
Inference on Estimators defined by Mathematical

Programming∗

Yu-Wei Hsieh† Xiaoxia Shi‡ Matthew Shum§

June 9, 2021

Abstract

We propose an inference procedure for a class of estimators defined as the solutions to linear

and convex quadratic programming problems in which the coefficients in both the objective

function and the constraints of the problem are estimated from data and hence involve sampling

error. We argue that the Karush-Kuhn-Tucker conditions that characterize the solutions to

these programming problems can be treated as moment conditions; by doing so, we transform

the problem of inference on the solution to a constrained optimization problem (which is non-

standard) into one involving inference on inequalities with pre-estimated coefficients, which

is better understood. Our approach is valid regardless of whether the problem has a unique

solution or multiple solutions. We apply our method to various portfolio selection models, in

which the confidence sets can be non-convex, lower-dimensional manifolds.
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1 Introduction

We consider the problem of inference on a class of estimators defined as the solution to

a convex programming problem with pre-estimated coefficients. In particular, we focus

on linear programming (LP) and convex quadratic programming (QP) problems. The

difficulty with doing inference based on such estimators lies in the nondifferentiability of

the estimator with respect to the data. As a result of the nondifferentiability, the estimator

is not asymptotically normal, and does not permit standard bootstrap inference.

The core of our method lies in recognizing that the necessary and sufficient optimality

conditions for certain types the convex programming problems can be interpreted as a set

of moment inequalities. Specifically, these optimality conditions—the Karush-Kuhn-Tucker

(KKT) conditions—involve Lagrange multipliers, slackness variables, and a set of linear

complementarity (LC) conditions. In particular, we apply the computationally convenient

procedures from Shi and Shum (2015) to implement the inference on the optimality con-

ditions of the underlying mathematical program. The distinctive structure of the KKT

conditions—complementary slackness—has implications for the geometry of the resulting

confidence sets: The augmented parameter space involving the model parameters and the

Lagrange/slackness parameters is non-convex, potentially implying confidence sets for the

model parameters which are lower-dimensional manifolds; this does not arise in typical

moment inequality models.

The class of problems we consider cover several essential models in economics and fi-

nance. One notable example is Markowitz’s (1952) classic optimal portfolio selection prob-

lem. Problems in policy evaluation, such as optimal group assignment (Graham, Imbens,

and Ridder (2006), Bhattacharya (2009)) and treatment assignment (Bhattacharya and Du-

pas (2012)), also take the form of constrained mathematical programming problems. More

recently, Chiong, Galichon, and Shum (2016) and Chiong, Hsieh, and Shum (2017) propose

estimators for problems in discrete-choice analysis which also take the form of mathemat-

ical programming. Due to the absence of an inference theory, researchers often resort to

bootstrap in practice; e.g., Scherer (2002). Recently, however, Fang and Santos (2019) show

that canonical bootstrap is not valid if the solution is non-differentiable in the estimated

coefficients. As the solutions to mathematical programs are non-differentiable in general,

our approach provides, to the best of our knowledge, the first valid inference method in the

literature.1

1Although there is a literature on the asymptotic properties of the solutions to the stochastic programming

problems, it is unclear how to turn these theories into a practical inference method. Shapiro (1993) studies
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An essential feature of our inference approach is that it remains valid in both the scenarios

in which the solution to the mathematical programming problem is unique or multiple.

(Multiple solutions occur when the solution of a LP is located on a “flat face” of the

constraint set.) In the former case, our confidence set covers the unique solution with

pre-specified level, while in the latter case, each point in the solution set is covered with

pre-specified probability. Hence, our procedures can be used even when the researcher does

not know in advance whether the solution is unique or not, which is likely in practice.

We apply our method to the portfolio selection models that involve mathematical pro-

gramming in finance. It is well-known that portfolio selection models, in particular the

mean-variance (MV) portfolio of Markowitz (1952), are sensitive to estimation error in the

input parameters; see, e.g., Michaud (1989). Despite these concerns, there is little literature

on statistical inference for these models.2 As far as we are aware, our empirical analysis of

the portfolio selection models here represents the first instance of valid asymptotic infer-

ence that can handle a rich variety of constraints including the NC portfolio of DeMiguel,

Garlappi, Nogales, and Uppal (2009), and the Equally-Weighted Risk Contribution port-

folio of Maillard, Roncalli, and Teiletche (2010). By contrast, Jobson and Korkie (1980),

Britten-Jones (1999), Okhrin and Schmid (2006), and Kan and Smith (2008) also study the

sampling theory for the optimal weights. However, they only consider the MV portfolio

without short-selling constraints, in which there exists a closed form solution to the pro-

gramming problem; see, e.g., Merton (1972). Furthermore, this literature typically relies

on assuming that the return data are normally distributed. Our method does not require

this stringent assumption on the data. In Monte Carlo exercises, we show that our method

performs reasonably well when the data are generated from t-distributions or follow a factor

structure.

In the next section we review the key results from the theory of linear and quadratic

programming, and we provide examples in Section 3. Section 4 is the heart of the paper

that illustrates our inference procedure. In section 5, we provide an empirical demonstra-

tion for several portfolio selection models, and we investigate the empirical size and power

the asymptotic properties of the solution to a mathematical programming with stochastic coefficients, but

requires uniqueness of the solution, which is difficult to verify in practice (Williams (2013)). King (1989)

studies the generalized delta method that can be applied to the KKT conditions. As noted in his seminal

paper, however, it requires fairly strong assumptions on the semi-differentiability, and hence only a simple

quadratic program with deterministic constraints is considered.
2Researchers have attempted to address the issues of parameter uncertainty from the angle of Bayes (e.g.,

Garlappi, Uppal, and Wang (2007)) or robust programming (e.g., Goldfarb and Iyengar (2003)).
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performances using Monte Carlo.

2 Linear Programming and Quadratic Programming

In this paper, we focus on the cases of linear programming (LP) and convex quadratic

programming (QP), in which all constraints are linear. We focus on such convex problems

because the constraint qualification automatically satisfied here as long as the problem

is feasible (Boyd and Vandenberghe (2004), §5.2.3.). Our framework may be applied to

more general convex programs, but they require case-specific examination of constraint

qualifications. For expositional purposes, we will not go into details on those.

2.1 Linear programming

The goal is to conduct inference for the solution to the (possibly non-unique) optimizer of

the following LP:

maxθ∈Θ c′θ s.t. Aθ ≤ b, (1)

where Θ is a known polytope in Rk, b is m × 1, c is k × 1, and A is m × k. Let A, b

or c be estimated from data; the sample analogs are Â, b̂, and ĉ. Our approach is to

exploit the necessary and sufficient optimality conditions that characterize the solutions

to linear programming problems, which follow from the duality theory of LP. Specifically,

these optimality conditions (see, e.g., Mangasarian (1969)) are

Aθ ≤ b (2)

A′λ = c (3)

λ ≥ 0 (4)

c′θ = b′λ. (5)

Equation (2) and (3) express, respectively, the primal and dual feasibility, where λ is in-

terpreted as the m × 1 vector of Lagrange multipliers on the inequalities (2).3 The final

equation (5) is a complementarity condition, analogous to the complementarity slackness

equation in the KKT conditions.4 In optimization theory, these equalities and inequalities

furnish the basis for primal-dual interior point methods for solving mathematical program-

ming problems, and so in what follows we will follow this literature in referring to similar

3Recall the dual LP problem corresponding to (1) is minλ≥0 b
′λ subject to A′λ = c.

4Combining (3) and (5), we obtain λ′(b−Aθ) = 0, which is the usual complementary slackness condition

for this problem.
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sets of (in-)equalities as primal-dual conditions. These considerations yield the following

key proposition.

Proposition 1. Any θ solving the LP problem (1) satisfies the inequalities (2)-(5) and vice

versa.

Given this proposition, our inference procedure exploits the fact that the optimality

conditions (2)-(5) are just a set of linear equalities and inequalities in the unknowns θ

and λ. More broadly, by utilizing the optimality conditions (2)-(5), we can transform

the challenging problem of inference on the solution set of a LP problem to inference on

parameters defined by a set of linear inequalities, which is relatively transparent given the

existing literature.5 Specifically, inference on these conditions falls into the special class of

inequality models considered in Shi and Shum (2015), for which computationally attractive

procedures (not involving time-consuming bootstrap steps) are available for constructing

joint confidence sets for (θ, λ) and projected confidence sets for θ.

