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Abstract

We propose a test for a generalized regression monotonicity (GRM) hypothesis. The

GRM hypothesis is the sharp testable implication of the monotonicity of certain latent

structures, as we show in this paper. Examples include the monotonicity of the con-

ditional mean function when only interval data are available for the dependent variable

and the monotone instrumental variable assumption of Manski and Pepper (2000). These

instances of latent monotonicity can be tested using our test. Moreover, the GRM hy-

pothesis includes regression monotonicity and stochastic monotonicity as special cases.

Thus, our test also serves as an alternative to existing tests for those hypotheses. We

show that our test controls the size uniformly over a broad set of data generating pro-

cesses asymptotically, is consistent against fixed alternatives, and has nontrivial power

against some n−1/2 local alternatives.

JEL classification: C01, C12, C21

Keywords: Generalized regression monotonicity, hypothesis testing, monotone instru-

mental variable, interval outcome, uniform size control.
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1 Introduction

In this paper, we construct a test for the generalized regression monotonicity (GRM) null

hypothesis (H0) against the alternative hypothesis (H1) defined as:

H0 : EP [f (1)(W, τ)|X = x1, Z = z] ≥ EP [f (2)(W, τ)|X = x2, Z = z], (1.1)

for all x1, x2 ∈ X and x1 ≥ x2, for all z ∈ Z and τ ∈ T ,

H1 : EP [f (1)(W, τ∗)|X = x∗1, Z = z∗] < EP [f (2)(W, τ∗)|X = x∗2, Z = z∗], (1.2)

for some x∗1, x
∗
2 ∈ X and x∗1 ≥ x∗2, for some z∗ ∈ Z and for some τ∗ ∈ T ,

where W = (Y ′, X ′, Z ′)′ are observed random variables generated from a distribution P ,

and EP denotes the expectation under P . Our null hypothesis generalizes the classical

regression monotonicity hypothesis (e.g. Schlee (1982), more references given later) in

the sense that we allow the functions f (1)(W, τ) and f (2)(W, τ) on the two sides of the

inequality to be different. We give two examples below where the generalization is neces-

sary. We also allow them to be indexed by τ ∈ T , where T can be either finite or infinite,

and allow the presence of control variables Z. The random vectors Y , X, and Z are of

dimensions dy ≥ 1, dx ≥ 1, and dz ≥ 0, respectively.1 The sets X and Z are the support

sets of X and Z, respectively. Without loss of generality, we assume that X ⊆ [0, 1]dx

and Z ⊆ [0, 1]dz .2

The null hypothesis in (1.1) is the sharp testable implication of the monotonicity of

certain latent structures. One example is the monotonicity of the conditional mean of

an interval-observed dependent variable. The interval data problem is wide-spread in

empirical research either due to survey design, where people are asked to choose from

several brackets rather than to report their actual value of a variable, or due to some

inherent missing data problems, for example, potential wage for females. As a result,

regressions using interval data as the dependent variable are unavoidable sometimes. In

such situations, Manski and Tamer (2002) provide econometric tools for estimation, but a

nonparametric test for the monotonicity of the regression function has not been studied.

1If dz = 0, then there is no Z in the model.
2A strictly monotone transformation can always be applied to bring the support of each component to

within [0, 1] without changing the information content of the inequalities. We provide detailed suggestions
for the transformation in Section 6.1.
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Another example is the monotonicity of potential outcomes in an instrumental vari-

able, better known as the monotone instrumental variable (MIV) assumption after Man-

ski and Pepper (2000).3 The MIV assumption has been recognized as a useful identi-

fication tool in Manski and Pepper (2000, 2009), Kreider and Pepper (2007), Kreider

and Hill (2009), and Gunderson, Kreider, and Pepper (2012).4 However, a test for MIV

validity has not been developed.5 We show that the sharp testable implications of both

the latent regression monotonicity and the MIV assumption are in the form of GRM,

and our test can be used for these hypotheses.

The GRM hypothesis also includes regression monotonicity and stochastic monotonic-

ity as special cases. Thus, our test also offers an alternative to existing tests of those.

Regression monotonicity arises in a lot of problems in economics. For example, many com-

parative static hypotheses directly take the form of regression monotonicity. In addition,

Chetverikov (2013) shows that regression monotonicity is a testable implication of the

monotone treatment response assumption and monotone treatment selection assumption

introduced in Manski and Pepper (2000). Existing tests for regression monotonicity have

been proposed by Schlee (1982), Bowman, Jones, and Gijbels (1998), Ghosal, Sen, and

van der Vaart (2000), Gijbels, Hall, Jones, and Koch (2000), Hall and Heckman (2000),

Dumbgen and Spokoiny (2001), Durot (2003), Beraud, Huet, and Laurent (2005), Wang

and Merey (2011) and Chetverikov (2013).

Testing stochastic monotonicity is useful for bounding parameters in a selection model

and for assessing the stationarity of a Markov process. See Lee, Linton, and Whang

(2009) and Seo (2015) for details and further applications. Existing tests for stochastic

monotonicity include Lee, Linton, and Whang (2009), Delgado and Escanciano (2012),

and Seo (2015). We compare these existing tests with our test in Section 2.

To test the GRM, we adapt Andrews and Shi’s (2013a, AS hereafter) instrumental

3Note that Chetverikov and Wilhelm (2017) define a monotonicity condition which they also name
monotone IV. Their monotone IV condition is different from that defined in Manski and Pepper (2000). In
particular, it does not involve a partially observed variable. It is of the form of the stochastic monotonicity
condition as studied in Lee, Linton, and Whang (2009), and is a direct special case of our null hypothesis
(1.1).

4A Stata command for bounding treatment effects under the MIV and other related assumptions is
developed by McCarthy, Millimet, and Roy (2015).

5Chetverikov (2013) develops a test for the related monotone treatment response and the monotone
treatment selection assumptions. Kitagawa (2015) develops a test for IV validity in the context of local
average treatment effect.
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function approach to transform the conditional inequality hypothesis into an inequality

hypothesis that involves only unconditional moments without loss of information content

of the original inequality hypothesis. The adaption is needed because each of our inequal-

ities involves conditional moments evaluated at two different values of the conditioning

variable, for which the AS approach does not apply.

After the transformation, we approximate each unconditional moment by its sample

counterpart, and construct a Cramér-von Mises type test. Since our hypothesis is in the

form of many inequalities, we employ the generalized moment selection method (GMS) to

improve the power of the test as in AS, and propose both a bootstrap GMS critical value

and a multiplier GMS critical value. We show that our test has uniform asymptotic size

control over a broad set of data generating processes, is consistent against fixed alterna-

tives, and has nontrivial local power against some n−1/2-local alternatives. We conduct

Monte-Carlo simulations for two examples to examine the finite-sample properties of our

test.

A different test from ours for the GRM may be constructed by verifying the conditions

in Lee, Song, and Whang’s (2016) recent paper. Compared to such a test, our test has

the advantage of not requiring a nonparametric estimator of the conditional moments.

The rest of this paper is organized as follows. In Section 2, we give five motivating

examples for testing GRM. We introduce the modified instrumental function approach,

and propose our test in Section 3. Uniform size and power properties of our tests are given

in Sections 4 and 5, respectively. Section 6 reports Monte-Carlo simulation results, and

Section 7 extends our test to test the nonparametric generalized regression monotonicity.

Section 8 concludes. All mathematical proofs are deferred to the Appendix.

We adopt the following convention in the paper: for x1, x2 ∈ Rdx with dx ≥ 2, we

say that x1 ≥ x2 iff x1s ≥ x2s for all s = 1, . . . , dx, where xjs is the sth element of vector

xj . Also, we say that x1 > x2 iff x1s ≥ x2s for all s = 1, . . . , dx, and x1k > x2k for some

k ∈ {1, . . . , dx}. Finally, x1 � x2 iff x1s > x2s for all s = 1, . . . , dx.
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2 Examples of GRM

GRM hypotheses of the form in (1.1) are of interest in a wide array of econometric prob-

lems. We give five examples below. In the last three examples, the GRM hypotheses are

the natural hypotheses of interest, while in the first two examples, the GRM hypotheses

are sharp implications of hypotheses that are not directly testable because they involve

latent varibles.

2.1 GRM as Sharp Testable Implication of Hypotheses on Latent Vari-

ables

We first define the concept of sharp testable implication. Such a concept has not been

formally defined, to our knowledge, but has been informally used by various people. Let

all variables considered below take values in a Borel measurable subset of Rd for some

positive integer d and be measurable with respect to the Borel sigma field.

Definition 1. Suppose that the random vector (X,U) takes values on the set Z. Let H00

be a hypothesis on the distribution of (X,U). Let H0 be a hypothesis on the marginal dis-

tribution of X. Suppose that the econometrician can only observe X and can potentially

observe a large enough sample of X to infer its distribution. Then

(a) H0 is a testable implication of H00 if H0 is a necessary condition of H00.

(b) H0 is the sharp testable implication of H00 given the settings above, if H0 being sat-

isfied by the marginal distribution of X implies that there exists a random variable

U such that the joint distribution of (X,U) has support on Z and satisfies H00.

Remark. When we test H00 through H0, a rejection of H0 implies a rejection of H00

if H0 is a testable implication of H00. However, it can happen that H00 is violated

but H0 holds, in which case any statistical test including ours will asymptotically detect

the violation with probability less than or equal to size, if H0 is the sharp testable

implication of H00. The sharpness captures the requirement that H0 exploits all the

population information useful for detecting the violation of H00, and that H0 cannot be

strengthened without additional assumptions. The concept is analogous to the concept

of sharp identified set defined in Berry and Tamer (2006). Just as a sharp identified
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set characterizes the strongest restriction of the model and data on the parameter, the

sharp testable implication characterizes the strongest restriction of the model and the

hypothesis of interest (H00) on the distribution of the observables.6

2.1.1 Regression Monotonicity with an Interval-Observed Dependent Vari-

able

Example 2.1. Consider a dependent variable Y and covariate vectors X and Z. The

researcher is interested in knowing whether E[Y |X = x, Z = z] is monotonically increas-

ing in x. However, Y is not observed. Instead, Y is known to lie in the observed random

interval [Y`, Yu], as considered in Manski and Tamer (2002). This interval may collapse

to Y for some individuals in the sample, but may have positive length for other individ-

uals. This may be a result of rounding, imprecise reporting of income in a survey, or

missing data. The case of rounding is self-explanatory. In the case of imprecise reporting,

Yu = Y` for respondents giving a precise answer, [Y`, Yu] is the bracket that the respondent

chooses when she does not give a precise numerical answer, and [Y`, Yu] is the interval

formed by a logical or theoretical upper and lower bound of Y if the respondent does not

give a response. The case of missing data is an extreme case of imprecise reporting where

the respondent either gives a precise response or no response at all. Our test proposed

below allows the rounding, the imprecision in reporting, and the data missingness to be

endogenous, as do Manski and Tamer (2002).

Since Y is not perfectly observed, one cannot directly test the null hypothesis:

HLRM
0 : E[Y |X = x1, Z = z] ≥E[Y |X = x2, Z = z]

for all x1 ≥ x2, and for all z, (2.1)

where LRM stands for “latent regression monotonicity.” We show that HLRM
0 can be

tested through a GRM-type hypothesis:

HGRM
0 : E[Yu|X = x1, Z = z] ≥E[Y`|X = x2, Z = z]

6Indeed, Kitagawa (2015) calls testable implications with the same property strongest testable impli-
cations.
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for all x1 ≥ x2, for all z. (2.2)

We show in the next theorem that HGRM
0 in (2.2) is the sharp testable implication

of HLRM
0 . The proof of this theorem is given in the appendix.

Theorem 2.1. (i) Suppose that the distribution of (Y,X,Z) satisfies HLRM
0 , and that

Y ∈ [Yu, Y`]. Then HGRM
0 in (2.2) holds.

(ii) Suppose that the distribution of (Yu, Y`, X, Z) satisfies HGRM
0 in (2.2). Then, there

exists a random variable Y such that Y ∈ [Y`, Yu] everywhere, and that the distribution

of (Y,X,Z) satisfies HLRM
0 .

Remark: In general, whether any test can have power against HLRM
0 through testing

HGRM
0 depends on the functions E[Yu|X = x, Z = z] and E[Y`|X = x, Z = z]. The closer

these two functions are, the more likely it is for us to detect the violation of HLRM
0 via

HGRM
0 . In general, the narrower the random intervals [Y`, Yu]’s are for more individuals,

the closer the two functions E[Yu|X = x, Z = z] and E[Y`|X = x, Z = z] are, and we will

illustrate this in the simulations. In the case of rounding, the smaller the rounding errors

are, the closer Y` is to Yu for every individual. In the case of imprecise reporting and

missing data, the more individuals giving precise answers, the closer E[Yu|X = x, Z = z]

and E[Y`|X = x, Z = z] will be. The instrument Z is not necessary for there to be power,

but can often help if Z moves Yu − Y`.

2.1.2 Hypotheses of Monotone Instrumental Variable (MIV)

Example 2.2. The MIV condition proposed by Manski and Pepper (2000) has been used

to obtain tighter identification in a selection model. One can test the MIV condition

by testing a hypothesis of the form of H0 in (1.1). To fix ideas, let D be a binary

treatment and (Y (0), Y (1)) be the potential outcomes. The variable Y (0) is only observed

when D = 0, and Y (1) is only observed when D = 1. Let the observed outcome Y =

DY (1) + (1 − D)Y (0). Let X be a monotone IV in the sense of Manski and Pepper

(2000):

HMIV
0 : E[Y (d)|X = x1] ≥ E[Y (d)|X = x2], for all x1 ≥ x2, for d = 0, 1. (2.3)
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Suppose that Y (0) and Y (1) lie in the known deterministic interval [yl, yu]. Then the

MIV condition in (2.3) implies the following hypothesis:

HGRM
0 : E[f (1)(Y, τ)|X = x1] ≥ E[f (2)(Y, τ)|X = x2],

for all x1 ≥ x2, for τ = 1 and 2, (2.4)

and

f (1)(Y, 1) = Y D + yu · (1−D), f (1)(Y, 2) = yuD + Y · (1−D),

f (2)(Y, 1) = Y D + yl · (1−D), f (2)(Y, 2) = ylD + Y · (1−D). (2.5)

In this example, X can be a vector. Additional control variables Z may be present.

As shown in the following theorem, HMIV
0 implies HGRM

0 , and thus should be re-

jected if the latter is rejected. The theorem also shows that HGRM
0 is the sharp testable

implication of HMIV
0 . The proof of the theorem is given in the appendix.

Theorem 2.2. (i) Suppose that the distribution of (Y (1), Y (0), D,X) satisfies HMIV
0 ,

and Y (1), Y (0) ∈ [y`, yu]. Then the distribution of (Y,D,X) satisfies HGRM
0 .

(ii) Suppose that Y ∈ [y`, yu], and the distribution of (Y,D,X) satisfies HGRM
0 . Then

there exists (Y (1), Y (0)) such that Y = DY (1) +(1−D)Y (0), y` ≤ Y (1), Y (0) ≤ yu, and

the distribution of (Y (1), Y (0), D,X) satisfies HMIV
0 .

Remarks:

1. The existence of finite bounds yu and y` is important for the testability of HMIV
0 .

If yu = ∞ and y` = −∞, HGRM
0 can never be violated and thus HMIV

0 is not

testable. In fact, if yu =∞ and y` = −∞, it is not clear how the MIV assumption

can be used for inference on treatment effects, either. For this reason, the finite

bounds are usually assumed when MIV is used.

2. The remarks below Theorem 2.1 apply here as well, with HLRM
0 replaced by HMIV

0 ,

and with E[Yu|X = x, Z = z] and E[Y`|X = x, Z = z] replaced by E[yu·(1−D)|X =

x] and E[y` · (1−D)|X = x] for τ = 1, and E[yuD|X = x] and E[y`D|X = x] for
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τ = 2, respectively. Note that for τ = 1,

E[yu(1−D)|X = x] = E[yu|D = 0, X = x]P (D = 0|X = x).

We can see that the smaller P (D = 0|X = x) and the smaller the gap between yu

and y`, the more likely it is for us (or anyone with only the observables (Y,D,X)

and the bounds [y`, yu]) to detect the violation of HMIV
0 through f (1)(Y, 1) and

f (2)(Y, 1). Similarly, the smaller P (D = 1|X = x) is and the smaller the gap

between yu and y`, the easier it is to detect the violation of HMIV
0 through f (1)(Y, 0)

and f (2)(Y, 0). We will demonstrate these in the simulations.

3. Note that the objective here is not to identify the treatment effect, but to test the

validity of the MIV assumption. It is true that if X is completely irrelevant in that

it does not affect either Y (0), Y (1) or D, then the test cannot reject. It also is not

supposed to reject because HMIV
0 is satisfied in this case. On the other hand, if X

does not influence D and thus is an irrelevant IV in the traditional sense, but it

influences Y (0) and Y (1) in a non-monotonic fashion, it is still possible for HGRM
0

to be violated and thus rejected. Therefore, a strong first stage is not necessary for

our test to have power.

4. As we mentioned in the Introduction, the only testing framework that covers

Examples 2.1 and 2.2 is Lee, Song, and Whang’s (2016).7 To be specific, let

x̃ = (x1, x2, z), X̃ = {X × X × Z| x1 ≥ x2}, qτ,1(x̃) = E[f (1)(Y, τ)|X = x1, Z = z]

and qτ,2(x̃) = E[f (2)(Y, τ)|X = x2, Z = z], and let ντ (x̃) = qτ,2(x̃)− qτ,1(x̃). Then,

(1.1) can be rewritten into Lee, Song and Whang’s (2016) framework:

H0 : ντ (x̃) ≤ 0 for all (x̃, τ) ∈ X̃ × T . (2.6)

Lee, Song, and Whang’s (2016) conditions for the validity of their test may cover

hypothesis (2.6) under suitable primitive conditions. We do not aim to provide

7Lee, Song, and Whang (2016) is an extension of the seminal paper Lee, Song, and Whang (2013).
The latter deals with conditional moment inequalities where in each inequality, the conditional moment
of some function evaluated at only one value not two values of the conditioning variable is involved. Thus
the paper does not cover the hypotheses that we consider.

