗
t (x2))

2|X2,jt = x2](1 + x′2x2)
δ0dx2

= (β − β∗)′
(∫

AJ,t(x2)(1 + x′2x2)
δ0dx2

)
(β − β∗)

+

∫
(E(X1,jt|X2,jt = x2)

′(β − β∗) + ψt(x2)− ψ∗
t (x2))

2(1 + x′2x2)
δ0dx2 (S31)

= (β − β∗)′
(∫

AJ,t(x2)(1 + x′2x2)
δ0dx2

)
(β − β∗) + ∥ψt − ψ∗

t ∥20,2,δ0
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+

∫
(E(X1,jt|X2,jt = x2)

′(β − β∗))2|X2,jt = x2](1 + x′2x2)
δ0dx2

+ 2(β − β∗)′
∫

(E(X1,jt|X2,jt = x2)(ψt(x2)− ψ∗
t (x2))(1 + x′2x2)

δ0dx2

≥ ∥ψt − ψ∗
t ∥20,2,δ0

+ 2(β − β∗)′
∫

(E(X1,jt|X2,jt = x2)(ψt(x2)− ψ∗
t (x2))(1 + x′2x2)

δ0dx2

≥ ∥ψt − ψ∗
t ∥20,2,δ0

− 2∥β − β∗∥

√∫
||E(X1,jt|X2,jt = x2)∥2(1 + x′2x2)

δ0dx2∥ψt − ψ∗
t ∥0,2,δ0 , (S32)

where AJ,t(x2) = E[(X1,jt − E(X1,jt|X2,jt = x2))(X1,jt − E(X1,jt|X2,jt = x2))
′|X2,jt = x2].

Also note that by Assumption 9(i), we have

(β − β∗)′AJ,t(x2)(β − β∗) > c0∥β − β∗∥2, and (S33)∫
∥E(X1,jt|X2,jt = x2)∥2(1 + x′2x2)

δ0dx2 < c−1
0 . (S34)

Consider a constant a ∈ (0, 1) such that a + 2c−1
0

√
a < 1. Such a constant exists by the

mean-value theorem. We consider two cases. In the first case, ∥β − β∗∥2 ≥ a∥θt − θ∗t ∥2s :=

a(∥β − β∗∥2 + ∥ψt − ψ∗
t ∥20,2,δ0). Then by (S31) and (S33), we have

∞∑
ℓ=1

b2ℓ,J,t ≥ ac0

∫
(1 + x′2x2)

δ0dx2∥θt − θ∗t ∥2s. (S35)

In the second case, ∥β−β∗∥2 < a∥θt− θ∗t ∥2s. Thus, ∥ψt−ψ∗
t ∥20,2,δ0 > (1− a)∥θt− θ∗t ∥2s. Then,

by (S32) and (S34), we have

∞∑
ℓ=1

b2ℓ,J,t ≥ ∥ψt − ψ∗
t ∥20,2,δ0 − 2

√
a∥θt − θ∗t ∥2sc−1

0 > (1− a− 2c−1
0

√
a)∥θt − θ∗t ∥2s. (S36)
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Therefore, in both cases,

∞∑
ℓ=1

b2ℓ,J,t ≥ min{ac0
∫

(1 + x′2x2)
δ0dx2, (1− a− 2c−1

0

√
a)}∥θt − θ∗t ∥2s. (S37)

This implies that

T∑
t=1

∞∑
ℓ=1

b2ℓ,J,t ≥ min{ac0
∫

(1 + x′2x2)
δ0dx2, (1− a− 2c−1

0

√
a)}∥θ − θ∗∥2s. (S38)

Now consider an arbitrarily ε > 0, let e1 ∈ (0, ε2min{ac0
∫
(1 + x′2x2)

δ0dx2, (1 − a −

2c−1
0

√
a)}). And let δε = c1ℓ

−c2
e1

(
min{ac0

∫
(1 + x′2x2)

δ0dx2, (1− a− 2c−1
0

√
a)}ε2 − e1

)
. Then

δε > 0 and

L̄J(θ|θ∗) ≥ c1ℓ
−c2
e1

(
T∑
t=1

∞∑
ℓ=1

b2ℓ,J,t − e1

)
≥ δε, (S39)

where the first inequality holds by (S30) and the second inequality holds by (S38). Since θ

and θ∗ are arbitrary and δε does not depend on them or J , this verifies Assumption 5(i).

S2.2 Verification of Assumptions 4-6

Assumption 5(i) has been verified in the previous section. To verify the rest of the conditions

in Assumptions 4-6, we introduce the following notation and assumptions. For θ, θ∗ ∈ Θ, let

∥θ − θ∗∥2w :=
T∑
t=1

∥θt − θ∗t ∥2w :=
1

J

J∑
j=1

T∑
t=1

E
[
Σ−1
j,J,oE [ρjt(θt|θ∗t )|Zjt]

2] . (S40)

Note that the definition of ∥ · ∥w is analogous to the weak norm defined in Equation (14) of

Ai and Chen (2003). Similarly, for each t and ψt, ψ
∗
t ∈ Ψ, define

∥ψt − ψ∗
t ∥2w =

1

J

J∑
j=1

T∑
t=1

E
[
Σ−1
j,J,oE [ψt(X2,jt)− ψ∗

t (X2,jt)|Zjt]2
]
. (S41)
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Let ψ0
J,kJ ,t

= argminψt∈ΨkJ
∥ψt − ψ0

J,t∥2w.

Let V̄ = Rdx1 ×
∏T

t=1 W̄ . Let
(
V̄ , ⟨·, ·⟩ w

)
be a Hilbert space equipped with the following

inner product

〈
ν1, ν2

〉
w =

1

J

J∑
j=1

T∑
t=1

E
[
Σ−1
j,J,oE[X

′
1,jtν

1
β + ν1ψ,t(X2,jt)|Zjt]E[X ′

1,jtν
2
β + ν2ψ,t(X2,jt)|Zjt]

]
(S42)

for any ν1 := (ν1β, ν
1
ψ,1, . . . , ν

1
ψ,T ), ν

2 := (ν2β, ν
2
ψ,1, . . . , ν

2
ψ,T ) ∈ V̄ . For any linear functional

f(θ) = λ′Jβ for a constant vector λJ ∈ Rdx1 and any β ∈ B, by the Riesz representation

theorem, there exists a ν†J = (ν†J,β, ν
†
J,ψ,1, . . . , ν

†
J,ψ,T ) ∈ V̄ such that

f(θ)− f(θ0J) = λ′J(β − β0) =
〈
θ − θ0J , ν

†
J

〉
w

(S43)

=
1

J

J∑
j=1

T∑
t=1

E
[
Σ−1
j,J,oE

[
ρjt(θt|θ0J,t)|Zjt

]
E
[
X ′

1,jtν
†
J,β + ν†J,ψ,t(X2,jt)|Zjt

]]
.

Similar to Ai and Chen (2003) (pp. 1809), we can derive that ν†J,β = VJ,βλJ , ν
†
J,ψ,t = −ω†

J,tν
†
J,β,

where VJ,β and ω†
J,t are defined above Assumption 6. Let ν†J,t = (ν†J,β, ν

†
J,ψ,t).

Next we define a sieve approximation for ν†J . For each ℓ, let the ℓ-th element of ω†
J,kJ ,t

be

the solution to

min
ωt,ℓ∈W̄kJ

1

J

J∑
j=1

E
[
E [X1ℓ,jt − ωt,ℓ (X2,jt) |Zjt]2 /Σj,J,o

]
,

where W̄kJ is the closure of the linear span of ΨkJ −ψ0
J,kJ ,t

, which is the same as the closure

of the linear span of ΨkJ since ψ0
J,kJ ,t

∈ ΨkJ by definition. Let ν†J,kJ ,t = (ν†J,β, ν
†
ψ,kJ ,t

), where

ν†ψ,kJ ,t = −ω†
J,kJ ,t

ν†J,β. Let ν†J,kJ = (ν†J,β, ν
†
ψ,kJ ,1

, . . . , ν†ψ,kJ ,T ). It is easy to see that W̄kJ ⊆ W̄

because ΨkJ ⊆ Ψ. Similar to the weak norm defined on Ψ above, we can define the weak

norm on W̄ as follows: for ωt, ω
∗
t ∈ W̄ , let

∥ωt − ω∗
t ∥2w =

1

J

J∑
j=1

E
[
Σ−1
j,J,o ∥E [ωt(X2,jt)− ω∗

t (X2,jt)|Zjt]∥2
]
.
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Let Θt = B ×Ψ and ΘkJ ,t = B ×ΨkJ .

Assumption 10. (i) supθkJ ,t∈ΘkJ ,t,θt∈Θt
infπςJ∈RςJ

∑J
j=1(I

ςJ (Zjt)
′πςJ −E[ρjt(θkJ ,t|θt)|Zjt])2 =

op(J
3/4) for all t.

(ii) ∥ψ0
J,kJ ,t

− ψ0
J,t∥w = op(J

−1/4) and ∥ω†
J,kJ ,t

− ω†
J,t∥w = o(J−1/4).

For each t, let

ΩJ,t :=
1

J

J∑
j=1

E[Σj,J,oI
ςJ (Zjt)I

ςJ (Zjt)
′].

For notational simplicity, define

I ςJ (Zjt) = (I1(Zjt), . . . , Is(Zjt), . . . , IςJ (Zjt))
′ ,

IςJ (Zjt) = Σ
1/2
j,J,oI

ςJ (Zjt), Iz,t = (IςJ (Z1t), . . . , IςJ (ZJt))′ .

For any random variable Wjt, let GJ(Wjt) = 1√
J

∑J
j=1(Wjt − E(Wjt)). For θt := (β, ψt),

θ∗t := (β∗, ψ∗
t ) ∈ Θt, define the following quantities,

ρjt(θt|θ∗t ) = ξjt +X ′
1,jt(β

∗ − β) + (ψ∗
t (X2,jt)− ψt(X2,jt)) ,

Π̂jt(θt|θ∗t ) = IςJ (Zjt)′
(
I′z,tIz,t

)−1
J∑

j′=1

IςJ (Zj′t)

(
ρj′t(θt|θ∗t )
Σ

1/2
j′,J,o

)
,

Πjt(θt|θ∗t ) = Σ
−1/2
j,J,o E [ρjt(θt|θ∗t )|Zjt] .