2.2 Quadratic Programming

A second class of problems covered by our method is convex Quadratic Programming (QP)

problems. The goal is to conduct inference on the possibly non-unique solution of the

problem:

minθ∈Θ c′θ + 1
2θ
′Qθ

s.t. Aineqθ ≥ bineq,
Aeqθ = beq,

(6)

where Q is positive semi-definite and Θ is a known polytope in Rk. In this case, the KKT

conditions are both necessary and sufficient (see e.g., Cottle, Pang, and Stone (1992)).

These conditions are, first, primal feasibility:

Aθ − b− s = 0, (7)

where A =
(
Aineq
Aeq

)
, s =

( sineq
0

)
is the vector of slackness variables with the length of sineq

equal to the number of rows in Aineq; second, dual feasibility:

A′λ− c−Qθ = 0; (8)

5Indeed, characterizing the solution to a constrained optimization problem via the optimality conditions

(2)-(5) is analogous to characterizing the solution to an unconstrained optimization problem using the first-

order conditions, which underlies the usual approach for doing inference with M-estimators.
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and finally, the complementarity conditions:

λ′s = 0

λ ≥ 0

sineq ≥ 0.

Because both λi and si are non-negative, it follows that λ′s = 0 is equivalent to λisi = 0 ∀i.
Following the optimization literature, we write them collectively as

0 ≤ λi ⊥ si ≥ 0. (9)

For inference, we consider the case where the coefficients in the QP problem, (A, b, c,Q)

are estimated and thus contain sampling error. Analogously to Proposition 1, we therefore

have the following statement for QP:

Proposition 2. Any θ solving the QP problem (6) satifies the inequalities (7),(8),(9) and

vice versa.

Remark. The conditions (2)-(5) in the case of LP, and conditions (7)-(9) in the case of

QP are both necessary and sufficient for global optimality. However, there could potentially

exist multiple global optima satisfying the optimality conditions.6 The inference procedures

we propose in this paper are valid for both the cases of unique and multiple solutions, as

discussed in Section 4 below.

2.3 Related literature

As far as we are aware, we are among the first to set forth an inference theory for a quantity

(θ̂) which is a solution to a “noisy” mathematical programming problem, where the noise

arises from the sample or estimation error in both the objective function and constraints.

The operations research literature has extensively studied the robust programming problem,

which is essentially LP/QP with noisy model constraints. The goal in robust programming is

to obtain a single solution θ which remains “optimal” in the presence of error. In contrast,

our goal is to solve the statistical inference problem of obtaining a set of solutions—the

confidence set—that can include the true solution with pre-specified probability.

6The solution set in both LP and QP is convex. It is straightforward to establish this fact in LP. See

Cottle et al. (1992) for a proof in the case of QP.
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Our paper is related to the work by Wolak (1987, 1989a, 1989b) on testing (in)equality

constraints on parameters in linear and nonlinear econometric models. The duality in

mathematical programming problems plays an important role in Wolak’s analysis, as it

does in ours; however, he considers the case where the constraints are deterministic, while

we focus on the case where both the coefficients in the constraints and the objective function

are subject to sampling error. Guggenberger, Hahn, and Kim (2008) derive specification

tests for moment inequality models by exploiting dual formulations of the constraints, but

not in the mathematical programming context.

Our paper focuses on an inference method for the solution of a mathematical program-

ming problem, which complements the inference methods for the optimized criterion func-

tion (or value function) such as Bhattacharya (2009) and Freyberger and Horowitz (2015).7

Similarly, inference methods studied by Kaido, Molinari, and Stoye (2019) and Gafarov

(2016) in moment inequality models, and by Mogstad, Santos, and Torgovitsky (2017) and

Russell (2017) in treatment effect models can be viewed as inference methods for the value

function, rather than the optimum, of mathematical programming problems.

3 Examples

We next present a number of examples demonstrating the prevalence of these problems

across different areas in economics.

Example 1: Optimal portfolio selection. This is perhaps the most famous QP problem

in economics, and serves as our empirical application below. Suppose there are k assets,

with expected return R, and covariance matrix for the return on these assets Q. Q and R

are estimated from return data. The parameter of interest θ is the portfolio weight vector

such that
∑k

i=1 θi = 1.8 The variance of the portfolio return is θ′Qθ and R′θ is the expected

return on the portfolio. Given a targeted expected return µ, Markowitz (1952) considers

the optimized minimum risk, long-only portfolio which solves the following QP problem:

min θ′Qθ

s.t. R′θ = µ

1′θ = 1

θ ≥ 0.

(10)

7They consider inference for the value function (maxθ c
′θ) of a LP problem rather than the solution

argmaxθc
′θ.

8Negative weight means short position.
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Let Θ0(Q,R, µ) be the argmin set. Practitioners may be interested in testing whether a

given weight vector θ0 is optimal; that is, whether θ0 ∈ Θ0(Q,R, µ); see, e.g., Scherer

(2002). Another interesting hypothesis, considered in Britten-Jones (1999), is whether a

given set of restrictions on the allocation weights affects optimality; that is, whether the

optimal solution satisfies Cθ ≥ r for a given matrix C and a given vector r.9 �

In many matching or treatment assignment problems, the optimal assignment strategies

is defined as solutions to LP or QP problems, in which components in the objective function

or constraints have been pre-estimated from observational data. Practitioners interested in

program evaluation may be interested in testing whether a given assignment is optimal, or

in testing whether a given set of restrictions on the assignment rule affects overall welfare.

We next present two examples of this.

Example 2: Roommate assignment. Graham et al. (2006) and Bhattacharya (2009)

consider the optimal grouping of pairs of individuals when complementarities or peer effects

are present. Bhattacharya (2009) studies the optimal assignment of roommates to college

dorm rooms, given estimates of the peer effects that roommates have on each others’ grades.

Let b, w, o denote, respectively, black students, white students, and students of other races,

and let γij , for (i, j) ∈ {b, w, o}, denote estimates of average academic achievements (eg.

GPA) for two roommates of type i and type j. The school authority may wish to optimally

assign roommates to maximize the average academic achievements via the following LP

problem:

max
µij :i,j∈{w,b,o}

[µbbγbb + µwwγww + µooγoo + µwbγwb + µwoγwo + µboγbo]

s.t. 2µww + µwo + µwb = 2πw

2µbb + µbo + µwb = 2πb

2µoo + µwo + µbo = 2πo

µij ≥ 0, i, j ∈ {w, b, o} ,

(11)

where πw, πb, and πo denote the proportion of white, black and students of other races in

the population, with πw + πb + πo = 1. In the above problem, the choice variables {µij}
denote the proportion of dorm rooms consisting of type i and type j individuals.

In practice, there may be substantial sampling variation in the estimates of academic

achievement γij , perhaps due to small samples from which these estimates are obtained.10

9An equality may be expressed as two inequalities and in this way H0 : Cθ ≥ r covers linear equalities

as well.
10For example, in Bhattacharya (2009), samples of only 436 male and 428 female students are used to
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In this case, inference on the optimizers {µij} provides policymakers with a sense of how

robust the optimal assignment is to small changes in the estimates of {γij}. �

Example 3: Optimal treatment assignment under budget constraint. Consider

a binary (d ∈ {0, 1}) treatment, where the average treatment effects βd(x) for each treat-

ment d = 0, 1 on individuals with characteristics x ∈ X have been previously estimated

(for instance, in an RCT). Bhattacharya and Dupas (2012) consider the following optimal

treatment assignment problem, under a budgetary cap c on the total number of d = 1

treatments that can be administered:

max
p(x),x∈X

[∑
x∈X β1(x)p(x) + β0(x)(1− p(x))

]
f(x)

s.t. c =
∑

x∈X p(x)f(x)

p(x) ≥ 0,

(12)

where f(x), for x ∈ X , denotes the fraction of individuals who have characteristics x.11 �

Example 4: Market share prediction in semiparametric discrete choice models.

We wish to predict market shares in a semiparametric multinomial choice demand model.

Following the treatment in Chiong et al. (2017), we observe market shares and covariates

across M markets: {sm,Xm}Mm=1, where Xm =

(
X1
m

X2
m
...
XK
m

)
, k = 1, . . . ,K are indices for the K

products and Xk
m is the (row) vector of covariates for product k in market m. Assume we are

given estimated utility parameters β̂ for β in Ukm = Xk
mβ.12 Now we have a counterfactual

market M + 1 with covariates XM+1. The market shares sM+1 are not point identified, but

must satisfy the cyclic monotonicity conditions taken across markets m = 1, 2, . . . ,M,M+1.

