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Abstract

In this paper we introduce a new approach to estimating differentiated product

demand systems that allows for products with zero sales in the data. Zeroes in demand

are a common problem in differentiated product markets, but fall outside the scope

of existing demand estimation techniques. We show that with a lower bound imposed

on the expected sales quantities, we can construct upper and lower bounds for the

conditional expectation of the inverse demand. These bounds can be translated into

moment inequalities that are shown to yield consistent and asymptotically normal

point estimators for demand parameters under natural conditions. In Monte Carlo

simulations, we demonstrate that the new approach works well even when the fraction

of zeroes is as high as 95%. We apply our estimator to supermarket scanner data and

find that correcting the bias caused by zeroes has important empirical implications,

e.g., price elasticities become twice as large when zeroes are properly controlled.
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1 Introduction

In this paper we introduce a new approach to differentiated product demand estimation that

allows for zeroes in empirical market share data. Such zeroes are a highly prevalent feature

of demand in a variety of empirical settings, ranging from workhorse retail scanner data, to

data as diverse as homicide rates and international trade flows (we discuss these examples

in further depth below). Zeroes naturally arise in “big data” applications which allow for

increasingly granular views of consumers, products, and markets (see for example Quan

and Williams (2015), Nurski and Verboven (2016)). Unfortunately, the standard estimation

procedures using inverse demand function following the seminal Berry, Levinsohn, and Pakes

(1995) (BLP for short) cannot be used in the presence of zero empirical shares - the inverse

demand is simply not well defined at zeroes. Furthermore, ad hoc fixes to market zeroes that

are sometimes used in practice, such as dropping zeroes from the data or replacing them with

small positive numbers, are subject to biases which can be quite large (because the slope of

the inverse demand is arbitrarily large around zero). This has left empirical work on demand

for differentiated products without satisfying solutions to the zero shares problem, and often

force researchers to aggregate their rich data on naturally defined products to crude artificial

products which limits the type of questions that can be answered. This is the key problem

that our paper aims to solve.

In this paper we provide an approach to estimating differentiated product demand mod-

els that provides consistency and asymptotic normality for demand parameters despite a

possibly large presence of zero market shares in the data. We start by noting that the zeroes

are caused by the wedge between the empirical shares (sjt) and the true choice probabilities

(πjt): while the latter is always positive, the former can be zero because of sample noise. We

show how the zeroes in empirical shares may not simply be a data anomaly, but an essential

feature of markets with a rich product variety, even if the number of consumers (nt) is large.

By market design, expected sales (ntπjt) of some products do not increase with nt, and as

a result, their empirical market shares are zero with non-vanishing probabilities. We then

show that by imposing a lower bound to the expected sales we can construct upper and

lower bounds for the conditional expectation of the inverse demand. The bounds are used

to construct a set of moment inequalities which are valid in the presence of the zeroes, and
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more generally in the presence of sampling error in market shares. 1

The moment inequalities can be directly used for parameter inference with the help of set

inference methods in the econometrics literature. But for computational reasons, we give a

point identification condition and propose a point estimator instead. We show that our point

estimator is consistent so long as nt is large and there is an exogenous product or market

characteristic, or a group of them, that can identify a positive mass of observations whose

latent choice probabilities are bounded sufficiently away from zero, e.g., product-market

pairs for whom the observed market shares are not likely to be zero. This is natural in many

applications (as illustrated in Section 5), and strictly generalizes the restrictions on choice

probabilities for consistency under the traditional approach. Asymptotic normality then

follows by similar arguments as those for censored regression models by Kahn and Tamer

(2009).

Computationally, our estimator closely resembles the traditional approach with only a

slight adjustment in how the empirical moments are constructed. In particular it is no more

burdensome than the usual estimation procedures for BLP and can be implemented using

either the standard nested fixed point method of the original BLP, or the MPEC method as

advocated more recently by Dubé, Fox, and Su (2012).

We investigate the finite sample performance of the approach in a variety of mixed logit

examples. We find that our estimator works well even when the the fraction of zeros is as

high as 95%, while the standard procedure with the observations with zeroes deleted yields

severely biased estimators even with mild or moderate fractions of zeroes.

We apply our bounds approach to widely used scanner data from the Dominicks Finer

Foods (DFF) retail chain. In particular, we estimate demand for the tuna category as

previously studied by Chevalier, Kashyap, and Rossi (2003) and continued by Nevo and

Hatzitaskos (2006) in the context of testing the loss leader hypothesis of retail sales. We find

that controlling for products with zero demand using our approach gives demand estimates

that can be more than twice as elastic than standard estimates that select out the zeroes.

We also show that the estimated price elasticities increase substantially during Lent (a high

demand period for this product category) after we control for the zeroes. Both of these

1In the last couple of years, new aggregate demand models have been considered that accommodate
zeroes in market share data in Dube, Hortacsu, and Joo (2020) and Lima (2021). Dube et. al. model the
products with zero market shares as ones that are not in any consumer’s consideration set. Lima’s model
rationalizes the zeros in market shares by restricting the support of the idiosyncratic taste shock. Neither
paper deals with the sample noise issue in observed market shares. Since Dube et. al., Lima, and our paper’s
methods rely on nonnested assumptions on the source of zeros, in practice, knowing the true source of zero
is important for choosing the appropriate method. When in doubt, it is advisable to implement multiple
methods and compare the results. A potentially interesting direction for future research is to combine those
methods into a more generally applicable solution to the problem of zero market shares.
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findings have implications for reconciling the loss-leader hypothesis with the data.

The plan of the paper is the following. In Section 2, we illustrate the stylized empirical

pattern of Zipf’s law where market zeroes naturally arise. In Section 3, we describe our solu-

tion to the zeroes problem using a simple logit setup without random coefficients to make the

essential matters transparent. In Section 4, we extend the moment inequality construction

and our estimator to general discrete choice model possibly with random coefficients. Sec-

tion 5 discusses the point identification condition. Sections 6 and 7 present the theoretical

properties of the proposed estimator. Section 8 present results of Monte Carlo simulations

and Section 9 presents the application to the DFF data, respectively. Section 10 concludes.

2 Market Zeroes

In this section, we highlight the empirical pattern of zeroes. Here we primarily use workhorse

store level scanner data to illustrate these patterns. It is the same data that will also be

used for our application. However we emphasize that our focus here on scanner data is only

for the sake of a concrete illustration of the market zeroes problem - the key patterns we

highlight in scanner data are also present in many other economic settings where demand

estimation techniques are used (discussed further below and illustrated in the Appendix).

We employ here a widely studied store level scanner data set from the Dominick’s Finer

Foods grocery chain, which is a public data set that has been used by many researchers.2

The data comprise 93 Dominick’s Finer Foods stores in the Chicago metropolitan area over

the years from 1989 to 1997. Like other store level scanner data sets, this data set pro-

vides demand information (price, sales, marketing) at store/week/UPC level, where a UPC

(universal product code) is a unique bar code that identifies a natural product3.

Table 1 presents information on the resulting product variety across the different prod-

uct categories in the data. The first column shows the number of products in an average

store/week - the number of UPC’s can be seen varying from roughly 50 (e.g., bath tissue)

to over four hundred (e.g., soft drinks) within even these narrowly defined categories. Thus

there is considerable product variety in the data. The next two columns illustrate an im-

portant aspect of this large product variety: there are often just a few UPC’s that dominate

each product category whereas most UPC’s are not frequently chosen. The second column

2For a complete list of papers using this data set, see the website of Dominick’s Database:
http://research.chicagobooth.edu/marketing/databases/dominicks/index.aspx

3Store level scanner data can often be augmented with a panel of household level purchases (available,
for example, through IRI or Nielsen). Although the DFF data do not contain this micro level data, the main
points of our analysis are equally applicable to the case where household level data is available. Store level
purchase data can be viewed as a special case household level data where all households are observationally
identical (no observable individual level characteristics).
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illustrates this pattern by showing the well known “80/20” rule that prevails in our data: we

see that roughly 80 percent of the total quantity purchased in each category is driven by the

top 20 percent of the UPC’s in the category. In contrast to these “top sellers”, the other 80

percent of UPC’s contain relatively “sparse sellers” that share the remaining 20 percent of

the total volume in the category. The third column shows an important consequence of this

sparsity: many UPC’s in a given week at a store simply do not sell. In particular, we see

that the fraction of observations with zero sales can even be nearly 60% for some categories.

Table 1: Selected Product Categories in the Dominick’s Database

Category

Average Number

of UPC’s in a

Store/Week Pair

Percent of Total

Sale of the Top

20% UPC’s

Percent of

Zero Sales

Beer 179 87.18% 50.45%

Cereals 212 72.08% 27.14%

Crackers 112 81.63% 37.33%

Dish Detergent 115 69.04% 42.39%

Frozen Dinners 123 66.53% 38.32%

Frozen Juices 94 75.16% 23.54%

Laundry Detergents 200 65.52% 50.46%

Paper Towels 56 83.56% 48.27%

Refrigerated Juices 91 83.18% 27.83%

Soft Drinks 537 91.21% 38.54%

Snack Crackers 166 76.39% 34.53%

Soaps 140 77.26% 44.39%

Toothbrushes 137 73.69% 58.63%

Canned Tuna 118 82.74% 35.34%

Bathroom Tissues 50 84.06% 28.14%

We can visualize this situation in another way by fixing a product category (here we

use canned tuna) and simply plotting the histogram of the volume sold for each week/UPC

realization for a single store in the data. This frequency plot is given in Figure 1. As can

be see there is a sharp decay in the empirical frequency as the purchase quantity becomes

larger, with a long thin tail.4 In particular the bulk of UPC’s in the store have small

purchase volume: the median UPC sells less than 10 units a week, which is less than 1.5%

4We plot the long tail pattern differently from a commonly seen illustration of power law using rank-size
distribution (“size against rank or popularity”), but the difference is only cosmetic (basically flipping the x-
and y-axis); the two ways of plotting convey the same information.
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Figure 1: Zipf’s Law in Scanner Data

of the median volume of Tuna the store sells in a week. The mode of the frequency plot is

a zero share.

This power-law decay in the frequency of product demand is often associated with “Zipf’s

law” or the “the long tail”, which has a long history in empirical economics.5 We present

further illustrations of this long-tail demand pattern found in international trade flows as

well as cross-county homicide rates in Appendix A, which provides a sense of the generality

of these stylized facts.

The key takeaway from these illustrations is that the presence of market zeroes in the data

is closely intertwined to the prevalence of power-law patterns of demand. We will exploit this

relationship to place structure on the data generating process that underlies market zeroes.

3 A First Pass Through Logit Demand

Why do zero shares create a problem for demand estimation? In this section, we use the

workhorse multinomial logit model to explain the zeroes problem and our solution. The

general case is treated in the next section. In both cases, we assume that the econometrician

observes a data set of {(nt, sjt, xjt) : j = 1, ..., Jt, t = 1, ..., T}, where nt is the number of

potential consumers in market t, sjt is the fraction of those consumers choosing product

j, and xjt is the vector of observed characteristics of the product j and/or market t that

often includes price, Jt is the number of inside products in market t and T is the number of

markets. We focus on the case where there are many markets.

5See Anderson (2006) for a historical summary of Zipf’s law and many examples from the social and
natural sciences. See Gabaix (1999) for an application of Zipf’s law to the economics literature.

6



3.1 Making Sense of The Zeroes

Consider a multinomial logit model for the demand of Jt products (j = 1, . . . , Jt) and an

outside option (j = 0). A consumer i derives utility uijt = δjt+ εijt from product j in market

t, where δjt is the mean-utility of product j in market t, and εijt is the idiosyncratic taste

shock that follows the type-I extreme value distribution. As is standard, the mean-utility

δjt of product j > 0 is modeled as

δjt = x′jtβ0 + ξjt, (1)

where ξjt is the unobserved characteristic. The outside good j = 0 has mean utility normal-

ized to δ0t = 0. The parameter of interest is β0.

Each consumer chooses the product that yields the highest utility:

sijt = 1{ujt ≥ uj′t ∀j′ = 0, 1, . . . , Jt}, for j = 0, 1, . . . , Jt. (2)

Aggregating consumers’ choices, we obtain the true choice probability of product j in market

t, denoted as

πjt = Pr(product j is chosen in market t) = E[sijt|δ1t, . . . , δJtt].

The standard approach introduced by Berry (1994) for estimating β0 is to combine demand

system inversion and instrumental variables.

First, for demand inversion, one uses the logit structure to find that

δjt = log (πjt)− log (π0t) , for j = 1, . . . , Jt. (3)

To handle the potential endogeneity of xjt (i.e., its correlation with ξjt), one finds some

excluded instruments which along with the exogenous controls in xjt form zjt such that

E [ξjt| zjt] = 0. (4)

Then two stage least squares with δjt defined in (3) as the dependent variable becomes the

identification strategy for β0.

Unfortunately πjt is not observed as data - it is a theoretical choice probability defined

by the model but only indirectly revealed through actual consumer choices. The standard

approach to this following Berry (1994), Berry, Levinsohn, and Pakes (1995), and many

subsequent papers in the literature has been to substitute sjt the empirical market share for

7



πjt, where

sjt = n−1
t

nt∑
i=1

sijt for j = 0, 1, . . . , Jt, (5)

and run a two-stage least square with log (sjt)− log (s0t) as dependent variable, xjt as covari-

ates, and zjt as instruments to obtain estimates for β0. The theoretical justification used in

the literature assume that nt is large and importantly, πjt either is bounded away from zero

or converges to zero at a slower rate than 1/nt. Under these assumptions, Berry, Linton,

and Pakes (2004) and Freyberger (2015) show that plugging in sjt for πjt at worst leads to

a correctible bias.

However, for data sets with the power law pattern described in Section 2, a large propor-

tion of the sjt’s are zeroes. Substituting sjt for πjt is no longer feasible, and the theoretical

assumptions used to justify that practice are no longer compatible with the data. The for-

mer is because log(0) is not finite, and the later is because under the assumption that πjt

approaches zero at a slower rater than 1/nt, we have Pr(sjt = 0)→ 0, which is not consistent

with the large number of zeroes in the data.

We rationalize the large number of zeros in sjt at seemingly large nt by allowing πjt

to approach zero at the rate of 1/nt. When πjt approaches zero at this rate, for example,

πjt = c/nt for a constant c > 0, we have

lim
nt→∞

Pr(sjt = 0) = lim
nt→∞

(1− c/nt)nt = exp(−c). (6)

Thus, zeroes arise naturally in this framework. In our bound construction below, we will

assume a much weaker lower bound on πjt than the existing literature: πjt ≥ ε1/nt for some

fixed constant ε1.

There is a simple supply side explanation for why the choice probability of some products

should approach zero at the exact rate of 1/nt and why there may be a lower bound for ntπjt.

A market with the power-law feature described in Section 2 may be thought of as one with

a few dominant products that coexist with a competitive fringe (see e.g. Shimomura and

Thisse (2012)). The fringe products enjoy free entry and exit and are subject to a fixed cost,

denoted fjt. The free entry and exit drives their expected profit to zero:

ntπjtmjt − fjt = 0, (7)

where mjt is the average mark-up. Then ntπjt = fjt/mjt. And πjt ≥ ε1/nt holds for some ε1
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if there are a lower bound for fjt and an upper bound for mjt.
6 If there are also an upper

bound for fjt and a lower bound for mjt, then πjt approaches zero at the rate of 1/nt. The

existence of such bounds are reasonable in differentiated product markets.7

3.2 Estimation Problem with Zeroes

As mentioned above, the zeroes pose an immediate challenge to estimation: log(sjt) is −∞
when sjt = 0. This makes the standard BLP estimator ill-defined. A common workaround

is to ignore the (jt)’s with sjt = 0, effectively lumping those j’s into the outside option in

market t. This however leads to a selection problem. To see this, suppose sjt = 0 for some

(j, t) and one drops these observations from the analysis - effectively one is using a selected

sample where the selection criterion is sjt > 0. In this selected sample, the conditional mean

of ξjt is no longer a constant. This is the well-known selection-on-unobservables problem

and with such sample selection, an attenuation bias ensues.8 The attenuation bias generally

leads to demand estimates that appear to be too inelastic.9

Another commonly adopted empirical “trick” is to add a small positive number ε > 0

to the sjt’s that are zero, and use the resulting modified shares sεjt > 0 in place of πjt.
10

However, this trick only treats the symptom, i.e., sjt = 0, but overlooks the nature of the

problem: the true choice probability πjt is small. And in this case, small estimation error

in any estimator π̂jt of πjt would lead to large error in the plugged-in version of δjt and

the estimation of β0. This problem manifests itself directly because the estimate β̂ can be

incredibly sensitive to the particular choice of the small number being added and there is

little guidance on what is the “right” choice of the small number. In general, like selecting

6The calculation assumes single-product firms. Multi-product firms stop putting out new products sooner
because they internalize the business stealing effect of new products on their existing products.

7The only bound that might be disputable is the lower bound for the average markup because markup
is endogenous. But even that has some supporting evidence in the literature: Armstrong (2016) shows that
the markup converges to a positive constant rather than zero when the number of firms grows to infinity.

8To see why E[ξjt|xjt, sjt > 0] is not a constant, consider two values of xjt: x, x∗ such that x′β > x∗′β,
and consider the homoskedastic case for simplicity. For each given value of xjt, the criterion sjt > 0 selects
high values of ξjt and leaves out low values of ξjt. Moreover, the selection is more severe for x∗ than for x
because the unobservable (to econometricians) needs to more appealing to induce a positive observed market
share when the observable characteristic is less appealing.

Thus, we should have
E[ξjt|xjt = x∗, sjt > 0] > E[ξjt|xjt = x, sjt > 0], (8)

and clearly, E[ξjt|xjt, sjt > 0] is not a constant.
9It is easy to see that the selection bias is of the same direction if the selection criterion is instead sjt > 0

for all t, as one is effectively doing when focusing on a few top sellers that never demonstrate zero sales in
the data. The reason is that the event sjt > 0 for all t contains the event sjt > 0 for a particular t. If the
markets (ξjt’s) are independent, the particular t part of the selection dominates.

10Berry, Linton, and Pakes (2004)and Freyberger (2015) study the biasing effect of plugging in sjt for πjt.
Their bias corrections do not apply when there are zeroes in the empirical shares.
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away the zeroes, the “adding a small number trick” is also a biased estimator for β0. We

illustrate both biases in the Monte Carlo section (Section 8).

Despite their failure as general solutions, these “ad hoc zero fixes” have in them what

could be a useful idea – Perhaps the variation among the non-zero share observations can

be used to estimate the model parameters, while at the same time the presence of zeroes is

controlled in such a way that avoids bias. We will present a new estimator that formalizes

this possibility by using moment inequalities to control for the zeroes in the data while using

the variation in the remaining part of the data to estimate the demand parameters.

3.3 Constructing Moment Inequalities

Our approach builds on two estimators of log(πjt). We refer to them as the upper and lower

bounds of log(πjt) because they bound log(πjt) from above and below on average in the sense

discussed below. These bounds are:

log((ntsjt + ιu)/nt) and log((ntsjt + ι`)/nt) (9)

where ιu and ι` are two positive numbers that we now construct.

To construct ιu and ι`, note that ntsjt follows a binomial distribution given nt and πjt:

Bin(nt, πjt).
11 For each fixed n and π, and ι ≥ 0, define the function

f(ι;n, nπ) := E[log(ntsjt + ι)− log(ntπjt)|nt = n, πjt = π].

The function f is negative infinity at ι = 0 (because sjt can be 0 with positive probability),

strictly increasing with ι, and approaches positive infinity as ι → ∞. Therefore, at each n

and π, the function crosses zero once and only once. We let the point of crossing be denoted

ι∗(n, nπ), which is defined implicitly by the equation:

f(ι∗(n, nπ);n, nπ) = 0. (10)

This quantity can be calculated because the function f(ι;n, nπ) (i.e., the expectation) can

be calculated using the binomial distribution.