Given the definitions above, it is easy to calculate the pathwise derivatives:

dρjt(θt|θ∗t )
dθt

[νt] = −X ′
1,jtνβ − νψ,tX2,jt,

dΠjt(θt|θ∗t )
dθt

[νt] = Σ
−1/2
j,J,o E

[
(−X ′

1,jtνβ − νψ,t(X2,jt))|Zjt
]
. (S44)

Note that these pathwise derivatives do not depend on either θt or θ
∗
t .
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Assumption 11. (i) For the ςJ-dimensional identity matrix IςJ , we have

∥∥∥∥∥
T∑
t=1

(
1

J

J∑
j=1

I ςJ (Zjt)I
ςJ (Zjt)

′ − IςJ

)∥∥∥∥∥ = op(J
−1/4)

and for each fixed t,

∥∥∥∥∥ 1J
J∑
j=1

(
ξ2jt − Σj,J,o

)
I ςJ (Zjt)I

ςJ (Zjt)
′

∥∥∥∥∥ = op(J
−1/4),∥∥∥∥∥

(
1

J

J∑
j=1

Σj,J,oI
ςJ (Zjt)I

ςJ (Zjt)
′

)
−

(
1

J

J∑
j=1

E [Σj,J,oI
ςJ (Zjt)I

ςJ (Zjt)
′]

)∥∥∥∥∥ = op(J
−1/4);

(ii) for each fixed t, and for No,J,t = {θkJ ,t ∈ ΘkJ ,t : ∥θkJ ,t − θ0J,t∥s = op(1), ∥θkJ ,t − θ0J,t∥w =

op(J
−1/4)}, we have

sup
θkJ ,t∈No,J,t

1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

] [
Π̂jt(θkJ ,t|θ0J,t)− Π̂jt(θ

0
J,t|θ0J,t)− Πjt(θkJ ,t|θ0J,t)

]}
= op(1),

sup
θkJ ,t∈No,J,t

GJ

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]
Πjt(θkJ ,t|θ0J,t)

}
= op(1), and

1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

] [
Π̂jt(θ

0
J,t|θ0J,t)−

ξjt

Σ
1/2
j,J,o

]}
= op(1);

(iii) for each t, we have that uniformly over θkJ ,t ∈ ΘkJ ,t and θt ∈ Θt,

1
J

∑J
j=1

[
Σ

−1/2
j,J,o E [ρjt(θkJ ,t|θt)|Zjt]

]2
∥θkJ ,t − θt∥2w

= 1 + op(1).

(iv) for a sequence of positive real values {aJ}∞J=1 such that a2JςJ/
√
J = o(1), we have

E

max
t

max
1≤s≤ςJ

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

(
1√
J

J∑
j=1

Is(Zjt) {ρjt(θkJ ,t|θt)− E [ρjt(θkJ ,t|θt)|Zjt]}

)2
 ≤ a2J ,
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and

E

max
t

max
1≤s≤ςJ

(
1√
J

J∑
j=1

Is(Zjt)

{
dρjt(θt|θt)

dθ

[
ν†J,t

]
− E

[
dρjt(θt|θt)

dθ

[
ν†J,t

]
|Zjt
]})2

 ≤ a2J ,

where the θt in the second line is arbitrary since the pathwise derivative depends only on ν†J,t.

Remark. Assumptions 10(i) and (ii) are about the approximation errors of the basis functions.

Assumption 11 is a high-level assumption on the convergence of functions related to Zjt. It

can be verified by using empirical process theory if we assume a specific data structure of

{Zjt}J,Tj=1,t=1 . For instance, when {Xjt, Zjt}J,Tj=1,t=1 are independent, Assumption 11(i) and

(ii) are verified in Chen and Christensen (2018) and Ai and Chen (2003), respectively;

Assumption 11(iii)-(iv) can be verified by Theorem 2.7.11 and Theorem 2.14.9 in van der

Vaart and Wellner (1996), respectively.

Proposition 1. Suppose that Assumptions 1-3, and Assumptions 10-11 hold, that the preliminary

estimator θ̃J,t satisfies the equation ∥Ω̂t(θ̃J,t)− 1
J

∑J
j=1 ξ

2
jtI

ςJ (Zjt)I
ςJ (Zjt)

′∥ = op(1) for all t,

and that the smallest eigenvalue of the matrix 1
J

∑J
j=1E[Dj,J,t(Zjt)Dj,J,t(Zjt)

′] is bounded

away from zero uniformly over J for all t. Then Assumptions 4, 5(ii), and 6 hold.

Proof. Step 1. We first verify Assumption 4. When Assumption 3 is satisfied, we assume

that Ĩ ςJ (z) = I ςJ (z) and E [I ςJ (Zjt)I
ςJ (Zjt)

′] = IςJ without loss of generality, where IςJ is an

ςJ × ςJ identity matrix.

For Assumption 4(i), note that for ḡt(θ
0
J,kJ ,t

) = 1
J

∑J
j=1 gjt(θ

0
J,kJ ,t

), by triangular inequality,

∥∥ḡt(θ0J,kJ ,t)∥∥ ≤
∥∥ḡt(θ0J,t)∥∥+ ∥∥ḡt(θ0J,kJ ,t)− ḡt

(
θ0J,t
)∥∥ . (S45)

For the first term on the RHS of (S45), note that
∥∥ḡt(θ0J,t)∥∥ = ∥ 1

J

∑J
j=1 ξjtI

ςJ (Zjt)∥. Since

1

J

J∑
j=1

E[∥I ςJ (Zjt)∥2] =
1

J

J∑
j=1

tr (E[I ςJ (Zjt)I
ςJ (Zjt)

′]) = tr(IςJ ) = ςJ , (S46)
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we have,

E
[
∥ḡt(θ0J,t)∥2

]
≤ C

J2

J∑
j=1

E
[
∥I ςJ (Zjt)∥2

]
= CςJ/J,

where the inequality follows from Assumption 2(iv) and the last equality follows from (S46).

Then 1
J

∑J
j=1 ∥ḡt(θ0J,t)∥ = Op

(√
ςJ/J

)
= op(1) by Markov inequality and Assumption 3(ii).

For the second term on the RHS of (S45), we first consider the derivation:

∥ḡt(θ0J,kJ ,t)− ḡt(θ
0
J,t)∥2

=

ςJ∑
s=1

(
1

J

J∑
j=1

Is(Zjt)
(
ψ0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)

))2

≤
ςJ∑
s=1

(
1

J

J∑
j=1

Is(Zjt)(ψ
0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)− EX [ψ

0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)|Zjt])

)2

+

∥∥∥∥∥ 1J
J∑
j=1

I ςJ (Zjt)EX [ψ
0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)|Zjt]

∥∥∥∥∥
2

. (S47)

The first summand on the RHS is bounded by

ςJ
J

max
1≤s≤ςJ

(
1√
J

J∑
j=1

Is(Zjt)(ψ
0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)− EX [ψ

0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)|Zjt])

)2

≤ ςJ
J

max
1≤s≤ςJ

max
θt∈Θt,θkJ ,t∈ΘkJ ,t

(
1√
J

J∑
j=1

Is(Zjt)(ρjt(θkJ ,t|θt)− E[ρjt(θkJ ,t|θt)|Zjt])

)2

= Op(ςJa
2
JJ

−1) = op(1), (S48)

where the inequality holds because (β0, ψ0
J,t) ∈ Θt and (β0, ψ0

J,kJ ,t
) ∈ ΘkJ ,t, the first equality

holds by Markov’s inequality and Assumption 11(iv), and the second equality holds by

Assumption 11(iv). Furthermore, by the Cauchy-Schwarz inequality, the second summand

on the RHS of (S47) is bounded by

(
1

J

J∑
j=1

∥I ςJ (Zjt)∥2Σj,J,o

)
×

(
1

J

J∑
j=1

EX [ψ
0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)|Zjt]2Σ−1

j,J,o

)
. (S49)
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By Assumption 2(iv), we have

(
1

J

J∑
j=1

∥I ςJ (Zjt)∥2Σj,J,o

)
≤ C

(
1

J

J∑
j=1

∥I ςJ (Zjt)∥2
)

= Op(ςJ), (S50)

where the equality holds by (S46). Moreover, by Assumption 11(iii), we have

1

J

J∑
j=1

EX [ψ
0
J,kJ ,t

(X2,jt)− ψ0
J,t(X2,jt)|Zjt]2Σ−1

j,J,o = Op(∥ψ0
J,kJ ,t

− ψ0
J,t∥2w) = op(J

−1/2), (S51)

where the second equality holds by Assumption 10(ii). Therefore, the expression in (S49) is

op(ςJJ
−1/2) which is op(1). This and (S47) and (S48) together imply that the second term

on the RHS of (S45) is op(1). Therefore, both terms on the RHS of (S45) are op(1). Thus,

Assumption 4(i) is verified.

For Assumption 4 (ii), recall that Ω̂t(θ̃J,t) =
1
J

∑J
j=1 gjt(θ̃J,t)gjt(θ̃J,t)

′, we first show that

for ΩJ,t =
1
J

∑J
j=1E[Σj,J,oI

ςJ (Zjt)I
ςJ (Zjt)

′],

∥Ω̂t

(
θ̃J,t

)
− ΩJ,t∥ = op(1). (S52)

By the triangular inequality,

∥Ω̂t(θ̃J,t)−ΩJ,t∥ ≤ ∥Ω̂t(θ̃J,t)−
1

J

J∑
j=1

ξ2jtI
ςJ (Zjt)I

ςJ (Zjt)
′∥+∥ 1

J

J∑
j=1

ξ2jtI
ςJ (Zjt)I

ςJ (Zjt)
′−ΩJ,t∥.

(S53)

For the first term on the right-hand side of (S53), by the assumption of θ̃J,t in the proposition,

it is op(1). For the second term on the right-hand side of (S53), by Assumption 11(i),

∥ 1
J

J∑
j=1

ξ2jtI
ςJ (Zjt)I

ςJ (Zjt)
′ − ΩJ,t∥ = op(1). (S54)
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Then (S53) implies that ∥Ω̂t(θ̃J,t)− ΩJ,t∥ = op(1). Thus, we have

∣∣∣eigmin

(
Ω̂t

(
θ̃J,t

))
− eigmin (ΩJ,t)

∣∣∣ p→ 0, and
∣∣∣eigmax

(
Ω̂t

(
θ̃
))

− eigmax (ΩJ,t)
∣∣∣ p→ 0, (S55)

We next show that

0 < inf
J,t
eigmin(ΩJ,t) ≤ sup

J,t
eigmax(ΩJ,t) <∞. (S56)

Recall that ΩJ,t =
1
J

∑J
j=1E [Σj,J,oI

ςJ (Zjt)I
ςJ (Zjt)

′], and Σj,J,o = E
[
ξ2jt| {Zjt}

J
j=1

]
. Then

sup
J,t

(eigmax (ΩJ,t)) ≤ sup
j,J,t

sup
z∈Zt

[
ξ2jt| {Zj′t}

J
j′=1 = z

]
sup
J,t

eigmax

(
1

J

J∑
j=1

E [I ςJ (Zjt)I
ςJ (Zjt)

′]

)
<∞

because of Assumption 2 (iv) and Assumption 3 (i). Similar argument also implies that

infJ,t eigmin(ΩJ,t) > 0. Equations (S55) and (S56) together imply that 1/C ≤ eigmin(Ω̂t(θ̃J,t)) ≤

eigmax(Ω̂t(θ̃J,t)) ≤ C w.p.a.1 for some C ∈ (0,∞).

Similarly, Assumption 11(i) implies that

∥∥W 2SLS
t − IςJ

∥∥ = op(1).

Because the eigenvalues of an identity matrix are bounded away from zero and above, we

have for some constant C ′ ∈ (0,∞),

1/C ′ ≤ eigmin(W
2SLS
t ) ≤ eigmax(W

2SLS
t ) ≤ C ′, (S57)

and Assumption 4 (ii) follows immediately.

Step 2. Next, we verify supθkJ∈ΘkJ

∣∣∣L̃J(θkJ )− L̄J(θkJ |θ0J)
∣∣∣ p→ 0 in Assumption 5(ii).
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Let ρ̂t(θt|θ∗t ) = (ρ1t(θt|θ∗t ), . . . , ρ1t(θt|θ∗t ))′, and let

Iz,t = (I ςJ (Z1t), . . . , I
ςJ (ZJt))

′.