10



those primitive conditions in this paper because we take a different approach to-

ward testing the GRM hypothesis. Unlike their approach, ours does not require

preliminary nonparametric estimation.

2.2 GRM as Natural Hypotheses of Interest

A GRM hypothesis may also be the natural hypothesis of interest. For example the hy-

potheses of regression monotonicity, stochastic monotonicity, and higher-order stochastic

monotonicity can all be written as GRM hypotheses, as we describe in detail now.

Example 2.3. Suppose that f (1)(W, τ) = f (2)(W, τ) = Y and Y is a scalar. Then H0 in

(1.1) reduces to:

H0 : E[Y |X = x, Z = z] is weakly increasing in x ∈ X , for all z ∈ Z. (2.7)

This is the usual regression monotonicity hypothesis. Testing H0 is a nonparametric

version of testing the sign of a regression coefficient in a linear regression model. For

example, suppose Y is the survival of a patient and X is the daily dose of a certain drug

given to the patient. Then H0 implies that there is a monotone relationship between the

daily dose and the survival rate as the dose varies in a chosen range X . Note that if

dz = 0, then H0 is the regression monotonicity hypothesis studied in Ghosal, Sen, and

van der Vaart (2000) and Chetverikov (2013). See Chetverikov (2013) for more testing

problems that can be formulated as (2.7) with dz = 0.

Example 2.4. Suppose that f (1)(Y, τ) = f (2)(Y, τ) = −1(Y ≤ τ) for τ ∈ R and dz = 0.

Then H0 reduces to:

H0 : FY |X(τ |x) is non-increasing in x ∈ X for all τ ∈ R, (2.8)

where FY |X(τ |x) denotes the conditional distribution of Y conditioning on X = x. Then

H0 is the stochastic monotonicity hypothesis studied in Lee, Linton, and Whang (2009),

Delgado and Escanciano (2012), and Seo (2015).

Example 2.5. Suppose that f (1)(Y, τ) = f (2)(Y, τ) = − 1
(j−1)!1(Y ≤ τ)(τ − Y )j−1 for
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τ ∈ R and dz = 0. Then H0 reduces to:

H0 : Ij(τ ;FY |X(·|x)) is non-increasing in x ∈ X for all τ ∈ R, (2.9)

where Ij(.;F ) is the function that integrates the function F to order j − 1 so that,

I1(τ ;F ) =F (τ),

I2(τ ;F ) =

∫ τ

0
F (t)dt =

∫ τ

0
I1(t;F )dt,

...

Ij(τ ;F ) =

∫ τ

0
Ij−1(t;F )dt.

Therefore, H0 is the higher-order stochastic monotonicity hypothesis. Shen (2016) studies

the conditional higher-order stochastic monotonicity at a fixed point of X = x. Our test

covers the uniform version of Shen’s (2016) hypothesis.

Remarks:

1. When Z contains only discrete random variables, the tests proposed in Ghosal, Sen,

and van der Vaart (2000) and Chetverikov (2013) are applicable to Example 2.3,

and the tests proposed in Lee, Linton, and Whang (2009), Delgado and Escanciano

(2012), and Seo (2015) are applicable to Example 2.4. These tests do not apply

when Z contains continuous random variables. In addition, the tests of Ghosal,

Sen, and van der Vaart (2000), Lee, Linton, and Whang (2009), and Delgado and

Escanciano (2012) rely on least-favorable case critical values, and can have poor

power when the data generating process is not close to the least-favorable case.

None of the tests in the five papers mentioned apply to Examples 2.1 and 2.2,

where f (1)(Y, τ) 6= f (2)(Y, τ).

2. Chetverikov (2013) considers a testable implication of the monotone treatment

selection and monotone treatment response assumptions of Manski and Pepper

(2000), which, in the notation of Example 2.2, is

E[Y |X = x1] ≥ E[Y |X = x2], for all x1 ≥ x2. (2.10)

12



This is a special case of Example 2.3.

3 Proposed Test

3.1 Model Transformation

In order to form a test statistic, we transform the conditional inequality hypothesis into

an inequality hypothesis that involves only unconditional moments. The transformation

should preserve all the information content of the original inequality hypothesis, because

otherwise the resulting test has no power against some fixed alternatives. The most

closely related approach in the literature is AS, where conditional moment inequalities

are transformed into unconditional ones using an infinite set of instrumental functions.

Our problem is more complicated because our inequalities involve conditional moments

evaluated at different values of the conditioning variable.

We propose a modification to AS’s instrumental function approach. The basic idea

of our modified approach is to use two different instrumental functions on the two sides

of the inequalities. To be specific, we find a set, G, of g = (g
(1)
x , g

(2)
x , gz) such that (1.1)

is equivalent to

H0 : νP (τ, g) ≡ m(2)
P (τ, g)w

(1)
P (g)−m(1)

P (τ, g)w
(2)
P (g) ≤ 0, (3.1)

for all τ ∈ T and for all g ∈ G,

H1 : νP (τ∗, g∗) > 0, for some τ∗ ∈ T and for some g∗ ∈ G, (3.2)

where, for j = 1 and 2,

m
(j)
P (τ, g) = EP [f (j)(W, τ)g(j)

x (X)gz(Z)], w
(j)
P (g) = EP [g(j)

x (X)gz(Z)]. (3.3)

Like in AS, we also would like the set G to be simple enough in order for a certain uniform

central limit theory to apply.

We consider two possible G choices, for both of which we define the following notation:

Cx,r ≡
( dx∏
j=1

[xj , xj + r]
)
∩ X for x ∈ X and r ∈ (0, 1],

13



Cz,r ≡
( dz∏
j=1

[zj , zj + r]
)
∩ Z for z ∈ Z and r ∈ (0, 1]. (3.4)

For ` = (x1, x2, z, r) ∈ X 2 ×Z × (0, 1], define

g
(1)
x,` = 1(· ∈ Cx1,r), g

(2)
x,` = 1(· ∈ Cx2,r), gz,` = 1(· ∈ Cz,r). (3.5)

The first G we consider is the set of the indicator functions of countable hypercubes:

Gc-cube =
{
g` ≡

(
g

(1)
x,` , g

(2)
x,` , gz,`

)
: ` ∈ Lc-cube

}
, where (3.6)

Lc-cube =
{

(x1, x2, z, r) : r = q−1, q · (x1, x2, z) ∈ {0, 1, 2, · · · , q − 1}2dx+dz ,

x1 ≥ x2, , and q = q0, q0 + 1, · · ·
}
,

and q0 is a natural number.8

The second G that we consider is the set of the indicator functions of a continuum of

hypercubes:

Gcube = {g` : ` ∈ Lcube} , where (3.7)

Lcube = {(x1, x2, z, r) : x1, x2 ∈ [0, 1− r]2dx+dz , x1 ≥ x2, r ∈ (0, r̄]},

for some 0 < r̄ < 1.

Because there is a one-to-one mapping between Gcube (or Gc-cube) and the set of indices

Lcube (or Lc-cube), for the remainder of the paper, we will use ` to stand for g` when used

inside a function to simplify notation. For example, νP (τ, g`) will be written as νP (τ, `),

m
(j)
P (τ, g`) as m

(j)
P (τ, `), and w

(j)
P (g`) as w

(j)
P (`).

Both are also rich enough to capture all the information provided by (1.1), which is

shown in the following lemma.

Assumption 3.1. Suppose that for j = 1 and 2, EP [f (j)(Y, τ)|X = x, Z = z] : X ×Z →

R is continuous on X × Z for all τ ∈ T under distribution P .

8In cases where f (1)(W, τ) = f (2)(W, τ) for all τ as in Examples 2.3-2.5, νP (τ, `) = 0 and ν̂n(τ, `) = 0
for all g` with x1 = x2 and we can remove these g`’s from G. However, including these g`’s in G does not
affect our theoretical results.
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The continuity of the function EP [f (j)(Y, τ)|X = x, Z = z] on X × Z is only mildly

restrictive when X and Z contain continuous random variables. If X and Z are discrete,

then X ×Z only contain a finite number of discrete points. A function defined on a finite

set of discrete points is automatically continuous on this set because any converging

sequence in this set must be a constant sequence eventually.

Lemma 3.1. Suppose Assumption 3.1 holds. Then for G = Gc-cube or G = Gcube, H0 and

H1 in (1.1)-(1.2) are equivalent to those in (3.1)-(3.2).

The proof of the lemma is given in Appendix C. The intuition for this lemma is that

m
(j)
P (τ, g)/ω

(j)
P (τ, g) approaches the conditional expectation E[f (j)(X, τ)|X = x, Z = z]

under Assumption 3.1 when g
(j)
x and gz approach degenerate hypercubes with vertices

x and z respectively and edge length zero. Thus, if the GRM hypothesis is violated

at some (x1, x2, z), it must be true that m
(1)
P (τ, g)/ω

(1)
P (τ, g) < m

(2)
P (τ, g)/ω

(2)
P (τ, g), or

equivalently, m
(2)
P (τ, g)ω

(1)
P (τ, g)−m(1)

P (τ, g)ω
(2)
P (τ, g) > 0, for some g

(1)
x , g

(2)
x , gz with ver-

tices x1, x2, z and small enough edge length. That implies that H0 in (3.1) must be

violated at some g ∈ Gc-cube or g ∈ Gcube because Gcube and Gc-cube include instru-

ments defined by hypercubes with arbitrarily small edge length and vertices dense in

{(x1, x2, z) ∈ X 2 ×Z : x1 ≥ x2}.

3.2 Estimation of νP (τ, `)

In the following, all results hold for both Gc-cube and Gcube, and thus for notational

simplicity, we suppress the subscripts “c-cube” and “cube” and just write G and L unless

necessary. Suppose we have an i.i.d. sample of size n.

Now that we have transformed the conditional inequalities into unconditional inequal-

ities, we are ready to introduce the test statistic. These inequalities are not moment

inequalities like in AS, but inequalities about nonlinear functions of moments of observ-

ables. Nonetheless, we can define a test statistic in an analogous way to AS. For clarity,

we choose a specific form of the test statistic rather than using the general form in AS.

Define, for j = 1, 2,

m
(j)
i (τ, `) = m(j)(Wi, τ, `) = f (j)(Yi, τ)g

(j)
x,`(Xi)gz,`(Zi)
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w
(j)
i (`) = w(j)(Wi, `) = g

(j)
x,`(Xi)gz,`(Zi). (3.8)

Let the sample means of them be

m̂(j)
n (τ, `) =

1

n

n∑
i=1

m
(j)
i (τ, `), ŵ(j)

n (`) =
1

n

n∑
i=1

w
(j)
i (`). (3.9)

We estimate νP (τ, `) by its sample analogue:

ν̂n(τ, `) = m̂(2)
n (τ, `)ŵ(1)

n (`)− m̂(1)
n (τ, `)ŵ(2)

n (`). (3.10)

As we mentioned above, the simplicity of Gc-cube and Gcube, along with a manageability

condition on T (given later) makes sure that
√
n(ν̂n(τ, `)− νP (τ, `)) satisfies a functional

central limit theorem.

3.3 Test Statistic

Here we define the test statistic T̂n for our test. First, we need to define a variance

estimator. This variance estimator is more complicated than the analogous quantity

in AS because we need to deal with nonlinear functions of moments rather than just

moments of observables. Let σ̂2
n(τ, `) be

σ̂2
n(τ, `)

=
1

n

n∑
i=1

{
ŵ(1)
n (`)

(
m

(2)
i (τ, `)− m̂(2)

n (τ, `)
)

+ m̂(2)
n (τ, `)

(
w

(1)
i (`)− ŵ(1)

n (`)
)

− ŵ(2)
n (`)

(
m

(1)
i (τ, `)− m̂(1)

n (τ, `)
)
− m̂(1)

n (τ, `)
(
w

(2)
i (`)− ŵ(2)

n (`)
)}2

, (3.11)

which is an estimator for the asymptotic variance of
√
n(ν̂n(τ, `) − νP (τ, `)). Note that

σ̂2
n(τ, `) may be close to 0 with non-negligible probability for some (τ, `) ∈ T ×L. This is

not desirable, because the inverse of it needs to be consistent for its population counter-

part uniformly over T ×L for the test statistics considered below. In consequence, as in

AS, we consider a modification, denoted as σ̂2
ε,n(τ, `), that is bounded away from 0. For
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some fixed ε > 0, define σ̂2
ε,n(τ, `) as

σ̂2
ε,n(τ, `) = max{σ̂2

n(τ, `), ε}, for all (τ, `) ∈ T × L. (3.12)

Note that unlike AS, the σ̂2
ε,n(τ, `) in (3.12) is not scale-equivariant to the moment con-

ditions, meaning that our test statistic defined below is not scale-invariant.9 It is hard to

get scale-equivariance in our case due to the presence of τ . See Andrews and Shi (2017)

for the use of non-scale-equivariant weights as well.

Let Q be a probability measure on T × L, and our test statistic is defined as

T̂n =

∫
max

{√
n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2
dQ(τ, `). (3.13)

The test statistic in (3.13) is similar to the Cramer-von Mises type statistic in AS. It

is different from the test statistic in Lee, Song, and Whang (2013, 2016) which uses

a nonparametric estimator of the conditional moment. Note that in our test statistic,

in each νn(τ, `), the m̂j
n(τ, `) is similar to the numerator and ω̂jn(`) is similar to the

denominator of the Nadaraya-Watson estimator of E[f (j)(W, τ)|X,Z] using a uniform

kernel, but (1) we do not stack them in ratios, and (2) we do not consider a single

bandwidth that drifts to zero with the sample size, but use an infinite set of bandwidths

for all sample sizes.10 For this reason, our theory works differently and our test behaves

differently than those based on traditional nonparametric estimators of the conditional

mean. We discuss this more in Section 5 below.

We only consider the measures such that Q(τ, `) = QT (τ)QL(`) for measures QT on

T and QL on L because such measures are sufficient for our purpose in all cases that

we can think of. We require that the support of Q equal T × L. The support condition

is needed to ensure that there is no information loss in the aggregation, and is formally

stated in the next assumption. Let dτ be a metric on T and d` be the Euclidean metric

on L. Let Bc(τ∗) = {τ ∈ T : dτ (τ, τ∗) ≤ c}, and Bc(`∗) = {` ∈ L : d`(`, `∗) ≤ c}.
9σ̂ε,n(τ, `) is not scale-equivariant in the sense that when we multiply the moments f (1)(Y, τ) and

f (2)(Y, τ) by a constant, the resulting hypothesis is the same, but the test statistic and testing result can
be different. That is, our test is not invariant to rescaling of the moment functions.

10In practice, one may use a finite set of bandwidths, and let the set expand to include smaller and
smaller bandwidths as the sample size increases, as discussed in Section 6.1 below.
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Assumption 3.2. For any c > 0, any τ ∈ T , and any ` ∈ L, (a) QT (Bc(τ)) > 0, and

(b) QL(Bc(`)) > 0.

We give some examples of Q that satisfy Assumption 3.2. Because we only consider

product measures, we can choose QT and QL separately. For QT , if T is a singleton or a

finite set as in Examples 2.1-2.3, we let QT assign equal weight on each element in T . If T

contains a continuum of elements as in Examples 2.4 and 2.5, and T has a finite support,

e.g., [a, b], which would be true if we know in advance that Y has support on [a, b], we

can let QT be a uniform distribution on [a, b]. If T has support on the whole real line,

we can let QT be from a standard normal distribution. For QL, if L = Lc-cube, we can let

QL assign weight ∝ q−2 on each q where ∝ stands for “is proportional to,” and, for each

q, let QL assign equal weight on each instrumental function with r = q−1.11 If L = Lcube,

we can let the marginal of QL on (0, r̄] be a uniform distribution and conditional on each

r, let QL induce a uniform distribution on {(x1, x2, z) ∈ [1− r]2dx+dz : x1 ≥ x2}.12

We next define the critical value for our test. Note that our null hypothesis involves

inequality constraints. When testing multiple inequalities, it has been known since Wolak

(1991) that an asymptotically valid data-free critical value is difficult to obtain, because

the least favorable case of the null asymptotic distribution is elusive and does not nec-

essarily occur when all inequalities are binding. Moreover, tests based on such critical

values may have low power when the data do not come from the least favorable case.

Thus, we propose two simulated data-dependent critical values instead.

The simulated critical value will be based on the asymptotic distribution of the test

statistic. This asymptotic distribution under a sequence of null distributions (Pn) con-

verging weakly to some Pc will be shown in Lemma A.3 to be:

∫
max

{
Ψ(τ, `) + δ(τ, `)

σε(τ, `)
, 0

}2

dQ(τ, `), (3.14)

where Ψ(·) is a Gaussian process which is the limiting process of Ψ̂n(·) ≡
√
n(ν̂n(·) −

11Note that for each q, there are (q(q + 1)/2)dx · qdz of instrumental functions with r = q−1.
12There are many choices of Q satisfying Assumption 3.2. Different choices of Q will not affect the

uniform asymptotic size property and the consistency against fixed alternatives of our test. However,
our tests based on different choices of Q will have different power in finite samples and asymptotically
against local alternatives. To discuss the properties of our tests equipped with different choices of Q is
an interesting topic that we do not pursue in this paper.
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νPn(·)), δ(τ, `) is the limit of
√
nνPn(τ, `), and σε(τ, `) is the limit of σ̂ε,n(τ, `). Note that

δ(τ, `) = −∞ whenever νPc(τ, `) < 0, that is, the inequality is slack at (τ, `) under Pc.

This limiting distribution cannot be directly simulated because δ(τ, `) cannot be consis-

tently estimated. In the next subsection we describe the generalized moment selection

(GMS) approach in AS to provide an asymptotically valid upper bound for δ(τ, `). In

the subsequent subsection, we describe two procedures to simulate the Gaussian process

Ψ(·).

3.4 Generalized Moment Selection

We employ the GMS approach in AS to select the likely binding moments to use in

the critical value simulation. Let {κn : n ≥ 1} be a sequence of positive numbers that

diverges to infinity as n→∞ and {Bn : n ≥ 1} be a non-decreasing sequence of positive

numbers that diverges to infinity as n→∞ as well. Let the GMS function ψn(τ, `) be

ψn(τ, `) = −Bn · 1
(√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
< −κn

)
for all (τ, `) ∈ T × L. (3.15)

The function ψn(τ, `) will be used in place of δ(τ, `) defined above, and we will show

that it provides an asymptotically valid upper bound for the latter under the following

assumption.