As explained in Section 3.1 above, we assume that ntπjt is bounded below by a small

11Here we maintain the standard assumption that in each given market, consumers’ choices are independent
and identically distributed.
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constant ε1 > 0, then we can define

ιu := sup
n,π:nπ≥ε1

ι∗(n, nπ) and ι` := inf
n,π:nπ≥ε1

ι∗(n, nπ). (11)

Furthermore, suppose that ιu and ι` are known and ιu < ∞, ι` > 0 for now, which we will

discuss shortly below. Then, if we let ιu and ι` be any finite number satisfying ιu ≥ ιu and

0 < ι` ≤ ι`, we will have

E[log((ntsjt + ιu)/nt)− log(πjt)|zjt] ≥ 0 and E[log((ntsjt + ι`)/nt)− log(πjt)|zjt] ≤ 0. (12)

Combining this with the orthogonality condition E[ξjt|zjt] = 0, we obtain a set of conditional

moment inequalities

E[log(ntsjt + ιu)/nt)− log(π0t)− x′jtβ0|zjt] ≥ 0

E[log(ntsjt + ι`)/nt)− log(π0t)− x′jtβ0|zjt] ≤ 0. (13)

The piece log(π0t) is easy to estimate because π0t is typically large (sufficiently distant from

zero) in most empirical work. We can plug in s0t or any modification s̃0t of s0t for π0t. As long

as the modification is negligible relative to the estimation error in s0t, standard arguments

will imply T−1
∑T

t=1[log(s̃0t)− log(π0t)] = op(1). We specify s̃0t in the general case later. For

the logit case, s̃0t = s0t works just fine.

Now we discuss the choice of ι` and ιu in greater detail. The first two questions we seek

to answer are whether ι` is positive and ιu is finite, and whether we know them without the

knowledge of the lower bound ε1 for ntπjt. The third question is how to choose ι` and ιu

given our answers to the first two questions.

We answer the first two questions by numerically obtaining ι∗(n, nπ) for a large represen-

tative set of values of n and nπ and plot them in Figure 2.12 The figure shows that ι∗(n, nπ)

varies smoothly with its two arguments, which gives us confidence that the supremum and

the infimum from these discrete values are close to those of the function. Specifically, Figure

2 shows that ιu ≈ 0.5 and it is not affected by ε1. For ι`, the figure shows that it approaches

zero as ε1 approaches zero. Thus, without knowing ε1, we do not know ι`. Nevertheless, the

calculation that leads to Figure 2 also produces Table 2, which gives us an idea of how ι`

12We considered the values: n ∈ {100, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 10000, 20000,
40000} and nπ ∈ {0.0001 : 0.0001 : 0.01, 0.02 : .01 : 1, 1 : 0.1 : 50}, where the numbers between semicolons
are the step sizes.

11



Figure 2: ι∗(n, nπ) for a Range of n and nπ Values

changes with ε1. As the table shows, when ε1 is very small, ι` is well approximated by ε1.13

Table 2: Computed ι` for Various Values of ε1

ε1 n ι`
≥ 0.5 ∈ [100, 40000] ≥ 0.250
0.1 ∈ [100, 40000] 0.0776
0.01 ∈ [100, 40000] 0.00955
0.001 ∈ [100, 40000] 0.000993
0.0001 ∈ [100, 40000] 0.0000998

Given what we have learned about ιu and ι`, we recommend choosing ιu and ι` as follows.

For ιu, any ιu > ιu works in theory, but for better finite sample property, we recommend an

ιu a bit larger. In the Monte Carlo simulations we find that ιu = 2 works well. Moreover,

using ιu = 2 has an added benefit: it not only satisfies the theoretical requirement for the

logit model, but also satisfies the requirement for non-logit based models, as we will see in

Section ??.

For ι`, one can make a guess about how small ε1 can be based on institutional knowledge,

and simply use an ι` that is smaller than this number. In practice, it sometimes is not difficult

to make an educated guess of ε1 when you realize that ε1 is the lowest number of units that

one expects a product to sell in a market. For example, if the market unit is week and the

product is a particular yogurt, the supermarket probably will not put it on the shelf if it is

13Complete analytical investigation of the shape of ι∗(n, nπ) is difficult due to the lack of analytical solution
to expectations of the logarithm of binomial random variables. However, we provide some partial answers
by analytically deriving the limit of ι∗(n, nπ) as nπ approaches infinity and that as nπ approaches zero in
Appendix E. These limits are consistent with the numerical results reported in Figure 2 and Table 2.
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expected to sell less than one unit per 100 weeks. That gives us a lower bound ε1 = 0.01.

What if one makes a wrong guess at the lowest number of sales? Over-guessing can cause

violations of the moment inequalities (12), but fortunately, under-guessing does not. Setting

ι` at a value much lower than the actual ι` can guarantee the validity of (12). In our Monte

Carlo and application, we in fact use an extremely low ι` = 2−52 just to be on the safe

side. As we see in the Monte Carlo and the empirical application, the estimates have good

precision despite the extremely small ι` used.14

3.4 Point Estimation

One can use any of the inference procedures for moment inequality models on (13), for

example, Andrews and Shi (2013) and Cox and Shi (2019). Point identification is not

required. On the other hand, point identification can greatly reduce the computational cost

because inference without point identification generally requires costly test inversion. This

is especially important for more complicated demand models than multinomial logit where

even standard BLP estimation is computationally nontrivial.

In later sections, we discuss conditions that guarantee point identification. Under those

conditions, the inequalities in (13) hold as equalities asymptotically on a set of zjt values of

positive measure, and ensure point identification in the same spirit as Kahn and Tamer (2009)

in the context of endogenously censored regression models. To capture the identification

information provided by those zjt values, we consider a countable collection G of instrumental

indicator functions g : Rdz → {0, 1}, where dz is the dimension of zjt. We adopt the

collections of instrumental functions in Andrews and Shi (2013). Such collections are shown

therein to preserve all the identification information in the conditional moment inequality

model (13), and thus they preserve the point-identification provided by the set of zjt values

at which the inequalities asymptotically hold as equalities, without that set of values being

known. An example of G is given below.

We form the sample moments

m̄u
T (β, g) : = (T J̄T )−1

T∑
t=1

Jt∑
j=1

(δ̂ujt − x′jtβ)g(zjt) and

m̄`
T (β, g) : = (T J̄T )−1

T∑
t=1

Jt∑
j=1

(δ̂`jt − x′jtβ)g(zjt),

14We note that this is generally true if the point identification condition in Section 5 below holds and nt
is large. But if the point identification condition does not hold or nt is small, too small an ι` can affect
the precision of the inference. In that case, one should use institutional knowledge to carefully determine
ε1—the lower bound for ntπjt, subsequently determine ι` according to Table 2, and choose ι` = ι`.
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where J̄T = T−1
∑T

t=1 Jt, δ̂
u
jt = log((ntsjt + ιu)/nt) and δ̂`jt = log((ntsjt + ι`)/nt). These

moments are used to form the criterion function:

Q̂T (β) =
∑
g∈G

µ(g)
{

[m̄u
T (β, g)]2− + [m̄`

T (β, g)]2+
}
, (14)

where µ(g) : G → [0, 1] is a probability mass function on G, [x]− = min{0, x} and [x]+ =

max{0, x}. Finally, we define the estimator β̂T to be the minimizer of Q̂T (β):

β̂T = arg min
β∈B

Q̂T (β), (15)

where B is the parameter space of β. As we can see, computation of this estimator is on par

with the standard GMM estimator for the multinomial logit model.

For G, we divide the instrument vector zjt into discrete instruments, zd,jt, and continuous

instruments zc,jt. Without loss of generality assume that zc,jt lies in [0, 1]dzc .15 Let the set

Zd be the discrete set of values that zd,jt can take. The set G is defined as

G = {ga,r,ζ(zd, zc) = 1((z′c, z
′
d)
′ ∈ Ca,r,ζ) : Ca,r,ζ ∈ C}, where

C = {(×dzcu=1((au − 1)/(2r), au/(2r)])× {ζ} : au ∈ {1, 2, ..., 2r}, for u = 1, ..., dzc ,

r = r0, r0 + 1, ..., and ζ ∈ Zd}. (16)

In practice, we truncate r at a finite value r̄T .16 This does not affect the first order asymptotic

property of our estimator as long as r̄T →∞ as T →∞. For µ(·), we use

µ({ga,r,ζ}) ∝ (100 + r)−2(2r)−dzcK−1
d , (17)

where Kd is the number of elements in Zd. The same µ measure is used and works well in

Andrews and Shi (2013).17

15If not, we can normalize it to lie in [0, 1] as suggested in Andrews and Shi (2013). For example, we can

let z̃c,jt = FN(0,1)

(
Σ̂
−1/2
zc zc,jt

)
, where FN(0,1)(·) is the standard normal cdf and Σ̂zc is the sample covariance

matrix of zc,jt, and use z̃c,jt in place of zc,jt to construct the instrumental functions.
16We shall show some simulation results in the Monte Carlo section that provides useful guidance on

choosing r̄T (and other ways of keeping the dimension of G manageable) in practice.
17Note that appropriate choices of G and µ are not unique. For other possible choices, see Andrews and

Shi (2013).
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4 The General Model

Now we extend our discussion to the general differentiated product demand model and

present our parameter estimator.

4.1 Setup

The specification of the general model is the same as the logit model except that the consumer

level shock εijt in uijt = δjt + εijt ≡ x′jtβ + ξjt + εijt is no longer type-I extreme value

distribution. Instead, we assume that

εit = (εi0t, . . . , εiJtt) ∼ F (· |xt;λ) , (18)

where xt stands for (x
′
1t, . . . , x

′
Jtt

)′, and F (·|xt, λ) is a conditional cumulative distribution

function known up to the finite dimensional unknown parameter λ. By allowing xt and an

unknown parameter to enter the distribution of εijt, this specification is general enough to

encompass most models used in empirical work. In particular, it encompasses the random

coefficient specifications εijt = x
′
jt(βi − β) + νijt, where βi is a vector of random coefficients

that follows a distribution (e.g., joint normal) known up to some unknown parameter, νijt is

the idiosyncratic taste shock.18

Given the specification, the unknown parameter in the general model is θ = (β′, λ′)′. For

clarity, we use θ0 ≡ (β′0, λ
′
0)′ to denote the true value of θ. Let B ⊆ Rdβ denote the parameter

space of β, and Λ ⊆ Rdλ the parameter space of λ. Let Θ = B × Λ be the parameter space

of θ.

In this model, the choice probability of each product is determined by:

πjt =

∫
1{δjt + εj ≥ max

j′=0,1,...,Jt
(δj′t + εj′)}dF (ε0, ε1, . . . , εJt |xt, λ0), j = 0, 1, . . . , Jt. (19)

Let πt = (π1t, . . . , πJtt)
′. This system is invertible under the connected substitute condition

in Berry, Gandhi, and Haile (2013). In other words, we can define the inverse demand

function δt(πt, λ) := (δjt(πt, λ))Jtj=1 as the solution to the equation system

πjt =

∫
1{δjt(πt, λ) + εj ≥ max

j′=0,1,...,Jt
(δj′t(πt, λ) + εj′)}dF (ε0, ε1, . . . , εJt |xt, λ), j = 1, . . . , Jt.

(20)

18Requiring F (·|xt, λ) to be known up to a finite dimensional parameter rules out the vertical model
(see Berry and Pakes (2007)) because for the vertical model, εijt is a function of the unobservable product
characteristics (quality).
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Inverting the demand system allows for the use of instrumental variables to identify θ

based on the exclusion restriction:

E [ξjt |zjt ] = 0. (21)

where zjt is a vector of exogenous variables including exogenous components of xjt and

excluded instruments if there are any. This is because one can then obtain the following

moment restriction:

E
[
δjt(πt, λ0)− x′jtβ0

∣∣ zjt] = 0. (22)

If πt were observed, the parameter θ in the model would be identified under standard GMM

identification conditions. However, as discussed in the logit case, πt is not observed. Instead

only a noisy measure st := (s1t, . . . , sJtt)
′ is, and st frequently contains zero elements in many

commonly used data sets. As in the logit case, δt(st, λ) is typically not well defined when st

contains zero elements, and thus simply substituting st for πt in the moment conditions (22)

is problematic.

4.2 Bound Construction

Like in the logit case, we construct a pair of functions: δ̂ujt (st, λ) and δ̂`jt (st, λ), to form

bounds for δjt(πt, λ). The construction is based on the bounds for the logit case but adjusts

for the different functional form:

δ̂ujt(st, λ) = log((ntsjt + ιu)/nt) + δjt(s̃t, λ)− log(s̃jt),

δ̂`jt(st, λ) = log((ntsjt + ι`)/nt) + δjt(s̃t, λ)− log(s̃jt), (23)

where ι` and ιu are fixed numbers, and s̃t is a slight modification of st to take it off the

boundary of the probability simplex. We will require that the modification of s̃jt to sjt is

small so that ‖s̃t − st‖ = Op(1/nt). For example s̃jt = sjt + 1/nt (when Jt is bounded) or

s̃jt = sjt + 1/(ntJt) (when Jt is unrestricted) for j = 1, . . . , Jt.
19

To see why the construction in (23) may be valid and what new requirements we may

need on ιu and ι` if any, consider for example, the upper bound:

δ̂ujt(st, λ)− δjt(πjt, λ) = [log((ntsjt + ιu)/nt)− log(πjt)]

19We note that this implies s̃0t = s0t − Jt/nt or s̃0t = s0t − 1/nt. This in principle could be less than or
equal to zero. But in typical data sets, this is not an issue because s0t is much larger than Jt/nt. It is not
an issue asymptotically as we will assume that π0t—the share of the outside good—is bounded away from
zero.
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+ [(δjt(s̃t, λ)− log(s̃jt))− (δjt(πt, λ)− log(πjt))].

We already know from the logit case that the first summand is nonnegative in expectation

conditional on πjt as long as ιu ≥ ιu for ιu defined in equation (11). It is then clear that the

bound δ̂ujt(st, λ) will be asymptotically valid if either (i) the second summand is asymptoti-

cally negligible, or (ii) the conditional expectation of the second summand can be bounded

from above by that of the first. Next we show that the first case applies to logit-based

models, while the second case applies to models where the idiosyncratic error has a thinner

tail than the logistic distribution, for example, normal distributions.

When δjt(·, λ)− log(·j) is Uniformly Continuous

Let ∆0
Jt

denote a subset of {π ∈ (0, 1)Jt : 1′Jtπ < 1} that πt can take value in. Let ∆c
Jt

denote

an c−expansion of ∆0
Jt

, that is, ∆c
Jt

= {π ∈ (0, 1)Jt : π′1Jt < 1,minp∈∆0
Jt
‖p − π‖f ≤ c}

for c > 0, where ‖p − π‖f =
√
‖p− π‖2 + (1′(p− π))2. Note that the metric ‖ · ‖f takes

into account the difference for the outside share, while the Euclidean norm on {π ∈ (0, 1)Jt :

1′Jtπ < 1} only considers the shares for the inside goods.

Define the function δ̌t(·, λ) = (δ̌1t(·, λ), . . . , δ̌Jtt(·, λ))′ : ∆c
Jt
→ RJt where

δ̌jt(π, λ) := δjt(π, λ)− log(πj).

Since ∆c
Jt

may contain points arbitrarily close to the boundary of the probability simplex, in

general neither δjt(·, λ) nor log(·j) is uniformly continuous on ∆c
Jt

. Thus, neither δjt(s̃t, λ)−
δjt(πt, λ) nor log(s̃jt)− log(πjt) may converge to zero as nt →∞ and πjt → 0 even if s̃t is the

most efficient consistent estimate of πt. However, in many models used in empirical work

the logit inverse demand (log(πj) − log(π0)) is a good first-order approximation of δjt(π, λ)

when πj is close to zero and this first order term is the entire reason that the inverse demand

is not uniformly continuous. For such models, the following assumption is reasonable:

Assumption 1. (a) For some c > 0, maxt=1,...,T ;j=1,...,Jt supπ,π̃∈∆c
Jt

:π 6=π̃ supλ∈Λ
|δ̌jt(π̃,λ)−δ̌jt(π,λ)|
‖π̃−π‖f

√
Jt

≤
O(1).

(b) 0 < ι` ≤ ι` and ιu ≤ ιu < ∞, where ι` and ιu are defined in equation (11), and

supt=1,...,T nt‖s̃t − st‖f = Op(1).

Now we give two examples where Assumption 1(a) is satisfied.

Example 4.1. Nested Logit. The inverse demand of the nested logit model can be written as

δjt(πt, λ) = log(πjt/π0t)−λ log(πgt/π0t) where πgt is the aggregate share of all the products in

the nest (nest g) that j is in. In this case, δ̌jt(πt, λ) = (λ−1) log π0t−λ log(πgt). Assumption
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1(a) is satisfied if ∆0
Jt

= {π ∈ (0, 1)Jt : 1 − 1′Jtπ > ε0, πgt > ε0 for all nests g}. In fact,

Assumption 1(a) holds without the
√
Jt, which is a stronger version of the assumption. The

requirement that π0t and πgt are bounded away from zero is reasonable for data sets in which

neither the outside good nor any of the nests have zero shares.

Example 4.2. Random Coefficient Logit. For the random coefficient logit model, δjt(πt;λ)

is the solution to the following equation system:

πjt = exp(δjt)

∫
exp(w′jtv)

1 +
∑Jt

k=1 exp(δkt + w′ktv)
dF (v;λ), j = 1, . . . , Jt,

where wjt is a vector of covariates with random coefficients, and F (·;λ) is the distribution

of the random coefficient known up to the unknown parameter λ. Using the definition of δ̌jt

above, we can write

exp(−δ̌jt(πt;λ)) =

∫
exp(w′jtv)

1 +
∑Jt

k=1 exp(δ̌kt(πt;λ) + w′ktv)πkt
dF (v;λ). (24)

Assume that ‖wjt‖ is bounded by w and 0 < supw:‖w‖≤w
∫

exp(w′v)dF (v;λ) < ∞. We

can already see that δ̌jt(πt;λ) is bounded away from −∞ when πjt → 0 (in which case,

δjt(πt;λ) → −∞). With additional algebra, we can show that ∂δ̌jt(πt;λ)/∂πt is bounded,

which essentially guarantees Assumption 1(a). The details are given in Appendix D.

Under Assumption 1(a), the requirement for ιu and ι` are the same as in the logit case,

which is formally stated in Assumption 1(b).

When δjt(·, λ)− log(·j) is Not Uniformly Continuous

In some models used in empirical work, Assumption 1 can fail to hold. For example, if

the model is a simple probit with Jt = 1, δt(π) = Φ−1(π), where Φ−1 is the inverse of the

standard normal cdf. In this case, δ̌t(π) = δt(π) − log(π) = Φ−1(π) − log π. This function

approaches +∞ when π → 0, and has arbitrarily large slope near zero. For such cases, an

alternative assumption may be reasonable and this is given in the following Assumption.

Assumption 2. (a) maxj,tE[δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0)|πt, zt] ≤ 0 ,

(b) minj,tE[δjt(s̃t, λ0)− δjt(πt, λ0)|πt, zt] ≥ 0, and

(c) for j = 1, . . . , Jt, s̃jt = sjt + 1/nt, 0 < ι` ≤ ι` and 1 < ιu <∞.

(d) supj supπ:πj≥(ε1∧1)/nt |δjt(π, λ0)| ≤ C0 log(nt) for a constant C0 > 0 for all t.
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Example 4.3. Binary Probit. For binary probit model, we verified numerically that parts

(a)-(b) hold given part (c), even though we do not have a theoretical proof. The intuition is

that Φ−1(π) decreases slower than log(π) as π → 0. Thus, smaller modification ι is needed

for E[Φ−1(sjt + ι/nt)|πt, zt] to exceed E[Φ−1(πjt)|πt, zt] than for E[log(sjt + ι/nt)|πt, zt] to

exceed E[log(πjt)|πt, zt]. And ι = 1 is sufficient for the latter, as we discussed in the logit

case. Part (d) holds simply because of the shape of Φ−1(·) which increases slower than log(·)
as the argument decreases to zero.