Note that

L̃J(θkJ ) =
1

J2

T∑
t=1

ρ̂t(θkJ ,t|θ0J,t)′Iz,tW 2SLS
t I ′z,tρ̂t(θkJ ,t|θ0J,t).

For arbitrary θkJ ,t ∈ ΘkJ ,t and θt ∈ Θt, let Π̌jt(θkJ ,t|θt) := 1
J
I ςJ (Zjt)

′W 2SLS
t I ′z,tρ̂t(θkJ ,t|θt).

Consider the derivation

∣∣∣∣∣ 1J2
ρ̂t(θkJ ,t|θt)′Iz,tW 2SLS

t I ′z,tρ̂t(θkJ ,t|θt)−
1

J

J∑
j=1

E [ρjt(θkJ ,t|θt)|Zjt]
2

∣∣∣∣∣
=

∣∣∣∣∣ 1J
J∑
j=1

(
Π̌jt(θkJ ,t|θt)

)2 − 1

J

J∑
j=1

E [ρjt(θkJ ,t|θt)|Zjt]
2

∣∣∣∣∣
≤

√√√√ 1

J

J∑
j=1

(
Π̌jt(θkJ ,t|θt)− E [ρjt(θkJ ,t|θt)|Zjt]

)2
×

√√√√ 1

J

J∑
j=1

E [ρjt(θkJ ,t|θt)|Zjt]
2 +

√√√√ 1

J

T∑
t=1

J∑
j=1

Π̌jt(θkJ ,t|θt)2

 . (S58)

Consider each terms on the RHS of (S58). First, we show that for each t,

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

1

J

J∑
j=1

(
Π̌jt(θkJ ,t|θt)− E [ρjt(θkJ ,t|θt)|Zjt]

)2
= op(J

−1/2). (S59)

Let Π̃jt(θkJ ,t|θt) = 1
J
I ςJ (Zjt)

′W 2SLS
t

∑J
j′=1 I

ςJ (Zj′t)E [ρj′t(θkJ ,t|θt)|Zj′t] . Then

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

1

J

J∑
j=1

(
Π̌jt(θkJ ,t|θt)− Π̃jt(θkJ ,t|θt

)2
≤ sup

θkJ ,t∈ΘkJ ,t,θt∈Θt

(
1

J

J∑
j=1

{ρjt(θkJ ,t|θt)− E [ρjt(θkJ ,t|θt)|Zjt]} I ςJ (Zjt)

)′
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×
(
Iz,tI

′
z,t/J

)−1

(
1

J

J∑
j=1

{ρjt(θt|θt)− E [ρjt(θt|θt)|Zjt]} I ςJ (Zjt)

)
. (S60)

The RHS of (S60) is bounded by

eigmin

(
Iz,tI

′
z,t/J

)−1
sup

θkJ ,t∈ΘkJ ,t,θt∈Θt

ςJ∑
s=1

(∣∣∣∣∣ 1J
J∑
j=1

{ρjt(θkJ ,t|θt)− E[ρjt(θkJ ,t|θt))]}Is(Zjt)

∣∣∣∣∣
)2

where eigmin

(
Iz,tI

′
z,t/J

)−1
= Op(1) by (S57) in Step 1 of the proof. Consider that

Pr

 ςJ∑
s=1

(
max
t

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

√
J

∣∣∣∣∣ 1J
J∑
j=1

{ρjt(θkJ ,t|θt)− E [ρjt(θkJ ,t|θt)|Zjt]} Is(Zjt)

∣∣∣∣∣
)2

> ϵ


≤ ςJ√

Jϵ
E

max
t

max
1≤s≤ςJ

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

(
1√
J

J∑
j=1

{ρjt(θkJ ,t|θt)− E [ρjt(θkJ ,t|θt)|Zjt]} Is(Zjt)

)2


→ 0, (S61)

where the inequality holds by Markov’s inequality and the convergence holds by Assumption

11(iv).

Combining (S60)-(S61), we have

max
1≤t≤T

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

1

J

J∑
j=1

(
Π̌jt(θkJ ,t|θt)− Π̃jt(θkJ ,t|θt)

)2
= op(J

−1/2). (S62)

Furthermore, using the definition of Π̃jt(θkJ ,t, θt) (above equation(S60)), we have

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

1

J

T∑
t=1

J∑
j=1

(
Π̃jt(θkJ ,t|θt)− E[ρjt(θkJ ,t|θt)|Zjt]

)2
= sup

θkJ ,t∈ΘkJ ,t,θt∈Θt

T∑
t=1

inf
πςJ∈R

ςJ

1

J

J∑
j=1

(I ςJ (Zjt)
′πςJ − E[ρjt(θkJ ,t|θt)|Zjt])2

= op(J
−1/2), (S63)
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where the second equality holds by Assumption 10(i). Equations (S62) and (S63) together

imply (S59) by triangular inequality.

Next, we show that

sup
θkJ ,t∈ΘkJ,t

,θt∈Θt

1

J

J∑
j=1

E [ρjt(θkJ ,t|θt)|Zjt]
2 = Op(1). (S64)

This is because

E [ρjt (θt|θ∗t ) |Zjt]
2 =E

[
ξjt +X ′

1,jt (β
∗ − β) + (ψ∗

t (X2,jt)− ψt(X2,jt)) |Zjt
]2

≤2E
[
X ′

1,jt(β
∗ − β)|Zjt

]2
+ 2E [{ψ∗

t (X2,jt)− ψt(X2,jt)} |Zjt]2 .

Hence, (S64) holds by Assumption 2 (i)-(iii) and (v) (also see a similar argument in the proof

of Lemma S2).

Note that (S64) and (S59) together imply that

sup
θkJ ,t∈ΘkJ ,t,θt∈Θt

1

J

J∑
j=1

Π̌jt(θkJ ,t|θt) = Op(1). (S65)

Now we can come back to (S58) and conclude that

sup
θkJ∈ΘkJ

∣∣∣L̃J(θkJ )− L̄(θkJ |θ0J)
∣∣∣ p→ 0. (S66)

Step 3.1. We now verify Assumption 6(i). To do so, we use a similar idea to the one in the

partially linear IV example of Ai and Chen (2003) and first show that ∥θ̂J−θ0J∥w = op
(
J−1/4

)
.

First, the condition on the preliminary estimator θ̃J,t in the proposition and the second

statement of Assumption 11(i) together imply that,

∥∥∥∥Ω̂t(θ̃J,t)−
1

J
I′z,tIz,t

∥∥∥∥ = op(1). (S67)
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Therefore, uniformly over θkJ ,t ∈ ΘkJ ,t,∣∣∣∣∣L̂t(θkJ ,t)− ḡt(θkJ ,t)
′
(
1

J
I′z,tIz,t

)−1

ḡt(θkJ ,t)

∣∣∣∣∣
=

∣∣∣∣∣ḡt(θkJ ,t)′
{
Ω̂t(θ̃J,t)

−1 −
(
1

J
I′z,tIz,t

)−1
}
ḡt(θkJ ,t)

∣∣∣∣∣
=

∣∣∣∣∣ḡt(θkJ ,t)′Ω̂t(θ̃J,t)
−1

{
Ω̂t(θ̃J,t)−

1

J
I′z,tIz,t

}(
1

J
I′z,tI′z,t

)−1

ḡt(θkJ ,t)

∣∣∣∣∣
=op

(
ḡt(θkJ ,t)

′
(
1

J
I′z,tIz,t

)−1

ḡt(θkJ ,t)

)
, (S68)

where the last equality follows from Assumption 4(ii) and (S67).

Recall that Π̂jt(θkJ ,t|θ0J,t) = IςJ (Zjt)′
(
I′z,tIz,t

)−1∑J
j′=1

IςJ (Zj′t)ρj′t(θkJ ,t|θ0J,t)
Σj′,J,o(Zj′t)

1/2 . Then

ḡt(θkJ ,t)
′
(
1

J
I′z,tIz,t

)−1

ḡt(θkJ ,t) =
1

J

J∑
j=1

[
Π̂jt(θkJ ,t|θ0J,t)

]2
. (S69)

By similar arguments as those for (S58), (S59), (S64), and (S65) (where we replace W 2SLS
t ,

I ςJ (Zjt), and ρjt(θkJ ,t|θ0J,t) with 1
J

∑J
j=1 IςJ (Zjt)IςJ (Zjt)′, IςJ (Zjt), Σ

−1/2
j,J,o ρjt(θkJ ,t|θ0J,t) respectively),

one can show that

sup
θkJ ,t∈ΘkJ ,t

∣∣∣∣∣ 1J
J∑
j=1

(
Π̂jt(θkJ ,t|θ0J,t)

)2
− 1

J

J∑
j=1

Σ−1
j,J,o(E[ρjt(θkJ ,t|θt)|Zjt]|θt=θ0J,t)

2

∣∣∣∣∣ = op(J
−1/2),

(S70)

which together with (S69) and Assumption 11(iii) imply that

sup
θkJ ,t∈ΘkJ ,t

∣∣∣∣∣ḡt(θkJ ,t)′
(
1

J
I′z,tIz,t

)−1

ḡt(θkJ ,t)− ∥θkJ ,t − θ0J,t∥2w

∣∣∣∣∣ = op(J
−1/2). (S71)

Therefore, we have uniformly over θkJ ,t ∈ ΘkJ ,t,

L̂t(θkJ ,t) = ḡt(θkJ ,t)
′
(
1

J
I′z,tIz,t

)−1

ḡt(θkJ ,t) + op(J
−1/2) + op(∥θkJ ,t − θ0J,t∥2w)
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= ∥θkJ ,t − θ0J,t∥2w + op(∥θkJ ,t − θ0J,t∥2w) + op(J
−1/2), (S72)

where the first equality holds by (S68) and (S71), and the second equality holds by applying

(S71) again. In particular, we have

L̂t(θ̂J,t) = ∥θ̂J,t − θ0J,t∥2w + op(∥θ̂J,t − θ0J,t∥2w) + op(J
−1/2) (S73)

L̂t(θ0J,kJ ,t) = ∥θ0J,kJ ,t − θ0J,t∥2w + op(∥θ0J,kJ ,t − θ0J,t∥2w) + op(J
−1/2) = op(J

−1/2), (S74)

where the second equality in (S74) follows from Assumption 10(ii).

Moreover, by the definition of θ̂J,t, we have L̂t(θ̂J,t) ≤ L̂t(θ0J,kJ ,t), which together with

(S73) and (S74) imply that the following derivation goes through:

0 ≤ L̂t(θ0J,kJ ,t)− L̂t(θ̂J,t) = op(J
−1/2) + op(∥θ̂J,t − θ0J,t∥2w)− ∥θ̂J,t − θ0J,t∥2w, (S75)

which implies that ∥θ̂J,t − θ0J,t∥w = op(J
−1/4). Thus, θ̂J,t ∈ No,J,t for No,J,t defined in

Assumption 11(ii).