Assumption 3.3. (GMS) Assume that κn → ∞, Bn → ∞, n−1/2κn → 0, and

κ−1
n Bn → 0 as n→∞.

Assumption 3.3 imposes conditions on κn and Bn sequences, and is a combined version

of Assumptions GMS1 and GMS2 of AS.

3.5 Null Distribution Approximation

We provide two approaches to simulate the process Ψ(·) defined above. We first intro-

duce the multiplier method based on the conditional multiplier central limit theorem in

Chapter 2.9 of van der Vaart and Wellner (1996). Let {Ui : i ≥ 1} be a sequence of i.i.d.

random variables that is independent of the whole sample path {Wi : n ≥ 1} such that

E[U ] = 0, E[U2] = 1, and E[|U |δ1 ] < C for some 2 < δ1 < δ and C < ∞ where δ is the
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constant in Assumption 4.1 below. Define Ψ̂u
n(τ, `) as

Ψ̂u
n(τ, `)

=
1√
n

n∑
i=1

Ui

{
ŵ(1)
n (`)

(
m

(2)
i (τ, `)− m̂(2)

n (τ, `)
)

+ m̂(2)
n (τ, `)

(
w

(1)
i (`)− ŵ(1)

n (`)
)

− ŵ(2)
n (`)

(
m

(1)
i (τ, `)− m̂(1)

n (τ, `)
)
− m̂(1)

n (τ, `)
(
w

(2)
i (`)− ŵ(2)

n (`)
)}
. (3.16)

Next we describe the bootstrap method to approximate Ψ̂n(·). Let {W b
i : i ≤ n} be

an i.i.d. bootstrap sample drawn from the empirical distribution of {Wi : i ≤ n}. Let

m
(j)b
i (τ, `) = m(j)(W b

i , τ, `) and w
(j)b
i (`) = w(j)(W b

i , `) for j = 1 and 2. Define

ν̂bn(τ, `) = m̂(2)b
n (τ, `)ŵ(1)b

n (`)− m̂(1)b
n (τ, `)ŵ(2)b

n (`),

m̂(j)b
n (τ, `) =

1

n

n∑
i=1

m
(j)b
i (τ, `), ŵ(j)b

n (`) =
1

n

n∑
i=1

w
(j)b
i (`). (3.17)

Finally, define the bootstrap process Ψ̂b
n(·) as

Ψ̂b
n(·) =

√
n(ν̂bn(·)− ν̂n(·)). (3.18)

Let the critical value statistics be

T̂ un =

∫
max

{ Ψ̂u(τ, `)

σ̂ε,n(τ, `)
+ ψn(τ, `), 0

}2
dQ(τ, `), (3.19)

T̂ bn =

∫
max

{ Ψ̂b(τ, `)

σ̂ε,n(τ, `)
+ ψn(τ, `), 0

}2
dQ(τ, `). (3.20)

We call T̂ un the multiplier statistic and T̂ bn the bootstrap statistic. Their conditional

distributions (given the original sample) asymptotically provide upper bounds for the

null distribution of our test statistic.
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3.6 GMS Critical Value

We are ready to define the multiplier GMS critical value ĉuη and the bootstrap GMS

critical value ĉbη:

ĉuη = sup
{
q
∣∣P u(T̂ un ≤ q) ≤ 1− α+ η

}
+ η, (3.21)

ĉbη = sup
{
q
∣∣P b(T̂ bn ≤ q) ≤ 1− α+ η

}
+ η, (3.22)

where η > 0 is an arbitrarily small positive number, e.g., 10−6, and P u and P b de-

note the multiplier probability measure and bootstrap probability measure, respectively.

Note that ĉuη and ĉbη are defined as the (1 − α + η)-th quantiles of the multiplier null

distribution and bootstrap null distribution plus η, respectively. AS call the constant η

an infinitesimal uniformity factor that is used to avoid the problems that arise due to

the presence of the infinite-dimensional nuisance parameter νP (τ, `) and to eliminate the

need for complicated and difficult-to-verify uniform continuity and strictly-monotonicity

conditions on the large sample distribution functions of the test statistic.13

3.7 Decision Rule

The decision rule is the following:

Reject H0 in (3.1) if T̂n > ĉη, (3.23)

where ĉη can be ĉuη or ĉbη.

4 Uniform Asymptotic Size

In this section, we show that our test has correct asymptotic size uniformly over a broad

set of distributions. We impose conditions on {f (j)(τ,W ) : τ ∈ T } for j = 1 and 2 to

regulate their complexity. It ensures that the empirical process Ψ̂n(·) and its multiplier

13In our simulations, we obtain identical results when setting η = 0. Note that it is possible to
extend the anti-concentration arguments in Chernozhukov, Chetverikov, and Kato (2014, 2015a, 2015b)
to formally show that we can actually set η = 0, especially if using a Kolmogorov-Smirnov type test. We
thank a referee for pointing this out.
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and bootstrap counterparts satisfy the functional central limit theorem under a drifting

sequence of distributions.

Let the collection of distributions of our interest be denoted as P.

Assumption 4.1. Let (Rdw ,B(Rdw)) be the dw-dimensional Borel-measurable space,

where dw is the dimension of W . Let P denote the collection of probability measures

P on (Rdw ,B(Rdw)) such that:

(a) max{
∣∣f (1)(τ, w)

∣∣, ∣∣f (2)(τ, w)
∣∣} ≤ F (w) for all w ∈ WP , for all τ ∈ T for some enve-

lope function F (w), where WP is the support of W under P .

(b) EPF
δ(W ) ≤ C <∞ for all P ∈ P for some δ > 2 and for some C > 0.

(c) the processes {f (j)(τ,Wn,i) : τ ∈ T , i ≤ n, 1 ≤ n} for j = 1 and 2 are manageable

with respect to the envelope function F (Wn,i) where {Wn,i : i ≤ n, 1 ≤ n} is a row-wise

i.i.d. triangular array with Wn,i ∼ Pn for any sequence {Pn ∈ P}.

The manageability condition in Assumption 4.1 (c) is from Definition 7.9 of Pollard

(1990); see Pollard (1990) for more details. Assumption 4.1 (c) is not restrictive. For

example, if T is finite as in Examples 2.1-2.3 or if {f (j)(τ,W ) : τ ∈ T } is a Vapnik-

Chervonenkis (VC) class as in Examples 2.4 and 2.5, then Assumption 4.1 (c) holds. As-

sumption 4.1 (b) implies that |EP [m(j)(τ, `)]| ≤M for some M > 0 for all (τ, `) uniformly

over P ∈ P. This ensures that the asymptotic covariance kernel of
√
n
(
ν̂n(τ, `)−νP (τ, `))

is uniformly bounded for all P ∈ P.

To establish the uniform asymptotic size, we introduce some notation. Define

h1,P (τ, `) = EP (ẅ(W, τ, `)), and

h2,P

(
(τ1, `1), (τ2, `2)

)
= CovP (m̈(τ1, `1), m̈(τ2, `2)), where

ẅ(W, τ, `) = (−w(2)(W, `), w(1)(W, `),−m(2)(W, τ, `),m(1)(W, τ, `))′,

m̈(W, τ, `) = (m(1)(W, τ, `),m(2)(W, τ, `), w(1)(W, `), w(2)(W, `))′. (4.1)

We define h1,P (τ, `) and h2,P ((τ1, `1), (τ2, `2)) this way so that under suitable assump-

tions, we have

CovP

(√
n
(
ν̂n(τ1, `1)− νP (τ1, `1)

)
,
√
n
(
ν̂n(τ2, `2)− νP (τ2, `2)

))
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≈ h1,P (τ1, `1)′ · h2,P

(
(τ1, `1), (τ2, `2)

)
· h1,P (τ2, `2). (4.2)

Also, h1,P (τ, `) determines νP (τ, `) because

νP (τ, `) = EP [m(2)(W, τ, `)]EP [w(1)(W, `)]− EP [m(1)(W, τ, `)]EP [w(2)(W, `)]. (4.3)

Let

H1 = {h1,P (·) : P ∈ P}, H2 = {h2,P (·, ·) : P ∈ P},

H = H1 ×H2. (4.4)

On the space of H, we use the metric d defined by

d(h(1), h(2)) = max{d1(h
(1)
1 , h

(2)
1 ), d2(h

(1)
2 , h

(2)
2 )},

d1(h
(1)
1 , h

(2)
1 ) = sup

(τ,`)∈T ×L
‖h(1)

1 (τ, `)− h(2)
1 (τ, `)‖, (4.5)

d2(h
(1)
2 , h

(2)
2 ) = sup

(τ1,`1),(τ2,`2)∈T ×L
‖h(1)

2

(
(τ1, `1), (τ2, `2)

)
− h(2)

2

(
(τ1, `1), (τ2, `2)

)
‖,

where ‖ · ‖ denotes the Euclidean norms. For notational simplicity, we use d to denote d1

and d2 as well, and we suppress (τ, `) whenever there is no confusion. For example, let

h1,P denote h1,P (·), and h2,P denote h2,P (·, ·). For any h ∈ H, define h2,ν = h′1 ·h2 ·h1 and

for any P , define h2,ν,P as h′1,P ·h2,P ·h1,P . Let H2,ν ≡ {h2,ν : h2,ν = h′1 ·h2 ·h1, h ∈ H}.

The metric dν on the space H2,ν is defined as

dν(h
(1)
2,ν , h

(2)
2,ν) = sup

(τ1,`1),(τ2,`2)∈T ×L
|h(1)

2,ν

(
(τ1, `1), (τ2, `2)

)
− h(2)

2,ν

(
(τ1, `1), (τ2, `2)|.

Let P0 denote a collection of null distributions in P. We impose the following condi-

tions on P0.

Assumption 4.2. The set P0 satisfies:

(a) P0 ⊆ P.

(b) The null hypothesis H0 defined in (3.1) holds under any P ∈ P0.

(c) H0 ≡ {(h1,P , h2,P ) : P ∈ P0} ⊆ H is compact in the metric space (H, d) where d is
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defined in equation (4.5).

Let H0
2,ν ≡ {h2,ν : h2,ν = h′1 ·h2 ·h1, h ∈ H0}. The compactness of H0 in Assumption

4.2(c) implies the compactness of H0
2,ν in (H2,ν ≡ {h2,ν : h2,ν = h′1 · h2 · h1, h ∈ H}, dν).

A slightly stronger compactness assumption is made in AS, Donald and Hsu (2016), and

Hsu (2017) on H0
2,ν . To gauge the plausibility of Assumption 4.2(c), note that H0 is

a set of vector/matrix-valued functions on T × L, and this set is compact in (H, d) if

T × L is compact and H0 is a ball of finite radius in Hölder space C0,α(T × L) ≡ {h :

sup(τ,`)∈T ×L ‖h(τ, `)‖+sup(τ1,`1),(τ2,`2)∈T ×L
‖h(τ1,`1)−h(τ2,`2)‖
‖(τ1,`1)−(τ2,`2)‖α <∞} for an α ∈ (0, 1]. This

is implied by the Arzelà’s theorem (ref. Theorem 4 of Kolmogorov and Fomin (1957))14.

The following theorem summarizes the uniform asymptotic size of our test. Additional

notation is needed. Let

T o(P ) ≡ {τ ∈ T : ∃ x1`,τ � x1u,τ , x2`,τ � x2u,τ , z`,τ � zu,τ ,

x1`,τ ≤ x2`,τ , x1u,τ ≤ x2u,τ , and for some constant Cτ ∈ R

EP [f (1)(Y, τ)|X = x1, Z = z] = EP [f (2)(Y, τ)|X = x2, Z = z] = Cτ ,

for all x1 ∈ [x1`,τ , x1u,τ ], x2 ∈ [x2`,τ , x2u,τ ], and z ∈ [z`,τ , zu,τ ].} (4.6)

Lo(τ, P ) ≡ {` ∈ L : νP (`, τ) = 0} (4.7)

(T L)o(P ) ≡ {(τ, `) ∈ T × L : νP (τ, `) = 0} = {(τ, `) : ` ∈ Lo(τ, P )}. (4.8)

The set T o(P ) denotes the collection of τ ’s such that the inequalities are binding over a

hypercube of (x1, x2, z) under P . The set Lo(τ, P ) denotes the collection of `’s such that

the unconditional moment defined by ` is binding at τ , and (T L)o(P ) denotes the set

of (τ, `) such that the unconditional moment with (τ, `) is binding. Under Assumption

3.2, it is straightforward to see that if τ ∈ T o(P ), then
∫
Lo(τ,P ) dQL(`) > 0, and that if∫

T o(P ) dQT (τ) > 0, then
∫

(T L)o(P ) dQ(`, τ) > 0.

Let Ψh2,ν denote the mean-zero Gaussian process with covariance kernel function h2,ν .

Let σ2
ε,h2,ν

(τ, `) = max{h2,ν((τ, `), (τ, `)), ε}.

Assumption 4.3. There exists a Pc ∈ P0 such that
∫

(T L)o(Pc)
max

{
Ψh2,ν,Pc

(τ, `)/σε,h2,ν (τ,

14Note that we use Kolmogorov and Fomin’s (1957, Section 16) definition of compactness of a set in
a metric space, which is weaker than the compactness of the set in itself. We do not require H0 to be
compact in itself, which means H0 does not need to be closed.
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`), 0
}2
dQ(τ, `) > 0.

This assumption is satisfied as long as (T L)o(Pc) has positive Q measure. For the Q

measures that we propose, when the Lcube is used, that holds as long as there is a set

of (τ, `) of positive Lebesgue measure such that the inequalities are binding, and when

Lc-cube is used, that holds as long as there exists an ` ∈ Lc-cube and a set of τ of positive

measure such that the inequalities with (τ, `) are binding. Note that Assumption 4.3 is

not needed to guarantee that our test asymptotically controls size, but only needed to

ensure asymptotic size-exactness, as shown in Theorem 4.1 below.

We restate the conditions on the multipliers {Ui : i ≥ 1} in the following assumption.

Assumption 4.4. Let {Ui : i ≥ 1} be a sequence of i.i.d. random variables independent

with the original sample such that E[U ] = 0, E[U2] = 1, and E[|U |δ1 ] < C for some

2 < δ1 < δ and some C > 0 where δ is the same as in Assumption 4.1.

Assumption 4.4 is needed for the multiplier method only. Note that standard normal

multipliers always satisfy this assumption.

Theorem 4.1. Suppose that Assumptions 3.1, 3.3, and 4.1-4.2 hold, and that α < 1/2.

Let ĉη be either ĉuη or ĉbη. Suppose that Assumption 4.4 also holds when ĉη = ĉuη . Then

(i) lim supn→∞ supP∈P0 P (T̂n > ĉη) ≤ α;

(ii) if Assumption 4.3 also holds, then limη→0 lim supn→∞ supP∈P0 P (T̂n > ĉη) = α.

Theorem 4.1(i) shows that our test has correct uniform asymptotic size over P0

defined by Assumptions 4.1-4.2. This result is similar to Theorem 2(a) of AS. Theorem

4.1(ii) shows that our test is at most infinitesimally conservative asymptotically when

there exists at least one Pc that is at the boundary of the null hypothesis in the sense

that the limiting distribution of T̂n is non-degenerate under Pc, which our Assumption

4.3 guarantees.

5 Power Properties

In this section, we show the consistency of our test against fixed alternatives and show

that our test has non-trivial local power against some n−1/2-local alternatives.
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5.1 Power against Fixed Alternatives

Define the collection of τ ’s at which the null hypothesis is violated as

T a(P ) ≡
{
τ : EP [f (1)(W, τ)|X = x1, Z = z] < EP [f (2)(W, τ)|X = x2, Z = z],

for some z ∈ Z and x1, x2 ∈ X with x1 ≥ x2.
}

(5.1)

The following assumption specifies the fixed alternatives we consider.

Assumption 5.1. The distribution P∗ ∈ P satisfies:

(a) T a(P∗) contains Bc(τ∗) for some c > 0 and some τ∗ ∈ T ,

(b) Assumption 3.1 holds under P∗, and

(c) Assumption 4.1 holds with P∗ in place of Pn and P ∈ P.

Assumption 5.1(a) together with Assumption 3.2 ensures that T a(P∗) has strictly

positive measure under Q. This automatically holds when T is finite and T a(P∗) is

non-empty. The following theorem shows the consistency of our test against the fixed

alternatives satisfying Assumption 5.1.

Theorem 5.1. Suppose that Assumptions 3.2-3.3 and 5.1, and α < 1/2. Then we have

limn→∞ P∗(T̂n > ĉη) = 1.

The proof is done by showing that T̂n diverges to positive infinity, and that ĉη is

bounded in probability.

5.2 Asymptotic Local Power

We consider the local power of our tests in this section. The class of n−1/2-local alterna-

tives that we consider is defined in the following assumptions.

Let Pxz denote the marginal distribution of (X,Z) under P . Consider a sequence

of Pn ∈ P\P0 that converges to some Pc ∈ P0 under the Kolmogorov-Smirnov metric

where A\B ≡ {x : x ∈ A but x 6∈ B} for any two sets A and B.

Assumption 5.2. The sequence {Pn ∈ P\P0 : n ≥ 1} satisfies:

(a) for some Pc ∈ P0 that satisfies Assumption 4.3,

EPn [f (1)(W, τ)|X,Z] = EPc [f
(1)(W, τ)|X,Z] + γδ1(X,Z, τ)/

√
n,
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EPn [f (2)(W, τ)|X,Z] = EPc [f
(2)(W, τ)|X,Z] + γδ2(X,Z, τ)/

√
n.

where γ > 0 is a constant, and δ1 and δ2 are two functions.

(b) Pn,xz = Pc,xz for all n ≥ 1.

(c) for j = 1 and 2, δj(x, z, τ) is continuous on X × Z for all τ ∈ T .

(d) δ1(x1, z, τ) ≤ δ2(x2, z, τ) for all x1, x2 ∈ X such that x1 ≥ x2, z ∈ Z and for all

τ ∈ T .