Formally, we estimate

max
sM+1

skM+1 s.t. CM(sM+1; β̂, {sm,Xm}Mm=1 ,XM+1).

CM(. . .) denotes the set of linear inequalities arising from cyclic monotonicity. If we consider

only length-2 cycles, then they are, for all m ∈ {1, 2, . . . ,M}:

(sm − sm+1)(X′m+1 −X′m)β̂ ≤ 0.

estimate average academic outcomes conditional on race composition for each roommate pair.
11See Andrews, Kitagawa, and McCloskey (2019a) for an extension of this problem to consider inferences

on outcomes conditional on optimal assignments.
12For instance, the semiparametric estimation approach in Shi, Shum, and Song (2018) could be used.
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We may be interested in other quantities. For instance, for a multi-product firm which

produces goods (say) 1,2,3, the highest counterfactual revenue is

max
sM+1

∑
k=1,2,3

pkM+1s
k
M+1 s.t. CM(sM+1; β̂, {sm,Xm}Mm=1 ,XM+1),

and the market shares of (say) good 2 among the set of revenue-maximizing market shares

would be the argmax of this problem. �

Example 5: bounds on nonparametric regression function subject to shape re-

strictions. Following Freyberger and Horowitz (2015), consider a nonparametric regression

model Y = g(X)+U with E[U |W = w] = 0 ∀w; here Y is an outcome of interest, X is a pos-

sibly endogenous regressor and W is an instrument (and both X and W are finite-valued).

Our methods can be used for constructing a uniform confidence band for the finite-valued

unknown function g which maximizes a linear functional c′g subject to shape restrictions:

argmaxgc
′g s.t. Π′g = m; Sg ≤ 0.

�

4 Inference on parameter vector θ

In this section we detail the inference procedure for LP with all-inequality constraints. (The

case of QP is similar and we will discuss it in the context of an empirical application in

Section 5 below.) In order to apply the computationally simple procedure of Shi and Shum

(2015), we first introduce the m× 1 vector s of nonnegative slackness parameters. Then we

can rewrite the primal-dual feasibility and linear complementarity conditions (2)-(5) as:

Aθ + s− b = 0, (13)

A′λ− c = 0, (14)

λ′s = 0, (15)

λ ≥ 0, (16)

s ≥ 0. (17)

In this version of primal-dual formulation, the components of the model estimated with

sampling error—(A, b, c)—enter only the equalities (13) - (14), while the LC condition (15)

imposes nonlinear constraints on parameters. This specific structure enables us to apply Shi

and Shum’s (2015) approach, which is computationally convenient. We provide a detailed
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comparison of this approach versus more general approaches for moment inequality models

in Section 4.3 below.13

Let g(A, b, c, θ, λ, s) =

(
Aθ + s− b
A′λ− c

)
. For any m × k matrix W , let vec(W ) =

(W ′·,1, . . . ,W
′
·,k)
′ where W·,j is the jth column of W . Using this notation, we can write

g(A, b, c, θ, λ, s) as

g(A, b, c, θ, λ, s) =

(
(θ′ ⊗ Im)vec(A) + s− b

(Ik ⊗ λ′)vec(A)− c

)

=

(
θ′ ⊗ Im −Im 0m×k

Ik ⊗ λ′ 0k×m Ik

)vec(A)

b

c

+

(
s

0k×1

)
. (18)

Let G(θ, λ) =

(
θ′ ⊗ Im −Im 0m×k

Ik ⊗ λ′ 0k×m Ik

)
. Suppose that A, b, c are estimated by Ân, b̂n, ĉn,

and let V̂n denote the estimated asymptotic covariance matrix for (vec(Ân), b̂n, ĉn). Let

Q̂n(θ, λ, s) = g(Ân, b̂n, ĉn, θ, λ, s)
′(G(θ, λ)V̂nG(θ, λ)′)−1g(Ân, b̂n, ĉn, θ, λ, s). (19)

We construct a confidence set of confidence level 1 − α, which we denote CSPD
n (1 − α)

(PD being short for “primal-dual”), as:

CSPD
n (1− α) =

{
θ ∈ Θ : min

λ≥0,s≥0:λ′s=0
nQ̂n(θ, λ, s) ≤ χ2

m+k(1− α)

}
. (20)

Computing the profile test statistic itself only involves a GMM objective function of lin-

ear moments, subject to LC constraints. This falls into the class of Mathematical Program-

ming with Complementarity Constraints (MPCC) problems; see, e.g., Luo, Pang, and Ralph

(1996).14 For small-scale problems, one may formulate the MPCC problem as a mixed inte-

ger nonlinear programming problem. For large-scale problems, specialized MPCC solvers,

such as KNITRO or PATH, are available, which reduces the computational cost.15

13For notational simplicity we have focused on inequality constraints. If some of the inequalities are

equalities, then we would simply restrict the slackness parameters for the equalities to zero.
14See Dong, Hsieh, and Shum (2017) for additional applications of MPCC in general moment inequality

models.
15MPCC solvers are a bit of a black box, but they may use some regularization to smooth out constraints.

This regularization may affect statistical properties and/or computational performance of these estimates.

A more detailed examination of these issues would be solver-specific and require knowledge of the algorithm

designs of the solvers.
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In practice, it is usually convenient to report the upper and lower bound of the confidence

set of each parameter. For example, for the parameter θj , one can report the confidence

interval [θj(1− α), θj(1− α)], which can be obtained by solving the following problems:

θj(1− α) = inf θj , st. θ ∈ Θ : min
λ≥0,s≥0:λ′s=0

nQ̂n(θ, λ, s) ≤ χ2
m+k(1− α);

θj(1− α) = sup θj , st. θ ∈ Θ, min
λ≥0,s≥0:λ′s=0

nQ̂n(θ, λ, s) ≤ χ2
m+k(1− α). (21)

Remark: testing linear constraints. Within this framework, it is straightforward to

conduct tests of whether the optimal solution satisfies a set of linear restrictions, for example:

H0 : Cθ0 ≥ r for a θ0 ∈ arg max
θ∈Θ

c′θ s.t. Aθ ≤ b, (22)

where C is a known matrix and r is a known vector. Following the previous discussion, a

primal-dual test for this is

ϕPD
n (1− α) = 1

{
min

θ∈Θ,λ≥0,s≥0:λ′s=0,Cθ≥r
nQ̂n(θ, λ, s) ≤ χ2

m+k(1− α)

}
. (23)

�

Remark. Our approach relies on the fact that the KKT conditions can be treated as

moment conditions. As illustrated by the examples above, a number of LP problems arising

in economic applications enjoy this property. However, there are some exceptions of LP

problems arising in economics which lie outside our framework. One prominent example

of this is the classic formulation of quantile regression as a solution to a linear program;

see Koenker and Bassett (1978) for details. In their formulation, each of the constraints is

attached to a single data observation, so that the number of constraints increases in the

sample size. The KKT conditions for this LP do not take the form of moment conditions,

and hence do not fit in our framework. �

4.1 Uniform coverage of confidence sets

Now we show the uniform asymptotic validity of our confidence sets. Note that the data

enters our inference problem only through A, b, and c. For clarity, we now let the data

distribution P index these quantities, that is, we now write AP , bP , and cP . Then the

solution set of the linear programming problem can be written as

Θ0(P ) = {θ ∈ Rk : ∃λ ≥ 0, s ≥ 0, λ′s = 0 s.t. g(AP , bP , cP , θ, λ, s) = 0}.
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This set is a singleton when the linear programming problem has a unique solution, but

contains multiple values otherwise. Our confidence set is uniformly asymptotically valid

within the set of data distributions P0 such that the following assumption holds.

Assumption 1. (a) For all P ∈ P0, Θ0(P ) is nonempty.

(b) For any P ∈ P0 we have, under P ,

√
n

vec(Ân)− vec(AP )

b̂b − bP
ĉn − cP

→d N(0, VP ),

for some positive semi-definite matrix VP , and supP∈P0
‖VP ‖ ≤ C for some constant C.

(c) For any sequence {Pn}n≥1 such that Pn ∈ P0 for all n, and any subsequence {an} of

{n} such that VPan → V for a finite matrix V , we have, under {Pan},

√
an

vec(Âan)− vec(APan )

b̂ab − bPan
ĉan − cPan

→d N(0, V ),

and V̂an →p V as n→∞.