Step 3.2. To continue verifying Assumption 6(i), we first establish a nonparametric

first-order condition for the GMM problem. To begin for some τ ∈ [0, 1], let ν†J,t =

(ν†J,β, ν
†
J,ψ,t), ν

†
J,kJ ,t

= (ν†J,β, ν
†
ψ,kJ ,t

), u†t = ±ν†J,t, u
†
kJ ,t

= ±ν†J,kJ ,t, and u†kJ = ±ν†J,kJ =

±(ν†J,β, ν
†
ψ,kJ ,1

, . . . , νψ,kJ ,T ). Let θ(0) = θ̂J , θ(1) = θ̂J + ϵJu
†
kJ

for 0 < ϵJ = o(J−1/2), and

θ(τ) = θ̂J + τϵJu
†
kJ
. Since θ̂J= argminθ∈ΘkJ

L̂J(θ), a second-order Taylor expansion implies

that for some s ∈ [0, 1],

0 ≤ L̂J
(
θ̂J + ϵJu

†
kJ

)
− L̂J

(
θ̂J

)
= L̂J (θ(1))− L̂J(θ(0))

=
dL̂J (θ(τ))

dτ

∣∣∣∣∣
τ=0

+
1

2

d2L̂J(θ(τ))
dτ 2

∣∣∣∣∣
τ=s

=
T∑
t=1

dL̂J,t (θt(τ))
dτ

∣∣∣∣∣
τ=0

+
1

2

T∑
t=1

d2L̂J,t(θt(τ))
dτ 2

∣∣∣∣∣
τ=s

(S76)
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For each t, for the first term on the RHS of (S76), by direct calculation, we obtain

dL̂J,t (θt(τ))
dτ

∣∣∣∣∣
τ=0

=2

(
1

J

J∑
j=1

dρjt(θ̂J,t|θ0J,t)
dθ

[
ϵJu

†
kJ ,t

]
I ςJ (Zjt)

)′

Ω̂−1
t (θ̃J,t)

(
1

J

J∑
j=1

I ςJ (Zjt)ρjt(θ̂J,t|θ0J,t)

)
.

Then by the same arguments as those for (S68), we have

dL̂J,t (θt(τ))
dτ

∣∣∣∣∣
τ=0

= 2ϵJ × (±AJ,t) + op(ϵJ × (±AJ,t)), (S77)

where

AJ,t =

(
1

J

J∑
j=1

dρjt(θ̂J,t|θ0J,t)
dθ

[
ν†J,kJ ,t

]
I ςJ (Zjt)

′

)(I′z,tIz,t
J

)−1
(
1

J

J∑
j=1

I ςJ (Zjt)ρjt(θ̂J,t|θ0J,t)

)
.

(S78)

Recall that Π̂jt(θ̂J,t|θ0J,t) = IςJ (Zjt)′
(
I′z,tIz,t

)−1∑J
j′=1

IςJ (Zj′t)ρj′t(θ̂J,t|θ0J,t)
Σj,J,o(Zj′t)

1/2 , we can write

AJ,t =
1

J

J∑
j=1

dΠ̂jt(θ̂J,t|θ0J,t)
dθ

[ν†J,kJ ,t]
′Π̂jt(θ̂J,t|θ0J,t). (S79)

Next consider the second-order term on the RHS of (S76),
d2L̂J,t(θ(τ))

dτ2

∣∣∣
τ=s

. Due to the linearity

of ρjt(θt|θ0J,t), we have that
dρjt(θt|θ0J,t)

dθ
[u] does not depend on θt and that

d2ρjt(θt|θ0J,t)
dθdθ

[u] = 0.

These imply that for all s ∈ [0, 1],

d2L̂J,t(θ(τ))
dτ

∣∣∣∣∣
τ=s

= 2

(
1

J

J∑
j=1

dρjt(θ̂J,t|θ0J,t)
dθ

[
ϵJu

†
kJ ,t

]
I ςJ (Zjt)

)′

Ω̂−1
t (θ̃J,t)×(

1

J

J∑
j=1

dρjt(θ̂J,t|θ0J,t)
dθ

[
ϵJu

†
kJ ,t

]
I ςJ (Zjt)

)
.
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Then by similar arguments as those for (S68), we have

d2L̂J,t(θ(τ))
dτ

∣∣∣∣∣
τ=s

= 2ϵ2J × (±BJ,t) + op(ϵ
2
J × (±BJ,t)), (S80)

where

BJ,t =
1

J

J∑
j=1

(
dΠ̂jt(θ̂J,t|θ0J,t)

dθ
[ν†J,kJ ,t]

)2

.

Similar arguments as those for (S59) (replacing W 2SLS
t by

(
J−1

∑J
j=1 IςJ (Zjt)IςJ (Zjt)′

)−1

and ρjt(θkJ ,t|θ0J,t) by Σ
−1/2
j,J,o

dρjt(θkJ,t|θ
0
J,t)

dθ
[ν†J,kJ ,t]), we can show that for each t, uniformly over

θkJ ,t ∈ B ×⊖kJ ,

1

J

J∑
j=1

(
dΠ̂jt(θkJ,t|θ0J,t)

dθ
[ν†J,kJ ,t]− Σ

−1/2
j,J,o E

[
dρ(θkJ ,t|θ0J,t)

dθ

[
ν†J,kJ ,t

]∣∣∣∣Zjt]
)2

= op(J
−1/2). (S81)

Also note that

1

J

J∑
j=1

E

(
Σ−1
j,J,oE

[
dρ(θkJ ,t|θ0J,t)

dθ

[
ν†J,kJ ,t

]∣∣∣∣Zjt]2
)

=
1

J

J∑
j=1

E
(
Σ−1
j,J,oE(X

′
1,jtν

†
J,β − ω†

J,kJ ,t
(X2,jt)

′ν†J,β|Zjt)
2
)

=
1

J

J∑
j=1

E

(
Σ−1
j,J,o

(
λ′JVJ,βE[X1,jt − ω†

J,kJ ,t
(X2,jt)|Zjt]

)2)

≤∥λJ∥2eigmax(VJ,β)
1

J

J∑
j=1

E
(
∥E[X1,jt − ω†

J,kJ ,t
(X2,jt)|Zjt]∥2Σ−1

j,J,o

)
≤∥λJ∥2eigmax(VJ,β)

1

J

J∑
j=1

E
(
∥E[X1,jt|Zjt]∥2Σ−1

j,J,o

)
≤ sup

J,t
( inf
z∈Zt

E[ξ2jt|{Zjt}Jj=1 = z])−1∥λJ∥2eigmax(VJ,β)
1

J

J∑
j=1

E(∥X1,jt∥2)

<∞,

where the first inequality holds by the Cauchy-Schwarz inequality, the second inequality
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holds by the definition of ω†
J,kJ ,t

(X2,jt), and the fact that 0 ∈ W̄kJ , the third inequality holds

by Hölder’s inequality, and the law of iterated expectations, and the last inequality holds by

Assumptions 2(iv)-(v) and the rank condition regarding 1
J

∑J
j=1E[Dj,J,t(Zjt)Dj,J,t(Zjt)

′] in

the proposition. Note that the left-hand side does not depend on θkJ ,t, which implies that

the inequalities hold uniformly over θkJ ,t ∈ ΘkJ . This and (S81) together imply that

BJ,t = Op(1). (S82)

Combining (S76), (S77), (S80), and (S82), we obtain

0 ≤ 2ϵJ × (±AJ,t) + op(ϵJ × (±AJ,t)) + 2ϵ2J ×Op(1) + op(ϵ
2
J)

Since this holds both when ± is + and when ± is − and ϵJ > 0 and ϵJ = op(J
−1/2) by

construction, we have

AJ,t = Op(ϵJ) = op(J
−1/2). (S83)

Now we have established the nonparametric first-order condition.

Next, we write AJ,t in terms of λ′J(β̂J − β). By (S70) using the fact that Πjt(θt|θ0J,t) =

Σ
−1/2
j,J,o

(
E [ρjt(θt|θ∗t )|Zjt] |θ∗t=θ0J,t

)
, we have

∣∣∣∣∣ 1J
J∑
j=1

(
Π̂jt(θ̂J,t|θ0J,t)

)2
− 1

J

J∑
j=1

(
Πjt(θ̂J,t|θ0J,t)

)2∣∣∣∣∣ = op(J
−1/2). (S84)

Also by Assumptions 11(iii), we have

1

J

J∑
j=1

(
Πjt(θ̂J,t|θ0J,t)

)2
= ∥θ̂J,t − θ0J,t∥2w + op(∥θ̂J,t − θ0J,t∥2w) = op(J

−1/2),
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where the second equality holds by Step 3.1 above. Combining this with (S84), we have

1

J

J∑
j=1

(
Π̂jt(θ̂J,t|θ0J,t)

)2
= op(J

−1/2). (S85)

This and (S81) together imply that

√
JAJ,t =

1√
J

J∑
j=1

{
dΠjt(θ̂J,t|θ0J,t)

dθ

[
ν†J,kJ ,t

]}
Π̂jt(θ̂J,t|θ0J,t) + op(1)

=
1√
J

J∑
j=1

{
Σ−1
j,J,oE(X

′
1,jt − ω†

J,kJ ,t
(X2,jt)

′|Zjt)VJ,βλ
}
Π̂jt(θ̂J,t|θ0J,t) + op(1)

=
1√
J

J∑
j=1

{
Σ−1
j,J,oE(ω

†
J,t(X2,jt)

′ − ω†
J,kJ ,t

(X2,jt)
′|Zjt)VJ,βλ

}
Π̂jt(θ̂J,t|θ0J,t)

+
1√
J

J∑
j=1

{
Σ−1
j,J,oE(X

′
1,jt − ω†

J,t(X2,jt)
′|Zjt)VJ,βλ

}
Π̂jt(θ̂J,t|θ0J,t) + op(1), (S86)

where the second equality is derived by writing out the pathwise derivative.

Consider the derivation

1

J

J∑
j=1

E
{
Σ−1
j,J,oE(ω

†
J,t(X2,jt)

′ − ω†
J,kJ ,t

(X2,jt)
′|Zjt)VJ,βλJ

}2

≤∥λ′JVJ,β∥2∥ω
†
J,t − ω†

J,kJ ,t
∥2w

≤∥λJ∥2eigmax(VJ,β)∥ω†
J,t − ω†

J,kJ ,t
∥2w

=o(J−1/2),

where the equality holds by the definition of λJ (which guarantees that ∥λJ∥ = O(1))

and the rank condition regarding 1
J

∑J
j=1E[Dj,J,t(Zjt)Dj,J,t(Zjt)

′] in the proposition (which

guarantees that eigmax(VJ,β) = O(1)), and by Assumption 10(ii). This implies that

1

J

J∑
j=1

{
Σ−1
j,J,oE(ω

†
J,t(X2,jt)

′ − ω†
J,kJ ,t

(X2,jt)
′|Zjt)VJ,βλ

}2

= op(J
−1/2).
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This combined with (S85) imply that

1√
J

J∑
j=1

{
Σ−1
j,J,oE(ω

†
J,t(X2,jt)

′ − ω†
J,kJ ,t

(X2,jt)
′|Zjt)VJ,βλ

}
Π̂jt(θ̂J,t|θ0J,t) = op(1).

Therefore,

√
JAJ,t =

1√
J

J∑
j=1

{
Σ−1
j,J,oE(X

′
1,jt − ω†

J,t(X2,jt)
′|Zjt)VJ,βλ

}
Π̂jt(θ̂J,t|θ0J,t) + op(1)

=
1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]}
Π̂jt(θ̂J,t|θ0J,t) + op(1) (S87)

where the second equality holds by the definition of the pathwise derivative. Note that the

θ arguments in the pathwise derivative do not matter due to the linearity of ρjt.