The following lemma shows that the bounds constructed in (23) are asymptotically valid:

Lemma 1. Suppose that mint=1,...,T nt → ∞ as T → ∞, that ntπjt ≥ ε1 for j = 1, . . . , Jt

and ε1 being the positive number used in (11), and that E[ξjt|zjt] = 0. If either Assumption

1 or Assumption 2(a)-(c) holds. Then, there exist random variables eujt and e`jt such that

supj=1,...,Jt;t=1,...,T
n
1/2
t

T 1/4J
1/2
t

|eyjt| = Op(1) for y = u, `, and

E[δ̂ujt(st, λ0)− xjtβ0 + eujt|zjt] ≥ 0

E[δ̂`jt(st, λ0)− xjtβ0 + e`jt|zjt] ≤ 0. (25)

The moment inequalities (25) can be taken to the data since the term eyjt (y = u, `) is

ignorable provided that nt increases at a faster rate than T 1/2Jt. Also note that for the multi-

nomial logit and the nested logit case, the lemma holds without the J
1/2
t in the denominator

because Assumption 1(a) holds without the J
1/2
t in supj=1,...,Jt;t=1,...,T

n
1/2
t

T 1/4J
1/2
t

|eyjt| = Op(1).

Thus for these models nt only needs to increase faster than T 1/2.

4.3 Point Estimation

Like in the logit case, one can apply any of the inference procedures for moment inequality

models on (25). Yet point identification can greatly simplify computation. Point identifica-

tion conditions are given in Section 5. Under those conditions the inequalities in (25) hold

as equalities asymptotically on a set of zjt values with positive measure.

We define the point estimator analogous to the logit case:

θ̂T := (β̂′T , λ̂
′
T )′ = arg min

θ∈Θ
Q̂T (θ), (26)

where

Q̂T (θ) =
∑
g∈G

µ(g)
{

[m̄u
T (θ, g)]2− + [m̄`

T (θ, g)]2+
}
, with (27)

19



m̄u
T (θ, g) := (T J̄T )−1

T∑
t=1

Jt∑
j=1

(δ̂ujt(st, λ)− x′jtβ)g(zjt) and

m̄`
T (θ, g) := (T J̄T )−1

T∑
t=1

Jt∑
j=1

(δ̂`jt(st, λ)− x′jtβ)g(zjt).

where µ(g) : G → [0, 1] is a probability mass function on G and G is a collection of instru-

mental functions. Both G and µ(·) have been given in Section 3.4.

5 Point Identification Condition

The point identification condition is motivated by the power law feature of the data demon-

strated in Section 2. The feature indicates a coexistence of a few dominant products with

thick demand and a large number of fringe products with thin demand. For a dominant

product j in market t, πjt is large and log(sjt + ιu/nt) and log(sjt + ι`/nt) are close to each

other and close to log(πjt) at large nt. If certain values of the exogenous variables zjt pre-

dict such πjt’s, then at those zjt values, the conditional moment inequalities in (25) hold

as equalities asymptotically. These equalities may yield point identification by standard

identification arguments for BLP moment conditions.

Formally, let Z0 stand for the set of values of zjt that predict dominant products (those

with choice probabilities that do not approach zero). We can state the assumption as follows:

Assumption 3. There exists a fixed constant ε0 ∈ (0, 1) and a set Z0 ⊆ supp(zjt) such that

infj,t,T Pr(zjt ∈ Z0) > 0, such that Pr(πjt ≥ ε0|zjt ∈ Z0) = 1 for all j, t.

Below we give three stylized demand-supply models that could give rise to the dominant

products below and discuss what the dominant product predictors are in each case. For now,

it is important to note that zjt includes both the exogenous covariates in the demand model

and excluded instruments (if there are any). Often in practice, it is brand or UPC dummies

that predict dominant status, which usually are also included exogenous covariates.

We state the lemma that shows that the bounds collapse on Z0 under Assumption 3:

Lemma 2. Suppose that mint=1,...,T n
2
t/T → ∞ as T → ∞, and that Assumption 3 holds.

Then, we have

sup
j=1,...,Jt,t=1,...,T

sup
λ∈Λ

nt|δ̂ujt(st, λ)− δ̂`jt(st, λ)|1{zjt ∈ Z0} = Op(1). (28)

Remark. When the bounds collapse, the moment inequalities (25) holds as equalities on

Z0 asymptotically. Then the standard (point) identification considerations for BLP models
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apply here, except that attention is restricted on Z0. In general, if the instruments shift

price and sales sufficiently for the dominant products, the model is point identified.

Remark. Note that neither Z0 or ε0 need to be known in order to use our estimator. This is

an advantage of the moment inequality approach comparing to an alternative approach that

pre-selects products that never experience zeroes. The key to this is the Andrews and Shi

(2013)-type instrumental functions that ensure that asymptotically, all the information in the

conditional moment inequalities (25) are preserved in forming the unconditional moments.

That will guarantee that the point-identification information provided by Z0 is preserved as

well, even though Z0 is unknown.

Next, we discuss how the dominant products may come into being. Such products or firms

have been a subject of interest since the early days of industrial organization. They have been

studied under the name of incumbents, leaders as well as as dominant products/firms (see e.g.

Markham (1951), Chapter 8 of Tirole (1988), Gowrisankaran and Holmes (2004), Shimomura

and Thisse (2012)). They are the ones that enjoy a large market share and earn a positive

profit despite that there are free entry and an unlimited number of potential entrants. The

literature does not agree on how they achieve their dominant status. Simple explanations

include (a) the dominant products are less substitutible with the fringe products than the

fringe products among themselves, (b) the dominant products are much more appealing

on average possibly due to brand loyalty or technological innovations, (c) the dominant

products are provided with significantly lower cost possibly due to technology advances.

In all explanations, a key is that the dominant products have features that are not easily

replicable, so there is no free entry of products with those features. We illustrate each using

a stylized example now.20 In the examples, we ignore the t subscript for notational ease.

Example 5.1. Consider a nested logit model with three nests: {0},J0,J1, where J0∪J1 =

{1, . . . , J}. Let J0 and J1 denote the number of elements in J0 and J1, respectively, and

suppose that J0 is fixed as n grows but J1 grows proportionally to n, say J1 = cn. Let πJ`
stand for the probability that a product in J` is chosen, for ` = 0, 1. Consider a nested logit

model that yields

πj
πJ`

=
exp(δj)∑

j′∈J` exp(δj′)
for j ∈ J`,

πJ` =
exp(λ(I(J`)− log(J`)))

1 + exp(λ(I(J0)− log(J0))) + exp(λ(I(J1)− log(J1)))
, for ` = 0, 1, (29)

20As we can see, in each of the examples, the dominant status indicator is a discrete random variable.
It is possible to conjure up a continuous dominant status indicator, but its support would need to have a
discontinuity to separate the dominant and fringe products, a feature that could be difficult to justify in
practice.
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where I(J`) = log
(∑

j∈J` exp(δj)
)

and λ is a parameter. Suppose that δj : j = 1, . . . , J are

bounded between δ and δ. Then, it is easy to verify that I(J`) − log(J`) is also bounded

between δ and δ. Thus πJ` ∈
[

exp(λδ))

1+exp(λδ)+exp(λδ)
, exp(λδ))

1+exp(λδ)+exp(λδ)

]
, and

πj
πJ`
∈ J−1

` [exp(δ −
δ), exp(δ − δ)]. Then we have,

πj ≥ J−1
0 exp(δ − δ + λδ)/(1 + exp(λδ) + exp(λδ))) for j ∈ J0,

nπj ≥ c−1 exp(δ − δ + λδ)/(1 + exp(λδ) + exp(λδ))) for j ∈ J1. (30)

That is, products in nest J0 are dominant products satisfying πj ≥ ε0 and those in nest J1

are fringe products satisfying nπj ≥ ε1 for ε0 = cJ−1
0 ε1 = J−1

0 exp(δ− δ+λδ)/(1 + exp(λδ) +

exp(λδ))) for j ∈ J1. Assumption 3 is satisfied if 1{j ∈ J0} is part of zjt.

In this example, the number of fringe products is proportional to n. This appears arbi-

trary, but can in fact be a natural result of the zero-profit condition under free-entry into

nest J1 (see the discussion at the end of Section 3.1). The dominant products are dominant

because they are protected from the competition of the fringe products by the substitution

pattern in product demand and barrier to entry into nest J0.

Example 5.2. Consider a multinomial logit model for simplicity. Normalize δ0t = 0. Let

δj = −αpj +
J∑
k=1

βkUPCkj + ξj, (31)

where pj is the price, UPCkj’s are UPC dummies (UPCkj = 1{k = j}), βj = bj for j ∈ J0,

and βj = − log(n)+bj for j /∈ J0 for a subset J0 of {1, . . . , J}, and bj are bounded constants.

Let J be fixed. Let pj and ξj be bounded. Then for j /∈ J0,

πj =
exp(−αpj + bj + ξj)/n

1 +
∑J

k=1 exp(−αpk + βk + ξk)
≥ n−1

exp(−αp+ b+ ξ)

1 + J exp(−αp+ b+ ξ)
, (32)

where p, b, ξ are the lower bounds of pj, bj, ξj, and p, b, ξ are the upper bounds. Let ε1 =
exp(αp+b+ξ)

1+J exp(αp+b+ξ)
. Then this shows that nπj ≥ ε1. For j ∈ J0,

πj =
exp(−αpj + bj + ξj)

1 +
∑J

k=1 exp(−αpk + βk + ξk)
≥

exp(−αp+ b+ ξ)

1 + J exp(−αp+ b+ ξ)
. (33)

Let ε0 = ε1. Then this shows that Assumption 3 holds if the UPC dummies are used as part

of zjt.
21

21Note that letting α be a random coefficient or adding other covariates would not change the essence of
the example.
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In this example, the mean-utility of the fringe products depends on n. This can be a

natural result of the zero-profit condition under free-entry (see the discussion at the end of

Section 3.1): only fringe products with such mean-utilities self-select into the market.

Example 5.3. Consider a multinomial logit model again. Let δj = −αpj + ξj. Let there be

constant marginal cost cj = α−1 log(n)zj + c0j. where zj is a dummy variable and c0j is a

bounded constant. Suppose for simplicity that the products are supplied by single-product

firms maximizing profit. Then it is easy to see that the optimal price is

pj = cj +
1

α(1− πj)
(34)

Let J be fixed and ξj be bounded. Then, for every j = 1, . . . , J

πj =
exp(− log(n)zj − αc0j − (1− πj)−1)

1 +
∑J

k=1 exp(− log(n)zk − αc0k − (1− πk)−1)

≤ exp(−αc− 1), (35)

where c is the lower bound for c0j. Let π = exp(−αc− 1). Then for j’s with zj=1, we have

πj ≥ n−1 exp(−αc− (1− π)−1)

1 +
∑J

k=1 exp(−αc− 1)
, (36)

where c is the upper bound for c0j. Let ε1 = exp(−αc−(1−π)−1)

1+
∑J
k=1 exp(−αc−1)

, then this shows that nπj ≥ ε1.

Similarly, we can show that for j’s with zj = 0, πj ≥ ε0 := ε1, verifying Assumption 3.

In this example, the cost of the fringe products depends on n. This can be a natural

result of the zero-profit condition under free-entry (see the discussion at the end of Section

3.1): only fringe products with such costs self-select into the market.

As we see above, the point identification assumption is natural in many situations with

dominant products. Nevertheless in settings where these Assumptions are questionable,

we can still use (25) as a basis for partial identification and inference. For example, one

can use the method developed in Andrews and Shi (2013) to construct a joint confidence

set for the full vector θ0. This confidence set is constructed by inverting an Anderson-

Rubin test: CS = {θ : T (θ) ≤ c(θ)} for some test statistic T (θ) and critical value c(θ).

Computing this set amounts to computing the 0-level set of the function T (θ)− c(θ), where

c(θ) typically is simulated quantiles and thus a non-smooth function of θ. A new approach

that is computationally less burdensome when β is high dimensional is proposed in Gandhi,

Lu, and Shi (2013), which also includes Monte Carlo simulations and empirical results using

the profiling approach under partial identification. When the linear coefficients of the control
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variables are nuisance parameters, one can also use the approach in Cox and Shi (2019) for

inference to further reduce computational burden.

6 Consistency

In this section, we establish the consistency of the point estimator defined in (26). We need

additional assumptions.

The first set of assumptions formalize the model and the data environment. They are

similar to those in Berry, Linton, and Pakes (2004) and Freyberger (2015).

Assumption 4. (a) The equation system (20) uniquely defines δt(πt, λ) for all t, all πt ∈
{π ∈ (0, 1)Jt : 1′Jtπ < 1} and all λ ∈ Λ.

(b) In each market, consumers’ preferences (εijt)
Jt
j=1 are i.i.d. draws from the known

distribution F (· |xt;λ0 ) with unknown parameter λ0 ∈ Λ. Consumer choice is determined

by (19).

(c) The moment condition (22) holds.

(d) (xt, st, zt)
T
t=1 are independent across markets.

(e) There exists a constant M such that E[ξ2+c
jt ] < M for all j = 1, . . . , Jt, all t = 1, . . . , T ,

and all T for some c > 0.

(f) supt=1,...,T nt‖s̃t − st‖f = Op(1) as T →∞.

(g)
nT

Jmax
T

√
T
→ ∞ and log(nT )√

T
→ 0 where nT = mint=1,...,T nt, J

max
T = maxt=1,...,T Jt, and

nT = maxt=1,...,T nt.

Remark. Part (g) requires that nt be not too small and not too big. The not-too-big part

may be surprising because larger nt is typically considered a good thing. Here larger nt is

not purely a good thing because we allow the lowest πjt to be inversely related to nt.
22 In

this framework, larger nt also implies lower minimum πjt which increases the difficulty in

bounding log(πjt). Also note that the Jmax
T in part (g) is not needed for multinomial logit

and nested logit models for the reason discussed in the paragraph below Lemma 1.

The next assumption formalizes the lower bound for choice probabilities for the outside

and the fringe products. These bounds have been discussed in detail in Sections 3 and 5.

Assumption 5. (a) π0t > ε0 for all t.

(b) πjt > ε1/nt for all j, t.

Next we impose a Lipschitz continuity assumption on δjt(π, λ) in π on the part of the π

space for the dominant products.

22Recall from Section 3 that this is done to rationalize the zeroes in the data.
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Assumption 6. supt=1,...,T supj=1,...,Jt supλ∈Λ sup
π,π̃∈∆

ε0/2
Jt

:π 6=π̃,πj ,π̃j≥ε0/2
|δjt(π̃,λ)−δjt(π,λ)|
‖π̃−π‖f

√
Jt

= O(1).

Remark. Assumption 6 is a commonly accepted assumption when all products are dominant

products (ref. Freyberger (2015)). The stronger version of this assumption without
√
Jt on

the denominator holds for multinomial logit models: δjt(π, λ) = log(πj) − log(π0) because

the logarithm function is uniformly continuous on the interval [ε0/2,∞). This argument

combined with Assumption 1 (a) implies Assumption 6 for models satisfying Assumption 1.

The same argument as that for the multinomial logit also works for the binary probit model.

Finally, we strengthen the point identification condition to ensure consistency. Define

G0 = {g ∈ G : g(z) = 0 for z /∈ Z0}. (37)

This is the set of instrumental functions that captures the identification information provided

by the dominant products. Note that the dominant status predictor(s) in zjt often is (are)

brand/UPC dummy(-ies), thus, elements in G0 are often those dummies interacted with

dummies created for other elements of zjt in the Andrews and Shi (2013) style (described

in Section 3.4). It is also worth noting that one does not need to know G0 but only need to

know that G contains such a G0, the latter guaranteed by Assumption 3 and the Andrews

and Shi style G.

Let

m̄T (θ, g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(πt, λ)− x′jtβ)g(zjt)

Q̂∗T (θ) =
∑
g∈G0

µ(g)m̄T (θ, g)2. (38)

The moments m̄T (θ, g) is infeasible because πjt is not observed. But we will be able to

show that they are close to m̄u
T (θ, g) and m̄`

T (θ, g) for g ∈ G0. The criterion function Q̂∗T (θ)

aggregates the infeasible moments for the dominant products. The assumption below is the

additional identification condition:

Assumption 7. For any c > 0, there exists C(c) > 0 such that

lim
T→∞

Pr

(
inf

θ∈Θ:‖θs−θs0‖>c
Q̂∗T (θ) > C(c)

)
= 1,

where θs is a subvector of θ and θs0 is its true value.

Remark. This assumption ensures that the dominant products provide enough restriction

to point identify the parameter θs. Only a subvector of θ is considered in this assumption
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because we want to allow (but not require) specifications with product fixed effects. The

fixed effects for the fringe products are clearly not identified since the data do not contain

sufficiently precise information about their inverse demand. In that case θs will only contain

the common parameters and the fixed effects of the dominant products. Moreover, the

assumption requires that the instrumental functions in G0 are able to capture the variation

of the moments over zjt ∈ Z0. This in general requires that E[δ̂ujt(st, λ) − xjtβ|zjt = z]

and E[δ̂`jt(st, λ) − xjtβ|zjt = z] are continuous in the continuous components of z and the

projection of Z0 onto the space of zc,jt (the continuous components of zjt) is zero distance

to an open set. This is innocuous in most applications.

Finally, Assumption 7 also requires that the instruments shift xjt and πjt sufficiently.

This requirement is a standard one for BLP instruments. Thus, all the considerations for

finding instruments in BLP models still apply.

The following theorem shows the consistency of the estimator defined in (26). Note that

only the identified subvector θs0 can be estimated consistently.

Theorem 1. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Further suppose that Assumptions 3-7

hold. Then ‖θ̂sT − θs0‖ →p 0.

Remark. Note that for logit-based models (which satisfy Assumption 1), we do not need Jt

to be bounded. We require that the Jt’s are roughly even across t, which is formalized as

the boundedness of T−1
∑T

t=1 Jt/J̄
2
T . For non-logit-based models satisfying Assumption 2,

we require supt=1,...,T Jt to be bounded because Assumption 2(c) requires s̃jt = sjt + 1/nt

which is incompatible with Assumption 4(f) unless maxt=1,...,T Jt is bounded.

Remark. The proof of the theorem follows two steps. First we show that at the true value

θ0, Q̂T (θ) = op(1). Second, we show that for points in Θ such that θs is bounded away from

θs0, Q̂T (θ) asymptotically dominate Q̂∗T (θ) and the latter is bounded away from zero. The

proof is given in Section C.1.

7 Inference

In this section we discuss statistical inference based on our point estimator. We show that

the estimator is asymptotically normal despite that the bounds are slack for some g’s, which
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is a similar result to that in Kahn and Tamer (2009) for censored regression models.23

Since the consistency is derived only for the subvector θs of θ, the asymptotically nor-

mality also will be about the subvector. For ease of notation, we consider the particular case

where θs = (λ′, βs,′)′ where βs is a subvector of β. The parameters in β excluded from βs

are the coefficients of variables that are zero for zjt ∈ Z0.

More assumptions are needed. For clarity, we divide the assumptions into two groups,

the first being standard ones similar to those in Freyberger (2015) and the second being the

special assumptions that are needed to account for the presence and the unknown identity

of the fringe products. Let Bc(λ0) = {λ ∈ Λ : ‖λ − λ0‖ ≤ c} and Bc(πt) = {π̃t ∈ (0, 1)Jt :

1′π̃t < 1, ‖πt− π̃t‖f ≤ c}. Let G\G0 denote the relative complement of G0 in G. Let ∂mjt(λ)

denote
(
∂δjt(πt, λ)/∂λ′ xs,′jt

)′
, where xsjt is the subvector of xjt that correspond to βs. Let

ΓT (g) = (T J̄T )−1

T∑
t=1

Jt∑
j=1

E[∂mjt(λ0)g(zjt)]. (39)

Assumption 8. (a) θs0 is in the interior of Θs := {θs : ∃θr s.t. (θs,′, θr,′)′ ∈ Θ}.
(b) The function δjt(π, λ) is twice-continuously differentiable on ∆0

Jt
× Λ, for all j, t.

(c) For some c > 0 and M <∞,

sup
j,t
E

[
sup

π̃t∈Bc(πt)
sup

λ∈Bc(λ0)

∥∥∥∥∂δjt(π̃t, λ)

∂λ

∥∥∥∥
]
≤M,

sup
j,t
E

[
sup

λ∈Bc(λ0)

∥∥∥∥∂2δjt(πt, λ)

∂λ∂λ′

∥∥∥∥
]
≤M,

and supj,tE[‖xsjt‖2|zjt ∈ Z0] ≤M .

(d) limT→∞
∑

g∈G0 µ(g)ΓT (g)ΓT (g)′ = Υ for a matrix Υ of full rank, and

lim
T→∞

T−1

T∑
t=1

∑
g,g∗∈G0

Cov

(
J̄−1
T

Jt∑
j=1

ξjtg(zjt), J̄
−1
T

Jt∑
j=1

ξjtg
∗(zjt)

)
ΓT (g)ΓT (g)′µ(g)µ(g∗) = V.