(d) There exists constants ε > 0 and C > 0 such that for all θ ∈ Θ0(P ) and P ∈ P0,

there exists λ ≥ 0, s ≥ 0 such that λ′s = 0, g(AP , bP , cP , θ, λ, s) = 0, and the smallest

eigenvalue of G(θ, λ)VPG(θ, λ)′ is no smaller than ε, ‖λ‖, and ‖θ‖ ≤ C.

Remarks. (i) Parts (b)-(c) of the assumption are high-level assumptions that can be veri-

fied in the step where Ân, b̂n, and ĉn are obtained. For example, suppose that A is a variance

covariance matrix of a random vector X, and b and c are respectively the expectation of

W and Z for random vectors W and Z, and we have an i.i.d. sample (X ′i,W
′
i , Z

′
i)
′. Then

often we have,

Ân = (n− 1)−1
n∑
i=1

(Xi − X̄n)(Xi − X̄n)′,

b̂n = W̄n,

ĉn = Z̄n, (24)

where X̄n = n−1
∑n

i=1Xi, W̄n = n−1
∑n

i=1Wi and Z̄n = n−1
∑n

i=1 Zi. In this case, P is
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the set of distributions for (X ′i,W
′
i , Z

′
i)
′ that we allow. Moreover,

VP = EP


 vec(XiX

′
i)− vec(EP [XiX

′
i])

Wi − EPWi

Zi − EPZi


 vec(XiX

′
i)− vec(EP [XiX

′
i])

Wi − EPWi

Zi − EPZi


′ (25)

with finite-sample analog

V̂n = n−1
n∑
i=1


 vec

(
XiX

′
i − n−1

∑n
i=1XiX

′
i

)
Wi − W̄n

Zi − Z̄n


 vec

(
XiX

′
i − n−1

∑n
i=1XiX

′
i

)
Wi − W̄n

Zi − Z̄n


′ .
(26)

Then part (b) holds by a central limit theorem as long as VP is finite for all P ∈ P0, which in

turn is implied by EP [‖Xi‖4] <∞, E‖W‖2 <∞, and E‖Z‖2 <∞. Part (c) can be justified

by appealing to CLT with the Lyapounov condition if we strengthen the moment condition

to supP∈P0
EP ‖Xi‖4+δ < ∞, supP∈P0

EP ‖Wi‖2+δ < ∞, and supP∈P0
EP ‖Zi‖2+δ < ∞ for

some δ > 0. This strengthened moment condition also ensures the uniform boundedness

condition for VP in part (b).

In addition, in this case G(θ, λ) has full row-rank, implying that a sufficient condition for

the eigenvalues of G(θ, λ)VPG(θ, λ)′ to be bounded away from zero is that the eigenvalues

of VP are bounded away from zero. (This is not a necessary condition as the number of

rows in G(θ, λ) is far less than the dimension of VP .)

(ii) Part (d) also imposes a uniform bound on the Lagrange Multiplier λ. When multiple

Lagrange multiplier values satisfy the KKT conditions, this sufficient condition only requires

that some of them be subject to the bound. Thus, it does not rule out writing an inequality

as two equalities. On the other hand, part (d) does imply a lower bound on the norm of

each row of A. This can be restrictive sometimes. See e.g. Bonnans and Shapiro (2000)

and Gafarov (2016).

(iii) The assumptions do not rule out the case where the linear programming solution

is non-unique. We are able to obtain uniform asymptotic coverage in this case because

our confidence set is a projection of an Anderson-Rubin type confidence set of the same

confidence level for the full vector of unknown parameters. Similar confidence sets are

proposed in, for example, Andrews and Soares (2010).

The next theorem is a statement of uniform asymptotic validity.
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Theorem 1. Suppose that Assumption 1 holds. Then we have for α ∈ (0, 1),

lim inf
n→∞

inf
P∈P0

inf
θ∈Θ0(P )

Pr P (θ ∈ CSPD
n (1− α)) ≥ 1− α,

where PrP stands for probability under the data distribution P .

If the uniformity holds over P0, it also holds over any subset of P0. Thus, we immediately

have the following corollary.

Corollary 1. Suppose that Assumption 1 holds, and P00 := {P ∈ P0 : Θ0(P ) is a singleton}
is nonempty. Denote the singleton by θ0(P ). Then we have for α ∈ (0, 1),

lim inf
n→∞

inf
P∈P00

Pr P (θ0(P ) ∈ CSPD
n (1− α)) ≥ 1− α.

On the surface, the corollary is a direct result of Theorem 1, but it gives the coverage re-

sult a desirable implication: the confidence set covers the unique solution with pre-specified

probability asymptotically, uniformly over the set of data distributions under which the

solution is unique. The set of data distributions under which the solution is unique is

not closed in typical topology on the set of probability measures (e.g., the total variation

topology). That implies that a sequence of P with unique solution can converge to a P∞

with multiple solutions, i.e. a P∞ under which the solution occurs on a flat face of the

constraint set. The corollary shows that the uniform coverage does not break down along

such sequences.

4.2 Concentrating Out Nuisance Parameters

Our confidence set CSPD
n uses the chi-squared critical value and thus is very easy to compute.

This computational ease comes at a cost, however: the construction of the confidence set

required us to introduce two sets of nuisance parameters: the Lagrange multipliers λ and

slackness terms s. The confidence set CSPD
n (1 − α) is a projection of a (1 − α)-confidence

set for (θ′, λ′, s′)′ and, as such, it may over-cover, as pointed out recently in the literature;

see e.g. Bugni, Canay, and Shi (2017) (BCS), Kaido et al. (2019) (KMS), and Chen,

Christensen, and Tamer (2018) (CCT).16

16Alternatively, a large class of methods in the moment inequality literature, for example, Andrews and

Soares (2010), Andrews and Barwick (2012), Romano and Shaikh (2010) can be applied directly to the

optimality conditions (2)-(5) without introducing the slackness parameter s. The computational cost of

these methods is similar to or exceeds that of computing CSPD-prof
n , and are not guaranteed to produce

confidence sets that are subsets of CSPD
n .
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Here we describe a simple method to profile out the nuisance parameter s, which is

a direct application of Section 4.1 of Shi and Shum (2015). This method still leaves the

nuisance parameter λ but it yields a valid confidence set that is always a subset (and often a

strict subset) of CSPD(1−α), at a moderate increase in computational cost. In the following

section we also discuss the prospect of applying other subvector inference methods in our

context.

The profiling method in Shi and Shum (2015) simulates the quantiles of the following

statistic:

Jn(θ, λ) = min
t+ŝ(θ,λ)≥0,λ′t=0

∥∥∥G(θ, λ, s)V̂ 1/2Z + κ−1
n n1/2

(
t

0k×1

)′∥∥∥2

(G(θ,λ,s)V̂ G(θ,λ,s)′)−1
, (27)

where ‖b‖2W = b′Wb, and ŝ(θ, λ) = arg mins≥0:λ′s=0 ‖s− (Âθ− b̂)‖ and Z ∼ N(0m+k, Im+k),

and κn is a tuning parameter that satisfies κn →∞ and κn/n
−1/2 → 0. Let cvn(θ, λ, 1−α)

denote the simulated 100(1−α)% quantile of Jn(θ, λ). Then the profiled confidence set for

θ is defined as

CSPD-prof
n (1− α) =

{
θ ∈ Θ : min

λ≥0

[
min

s≥0:s′λ=0
nQ̂n(θ, λ, s)− cvn(θ, λ, 1− α)

]
≤ 0

}
. (28)

In practice, one may report only the upper and lower bound of the confidence set of each

parameter, say [θprof
j (1−α), θ

prof
j (1−α)], which can be derived from the following problems:

θprof
j (1− α) = inf θj , s.t. θ ∈ Θ : λ ≥ 0, min

s≥0:s′λ=0
nQ̂n(θ, λ, s) ≤ cvn(θ, λ, 1− α).

θ
prof
j (1− α) = sup θj , s.t. θ ∈ Θ : λ ≥ 0, min

s≥0:s′λ=0
nQ̂n(θ, λ, s) ≤ cvn(θ, λ, 1− α). (29)

The only difference between CSPD-prof
n and CSPD

n is that the latter utilizes a simulated

critical value cvn(θ, λ, 1−α) instead of the analytic chi-squared critical value. By definition,

cvn(θ, λ, 1 − α) is weakly smaller.17 Thus, CSPD-prof
n (1 − α) ⊆ CSPD

n (1 − α), and θj(1 −
α) ≤ θprof

j (1 − α) ≤ θ
prof
j (1 − α) ≤ θj(1 − α). The tighter critical values cvn(θ, λ, 1 − α)

involve additional computational cost, and the degree of improvement that we can obtain

is application specific.