Now write
√
JAJ,t as

√
JAJ,t

=
1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]}
(Π̂jt(θ̂J,t|θ0J,t)− Π̂jt(θ

0
J,t|θ0J,t)− Πjt(θ̂J,t|θ0J,t))+

1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]}
(Π̂jt(θ

0
J,t|θ0J,t)− ξjt/Σ

1/2
j,J,o)+

1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]}
ξjt/Σ

1/2
j,J,o+

1√
J

J∑
j=1

{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]}
(Πjt(θ̂J,t|θ0J,t)) + op(1). (S88)

By Assumption 11(ii), the first and the second summand on the right-hand side of (S88) is

op(1), and the fourth summand, summed up over t, equals

1√
J

T∑
t=1

J∑
j=1

E

[{
dΠjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]}
(Πjt(θJ,t|θ∗J,t))

]∣∣∣∣
θJ,t=θ̂J,t,θ

∗
J,t=θ

0
J,t

+ op(1)

=
√
J
〈
ν†J , θ̂J − θ0J

〉
w
+ op(1). (S89)
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The third summand on the right-hand side of (S88) can be written as

1√
J

J∑
j=1

{
Σ−1
j,J,oE

[
dρjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]∣∣∣∣Zjt]} ξjt.
Therefore

√
J

T∑
t=1

AJ,t =
√
J
〈
ν†J , θ̂J − θ0J

〉
w
+

1√
J

T∑
t=1

J∑
j=1

{
Σ−1
j,J,oE

[
dρjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]∣∣∣∣Zjt]} ξjt + op(1). (S90)

Combining this with (S83), we get

√
Jλ′J

(
β̂J − β0

)
=

√
J
〈
ν†J , θ̂J − θ0J

〉
w

= − 1√
J

T∑
t=1

J∑
j=1

E

[
dρjt(θ

0
J,t|θ0J,t)
dθ

[
ν†J,t

]
|Zjt
]
Σ−1
j,J,oξjt + op(1)

= − 1√
J

T∑
t=1

J∑
j=1

λ′JVJ,βE
[
X1,jt − ω†

J,t(X2,jt)|Zjt
]
Σ−1
j,J,oξjt + op(1)

= − λ′J√
J
VJ,β

T∑
t=1

J∑
j=1

Dj,J,t(Zjt)Σ
−1
j,J,oξjt + op(1) (S91)

where the first equality follows from (S43), the second equality follows from (S89) and (S90),

the third equality follows from the two lines below (S43), and the fourth equality follows

from the definition of Dj,J,t(Zjt) (above Assumption 6). We thus have verified Assumption

6(i).

Finally, to verify Assumption 6(ii), since

V̂ −1
J,t =

(
1

J

J∑
j=1

(
X1,jt − ω̂†

J,t(X2,jt)
)
I ςJ (Zjt)

)′

Ω̂J,t(θ̂t)
−1

(
1

J

J∑
j=1

(
X1,jt − ω̂†

J,t(X2,jt)
)
I ςJ (Zjt)

)
,

(S92)
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it sufficies to show that
∑T

t=1 V̂
−1
J,t −

∑T
t=1 V

−1
J,t

p→ 0.

The argument is similar to the one in Step 3.1 and Step 3.2 so we skip the details below.

By using a similar argument in the proof of Theorem 1, one can show that

∥ω̂J,t − ω†
J,t∥s = op(1) (S93)

for each t = 1, . . . , T . Then similar to the argument for (S81), we have

T∑
t=1

V̂ −1
J,t

=
T∑
t=1

(
1

J

J∑
j=1

(X1,jt − ω̂J,t(X2,jt)) I
ςJ (Zjt)

)′

Ω̂J,t(θ̂t)
−1

(
1

J

J∑
j=1

(X1,jt − ω̂J,t(X2,jt)) I
ςJ (Zjt)

)

=
T∑
t=1

(
1

J

J∑
j=1

(
X1,jt − ω†

J,t(X2,jt)
)
I ςJ (Zjt)

)′

Ω̂J,t(θ̂t)
−1

(
1

J

J∑
j=1

(
X1,jt − ω†

J,t(X2,jt)
)
I ςJ (Zjt)

)
+ op(1)

=
T∑
t=1

(
1

J

J∑
j=1

E
(
Σj,J,o(Zjt)

−1E
[
X1,jt − ω†

J,t(X2,jt)|Zjt
])2)

+ op(1) =
T∑
t=1

V −1
J,t + op(1),

which implies the condition in Assumption 6(ii).

S2.3 Verification of Assumption 8(ii)

The following proposition verifies the first condition in Assumption 8(ii). The second

condition in Assumption 8 (ii) follows similar arguments.

Proposition 2. Suppose that X2,jt is independent across j and exogenous. Conditions in

Theorem 1 imply that

1

J

T∑
t=1

J∑
j=1

[
ψ̂kJ ,t(X2,jt)− ψ0

J,t(X2,jt)
]2 p→ 0.

Proof. We first introduce some generic notation. Let PJ = J−1
∑J

j=1 δXj
of the Dirac

measures at the observations, and let Ph denote J−1
∑J

j=1EXh(X2,jt) for any measurable
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function h(·). For a function h(·) ∈ Ψ, let ∥h∥L2(PJ ) =
√

1
J

∑J
j=1 h

2(Xj) and ∥h∥L1(PJ ) =√
1
J

∑J
j=1 |h(Xj)|. Given a collection G of measurable functions g : X → R, let ∥Q∥G =

sup{|Qg| : g ∈ G} for signed measure Q. To simplify notation and make the presentation

clearer, we assume one single market without loss of generality and omit the index t.

Recall that Ψ = {ψ ∈ Wm0,δ0(X2) : ∥ψ∥m0,2,δ0 ≤ B}. Theorem 1 implies that we can find

a sequence εJ such that εJ = op(1) and ∥ψ̂kJ − ψ0
J∥0,2,δ0 < εJ . Let

Ψε = {∆ψJ := ψJ − ψ̃J : ∀ψJ , ψ̃J ∈ Ψ such that ∥ψJ − ψ̃J∥0,2,δ0 < εJ}.

Since ψ̂kJ (·) and ψ0
J,t both belong to Ψ with probability 1, it suffices to show that ∥PJ∆ψ2

J∥Ψε
:=

sup∆ψJ∈Ψε
|PJ∆ψ2

J | = op(1).

Note that for any ∆ψJ ∈ Ψε, we have

P∆ψ2
J =

1

J

J∑
j=1

EX [∆ψJ(X2,j)]
2 =

1

J

J∑
j=1

∫
[∆ψJ(x2)]

2 fX2,j(x2)dx2

≤
∫

[∆ψJ(x2)]
2 (1 + x′2x2)

δ0dx2

=∥∆ψJ∥20,2,δ0 ≤ εJ . (S94)

where the first inequality follows from Assumption 2(vi). This implies that ∥P∆ψ2
J∥Ψε → 0

for ∆ψJ ∈ Ψε. It then suffices to show that ∥PJ − P∥Ψε = op(1).

Note that Ψε ⊂ Ψ ·Ψ := {ψ1ψ2 : ψ1 ∈ Ψ, ψ2 ∈ Ψ} , it suffices to show that ∥PJ−P∥Ψ·Ψ :=

suph∈Ψ·Ψ |(PJ − P )h| = op(1), which we show next by verifying the conditions for the

Glivenko-Cantelli Theorem for triangular arrays in Theorem 22 of Pollard (1990).

Let the notation a ≲ b denote a ≤ cb for some constant c > 0 that does not depend on

J . To verify ∥PJ − P∥Ψ·Ψ = op(1), note that for any ψ ∈ Ψ, ∥ψ∥m0,2,δ0 ≤ B, combining with

Assumption 2(vi) implies the existence of an envelope function ψ̄ for the class Ψ such that

∥ψ̄∥0,2,δ0 <∞. Then the class Ψ ·Ψ has ∥ · ∥0,2,δ0− integrable envelope (2ψ̄)2.

Let N(ϵ,G, ∥ · ∥) denote the covering number of G under ∥ · ∥, that is the smallest number
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of balls of radius ϵ to cover G. Lemma A.3 in Santos (2012) shows that if X2 is unbounded,

logN(ϵ,Ψ, ∥ · ∥∞) ≲ (1/ϵ)(m0+δ0)dx2/(δ0m0) while when X2 is bounded, logN(ϵ,Ψ, ∥ · ∥∞) ≲

(1/ϵ)dx2/m0 . Thus, if X2 is unbounded, Theorem 2.7.11 in van der Vaart and Wellner (1996)

implies that

N(ϵ∥ψ̄∥L2(PJ ),Ψ, ∥·∥L2(PJ )) ≤ N[](2ϵ∥ψ̄∥L2(PJ ),Ψ, ∥·∥L2(PJ )) ≤ N(ϵ,Ψ, ∥·∥∞) ≲ (1/ϵ)(m0+δ0)dx2/(δ0m0) ,

where N[](ϵ,G, ∥ · ∥) is the bracketing number of size ϵ under ∥ · ∥. Similarly, if X2 is bounded

N(ϵ∥ψ̄∥L2(PJ ),Ψ, ∥ · ∥L2(PJ )) ≲ (1/ϵ)dx2/m0 .

Therefore for ϵ sufficiently small,

logN(ϵ∥ψ̄∥2L1(PJ )
,Ψ ·Ψ, ∥ · ∥L1(PJ )) ≤ N(ϵ∥ψ̄∥L2(PJ ),Ψ, ∥ · ∥L2(PJ )) = o(J),

where the inequality follows from Cauchy-Schwartz inequality and the equality follows from

Assumption 2(iii). Then Theorem 22 in Pollard (1990) (Glivenko-Cantelli Theorem for

triangular array) implies that ∥PJ − P∥Ψ·Ψ = op(1). The claimed result follows.

S3 Cross-Product Elasticity in Random Coefficients

Logit

What happens to cross-product elasticity in the random coefficients logit model when the

number of products grows to infinity? The answer may depend on the distribution of the

random coefficients. We show below that if the random coefficients have Gaussian tails,

cross-product elasticity converges to zero at the rate of J−1. On the other hand, if the

random coefficients have an exponential or thicker tail, cross-product elasticity may stay
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positive in the limit as illustrated in Section 2. To illustrate the main idea, we focus on one

single market by dropping the index t for simplicity.

S3.1 Cross-product elasticity in Gaussian random coefficients logit

model

Consider a simple random coefficient logit model with one random coefficient:

Uj = Xjβ + vWj + εj, (S95)

where εj : j = 0, . . . , J are independent type-I extreme value distributed random variables,

and v is a random coefficient with density f . Then the choice probability is

sj =

∫
R

exp(Xjβ + vWj)

1 +
∑J

j′=1 exp(Xj′β + vWj′)
f(v)dv (S96)

For j and k such that j ̸= k, we have (let δk = Xkβ)

∂sj
∂δk

=

∫
R

exp(Xjβ + vWj) exp(Xkβ + vWk)

(1 +
∑

j′ exp(Xj′β + vWj′))2
f(v)dv

∂sj
∂Wk

=

∫
R

exp(Xjβ + vWj) exp(Xkβ + vWk)v

(1 +
∑

j′ exp(Xj′β + vWj′))2
f(v)dv (S97)

Lemma S3. Suppose that
(
J−1

∑J
j=1 exp(Xjβ)

)−1

= Op(1) as J → ∞, and that Wj is a

bounded random variable taking values in the interval [m,M ].