(e) limT→∞ T
−1n

1/2
T = 0.

23However, it is worth noting some subtle differences between the identification and inference arguments
in this paper and those in Kahn and Tamer. In Kahn and Tamer, the upper and lower bounds collapse
in finite sample for covariate values that indicate no-censoring, while in this paper, the upper and lower
bounds collapse only asymptotically. Kahn and Tamer consider a fixed data-generating-process asymptotic
framework, while the nature of our problem calls for a triangular array asymptotic framework. These are
part of the reason that our conditions look more complicated than Kahn and Tamer’s.
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Remark. Parts (a)-(b) are standard regularity conditions for extreme estimators. Part (c)

imposes a uniform bound on the derivatives of δjt(·, λ) with respect to λ. This bound condi-

tion is trivially satisfied for multinomial logit models and the binary probit models because

δjt(·, λ) does not depend on λ. For the nested logit model, |∂δjt(π̃t, λ)/∂λ| = | log(π̃gt/π̃0t)| ≤
2| log(ε0− c)| as long as πgt, π0t > ε0t and c < ε0. And ∂2δjt(πt, λ)/∂λ∂λ′ = 0. Thus part (c)

holds if the share of each nest is bounded from zero. For mixed logit models, one can verify

part (c) following similar arguments as those for Lemma 9 in Supplemental Appendix D,

under the additional assumptions that the covariates with random coefficients are bounded.

Part (d) of the assumption is needed because we allow the data generating process to drift

as T → ∞. It regulates the limit of the drift in our asymptotic thought experiment. The

only restriction it imposes on the data itself is that the Jacobian of the moment condi-

tions has full-rank, which is standard for moment-based estimation and rules out perfect

multicolinearity in xsjt.

Assumption 9. (a) There exists a constant η > 0 such that for all sufficiently small c > 0

and all T , we have ∑
g∈G\G0:(T J̄T )−1

∑T
t=1

∑Jt
j=1 E[(log(sjt+ιu/nt)−log(πjt))g(zjt)]≤c

µ(g) < cη,

∑
g∈G\G0:(T J̄T )−1

∑T
t=1

∑Jt
j=1 E[(log(sjt+ι`/nt)−log(πjt))g(zjt)]≥−c

µ(g) < cη,

∑
g∈G\G0:(T J̄T )−1

∑T
t=1

∑Jt
j=1 E[g(zjt)(ntsjt+ιu)−1]≤c

µ(g) < cη.

(b) Case 1: When Assumption 1 holds, assume that

sup
j,t=1,...,T

E

[∥∥∥∥∂δ̌jt(πt, λ0)

∂π

∥∥∥∥2
]

= O(Jmax
T ) and sup

j,t=1,...,T
sup

π∈Bc(πt)

∥∥∥∥∂2δ̌jt(π, λ0)

∂π∂π′

∥∥∥∥ = Op(J
max
T )

for some c > 0.

Case 2: When Assumption 2 holds, assume that

sup
j,t=1,...,T

E

[∥∥∥∥∂δjt(πt, λ0)

∂π

∥∥∥∥2

1(zjt ∈ Z0)

]
= O(1), and

sup
j,t=1,...,T

sup
π:‖π−πt‖≤c

∥∥∥∥∂2δjt(π, λ0)

∂π∂π′
1(zjt ∈ Z0)

∥∥∥∥ = Op(1)

for some c > 0.
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Remark. Part (a) of Assumption 9 is needed to show that the moments inequalities are

slack enough for the fringe products to not interfere with the convergence rate and the

asymptotic distribution of the bound estimator. It is satisfied for the µ(·) and G that we

propose if the exogenous variables that signal dominant products are discrete and πjt’s for

the fringe products converge to zero at the rate n−1
t so that E[log(sjt + ιu/nt) − log πjt|zjt]

and E[log(sjt + ι`/nt) − log πjt|zjt] are bounded away from zero. Part (b) strengthens the

requirements of Assumptions 1 and 2 to ensure convergence rate of our estimator. The case

1 part of Assumption 9(b) implies the case 2 part of this assumption, thus is stronger. The

weaker assumption is sufficient for case 2 because of the additional conditions in Assumption

2. Case 1 of Assumption 9(b) may be verified in a similar fashion as Assumption 1(a).24

Theorem 2. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Further suppose that Assumptions 3-9

hold. Then we have √
T (θ̂sT − θs0)→d N(0,Υ−1VΥ−1).

Remark 1. Note that Υ and V depend on G0 which in turn depends on the unknown set

Z0. Thus, estimating the asymptotic variance covariance matrix can be difficult. Instead,

following Kahn and Tamer (2009), we recommend using non-parametric bootstrap to obtain

standard errors and confidence intervals. We follow this recommendation in the application

in Section 9. We also evaluate the performance of bootstrap standard errors and bootstrap-

based confidence intervals in our Monte Carlo experiments in Section 8.

Remark 2. The asymptotic variance formula also makes it clear that the choice of instrumen-

tal function set G affects estimation accuracy. Potentially, one could choose G to minimize

the asymptotic variance, however, this does not seem to resemble the existing efficiency the-

ory for conditional moment equalities, e.g. Chamberlain (1987), Newey (1990), and Ai and

Chen (2003), mainly due to the structure that G needs to take to preserve the information

in the conditional moment inequalities. We thus leave this for future research.

8 Monte Carlo Simulations

In this section, we present three sets of Monte Carlo experiments with random coefficient logit

models. The first experiment investigates the performance of our approach with moderate

24For multinomial logit and nested logit models part (b) is not needed. The proofs of Theorem 2 goes
through with slight adjustment using the special structure of the inverse demand of such models, without
using part (b). As a result, for such models the rate at which Jt increases with nt does not need to be
restricted.
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fractions of zero shares, which should cover most of the empirical scenarios. In the second

experiment, we test our estimator with a data generating process that produces extremely

large fractions of zeros; the purpose is to further illustrate the key idea of our estimator in

exploiting the long tail pattern that is naturally present in the data. In the third experiment,

we use actual data from our application as the base for DGP; the purpose is to examine the

performance of our estimator in a realistic setting and provide some practical guidelines

regarding to the choice of instruments functions.

The first two experiments use the a random coefficient logit model, where the utility of

consumer i for product j in market t is

uijt = α0 + xjtβ0 + λ0xjtvi + ξjt + εijt, (40)

where vi ∼ N (0, 1) , λ0 is the standard deviation of the random coefficients on xjt, εijt’s

are i.i.d. across i, j and t following Type I extreme value distribution. The parameters of

interest are β0 and λ0, while α0 is a nuisance parameter. In both experiments, we set λ0 = .5,

β0 = 1 and vary α0 for different designs. We simulate T markets, each with J products. For

the third experiment, we will describe the DGP in Section 8.3.25

8.1 Moderately Many Zeroes

In the first experiment, the observed and unobserved characteristics are generated as xjt =
j
10

+ N(0, 1) and ξjt ∼ N(0, .12) for each product j in market t. Thus one feature of the

design is that the xjt has some persistence across markets - products with larger index tend

to have higher value of x (which respects the nature of the variation in the scanner data

shown in Section 2). Finally, the vector of empirical shares in market t, (s0t, s1t, ..., sJt), is

generated from Multinomial
(
n, [π0t, π1t, ..., πJt]

′
)/

n, where n is the number of consumers

in each market.26

With the simulated data set {(sjt, xjt) : j = 1, ..., J}Tt=1, we compute our bound esti-

25In all the three experiments, we checked the realized minj,t ntπjt’s in the generated data and they
are all well-above our choice of ι` = 2−52 = 2.2204−16, which approximately equals to ε1 according to
our calculations shown in Table 2. Hence, the key assumption that our moment inequalities build on,
minj,t ntπjt ≥ ε1 , is satisfied easily.

26The πt has no closed form solution in the random coefficient model, and thus, we compute them via
simulation, i.e.,

πjt =
1

s

s∑
i=1

exp (α0 + xjtβ0 + λ0xjtvi + ξjt)

1 +
∑J

k=1 exp (α0 + xktβ0 + λ0xktvi + ξkt)
,

where s = 1000 is the number of consumer type draws (vi).
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mator,27 the standard BLP estimator using empirical share st in place of πt and discard-

ing observations with sjt = 0, the standard BLP estimator using Laplace shares sLt =

(ntst + 1)/(nt + Jt + 1) in place of πt.

All the estimators require simulating the market shares and solving demand systems for

each trial of λ in optimizing the objective function for estimation. We use the same set of

random draws of vi in estimation as in the data generating process to eliminate simulation

error as simulation error is not the focus of this paper. BLP contraction mapping method is

employed to numerically solve the demand systems for all three estimators.

We simulate 1000 data sets {(srt , xrt ) : t = 1, ..., T}1000
r=1 and implement all the estimators

mentioned above on each for a repeated simulation study. For the instrumental functions,

we use the countable hyper-cubes defined in (16), and set r̄T = 50. The choices of ι` and ιu

follow Section ??. For the BLP estimator, we use
(
1, xjt, x

2
jt − 1, x3

jt − 3xjt
)

(the first three

Hermite polynomials) as instruments to construct the GMM objective function. Alternative

transformations of xjt as instruments yield effectively the same results.

The bias and standard deviation of the estimators are presented in Table 3. As we can

see from the table, The standard BLP estimator with using empirical share st (labeled as

“ES”) shows large bias for both β and λ. Replacing the empirical share st with the Laplace

share sLt (and thus not discarding the observations with sjt = 0), labeled as “LS”, increases

the bias for β although reducing the bias for λ. Our bound estimator (labeled as “Bound”)

is the least biased, and its bias is very small for both parameters, especially when the sample

size (T ) is large.

Next, we examine the performance of our proposed bootstrap procedure and the results

are reported in Table 4. We can see that bootstrap standard errors are on average slightly

larger than the standard deviation of the estimators, especially for the cases with large frac-

tion of zeros and small sample size. Also, we compute two versions of bootstrap confidence

intervals and find that the “Normal CI”, based on normal quantile and bootstrap standard

errors, outperforms the standard nonparametric percentile bootstrap confidence interval and

gets rather close to the nominal level (95%) of coverage probability, especially for the β,

when the sample size gets large and the fraction of zeros is not too high.

8.2 Extremely Many Zeroes

Next we pressure test our bound estimator by pushing the fraction of zeroes in empirical

shares toward the extreme. We modify the DGP slightly to produce very high fraction of

zeros. Specifically, we generate xjt from the following discrete distribution

27We use s̃jt = sjt + 1/(ntJt) for j = 1, . . . , Jt when implementing the bound estimator for all the
simulations in this section.
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Table 3: Monte Carlo Results: Estimation
DGP T Ave. % ES LS Bound

of Zeros λ β λ β λ β

I

25 9.52%
Bias .3718 -.1941 .2900 -.2167 .0422 -.0432

SD .0337 .0160 .0221 .0115 .0477 .0352

50 9.48%
Bias .3712 -.1939 .2912 -.2172 .0172 -.0216

SD .0236 .0118 .0164 .0082 .0388 .0284

100 9.46%
Bias .3714 -.1941 .2900 -.2169 .0002 -.0065

SD .0169 .0081 .0112 .0055 .0311 .0234

II

25 18.54%
Bias .6752 -.6115 .4023 -.4675 .0142 -.0302

SD .0845 .0655 .0315 .0229 .0531 .0536

50 18.54%
Bias .6649 -.6040 .3993 -.4657 -.0083 -.0028

SD .0580 .0462 .0223 .0158 .0410 .0413

100 18.50%
Bias .6624 -.6021 .3983 -.4651 -.0154 .0073

SD .0422 .0333 .0163 .0114 .0297 .0297

III

25 41.13%
Bias .7302 -1.3220 .3868 -.9863 -.0366 .0278

SD .2022 .2890 .0366 .0460 .0481 .0721

50 41.09%
Bias .7092 -1.2947 .3830 -.9819 -.0331 .0303

SD .1373 .1975 .0262 .0323 .0374 .0549

100 41.09%
Bias .7070 -1.2935 .3809 -.9794 -.0219 .0176

SD .0911 .1325 .0188 .0232 .0282 .0391

IV

25 52.39%
Bias .4013 -1.1035 .2907 -1.1412 -.0499 .0512

SD .1346 .2435 .0304 .0453 .0530 .0899

50 52.35%
Bias .3942 -1.0937 .2877 -1.1369 -.0346 .0330

SD .0956 .1740 .0214 .0313 .0396 .0635

100 52.36%
Bias .3916 -1.0901 .2862 -1.1349 -.0215 .0169

SD .0687 .1255 .0154 .0227 .0311 .0475

Note: 1. J = 50, n = 10, 000, β0 = 1, λ0 = .5, Number of Repetitions = 1000.

2. “ES”: Empirical Shares; “LS”: Laplace Shares.

3. DGP: I, II, III and IV correspond to α0 = −9, −10, −12 and −13, respectively.

x 1 12 15

Pr (xjt = x) .99 .005 .005

and

ξjt ∼ 1 (xjt = 1)×N
(
0, 22

)
+ 1 (xjt 6= 1)×N

(
0, .12

)
.

All the other aspects of the DGP is identical to the previous simulation.

The fractions of zeroes are made very high: 82%-96% by choosing the α0 parameter. With

such high fractions of zeroes, the vast majority of observations are uninformative. Thus, we

need larger sample size for any estimator to perform well. We consider T = 100, 200, 400.

For simplicity of presentation and to reduce computational burden, here we fix λ at its true
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Table 4: Monte Carlo Results: Bootstrap
DGP T Ave. % Actual SD BS SE CP: BS CI CP: Normal CI

of Zeros λ β λ β λ β λ β

I

25 9.52% .0477 .0352 .0473 .0353 .8390 .8250 .8630 .7790

50 9.48% .0388 .0284 .0400 .0300 .8556 .8675 .9444 .9160

100 9.46% .0311 .0234 .0324 .0244 .8408 .8458 .9570 .9530

II

25 18.54% .0531 .0536 .0563 .0585 .8390 .8630 .9640 .9510

50 18.54% .0410 .0413 .0423 .0433 .7980 .8340 .9490 .9690

100 18.50% .0297 .0297 .0309 .0311 .8380 .8750 .9270 .9560

III

25 41.13% .0481 .0721 .0537 .0840 .7700 .8310 .9040 .9680

50 41.09% .0374 .0549 .0388 .0581 .8360 .8760 .8690 .9360

100 41.09% .0282 .0391 .0290 .0417 .8740 .9250 .9000 .9450

IV

25 52.39% .0530 .0899 .0549 .0971 .7880 .8550 .8710 .9430

50 52.35% .0396 .0635 .0420 .0707 .8490 .9120 .8870 .9530

100 52.36% .0311 .0475 .0312 .0498 .8450 .8980 .9040 .9440

Note: 1. All the settings are identical to Table 1. Bootstrap draws are taken at market level.

Bootstrap sample size is 500.

2. “BS SE” refers to average bootstrap standard error.

3. “CP: BS CI” refers to the coverage probability of the 95% nonparametric bootstrap CI.

4. “CP: Normal CI” refers to the coverage probability of the 95% normal CI with bootstrap s.e.

value, and only investigate the behavior of the estimators for β .

The results are reported in Table 5, and they are very encouraging for the bound ap-

proach. The ES estimator is severely biased toward 0, so is the LS estimator. The bound

estimator is remarkably accurate in these extreme cases. The performance highlights the

key idea behind our estimator: utilizing the information from the dominant products with

inherently thick demand while controlling the impact of fringe products with small/zero sales

on estimation.

8.3 Monte Carlo Simulations with Tuna Data

In this subsection, we conduct Monte Carlos simulations based on the canned tuna data set

that will be used later in our application. The main purposes are two fold: 1) we want to

examine performance of the bound estimator in a setting that is similar to the application;

2) we would like to understand better how the choices of instruments affect the performance

of the bound estimator, especially in real empirical settings where product dummies are

typically included.

To generate data, we use tuna data in one week (the week of March 30, 1995) across

all the stores (there are 80 stores) as a template (a store-week as a “ market” and a UPC

as a “product”) and consider a random coefficient logit specification that extends (40). In
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Table 5: Monte Carlo Results: Very Large Fraction of Zeros
DGP T Ave. % of Zeros ES LS Bound

I

100 84.73%
Bias -.2698 -.2643 -.0014

SD .0060 .0058 .0123

200 84.68%
Bias -.2695 -.2640 -.0011

SD .0042 .0040 .0094

400 84.71%
Bias -.2692 -.2639 -.0005

SD .0030 .0030 .0066

II

100 91.45%
Bias -.3328 -.3319 -.0016

SD .0066 .0061 .0126

200 91.43%
Bias -.3324 -.3314 -.0014

SD .0049 .0044 .0091

400 91.43%
Bias -.3320 -.3313 -.0007

SD .0034 .0032 .0067

III

100 95.37%
Bias -.3992 -.4028 -.0014

SD .0079 .0070 .0126

200 95.35%
Bias -.3991 -.4025 -.0014

SD .0056 .0049 .0093

400 95.36%
Bias -.3986 -.4023 -.0010

SD .0040 .0035 .0065

Note: 1. T = 100, J = 50, n = 10, 000, β0 = 1, λ0 = .5.

Number of Repetitions = 1000.

2. We fix λ = λ0 (at the true value) without estimating it.

3. DGP: I, II, III correspond to α0 = −13, −14, −15.

particular, we let the price coefficient be random, i.e.,

uijt = a0 + β0xjt − vipjt + ξjt + εijt,

where vi follows Lognormal (µp, σp). The product-market specific demand shock ξjt has a

simple heteroskedasticity structure

ξjt = 1 (β0xjt ≥ med (β0xjt)) ξ
′

jt + 1 (β0xjt < med (β0xjt)) ξ
′′

jt,

where ξ
′
jt (ξ

′′
jt) follows normal distribution N (0, .52) (N (0, 1.52)) truncated at ±3σ. The

truncation gives ξjt a finite support to ensure that Assumptions 3 and 5 hold easily. Price

is generated as a linear combination of marginal cost (use the observed wholesale price from

the data) and a markup term that is a function of demand shock ξ, i.e.,

pjt = mcjt + b0 exp (ξjt) . (41)
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Note that the markup term introduces a simple endogeneity problem. The covariates xjt

include a continuous variable following N(0, 1) (truncated at ±3σ) and UPC dummies from

the data. The coefficient on the continuous variable is 1 and those on the UPC dummies are

set to be the estimated ones (using bound estimator) in our application. Other specifications

are similar to the previous DGP. And the number of consumers in each market for generating

market shares is directly imported from the data.

We simulate 1000 data sets that have the same structure as the real data, with the

endogenous variables, i.e., price and market shares, varying across data sets. Then we

implement several estimators of interests using the data sets. To simplify the estimation,

we only estimate the two parameters of the random coefficient on price and fixing other

parameters (UPC fixed effects) at their true values without estimating them.

The estimation results are summarized in Table 6. Note that we consider three values

of a0 that imply different fractions of zeros (labeled by “I”, “II” and “III”). Also, besides

the baseline T = 80 case with one week data (the week of March 30, 1995), we also try

T = 160 using two weeks’ data (the weeks of March 23 and March 30, 1995). As before,

“ES” and “LS” refer to standard BLP estimator applied to empirical shares and Laplace

shares, respectively. For the bound estimator, we experiment with four alternative sets of

instrument functions. “Bound-G1” uses the instruments defined by (16), which includes

indicators constructed from continuous variables (zjt,mcjt) with r̄80 = 10 and r̄160 = 15 and

UPC dummies. “Bound-G2” is the same as “Bound-G1” except with larger r̄T : r̄80 = 20

and r̄160 = 30. “Bound-G3” (“Bound-G4”) expands the set of instruments of “Bound-G1”

(“Bound-G2”) by including the interactions between indicators constructed from continuous

variables (denoted by C in (16)) and UPC dummies.

From the results, we can see that:

� In almost all the cases, as before, the bound estimators have much smaller biases than

the ES and LS estimators do (although with slightly increased standard deviations),

especially for the standard deviation of the random coefficient σp.

� By comparing Bound-G1 and Bound-G2, we can see that increasing the tuning param-

eter r̄T reduces standard deviation substantially but increase biases slightly.