(e) for some τ ∈ T o(Pc), δ1(x1, z, τ) < δ2(x2, z, τ) for some x1 ∈ (x1`,τ , x1u,τ ), x2 ∈

(x2`,τ , x2u,τ ) such that x1 > x2, and some z ∈ (z`,τ , zu,τ ), where x1`,τ , x1u,τ , x2`,τ , x2u,τ ,

z`,τ , and zu,τ are some values satisfying the conditions defining T o(Pc) in (4.6).

(f) d(hPn , hPc)→ 0.

Assumption 5.2(a) requires that for j = 1, 2, the difference between the conditional

mean of f (j)(W, τ) on X and Z under Pn and that under Pc is of order n−1/2. Assumption

5.2(b) requires that the marginal distribution of X and Z remains the same along the

sequence. With some minor modifications of our proof, this condition can be relaxed.

Assumption 5.2(c) along with Assumption 3.1 ensures that the conditional means of

f (1)(W, τ) and f (2)(W, τ) under Pn are continuous on X and Z. Assumption 5.2(e)

ensures that the null hypothesis does not hold under Pn for n ≥ 1, i.e., Pn 6∈ P0.

Assumption 5.2(f) implies that d(h2,ν,Pn , h2,ν,Pc) → 0, which specifies the asymptotic

covariance kernel of
√
n(ν̂n(·)− νPc(·)).

Let x1`,τ , x1u,τ , x2`,τ , x2u,τ , z`,τ , and zu,τ be the values specified in Assumption 5.2(e).

Define T +(Pc) as

T +(Pc) ≡ {τ ∈ T o(Pc) : δ1(x1, z, τ) < δ2(x2, z, τ) for some x1 ∈ (x1`,τ , x1u,τ ),

x2 ∈ (x2`,τ , x2u,τ ) such that x1 > x2, and some z ∈ (z`,τ , zu,τ )}. (5.2)

Assumption 5.3. Assume that
∫
T +(Pc)

dQT > 0 where T +(Pc) is defined in (5.2).

Assumption 5.3 holds if T +(Pc) contains an open ball around τ∗ for some τ∗ in T by

Assumption 3.2.

The following theorem shows the local power of our test.
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Theorem 5.2. Suppose Assumptions 3.1-3.3, 5.2, and 5.3 hold, and α < 1/2. Then

(i) limη→0 lim infn→∞ Pn(T̂n > ĉη) ≥ α.

(ii) limγ→∞ lim infn→∞ Pn(T̂n > ĉη) = 1.

Part (i) of the theorem shows the near asymptotic unbiasedness of our test against

the n−1/2-local alternatives defined by Assumptions 5.2 and 5.3. Part (ii) of the theorem

implies that as long as the n−1/2-local alternative defined in Assumption 5.2 is far enough

from the null (that is, γ is large enough), the asymptotic power of our test is strictly

greater than size.

The n−1/2-local power is a distinctive feature of our test compared to tests based on

non-parametric estimators of the conditional mean.15 The intuition is that, along the

n−1/2 local alternative sequence defined above, the null hypothesis is violated in a fixed set

of (x, z, τ) of positive measure by an amount that is uniformly of the order n−1/2 on this

set. As a result, νP (τ, `) ≤ 0 is violated by an amount of the same order on a fixed set of

(τ, `) of positive measure. Since our test statistic is based on a sample analogue estimate

of νP (τ, `) that is n−1/2-consistent, it is sensitive to a n−1/2-violation of νP (τ, `) ≤ 0.

In contrast, a test statistic based on a nonparametric estimator of the conditional mean

is not sensitive to alternatives drifting to the null faster than the convergence rate of

the nonparametric estimator, and thus typically does not have non-trivial power against

n−1/2-local alternatives.

Finally, we would like to point out that the class of n−1/2-local alternatives that we

consider is not an exhaustive set of n−1/2-local alternatives. For example, Assumption

5.3 rules out
∫
T o(Pc) dQT = 0, which is the case when the local alternatives converge to

a null distribution under which the inequalities are only binding on a measure zero set.

6 Monte Carlo Simulation

To implement our test, one needs to pick several user-chosen parameters in advance.

In this section, we first make suggestions on how to pick these parameters. We then

report Monte Carlo results for four examples. The first example is a test of regression

15The same feature is shared by the AS test, which is also based on an equivalent unconditional
representation of the conditional null hypothesis.
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monotonicity with an interval-observed dependent variable. The second example is a

test of the monotone instrumental variable assumption. The third example is a test of

regression monotonicity, as also considered in Chetverikov (2013). The fourth example is

a test of stochastic monotonicity, as also considered in Lee, Linton, and Whang (2009).

6.1 Implementation

We make the following suggestions.

1. Support of Covariates: Transform the support of each covariate, Xj , to unit

interval by applying the following mapping. If Xj has support [a, b], then define

X∗j = (X − a)/(b − a). If Xj has support on the whole real line, define X∗j =

Φ(σ̂−1
j (Xj − µ̂j)) where σ̂j is the sample standard deviation of Xji’s, µ̂j is the

sample mean of Xji’s, and Φ(·) is the standard normal CDF function. Apply the

same mapping to each Zj .

2. Instrumental functions: Use the set of the indicator functions of countable hy-

percubes Gc-cube or a continuum of hypercubes Gcube. For Gc-cube, use the countable

hypercube instrumental functions on the transformed conditioning variables:

Gc-cube =
{
g` ≡

(
g

(1)
x∗,`, g

(2)
x∗,`, gz∗,`

)
: ` ∈ Lc-cube

}
, where (6.1)

Lc-cube =
{

(x∗1, x
∗
2, z
∗, r) : r = q−1, q · (x∗1, x∗2, z∗) ∈ {0, 1, 2, · · · , q − 1}2dx+dz ,

x∗1 ≥ x∗2, , and q = 2, 3, · · · , q1

}
,

where q1 is a natural number and is picked such that the expected sample size of

the smallest cube is around 15 as suggested by AS.16 Our simulations show that

the results are robust to various expected sample sizes. We report results for 15 in

the main text. Results for 10, 20, 25 are reported in Appendix E.

For Gcube, use a continuum of hypercube instrumental functions on the transformed

conditioning variables:

Gcube = {g` : ` ∈ Lcube} , where (6.2)

16The expected sample size of the smallest cube is equal to nq
−(dx+dz)
1 .
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Lcube =
{

(x∗1, x
∗
2, z
∗, r) : x∗1, x

∗
2 ∈ [0, 1− r]2dx+dz , x∗1 ≥ x∗2, r =

1

q1
, ...,

q1 − 1

q1

}
.

3. Selection of τ ’s: If T is of finite elements as in Examples 2.1-2.3, use all ele-

ments in T . If T contains a continuum of elements as in Examples 2.4 and 2.5,

pick a finite number of τ ’s and allow the number of τ ’s to grow with the sample

size. For Examples 2.4 and 2.5, we specifically suggest considering the finite subset

{y1, . . . , yn} of T that is also used in Lee, Linton and Whang (2009).

4. Q(τ, `): The distribution QT assigns uniform weight on T . For Gc-cube, the distri-

bution QL assigns weight ∝ q−2 on each q and for each q, QL assigns equal weight

on each instrumental function with r = q−1. Recall that for each q, there are

(q(q+ 1)/2)dx · qdz instrumental functions with r = q−1. For Gcube, the distribution

QL assigns equal weight on each instrumental function.

5. ε, κn, Bn, η: Based on the experiments in the simulations, we suggest setting

ε = 10−6, κn = 0.15 · ln(n), Bn = 0.85 · ln(n)/ ln ln(n), and η = 10−6. These choices

are used in all the simulations that we report below and seem to perform well.

For the first three Monte Carlo examples below, we consider samples of sizes n = 100,

200, and 500, and for the fourth example, we consider samples of sizes n = 50, 100, and

200. For q1, we set q1 = 3 when n = 50, q1 = 6 when n = 100, q1 = 13 when n = 200,

and q1 = 33 when n = 500. The expected sample sizes of the smallest cube are 16.6,

16.6, 15.3 and 15.1, respectively. All our simulation results are based on 500 simulation

repetitions, and for each repetition, the critical value is approximated by 500 bootstrap

replications. The nominal size of the test is set at 10% for the first three examples and

5% for the fourth example.

6.2 Testing Regression Monotonicity with an Interval-Observed De-

pendent Variable

We consider the finite-sample performance of our test for Example 2.1. We generate the

data as follows:

Y = 2−X + U, X ∼ U [0, 1], U ∼ U [−1, 1].
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Note that E[Y |X = x] = 2− x, which is decreasing in X, so the HLRM
0 is violated.

We consider a case close to rounding, when Y is observed only up to some coarse

brackets for everyone in the sample. We want to examine when the violation of HLRM
0

stops being detectable as the brackets get coarser and coarser. We consider the following

five specifications of the brackets: (1) Y is perfectly observed (benchmark); (2) 8 brackets;

(3) 6 brackets; (4) 4 brackets; (5) 3 brackets.

Note that it is straightforward to see that no matter how the intervals are defined,

both E[Y u|X = x] and E[Y `|X = x] are deceasing in x and the violation of HLRM
0

cannot be detected when E[Y u|X = 1] ≥ E[Y `|X = 0]. The support of Y is [0, 3].

Also, Y |X = 1 ∼ U [0, 2] and Y |X = 0 ∼ U [1, 3]. It is straightforward to see that

E[Y u|X = 1] ≥ E[Y `|X = 0] when there are only 2 brackets ([0,1.5), [1.5,3)) since

certainly Y u ≥ Y ` in this case. When there are 3 brackets: [0, 1), [1, 2) and [2, 3), then

E[Y u|X = 1] =
1

2
· 1 +

1

2
· 2 = 1.5,

E[Y `|X = 0] =
1

2
· 1 +

1

2
· 2 = 1.5.

Thus E[Y u|X = 1] = E[Y `|X = 0] and the violation of HLRM
0 is not detectable.

When there are 4 brackets: [0, 0.75), [0.75, 1.5), [1.5, 2.25) and [2.25, 3), then

E[Y u|X = 1] =
3

8
· 0.75 +

3

8
· 1.5 +

2

8
· 2.25 = 1.40625,

E[Y `|X = 0] =
2

8
· 0.75 +

3

8
· 1.5 +

3

8
· 2.25 = 1.59375.

Thus E[Y u|X = 1] < E[Y `|X = 0] and the violation of HLRM
0 should be detectable with

a large enough sample.

Table 1 shows the rejection probabilities for our test, and the results are consistent

with our theoretical findings. The rejection probabilities are greater than the nominal size

0.1 in cases (1)-(3) when HGRM
0 is violated and thus the violation of HLRM

0 is detectable.

In these cases, the rejection probabilities of the multiplier version (GMS-u) and the

bootstrap version (GMS-b) for both countable hypercubes Gc-cube and a continuum of

hypercubes Gcube are similar. The power increases with the sample size, and with the

number of brackets used. For the case with 4 brackets, it is very hard to detect the
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Table 1: Rejection Probabilities of Our Test for LRM (α = 0.1, number of simulation
repetitions = 500, critical value simulation draws = 500)

Gc-cube Gcube

Cases n GMS-u GMS-b GMS-u GMS-b

100 1.000 1.000 0.998 0.998
(1): Y is observed 200 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000

100 0.514 0.516 0.446 0.406
(2): 8 brackets 200 0.724 0.724 0.632 0.598

500 0.976 0.980 0.976 0.976

100 0.154 0.168 0.156 0.148
(3): 6 brackets 200 0.238 0.236 0.218 0.190

500 0.576 0.580 0.594 0.560

100 0.010 0.008 0.014 0.006
(4): 4 brackets 200 0.010 0.020 0.004 0.004

500 0.024 0.028 0.012 0.004

100 0.000 0.000 0.000 0.000
(5): 3 brackets 200 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

violation.17 For the case with 3 brackets, HGRM
0 is not violated and thus the violation

of HLRM
0 is not detectable. As a result neither version of our test has any power.

6.3 Testing the Monotone Instrumental Variable Assumption

We then consider the finite-sample performance of our test for Example 2.2. Without

loss of generality, we assume that Y (0) = 0. Then, we only need to consider the null that

E[f (1)(Y, 1)|X = x1] ≥ E[f (2)(Y, 1)|X = x2] whenever x1 ≥ x2.

As discussed in the Remarks below Theorem 2.2, violations of HMIV
0 are not always

statistically detectable regardless of sample size or testing method. It is also pointed

out there that the smaller P (D = 0|X = x) is and the smaller the gap between yu and

y`, the more likely for the violation to be detectable. Therefore, we consider the cases

where the MIV assumption is violated and control these two factors to make the violation

statistically detectable or not detectable.

17Our simulations show that the sample size would have to be greater than 2,000 to have the rejection
probability greater than the nominal size 0.1.
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Case (1): Let Y (1) = −2X + ε, X ∼ U [0, 1],

ε ∼ U [−0.1, 0.1], D = 1(U ≤ 0.8), and U ∼ U [0, 1],

where X, ε, U are mutually independent, and U [a, b] stands for the uniform distri-

bution on the interval [a, b]. Here yu = 0.1 and y` = −2.1. In this case, the MIV is

violated, and it is detectable because HGRM
0 is also violated.

Case (2): Let Y (1) = −2X + ε, X ∼ U [0, 1],

ε ∼ U [−1, 1], D = 1(U ≤ 0.5), and U ∼ U [0, 1],

where X, ε, U are mutually independent. Here yu = 1 and y` = −3. In this case, we

can verify that the MIV is violated, but the violation is not statistically detectable

because HGRM
0 is not violated.

Case (3): Let Y (1) = −2X + ε, X ∼ U [0, 1],

ε ∼ U [−0.1, 0.1], D = 1(U ≤ 0.2 + 0.8X), and U ∼ U [0, 1],

where X, ε, U are mutually independent. Here yu = 0.1 and y` = −2.1. In this

case, we can verify that the MIV is violated, and the violation is detectable because

HGRM
0 is also violated.

Case (4): Let Y (1) = −2X + ε, X ∼ U [0, 1],

ε ∼ U [−1, 1], D = 1(U ≤ 0.9− 0.8X), and U ∼ U [0, 1],

where X, ε, U are mutually independent. Here yu = 1 and y` = −3. In this case, we

can verify that the MIV is violated, but the violation is not statistically detectable

because HGRM
0 is not violated.

In the simulations we consider two possibilities: (a) yu and y` are known, and (b)

yu and y` are unknown but we replace yu and y` with maxi Yi and mini Yi, respectively.

Note that maxi Yi
p→ yu and mini Yi

p→ y` at a faster rate than n−1/2, which implies that
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the estimation effects of maxi Yi and mini Yi can be ignored asymptotically. On the other

hand, maxi Yi ≤ yu and mini Yi ≥ y`, so we expect the power of case (b) to be better

than (a) when the violation is statistically detectable.

Table 2: Rejection Probabilities of Our Test for MIV (yu and y` are known, α = 0.1,
number of simulation repetitions = 500, critical value simulation draws = 500)

Gc-cube Gcube

Cases n GMS-u GMS-b GMS-u GMS-b

(1): HMIV
0 violated 100 0.912 0.918 0.868 0.878

HGRM
0 violated 200 0.994 0.992 0.986 0.986

500 1.000 1.000 1.000 1.000

(2): HMIV
0 violated 100 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

(3): HMIV
0 violated 100 0.230 0.218 0.384 0.388

HGRM
0 violated 200 0.472 0.472 0.626 0.624

500 0.910 0.910 0.924 0.920

(4): HMIV
0 violated 100 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

Tables 2 and 3 show the rejection probabilities for our test when yu and y` are

known and unknown, respectively, and it confirms our theoretical findings. The rejection

probabilities are greater than the nominal size 0.1 in cases (1) and (3) where the GRM

and the MIV are both violated. In these cases, the rejection probabilities of the multiplier

version (GMS-u) and the bootstrap version (GMS-b) are similar, both increase with the

sample size, and both are higher when yu and y` are estimated. In Case (1), Gc-cube has

slightly better power than Gcube, while in Case (3), Gcube has much better power than

Gc-cube. Neither version of our test has any power in cases (2) and (4). This is consistent

with Theorem 2.2, which implies that no test can have power greater than size in those

cases because the sharp testable implication of MIV is not violated.

6.4 Testing Regression Monotonicity

We next consider a Monte Carlo demonstration of our test for a regression monotonicity

example. We use the same designs as in Chetverikov (2013), where there is no Z in the

model and X is a scalar. Let X be a uniform distribution on [−1, 1] and ξ be a normal
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Table 3: Rejection Probabilities of Our Test for MIV (yu and y` are unknown, α = 0.1,
number of simulation repetitions = 500, critical value simulation draws = 500)

Gc-cube Gcube

Cases n GMS-u GMS-b GMS-u GMS-b

(1): HMIV
0 violated 100 0.954 0.954 0.918 0.906

HGRM
0 violated 200 1.000 1.000 0.990 0.992

500 1.000 1.000 1.000 1.000

(2): HMIV
0 violated 100 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000

(3): HMIV
0 violated 100 0.306 0.292 0.448 0.444

HGRM
0 violated 200 0.584 0.596 0.720 0.716

500 0.944 0.950 0.958 0.958

(4): HMIV
0 violated 100 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.002 0.000

500 0.000 0.000 0.000 0.000

distribution or uniform distribution with mean zero and standard deviation equal to σξ.

The variable Y is generated as

Y = c1X − c2φ(c3X) + ξ, (6.3)

where c1, c2, c3 ≥ 0 and φ(·) is the pdf of the standard normal distribution. As in

Chetverikov (2013), we consider four sets of parameters:

Case (1): c1 = c2 = c3 = 0 and σξ = 0.05.

Case (2): c1 = c3 = 1, c2 = 4 and σξ = 0.05.

Case (3): c1 = 1, c2 = 1.2, c3 = 5 and σξ = 0.05.

Case (4): c1 = 1, c2 = 1.5, c3 = 4 and σξ = 0.1.

It can be verified that H0 holds in Cases (1) and (2), and H1 holds in Cases (3) and

(4). Tables 4 and 5 show the rejection probabilities for our test with both the multiplier

critical value (GMS-u) and the bootstrap critical value (GMS-b). The columns of CS-

SD, IS-SD and GSV are taken from Chetverikov (2013). CS-SD refers to the step-down

procedure with consistent sigma estimator, IS-SD refers to the step-down procedure with
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inconsistent sigma estimator and GSV refers to Ghosal, Sen, and van der Vaart’s (2000)

test. For details of the procedures CS-SD, IS-SD and GSV see Chetverikov (2013).