4.3 Other moment inequality procedures for subvector inference

We have focused on the specialized inference procedures CSPD
n and CSPD-prof

n in Shi and

Shum (2015) here. The former is computationally very easy and the latter yields uniform

17To see why, note that t = 0 is feasible in the minimization problem in (27), and setting t = 0 makes

the squared norm a χ2
m+k variable. Thus, Jn(θ, λ) is stochastically dominated by χ2

m+k, implying that

cvn(θ, λ, 1 − α) weakly smaller than χ2
m+k(1 − α).
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power improvement over the former at moderately greater computational cost. Other sub-

vector inference methods, such as BCS, KMS, and CCT have been proposed for general

moment inequality models. These procedures can apply in the present context.18 Never-

theless, they may present computational and/or statistical advantages on a case by case

basis. For this reason, we briefly review the approaches of BCS, KMS, and CCT and make

comparison to the extent that is possible within the scope of this paper.

Before doing so, we note several caveats. First, the comparisons will be somewhat

heuristic, as we will attempt neither a theoretical nor computational comparison of coverage

rates, as such exercises can be technically involved and beyond the scope of this paper.

Every procedure has its pluses and minuses and the discussion here is in no way a slam-

dunk comparison. Second, the alternative subvector inference approaches discussed below

are applicable to the more general class of moment inequality models, whereas CSPD-prof
n

has more limited applicability.

For concreteness, in the following discussion we assume that the parameter of interest is

θ1, the first element of θ. We consider, in turn, the approaches in BCS, KMS, and CCT.

The focus in the comparison is in terms of computational cost in our setting. In each case,

only enough details are given to facilitate an informative comparison of the computational

cost.

4.3.1 Bugni, Canay and Shi (2017)

To construct a confidence interval for θ1 using the BCS approach applied to the formulation

in (2)-(5), one first constructs a profiled criterion function as the test statistic. One such

test statistic is19

Tn(θ1) = min
θ−1,λ≥0

n

∥∥∥∥∥∥∥
 D

−1/2
n (θ, λ)

(
max{0, Âθ − b}

Â′λ− ĉ

)
σ−1

3,n(θ, λ)(ĉ′θ − b̂′λ)


∥∥∥∥∥∥∥

2

, (30)

where Dn(θ, λ) is a diagonal matrix with the same diagonal elements as G(θ, λ)V̂ G(θ, λ)′,

and σ2
3,n(θ, λ) = ( 01×mk −λ′ θ′ ) V̂

(
0mk×1

−λ
θ

)
, and θ−1 denotes the parameter vector θ without

18The recent papers by Andrews, Roth, and Pakes (2019b) and Cox and Shi (2020) propose subvector

inference methods for linear conditional moment inequality models. Their methods do not apply here because

they require the coefficients of the nuisance parameters to either be deterministic or depend only on the

conditioning variables. Unlike CSPD-prof
n , they are not guaranteed to yield uniform power improvement upon

CSPD
n due to their greater difference with CSPD

n .
19This correspond to the MMM (modified method of moment) test statistic in BCS.
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the first element. Then the upper and lower bounds of the confidence interval for θ1 are

obtained by

θBCS1 (1− α) = min θ1 s.t. Tn(θ1) ≤ cvBCS(θ1, 1− α)

θ
BCS
1 (1− α) = max θ1 s.t. Tn(θ1) ≤ cvBCS(θ1, 1− α) (31)

where the critical value cvBCS(θ1, 1 − α) is the smaller of the quantiles of two bootstrap

versions of Tn(θ1). As we can see, the computation has an inner loop where cvBCS(θ1, 1−α)

is computed and an outer loop, where one searches over the space of θ1 for the boundary of

the set defined by Tn(θ1) ≤ cvBCS(θ1, 1− α). The outerloop per se is not difficult as it is a

one-dimensional search. However, the inner loop can be difficult because it requires solving

2B + 1 minimization problems, each of the same magnitude of difficulty as (30), where B

is the number of bootstrap repetitions.20

In comparison, the CSPD-prof
n procedure (cf. Eq. (29)) also has an inner loop where the

critical values cvn(0, λ, 1 − α) and the test statistic mins≥0:s′λ=0 nQ̂n(θ, λ, s) are obtained

as well as an outerloop where one search over (θ′, λ′)′ for the extreme values of θ1 (recall

that j = 1 for the disucssion in this subsection). The inner loop is relatively easy because

both the critical value and the test statistic only involve quadratic programming problems,

which are computationally simpler to solve. Yet, the outer loop is costlier compared to the

outer loop in BCS since it requires searching over a higher dimensional space.

4.3.2 Kaido, Molinari, Stoye (2019)

KMS can also be applied on the formulation in (2)-(5). The upper and lower bounds of the

KMS confidence interval for θ1 are given by

θKMS
1 (1− α) = min θ1 s.t. max

(∣∣∣∣∣
(
D
−1/2
n (θ,λ)

(
max{0,Âθ−b}

Â′λ−ĉ

)
σ−1
3,n(θ,λ)(ĉ′θ−b̂′λ)

)∣∣∣∣∣
)
≤ cvKMS

n (θ, λ, 1− α)

θ
KMS
1 (1− α) = max θ1 s.t. max

(∣∣∣∣∣
(
D
−1/2
n (θ,λ)

(
max{0,Âθ−b}

Â′λ−ĉ

)
σ−1
3,n(θ,λ)(ĉ′θ−b̂′λ)

)∣∣∣∣∣
)
≤ cvKMS

n (θ, λ, 1− α),

(32)

where cvKMS
n (θ, λ, 1 − α) is a critical value obtained from a bootstrap procedure where

in each bootstrap repetition, one solves two linear programming problems with k + 1 +

20One saving grace is that the 2B minimization problems for the bootstrap repetitions do not need to

done perfectly for the resulting confidence set to be valid – not exactly finding the global minima simply

yields a bigger, and hence still valid, critical value.
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m constraints. The KMS procedure also involves an inner loop and an outer loop. In

contrast to BCS, the KMS procedure involves, essentially, an easier inner loop and a more

complicated outer loop. The inner loop, where cvKMS
n (θ, λ, 1−α) is computed, is relatively

easy because there are only 2B linear programming problems to solve if B is the number

of bootstrap repetitions. Yet the outer loop is difficult because it requires searching over

the entire space of (θ′, λ′)′ for an extreme point of θ1 subject to k + m + 1 constraints,

and the constraints involve the simulated function cvKMS
n (θ, λ, 1 − α). KMS propose an

approximation algorithm based on the response surface method to handle the outer loop

problem more efficiently.

In comparison, the CSPD-prof
n is likely of comparable difficulty as KMS since the inner

loop of CSPD-prof
n involves B quadratic programming problems with fewer variables (m vs.

m+k) and fewer constraints (m+1 vs. m+k+1) than KMS’s linear programming problems,

and our outer loop is also a search over the space of (θ′, λ′)′ and – indeed – KMS’s response

surface algorithm for handling the outer loop could be employed here as well.

4.3.3 Chen, Christensen, Tamer (2018)

CCT contains two procedures that can be applied to the present context to construct

confidence intervals for the identified set of the scalar parameter θ1. Both procedures are

designed for moment equality models, and thus they can only be directly applied to the

formulation (13)-(16) which involves the slackness parameters s.