(i) If
∫
exp(2(M −m)v)f(v)dv <∞, then ∂sj/∂δk = Op(J

−2).

(ii) If
∫
exp(2(M −m)v)vf(v)dv <∞, then ∂sj/∂Wk = Op(J

−2).

Proof. We show part (i) only since part (ii) is analogous. To begin, consider:

J2 ∂sj
∂δk

= exp(Xjβ +Xkβ)

∫
R

exp(v(Wj +Wk))

(J−1 + J−1
∑J

j′=1 exp(Xj′β + vWj′))2
f(v)dv

40



(S98)

The integral equals

∫ ∞

0

exp(v(Wj +Wk))

(J−1 + J−1
∑J

j′=1 exp(Xj′β + vWj′))2
f(v)dv

+

∫ 0

−∞

exp(v(Wj +Wk))

(J−1 + J−1
∑J

j′=1 exp(Xj′β + vWj′))2
f(v)dv

≤
∫ ∞

0

exp(2(M −m)v)

(J−1
∑J

j′=1 exp(Xj′β))2
f(v)dv +

∫ 0

−∞

exp(2(M −m)v)

(J−1
∑J

j′=1 exp(Xj′β))2
f(v)dv

=

∫∞
0

exp(2(M −m)v)f(v)dv

(J−1
∑J

j′=1 exp(Xj′β))2
+

∫ 0

−∞ f(v)dv

(J−1
∑J

j′=1 exp(Xj′β))2
= Op(1). (S99)

Note that sk converges to zero at the rate of 1/J . Thus, the cross-product elasticity must

converge to zero as J → ∞. Similar derivation holds when Wj is a vector. The condition∫
exp(2(M − m)v)f(v)dv < ∞ holds if v is normal. It is violated if v has the same tail

decay rate as the logistic distribution which is exponential. There is an intuitive explanation

for this: In the random coefficients logit model, the logit error represents product-based

preference while the random coefficients represent the characteristic-based preference. The

logit error tends to spread cross-product elasticity around, while the random coefficients

generate more localized substitution. Intuitively, as the number of products gets large,

substitution should localize among products with similar characteristics, rather than spread

thin uniformly across all products. To generate this pattern in the model, we need the

characteristic-based preference to be at least as strong (dispersed) as the product-based

preference. When the distribution of random coefficients has a thinner tail than the logit

error, this intuitive pattern of localized substitution cannot be generated.

In general, characterizing the limit of cross-product elasticity when the integrability

condition above does not hold is difficult because dominated convergence can no longer
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be used. In some special models, however, this can be done, because a closed-form solution

for the share exists, as we illustrate below.

S3.2 Non-Gaussian Random Coefficient–An Example

Consider a slight variation of the model above:

Uj = Xjβ + v1Dj + v0(1−Dj) + εj, (S100)

where Dj is a dummy variable, εj : j = 0, . . . , J are independent type-I extreme value

distributed random variables. Let λ ∈ (0, 1] be a parameter, and let λv0 and λv1 be

independent with each other and both be jointly independent with the εj’s, and each follow

the C(λ) distribution in Cardell (1997): fλ(v) = λ−1
∑∞

n=1
(−1)ne−nv

n!Γ(−λn) . Then, this random

coefficient logit model, according to Cardell (1997), is a nested logit model with two nests,

where all j’s with Dj = 0 are in one nest, and the rest of the products are in the other nest.

Then it follows that when for j such that Dj = 1:

sj =
exp(Xjβ)∑J

j′=1Dj′ exp(Xj′β)

(∑J
j′=1Dj′ exp(Xj′β)

)λ
(∑J

j′=1Dj exp(Xj′β)
)λ

+
(∑J

j′=1(1−Dj) exp(Xj′β)
)λ (S101)

It can be derived that, for k such that Dk = Dj = 1,

∂sj/∂δk = −(1− λ)sj
sk∑

j′:Dj′=1 sj′
− λsjsk, (S102)

and the cross-product elasticity is

δk
sj

∂sj
∂δk

= −λδksk − (1− λ)δk
sk∑

j′:Dj′=1 sj′
. (S103)

(Recall that δk = Xkβ). This cross-product elasticity does not converge to zero as J → ∞ as

long as the relative share of k within its nest stays positive in the limit. The latter happens
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if the nest size stays constant as J → ∞.

S4 Additional Monte Carlo Results

In this section, we collect additional Monte Carlo results. These complement those reported

in Section 5.3.

S4.1 Additional Tables on The Single Random Coefficient Specification

In this subsection, we collect the additional tables, Tables 13, 14, 15, 16, and 17, that were

mentioned in Section 5.3 in the main text.

Table 13: Monte Carlo Results: Fixed Coefficients
T = 10 20 40

Parameter Estimator J 25 50 100 25 50 100 25 50 100

SN
RtMSE .0249 .0169 .0116 .0176 .0119 .0080 .0125 .0085 .0059

β
Bias -.0024 5.90E-4 .0013 -.0019 7.44E-4 .0018 -.0012 .0014 .0015

BLP
RtMSE .0218 .0156 .0106 .0176 .0117 .0077 .0143 .0091 .0061
Bias -.0100 -.0061 -.0037 -.0104 -.0062 -.0034 -.0104 -.0059 -.0037

SN
RtMSE .0330 .0285 .0234 .0234 .0215 .0167 .0180 .0155 .0120

α
Bias .0080 9.30E-4 4.48E-4 .0075 1.14E-4 -4.34E-4 .0072 1.28E-4 5.97E-4

BLP
RtMSE .0260 .0228 .0184 .0236 .0196 .0167 .0184 .0172 .0160
Bias .0100 .0141 .0132 .0159 .0150 .0138 .0138 .0146 .0146

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is .5×N (−1, .22) + .5×N (−2, .52).
2. The distribution of random coefficient for the BLP estimator is misspecified.

Table 14: Monte Carlo Results: Inference on Fixed Coefficients
T = 10 20 40

Parameter J 25 50 100 25 50 100 25 50 100

β
True S.D. .0248 .0169 .0115 .0175 .0119 .0078 .0125 .0084 .0058
Ave. S.E. .0191 .0152 .0116 .0140 .0111 .0084 .0100 .0080 .0061

α
True S.D. .0321 .0285 .0234 .0222 .0215 .0167 .0165 .0155 .0119
Ave. S.E. .0254 .0268 .0222 .0181 .0192 .0158 .0129 .0137 .0113

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is .5×N (−1, .22) + .5×N (−2, .52).
2. The distribution of random coefficient for the BLP estimator is mis-specified.

S4.2 Additional Table on Multiple Independent Random Coefficients

In this subsection, Table 18 shows the Monte Carlo results for the fixed coefficients in the

case of 3 independent random coefficients described in Section 5 in the main text.
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Table 15: Monte Carlo Results: Mean of Random Coefficients
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-I-MD
RtMSE .0396 .0312 .0194 .0313 .0241 .0171 .0251 .0183 .0182
Bias -.0083 -.0126 -.0083 -.0123 -.0116 -.0116 -.0131 -.0112 -.0151

SN-I-GMM1
RtMSE .0335 .0260 .0194 .0263 .0207 .0181 .0212 .0172 .0189
Bias -.0046 -.0109 -.0102 -.0110 -.0107 -.0144 -.0108 -.0129 -.0165

SN-I-GMM2
RtMSE .0337 .0236 .0180 .0244 .0189 .0162 .0192 .0150 .0172
Bias -.0036 -.0068 -.0086 -.0075 -.0073 -.0117 -.0071 -.0094 -.0146

SN-II-MD
RtMSE .0328 .0293 .0194 .0308 .0224 .0180 .0238 .0167 .0524
Bias .0038 -.0064 -.0033 -.0060 -.0094 -.0075 -.0084 -.0097 .0045

SN-II-GMM1
RtMSE .0288 .0235 .0182 .0254 .0366 .0401 .0268 .0148 .0353
Bias .0036 -.0030 -.0023 -.0018 -.0037 -.0126 -.0023 -.0064 .0067

SN-II-GMM2
RtMSE .0288 .0229 .0173 .0249 .0280 .0172 .0393 .0372 .0423
Bias .0063 -3.72E-4 -9.09E-5 .0012 -.0031 -.0066 .0115 .0096 .0197

SN-III-MD
RtMSE .0459 .0297 .0196 .0305 .0232 .0159 .0252 .0178 .0154
Bias -.0076 -.0091 -.0076 -.0031 -.0094 -.0094 -.0082 -.0086 -.0115

SN-III-GMM1
RtMSE .0386 .0249 .0199 .0256 .0205 .0170 .0216 .0162 .0161
Bias -.0070 -.0068 -.0091 -.0013 -.0091 -.0112 -.0065 -.0097 -.0126

SN-III-GMM2
RtMSE .0379 .0240 .0186 .0255 .0189 .0153 .0204 .0144 .0143
Bias -.0035 -.0033 -.0069 .0015 -.0061 -.0087 -.0039 -.0067 -.0103

SN-Para-MD
RtMSE .0313 .0174 .0113 .0248 .0122 .0073 .0207 .0097 .0053
Bias .0242 .0099 .0011 .0206 .0071 7.16E-4 .0182 .0071 6.34E-4

SN-Para-GMM1
RtMSE .0303 .0168 .0111 .0239 .0134 .0072 .0235 .0116 .0054
Bias .0238 .0101 .0017 .0202 .0097 .0029 .0217 .0099 .0026

SN-Para-GMM2
RtMSE .0318 .0177 .0105 .0263 .0127 .0075 .0214 .0098 .0054
Bias .0267 .0126 .0036 .0234 .0068 2.35E-5 .0187 .0068 -1.73E-4

BLP
RtMSE .0330 .0192 .0118 .0277 .0150 .0092 .0249 .0136 .0080
Bias .0280 .0147 .0072 .0249 .0118 .0068 .0232 .0122 .0066

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is N (−2, .5).
2. The distribution of random coefficient for the BLP estimator and SN-Para estimators is correctly specified.

S4.3 Correlated Random Coefficients

Now we turn to a simulation design with two correlated random coefficients. Specifically, we

add one exogenous characteristics X2,jt to the data generating process in Section 5.1 and let

the random coefficients of Pjt and X2,jt be correlated. So the market shares can be written

as

σj (δt, Pt, X2,t;F ) =

∫
exp (δjt + υ1Pjt + υ2X2,jt)

1 +
∑J

k=1 exp (δkt + υ1Pkt + υ2X2,kt)
dF 0 (υ1, υ2) ,

where Pjt is generated as in Section 5.1, X2,jt is drawn from a standard normal distribution,

F 0 (υ1, υ2) is a bivariate normal distribution with means (µ1, µ2), standard deviations (σ1, σ2)

and correlation coefficient ρ.