� Including interactions between C and UPC dummies reduces standard deviations of

the estimators substantially. Hence, it seems preferable to have a sufficiently large

r̄T and include the interactions, and these findings guide the construction of G in our

empirical application.
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Table 6: Monte Carlo Results: Simulation using Tuna Data

DGP T
Ave. % ES LS Bound-G1 G2 G3 G4

of Zeros Panel I: µp

I

80 9.11%
Bias -.0001 -.0605 -.0009 -.0007 -.0004 -.0014

SD .0228 .0251 .0326 .0239 .0299 .0233

160 9.09%
Bias -.0081 -.0678 -.0026 -.0042 -.0019 -.0037

SD .0158 .0185 .0296 .0175 .0276 .0173

II

80 14.29%
Bias -.0166 -.1403 -.0098 -.0104 -.0096 -.0099

SD .0258 .0311 .0582 .0303 .0498 .0305

160 14.25%
Bias -.0246 -.1472 -.0005 -.0129 -.0037 -.0126

SD .0186 .0228 .0721 .0221 .0530 .0220

III

80 17.70%
Bias -.0286 -.2205 -.0097 -.0185 -.0123 -.0180

SD .0269 .0318 .0767 .0344 .0635 .0344

160 17.66%
Bias -.0373 -.2267 .0203 -.0185 -.0013 -.0183

SD .0192 .0234 .1178 .0253 .0706 .0252

Panel II: σp

I

80 9.11%
Bias .2691 .4111 .0555 .0840 .0630 .0840

SD .0664 .0848 .1382 .0846 .1176 .0804

160 9.09%
Bias .2457 .3931 .0065 .0402 .0208 .0414

SD .0484 .0647 .1570 .0662 .1338 .0657

II

80 14.29%
Bias .3103 .5125 .0163 .0656 .0367 .0664

SD .0674 .1030 .2469 .0978 .2119 .0990

160 14.25%
Bias .2924 .5022 .0007 .0290 .0324 .0304

SD .0511 .0778 .3153 .0747 .2633 .0747

III

80 17.70%
Bias .3410 .5745 .0340 .0578 .0458 .0590

SD .0710 .1164 .3273 .1163 .2873 .1179

160 17.66%
Bias .3221 .5678 .1010 .0260 .1158 .0275

SD .0517 .0871 .3819 .0911 .2915 .0912
1 DGP: I, II and III correspond to a0 = .4, .8, 1, respectively.
Number of markets T: 80 and 160 correspond to one week (03/30/1995 to 04/05/1995) and

two weeks (03/23/1995 to 04/05/1995) of the tuna data for all the stores, respectively.
2 “E”: Empirical Shares; “LS”: Laplace Shares; “Bound-G1”: r̄80 = 10, r̄160 = 15; “Bound-G2”:
r̄80 = 20, r̄160 = 30; “Bound-G3”: r̄80 = 10, r̄160 = 15, instruments in C interact with product
dummies; “Bound-G4”: r̄80 = 20, r̄160 = 30, instruments in C interact with product dummies.
3 True value: µp = 0, σp = .5. Coefficients on product dummies are fixed at their true values
without being estimated for ease of computation. Number of repetitions =1000.

9 Empirical Application

In this section, we apply our estimator on the DFF scanner data previewed in Section 2.28

In particular, we focus on the canned tuna category, as previously studied by Chevalier,

Kashyap, and Rossi (2003) (CKR for short) and Nevo and Hatzitaskos (2006) (NH for

28The sample period predates the price fixing conduct by the tuna cartel starting around 2011, see Miller,
Remer, and Weinberg (2020) for details.
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short). CKR observed using the same data discussed in Section 2 that the share-weighted

average price (i.e. the price index) of tuna fell by 15 percent during Lent – a high demand

period for this product. They attributed the outcome to loss-leading behavior on the part

of retailers. NH on the other hand suggest that this pricing pattern in the tuna data could

instead be explained by increased price sensitivity of consumers (consistent with an increase

in search) which causes a re-allocation of market shares towards less expensive products in

the Lent period, and hence a fall in the observed share weighted price index. They test this

hypothesis directly in the data by estimating demand parameters separately in the Lent and

Non-Lent periods, and find that demand becomes more elastic in the high demand (Lent)

period.

Here we revisit the groundwork laid by NH to examine the difference in price elasticity

between Lent and non-Lent periods. The main difference in our analysis is that we use data

on all products in the analysis, while NH restrict the sample to include only the top 30 UPCs

and thus automatically drop products with small/zero sales. There are two main questions

we seek to address: (a) Does the selection of UPC’s with only positive shares significantly

bias the estimates of price elasticity and (b) Does the difference in price elasticities between

the Lent and Non-Lent period persist after properly controlling for zeroes.

To make the comparison clear, we use largely the same specification of the model used

in NH. In particular we consider a logit specification

uijt = αpjt + βxjt + ξjt + εijt,

where the control variables xjt consist of UPC fixed effects and a time trend.29 The week to

week variation in the product-/market-level unobserved demand shock ξjt largely captures

the short-term promotional efforts, e.g., in-store advertising and shelving choices, because

the UPC fixed effects control the intrinsic product quality which is likely stable over short

time horizon. Since stores are likely to advertise or shelf the product in a more prominent

way during weeks when the product is on a price sale, we expect a negative correlation

between price and the unobservable. We construct instruments for price by inverting DFF’s

data on gross margin to calculate the chain’s wholesale costs, which is the standard price

29Empirical market shares are constructed using quantity sales and the number of people who visited the
store that week (the customer count) as the relevant market size.
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instrument in the literature that has studied the DFF data.30

We implement our bound estimator defined by (26) to obtain point estimate of (α, β) in

the model.31 The standard errors are obtained using nonparametric bootstrap.32 The esti-

mation results are presented in Tables 7 and 8. 33 Table 7 shows that standard BLP logit

estimator that inverts empirical shares to recover mean utilities (and hence drops zeroes) has

a significant selection bias towards zero. The UPC level elasticities for the logit model are

small in economic magnitude, with the average elasticity in the data being -.572. Further-

more, over 90% of products have inelastic demand. Using our bounds approach instead to

control for zeroes has a major effect on the estimated elasticities. Average demand elasticity

for UPC’s becomes -1.51 and less than 30% percent of observations have inelastic demand.

This change in the direction of elasticities is consistent with the attenuation bias effects of

dropping products with small/zero market shares.

Table 7: Demand Estimation Results

BLP Bound
Price Coefficient -.39 -1.03

S.E. (.005) (.319)
Ave. Own Price Elasticity -.57 -1.51

Fraction of Inelastic Products 90.04% 28.20%
No. of Obs. 862,683 959,331

Note: The S.E. for the bound approach is the bootstrap

standard error (using 1000 bootstrap replications).

30The gross margin is defined as (retail price - wholesale cost)/retail price, so we get wholesale cost using
retail price×(1 - gross margin). The instrument is defensible in the store disaggregated context we consider
here because it has been shown that price sales in retail price primarily reflect a reduction in retailer margins
rather than a reduction in wholesale costs (see e.g., Chevalier, Kashyap, and Rossi (2003) and Hosken
and Reiffen (2004)); thus sales (and hence promotions) are not being driven by the manufacturer through
temporary reduction in wholesale costs. However, this instrument may be invalid if manufacturers respond
to demand shocks and adjust wholesale prices accordingly. We acknowledge the potential deficiency of using
this instrument but searching for a better alternative is beyond the scope of the current paper.

31The choice of G is guided by the simulation results in Section 8.3: we set r̄ = 45 when constructing
instrument functions from the wholesale cost (continuous variable) and include interactions between them
and the UPC dummies.

32The procedure contains the following steps: (1) draw with replacement a bootstrap sample of markets,

denoted as {t1, ..., tT }; (2) compute the bound estimator θ̂BD∗
T using the bootstrap sample; (3) repeat (1)-(2)

for BT times and obtain BT independent (conditional on the original sample) copies of θ̂BD∗
T ; (4) obtain the

sample standard deviation of the BT copies of θ̂BD∗
T and this is the bootstrap standard error.

33In principle we can estimate our model separately for each store, letting preferences change freely over
stores depending on local preferences. These results are available upon request. Here we present for the
results of demand pooling together all stores together as was done by Nevo and Hatzitaskos (2006). The
store level regressions results are very similar to the pooled store regression and the latter is a more concise
summary of demand behavior that we present here.
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Table 8: Demand in Lent vs. Non-Lent
BLP Bound

Lent Non-Lent Lent Non-Lent
Price Coefficient -.518 -.371 -1.23 -.75

S.E. (.018) (.005) (.221) (.231)
Ave. Own Price Elasticity -.757 -.544 -1.80 -1.10

Fraction of Inelastic Products 84.02% 92.84% 16.79% 43.94%
No. of Obs. 70,496 792,187 78,838 880,493

Note: The S.E. for the bound approach is the bootstrap standard error (using 1000

bootstrap replications).

Our second result is that demand becomes more elastic in the high demand period, as

shown in Table 8. This is consistent with Nevo and Hatzitaskos (2006)’s findings that are

based on the standard logit estimator with zeroes being dropped. However, the Lent effect

is bigger according to our bounds estimator that controls for the zeroes. In other words,

correcting the selection bias, our bound estimator brings the price coefficient and elasticity

higher and the correction effect is higher for the Lent period than for the non-Lent period.

Since the fractions of zeroes are remarkably close between Lent and non-Lent periods, we

suspect that the difference in the correction effect is due to a difference in the distribution

of the unobservable ξ.

To further investigate this, we first replicate the reduced form finding of Nevo and Hatzi-

taskos (2006) that suggested a change in price sensitivity in the Lent period. This is reported

in Table 9, which shows that although the price index of tuna during Lent appears to be

approximately 15 percent less expensive than other weeks (as previously underscored by

CKR), the average price of tuna is virtually unchanged between the Lent versus non-Lent

period. Hence it is a re-allocation of demand towards less expensive products during Lent

that drives the change in the price index.

Table 9: Regression of Price Index on Lent
P : Price Index P̄ : Average Price

Lent -.150 -.009
s.e. (.0005) (.0003)

We take this decomposition one step further than NH, and examine the price index

separately for products “on sale” and “regularly priced” during these periods.34 As can be

seen in Table 10, it is the sales price index that is the key driver of the aggregate price index

being cheaper during Lent. However the average price of an “on-sale” product is not cheaper

34We flag an observation in the data as being on sale if that particular UPC in that particular store in
that particular week has at least a 5% reduction from highest price of previous 3 weeks.

39



in the Lent period. This shows that it is a re-allocation towards more steeply discounted “on-

sale” product during Lent that is driving change in the aggregate price index. In contrast,

we do not see an analogous reallocation for “regularly priced” products.

Table 10: Regression of Sales Price Index on Lent
P : Price Index P̄ : Average Price
Sale Regular Sale Regular

Lent -.199 .035 .010 .001
s.e. (.0017) (.0003) (.0016) (.0003)

This suggests a tighter coordination of promotional effort and discounting in the high

demand period. In effect more steeply discounted products are receiving larger promotional

effort on the part of the retailer during the high demand, which is similar in spirit to the

loss-leader hypothesis originally advanced for this data by CKR. Since promotional effort

in the model is largely captured through the unobservable ξ, this change in behavior of the

unobservable would account for the selection effect due to dropping zeroes changing across

the two periods: during Lent period, the variance of promotional effort is larger so the

selection bias is worse. Hence, our results suggest that both demand and supply side effects

contribute to the falling price during high demand period, which complements and reconciles

the findings of NH and CKR.

10 Conclusion

We have shown that differentiated product demand models have enough content to construct

a system of moment inequalities that can be used to consistently estimate demand parameters

despite a possibly large presence of observations with zero market shares in the data. We

construct a GMM-type estimator based on these moment inequalities that is consistent and

asymptotically normal under assumptions that are a reasonable approximation to the DGP

in many product differentiated environments. Our application to scanner data reveals that

taking the market zeroes in the data into account has economically important implications

for price elasticities.
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Supplemental Appendix for

“Estimating Demand for Differentiated Products with

Zeroes in Market Share Data”

Amit Gandhi, Zhentong Lu, Xiaoxia Shi∗

In this supplemental appendix, we present supporting materials for “Estimating Demand

for Differentiated Products with Zeroes in Market Share Data” (hereafter “main text”). The

supplemental appendix is organized as follows:

Section A provides further illustration of the power law pattern in homicide and international

trade data sets. This section complements the illustration in Section 2 in the main

text.

Section B gives the proofs of Lemmas 1 and 2 presented in Sections 4 and 5 in the main text,

respectively. Lemma 1 establishes the validity of the bounds for the general model.

Lemma 2 proves that the bounds collapse for the dominant products.

Section C proves Theorems 1 and 2 presented in Sections 6 and 7 in the main text, respectively.

Theorem 1 establishes the consistency of our proposed estimator and Theorem 2 proves

the asymptotic normality.

Section D proves a lemma that establishes Assumption 1 in Section 4 of the main text for the

random coefficient logit model.

Section E provides analytical evidence for the bound validity in Section 3 in the main text.

The two lemmas presented here reinforce the numerical proof given in Section 3.

A Further Illustrations of Zipf’s Law

In Figure 3 we illustrate this regularity using data from the two other applications that were

mentioned in Section 2: homicide rates and international trade flows. The left hand graph

shows the annual murder rate (per 10,000 people) for each county in the US from 1977-1992

(for details about the data see Dezhbakhsh et al. (2003)). The right hand side graph shows

the import trade flows (measured in millions of US dollars) among 160 countries that have a

regional trade agreement in the year 2006 (for details about the data see Head et al. (2013)).

∗ Corresponding author: xshi@ssc.wisc.edu
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In each of these two cases we see the characteristic pattern of Zipf’s law - a sharp decay in

the frequency for large outcomes and a large mass near zero (with a mode at zero in each

case).

Figure 3: Zipf’s Law in Crime and Trade Data

B Proof of Lemmas 1 and 2

Proof of Lemma 1. We start with the case where Assumption 1 holds. We show the ar-

gument for the upper bound only because the lower bound is analogous. Consider the

derivation

δ̂ujt(st, λ0)− δjt(πt, λ0) = [log((ntsjt + ιu)/nt)− log(πjt)] + [δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0)]. (42)

Let eujt = δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0). Then by Assumption 1(b),

E[δ̂ujt(st, λ0)− δjt(πt, λ0)− eujt|πjt, zjt] = E[log((ntsjt + ιu)/nt)− log(πjt)|πjt, zjt] ≥ 0. (43)

Since E[ξjt|zjt] = 0, we have E[δjt(πt, λ0)− xjtβ0|zjt] = 0. Thus,

E[δ̂ujt(st, λ0)− xjtβ0 − eujt|zjt] ≥ 0. (44)
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Let ut stand for
n
1/2
t

T 1/4J
1/2
t

. Now we show that supj,t ut|eujt| = Op(1). Consider the derivation:

sup
j,t
ut|eujt| = sup

j,t
ut|δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0)|

≤ sup
j,t

|δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0)|
‖s̃t − πt‖f

√
Jt

sup
t

√
Jtut‖s̃t − πt‖f

≤ Op(1)

(
sup
t
ut
√
Jt‖s̃t − st‖f + sup

t=1
ut
√
Jt‖st − πt‖f

)
= op(1) +Op(1) sup

t
ut
√
Jt‖st − πt‖f , (45)

where the second inequality holds by Assumption 1(a) and the second equality holds by

Assumption 1(b). To bound ut
√
Jt‖st − πt‖f , note that ntsjt is a binomial random variable

with parameters (nt, πjt). Thus,

Pr

(
sup

t=1,...,T
utJ

1/2
t ‖st − πt‖f > ε

)
≤

T∑
t=1

Pr(utJ
1/2
t ‖st − πt‖f > ε)

≤
T∑
t=1

128u4
tJ

2
t (3n2

t + nt)

n4
t ε

4

≤ 512

ε4
, (46)

where the second inequality holds by Lemma 8. The expression in the last line does not

depend on T and it can be made arbitrarily small by making ε big. This shows that

sup
t=1,...,T

utJ
1/2
t ‖st − πt‖f = Op(1) (47)

which implies supj,t ut|eujt| = Op(1) when combined with (45).

Now we move on to the case where Assumption 2 holds instead. In this case, the upper

bound and the lower bound need slightly different arguments. For the upper bound, consider

the derivation:

δ̂ujt(st, λ0)− δjt(πt, λ0) = δjt(s̃jt, λ0)− δjt(πt, λ0) + log((ntsjt + ιu)/nt)− log(s̃jt)

≥ δjt(s̃jt, λ0)− δjt(πt, λ0), (48)

where the inequality holds because s̃jt = sjt + 1/nt and ιu > 1 both by Assumption 2(c).

Equation (48) combined with Assumption 2(b) implies the first line of (25) with eujt = 0.
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For the lower bound, consider the derivation:

δ̂`jt(st, λ0)− δjt(πt, λ0) = δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0) + log((ntsjt + ι`)/nt)− log(πjt) (49)

By ι` ≤ ι` (Assumption 2(c)) and the definition of ι`, we have

E[log((ntsjt + ι`)/nt]− log(πjt)|nt, πt] ≤ 0. (50)

This combined with Assumption 2(a) implies the second line of (25) with e`jt = 0.

Proof of Lemma 2. Observe that

nt|δ̂ujt(st, λ)− δ̂`jt(st, λ)| = nt| log(sjt + ιu/nt)− log(sjt + ι`/nt)|

≤ 1

sjt + ι`/nt
(ιu − ι`), (51)

using the concavity of the logarithm function. Thus

sup
j=1,...,Jt;t=1,...,T

sup
λ
nt|δ̂ujt(st, λ)− δ̂`jt(st, λ)|1{zjt ∈ Z0}

≤ sup
j=1,...,Jt;t=1,...,T

ιu − ι`
sjt + ι`/nt

1{zjt ∈ Z0}

≤ ιu − ι`
infj=1,...,Jt;t=1,...,T{(sjt + ι`/nt)1{zjt ∈ Z0}+ 1{zjt /∈ Z0}}

. (52)

The denominator of (52) is greater than or equal to

inf
j=1,...,Jt;t=1,...,T

{πjt1{zjt ∈ Z0}+ 1{zjt /∈ Z0}} − sup
j=1,...,Jt;t=1,...,T

|πjt − sjt − ι`/nt|1{zjt ∈ Z0}.

(53)

Consider that

Pr

(
inf

j=1,...,Jt;t=1,...,T
{πjt1{zjt ∈ Z0}+ 1{zjt /∈ Z0}} < ε0

)
≤

∑
j=1,...,Jt;t=1,...,T

Pr(πjt1{zjt ∈ Z0}+ 1{zjt /∈ Z0} < ε0)

=
∑

j=1,...,Jt;t=1,...,T

Pr(πjt < ε0|zjt ∈ Z0)P (zjt ∈ Z0)

= 0, (54)

where the first equality holds since 1 ≥ ε0, and the second equality holds by Assumption 3.
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Also consider the derivation:

Pr

(
sup

j=1,...,Jt;t=1,...,T
|πjt − sjt − ι`/nt|1{zjt ∈ Z0} > ε0/2

)
≤ Pr

(
sup

t=1,...,T
‖st − πt‖f > ε0/4

)
+ Pr

(
sup

t=1,...,T
ι`/nt > ε0/4

)
≤

T∑
t=1

Pr(‖st − πt‖f > ε0/4) + o(1)

≤
T∑
t=1

128(3n2
t + nt)× 44

n4
t ε

4
0

+ o(1)

→ 0, (55)

where the first inequality holds by the triangular inequality, the second inequality and the

convergence hold Assumption 4(g), and the third inequality holds by Lemma 8.

Equations (52), (54), and (55) together imply that

Pr

(
sup

j=1,...,Jt;t=1,...,T
sup
λ
nt|δ̂ujt(st, λ)− δ̂`jt(st, λ)|1{zjt ∈ Z0} >

ιu − ι`
ε0/2

)
→ 0. (56)

This proves the lemma.

C Proofs of the Theorems

In this section, we prove the theorems that establish the consistency and the asymptotic

normality of our proposed estimator.

C.1 Proof of Theorem 1: Consistency

The proof of Theorem 1 uses the following lemma which is proved in Section C.2 below.