CCT’s Procedure 2 involves taking B MCMC (Markov chain Monte Carlo) draws of

(θ′, λ′, s′)′ from a quasi-posterior distribution. At each point, say (θb,′, λb,′, sb,′)′, we compute

a “test statistic”

PL(M(θb, λb, sb)) = sup
θ1∈M(θb,λb,sb)

inf
θ−1∈Θ−1(θ1),λ≥0,s≥0:s′λ=0

nQ̂n(θ, λ, s), (33)

where Θ−1(θ1) = {θ−1 : s.t. (θ1, θ
′
−1)′ ∈ Θ} and M(θb, λb, sb) is a set of θ1 that is ob-

servationally equivalent to (θb, λb, sb) when combined with some value of (θ−1, λ, s).
21 The

critical value cvCCTn (1−α) is then obtained by taking the (1−α)th quantile from the sample

{PL(M(θb, λb, sb)) : b = 1, . . . , B}. Then the upper and lower bounds of the 100(1 − α)%

21Obtaining M(θb, λb, sb) in non-separable models as we have here can be quite challenging in practice.
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CCT Procedure 2 confidence interval for θ1 are

θCCT2
1 (1− α) = inf

θ1∈Θ1

θ1 s.t. inf
θ−1∈Θ−1(θ1),λ≥0,s≥0:s′λ=0

nQ̂n(θ, λ, s) ≤ cvCCT2
n (1− α)

θ
CCT2
1 (1− α) = sup

θ1∈Θ1

θ1 s.t. inf
θ−1∈Θ−1(θ1),λ≥0,s≥0:s′λ=0

nQ̂n(θ, λ, s) ≤ cvCCT2
n (1− α), (34)

where Θ1 = {θ1 ∈ R : Θ−1(θ1) 6= ∅}. CCT’s procedure also involves an inner loop where

the cvCCT2
n (1 − α) is obtained and an outer loop where we search over the space of θ1 for

an extreme point. In fact, it resembles BCS in terms of these two layers of loops: the outer

loop is a one-dimensional search (thus easy) and the inner loop involves minimizing a GMM

criterion function over (θ−1, λ, s) B times. The difference is that B here is the number of

MCMC draws, while for BCS, it is the number of bootstrap repetitions. As with BCS, the

computational cost comparison of the CSPD-prof
n with CCT Procedure 2 may vary case by

case and depend on implementation.

CCT’s Procedure 3 first defines (θ̂′, λ̂′, ŝ′)′ to be a solution to the minimization problem

minθ∈Θ,λ≥0,s≥0,λ′s=0 Q̂n(θ, λ, s). Then let

TCCT3
n (θ1) = inf

θ1∈Θ−1(θ1),λ≥0,s≥0,λ′s=0
nQ̂n(θ, λ, s)− nQ̂n(θ̂, λ̂, ŝ). (35)

And the upper and lower bounds of the 100(1− α)% CCT Procedure 3 confidence interval

for θ1 are

θCCT3
1 (1− α) = inf

θ1∈Θ1

θ1 s.t. TCCT3
n (θ1) ≤ χ2

1(1− α)

θ
CCT3
1 (1− α) = sup

θ1∈Θ1

θ1 s.t. TCCT3
n (θ1) ≤ χ2

1(1− α) (36)

In terms of computational cost, CCT’s Procedure 3 is only slightly more costly than CSPD
n

in that it requires the calculation of the overall minimum of Q̂n(θ, λ, s). Both are much

easier than CSPD-prof
n , as well as BCS and KMS. Unlike the other procedures, however,

CCT’s Procedure 3 cannot be applied when the parameter of interest is not a scalar.

Remark: In a different vein, Kline and Tamer (2016) consider Bayesian inference in a

class of partially identified models which delivers subvector inference automatically. Specif-

ically, applied to our setting, their procedure involves sampling from the posterior distri-

bution of point-identified “reduced-form” parameters (corresponding to the A, B, c). A

Bayesian credible set for the subvector can be attained by computing the full parameter

vector θ for each draw of (A, B, c) and only retaining the subvector of interest.
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5 Application: Portfolio Selection

As an empirical illustration, we consider the classic portfolio allocation problem in finance.

While this is a long-running problem in finance, inference procedures for the optimizing

solutions of the problem (the optimal portfolio weights) have not been established. In

practice, bootstrap-like procedures are used to assess sampling error; see, e.g., Scherer

(2002). This naive approach is not valid in light of the recent results in Fang and Santos

(2019). As far as we are aware, then, our procedure here constitutes the first asymptotically

valid inference procedure for this model.

5.1 Models

We consider three portfolio selection models: (i) the MV portfolio without short-selling of

Markowitz (1952) (MV), which is a quadratic program (QP); (ii) the (Euclidean) norm-

constrained portfolio of DeMiguel et al. (2009) (NC), which is a convex quadratically

constrained quadratic program (QCQP); and (iii) the equally-weighted risk contribution

portfolio of Maillard et al. (2010) (ERC), which is a convex program (CP). Each model is

described in turn:

1. Mean Variance Portfolio:

Markowitz (1952) consider a problem of forming an optimal portfolio among k assets

with weights {θ1, . . . , θk} ≡ θ that solves a convex QP defined in (10). The MV

problem implies two primal feasibility conditions

R′θ − µ = 0

1′θ − 1 = 0
(37)

and k dual feasibility conditions:

λθ + λRR+ λF1−Qθ = 0. (38)

In the above, λθ is the vector of Lagrange multipliers of the non-negativity constraints

on θ (corresponding to the restriction to long positions), and λR, λF are the Lagrange

multipliers of the equality constraints of targeted return and feasible portfolio weights.

There are k linear complementarity conditions: 0 ≤ λθ ⊥ θ ≥ 0. In this case, our

confidence set is:

CSPD
n (1− α) = {θ ∈ Θ : min

1′θ−1=0,0≤λθ⊥θ≥0
nQ̂n(θ, λ) ≤ χ2

1+k(1− α)}. (39)
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2. NC Portfolio:

Besides the classic Markowitz problem above, we also consider two more recent ver-

sions of the portfolio allocation problem, which attempt to address problematic fea-

tures of the Markowitz solution. DeMiguel et al. (2009) consider imposing an extra

regularization restriction on the portfolio weights. Specifically, they consider the fol-

lowing convex QCQP problem:

min θ′Qθ

s.t. θ′θ ≤ δ
1′θ = 1.

(40)

The first constraint, which is new, represents a regularization of the optimal portfolio

weights away from putting full weights on any single asset. There are two primal

feasibility conditions

θ
′
θ − δ + s = 0 (41)

1′θ − 1 = 0, (42)

k dual feasibility conditions

Qθ + λcθ + λF1 = 0, (43)

and one complementarity constraint: 0 ≤ λc ⊥ s ≥ 0. The primal feasibility condi-

tions do not involve data, and hence will be treated as parameter constraints when

computing the primal-dual test statistics.

3. Equally-Weighted Risk Contribution Portfolio:

In a similar vein, Maillard et al. (2010) consider the portfolio allocation that solves

the following convex programming problem

min θ′Qθ

s.t.
∑k

i=1 log θi ≥ η
1′θ = 1

θ ≥ 0.

(44)

The first constraint is new, and essentially “shrinks” the optimal portfolio towards

equally-weighted portfolio (where θi = 1
k for all i). There are two primal feasibility

conditions ∑k
i=1 log θi − η − s = 0

1′θ − 1 = 0,
(45)
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k dual feasibility conditions

Qθ − λc(1/θ)− λF1− λθ = 0, (46)

and k + 1 complementarity inequalities

0 ≤ λθ ⊥ θ ≥ 0 (47)

0 ≤ λc ⊥ s ≥ 0. (48)

5.2 Empirical Results

We consider portfolio selection over three fixed income securities: AAA, AA, and BBB

corporate bonds. We use the daily effective yield data from January 4, 2010 to December

31, 2017.22 The sample return vector R̂ and sample covariance matrix Q̂ are:

R̂ =

AAA

AA

BBB

 =

2.5621

2.6405

3.9492

 ; Q̂ =

0.1888 · ·
0.1184 0.1605 ·
0.0967 0.1848 0.2615

 . (49)

Estimated optimal portfolio weights. To ensure an equal footing, we set the tuning

parameters such that the resulting solutions θ̂ to the mathematical programming problems

(10), (40), and (44) with estimated R̂ and Q̂ given above are roughly the same. Specifically,

we choose µ = 2.8, δ = 0.1 + 1
3 ≈ 0.4333, and η = −3 log(3) − 1 ≈ −4.2958 for the MV,

NC, and ERC portfolio, respectively.23 The estimated θ are reported in Table 1. While

numerically they are quite similar, we note that an important difference is that the estimated

weights for the MV model are in the interior of the feasible solution set (namely, the non-

negativity constraints are not binding). On the contrary, the estimated weights for both the

NC and ERC models are on the boundary. For the NC model, the estimated θ̂ in Table 1

satisfies the constraint θ̂′θ̂ = δ = 0.4333. For the ERC model, we have
∑3

i=1 θ̂i = η = −4.3.

This will have important consequences for the confidence sets.