Table 4: Rejection Probabilities of Our Test (GMS-u, GMS-b), Chetverikov’s (2013) test
(CS-SD, IS-SD) and Ghosal, Sen, and van der Vaart’s (2000) test (GSV) for Regression
Monotonicity (ξ is normal, α = 0.1, number of simulation repetitions = 500, critical value
simulation draws = 500)

Gc-cube Gcube

Case n GMS-u GMS-b GMS-u GMS-b CS-SD IS-SD GSV

100 0.106 0.100 0.106 0.110 0.128 0.164 0.118
(1) 200 0.118 0.116 0.106 0.086 0.114 0.149 0.091

500 0.090 0.090 0.134 0.136 0.114 0.133 0.086

100 0.000 0.000 0.000 0.000 0.008 0.024 0
(2) 200 0.002 0.002 0.010 0.012 0.010 0.017 0

500 0.004 0.004 0.000 0.000 0.007 0.016 0

100 0.008 0.008 0.006 0.008 0.433 0.000 0
(3) 200 0.706 0.674 0.334 0.286 0.861 0.650 0.010

500 0.996 0.996 0.998 0.998 0.997 0.995 0.841

100 0.156 0.164 0.342 0.326 0.223 0.043 0.037
(4) 200 0.408 0.378 0.338 0.288 0.506 0.500 0.254

500 0.884 0.880 0.914 0.888 0.826 0.822 0.810

As we can see from Tables 4 and 5, our test controls the size well in Cases (1) and

(2), and the rejection rates increase with the sample size in Cases (3) and (4). Gc-cube has

similar performance to Gcube in Cases (1), (2), (4), and Gc-cube outperforms Gcube in Case

(3). The performance of our tests is comparable to the tests proposed by Chetverikov

(2013) and has better power properties than the GSV test.

6.5 Testing Stochastic Monotonicity

We next consider a Monte Carlo demonstration of our test for a stochastic monotonicity

example. We use the same designs as in Lee, Linton, and Whang (2009), where there is

no Z in the model and X is a scalar. Let U be a normal distribution with mean zero

and standard deviation equal to 0.1. We consider two cases. For Case (1), Y ≡ U and

H0 holds. For Case (2), Y is generated as Y = X(1 −X) + U , where X ∼ U [0, 1], and

H1 holds.

Table 6 shows the rejection probabilities for our test with both the multiplier critical
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Table 5: Rejection Probabilities of Our Test (GMS-u, GMS-b), Chetverikov’s (2013) test
(CS-SD, IS-SD) and Ghosal, Sen, and van der Vaart’s (2000) test (GSV) for Regression
Monotonicity (ξ is uniform, α = 0.1, number of simulation repetitions = 500, critical
value simulation draws = 500)

Gc-cube Gcube

Case n GMS-u GMS-b GMS-u GMS-b CS-SD IS-SD GSV

100 0.100 0.088 0.122 0.104 0.122 0.201 0.109
(1) 200 0.126 0.136 0.134 0.114 0.121 0.160 0.097

500 0.118 0.110 0.114 0.098 0.092 0.117 0.077

100 0.000 0.000 0.000 0.000 0.007 0.033 0.001
(2) 200 0.002 0.004 0.006 0.008 0.010 0.024 0

500 0.000 0.000 0.000 0.000 0.011 0.021 0

100 0.010 0.008 0.004 0.004 0.449 0.000 0
(3) 200 0.712 0.678 0.344 0.310 0.839 0.617 0.009

500 1.000 1.000 0.990 0.992 0.994 0.990 0.811

100 0.152 0.156 0.320 0.326 0.217 0.046 0.034
(4) 200 0.386 0.342 0.318 0.276 0.478 0.456 0.197

500 0.904 0.890 0.904 0.886 0.846 0.848 0.803

value (GMS-u) and the bootstrap critical value (GMS-b). The columns of LLW-F and

LLW-E are taken from Lee, Linton, and Whang (2009). LLW-F refers to the test statistic

using critical values obtained from the asymptotic expansion Fn of the limiting distribu-

tion, and LLW-E refers to the test statistic using critical values obtained from the type

I extreme value distribution. The bandwidth for both LLW-F and LLW-E is 0.5. For

details of the procedures LLW-F and LLW-E, see Lee, Linton, and Whang (2009).

Table 6: Rejection Probabilities of Our Test (GMS-u, GMS-b) and Lee, Linton, and
Whang’s (2009) test (LLW-F, LLW-E) for Stochastic Monotonicity (α = 0.05, number
of simulation repetitions = 500, critical value simulation draws = 500)

Gc-cube Gcube

Cases n GMS-u GMS-b GMS-u GMS-b LLW-F LLW-E

50 0.072 0.078 0.078 0.072 0.021 0.017
(1):H0 is true 100 0.090 0.066 0.104 0.048 0.033 0.024

200 0.030 0.018 0.044 0.010 0.031 0.021

50 0.154 0.134 0.562 0.492 0.762 0.693
(2):H0 is false 100 0.574 0.420 0.978 0.902 0.988 0.976

200 0.994 0.974 1.000 0.996 1.000 1.000

As we can see from Table 6, our test controls the size well in Case (1). For Case (2),
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the rejection rates increase with the sample size, and both versions of our tests based on

Gcube have better power than those based on Gc-cube. The performance of our tests based

on Gcube is comparable to the tests proposed by Lee, Linton, and Whang (2009).

7 Extension

In this section, we extend our tests to test the nonparametric generalized regression

monotonicity in the form of

H0 : EP [f (1)(W, τ)|X = x1, Z = z,A = a0] ≥ EP [f (2)(W, τ)|X = x2, Z = z,A = a0],

for all x1, x2 ∈ X and x1 ≥ x2, for all z ∈ Z and τ ∈ T ,

(7.1)

where a0 defines a specific subpopulation of interest. Due to the conditioning on A ∈ Rda

at a single point a0, the generalized regression monotonicity relation varies with a0, so we

call it nonparametric generalized regression monotonicity (NGRM). Let fA(a) denote the

probability density function of A, and we suppress the dependence on P for notational

simplicity. For j = 1 and 2, and ` ∈ Lcube or ` ∈ Lc-cube, let

m
(j)
P (τ, `, a0) = EP [f (j)(W, τ)g

(j)
x,`(X)gz,`(Z)|A = a0] · fA(a0)

w
(j)
P (`, a0) = EP [g

(j)
x,`(X)gz,`(Z)|A = a0] · fA(a0), (7.2)

where g
(j)
x,` and gz,` are defined in (3.5). Under a continuity assumption of the function

EP [f (1)(W, τ)|X = x, Z = z,A = a0] and EP [f (2)(W, τ)|X = x, Z = z,A = a0] in x and

z that is similar to Assumption 3.1, we can show that the null hypothesis in equation 7.1

is equivalent to

H0 : νP (τ, `, a0) ≡ m(2)
P (τ, `, a0)w

(1)
P (`, a0)−m(1)

P (τ, `, a0)w
(2)
P (`, a0) ≤ 0,

for all τ ∈ T and for all ` ∈ L, (7.3)

where L can be Lc-cube or Lcube.

Let K(·) denote a kernel function and bn be a bandwidth. Then for j = 1 and 2, we
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can nonparametrically estimate m
(j)
P (τ, `, a0) and w

(j)
P (`, a0) by

m̂(j)
n (τ, `, a0) =

1

n

n∑
i=1

1

bdan
K
(Ai − a0

bn

)
m

(j)
i (Wi, τ, `),

ŵ(j)
n (`, a0) =

1

n

n∑
i=1

1

bdan
K
(Ai − a0

bn

)
w

(j)
i (Wi, `). (7.4)

Under suitable regularity conditions, we can show that m̂
(j)
n (τ, `, a0) and ŵ

(j)
n (`, a0) are

consistent estimators for m
(j)
P (τ, `, a0) and w

(j)
P (`, a0) uniformly over ` ∈ Lcube. Then

νP (τ, `, a0) is estimated by

ν̂n(τ, `, a0) ≡ m̂(2)
n (τ, `, a0)ŵ(1)

n (`, a0)− m̂(1)
n (τ, `, a0)ŵ(2)

n (`, a0).

Let the estimated influence function be

Iuni(τ, `, a0)

=
1√
nbdzn

K
(Ai − a0

bn

){
ŵ(1)
n (`, a0)

(
m

(2)
i (τ, `)− m̂(2)

n (τ, `, a0)
)

+ m̂(2)
n (τ, `, a0)

(
w

(1)
i (`)− ŵ(1)

n (`, a0)
)

− ŵ(2)
n (`, a0)

(
m

(1)
i (τ, `)− m̂(1)

n (τ, `, a0)
)
− m̂(1)

n (τ, `, a0)
(
w

(2)
i (`)− ŵ(2)

n (`, a0)
)}

Similar to (3.11), we define σ̂2
n(τ, `, a0) to be

σ̂2
n(τ, `, a0) =

n∑
i=1

Iuni(τ, `, a0)2,

which is an estimator for the asymptotic variance of
√
n(ν̂n(τ, `, a0)− νP (τ, `, a0)). Then

similar to (3.12), for some fixed ε > 0, define σ̂2
ε,n(τ, `, a0) as

σ̂2
ε,n(τ, `, a0) = max{σ̂2

n(τ, `, a0), ε}, for all (τ, `) ∈ T × L.

Our test statistic for (7.3) is then defined as

T̂n,a0 =

∫
max

{√
nbdan

ν̂n(τ, `, a0)

σ̂ε,n(τ, `, a0)
, 0
}2
dQ(τ, `).
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Let the GMS function ψn(τ, `, a0) be

ψn(τ, `, a0) = −Bn · 1
(√

nbdan
ν̂n(τ, `, a0)

σ̂ε,n(τ, `, a0)
< −κn

)
for all (τ, `) ∈ T × L.

Define the simulated multiplier bootstrap process Ψ̂u
n(τ, `, a0) as

Ψ̂u
n(τ, `, a0) =

1√
n

n∑
i=1

Ui · Iuni(τ, `, a0)

and let the critical value statistics be

T̂ un,a0 =

∫
max

{Ψ̂u(τ, `, a0)

σ̂ε(τ, `, a0)
+ ψn(τ, `, a0), 0

}2
dQ(τ, `).

Define the multiplier GMS critical value ĉuη,a0 as:

ĉuη,a0 = sup
{
q
∣∣P u(T̂ un,a0 ≤ q) ≤ 1− α+ η

}
+ η,

The decision rule is the following:

Reject H0 in (7.3) if T̂n,a0 > ĉuη,a0 . (7.5)

Under suitable regularity conditions that are similar to Andrews and Shi (2014), we can

show that our test for H0 in (7.3) has asymptotic size control uniformly over a broad set

of data generating processes, is consistent against any fixed alternative hypothesis and

has non-trivial local power against some
√
nbdan local alternatives. Note that we consider

the multiplier statistic only. Extending the results to cover nonparametric bootstrap

critical values just requires a suitable bootstrap empirical process result.

8 Conclusion

In this paper, we construct a test for the hypothesis of generalized regression mono-

tonicity. The GRM is the sharp testable implication of monotonicity in certain latent

structures. Examples include the monotonicity of a nonparametric mean regression func-

tion when the dependent variable is only observed with interval values and the monotone
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instrumental variable assumption. The GRM also includes regression monotonicity and

stochastic monotonicity as special cases. Our tests are shown to have uniform size control

asymptotically, to be consistent against fixed alternatives, and to have nontrivial local

power against some n−1/2-local alternatives. For future studies, it would be interesting to

extend our tests to allow for the cases in which X or/and Z include generated regressors

or single indices.
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APPENDIX

A Auxiliary Lemmas

For any covariance kernel function h, let Ψh denote the mean-zero Gaussian process with

covariance kernel function h. Define

χ̂P (τ, `) ≡



√
n
(
m̂(1)(τ, `)−m(1)

P (τ, `)
)

√
n
(
m̂(2)(τ, `)−m(2)

P (τ, `)
)

√
n
(
ŵ(1)(`)− w(1)

P (`)
)

√
n
(
ŵ(2)(`)− w(2)

P (`)
)

 ,

Ψ̂P (τ, `) ≡
√
n(ν̂n(τ, `)− νP (τ, `)). (A.1)

When Pan is in place of P , we have an in place of n in previous notations. Also, define

ĥ1,P (·) =
1

n

n∑
i=1

ẅ(Wi, ·), ̂̈mP (·) =
1

n

n∑
i=1

m̈(Wi, ·),

ĥ2,P (·, ·) =
1

n

n∑
i=1

(
m̈(Wi, ·)− ̂̈mP (·)

)(
m̈(Wi, ·)− ̂̈mP (·)

)′
,

ĥP = (ĥ1,P , ĥ2,P ), ĥν,P = ĥ′1,P · ĥ2,P · ĥ1,P .

Lemma A.1. Suppose Assumption 4.1 holds. For a sequence {Pan ∈ P : n ≥ 1} for a

subsequence {an} of {n}, suppose that d(hPan , h)→ 0 for some h ∈ H. Then we have:

(i) d(ĥPan , h)
p→ 0, and

(ii) χ̂Pan ⇒ Ψh2.

The following lemma summarizes relevant results regarding ν̂n(τ, `).

Lemma A.2. Suppose Assumption 4.1 holds. For a sequence {Pan ∈ P : n ≥ 1} for a

subsequence {an} of {n}, suppose that d(hPan , h)→ 0 for some h ∈ H. Then we have:

(i) d(h2,ν,Pan , h2,ν)→ 0,

(ii) d(ĥ2,ν,Pan , h2,ν)
p→ 0,

(iii) Ψ̂Pan ⇒ Ψh2,ν ,

(iv) Ψ̂u
Pan
⇒ Ψh2,ν conditional on the sample path with probability one,
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(v) Ψ̂b
Pan
⇒ Ψh2,ν conditional on the sample path with probability one,

(vi) supτ∈T ,`∈L |σ̂−1
ε,an(τ, `)−σ−1

ε,h2,ν
(τ, `)| p→ 0 where σ2

ε,h2,ν
(τ, `) = max{h2,ν((τ, `), (τ, `)), ε},

(vii) Ψ̂u
Pan

(·)/σ̂ε,an(·)⇒ ·Ψh2,ν (·)/σε,h2,ν (·) conditional on the sample path with probability

one, and

(viii) Ψ̂b
Pan

(·)/σ̂ε,an(·)⇒ Ψh2,ν (·)/σε,h2,ν (·) conditional on the sample path with probability

one.

Lemma A.3. Suppose Assumptions 3.3 and 4.1 hold. For a sequence {Pan ∈ P : n ≥ 1}

for a subsequence {an} of {n}, suppose that (a) d(hPan , h)→ 0 for some h ∈ H, and that

(b) νPan (τ, `) = νPc(τ, `)+δ(τ, `)/
√
n for some Pc ∈ P0 and some function δ : T ×L → R.

Then we have:

(i) T̂n
d→
∫

(T L)o(Pc)
max

{
Ψh2,ν,Pc

(τ,`)+δ(τ,`)

σε,h2,ν,Pc
(τ,`) , 0

}2
dQ(τ, `).

(ii) T̂ un
d→
∫

(T L)o(Pc)
max

{
Ψh2,ν,Pc

(τ,`)

σε,h2,ν,Pc
(τ,`) , 0

}2
dQ(τ, `) conditional on almost all paths of the

original sample.

(iii) T̂ bn
d→
∫

(T L)o(Pc)
max

{
Ψh2,ν,Pc

(τ,`)

σε,h2,ν,Pc
(τ,`) , 0

}2
dQ(τ, `) conditional on almost all paths of the

original sample.

B Proofs of Theorems

Proof of Theorem 2.1. Part (i) is obvious, thus its proof is omitted.

We show part (ii) by construction. Let fu(x, z) denote E[Yu|X = x, Z = z], and let

f`(x, z) denote E[Y`|X = x, Z = z]. Let

f(x, z) = sup
a≤x

f`(a, z). (B.1)

Then, by definition, f(x, z) is increasing in x for any z. And by HGRM
0 in (2.2), f(x, z) ∈

[f`(x, z), fu(x, z)] for all x, z. Let

λ(x, z) =
fu(x, z)− f(x, z)

fu(x, z)− f`(x, z)
, (B.2)
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where 0/0 is taken to be 0. Then, λ(x, z) ∈ [0, 1] for all x, z. Let

Y = Y`λ(X,Z) + Yu(1− λ(X,Z)). (B.3)

By construction, Y ∈ [Y`, Yu]. Also it is elementary that

E[Y |X,Z] = f`(X,Z)λ(X,Z) + fu(X,Z)(1− λ(X,Z)) = f(X,Z). (B.4)

That means that the distribution of (Y,X,Z) satisfies HLRM
0 . This concludes the proof

of part (ii).

Proof of Theorem 2.2. First, we show part (i). Observe that, for x1 ≥ x2,

E[f (1)(Y, 1)|X = x1] = E[Y D + yu · (1−D)|X = x1]

=E[Y (1)D + Y (1)(1−D) + (yu − Y (1)) · (1−D)|X = x1]

=E[Y (1) + (yu − Y (1)) · (1−D)|X = x1]

≥E[Y (1)|X = x1]

≥E[Y (1)|X = x2]

≥E[Y (1)D + Y (1)(1−D) + (yl − Y (1)) · (1−D)|X = x2]

=E[Y D + (yl) · (1−D)|X = x2] = E[f (2)(Y, 1)|X = x2], (B.5)

where the second line holds because Y D = Y (1)D, the fourth line holds because yu −

Y (1) ≥ 0 by assumption, and by similar arguments the last two lines hold. Similarly,

E[f (1)(Y, 2)|X = x1] ≥ E[f (2)(Y, 2)|X = x2] when x1 ≥ x2. Part (i) follows.