Lemma 3. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Also suppose that Assumptions 3-6 hold.

Then,

(i) supθ∈Θ supg∈G0 |m̄
u
T (θ, g)−m̄T (θ, g)| = op(1) and supθ∈Θ supg∈G0 |m̄

`
T (θ, g)−m̄T (θ, g)| =

op(1).

(ii)
∑

g∈G µ(g)[m̄u
T (θ0, g)]2− = op(1) and

∑
g∈G µ(g)[m̄`

T (θ0, g)]2+ = op(1).

Proof of Theorem 1. First note that Q̂T (θ0) =
∑

g∈G µ(g)[m̄u
T (θ0, g)]2−+

∑
g∈G µ(g)[m̄`

T (θ0, g)]2+.
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Thus, Lemma 3(b) implies that

Q̂T (θ0) = op(1). (57)

Define an auxiliary criterion function:

Q̂0,T (θ) =
∑
g∈G0

{(
[m̄u

T (θ, g)]2− +
[
m̄`
T (θ, g)

]2
+

)
µ(g)

}
.

Below we show that

sup
θ∈Θ

∣∣∣∣√Q̂0,T (θ)−
√
Q̂∗T (θ)

∣∣∣∣ = op(1). (58)

Consider an arbitrary c > 0. The theorem is implied by the following derivation:

Pr
(
‖θ̂sT − θs0‖ > c

)
≤ Pr

(√
Q̂∗T (θ̂T ) ≥

√
C(c)

)
= Pr

(√
Q̂∗T (θ̂T )−

√
Q̂0,T (θ̂T ) +

√
Q̂0,T (θ̂T ) ≥

√
C(c)

)
≤ Pr

(
sup
θ∈Θ
|
√
Q̂0,T (θ)−

√
Q̂∗T (θ)|+

√
Q̂0,T (θ̂T ) ≥

√
C(c)

)
≤ Pr

(
sup
θ∈Θ
|
√
Q̂0,T (θ)−

√
Q̂∗T (θ)|+

√
Q̂T (θ̂T ) ≥

√
C(c)

)
≤ Pr

(
sup
θ∈Θ
|
√
Q̂0,T (θ)−

√
Q̂∗T (θ)|+

√
Q̂T (θ0) ≥

√
C(c)

)
≤ Pr

(
sup
θ∈Θ
|
√
Q̂0,T (θ)−

√
Q̂∗T (θ)| ≥

√
C(c)/2

)
+ Pr

(
Q̂T (θ0) ≥ C(c)/4

)
→ 0, (59)

where the first inequality holds by Assumption 7, the third inequality holds because Q̂T (θ̂T )

differs from Q̂0,T (θ̂T ) only in that the former takes the summation over a larger range, the

fourth inequality holds because Q̂T (θ̂T ) ≤ Q̂T (θ0) by the definition of θ̂T and the convergence

holds by (57) and (58).

Now we show (58). Consider the derivation

sup
θ∈Θ

∣∣∣∣√Q̂0,T (θ)−
√
Q̂∗T (θ)

∣∣∣∣
= sup

θ∈Θ

∣∣∣∣∣∣
√∑

g∈G0

µ(g)
{

[m̄u
T (θ, g)]2− + [m̄`

T (θ, g)]2+
}
−
√∑

g∈G0

µ(g) {m̄T (θ, g)2}

∣∣∣∣∣∣
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≤ sup
θ∈Θ

∣∣∣∣∣∣
√√√√∑

g∈G0

µ(g)

{(√
[m̄u

T (θ, g)]2− + [m̄`
T (θ, g)]2+ − |m̄T (θ, g)|

)2
}∣∣∣∣∣∣

≤ sup
θ∈Θ

∣∣∣∣∣∣
√∑

g∈G0

µ(g)
{

([m̄u
T (θ, g)]− − [m̄T (θ, g)]−)2 + ([m̄`

T (θ, g)]+ − [m̄T (θ, g)]+)2
}∣∣∣∣∣∣

≤ sup
θ∈Θ

∣∣∣∣∣∣
√∑

g∈G0

µ(g)
{

(m̄u
T (θ, g)− m̄T (θ, g))2 + (m̄`

T (θ, g)− m̄T (θ, g))2
}∣∣∣∣∣∣

≤
√

sup
θ∈Θ

sup
g∈G0
|m̄u

T (θ, g)− m̄T (θ, g)|2 + sup
θ∈Θ

sup
g∈G0
|m̄`

T (θ, g)− m̄T (θ, g)|2

→p0, (60)

where the first inequality holds by the triangular inequality for the norm

‖a(·)‖ :=

√∑
g∈G0

µ(g)a(g)2/
∑
g∈G0

µ(g),

the second inequality holds by the triangular inequality for the Euclidean norm, the third

inequality holds because |[x]− − [y]−| ≤ |x− y| and [x]+ = [−x]−, and the fourth inequality

holds because µ : G → [0, 1] is a probability measure on G and G0 ⊆ G, and the convergence

holds by Lemma 3(a). Therefore (58) is proved.

C.2 Proof of Lemma 3

Proof of Lemma 3. First we show part (a). Let sup j,t:zjt∈Z0 abbreviate sup t=1,...,T supj=1,...,Jt:zjt∈Z0
.

Consider the derivation:

sup
θ∈Θ

sup
g∈G0
|m̄u

T (θ, g)− m̄T (θ, g)|

= sup
λ∈Λ

sup
g∈G0

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̂ujt(st, λ)− δjt(πt, λ))g(zjt)

∣∣∣∣∣
≤ sup

λ∈Λ
sup

j,t:zjt∈Z0

|δ̂ujt(st, λ)− δjt(πt, λ)|

≤ sup
j,t:zjt∈Z0

| log(sjt + ιu/nt)− log(s̃jt)|+ sup
λ∈Λ

sup
j,t:zjt∈Z0

|δjt(s̃t, λ)− δjt(πt, λ)|,

where the first inequality holds by the definition of G0.

Assumptions 4(f) and 0 < ιu <∞ (Assumption 1(b) or Assumption 2(b)) together imply
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that supj,t:zjt∈Z0
|sjt + ιu/nt − s̃jt| →p 0. Also, by equation (47) and Assumption 4(f)

n
1/2
t

T 1/4
sup
t
‖s̃t − πt‖f = Op(1). (61)

These, and Assumptions 3, 4(g), and 5(a) together imply that

Pr

(
inf

j,t:zjt∈Z0

πjt ∧ π0t > ε0, inf
j,t:zjt∈Z0

sjt + ιu/nt > ε0/2, inf
j,t:zjt∈Z0

s̃jt ∧ s̃0t > ε0/2

)
→ 1.

This combined with (61), Assumptions 4(g), and Assumption 6 implies that

sup
λ∈Λ

sup
j,t:zjt∈Z0

|δjt(s̃t, λ)− δjt(πt, λ)| →p 0.

Also, we have

sup
j,t:zjt∈Z0

(| log(sjt + ιu/nt)− log(s̃jt)| →p 0.

because the logarithm function is uniformly continuous on the closed interval [ε0/2, 1]. There-

fore, the first convergence in Lemma 3(a) holds. The second convergence holds by analogous

arguments.

Now we show part (b). We separate the two cases, one where Assumption 1 is satisfied

and the other where Assumption 2 is satisfied and Jt is bounded.

Case 1: Assumption 1 is satisfied. In this case, the arguments for the first convergence

and the second convergence in part (b) are exactly analogous. Thus, we only discuss the

first. Consider the derivation:

m̄u
T (θ0, g) =

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̂ujt(st, λ0)− x′jtβ0)g(zjt)

≥ 1

T J̄T

T∑
t=1

Jt∑
j=1

ξjtg(zjt)+

1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(πjt))g(zjt)+

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0))g(zjt), (62)

where the inequality holds because ιu ≥ ιu, ξjt = δjt(πt, λ0) − x′jtβ0 and δ̌(·, λ) = δ(·, λ) −
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log(·j). We analyze the three summands one by one. For the first summand, observe that

E[ξ2
jt] ≤ M by Assumption 4(e). We can then apply Lemma 7 in Appendix C.4 (with

wjt = ξjt) and get,

E sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

{ξjtg(zjt)− E[ξjtg(zjt)]}

∣∣∣∣∣
2

≤ CM
∑T

t=1 J
2
t

T 2J̄2
T

= O(T−1), (63)

where the equality holds because we assume T−1J2
t /J̄

2
T is bounded when Assumption 1 holds.

Lemma 7 applies due to Assumptions 4(c)-(e). Also, by Assumption 4(c), E[ξjtg(zjt)] = 0.

This and (63) together imply that

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

ξjtg(zjt)

∣∣∣∣∣ = Op(T
−1/2). (64)

Similar arguments apply to the second summand in (62) and yields

E sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(πjt))g(zjt)− E[(log(sjt + ιu/nt)− log(πjt))g(zjt)]

∣∣∣∣∣
2

≤C
∑T

t=1 J
2
t

T 2J̄2
T

max
j,t

E[(log(sjt + ιu/nt)− log(πjt))
2]

≤2C
∑T

t=1 J
2
t

T 2J̄2
T

max
t

[| log(ιu/nt)|2 + | log(ε1/nt)|2]

≤4C
∑T

t=1 J
2
t (2(log nT )2 + (log ιu)

2 + (log ε1)2)

T 2J̄2
T

(65)

→0,

where the second inequality holds by sjt ∈ [0, 1] and Assumption 5(b) and the convergence

holds by Assumptions 4(f) and the boundedness of T−1
∑T

t=1 J
2
t /J̄

2
t . By the definition of

ιu, we have E[(log(sjt + ιu/nt)− log(πjt))|πjt, zjt] ≥ 0, which then implies that E[(log(sjt +

ιu/nt)− log(πjt))g(zjt)] ≥ 0 for all g ∈ G. Therefore, for any c > 0,

lim
T→∞

Pr

(
inf
g∈G

1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(πjt))g(zjt) < −c

)
= 0. (66)
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For the third summand in (62), consider the derivation

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0))g(zjt)

∣∣∣∣∣ ≤ sup
j,t
|δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0)|

→p 0, (67)

by (61) and Assumptions 1(a) and 4(g). Finally, (62), (64), (66), and (67) combined imply

that for any c > 0,

lim
T→∞

Pr

(
inf
g∈G

m̄u
T (θ0, g) < −c

)
= 0,

which then implies the first convergence in Lemma 3(b) since [m̄u
T (θ0, g)]− = max{0,−m̄u

T (θ0, g)}.
Case 2: Assumption 2 is satisfied. We begin with the first convergence in Lemma 3(b).

Consider the decomposition:

m̄u
T (θ0, g) =

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̂ujt(st, λ0)− x′jtβ0)g(zjt)

=
1

T J̄T

T∑
t=1

Jt∑
j=1

ξjtg(zjt)+

1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(s̃jt))g(zjt)+

1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt). (68)

The first summand is Op(T
−1/2) uniformly over g ∈ G by (64). The second summand is

nonnegative almost surely because s̃jt = sjt + 1/nt and ιu ≥ 1 (Assumption 2(d)). For the

third summand, similar to (65), we get for some generic constant C,

E sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)− E[(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)]

∣∣∣∣∣
2

≤C
∑T

t=1 J
2
t

T 2J̄2
T

max
j,t

E[(δjt(s̃t, λ0)− δjt(πt, λ0))2]

≤2CC0

∑T
t=1 J

2
t log(nT )2

T 2J̄2
T

→0, (69)

where the second inequality holds by Assumption 2(d) also using Assumptions 2(c) and
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5(b), and the convergence holds by Assumption 4(g) and the boundedness of supt=1,...,T Jt.

Moreover, Assumption 2(b) implies that E[(δjt(s̃t, λ0)−δjt(πt, λ0))g(zjt)] ≥ 0. This combined

with (69) implies that, for any c > 0,

lim
T→∞

Pr

(
inf
g∈G

1

T J̄

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt) < −c

)
= 0. (70)

This combined with the arguments for the first two summands of (62) above yields: for any

c > 0,

lim
T→∞

Pr

(
inf
g∈G

m̄u
T (θ0, g) < −c

)
= 0,

which then implies the first convergence in Lemma 3(b) because [m̄u
T (θ0, g)]− = max{0,−m̄u

T (θ0, g)}.
Now we show the second convergence in Lemma 3(b) for Case 2. Note that

m̄`
T (θ0, g) =

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̂`jt(st, λ0)− x′jtβ0)g(zjt)

≤ 1

T J̄T

T∑
t=1

Jt∑
j=1

ξjtg(zjt)+

1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ι`/nt)− log(πjt))g(zjt)+

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0))g(zjt), (71)

where the inequality holds because ι` ≤ ι` by Assumption 2(d). The first summand is

Op(T
−1/2) by (64). Arguments analogous to those for (66) apply to the second summand to

yield, for any c > 0,

lim
T→∞

Pr

(
inf
g∈G

1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ι`/nt)− log(πjt))g(zjt) > c

)
= 0. (72)

For the third summand in (71), we can apply the same arguments as those for (70) where

we use Assumption 2(a) in place of Assumption 2(b). Such arguments yield, for all c > 0,

lim
T→∞

Pr

(
inf
g∈G

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0))g(zjt) > c

)
= 0. (73)
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Therefore, for any c > 0,

lim
T→∞

Pr

(
inf
g∈G

m̄`
T (θ0, g) > c

)
= 0,

which then implies the second convergence in Lemma 3(b) because we have [m̄`
T (θ0, g)]+ =

max{0, m̄`
T (θ0, g)}.

C.3 Proof of Asymptotic Normality

To prove Theorem 2, we first give an auxiliary theorem that shows the convergence rate of

θ̂T .

Theorem 3. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Also suppose that Assumptions 3-9 hold.

Then we have θ̂sT − θs0 = Op(T
−1/2).

Theorem 3 is proved using the following three lemmas. Theorem 3 and two of the lemmas

together imply Theorem 2 as we explain immediately below. We give the proofs of Theorem

3 and the three lemmas in turn following the proof of Theorem 2.

Lemma 4. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Also suppose that Assumptions 3-9 hold.

Then we have for any sequence θT such that θsT − θs0 = Op(T
−1/2), Q̂T (θT ) − Q̂0,T (θT ) =

op(T
−1).

Lemma 5. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Also suppose that Assumptions 3-9 hold.

Then we have

(a) for an open ball Bc(θ
s
0) of radius c > 0 around θs0, we have that

sup
θ∈Θ:θs∈Bc(θs0)

∣∣∣∣√Q̂0,T (θ)−
√
Q̂∗T (θ)

∣∣∣∣ = op(T
−1/2), and

(b) Q̂∗T (θ0) = Op(T
−1).

Lemma 6. Suppose that either Assumption 1 holds and T−1
∑T

t=1 J
2
t /J̄

2
T is bounded, or

Assumption 2 holds and supt=1,...,T Jt is bounded. Also suppose that Assumptions 3-8 hold.

For any sequence of random vectors θT such that ‖θsT − θs0‖ →p 0, we have

(a) Q̂∗T (θT )− Q̂∗T (θ0) = (θsT − θs0)′Υ̂T (θsT − θs0) + 2W ′
T (θsT − θs0) + op(1)‖θsT − θs0‖2, where

Υ̂T =
∑
g∈G0

µ(g)Γ̂T (g)Γ̂T (g)′
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WT =
∑
g∈G0

µ(g)m̄T (θ0, g)Γ̂T (g)

Γ̂T (g) = (T J̄T )−1

T∑
t=1

Jt∑
j=1

g(zjt)∂mjt(λ0), and

(b) Υ̂T →p Υ and T 1/2WT →d N(0, V ).

Proof of Theorem 2. We use Theorem 2 of Sherman (1993) to prove the theorem. By The-

orem 2 of Sherman (1993), the conclusion of our Theorem 2 holds under two conditions:

(i) ‖θ̂sT − θs0‖ = Op(T
−1/2),

(ii) uniformly over θs in a Op(T
−1/2) neighborhood of θs0, Q̂T (θ)−Q̂T (θ0) = (θs−θs0)′Υ(θs−

θs0) + 2T−1/2B′T (θs − θs0) + op(T
−1) for a random vector BT such that BT →d N(0, V ).

Condition (i) is implied by Theorem 3. To establish condition (ii), consider the derivation:

for any sequence θT such that θsT − θs0 = Op(T
−1/2),

Q̂T (θT )− Q̂T (θ0) = [Q̂T (θT )− Q̂0,T (θT )] + [Q̂0,T (θT )− Q̂∗T (θT )]+

[Q̂∗T (θT )− Q̂∗T (θ0)] + [Q̂∗T (θ0)− Q̂0,T (θ0)] + [Q̂0,T (θ0)− Q̂T (θ0)]

= op(T
−1) + [Q̂0,T (θT )− Q̂∗T (θT )]+

[Q̂∗T (θT )− Q̂∗T (θ0)] + [Q̂∗T (θ0)− Q̂0,T (θ0)] + op(T
−1), (74)

where the second equality holds by Lemma 4. For the summand [Q̂0,T (θT )−Q̂∗T (θT )], consider

the derivation:

Q̂0,T (θT )− Q̂∗T (θT ) =

(√
Q̂0,T (θT )−

√
Q̂∗T (θT )

)2

+ 2

(√
Q̂0,T (θT )−

√
Q̂∗T (θT )

)(√
Q̂∗T (θT )

)
= op(T

−1) + op(T
−1/2)

√
Q̂∗T (θT )− Q̂∗T (θ0) + Q̂∗T (θ0)

= op(T
−1) + op(T

−1/2)

√
Q̂∗T (θT )− Q̂∗T (θ0) +Op(T−1)

= op(T
−1) + op(T

−1/2)
√
Op(T−1) +Op(T−1)

= op(T
−1), (75)

where the second equality holds by Lemma 5(a), the third equality holds by Lemma 5(b), and

the fourth equality holds by Lemma 6(a)-(b). Similar arguments show that the summand

[Q̂0,T (θ0)− Q̂∗T (θ0)] = op(T
−1). Therefore,

Q̂T (θ)− Q̂T (θ0) = op(T
−1) + Q̂∗T (θT )− Q̂∗T (θ0) (76)
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This combined with Lemma 6(a)-(b) shows the condition (ii) where BT = T 1/2WT . This

concludes the proof of Theorem 2.

Proof of Theorem 3. We prove Theorem 3 using Lemmas 4-6. The three lemmas imply that

(eigmin(Υ) + op(1))‖θ̂sT − θs0‖2 +Op(T
−1/2)‖θ̂sT − θs0‖

≤ Q̂∗T (θ̂T )− Q̂∗T (θ0)

≤ (

√
Q̂0,T (θ̂T ) + op(T

−1/2))2 − Q̂∗T (θ0)

≤ 2Q̂0,T (θ̂T ) + op(T
−1)− Q̂∗T (θ0)

≤ 2Q̂T (θ̂T ) + op(T
−1)− Q̂∗T (θ0)

≤ 2Q̂T (θ0) + op(T
−1)− Q̂∗T (θ0)

≤ 2(Q̂T (θ0)− Q̂0,T (θ0)) + 2Q̂0,T (θ0) + op(T
−1)

= Op(T
−1), (77)

where eigmin(Υ) is the smallest eigenvalue of Υ, the first inequality holds by Lemma 6(a)-

(b), the second inequality holds by Lemma 5(a), the third inequality holds by the algebraic

inequality (a + b)2 ≤ 2a2 + 2b2, the fourth inequality holds because Q̂0,T (·) and Q̂T (·) are

defined to be exactly the same, both being weighted sums of nonnegative terms, except that

the former sums over fewer terms, the fifth inequality holds because θ̂T is the minimizer of

Q̂T (·), the sixth inequality holds because Q̂∗T (θ0) ≥ 0, and the equality holds by Lemmas

4 and 5(a)-(b). Let ζ be an arbitrary positive number, we next show that we can find a

constant M1 large enough so that

lim sup
T→∞

Pr
(
T 1/2‖θ̂sT − θs0‖ > M1

)
< ζ. (78)

This shows that ‖θ̂sT − θs0‖ = Op(T
−1/2). To show (78), consider that

Pr
(
T 1/2‖θ̂sT − θs0‖ > M1

)
≤ Pr

(
T 1/2‖θ̂sT − θs0‖ > M1, op(1) ≥ −eigmin(Υ)/2

)
+ Pr (op(1) < −eigmin(Υ)/2)

≤ Pr

(
T‖θ̂sT − θs0‖2(eigmin(Υ) + op(1)) >

eigmin(Υ)M2
1

2
, T 1/2‖θ̂sT − θs0‖ > M1

)
+ o(1)

≤ Pr

(
T‖θ̂sT − θs0‖2(eigmin(Υ) + op(1)) >

eigmin(Υ)M2
1

2
, T 1/2‖θ̂sT − θs0‖ > M1, Op(1) ≥ −M2

)
+ Pr (Op(1) < −M2) + o(1)
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≤ Pr

(
T‖θ̂sT − θs0‖2(eigmin(Υ) + op(1)) +Op(T

1/2)‖θ̂sT − θs0‖ >
eigmin(Υ)M2

1

2
−M1M2

)
+ Pr (Op(1) < −M2) + o(1)

≤ Pr

(
Op(1) >

eigmin(Υ)M2
1

2
−M1M2

)
+ Pr (Op(1) < −M2) + o(1),

where the last inequality holds by (77), and the different Op(1) terms appearing above are

not necessarily the same ones. Fix M2 at a value such that the limsup of the second term in

the last line is less than ζ/2. Note that
eigmin(Υ)M2

1

2
−M1M2 can be made arbitrarily large by

increasing M1 (by Assumption 8(d), eigmin(Υ) > 0). Thus, we can choose a M1 large enough

so that the limsup of the first term in the last line is also less than ζ/2. Therefore, a large

enough M1 exists such that (78) holds.