The parametric estimation of F 0, including BLP and SN with parametric F 0, is straightforward.
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Table 16: Monte Carlo Results: Standard Deviation of Random Coefficient
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-I-MD
RtMSE .0396 .0312 .0194 .0313 .0241 .0171 .0251 .0183 .0182
Bias -.0083 -.0126 -.0083 -.0123 -.0116 -.0116 -.0131 -.0112 -.0151

SN-I-GMM1
RtMSE .0335 .0260 .0194 .0263 .0207 .0181 .0212 .0172 .0189
Bias -.0046 -.0109 -.0102 -.0110 -.0107 -.0144 -.0108 -.0129 -.0165

SN-I-GMM2
RtMSE .0337 .0236 .0180 .0244 .0189 .0162 .0192 .0150 .0172
Bias -.0036 -.0068 -.0086 -.0075 -.0073 -.0117 -.0071 -.0094 -.0146

SN-II-MD
RtMSE .0328 .0293 .0194 .0308 .0224 .0180 .0238 .0167 .0524
Bias .0038 -.0064 -.0033 -.0060 -.0094 -.0075 -.0084 -.0097 .0045

SN-II-GMM1
RtMSE .0288 .0235 .0182 .0254 .0366 .0401 .0268 .0148 .0353
Bias .0036 -.0030 -.0023 -.0018 -.0037 -.0126 -.0023 -.0064 .0067

SN-II-GMM2
RtMSE .0288 .0229 .0173 .0249 .0280 .0172 .0393 .0372 .0423
Bias .0063 -3.72E-4 -9.09E-5 .0012 -.0031 -.0066 .0115 .0096 .0197

SN-III-MD
RtMSE .0459 .0297 .0196 .0305 .0232 .0159 .0252 .0178 .0154
Bias -.0076 -.0091 -.0076 -.0031 -.0094 -.0094 -.0082 -.0086 -.0115

SN-III-GMM1
RtMSE .0386 .0249 .0199 .0256 .0205 .0170 .0216 .0162 .0161
Bias -.0070 -.0068 -.0091 -.0013 -.0091 -.0112 -.0065 -.0097 -.0126

SN-III-GMM2
RtMSE .0379 .0240 .0186 .0255 .0189 .0153 .0204 .0144 .0143
Bias -.0035 -.0033 -.0069 .0015 -.0061 -.0087 -.0039 -.0067 -.0103

SN-Para-MD
RtMSE .0313 .0174 .0113 .0248 .0122 .0073 .0207 .0097 .0053
Bias .0242 .0099 .0011 .0206 .0071 7.16E-4 .0182 .0071 6.34E-4

SN-Para-GMM1
RtMSE .0303 .0168 .0111 .0239 .0134 .0072 .0235 .0116 .0054
Bias .0238 .0101 .0017 .0202 .0097 .0029 .0217 .0099 .0026

SN-Para-GMM2
RtMSE .0318 .0177 .0105 .0263 .0127 .0075 .0214 .0098 .0054
Bias .0267 .0126 .0036 .0234 .0068 2.35E-5 .0187 .0068 -1.73E-4

BLP
RtMSE .0330 .0192 .0118 .0277 .0150 .0092 .0249 .0136 .0080
Bias .0280 .0147 .0072 .0249 .0118 .0068 .0232 .0122 .0066

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is N (−2, .5).
2. The distribution of random coefficient for the BLP estimator and SN-Para estimators is correctly specified.

But the sieve approximation of F 0 needs to be adjusted to account for the dependence

between the two random coefficients. In particular, we consider two alternative sieve approximations

of F 0.

The first one is a Gaussian copula with non-parametric marginals, i.e.,

F 0
MJ

(υ1, υ2) = C (F1,MJ
(υ1) , F2,MJ

(υ2) , ρ) ,

where ρ is the correlation coefficient in the Gaussian copula C (·), F1,MJ
, and F2,MJ

are

sieve approximations of the two marginal distributions. To obtain random draws from this

distribution, we first draw (u1, u2) from copula C (·, ·, ρ) for a given ρ, and then transform

them using (υ1, υ2) =
(
F−1
1,MJ

(u1) , F
−1
2,MJ

(u2)
)
, where F−1

l,MJ
(l = 1, 2) is approximated by
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Table 17: Monte Carlo Results: Skewness of Random Coefficients
T = 10 20 40

Estimator J 25 50 100 25 50 100 25 50 100

SN-I-MD
RtMSE .5300 .4607 .2715 .5104 .4034 .2384 .5119 .3867 .2070
Bias .2936 .2891 .0717 .3906 .3011 .1115 .4513 .3387 .1220

SN-I-GMM1
RtMSE .4445 .3756 .2612 .4257 .3573 .2759 .4344 .3657 .2619
Bias .2589 .2549 .1296 .3294 .2825 .2093 .3803 .3306 .2217

SN-I-GMM2
RtMSE .4461 .3773 .2600 .4300 .3541 .2692 .4308 .3571 .2602
Bias .2704 .2357 .1390 .3306 .2788 .2030 .3781 .3215 .2191

SN-II-MD
RtMSE .5167 .4539 .2703 .4829 .3686 .2121 .4433 .3157 .1751
Bias .3812 .3048 .1057 .3841 .2812 .0851 .3871 .2708 .0909

SN-II-GMM1
RtMSE .4464 .3552 .2417 .4000 .3005 .1896 .3534 .2537 .1746
Bias .2465 .2521 .1416 .3196 .2345 .1177 .3038 .2202 .1282

SN-II-GMM2
RtMSE .4433 .3498 .2330 .4028 .2990 .1824 .3573 .2364 .1600
Bias .3395 .2393 .1356 .3233 .2339 .1034 .3102 .1954 .1019

SN-III-MD
RtMSE .5487 .4525 .3424 .4883 .3762 .3203 .4850 .3068 .2919
Bias .3376 .2319 -.0310 .3415 .2398 -.0610 .4047 .2169 -.0748

SN-III-GMM1
RtMSE .4553 .3587 .2764 .3922 .3168 .2243 .3894 .2856 .1964
Bias .2738 .1772 .0789 .2704 .2158 .0903 .3171 .2202 .0951

SN-III-GMM2
RtMSE .4567 .3507 .2675 .3986 .3124 .2183 .3881 .2795 .1926
Bias .2787 .1609 .0794 .2820 .2066 .0840 .3192 .2111 .0970

SN-Para, BLP
RtMSE - - -
Bias .6429 .6429 .6429

Note: 1. True parameter values in DGP: α = −10, β = 1, F 0 is .5×N (−1, .22) + .5×N (−2, .52).
2. The distribution of random coefficient for the BLP and SN-Para estimators is misspecified.

Table 18: Monte Carlo Results with Independent Random Coefficients: Fixed Coefficients
T = 10 20

Parameter Estimator J =50 100 50 100

β
BLP

RtMSE .0212 .0127 .0190 .0105
Bias -.0161 -.0082 -.0165 -.0081

SN
RtMSE .0738 .0169 .0751 .0151
Bias -.0017 .0098 -.0031 -.0059

α
BLP

RtMSE .0281 .0253 .0199 .0186
Bias .0217 -.0047 .0242 .0111

SN
RtMSE .5067 .1127 .5535 .0860
Bias -.0079 .0072 -.0098 .0037

Note: 1. True parameter values in DGP: α = −10, β = 1, µ1 = −2,
µ2 = µ3 = 1, σ1 = σ2 = σ3 = .5.
2. The distribution of random coefficients for the BLP estimator is
correctly specified.
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Fosgerau and Mabit (2013)’s approach as mentioned in Section 5.2. This approximation of F 0

is “semi-nonparametric” because the copula is parametric and marginals are nonparametric,

see Chen et al. (2006) for more discussions on this approximation strategy.

The second one is a multivariate extension of the first sieve approximation in Section 5.2

(see Fosgerau and Mabit (2013)), i.e., we draw two uniformly distributed random variables,

u1 and u2, and transform them using power polynomials

υl =
∑

k1,k2≥0,k1+k2≤MJ

bl,k1,k2u
k1
1 u

k2
2 , l = 1, 2,

where bl,k1,k2 ’s are unknown coefficients to be estimated. Here υ1 and υ2 are dependent

because they share common polynomial terms of u1 and u2 (with different coefficients

though).

Note that, in both cases, (υ1, υ2) is a draw from the unknown, bivariate distribution

F 0
MJ

. Once we obtain these random draws from F 0
MJ

, the market shares can be calculated

in the same way as in (29). The results for fixed coefficients are similar to the previous

cases, as shown in Table 20. Table 19 shows the Monte Carlo results for random coefficients.

In the table, we label estimators based on the above two sieve approximations as “SN-IV-

GMM2” and “SN-V-GMM2” (as before “GMM2” refers to the estimator defined by (16)),

respectively.24 The results show that: 1) again the SN estimator with a parametric F

achieves a very similar performance to the parametric BLP estimator; 2) compared with the

parametric estimators (with correct specification), the two alternative sieve approximations

both works quite well for the key parameters in the distribution, i.e., mean, standard

deviations and correlation coefficients of the two random coefficients.

24We set MJ = 3 for all the cases shown in Table 19.
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Table 19: Monte Carlo Results: Correlated Random Coefficients
T = 10 20 T = 10 20

Parameter Estimator J = 50 100 50 100 Parameter Estimator J = 50 100 50 100

µ1

BLP
RtMSE .0193 .0119 .0176 .0093

σ1

BLP
RtMSE .0228 .0193 .0152 .0140

Bias .0147 .0066 .0150 .0066 Bias .0024 .0040 .0033 .0042

SN-Para-GMM2
RtMSE .0184 .0113 .0167 .0078

SN-Para-GMM2
RtMSE .0316 .0209 .0276 .0154

Bias .0120 .0036 .0127 .0037 Bias .0015 .0073 9.26E-5 .0074

SN-IV-GMM2
RtMSE .0269 .0186 .0214 .0144

SN-IV-GMM2
RtMSE .0511 .0453 .0437 .0396

Bias -.0047 -.0040 -.0045 -.0038 Bias .0050 .0104 -.0047 .0057

SN-V-GMM2
RtMSE .0262 .0187 .0209 .0139

SN-V-GMM2
RtMSE .0489 .0330 .0424 .0252

Bias -.0077 -.0072 -.0078 -.0073 Bias -.0226 -.0090 -.0253 -.0100

µ2

BLP
RtMSE .0128 .0094 .0092 .0064

σ2

BLP
RtMSE .0221 .0177 .0155 .0122

Bias -8.00E-4 2.09E-4 1.31E-4 1.91E-4 Bias 8.26E-4 .0023 .0018 .0026

SN-Para-GMM2
RtMSE .0135 .0095 .0099 .0065

SN-Para-GMM2
RtMSE .0282 .0183 .0227 .0129

Bias -.0011 2.26E-5 -3.12E-5 1.25E-5 Bias -8.90E-4 .0043 -4.79E-4 .0045

SN-IV-GMM2
RtMSE .0276 .0183 .0213 .0136

SN-IV-GMM2
RtMSE .0483 .0449 .0417 .0419

Bias -.0114 -.0048 -.0099 -.0058 Bias .0118 .0150 .0040 .0136

SN-V-GMM2
RtMSE .0254 .0167 .0188 .0128

SN-V-GMM2
RtMSE .0461 .0332 .0379 .0246

Bias -.0081 -.0031 -.0060 -.0040 Bias -.0156 -.0063 -.0152 -.0032

ρ
BLP

RtMSE .0644 .0512 .0461 .0353
SN-IV-GMM2

RtMSE .0796 .0614 .0646 .0466
Bias -7.35E-4 -.0064 -.0059 -.0059 Bias .0011 -.0077 -.0033 -.0034

SN-Para-GMM2
RtMSE .0704 .0523 .0563 .0364

SN-V-GMM2
RtMSE .0886 .0678 .0708 .0471

Bias -9.44E-4 -.0115 -.0032 -.0046 Bias .0213 .0092 .0258 .0139
Note: 1. True parameter values in DGP: α = −10, β = 1, µ1 = −2, µ2 = 1, σ1 = σ2 = .5, ρ = .5.
2. The distribution of random coefficients for the BLP and SN-Para estimators is correctly specified.