We show part (ii) by construction. Let

I1(x) = sup
a≤x

(
E[DY |X = a] + y`E[1−D|X = a]

)
I2(x) = sup

a≤x

(
E[(1−D)Y |X = a] + y`E[D|X = a]

)
. (B.6)
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Let

Y (1) = DY + (1−D)
I1(X)− E(DY |X)

1− E(D|X)

Y (0) = (1−D)Y +D
I2(X)− E[(1−D)Y |X]

E(D|X)
. (B.7)

It is easy to see that

E[Y (1)|X] = I1(X), and E[Y (0)|X] = I2(X). (B.8)

By the construction of I1(·) and I2(·), they are increasing. Thus, HMIV
0 is satisfied with

(Y (1), Y (0), D,X).

Now we only need to verify that Y (1), Y (0) are bounded between y` and yu. Consider

the derivation:

HGRM
0

⇒ E[DY |X = a] + E[(1−D)y`|X = a] ≤ E[DY |X = x] + E[(1−D)yu|X = x] for all a ≤ x

⇒ I1(X) ≤ E[DY |X] + E[(1−D)yu|X]

⇒ E[DY |X] + E[(1−D)y`|X] ≤ I1(X) ≤ E[DY |X] + E[(1−D)yu|X]

⇒ y` ≤
I1(X)− E(DY |X)

1− E(D|X)
≤ yu

⇒ y` ≤ Y (1) ≤ yu (B.9)

where the second line holds the definition of HGRM
0 . The third and fourth lines follow

from the definition of I1(X). The fifth line follows from rearranging terms, and the last

line holds because Y ∈ [y`, yu]. Similarly, we can show that HGRM
0 implies y` ≤ Y (0) ≤ yu

as well. Therefore, the constructed Y (0) and Y (1) are bounded between y` and yu.

Proof of Theorem 4.1. We prove the case for ĉη = ĉuη . The proof for ĉη = ĉbη is similar

and we omit it. Our proof is similar to that of Theorem 6.3 of Donald and Hsu (2016)

and that of Hsu (2017). Let H1,ν denote the set of all functions from T × L to [−∞, 0].
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Let hν = (h1,ν , h2,ν), where h1,ν ∈ H1,ν and h2,ν ∈ H2,ν , and define

T (hν) =

∫
max

{ Ψh2,ν (τ, `)

σε,h2,ν (τ, `)
+ h1,ν(τ, `), 0

}2
dQ(τ, `).

Define c0(h1,ν , h2,ν , 1− α) as the (1− α)-th quantile of T (hν).

Similar to Lemma A2 of AS, we can show that for any ξ > 0,

lim supn→∞ sup
P∈P0

P
(
T̂n > c0(hP1,ν,n, h2,ν,P , 1− α) + ξ

)
≤ α, (B.10)

where hP1,ν,n =
√
nνP (·, ·) and hP1,ν,n belongs to H1,ν under P ∈ P0. Also, similar to

Lemma A3 of AS, we can show that for all α < 1/2

lim supn→∞ sup
P∈P0

P
(
c0(ψn, h2,ν,P , 1− α) < c0(hP1,ν,n, h2,ν,P , 1− α)

)
= 0. (B.11)

As a result, to complete the proof of Theorem 4.1, it suffices to show that for all 0 < δ < η

lim supn→∞ sup
P∈P0

P
(
ĉuη < c0(ψn, h2,P , 1− α) + ξ

)
= 0. (B.12)

Let {Pn ∈ P0 : n ≥ 1} be a sequence for which the probability in the statement of (B.12)

evaluated at Pn differs from its supremum over P ∈ P0 by δn or less, where δn > 0 and

limn→∞ δn = 0. By the definition of lim sup, such a sequence always exists. Therefore,

it is equivalent to show that for 0 < ξ < η,

limn→∞P
(
ĉuη < c0(ψn, h2,ν,P , 1− α) + ξ

)
= 0. (B.13)

So far, we have suppressed the dependence of ĉuη on n. For the rest of the proof, it is

useful to make the dependence on n explicit and write ĉuη as ĉun,η instead.

Given that H0 is compact in the metric space (H, d), there exists a subsequence kn

of n such that hPk,n → h∗ for some h∗ ∈ H and this implies that h2,ν,Pkn
converges

to h∗2,ν . By Lemma A.2, we have Ψu
Pkn

(·)/σ̂ε,kn(·)⇒Ψh∗2,ν
(·)/σε,h∗2,ν (·) conditional on the

sample path in probability. Then there exists a further subsequence mn of kn such that

Ψu
Pmn

(·)/σ̂ε,mn(·)⇒Ψh∗2,ν
(·)/σε,h∗2,ν (·) conditional on the sample path almost surely.
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For any ω ∈
{
ω ∈ Ω : Ψu

Pkn
(·)/σ̂ε,kn(·)⇒Ψh∗2,ν

(·)/σε,h∗2,ν (·)
}
≡ Ω1, by the same

argument for Theorem 1, specifically that for (12.28), of AS we can show that for any

constant amn ∈ R which may depend on h1 and P and for any 0 < ξ1,

lim sup
n→∞

sup
h1,ν∈H1,ν

Pu

(∫
max

{Ψu
Pmn

(τ, `)

σ̂ε,mn(τ, `)
(ω) + h1,ν(τ, `), 0

}2
dQ(τ, `) ≤ amn

)
− P

(
T (hν) ≤ amn + ξ1

)
≤ 0. (B.14)

(B.14) is similar to (12.28) in AS. By (B.14) and by an argument similar to Lemma A5

of AS, we have that for all 0 < ξ < ξ1 < η,

lim infn→∞ĉ
u
mn,η(ω) ≥ c0(ψmn , h2,ν,Pmn , 1− α) + ξ1. (B.15)

Therefore, for any ω ∈ Ω1, (B.15) holds. Given that P (Ω1) = 1, we have that for all

0 < ξ < ξ1 < η

P
({
ω : lim infn→∞ĉ

u
mn,η(ω) ≥ c0(ψmn , h2,ν,Pmn , 1− α) + ξ1

})
= 1,

which implies that

limn→∞P (ĉumn,η < c0(ψmn , h2,ν,Pmn , 1− α) + δ) = 0. (B.16)

Note that for any convergent sequence An, if there exists a subsequence Amn converging

to A, then An converges to A as well. Therefore, (B.16) is sufficient for (B.13). Theorem

4.1(a) is shown by combining (B.10), (B.11) and (B.12).

To show Theorem 4.1(ii), note that, under the Pc specified in Assumption 4.3, Lemma

A.3 (i) implies that

T̂n
d→
∫

(T L)o(Pc)
max

{ Ψh2,ν,Pc
(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `). (B.17)

This limiting distribution is non-degenerate by Assumption 4.3. Let H(a) denote the

CDF of the limiting distribution defined in (B.17). By similar arguments as those for

Lemma B3 of AS, we can show that H(a) is continuous and strictly increasing on a ∈
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[0,∞) with H(0) > 1/2 under Assumption 4.3. Therefore, the (1 − α) quantile of the

limiting distribution defined in (B.17) is strictly greater than 0 when α ≤ 1/2, and we

denote it as c0(1− α). Also, c0(1− α) is continuous on α ∈ (0, 1/2].

By the same proof for part (i), it is true that ĉuη
p→ c0(1 − α + η) + η, and by the

continuity of c0(1 − α), we have limη→0 c0(1 − α + η) + η → c0(1 − α). Therefore,

limη→0 lim supn→∞ P (T̂n > ĉuη) = α.

Proof of Theorem 5.1. Assumptions 3.2(a) and 5.1(a) together imply that

∫
T a(P ∗)

dQ(τ) > 0. (B.18)

For any τ ∈ T a(P∗), there exist x∗∗1 ≥ x∗∗2 and z∗ such that EP [f (1)(W, τ)|X = x∗∗1 , Z =

z∗] < EP [f (2)(W, τ)|X = x∗∗2 , Z = z∗]. By the continuity of the conditional moment

functions, there exist x∗1 and x∗2 such that x∗1 � x∗2 and that EP [f (1)(W, τ)|X = x∗1, Z =

z∗] < EP [f (2)(W, τ)|X = x∗2, Z = z∗]

If two vectors a, b ∈ Rd such that a� b, let [a, b] denote the hypercube Πd
j=1[aj , bj ],

where aj and bj are the jth elements of a and b respectively.

Now that x∗1 � x∗2, by continuity of the conditional moment function, there exist r∗ >

0 such that x∗1−r∗ ≥ x∗2+r∗, and that for all x1 ∈ [x∗1−r∗, x∗1+r∗], x2 ∈ [x∗2−r∗, x∗2+r∗] and

z ∈ [z∗−r∗, z+r∗], and that EP [f (1)(W, τ)|X = x1, Z = z] < EP [f (2)(W, τ)|X = x2, Z =

z]. Then for all ` = (x1, x2, z, r) such that x1 ∈ [x∗1 − r∗, x∗1 + r∗], x2 ∈ [x∗2 − r∗, x∗2 + r∗],

z ∈ [z∗ − r∗, z + r∗] and r ≤ r∗, we have νP∗(τ, `) > 0.

Let

L∗(τ) = [x∗1 − r∗, x∗1 + r∗]× [x∗2 − r∗, x∗2 + r∗]× [z∗ − r∗, z + r∗]× (0, r∗]. (B.19)

By Assumption 3.2, we have
∫
L∗(τ)Q(`) > 0 and this implies

∫
L∗(τ)

max
{ νP∗(τ, `)

σε,h2,ν,P∗ (τ, `)
, 0
}2
Q(`) =

∫
L∗(τ)

( νP∗(τ, `)

σε,h2,ν,P∗ (τ, `)

)2
Q(`) > 0 (B.20)

51



because νP∗(τ, `) > 0 when ` ∈ L∗(τ). Next we have

A∗ ≡
∫

max
{ νP∗(τ, `)

σε,h2,ν,P∗ (τ, `)
, 0
}2
Q(τ, `)

≥
∫
T a(P∗)

∫
L∗(τ)

( νP∗(τ, `)

σε,h2,ν,P∗ (τ, `)

)2
Q(`)Q(τ) > 0. (B.21)

Note that n−1T̂n
p→ A∗ > 0 under P∗. Therefore, T̂n diverges to positive infinity in

probability, but ĉuη is bounded in probability. Therefore, limn→∞ P (T̂n > ĉuη) = 1. The

proof for the bootstrap critical value is the same and thus omitted.

Proof of Theorem 5.2. Note that

m
(j)
Pn

(τ, `) = EPn [f (j)(Y, τ)g
(j)
x,`(X)gz,`(Z)]

= EPn,xz
[
EPn [f (j)(Y, τ)|X,Z] · g(j)

x,`(X)gz,`(Z)
]

= EPc,xz
[
EPc [f

(j)(Y, τ)|X,Z] · g(j)
x,`(X)gz,`(Z)

]
+ EPc,xz

[
γδj(X,Z, τ) · g(j)

x,`(X)gz,`(Z)
]
/
√
n

= m
(j)
Pc

(τ, `) + γδj(τ, `)/
√
n, (B.22)

where δ(j)(τ, `) = EPc,xz
[
δj(X,Z, τ) · g(j)

x,`(X)gz,`(Z)
]
. The third equality holds because

of Assumptions 5.2(a) and (b). Also,

w
(j)
Pn

(τ, `) = EPn [g
(j)
x,`(X)gz,`(Z)] = EPn,xz [g

(j)
x,`(X)gz,`(Z)]

= EPc,xz [g
(j)
x,`(X)gz,`(Z)] = w

(j)
Pc

(τ, `) (B.23)

where the third equality holds because Pn,xz = Pc,xz. Therefore,

νPn(τ, `) = m
(2)
Pn

(τ, `)w
(1)
Pn

(τ, `)−m(1)
Pn

(τ, `)w
(2)
Pn

(τ, `)

= m
(2)
Pc

(τ, `)w
(1)
Pc

(τ, `)−m(1)
Pc

(τ, `)w
(2)
Pc

(τ, `)

+ γ
(
δ(2)(τ, `)w

(1)
Pc

(τ, `)− δ(1)(τ, `)w
(2)
Pc

(τ, `)
)
/
√
n

= νPc(τ, `) + γδν(τ, `)/
√
n, (B.24)
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where δν(τ, `) ≡ δ(2)(τ, `)w
(1)
Pc

(τ, `) − δ(1)(τ, `)w
(2)
Pc

(τ, `). Under Assumption 5.2 (d), we

have

δν(τ, `) ≥ 0 for all τ, `. (B.25)

In addition, under Assumptions 5.2(e) and 5.3, we have,

∫
(T L)+(Pc)

dQ(τ, `) > 0, where (T L)+(Pc) = {(τ, `) ∈ (T L)o(Pc) : δν(τ, `) > 0}.

(B.26)

Under the local alternative sequence {Pn}n≥1, using B.24, Lemma A.3(i) shows that

T̂n
d→
∫

(T L)o(Pc)
max

{Ψh2,ν,Pc
(τ, `) + γδν(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `). (B.27)

Also, Lemma A.3(ii) shows that the critical value statistic

T̂ un
d→
∫

(T L)o(Pc)
max

{ Ψh2,ν,Pc
(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) (B.28)

conditional on almost all sample paths. Note that the limiting distribution defined in

(B.28) is identical to that in (B.17). We denote its cumulative distribution function as

H(a).

We consider two cases, depending on whether the limiting distribution defined in

(B.28) is degenerate or not. First, suppose that it is non-degenerate. By the proof for

part (ii) of Theorem 4.1, we have that H(a) is continuous and strictly increasing on

a ∈ [0,∞). We also have that the (1 − α) quantile of the right-hand side of (B.28),

c0(1 − α), satisfies: c0(1 − α) > 0 if α < 1/2, and it is continuous on α ∈ (0, 1/2).

Because δν(τ, `) ≥ 0 for all τ and `, we have that the limiting distribution of the test

statistic defined in (B.27) is non-degenerate, strictly increasing on [0,∞), and first-order

stochastically dominant to that in (B.28). It follows that

lim
η→0

lim
n→∞

P (T̂n ≥ ĉuη)
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= lim
η→0

P
(∫

(T L)o(Pc)
max

{Ψh2,ν,Pc
(τ, `) + γδν(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≥ c0(1− α+ η) + η)

)
≥ lim

η→0
P
(∫

(T L)o(Pc)
max

{ Ψh2,ν,Pc
(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≥ c0(1− α+ η) + η)

)
= α, (B.29)

where the first equality holds because the test statistic defined in (B.27) is non-degenerate

and strictly increasing on [0,∞), and the first inequality holds because the limiting

distribution of the test statistic defined in (B.27) first-order stochastically dominates

that in (B.28). The last equality holds because the distribution defined in (B.28) is

continuous and strictly increasing on [0,∞). This shows part (i) of the theorem for the

non-degenerate case.

We now show part (ii) for the non-degenerate case. Consider the derivation

lim
γ→∞

lim
n→∞

P (T̂n ≥ ĉuη)

= lim
γ→∞

P
(∫

(T L)o(Pc)
max

{Ψh2,ν,Pc
(τ, `) + γδν(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≥ c0(1− α+ η) + η)

)
≥ lim

γ→∞
P
(∫

(T L)+(Pc)
max

{Ψh2,ν,Pc
(τ, `) + γδν(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≥ c0(1− α+ η) + η)

)
= 1, (B.30)

where the last equality holds by (B.26). This shows part (ii) of the theorem for the

non-degenerate case.

Now we consider the second case, where the limiting distribution in (B.28) is de-

generate. The limiting distribution in (B.28) is degenerate iff the measure of {(τ, `) ∈

(T L)o(Pc) : h2,ν,Pc((τ, `), (τ, `)) > 0}. is zero. Let

S = {(τ, `) ∈ (T L)o(Pc) : h2,ν,Pc((τ, `), (τ, `)) = 0}. (B.31)

Equation (B.26) implies that
∫

(T L)o(Pc)
dQ(τ, `) > 0 because (T L)+(Pc) ⊆ (T L)o(Pc).

That and the degeneracy of the limiting distribution in (B.28) imply that the limiting
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distribution in (B.27) reduces to

∫
S

max
{δν(τ, `)√

ε
, 0
}2
dQ(τ, `) =

∫
S

δ2
ν(τ, `)

ε
dQ(τ, `)

≥
∫

(T L)+(Pc)

δ2
ν(τ, `)

ε
dQ(τ, `)

> 0. (B.32)

where the strict inequality holds by (B.26).

Because the limiting distribution in (B.28) is degenerate, ĉuη
p→ c0(1−α+ η) + η = η.

Therefore, for η is small enough that
∫

(T L)+ δ
2
ν(τ, `)ε−1dQ(τ, `) > η,

lim
n→∞

P (T̂n ≥ ĉuη) = 1 (B.33)

This shows both part (i) and part (ii) of the theorem for the degenerate case.

C Proof of Lemmas

Proof of Lemma 3.1. We first show that (3.1) implies (1.1) by contradiction. For this

direction, we show the case for Lc-cube and given that Lc-cube is a subset of Lcube, the

case for Lcube follows.

Suppose that (1.1) is not true, then there exist x1 > x2, τ ∈ T and z such that

EP [f (1)(Y, τ)|X = x1, Z = z] < EP [f (2)(Y, τ)|X = x2, Z = z]. By continuity, there exist

[x1`, x1u], [x2`, x2u] and [zl, zu] with x1` � x1u, x2` � x2u, zl � zu, x1` ≥ x2`, x1u ≥ x2u

such that

EP [f (1)(Y, τ)|X = x1, Z = z] < EP [f (2)(Y, τ)|X = x2, Z = z]

for all x1 ∈ [x1`, x1u], x2 ∈ [x2`, x2u], z ∈ [zl, zu]. (C.1)

Given that rational numbers are dense and x1` ≥ x2`, x1u ≥ x2u, we can find x∗1, x∗2,
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z∗ and a natural number q∗ that is large enough such that

q∗ · (x∗1, x∗2, z∗) ∈ {0, 1, . . . , q∗ − 1}2dx+dz ,

x∗1 ≤ x∗2,

[x∗1, x
∗
1 + (q∗)−1] ⊆ [x1`, x1u], [x∗2, x

∗
2 + (q∗)−1] ⊆ [x2`, x2u], [z∗, z∗ + (q∗)−1] ⊆ [z`, zu].