Proof of Lemma 4. Note that

Q̂T (θT )− Q̂0,T (θT ) =
∑

g∈G\G0

µ(g)[m̄u
T (θT , g)]2− +

∑
g∈G\G0

µ(g)[m̄`
T (θT , g)]2+.

Thus, it suffices to show that∑
g∈G\G0

µ(g)[m̄u
T (θT , g)]2− = op(T

−1), and (79)

∑
g∈G\G0

µ(g)[m̄`
T (θT , g)]2+ = op(T

−1). (80)

We separate the two cases, one where Assumption 1 is satisfied and the other where As-

sumption 2 is satisfied.

Case 1: Assumption 1 is satisfied. In this case, arguments for (79) and (80) are analogous.

Thus, we give the detailed proof for (79) only. First consider that∑
g∈G\G0

µ(g)[m̄u
T (θT , g)]2− ≤

∑
g∈G\G0

µ(g)[AT (g) +BT (g) + CT (g)]2−,

where

AT (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(πt, λT )− x′jtβT )g(zjt)

BT (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λT )− δ̌jt(πt, λT ))g(zjt)
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CT (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(πjt))g(zjt). (81)

The inequality holds because ιu ≥ ιu (Assumption 1(b)). For AT (g), consider that

AT (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

ξjtg(zjt) +
1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(πt, λT )− δjt(πt, λ0))g(zjt)

− 1

T J̄T

T∑
t=1

Jt∑
j=1

xjt(βT − β0)g(zjt).

Equation (64) in the proof of Lemma 3 implies that

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

ξjtg(zjt)

∣∣∣∣∣ = Op(T
−1/2). (82)

Also,

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(πt, λT )− δjt(πt, λ0))g(zjt)

∣∣∣∣∣
= sup

g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

∂δjt(πt, λ̃T )

∂λ′
(λT − λ0)g(zjt)

∣∣∣∣∣
≤ 1

T J̄T

T∑
t=1

Jt∑
j=1

∥∥∥∥∥∂δjt(πt, λ̃T )

∂λ′

∥∥∥∥∥ ‖λT − λ0‖

= Op(1)‖λT − λ0‖, (83)

where the first equality holds by a mean-value expansion for λ̃T lying on the line segment

connecting λT and λ0, the inequality holds because g(zjt) ∈ (0, 1), the first equality holds by

Assumption 8(c) and the condition that λT → λ0 given in the lemma. Moreover,

1

T J̄T

T∑
t=1

Jt∑
j=1

xsjt(β
s
T − βs0)g(zjt) ≤

1

T J̄T

T∑
t=1

Jt∑
j=1

∥∥xsjt∥∥ ‖βsT − βs0‖ = Op(1) ‖βsT − βs0‖ , (84)

where the equality holds by Assumption 8(c).

Therefore, combining (82), (83), (84) and ‖θsT − θs0‖ = Op(T
−1/2), we have

sup
g∈G
|AT (g)| = Op(log(T )T−1/2). (85)
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Now consider BT (g). Let B0
T (g) = 1

T J̄T

∑T
t=1

∑Jt
j=1(δ̌jt(s̃t, λ0)−δ̌jt(πt, λ0))g(zjt). Consider

that

sup
g∈G
|BT (g)−B0

T (g)| ≤ sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(πt, λT )− δjt(πt, λ0))g(zjt)

∣∣∣∣∣
+ sup

g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λT )− δjt(s̃t, λ0))g(zjt)

∣∣∣∣∣ .
The first summand is less than or equal to Op(1)‖λT − λ0‖ by (83). The second summand

is also less than or equal to Op(1)‖λT − λ0‖ due to the same arguments as those for (83)

and the convergence supt=1,...,T ‖st−πt‖f →p 0 implied by (47) and Assumption 4(g). Those

combined with ‖θsT − θs0‖ = Op(T
−1/2) shows that:

sup
g∈G
|BT (g)−B0

T (g)| = Op(T
−1/2). (86)

For B0
T (g), consider that

B0
T (g) =

1

T J̄T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0))g(zjt)

=
1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)
∂δ̌jt(πt, λ0))

∂π′
(s̃t − st)

+
1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)
∂δ̌jt(πt, λ0))

∂π′
(st − πt)

+
1

2T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)(s̃t − πt)′
∂2δ̌jt(π̃t, λ0))

∂π∂π′
(s̃t − πt), (87)

where π̃t is a point on the line segment connecting s̃t and πt. For the first summand, note

that, by the Cauchy-Schwartz inequality and g(z) ∈ [0, 1], its absolute value is less than or

equal to

(
sup

t=1,...,T
nt‖s̃t − st‖f

)(
1

T J̄TnT

T∑
t=1

Jt∑
j=1

∥∥∥∥∂δ̌jt(πt, λ0))

∂π′

∥∥∥∥
)

= Op(1)n−1
T Op(

√
Jmax
T ) = op(T

−1/2),
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where the first equality holds by Assumption 4(f),

E

(
1

T J̄T

T∑
t=1

Jt∑
j=1

∥∥∥∥∂δ̌jt(πt, λ0))

∂π′

∥∥∥∥
)
≤ sup

j,t
E

∥∥∥∥∂δ̌jt(πt, λ0))

∂π′

∥∥∥∥ = O(
√
Jmax
T )

(by Assumption 9(b)), and Markov’s inequality, and the second equality holds by Assumption

4(g). For the second summand of (87), we can apply Lemma 7 and get

E

sup
g∈G

(
1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)
∂δ̌jt(πt, λ0))

∂π′
(st − πt)

)2


≤ C
∑T

t=1 J
2
t

T 2J̄2
T

max
j,t

E

(
∂δ̌jt(πt, λ0))

∂π′
(st − πt)

)2

=
C
∑T

t=1 J
2
t

T 2J̄2
T

max
j,t

E

(
∂δ̌jt(πt, λ0))

∂π′
diag(πt)− πtπ′t

nt

∂δ̌jt(πt, λ0))

∂π

)
≤ C

∑T
t=1 J

2
t

T 2J̄2
TnT

max
j,t

E

(∥∥∥∥∂δ̌jt(πt, λ0))

∂π′

∥∥∥∥2
)

= O(n−1
T T−1Jmax

T )

= o(T−1),

where the first equality holds by E[(st− πt)(st− πt)′|πt, nt] =
diag(πt)−πtπ′t

nt
which holds under

Assumption 4(b), the second inequality holds because diag(πt)−πtπ′t is positive semi-definite

and its largest eigenvalue of does not exceed the highest πjt which does not exceed 1 and

because nt ≥ nT for all t = 1, . . . , T , the second equality holds by Assumption 9(b) and the

boundedness of
∑T

t=1 J
2
t /(T J̄

2
T ), and the last equality holds by Assumption 4(g). Therefore,

the Markov inequality applies and shows that the second summand of (87) is op(T
−1/2)

uniformly over g ∈ G. For the third summand of (87), consider that

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)(s̃t − πt)′
∂2δ̌jt(π̃t, λ0))

∂π∂π′
(s̃t − πt)

∣∣∣∣∣
≤w.p.a.1. sup

j,t
sup

π:‖π−πt‖≤c

∥∥∥∥∂2δ̌jt(π, λ0))

∂π∂π′

∥∥∥∥T−1

T∑
t=1

(s̃t − πt)′(s̃t − πt)

≤ Op(J
max
T )2

[
T−1

T∑
t=1

‖s̃t − st‖2 + T−1

T∑
t=1

‖st − πt‖2

]

= Op(J
max
T )Op(n

−1
T ) +Op(J

max
T )T−1

T∑
t=1

‖st − πt‖2
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= Op(J
max
T )Op(n

−1
T ) +Op(J

max
T )Op(n

−1
T )

= op(T
−1/2),

where the first inequality holds because supt ‖s̃t − πt‖ ≤ supt ‖s̃t − πt‖f ≤ c w.p.a.1. by

Assumption 4(f,g) and equation (47) and also because g(z) ∈ [0, 1], the second inequality

holds by Assumption 9(b), the first equality holds by Assumption 4(f), the second equality

holds by Markov’s inequality and E‖st − πt‖2 = E
∑Jt

j=1 πjt(1− πjt)/nt ≤ n−1
T , and the last

equality holds by Assumption 4(g). Combining the arguments for all the three summands

in (87), we have

sup
g∈G

∣∣B0
T (g)

∣∣ = op(T
−1/2). (88)

This and (86) together imply that

sup
g∈G
|BT (g)| = op(T

−1/2). (89)

Next consider CT (g). Using the moment bound derived in (65) in the proof of Theorem

3 and the Markov inequality, we can derive

sup
g∈G
|CT (g)− E[CT (g)]| = Op

(
log nT
T 1/2

)
= Op

(
log T

T 1/2

)
, (90)

where the second equality holds by nTT
−2 →p 0 (Assumption 8(e)).

Let rT (g) denote AT (g)+BT (g)+CT (g)−E[CT (g)]. Then m̄u
T (θT , g) ≥ rT (g)+E[CT (g)].

And by equations (85), (89), and (90), we have

sup
g∈G
|rT (g)| = Op(T

−1/2 log T ). (91)

For a sequence cT such that T−1/2 log T = o(cT ), consider:∑
g∈G\G0:E[CT (g)]>cT

µ(g)[m̄u
T (θT , g)]2− ≤

∑
g∈G\G0:E[CT (g)]>cT

µ(g)[rT (g) + cT ]2−

≤ sup
g∈G

[rT (g) + cT ]2−

= [op(cT ) + cT ]2−

=w.p.a.1 0, (92)

where the first inequality holds because [·]2− is nonincreasing, the second inequality holds
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because µ(g) is a probability mass function, the first equality holds by (91). Thus, the

expression
∑

g∈G\G0:E[CT (g)]>cT
µ(g)[m̄u

T (θT , g)]2− converges in probability to zero at arbitrary

rate. Further restrict cT so that cT = o((log T )−2/η). This is possible because for any finite

η > 0, log(T )1+2/η = o(T 1/2). Also consider∑
g∈G\G0:E[CT (g)]≤cT

µ(g)[m̄u
T (θT , g)]2− ≤

∑
g∈G\G0:E[CT (g)]≤cT

µ(g)[rT (g)]2−

≤ sup
g∈G
|rT (g)|2

∑
g∈G\G0:E[CT (g)]≤cT

µ(g)

= Op

(
T−1(log T )2

)
cηT

= op(T
−1), (93)

where the first inequality holds because m̄u
T (θT , g) = rT (g) + E[CT (g)] and

E[CT (g)] = (T J̄T )−1

T∑
t=1

Jt∑
j=1

E[log(sjt + ιu/nt)− log(πjt)g(zjt)] ≥ 0

by the definition of ιu, and the first equality holds by the first part of Assumption 9(a).

Therefore, combining (92) and (93), we have∑
g∈G\G0

µ(g)[m̄u
T (θT , g)]2− = op(T

−1). (94)

Case 2: Assumption 2 is satisfied. We prove (79) first. Observe that∑
g∈G\G0

µ(g)[m̄u
T (θT , g)]2− =

∑
g∈G\G0

µ(g)[AT (g) + ∆T (g) + ST (g)]2−,

where

AT (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(πt, λT )− x′jtβT )g(zjt)

∆T (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λT )− δjt(πt, λT ))g(zjt)

ST (g) =
1

T J̄T

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(s̃jt))g(zjt). (95)

The same arguments showing (85) in Case 1 still applies in Case 2 since neither Assumption
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1 or Assumption 2 is involved. Thus, (85) holds. For ∆T (g), the same arguments as those

for (86) shows that

sup
g∈G\G0

∣∣∣∣∣∆T (g)− 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)

∣∣∣∣∣ = Op(1)‖λT − λ0‖. (96)

Equation (69) in Case 2 of the proof of Theorem 3 shows that

E sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)− E[(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)]

∣∣∣∣∣
2

=O

(
log(nT )2

T

)
.

Thus, by the Markov inequality,

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)− E[(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)]

∣∣∣∣∣
=Op

(
log(nT )

T 1/2

)
=Op(log(T )T−1/2). (97)

where the second equality holds by nTT
−2 →p 0 (Assumption 8(e)). By Assumption 2(b),

E[(δjt(s̃t, λ0) − δjt(πt, λ0))g(zjt)] ≥ 0. This combined with (96), (97), and ‖θ̂sT − θs0‖ =

Op(T
−1/2) implies that

inf
g∈G

∆T (g) ≥ Op((log(T )T−1/2). (98)

For ST (g), note that

ST (g) ≥ 1

T J̄T

T∑
t=1

Jt∑
j=1

(sjt + ιu/nt)
−1((sjt + ιu/nt)− (s̃jt))g(zjt)

= (ιu − 1)
1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)

ntsjt + ιu
.

Applying Lemma 7 and using the fact that E[(ntsjt + ιu)
−2] ≤ ι−2

u , we have

E sup
g∈G

(
1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)

ntsjt + ιu
− E

[
g(zjt)

ntsjt + ιu

])2

= O(T−1).
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Then by the Markov inequality we have

sup
g∈G

∣∣∣∣∣ 1

T J̄T

T∑
t=1

Jt∑
j=1

g(zjt)

ntsjt + ιu
− E

[
g(zjt)

ntsjt + ιu

]∣∣∣∣∣ = Op(T
−1/2).

Thus we have

ST (g) ≥ Op(T
−1/2) +

1

T J̄T

T∑
t=1

Jt∑
j=1

E

[
g(zjt)

ntsjt + ιu

]
. (99)

Using (85), (98), (99), and the third part of Assumption 9(a), we can apply the same

arguments as those for (94) (from (92) to (94)) to conclude that (79) holds.

Finally we prove (80) for Case 2. Note that∑
g∈G\G0

µ(g)[m̄`
T (θT , g)]2+ ≤

∑
g∈G\G0

µ(g)[AT (g) +BT (g) + C`
T (g)]2+,

where

AT (g) =
1

T

T∑
t=1

Jt∑
j=1

(δjt(πt, λT )− x′jtβT )g(zjt)

BT (g) =
1

T

T∑
t=1

Jt∑
j=1

(δ̌jt(s̃t, λT )− δ̌jt(πt, λT ))g(zjt)

C`
T (g) =

1

T

T∑
t=1

Jt∑
j=1

(log(sjt + ι`/nt)− log(πjt))g(zjt). (100)

The same arguments showing (85) in Case 1 still applies in Case 2 since neither Assumption

1 or Assumption 2 is involved. Thus, (85) holds. For BT (g), the same arguments for (86)

in Case 1 still applies here as well. Thus, (86) holds, and we only need to study B0
T (g) to

understand the behavior of BT (g). Note that

B0
T (g) =

1

T J̄T

T∑
t=1

Jt∑
j=1

(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)− E[(δjt(s̃t, λ0)− δjt(πt, λ0))g(zjt)]

− 1

T J̄T

T∑
t=1

Jt∑
j=1

(log(s̃t)− log(πt))g(zjt)− E[(log(s̃t)− log(πt))g(zjt)]

+
1

T J̄T

T∑
t=1

Jt∑
j=1

E[(δ̌jt(s̃t, λ0)− δ̌jt(πt, λ0))g(zjt)].

Equation (97) shows that the first summand is Op(log(T )T−1/2) uniformly over g ∈ G, Equa-
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tion (65) and Markov inequality combined show that the second summand is Op(log(T )T−1/2)

uniformly over g ∈ G. The third summand is non-positive by Assumption 2(a). Therefore

sup
g∈G

BT (g) ≤ Op(log(T )T−1/2). (101)

The same arguments as those for the second summand above shows that supg∈G |C`
T (g) −

E[C`
T (g)]| = Op(log(T )T−1/2). Using this, (85), (101), and the second part of Assumption

9(a), we can apply similar arguments as those for (94) (from (92) to (94)) to conclude that

(80) holds.

Proof of Lemma 5. (a) By equation (60) in the proof of Theorem 1, we have

sup
θ∈Θ:θs∈Bc(θs0)

∣∣∣∣√Q̂0,T (θ)−
√
Q̂∗T (θ)

∣∣∣∣
≤
√

sup
θ∈Θ:θs∈Bc(θs0)

sup
g∈G0
|m̄u

T (θ, g)− m̄T (θ, g)|2 + sup
θ∈Θ:θs∈Bc(θs0)

sup
g∈G0
|m̄`

T (θ, g)− m̄T (θ, g)|2.

(102)

Now note that

m̄u
T (θ, g)− m̄T (θ, g) = (T J̄T )−1

T∑
t=1

Jt∑
j=1

(δ̂ujt(st, λ)− δjt(πt, λ))g(zjt)

= (T J̄T )−1

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(sjt))g(zjt)

+ (T J̄T )−1

T∑
t=1

Jt∑
j=1

δjt(s̃t, λ)− δjt(πt, λ))g(zjt). (103)

For the first summand, consider that

sup
g∈G0

∣∣∣∣∣(T J̄T )−1

T∑
t=1

Jt∑
j=1

(log(sjt + ιu/nt)− log(sjt))g(zjt)

∣∣∣∣∣ ≤ (T J̄T )−1ιu

T∑
t=1

Jt∑
j=1

(sjt + ι̃/nt)
−1n−1

t

≤ n−1
T ιu sup

j,t:zjt∈Z0

s−1
jt

= Op(n
−1
T ) = op(T

−1/2), (104)

where the first inequality holds with ι̃ ∈ [0, ιu] by mean-value expansion and |g(zjt)| ≤ 1,

the second inequality holds by the definition of G0, the first equality holds because sjt is
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bounded away from zero by Assumptions 3 and equation (46), and the last equality holds by

Assumption 8(e). For the second summand in (103), we can apply the same arguments as

those for (89) to show that this second summand is op(T
−1/2) with the following adjustment:

(1) Replace G by G0, (2) replace δ̌jt(·, ·) with δjt(·, ·) and (2) replace the Case 1 version of

Assumption 9(b) by the Case 2 version. Therefore, we have

sup
θ∈Θ:θs∈Bc(θs0)

sup
g∈G0
|m̄u

T (θ, g)− m̄T (θ, g)| = op(T
−1/2).

Analogous arguments can be used to show that supθ∈Bc(θ0) supg∈G0 |m̄
`
T (θ, g) − m̄T (θ, g)| =

op(T
−1/2). That concludes the proof.

(b) Recall that Q̂∗T (θ0) =
∑

g∈G0 µ(g)(m̄T (θ0, g))2, and note that

m̄T (θ0, g) =
1

T J̄T

T∑
T=1

Jt∑
j=1

(δjt(πt, λ0)− x′jtβ0)g(zjt) =
1

T

T∑
T=1

Jt∑
j=1

ξjtg(zjt).

Then by equation(64) in the proof of Theorem 3, we have

sup
g∈G0
|m̄T (θ0, g)| = Op(T

−1/2). (105)

This implies part (b).