S4.4 Misspecification of Logit Errors

In this subsection, we explore how the SN estimator performs when the logit assumption

is violated. In particular, we modify the DGP of “Design I: F 0 is Normal” into an RC

multinomial probit model, i.e., replacing the logit errors (Gumbel distributed) with normal

ones. We use a simple accept-reject method to simulate market shares and focus on a small

J = 10 case to reduce simulation errors in the generated shares (e.g., to avoid zeroes) with

a manageable number of consumer draws (i.e., 10,000).

With the simulated dataset, we implement the BLP and SN estimators that are based

on the misspecified RC logit specification. Since the coefficients on X and P from the

misspecified model are not directly comparable to the ones in the DGP, we compare their

implied elasticities. Table 21 summarizes the X- and P -elasticities evaluated at several

quantiles of X and P , averaged across simulation repetitions. The misspecified logit errors

indeed lead to biased estimates of the elasticities, but the biases are not large, especially

around the medians of X and P . On the other hand, the SN estimator with nonparametric

RC does not outperform the ones that assume a normal RC, suggesting that the logit

assumption is substantial and a flexible specification of RC does not address the misspecfication

of the idiosyncratic error.
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Table 20: Monte Carlo Results with Correlated Random Coefficients: Fixed Coefficients
T = 10 20

Parameter Estimator J =50 100 50 100

β
BLP

RtMSE .0124 .0105 .0159 .0077
Bias -.0078 -.0037 -.0073 -.0037

SN
RtMSE .0291 .0131 .0330 .0102
Bias .0155 .0056 .0128 .0062

α
BLP

RtMSE .0222 .0276 .0324 .0199
Bias -.0046 -.0058 -.0032 -.0056

SN
RtMSE .1917 .0630 .2081 .0470
Bias .0035 .0020 .0136 .0014

Note: 1. True parameter values in DGP: α = −10, β = 1, µ1 = −2,
µ2 = 1, σ1 = σ2 = .5 and ρ = .5.
2. The distribution of random coefficient for the BLP estimator is
correctly specified.

Table 21: Monte Carlo Results: Misspecified Logit Errors
T = 10 20 40

Evaluated at X’s Percentiles 10 25 50 75 90 10 25 50 75 90 10 25 50 75 90
True (RC Probit) 1.24 .75 .15 .73 1.54 1.26 .69 .09 .72 1.57 1.25 .74 .06 .75 1.56

X-Elasticity
BLP (RC Logit) 1.06 .57 .10 .57 1.11 1.02 .56 .07 .56 1.08 1.03 .56 .04 .58 1.11
SN-Para-GMM2 1.10 .60 .11 .59 1.15 1.06 .58 .07 .59 1.13 1.07 .58 .05 .60 1.15
SN-III-GMM2 1.07 .59 .11 .59 1.15 1.03 .57 .07 .58 1.12 1.04 .57 .05 .60 1.14

Evaluated at Price’s Percentiles 10 25 50 75 90 10 25 50 75 90 10 25 50 75 90
True (RC Probit) -3.00 -2.00 -.39 -1.78 -2.44 -3.03 -2.01 -.25 -1.79 -2.62 -3.04 -2.00 -.17 -1.92 -2.42

Price-Elasticity
BLP (RC Logit) -3.42 -1.92 -.31 -1.56 -2.66 -3.41 -1.88 -.20 -1.55 -2.63 -3.44 -1.90 -.14 -1.56 -2.64
SN-Para-GMM2 -3.50 -1.97 -.32 -1.56 -2.63 -3.48 -1.92 -.20 -1.55 -2.60 -3.53 -1.94 -.14 -1.57 -2.61
SN-III-GMM2 -3.45 -2.03 -.32 -1.58 -2.71 -3.48 -2.01 -.20 -1.56 -2.68 -3.53 -2.03 -.14 -1.57 -2.70

Note: 1. The DGP is the same as “Design I: F 0 is Normal”, except that logit errors are replaced by probit errors (normally distributed).
2. Here J = 10, kJ = ςJ = 3, and MJ is 3, 4, 5 for T = 10, 20, 40, respectively.
3. “True” elasticities are computed using numerical derivatives because there is no closed-form formula for elasticities in the probit model.

S4.5 Computational Time Comparison

Table 22 documents the average computational time (across repetitions) for the baseline

Monte Carlo results in Subsection 5.3.1. Though different repetitions are run by different

computational nodes (in a cloud environment) with different specifications (e.g., CPU,

memory), the average computational time across repetitions is still informative about the

relative computational burdens of different estimators. Compared to the BLP estimator, the

SN-Para-GMM2, which has the same model specification as BLP, is much faster because of

the avoidance of demand inversion. The SN-III-GMM2 is, as expected, slower because it

involves more parameters due to the non-parametric specification of the random coefficient

density. The BLP estimator with the same non-parametric specifications of the random
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coefficient is computationally prohibitive given our computational resources for the purpose

of Monte Carlo simulations.

Table 22: Computational Time Comparison
T = 10 20 40

Estimator J = 25 50 100 25 50 100 25 50 100
BLP 5.77 12.62 24.82 12.90 23.03 58.24 24.34 44.32 105.16

SN 1st Step .10 .15 .20 .18 .25 .42 .53 .93 2.08

SN 2nd Step
SN-Para-GMM2 2.00 4.50 8.38 4.52 8.07 15.69 8.40 13.55 26.29
SN-III-GMM2 12.78 37.87 135.37 44.83 127.99 397.85 133.98 337.51 984.67

Note: This table documents the computational time (in seconds) based on the simulations of “Design I: F 0 is
Normal” and the reported numbers are the averages across repetitions performed on different computational
nodes in a cloud environment. The nodes differ in specifications and typically have at least 1 CPU, 2G
memory, and 8G disk space.

S5 Empirical Application to China’s Auto Market

Now we apply our estimator to the Chinese auto market, where the data structure is

quite different from the BLP auto application. In particular, we use data in one year,

2014, and markets are defined geographically, i.e., by province. A product is defined as a

model-displacement pair, e.g., Accord 2.4L. The observables, price, quantity, and product

characteristics, are similar to the BLP auto data, and there are in total 32 markets and on

average each market has 864 products. Table 24 provides some summary statistics of the

data for some provinces.

The data differs from BLP auto data in an important aspect: price and other characteristics

do not vary across markets. So the only variation across markets comes from product

compositions. This is not a concern here because our identification results depend only on

variations within instead of across markets.

We present the estimation results in Table 24, which has the same structure as Table

11 in the main context. Note that BLP and SN estimators both yield an estimate of the

standard deviation of random coefficient that is very close to zero.25 Hence, with the current

25In this application, we treat price as an exogenous variable and thus do not use IVs. The main reason
is that even the simple logit IV regression with standard BLP IVs yields an unreasonable, positive price
coefficient. Moreover, finding better IVs, which is a non-trivial task, is not our focus of this empirical
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Table 23: Summary Statistics for Selected Markets
Market No. of HH Sales Price Horsepower Weight Liters/100KM Size

(Province) (K) (K) (K CNY) (KW) (KG) (M3)
Shanghai 8,251 2,314 189 112 1471 7.51 12.86
Yunnan 12,355 6,952 123 96 1347 7.08 12.54

Neimenggu 8,176 3,956 128 95 1328 7.06 12.26
Beijing 6,680 3,941 192 113 1480 7.52 12.96
Jilin 9,002 5,480 128 94 1329 7.04 12.27

Sichuan 25,802 10,453 135 98 1360 7.10 12.47
Tianjin 3,662 1,522 144 99 1348 7.08 12.29
Ningxia 1,842 674 128 97 1361 7.22 12.56
Anhui 18,308 7,592 126 96 1351 7.09 12.48

Shandong 30,105 28,541 113 91 1293 6.87 12.13
Note: All the product characteristics (including price) are quantity-weighted averages.

sample and model specification, both BLP and SN estimators yield the logit outcome, which

means that there is little preference heterogeneity on price.26

Table 24: China Auto Market: 2014 Data
BLP SN

Fixed Coefficient Logit RC-Logit
HP/Weight (log) .33

(.15)
.26
(.16)

.35
(.15)

Size (log) 6.12
(.23)

6.01
(.24)

6.19
(.24)

Liters per 100km (log) −4.31
(.16)

−4.34
(.17)

−4.28
(.16)

Brand Dummy Yes Yes Yes
R.C. on Price (Log)

Mean −1.39
(.08)

−1.34
(.10)

-1.33

Std. Dev. - .000
(3.33)

.001

Ave. No. of Prod. per Mkt. 864.26
No. of Mkt. 31

exercise, so we proceed by treating price as exogenous.
26In this case, the price elasticities/substitution pattern exhibit IIA property, which are not particularly

interesting, so we do not show these results.
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S6 Distribution of log(sjt/s0t) as J Grows

In this section, we plot the histograms of log ratio log(sjt/s0t) for different J ’s based on the

DGP of our baseline Monte Carlo simulation design with one normally distributed random

coefficient in Section 5.3.1. The histograms show that the distribution of log(sjt/s0t) remains

stable as J increases, suggesting that sjt and s0t converge to zero at about the same rate.

Figure 3: Histograms of log(sjt/s0t) for Different J ’s

S7 A Simple Example of Estimating A Random Location

Since the idea of estimating a random parameter is unconventional, to illustrate the usefulness

of it in the simplest setting possible, we now strip away all the complications of the demand

model and present a simple example of location estimation.

Let ξj : j = 1, . . . , J be i.i.d. draws from a distribution F , and E[ξj] = 0. For any sample

size J , let

YJj = θJ + ξj j = 1, . . . , J,
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where θJ = sign
(∑J

j=1 ϕ(ξj)
)
for some unknown (deterministic) function ϕ(·). In this model,

θJ is a random parameter. In general, it does not even have a deterministic limit as J → ∞.

How do we estimate θJ based on the data set {YJ1, . . . , YJJ}?

We propose the estimator θ̂J = J−1
∑J

j=1 YJj . This estimator is consistent:

|θ̂J − θJ |
p→ 0, as J → ∞,

as long as E[|ξJ |] <∞. This is simply because

|θ̂J − θJ | =

∣∣∣∣∣J−1

J∑
j=1

(YJj − θJ)

∣∣∣∣∣ =
∣∣∣∣∣J−1

J∑
j=1

ξj

∣∣∣∣∣ p→ 0,

where the convergence holds by LLN.

Note that the consistency argument does not require θJ to converge to a deterministic

limit. Neither does it require J−1
∑J

j=1 ϕ(ξj) to converge to a deterministic limit. In fact,

it imposes no restriction on ϕ(·) at all. The sign function defining θJ may also be replaced

with any finite valued function. The only things that are important are that θJ does not

vary with J and is additively separable from ξJ .
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