Let `∗ = (x∗1, x
∗
2, z
∗, (q∗)−1) and it is obvious that `∗ ∈ Lc-cube. Equation (C.1) implies

that

EP

[
f (1)(Y, τ)

∣∣X ∈ Cx∗1,r∗x , Z ∈ Cz∗,r∗z] < EP

[
f (2)(Y, τ)

∣∣X ∈ Cx∗2,r∗x , Z ∈ Cz∗,r∗z],
(C.2)

which is equivalent to

m
(1)
P (τ, `∗)

w
(1)
P (`∗)

=
EP [f (1)(Y, τ)g

(1)
x,`∗(X)gz,`∗(Z)]

EP [g
(1)
x,`∗(X)gz,`∗(Z)]

<
EP [f (2)(Y, τ)g

(2)
x,`∗(X)gz,`∗(Z)]

EP [g
(2)
x,`∗(X)gz,`∗(Z)]

=
m

(2)
P (τ, `∗)

w
(2)
P (`∗)

, (C.3)

Therefore, there exist τ ∈ T and `∗ ∈ Lc-cube such that

νP (τ, `∗) = m
(2)
P (τ, `∗)w

(1)
P (`∗)−m(1)

P (τ, `∗)w
(2)
P (`∗) > 0, (C.4)

i.e., (3.1) is violated.

Next, we show that (1.1) implies (3.1). It is sufficient to show the Lcube case since

Lc-cube is a subset of Lcube. For notational simplicity, we consider the case where dx = 1

and dz = 0, and the proof for cases where dx ≥ 2 and/or dz ≥ 1 is similar. When

dx = 1 and dz = 0, we have ` = (x1, x2, r). Note that we only need to consider those

`’s such that E[g
(1)
x,` ] = P (X ∈ Cx1,r) > 0 and E[g

(2)
x,` ] = P (X ∈ Cx2,r) > 0 because

E[g
(1)
x,` ] = P (X ∈ Cx1,r) = 0 implies that m

(1)
P (τ, `) = 0 and w

(1)
P (τ, `) = 0 for all τ ∈ T .

This further implies that νP (τ, `) = 0 for all τ ∈ T . For any ` ∈ L such that E[g
(1)
x,` ] > 0

and E[g
(2)
x,` ] > 0, there are three different cases to consider:
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First, x1 = x2.

Second, x1 > x2, and x1 ≥ x2 + r.

Third, x1 > x2, and x1 < x2 + r.

For the first case, clearly, g
(1)
x,` = g

(2)
x,` and

νP (τ, `) = EP
[(
f (2)(Y, τ)− f (1)(Y, τ)

)
g

(1)
x,`(X)

]
· EP [g

(1)
x,`(X)]. (C.5)

By (1.1), we have

E[f (1)(Y, τ)|X = x] ≥ E[f (2)(Y, τ)|X = x] for all x ∈ [x1 − r, x1 + r], (C.6)

and by the law of iterated expectations,

EP
[(
f (2)(Y, τ)− f (1)(Y, τ)

)
g

(1)
x,`(X)

]
= EPx

[
EP
[
(f (2)(Y, τ)− f (1)(Y, τ))|X

]
g

(1)
x,`(X)

]
≤ 0. (C.7)

This implies that νP (τ, `) ≤ 0 for the first case.

For the second case, we have x′1 ≥ x′2 for all x′1 ∈ [x1, x1 + r] and x′2 ∈ [x2, x2 + r].

By (1.1),

E[f (1)(Y, τ)|X = x′1] ≥ E[f (2)(Y, τ)|X = x′2] for all x′1 ∈ [x1, x1 + r], x′2 ∈ [x2, x2 + r].

(C.8)

It follows that

EP
[
f (1)(Y, τ)g

(1)
x,`(X)]

EP
[
g

(1)
x,`(X)]

= EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x2 + r]

]
=
EP
[
f (2)(Y, τ)g

(2)
x,`(X)]

EP
[
g

(2)
x,`(X)]

.

(C.9)

This implies that νP (τ, `) ≤ 0 for the second case.
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For the third case, it is true that x1 + r > x2 + r > x1 > x2. Therefore, [x2, x2 + r] =

[x2, x1]∪ [x1, x2 + r] and [x1, x1 + r] = [x1, x2 + r]∪ [x2 + r, x1 + r]. By a similar argument

in the first case and the second case,

EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
. (C.10)

These imply that

EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
≥ P (X ∈ [x1, x2 + r])

P (X ∈ [x2, x2 + r])
EP
[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
+

P (X ∈ [x2, x1])

P (X ∈ [x2, x2 + r])
EP
[
f (2)(Y, τ)|X ∈ [x2, x1]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
, and (C.11)

EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
. (C.12)

It follows that

EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
=
P (X ∈ [x2 + r, x1 + r])

P (X ∈ [x1, x1 + r])
EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
+

P (X ∈ [x1, x2 + r])

P (X ∈ [x1, x1 + r])
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥ EP

[
f (2)(Y, τ)|X ∈ [x2, x1]

]
. (C.13)

Similarly, we have

EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
=
P (X ∈ [x2 + r, x1 + r])

P (X ∈ [x1, x1 + r])
EP
[
f (1)(Y, τ)|X ∈ [x2 + r, x1 + r]

]
+
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P (X ∈ [x1, x2 + r])

P (X ∈ [x1, x1 + r])
EP
[
f (1)(Y, τ)|X ∈ [x1, x2 + r]

]
≥EP

[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
. (C.14)

These results together imply that

EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
=

P (X ∈ [x2, x1])

P (X ∈ [x2, x2 + r])
EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
+

P (X ∈ [x1, x2 + r])

P (X ∈ [x2, x2 + r])
EP
[
f (1)(Y, τ)|X ∈ [x1, x1 + r]

]
≥ P (X ∈ [x2, x1])

P (X ∈ [x2, x2 + r])
EP
[
f (2)(Y, τ)|X ∈ [x2, x1]

]
+

P (X ∈ [x1, x2 + r])

P (X ∈ [x2, x2 + r])
EP
[
f (2)(Y, τ)|X ∈ [x1, x2 + r]

]
=EP

[
f (2)(Y, τ)|X ∈ [x2, x2 + r]

]
. (C.15)

That is, νP (τ, `) ≤ 0 for the third case.

This completes the proof for Lemma 3.1.

D Proofs of Auxiliary Lemmas

Proof of Lemma A.1. For notational simplicity, we prove it for the sequence {n} and all

of the arguments go through with {an} in place of {n}.

We apply Lemma E2 of Andrews and Shi (2013b; AS2 hereafter) to show part (i).

It is sufficient to show that every element of ĥPn converges to h uniformly. Note that

{m(j)(ω,Wn,i, τ, `) : τ ∈ T , ` ∈ L, i ≤ n, n ≥ 1} is manageable with respect to envelopes

{(Fn,1(ω), . . . , Fn,n(ω)) : n ≥ 1} because m(j)(W, τ, `) = f (j)(W, τ) ·g(j)
x,`(X) ·gz,`(Z), and

{f (j)(ω,Wn,i, τ) : τ ∈ T , i ≤ n, n ≥ 1}, {g(j)
x,`(ω,Xn,i) : ` ∈ L, i ≤ n, n ≥ 1}

and {gz,`(ω,Zn,i) : ` ∈ L, i ≤ n, n ≥ 1} are manageable with respect to envelopes

{(Fn,1(ω), . . . , Fn,n(ω)) : n ≥ 1}, {(1, . . . , 1) : n ≥ 1} and {(1, . . . , 1) : n ≥ 1}

respectively. By Assumption 4.1, there exists 0 < η n−1
∑n

i=1EPnF
1+η
n,i ≤ M for some
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0 < M <∞ for all n ≥ 1. Then by Lemma E2 of AS2, we have

sup
τ∈T ,`∈L

∣∣∣∣∣ 1n
n∑
i=1

m(j)(Wn,i, τ, `)− EPnm(j)(W, τ, `)

∣∣∣∣∣ p→ 0. (D.1)

Similar arguments apply to w(j)(W, `). This shows that d(ĥPn,1, h1)
p→ 0.

The proof for d(ĥPn,2, h2)
p→ 0 is identical to the proof of Lemma A1(b) of AS2 after

we replace their DF with an identity matrix and their Σ̂n(θ, g, g∗) with ĥ2,P (·, ·), so we

omit it for brevity. This completes part (i).

The proof for Part (ii) is a non-standardized version of Lemma A1(a) of AS2, and

the proof is identical to that for Lemma A1(a) of AS2. We omit it for brevity.

Proof of Lemma A.2. For notational simplicity, we prove Lemma A.2 for the sequence

{n} and all of the arguments go through with {an} in place of {n}. Part (i) follows from

the fact that d(hPn , h)→ 0 and the definitions of h2,ν,Pn and h2,ν . Part (ii) follows from

Lemma A.1(i).

For part (iii), note that uniformly over (τ, `) ∈ T × L,

√
n
(
m̂(2)
n (τ, `)ŵ(1)

n (`)− EPn [m(2)(τ, `)]EPn [w(1)(`)]
)

= EPn [w(1)(`)] ·
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])

+ EPn [m(2)(τ, `)] ·
√
n(ŵ(1)

n (`)− EPn [w(1)(`)])

+
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])(ŵ(1)
n (`)− EPn [w(1)(`)])

= EPn [w(1)(`)] ·
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])

+ EPn [m(2)(τ, `)] ·
√
n(ŵ(1)

n (`)− EPn [w(1)(`)]) + op(1), (D.2)

where the op(1) in the last line follows from Lemma A.1(ii). Similar expansion applies

to
√
n
(
m̂

(1)
n (τ, `)ŵ

(2)
n (`)−EPn [m(1)(τ, `)]EPn [w(2)(`)]

)
. Therefore, uniformly over (τ, `) ∈

T × L,

Ψ̂Pan (τ, `) =
√
n(ν̂n(τ, `)− νPn(τ, `))

= EPn [w(1)(`)] ·
√
n(m̂(2)

n (τ, `)− EPn [m(2)(τ, `)])
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+ EPn [m(2)(τ, `)] ·
√
n(ŵ(1)

n (`)− EPn [w(1)(`)])

− EPn [w(2)(`)] ·
√
n(m̂(1)

n (τ, `)− EPn [m(1)(τ, `)])

− EPn [m(1)(τ, `)] ·
√
n(ŵ(2)

n (`)− EPn [w(2)(`)]) + op(1)

= hPn,1 · χ̂Pn(τ, `) + op(1). (D.3)

By Lemma A.1(ii) and the fact that d(hPn , h) → 0, we have hPn,1 · χ̂Pn(τ, `) ⇒ Ψh2,ν .

Equation (D.3) is equivalent to that sup(τ,`)∈T ×L |Ψ̂Pan (τ, `) − hPn,1 · χ̂Pn(τ, `)| p→ 0

and by Lemma 1.10.2 of van der Vaart and Wellner (1996), this suffices to show that

Ψ̂Pan (τ, `) =
√
n(ν̂n(τ, `)− νPn(τ, `))⇒ Ψh2,ν .

For part (iv), we define βn(Wi, τ, `) as

βn(Wi, τ, `) = EPn [w(1)(`)] ·
(
m

(2)
i (τ, `)− EPn [m(2)(τ, `)]

)
+ EPn [m(2)(τ, `)] ·

(
w

(1)
i (`)− EPn [w(1)(`)]

)
− EPn [w(2)(`)] ·

(
m

(1)
i (τ, `)− EPn [m(1)(τ, `)]

)
− EPn [m(1)(τ, `)] ·

(
w

(2)
i (`)− EPn [w(2)(`)]

)
, (D.4)

and we denote it as βn,i(τ, `). It is straightforward to see that Ψ̂Pan (τ, `) = n−1/2
∑n

i=1 βn,i(τ, `)+

op(1) from (D.3). Also, define

β̂n,i(τ, `) = ŵ(1)
n (`) · (m(2)

i (τ, `)− m̂(2)
n (τ, `)) + m̂(2)

n (τ, `) · (w(1)
i (`)− ŵ(1)

n (`))

− ŵ(2)
n (`) · (m(1)

i (τ, `)− m̂(1)
n (τ, `))− m̂(1)

n (τ, `) · (w(2)
i (`)− ŵ(2)

n (`)),

(D.5)

which is the sample counterpart of βn,i(τ, `). It is true that Ψ̂u
Pn

= n−1/2
∑n

i=1 Ui ·

β̂n,i(τ, `).

Because Ψhν is Borel measurable and separable, then by Section 1.12 (page 73) of

van der Vaart and Wellner (1996), Ψ̂u
Pn
⇒ Ψh2,ν conditional on the sample path with

probability one iff supg∈BL1
|Eug(Ψ̂u

Pn
)−E[g(Ψh2,ν )]| p→ 0 where BL1 denotes the set of

all real functions on `∞(T × L) with a Lipschitz norm bounded by 1 and Eu denotes

the expectation w.r.t. Ui’s. Then by Lemma 1.9.2 of van der Vaart and Wellner (1996),

supg∈BL1
|Eug(Ψ̂u

Pn
)− E[g(Ψh2,ν )]| p→ 0 iff for any subsequence {bn} of {n}, there exists
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a further subsequence of {kn} such that supg∈BL1
|Eug(Ψ̂u

Pn
)− E[g(Ψh2,ν )]| a.s.→ 0, which

is equivalent to that for any subsequence {bn} of {n}, there exists a further subsequence

of {kn} such that Ψ̂u
Pkn
⇒ Ψh2,ν conditional on the sample path almost surely. Hence, to

show part (iv), it is sufficient to show that for any subsequence {bn} of {n}, there exists

a further subsequence of {kn} such that Ψ̂u
Pkn
⇒ Ψh2,ν conditional on the sample path

almost surely.

First, letMg > 1 be some constant such that EPn [m
(j)
n (W, τ, `)] ≤Mg and EPn [w

(j)
n (W, `)] ≤

Mg for all n ≥ 1. Such Mg exists because of Assumption 4.1(b). Under Assumption 4.1

and by the law of large numbers (LLN), we have n−1
∑n

i=1(Fn,i + Mg)
2 − EPn [(Fn,i +

Mg)
2]

p→ 0. Also, by LLN, we have n−1
∑n

i=1(Fn,i+Mg)
δ1−EPn [(Fn,i+Mg)

δ1 ]
p→ 0 where

δ is as defined in Assumption 4.1 and it is true that lim supn→∞EPkn [(Fkn,i+Mg)
δ1 ] <∞.

As a result, for any subsequence {bn} of {n}, there exists a further subsequence of

{kn} such that

d(ĥPkn , h)
a.s.→ 0,

1

kn

kn∑
i=1

(Fkn,i +Mg)
2 − EPkn [(Fkn,i +Mg)

2]
a.s.→ 0, and

1

kn

kn∑
i=1

(Fkn,i +Mg)
δ − EPkn [(Fkn,i +Mg)

δ]
a.s.→ 0. (D.6)

Define

Ω1 ≡
{
ω ∈ Ω : d(ĥPkn , h)(ω)→0,

1

kn

kn∑
i=1

(Fkn,i +Mg)
2(ω)− EPkn [(Fkn,i +Mg)

2]→0, and

1

kn

kn∑
i=1

(Fkn,i +Mg)
δ1(ω)− EPkn [(Fkn,i +Mg)

δ1 ]→ 0
}
. (D.7)

By construction, P (Ω1) = 1. We show that k
−1/2
n

∑kn
i=1 Ui · β̂kn,i(τ, `)(ω) ⇒ Ψh2,ν (τ, `)

for all ω ∈ Ω1. First, we re-write

1√
kn

kn∑
i=1

Ui · β̂kn,i(τ, `)(ω)
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=
1√
kn

kn∑
i=1

Ui · βkn,i(τ, `)(ω)

+ (ŵ(1)
n (`)− EPn [w(1)(`)])(ω) · 1√

kn

kn∑
i=1

Ui · (m(2)
i (τ, `)− EPn [m(2)(τ, `)])(ω)

+ (m̂(2)
n (τ, `)− EPn [m(2)(τ, `)])(ω) · 1√

kn

kn∑
i=1

Ui · (w(1)
i (`)− EPn [w(1)(`)])(ω)

− (ŵ(2)
n (`)− EPn [w(2)(`)])(ω) · 1√

kn

kn∑
i=1

Ui · (m(1)
i (τ, `)− EPn [m(1)(τ, `)])(ω)

− (m̂(1)
n (τ, `)− EPn [m(1)(τ, `)])(ω) · 1√

kn

kn∑
i=1

Ui · (w(2)
i (`)− EPn [w(2)(`)])(ω)

+ (ŵ(1)
n (`)− EPn [w(1)(`)])2(ω) · 1√

kn

kn∑
i=1

Ui + (m̂(2)
n (τ, `)− EPn [m(2)(τ, `)])2(ω)×

1√
kn

kn∑
i=1

Ui

− (ŵ(2)
n (`)− EPn [w(2)(`)])2(ω) · 1√

kn

kn∑
i=1

Ui − (m̂(1)
n (τ, `)− EPn [m(1)(τ, `)])2(ω)×

1√
kn

kn∑
i=1

Ui

= A+B1 +B2 −B3 −B4 + C1 + C2 − C3 − C4, (D.8)

where A, Bj ’s and Cj ’s are defined term by term. It is sufficient for us to show that

A⇒ Ψh2,ν , and Bj ’s and Cj ’s are all op(1) uniformly over τ ∈ T and ` ∈ L.

We use Theorem 10.6 (functional central limit theorem) of Pollard (1990) to show

A⇒ Ψh2,ν . Define

gkn,i(τ, `) =
Ui√
kn
βkn,i(τ, `)(ω), (D.9)

Gkn,i =
Ui√
kn

4Mg(Fkn,i(ω) +Mg).