Confidence sets. In Figure 1, we depict the confidence set for the three different port-

folio selection models. Since the confidence set is three-dimensional, we present the two-

22We download the data of BofA Merrill Lynch US Corporate AAA, AA, and BBB Effective Yield from

Federal Reserve Bank of St. Louis. Source: https://fred.stlouisfed.org/.
23At these parameter values, it is easy to verify that Slater’s condition is satisfied because θi = 1

3
, for all

i, belongs to the relative interior of the convex constraint set of both NC and ERC. Therefore, the KKT

conditions derived before are necessary and sufficient for the global optimality.

https://fred.stlouisfed.org/
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Table 1: Estimated Portfolio Weights

MV NC ERC

AAA 0.4279 0.4207 0.4035

AA 0.4247 0.5001 0.5332

BBB 0.1474 0.0792 0.0633

dimensional projections for each pair of assets separately.24 Our method yields tight con-

fidence sets for the estimated portfolio weights. For example, since the AAA and AA

corporate bonds have similar estimated risk-return profiles, the confidence sets for all three

models suggest that the AAA and AA corporate bonds are substitutable: starting from the

point estimate, the confidence set includes points which involve a higher share of AAA com-

pensated by a lower share of AA, and vice versa. On the other hand, the risk-return profile

of the BBB corporate bonds is distinct from that of AAA and AA corporate bonds. As a

result, the confidence sets are much tighter along the dimension of the BBB corporate bonds.

Despite the similarity of the optimal portfolio weights for all three (MV, NC, ERC)

models, as reported in Table 1, the confidence sets in Fig. 1 exhibit striking differences across

models. Particularly, the confidence set for the MV model exhibits a typical “elliptical”

shape, while the confidence sets for the NC and ERC model weights have a non-convex

“arc” shape. These differences arise from the location of the estimated portfolio weights θ̂

within the set of the feasible solutions; namely, whether θ̂ lies on the interior or boundary on

the feasible solution set. The structure of the complementarity conditions in mathematical

programming problems implies that small movements in the value of θ around the boundary

can lead to discontinuous “jumps” in the values of the Lagrange multipliers – from zero (on

the boundary) to non-zero (off the boundary) – and subsequently also to discontinuities in

the test statistics. This feature is special to the mathematical programming problem under

study and do not arise in typical moment inequality models.

In the case of MV portfolio, θ̂ lies on the relative interior of the constraint set, and the

associated Lagrange multipliers λθ = 0. The confidence set consists of other feasible points

θ for which the test statistic is close in value to the test statistic at θ̂ – which will be at

other points in the interior of the constraint set, leading to the ellipsoid shape.

24We first generate Sobol sequences from the simplex and then plot points that satisfy Eq. (20)
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On the other hand, both the NC and ERC portfolio reported in Table 1 lie on the relative

boundary of the constraint set. This implies that the corresponding Lagrange multipliers

(λc) for these boundary constraints will be non-zero, implying that the test statistic will

be small for other values of θ which likewise lie on the boundary. On the contrary, feasible

points on the boundary will have values of λc = 0, leading to large changes in the test

statistic, compared to the value of the test statistic at θ̂. Thus the resulting confidence set

is thin and arc-shaped—essentially a lower-dimensional manifold tracing out a portion of

the boundary of the feasible set.

In practice, investors may not need to do inference on the estimated portfolio weights θ̂

themselves, but rather the implied expected return R′θ̂ and whether this expected return

exceeds some threshold value τ (which may depend on transactions costs, the status quo

return, &c.). Such considerations can be written as linear constraints on the portfolio

weights R′θ ≥ τ , the testing of which we discussed earlier (cf. Eqs. (22), (23)).

5.3 Monte Carlo Experiments

From a practical point of view, portfolio managers may be less interested in doing inference

on portfolio weights, per se, than in the “dual” problem; namely, they may want to know

“how big” the change in θ would need to be in order for the change to be statistically de-

tectable: which is a question about the power of the test underlying our proposed confidence

set CPD. The reasonably tight confidence sets obtained in the empirical application above

suggest reasonably good power of our test. In the remainder of this section, we address this

power question directly via a set of Monte Carlo experiments.

Design 1: Normally-Distributed Assets

The first simulation design is motivated by the daily return data used in Section 5.2.

Specifically, we simulate asset return rit, i = AAA,AA,BBB, t = 1, . . . , T , from a multi-

variate normal distribution with a mean vector R and a covariance matrix Q. We consider

three sample sizes: T = 100, 200, 500. We test the null hypothesis that H0 : θ0 = θ where

θ0 denotes the optimal portfolio weights, and θ are fixed values for the weights, which in

this design are set equal to the estimated values given in Table 1 for the MV, NC, and ERC

models, respectively. We assume that (R,Q) equals (R̂, Q̂) in Eq. (49) to generate the data

under H0.

To generate the data under the alternative hypothesis that H0 does not hold, we shift

Q as follows: In the first scenario, we shift the variance of the AAA corporate bonds away
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from the null data generating process (σ2
AAA = 0.1888), and in the second scenario, we shift

the variance of the AA corporate bonds from away from the null data generating process

(σ2
AA = 0.1605), holding other elements of Q and all elements of R fixed. The empirical

rejection rates are computed over 500 replications, and the size α is set to 5%.

Notably, since θ0 is a function of the parameters (R,Q) that generate the data, one

cannot directly calculate the power curve over a set of predetermined mesh points of θ0.

Instead, on the left column of Figure 2 and 3, we report the empirical power curve as a

function of the predetermined mesh points of σ2
AA and σ2

AAA that generate the return data

under the alternative hypotheses.25 On the right column, we further convert those power

curves to functions of the Euclidean distance between the true θ0 and the fixed values

given in Table 1.26 From the figures, one can find that when the sample size increases,

the test power also increases. Interestingly, our test has more power when the volatility

decreases.27 We find that our test has reasonable finite sample performance across three

different portfolio selection models. On the other hand, these simulations also show that

our test is conservative under the null—a common problem in the subvector inference of

moment inequality models.

Design 2: t-Distributed Assets

Asset return data often exhibit heavy tails. In design 2, we simulate rit from a multivariate-

t distribution with ten degrees of freedom. We further apply a location-scale transformation

such that the resulting (population) mean and covariance matrix equal that of design 1.

We summarize the results in Figure 4 and 5. We find that the test power reduces if the raw

data is generated from a t-distribution. For example, in the case of the MV portfolio, the

test power under σ2
AAA = 0.25 and T = 500 is 75% if rit are normally distributed (Figure

2, top left). By contrast, the test power reduces to 62% (Figure 4, top left) if rit are t(10)

distributed.28 This may have arisen because heavy-tailed data lead to noisier estimates of

the sample covariance matrix Q̂.

Design 3: Large-Scale Cases

25As some of the parameter values will result in a non-positive semidefinite covariance matrix, the left

column of Figure 2 and 3 are plotted on a different grid points.
26Because of the asymmetric response to the positive or negative changes in volatility, we only plot the

power curves associated with the positive changes.
27Importantly, a large shift in volatility does not necessarily imply a large shift in the portfolio weights.

For example, we have found that changes in σ2
BBB only lead to a negligible change in θ.

28If the returns are t(5) distributed, the test power reduces to 30% under the same parameter setup.
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Estimating the covariance matrixQ of asset return involves a large number of parameters;

there are N(N+1)
2 parameters if there are N assets. Therefore, even for a moderate number

of assets, the simple sample covariance matrix can perform poorly in practice; in turn, such

a noisy estimate of Q will impair the reliability of the estimated portfolio weights from the

portfolio allocation problem.

As a result, when many assets are considered, Jagannathan and Ma (2009) suggest

estimating the covariance matrix of the assets’ returns using factor models. Specifically,

they consider the following one-factor model:

rit = αi + βirmt + εit, (50)

where rit is the period t return of asset i, rmt (common factor) is the period t return on the

value-weighted portfolio of stocks traded in the market, εit is the idiosyncratic shock, and

βi is the factor loading. The (population) covariance matrix of rit, i = 1, . . . , N , is given by

Q = σ2
mββ

′
+D, (51)

where σ2
m is the variance of rmt, β is the column vector of factor loading βi, and D is the

diagonal matrix with variance of εit along its diagonal. βi provides a convenient way to

model the risk-return trade-off: the higher the β, the higher the return and also the risk.

Clearly, βi can be estimated by regressing rit on rmt. Dii, the i-th diagonal component of

D, can be estimated by the variance of residuals 1
T−2

∑T
t=1 ε̂

2
it.