By Lemma E1 of AS2 and the manageability of every element of βkn,i(τ, `), we have

that {gkn,i(τ, `, ωu) : τ ∈ T , ` ∈ L, i ≤ kn, n ≥ 1} is manageable with respect to

envelopes {(Gkn,1(ωu), . . . , Gkn,kn(ωu) : n ≥ 1}. Hence, (i) of Theorem 10.6 of Pollard

(1990) holds. Let ζkn(τ, `) =
∑kn

i=1 gkn,i(τ, `). By definition, Eu[ζkn(τ1, `1)ζkn(τ2, `2)] =
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h′1,Pkn
h̃2,Pkn

h1,Pkn
((τ1, `1), (τ2, `2)) where

h̃2,Pkn
=

1

kn

kn∑
i=1

(
m̈(Wi, ·)− EPkn [m̈(·)]

)(
m̈(Wi, ·)− EPkn [m̈(·)]

)′
. (D.10)

Also,

h̃2,Pkn
= ĥ2,Pkn

(ω)−
( ̂̈mPkn

(·)− EPkn [m̈(·)]
)( ̂̈mPkn

(·)− EPkn [m̈(·)]
)′

(ω). (D.11)

Equation (D.11) and d(ĥPkn (ω), h)→ 0 imply that d(h̃2,Pkn
(ω), h2)→ 0. By assumption,

we have that d(h1,Pkn
, h1) → 0, so h̃2,ν,Pkn

≡ h′1,Pkn
h̃2,Pkn

h1,Pkn
→ h2,ν . That is, (ii) of

Theorem 10.6 of Pollard (1990) holds. Note that
∑kn

i=1(Fkn,i(ω)+Mg)
2−EPkn [(Fkn,i(ω)+

Mg)
2] → 0 and EPkn [(Fkn,i(ω) + Mg)

2] < C for some constant C. These imply that,

for some constant C, lim supn→∞ k
−1
n

∑kn
i=1(Fkn,i(ω) + Mg)

2 < C. Also, consider the

derivation

lim sup
n→∞

Eu

[ kn∑
i=1

G2
kn,i

]
= lim sup

n→∞

1

kn

kn∑
i=1

[
4Mg(Fkn,i(ω) +Mg)

]2
< 16M2

gC <∞.

(D.12)

That is, part (iii) of Theorem 10.6 of Pollard (1990) holds. By a similar argument of

(16.39) of AS, we have, for any ε ∈ (0,∞),

kn∑
i=1

Eu
[
G2
kn,i(ω) · 1(Gkn,i > ε)

]
≤ ε−δ1

kn∑
i=1

Eu

[∣∣∣ Ui√
kn
F̈kn,i(ω)

∣∣∣δ1]
≤ C

k
δ/2−1
n εδ1

· 1

kn

kn∑
i=1

∣∣(Fkn,i(ω) +Mg)
∣∣δ1

→ 0, (D.13)

where the C in the second inequality comes from E[|U |2+δ1 ] < C and the convergence

result in the last line holds because k
−δ1/2+1
n → 0 and lim supn→∞ k

−1
n

∑kn
i=1 |Fkn,i(ω) +

Mg|δ1(ω) <∞. That is, (iv) of Theorem 10.6 of Pollard (1990) holds. Note that

ρkn((τ1, `1), (τ2, `2))
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=

kn∑
i=1

Eu
[
g2
kn,i(τ1, `1) + g2

kn,i(τ2, `2)− 2gkn,i(τ1, `1)gkn,i(τ2, `2)
]

=
1

kn

kn∑
i=1

β2
kn,i(τ1, `1)(ω) + β2

kn,i(τ2, `2)(ω)− 2βkn,i(τ1, `1)(ω)βkn,i(τ2, `2)(ω)

= h̃2,ν,Pkn
((τ1, `1), (τ1, `1)) + h̃2,ν,Pkn

((τ2, `2), (τ2, `2))− 2h̃2,ν,Pkn
((τ1, `1), (τ2, `2))

→ h2,ν((τ1, `1), (τ1, `1)) + h2,ν((τ2, `2), (τ2, `2))− 2h2,ν((τ1, `1), (τ2, `2))

≡ ρ((τ1, `1), (τ2, `2)), (D.14)

uniformly over (τ1, `1), (τ2, `2) ∈ T × L. This is sufficient for (v) of Theorem 10.6 of

Pollard (1990). Therefore, we have ζkn ⇒ Ψh2,ν by Theorem 10.6 of Pollard (1990).

For B1 term, notice that by the same argument for A, we have

1√
kn

kn∑
i=1

Ui ·
(
m

(2)
i (τ, `)− EPn [m(2)(τ, `)]

)
(ω)⇒ Ψh2,ν(1,1), (D.15)

where h2,ν(1, 1) denotes the (1, 1)-th element of h2,ν . Note that supτ∈T ,`∈L |ŵ
(1)
n (`) −

EPn [w(1)(`)])|(ω)→ 0, so it is true that

sup
τ∈T ,`∈L

|B1| ≤ sup
τ∈T ,`∈L

∣∣(ŵ(1)
n (`)− EPn [w(1)(`)])(ω)

∣∣×
sup

τ∈T ,`∈L

∣∣∣ 1√
kn

kn∑
i=1

Ui · (m(2)
i (τ, `)− EPn [m(2)(τ, `)])(ω)

∣∣∣
= o(1) ·Op(1) = op(1). (D.16)

Therefore, Bj = op(1) for all j = 1, . . . , 4. For C1 term, we have

1√
kn

kn∑
i=1

Ui = Op(1) (D.17)

and supτ∈T ,`∈L
∣∣(ŵ(1)

n (`)− EPn [w(1)(`)])(ω)
∣∣2 = o(1), so

sup
τ∈T ,`∈L

∣∣∣(ŵ(1)
n (`)− EPn [w(1)(`)])2(ω)

1√
kn

kn∑
i=1

Ui

∣∣∣
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=
∣∣∣ 1√
kn

kn∑
i=1

Ui

∣∣∣ · sup
τ∈T ,`∈L

∣∣∣(ŵ(1)
n (`)− EPn [w(1)(`)])

∣∣∣2(ω)

=Op(1) · o(1) = op(1). (D.18)

Similarly, Cj = op(1) for j = 2, 3 and 4.

These results are sufficient to show that kn
−1/2∑kn

i=1 Ui · β̂kn,i(τ, `)(ω)⇒ Ψh2,ν for all

ω ∈ Ω1 with P (Ω1) = 1. This shows Ψ̂u
Pn
⇒ Ψh2,ν conditional on the sample path with

probability one.

For part (v), let

χ̂bPn(τ, `) ≡



√
n
(
m̂

(1)b
n (τ, `)− m̂(1)(τ, `)

)
√
n
(
m̂

(2)b
n (τ, `)− m̂(2)(τ, `)

)
√
n
(
ŵ

(1)b
n (τ, `)− ŵ(1)(`)

)
√
n
(
ŵ

(2)b
n (τ, `)− ŵ(2)(`)

)

 . (D.19)

By part 8 of Lemma D.2 of Bugni, Canay and Shi (2015), we have χ̂bPn ⇒ Ψh2 conditional

on almost all sample paths. Next, by the same arguments for part (iii), we can show part

(v).

To show part (vi), we have supτ∈T ,`∈L |ĥ2,ν,Pan ((τ, `), (τ, `)) − h2,ν((τ, `), (τ, `))| p→ 0

from part (ii). By the fact that max{a, ε} is a continuous function, it follows that

sup
τ∈T ,`∈L

|max{ĥ2,ν,Pan ((τ, `), (τ, `)), ε} −max{h2,ν((τ, `), (τ, `)), ε}| p→ 0, (D.20)

so supτ∈T ,`∈L |σ2
ε,an(τ, `) − σ2

ε (τ, `)|
p→ 0. Given that ε > 0, we have σ2

ε (τ, `) ≥ ε > 0 for

all τ, `. Hence, it follows that supτ∈T ,`∈L |σ−1
ε,an(τ, `)− σ−1

ε (τ, `)| p→ 0 and this shows part

(vi).

Part (vii) follows from parts (iv) and (vi), and part (viii) follows from parts (v) and

(vi).

Proof of Lemma A.3. To show part (i), for ι > 0, define (T L)ι(Pc) = {(τ, `) : νPc(τ, `) ≥

−ι · σε,h2,ν,Pc (τ, `)}, and (T L)ι(Pc)
c denote the complement of (T L)ι(Pc). Note that by
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Lemma A.2(v)-(vi) and condition (b) of the present lemma, we have

sup
τ∈T ,`∈L

∣∣∣ ν̂n(τ, `)

σ̂ε,n(τ, `)
− νPc(τ, `)

σε,h2,ν,Pc (τ, `)

∣∣∣ p→ 0. (D.21)

Then it follows that, with probability approaching one,

sup
(τ,`)∈(T L)ι(Pc)c

ν̂n(τ, `)

σ̂ε,n(τ, `)
≤ −ι/2. (D.22)

This implies that

∫
(T L)ι(Pc)c

max
{√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2
dQ(τ, `) = op(1). (D.23)

Therefore,

T̂n =

∫
(T L)ι(Pc)

max
{√

n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2
dQ(τ, `) + op(1)

≤
∫

(T L)ι(Pc)
max

{√
n
ν̂n(τ, `)− νPn(τ, `) + δ(τ, `)/

√
n

σ̂ε,n(τ, `)
, 0
}2
dQ(τ, `) + op(1)

(D.24)

where the equality holds by the previous equation. The inequality holds because condition

(a) holds and νPc(τ, `) ≤ 0 and max{a2, 0} is non-decreasing in a. Therefore,

lim sup
n→∞

P (T̂n ≤ t) ≤ P
(∫

(T L)ι(Pc)
max

{Ψh2,ν,Pc
(τ, `) + δ(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≤ a

)
.

(D.25)

Note that ι is any arbitrary positive number, so letting ι → 0 and using the facts that
Ψh2,ν,Pc

(τ,`)

σε,h2,ν,Pc
(τ,`) is a tight Gaussian process and that

∫
(T L)ι(Pc)\(T L)o(Pc)

dQ(τ, `) → 0, we

have, for any t ∈ R,

lim sup
n→∞

P (T̂n ≤ t) ≤ P
(∫

(T L)o(Pc)
max

{Ψh2,ν,Pc
(τ, `) + δ(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≤ t

)
.

(D.26)
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On the other hand, we have

T̂n ≥
∫

(T L)o(Pc)
max

{√
n
ν̂n(τ, `)

σ̂ε,n(τ, `)
, 0
}2
dQ(τ, `). (D.27)

It follows that, for all t ∈ R,

lim inf
n→∞

P (T̂n ≤ t) ≥ P
(∫

(T L)o(Pc)
max

{Ψh2,ν,Pc
(τ, `) + δ(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≤ t

)
.

(D.28)

Equations (D.26) and (D.28) together imply that, for all t ∈ R,

lim
n→∞

P (T̂n ≤ t) = P
(∫

(T L)o(Pc)
max

{Ψh2,ν,Pc
(τ, `) + δ(τ, `)

σε,h2,ν,Pc (τ, `)
, 0
}2
dQ(τ, `) ≤ t

)
.

(D.29)

This concludes the proof of part (i).

Part (ii) and part (iii) can be proved following the same steps, except one uses parts

(vii) and (viii) of Lemma A.2 instead of (v) and (vi) of that lemma, and one eliminates

δ(τ, `) using Assumption 3.3. Details are omitted for brevity.

E Additional Simulation Results

In this section we investigate the robustness of the performance of our test to the choice

of q1. We consider only the multiplier bootstrap version of the test, because this is the

version that performed uniformly better in the simulations reported in Tables 1-6. Let

N denote the expected sample size of the smallest cube. We consider three alternative

choices of q1, each resulting in N = 10, 20, and 25, respectively. All other settings of the

tests and the examples are the same as the simulations in the main text.

The results are reported in Tables A1-A6. As we can see, for the latent regression

monotonicity test (Table A1), the choice of q1 does not affect test performance much

when Gc-cube is used, and lower q1 increases the power of the test when Gcube is used.

This makes sense, because the test using Gcube does not down-weight smaller cubes, and

thus is more negatively affected by the noise of the smaller cubes. As a result, when the
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noisiest cubes are removed from consideration, the test using Gcube improves. The same

improvement (as q1 gets lower and thus N gets bigger) also occurs for the test using Gcube

in other examples for samples sizes greater than or equal to 100. On the other hand,

smaller q1 (larger N) hurts the power of the test using Gc-cube in most settings, and hurts

the power of the test using Gcube at the extremely small sample size 50. However, overall,

the performance of our tests is reasonably robust to q1 at sample sizes 100 or up.
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Table A1: Rejection Probabilities of Our Multiplier Version Test for LRM (α = 0.1,
number of simulation repetitions = 500, critical value simulation draws = 500)

Gc-cube Gcube

Cases n N=10 N=20 N=25 N=10 N=20 N=25

100 1.000 1.000 1.000 0.998 0.998 0.998
(1): Y is observed 200 1.000 1.000 1.000 1.000 1.000 1.000

500 1.000 1.000 1.000 1.000 1.000 1.000

100 0.518 0.504 0.494 0.318 0.438 0.520
(2): 8 brackets 200 0.704 0.700 0.696 0.562 0.672 0.728

500 0.956 0.958 0.958 0.940 0.966 0.972

100 0.152 0.152 0.150 0.104 0.174 0.234
(3): 6 brackets 200 0.202 0.198 0.200 0.160 0.280 0.308

500 0.556 0.556 0.556 0.554 0.656 0.696

100 0.008 0.008 0.006 0.006 0.032 0.030
(4): 4 brackets 200 0.016 0.018 0.018 0.004 0.012 0.008

500 0.028 0.028 0.030 0.008 0.012 0.012

100 0.000 0.000 0.000 0.000 0.002 0.000
(5): 3 brackets 200 0.000 0.000 0.000 0.000 0.000 0.002

500 0.000 0.000 0.000 0.000 0.000 0.000

Table A2: Rejection Probabilities of Our Multiplier Version Test for MIV (yu and y` are
known, α = 0.1, number of simulation repetitions = 500, critical value simulation draws
= 500)

Gc-cube Gcube

Cases n N=10 N=20 N=25 N=10 N=20 N=25

(1): HMIV
0 violated 100 0.902 0.906 0.904 0.798 0.878 0.898

HGRM
0 violated 200 0.994 0.994 0.994 0.970 0.988 0.992

500 1.000 1.000 1.000 1.000 1.000 1.000

(2): HMIV
0 violated 100 0.000 0.000 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000 0.000 0.000

(3): HMIV
0 violated 100 0.200 0.118 0.076 0.332 0.308 0.266

HGRM
0 violated 200 0.430 0.390 0.370 0.536 0.612 0.612

500 0.874 0.868 0.864 0.898 0.938 0.944

(4): HMIV
0 violated 100 0.000 0.000 0.000 0.002 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000 0.000 0.002

500 0.000 0.000 0.000 0.000 0.000 0.000
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Table A3: Rejection Probabilities of Our Multiplier Version Test for MIV (yu and y`
are unknown, α = 0.1, number of simulation repetitions = 500, critical value simulation
draws = 500)

Gc-cube Gcube

Cases n N=10 N=20 N=25 N=10 N=20 N=25

(1): HMIV
0 violated 100 0.954 0.954 0.954 0.882 0.932 0.934

HGRM
0 violated 200 0.998 0.998 0.998 0.992 0.994 0.994

500 1.000 1.000 1.000 1.000 1.000 1.000

(2): HMIV
0 violated 100 0.000 0.000 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000 0.000 0.000

500 0.000 0.000 0.000 0.000 0.000 0.000

(3): HMIV
0 violated 100 0.256 0.168 0.100 0.412 0.404 0.364

HGRM
0 violated 200 0.538 0.492 0.454 0.622 0.708 0.712

500 0.922 0.922 0.916 0.938 0.972 0.974

(4): HMIV
0 violated 100 0.000 0.000 0.000 0.000 0.000 0.000

HGRM
0 holds 200 0.000 0.000 0.000 0.000 0.002 0.002

500 0.000 0.000 0.000 0.000 0.000 0.000

Table A4: Rejection Probabilities of Our Multiplier Version Test for Regression Mono-
tonicity (ξ is normal, α = 0.1, number of simulation repetitions = 500, critical value
simulation draws = 500)

Gc-cube Gcube

Cases n N=10 N=20 N=25 N=10 N=20 N=25

100 0.110 0.114 0.112 0.098 0.114 0.114
(1) 200 0.084 0.084 0.084 0.088 0.104 0.100

500 0.120 0.120 0.120 0.136 0.136 0.140

100 0.000 0.000 0.000 0.004 0.000 0.000
(2) 200 0.000 0.000 0.000 0.004 0.006 0.000

500 0.002 0.002 0.002 0.002 0.000 0.008

100 0.138 0.000 0.000 0.304 0.000 0.000
(3) 200 0.748 0.648 0.606 0.642 0.724 0.788

500 1.000 1.000 1.000 1.000 0.996 1.000

100 0.132 0.008 0.000 0.180 0.008 0.000
(4) 200 0.408 0.372 0.324 0.398 0.550 0.522

500 0.912 0.916 0.914 0.908 0.910 0.898

71



Table A5: Rejection Probabilities of Our Multiplier Version Test for Regression Mono-
tonicity (ξ is uniform, α = 0.1, number of simulation repetitions = 500, critical value
simulation draws = 500)

Gc-cube Gcube

Cases n N=10 N=20 N=25 N=10 N=20 N=25

100 0.096 0.096 0.102 0.108 0.120 0.130
(1) 200 0.120 0.118 0.118 0.122 0.128 0.134

500 0.110 0.110 0.110 0.104 0.102 0.108

100 0.000 0.000 0.000 0.010 0.000 0.000
(2) 200 0.000 0.000 0.000 0.000 0.008 0.000

500 0.000 0.000 0.000 0.000 0.000 0.002

100 0.124 0.000 0.000 0.272 0.000 0.000
(3) 200 0.704 0.638 0.608 0.616 0.716 0.794

500 0.996 0.998 0.996 0.992 0.986 0.998

100 0.138 0.004 0.000 0.154 0.004 0.000
(4) 200 0.388 0.356 0.312 0.366 0.554 0.470

500 0.900 0.898 0.898 0.900 0.894 0.878

Table A6: Rejection Probabilities of Our Multiplier Version Test for Stochastic Mono-
tonicity (α = 0.05, number of simulation repetitions = 500, critical value simulation
draws = 500)

Gc-cube Gcube

Cases n N=10 N=20 N=25 N=10 N=20 N=25

50 0.072 0.072 0.072 0.100 0.072 0.072
(1):H0 is true 100 0.092 0.088 0.086 0.080 0.080 0.090

200 0.028 0.030 0.028 0.044 0.046 0.046

50 0.258 0.054 0.054 0.738 0.054 0.054
(2):H0 is false 100 0.646 0.542 0.454 0.962 0.966 0.974

200 0.994 0.992 0.990 1.000 1.000 1.000
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