We consider 50 assets. Under the null hypothesis, the common factor rmt follows N(2, 1).

The idiosyncratic shocks εit are i.i.d. drawn from N(0, 0.52); therefore, D is a block-diagonal

matrix. We generate 50 equally-spaced βi ∈ [0.5, 1.5], and we set the constant term αi = 0

for all i. We set the following tuning parameters: µ = 1.7, δ = .006 + 1
50 ≈ 0.026, and

η = −50 ∗ log(50) − 3 ≈ −198.6 for the MV, NC, and ERC portfolio, respectively. These

parameters produce positive weights for all assets that are roughly the same across three

models under the null hypothesis. Our testing procedure is completely modular, and can

accommodate this specification for the data-generating process of returns.

To generate the data under the alternative hypothesis, we add a constant τ ∈ [−0.2, 0.2]

to βi of the first 25 assets. One can interpret this design as if there are two sectors. The

market condition affects one of them by shifting the factor loading. We consider two sample

sizes: T = 200, 500. On the left column of Figure 6, we depict the empirical power as the

function of the predetermined mesh points of τ , and the on the right column, we convert
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them as the functions of the Euclidean distance between the true optimal weight θ0 implied

by differ values of τ and the θ corresponding to τ = 0. Our test works reasonably well under

the high dimensional case. For the NC and the ERC portfolio, our test has power even for

a marginal shift of the factor loading. The MV portfolio, on the other hand, would require

more samples under this particular design.

Finally, in Table 2, we report the average runtime of computing the test statistic over 100

Monte Carlo repetitions.29 The NC and the ERC portfolio scale up particular well; they

both take less than 1 sec to solve. Since the NC portfolio contains only one complementarity

constraint regardless of the number of assets, we speculate that the computing time may not

increase even for larger problems. Computing the test statistics for the MV portfolio takes

the most time; however, even for this case it still takes less than two minutes to solve on a

PC. The rather light computational cost demonstrated here makes our method attractive

in the real-time applications.

Table 2: Average Runtime of Computing the Test Statistic: 50 Assets

MV NC ERC

runtime (in sec.) 97.72 0.23 0.42

Note: while we report the runtime for computing the test statistic, the computational cost for the

confidence set can be deduced by multiplying this by the number of grid points for which the test statistic

will be computed. Software: Knitro 12.0, Gurobi 8.0, AMPL 20200501, and Matlab R2017b. Hardware:

Intel i7-6900K with 32 GB RAM.

6 Conclusion

We propose an inference procedure for estimators defined as the optimizers of stochastic

versions linear and quadratic programming problems with pre-estimated coefficients in the

objective function or constraints. The Karush-Kuhn-Tucker conditions which characterize

the optimum are re-interpreted as linear inequalities with pre-estimated coefficients, which

are amenable to the computationally simple inference procedures in Shi and Shum (2015).

We provide an empirical application to the portfolio selection problem in finance; as far as

we are aware, this represents the first instance of inference for this classic problem based

on asymptotic approximation.

29We average over all mesh points τ used in Design 3 under n = 500.
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More broadly, since KKT conditions can be applied in nonlinear programming problems

with suitable constraint qualification conditions, our inference approach might also work in

those more general contexts.30 When the resulting inequalities, which can be arbitrarily

nonlinear in the pre-estimated quantities, are moment inequalities, one can use the well-

established methods in the moment inequality literature (e.g., Andrews and Soares (2010),

Andrews and Barwick (2012), and Kline and Tamer (2016), among others) to construct joint

confidence sets for (θ, s, λ) and then obtain the marginal confidence set for θ as projection

of the joint confidence sets. Projection can lead to conservative inference, and there is a

growing literature on the subvector inference (discussed in Section 4.3) which can potentially

be helpful as well.
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A Proof of Theorem 1

Proof. Observe that there exists a sequence {(Pn, θn)} such that θn ∈ Θ0(Pn) and Pn ∈ P0 such
that the left-hand side of the inequality is equal to

lim inf
n→∞

Pr Pn
(θn ∈ CSPD

n (1− α)). (52)

By the definition of lim inf, there exists a subsequence {un} of {n} such that the above expression
is equal to

lim
n→∞

Pr Pun
(θun

∈ CSPD
un

(1− α)). (53)

Next we show that for any subsequence of {un}, there exists a further subsequence {an} such that

lim
n→∞

Pr Pan
(θan ∈ CSPD

an (1− α)) ≥ 1− α. (54)

This concludes the proof.

By Assumption 1(d), there exists a sequence {λn, sn} such that λn ≥ 0, sn ≥ 0, λ′nsn = 0,
g(APn

, bPn
, cPn

, θn, λn, sn) = 0, and ‖θn‖, ‖λn‖ ≤ C. Due to the compactness of the ball with radius
C, for any subsequence of {n}, there exists a further subsequence {an} such that θan → θ∞ and
λan → λ∞ for some finite vectors θ∞ and λ∞. By Assumptions 1(b)-(c) this further subsequence
can be chosen so that VPan

→ V and the distributional convergence in Assumption 1(c) holds.
Therefore, by the delta method,

√
ang(Âan , b̂an , ĉan , θan , λan , san)→d N(0, G(θ∞, λ∞)V G(θ∞, λ∞)′). (55)

Assumption 1(c) also implies that V̂an →p V . Thus,

G(θan , λan)V̂anG(θan , λan)′ →p G(θ∞, λ∞)V G(θ∞, λ∞)′. (56)

Assumption 1(d) implies that the limiting variance matrix is invertible. Thus, by appealing to the
continuous mapping theorem, we obtain

anQ̂an(θan , λan , san)→d χ
2
m+k. (57)
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Therefore,

Pr Pan
(θan ∈ CSPD

an (1− α)) = Pr Pan

(
min

λ≥0,s≥0,λ′s=0
anQ̂an(θan , λ, s) ≤ χ2

m+k,1−α

)
≥ Pr Pan

(anQ̂an(θan , λan , san) ≤ χ2
m+k,1−α)

→ 1− α. (58)

B Figures
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Figure 1: 90% Confidence Set of Optimal Portfolio Weights under Different Models

Note: The solution of the portfolio weights based on the estimated (R̂, Q̂) are located by two red lines.
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Figure 2: Power Curve: Volatility Shift in AAA Corporate Bonds; Normally Distributed
Data

Note: The horizontal line locates the nominal size α = 0.05, and the vertical line locates the value of σAAA

that implies the null hypothesis. Left column: power as the function of the predetermined mesh points of
σAAA. Right column: power as the function of the Euclidean distance between the true optimal portfolio

weight θ0 (that changes with σAAA) and the fixed values of θ, which are set to the estimated values in
Table 1.
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Figure 3: Power Curve: Volatility Shift in AA Corporate Bonds; Normally Distributed Data

Note: The horizontal line locates the nominal size α = 0.05, and the vertical line locates the value of σAA

that implies the null hypothesis. Left column: power as the function of the predetermined mesh points of
σAA. Right column: power as the function of the Euclidean distance between the true optimal portfolio

weight θ0 (that changes with σAA) and the fixed values of θ, which are set to the estimated values in Table
1.
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Figure 4: Power Curve: Volatility Shift in AAA Corporate Bonds; t Distributed Data

Note: The horizontal line locates the nominal size α = 0.05, and the vertical line locates the value of σAAA

that implies the null hypothesis. Left column: power as the function of the predetermined mesh points of
σAAA. Right column: power as the function of the Euclidean distance between the true optimal portfolio

weight θ0 (that changes with σAAA) and the fixed values of θ, which are set to the estimated values in
Table 1.
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Figure 5: Power Curve: Volatility Shift in AA Corporate Bonds; t Distributed Data

Note:The horizontal line locates the nominal size α = 0.05, and the vertical line locates the value of σAA

that implies the null hypothesis. Left column: power as the function of the predetermined mesh points of
σAA. Right column: power as the function of the Euclidean distance between the true optimal portfolio

weight θ0 (that changes with σAA) and the fixed values of θ, which are set to the estimated values in Table
1.
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Figure 6: Power Curve: Factor Loading Shift

Note: The horizontal line locates the nominal size α = 0.05. Left column: power as the function of the
predetermined mesh points of τ that shifts the first 25 assets’ factor loadings; τ = 0 implies the null
hypothesis. Right column: power as the function of the Euclidean distance between the true optimal

weights θ0 (that changes with τ) and the value of θ under the null hypothesis (τ = 0).
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