Proof of Lemma 6. (a) First consider that, for g ∈ G0,

m̄T (θT , g)− m̄T (θ0, g)

= (T J̄T )−1

T∑
t=1

Jt∑
j=1

g(zjt)[δjt(πt, λT )− δjt(πt, λ0) + xsjt(β
s
T − βs0)]

= (T J̄T )−1

T∑
t=1

Jt∑
j=1

g(zjt)∂mjt(λ0)′(θsT − θs0)+

(T J̄T )−1

T∑
t=1

Jt∑
j=1

g(zjt)(λT − λ0)′
∂2δjt(πt, λ̃)

∂λ∂λ′
(λT − λ0)/2

= Γ̂T (g)′(θsT − θs0) + (λT − λ0)′DT (g)(λT − λ0),

where λ̃ is a point on the line segment connecting λT and λ0, and

DT (g) = (2T J̄T )−1

T∑
t=1

Jt∑
j=1

g(zjt)
∂2δjt(πt, λ̃)

∂λ∂λ′
.
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Thus, we have

Q̂∗T (θT )− Q̂∗T (θ0)

=
∑
g∈G0

µ(g)(m̄T (θT , g)− m̄T (θ0, g))2 + 2
∑
g∈G0

µ(g)m̄T (θ0, g)(m̄T (θT , g)− m̄T (θ0, g)) (106)

= (θsT − θs0)
∑
g∈G0

µ(g)Γ̂T (g)Γ̂T (g)′(θsT − θs0)

+ 2
∑
g∈G0

µ(g)(λT − λ0)′DT (g)(λT − λ0)Γ̂T (g)′(θsT − θs0)

+
∑
g∈G0

µ(g){(λT − λ0)′DT (g)(λT − λ0)}2

+ 2
∑
g∈G0

µ(g)m̄T (θ0, g)Γ̂T (g)′(θsT − θs0)

+ 2
∑
g∈G0

µ(g)m̄T (θ0, g)(λT − λ0)′DT (g)(λT − λ0). (107)

Since λ̃ ∈ Bc(λ0) whenever λT ∈ Bc(λ0) (which holds with probability approaching one

because ‖λT − λ0‖ →p 0), we have for any g ∈ G0,

sup
g∈G0
‖DT (g)‖ ≤w.p.a.1

1

T J̄T

T∑
t=1

Jt∑
j=1

sup
λ:||λ−λ0‖≤c

∥∥∥∥∂2δjt(πt, λ)

∂λ∂λ′

∥∥∥∥ = Op(1), (108)

where the first inequality holds because 0 ≤ g(z) ≤ 1, and the equality holds by Markov’s

inequality and Assumption 8(c). This combined with ‖θsT − θs0‖ = op(1) implies that∑
g∈G0

µ(g){(λT − λ0)′DT (g)(λT − λ0)}2 ≤ sup
g∈G0
‖DT (g)‖2‖θsT − θs0‖4 = op(1)‖θsT − θs0‖2.

Also, using Assumption 8(c) and the same arguments as those for (108), we can show that

supg∈G0 ‖Γ̂T (g)‖ = Op(1). This combined with (108) and ‖θsT − θs0‖ = op(1) implies that∣∣∣∣∣∑
g∈G0

µ(g)(λT − λ0)′DT (g)(λT − λ0)Γ̂T (g)′(θsT − θs0)

∣∣∣∣∣ ≤ ‖θsT − θs0‖3 sup
g∈G0
‖DT (g)‖‖Γ̂T (g)‖

= op(1)‖θsT − θs0‖2.

Next apply Lemma 7 with wjt = ξjt and we get

E sup
g∈G0

(m̄T (θ0, g))2 = E sup
g∈G0

(
(T J̄T )−1

T∑
t=1

Jt∑
j=1

ξjtg(zjt)

)2
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≤ C
∑T

t=1 J
2
t

T 2J̄2
T

sup
j,t
E[ξ2

jt1(zjt ∈ Z0)]

= O(T−1),

where the second equality holds by Assumption 4(e) and the boundedness of T−1
∑T

t=1 J
2
t /J̄

2
T .

Therefore,

sup
g∈G0
|m̄T (θ0, g)| = Op(T

−1/2). (109)

This combined with (108) implies that∑
g∈G0

µ(g)m̄T (θ0, g)(λT − λ0)′DT (g)(λT − λ0) = Op(T
−1/2)‖θsT − θs0‖2.

Therefore, part (a) holds.

(b) Apply Lemma 7 with wjt being an element of the random vector ∂mjt(λ0), do so for

every element of ∂mjt(λ0), and we get

E sup
g∈G0

∥∥∥Γ̂T (g)− ΓT (g)
∥∥∥2

≤ C
∑T

t=1 J
2
t

T 2J̄2
T

sup
j,t
E[‖∂mjt(λ0)‖21(zjt ∈ Z0)] = O(T−1).

The equality is implied by Assumptions 8(c) and the boundedness of Jt. Thus, we have

sup
g∈G0

∥∥∥Γ̂T (g)− ΓT (g)
∥∥∥ = Op(T

−1/2). (110)

Assumption 8(c) also implies that

sup
g∈G0
‖ΓT (g)‖ ≤ sup

g∈G0
(T J̄T )−1

T∑
t=1

Jt∑
j=1

E[‖∂mjt(λ0)g(zjt)‖]

≤ sup
g∈G0

sup
j,t
E[‖∂mjt(λ0)‖1(zjt ∈ Z0)]

= O(1). (111)

This and (110) together imply that

Υ̂T =
∑
g∈G0

µ(g)Γ̂T (g)Γ̂T (g)′ = op(1) +
∑
g∈G0

µ(g)ΓT (g)ΓT (g)′ →p Υ,

where the convergence holds by Assumption 8(d).
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For Wn, first consider the derivation∣∣∣∣∣T 1/2
∑
g∈G0

µ(g)m̄T (θ0, g)(Γ̂T (g)− ΓT (g))

∣∣∣∣∣ ≤ sup
g∈G0
|m̄T (θ0, g)| sup

g∈G0
T 1/2‖Γ̂T (g)− ΓT (g)||

= Op(T
−1/2) = op(1),

by equations (109) and (110). Thus,

T 1/2Wn = op(1) + T 1/2
∑
g∈G0

µ(g)m̄T (θ0, g)ΓT (g)

= op(1) + T−1/2

T∑
t=1

vt,

where vt = J̄−1
T

∑Jt
j=1

[
ξjt

(∑
g∈G0 µ(g)g(zjt)ΓT (g)

)]
. Observe that {vt}Tt=1 is independent

across t by Assumption 4(d). Also consider the derivation:

E[vt] = E
Jt∑
j=1

[
E[ξjt|zjt]

(∑
g∈G0

µ(g)g(zjt)ΓT (g)

)]
= 0

T−1

T∑
t=1

E[vtv
′
t]

= T−1

T∑
t=1

∑
g,g∗∈G0

Cov

(
J̄−1
T

Jt∑
j=1

ξjtg(zjt), J̄
−1
T

Jt∑
j=1

ξjtg
∗(zjt)

)
ΓT (g)ΓT (g)′µ(g)µ(g∗)→ V,

where the second equality in the first lines holds by Assumptions 4(c), and the convergence

holds by 8(d). Also for the c in Assumption 4(e),

E(‖vt‖2+c) ≤ sup
j,t
E|ξjt|2+c sup

g∈G0
‖ΓT (g)‖2+c

= O(1),

by Assumptions 4(d) and equation (111) above. Therefore, we can apply the Lindeberg

central limit theorem and conclude T−1/2
∑T

t=1 vt →d N(0, V ). Therefore,

T 1/2Wn →d N(0, V ).
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C.4 Auxiliary Lemmas

In this subsection, we present two auxiliary lemmas. Lemma 7 establishes a maximal in-

equality for certain empirical processes indexed by g in a subset of G. This is used above

to establish the convergence rates of several empirical processes. Lemma 8 establishes a

concentration inequality for the L2 distance between a multinomial random vector and its

expectation. This is used to derive a tighter tail bound for ‖st − πt‖ than that implied by

Chernoff’s inequality when Jt is large.

Lemma 7. Let {zjt : j = 1, . . . , Jt, t = 1, . . . , T}T≥1 be an array of random vectors. Let G be

the set of instrumental functions defined in (16). Let Z∗ be a subset of supp(zjt) and let G∗

be a subset of G for which g(z) = 0 for all z /∈ Z∗for all g ∈ G∗. Let {wjt : j = 1, . . . , Jt, t =

1, . . . , T}T≥1 be an array of random variables such that E[w2
jt1(zjt ∈ Z∗)] ≤ MT for all j, t

for some MT <∞. Let wt = (w1t, . . . , wJtt)
′ and zt = (z1t, . . . , zJtt)

′. Suppose that (wt, zt) is

independent across t. Then

E sup
g∈G∗

(
T∑
t=1

Jt∑
j=1

(wjtg(zjt)− E[wjtg(zjt)])

)2

≤ CMT

T∑
t=1

J2
t ,

for some constant C > 0.

Proof. Recall that Jmax
T = maxt=1,...,T Jt. First observe that

∑Jt
j=1wjtg(zjt) can be written

as ft(g) :=
∑Jmax

T
j=1 wjt1(j ≤ Jt)g(zjt). Observe that the triangular array of random processes

{g(zjt) : g ∈ G∗ : t = 1, . . . , T}T≥1 is manageable with respect to the envelope 1T for all j in

the sense of Pollard (1990) because G is the collection of indicator functions for a Vapnik-

Cervonenkis class of sets. Then by parts (a) and (c) of Lemma E1 in Andrews and Shi (2013),

we have that the triangular array {ft(g) : g ∈ G∗ : t = 1, . . . , T ;T ≥ 1} is manageable with

respect to the envelope function FT = (FT1, . . . , FTT ) where FTt =
∑Jmax

j=1 1(j ≤ Jt, zjt ∈
Z∗)|wjt| ≡

∑Jt
j=1 |wjt|1(zjt ∈ Z∗). Therefore, by the maximal inequality (7.10) in Pollard

(1990), we have, for some constant C > 0,

E sup
g∈G∗

∣∣∣∣∣
T∑
t=1

Jt∑
j=1

(wjtg(zjt)− E[wjtg(zjt)])

∣∣∣∣∣
2

≤ C
T∑
t=1

E[(FTt)
2]

≤ C
T∑
t=1

Jt

Jt∑
j=1

E[w2
jt1(zjt ∈ Z∗)]

≤ CMT

T∑
t=1

J2
t , (112)

71



proving the lemma.

The following lemma presents a concentration inequality for the L2 distance from the

mean for multinomial random vectors. The tail bound presented here does not depend

on the length of the multinomial random vector, and thus can be applied for multinomial

distributions with an arbitrarily large number of categories. The proof of the lemma uses

Poissonization, a technique that Devroye (1983) employs in his Lemma 3 to derive a con-

centration inequality for the L1 distance from the mean for multinomial random vectors.

Devroye’s bound applies when the number of categories is smaller than a scalar multiple of

the sample size.

Lemma 8. Let (X1, . . . , XJ) be a multinomial (n, p1, . . . , pJ) random vector, where p1, . . . , pJ

are non-negative numbers that sum up to 1 and n is a positive integer. Then, for all ε > 0,

Pr

(
J∑
j=1

(Xi − npi)2 > n2ε2

)
≤ 128(3n2 + n)

n4ε4
. (113)

Proof. Let U1, U2, . . . be a sequence of independent and identically distributed {1, . . . , J}-
valued variables with probability mass given by P (U1 = j) = pj, 1 ≤ j ≤ J . Let N

be a Poisson(n) random variable independent of {U1, U2, . . . }. Let Xj be the number of

occurrences of the value j among U1, . . . , Un, and let X̃i be the number of occurrences of

the value j among U1, . . . , UN . It is clear that X1, . . . , XJ is a multinomial (n, p1, . . . , pJ)

random vector, and that X̃1, . . . , X̃J are independent Poisson random variables with means

np1, . . . , npJ . By the inequality (a+ b)2 ≤ 2a2 + 2b2, we have

J∑
j=1

(Xj − npj)2 ≤ 2
J∑
j=1

(Xj − X̃j)
2 + 2

J∑
j=1

(X̃j − npj)2. (114)

Thus,

Pr

(
J∑
j=1

(Xj − npj)2 > n2ε2

)

≤ Pr

(
J∑
j=1

(Xj − X̃j)
2 > n2ε2/4

)
+ Pr

(
J∑
j=1

(X̃j − npj)2 > n2ε2/4

)
. (115)
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For
∑J

j=1(Xj − X̃j)
2 consider the derivation:

(Xj − X̃j)
2 =

(
N∑

i=n+1

1{Ui = j}

)2

1{n < N}+

(
n∑

i=N+1

1{Ui = j}

)2

1{n > N}

=

(
N∑

i=n+1

1{Ui = j}+ 2
∑

i 6=i′,i,i′=n+1,...,N

1{Ui = j}1{Ui′ = j}

)
1{n < N}

+

(
n∑

i=N+1

1{Ui = j}+ 2
∑

i 6=i′,i,i′=N+1,...,n

1{Ui = j}1{Ui′ = j}

)
1{n > N}. (116)

Thus

J∑
j=1

(Xj − X̃j)
2 =

((
N∑

i=n+1

1

)
+

∑
i 6=i′:i,i′=n+1,...,N

1{Ui = Ui′}

)
1{n < N}

+

((
n∑

i=N+1

1

)
+

∑
i 6=i′:i,i′=N+1,...,n

1{Ui = Ui′}

)
1{n > N}

≤ |N − n+ (N − n)(N − n− 1)|

= (N − n)2. (117)

Therefore, using Markov’s inequality, we have

Pr

(
J∑
j=1

(Xj − X̃j)
2 > n2ε2/4

)
≤ Pr(|N − n|2 > n2ε2/4)

≤ 16E[(N − n)4]

n4ε4
=

16(3n2 + n)

n4ε4
. (118)

where the equality holds by N ∼ Poisson(n). For
∑J

j=1(X̃j − npj)2 consider the derivation:

E

( J∑
j=1

(X̃j − npj)2

)2


=
J∑
j=1

E[(X̃j − npj)4] +
∑

j 6=j′:j,j′=1,...,J

E[(X̃j − npj)2]E[(X̃j′ − npj′)2]

=
J∑
j=1

(3n2p2
j + npj) +

∑
j 6=j′:j,j′=1,...,J

n2pjp
′
j

= 2n2

J∑
j=1

p2
j + n+ n2 ≤ 3n2 + n. (119)
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Therefore,

Pr

(
J∑
j=1

(X̃j − npj)2 > n2ε2/4

)
≤ 16(3n2 + n)

n4ε4
(120)

Equations (115), (118), and (120) together concludes the proof.

D Random Coefficient Logit

In this section, we prove a lemma that establishes Assumption 1 for the random coefficient

logit model.

Lemma 9. Consider the random coefficient logit model in Example 4.2. Also assume that

(i) wjt is bounded, i.e. ||wjt|| ≤ w; (ii) supλ∈Λ sup‖w‖≤w
∫

exp(2w′v)dF (v;λ) < ∞, (iii)

inft=1,...,T infπt∈∆0
Jt
π0t ≥ ε0 > 0 for all T , and (iv) there exists e1 > 0 and 0 < e2 < ε0/2 such

that, the maximum eigenvalue of
∫
π̃t(v)π̃t(v)′dF (v;λ)


π̃−1

1t 0 . . . 0

0 π̃−1
2t . . . 0

. . . . . .
. . . 0

0 0 0 π̃−1
Jtt

 is less than

1− e1 for all λ ∈ Λ, and all π̃t ∈ ∆e2
Jt

for all t = 1, . . . , T and T = 1, 2, 3, . . . , where

π̃jt(v) =
exp(w′jtv + δjt(π̃t;λ))

1 +
∑Jt

k=1 exp(w′ktv + δkt(π̃t;λ))
.

Then Assumption 1(a) is satisfied.

Proof. Without loss of generality, consider the derivative with respect to π`t. For j =

1, . . . , Jt, take partial derivative with respect to π`t on both sides of (24), and we get:

∂δ̌jt(π̃t;λ)

∂π`t

=

∫
exp(w′jtv) exp(δ̌jt(π̃t;λ))(

1 +
∑Jt

k=1 exp(δ̌kt(π̃t;λ) + w′ktv)π̃kt

)2

·

(
exp(δ̌`t(π̃t;λ) + w′`tv) +

Jt∑
k=1

π̃kt exp(w′ktv) exp(δ̌kt(π̃t;λ))
∂δ̌kt(π̃t;λ)

∂π`t

)
dF (v;λ)

= π̃−1
`t π̃

−1
jt

∫
π̃jt(v)π̃`t(v)dF (v;λ) +

Jt∑
k=1

{[
π̃−1
jt

∫
π̃jt(v)π̃kt(v)dF (v;λ)

]
∂δ̌kt(π̃t;λ)

∂π`t

}
.
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Stacking the Jt equations in matrix form, we find that

Ht(π̃t, λ)
∂δ̌t(π̃t;λ)

∂π1t

= b`t(π̃t;λ),

where

Ht(π̃t, λ) = I −
∫
π̃t(v)π̃t(v)′dF (v;λ)


π̃−1

1t 0 . . . 0

0 π̃−1
2t . . . 0

. . . . . .
. . . 0

0 0 0 π̃−1
Jtt

 ,

and

b`t(π̃t;λ) =


π̃−1
`t π̃

−1
1t

∫
π̃`t(v)π̃1t(v)dF (v;λ)

π̃−1
`t π̃

−1
2t

∫
π̃`t(v)π̃2t(v)dF (v;λ)

...

π̃−1
`t π̃

−1
Jtt

∫
π̃`t(v)π̃Jtt(v)dF (v;λ)

 .

By condition (iv), we have that the eigenvalues of Ht(π̃t, λ) are positive and bounded away

from zero for all t, all λ and all π̃t ∈ ∆e2
Jt

. Next we show that the elements b`t(π̃t;λ) is

bounded uniformly over ` and t, which will then imply that

sup
t=1,...,T ;T=1,2,...

sup
j,`=1,...,Jt

sup
π̃t∈∆

e2
Jt

sup
λ∈Λ

∣∣∣∣∂δ̌jt(π̃t;λ)

∂π`t

∣∣∣∣ ≤M <∞.

for some M . Consider the derivation

δ̌jt(π̂t;λ)− δ̌jt(πt;λ) =
∂δ̌jt(π̃t;λ)

∂π′t
(π̂t − πt)

≤ ‖π̂t − πt‖
∥∥∥∥∂δ̌jt(π̃t;λ)

∂π′t

∥∥∥∥
≤
√
JtM‖π̂t − πt‖

≤
√
JtM‖π̂t − πt‖f . (121)

Thus Assumption 1(a) holds.

To show that b`t(π̃t;λ) is uniformly bounded, we first show that δ̌jt(π̃t;λ) is uniformly

bounded. Without loss of generality, consider δ̌1t(π̃t;λ):

δ̌1t(π̃t;λ) = − log

∫
exp(w′jtv)

1 +
∑Jt

k=1 exp(δ̌kt(π̃t;λ) + w′ktv)π̃kt
dF (v;λ)

≥ − log

∫
exp(w′jtv)dF (v;λ)
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≥ − log sup
λ∈Λ

sup
‖w‖≤w

∫
exp(w′v)dF (v;λ),

where the second inequality holds by condition (i). Then by condition (ii), we have inft,λ,π̃t δ̌1t(π̃t;λ) >

−∞. To show that supt,λ,π̃t δ̌1t(π̃t;λ) <∞, consider the outside share:

π̃0t =

∫
1

1 +
∑Jt

k=1 exp(δ̌kt(π̃t;λ) + w′ktv)π̃kt
dF (v;λ).

By |π̃0t − π0t| ≤ ‖π̃t − πt‖ < e2 < ε0/2 and π0t ≥ ε0, we have π̃0t ≥ ε0/2. Then there must

exists v large enough such that
∫
‖v‖≤v

1

1+
∑Jt
k=1 exp(δ̌kt(π̃t;λ)+w′ktv)π̃kt

dF (v;λ) ≥ ε0/4. Then

δ̌1t(π̃;λ) ≤ − log

∫
‖v‖≤v

exp(w′jtv)

1 +
∑Jt

k=1 exp(δ̌kt(π̃t;λ) + w′ktv)π̃kt
dF (v;λ)

≤ − log

{[
min

‖w‖≤w,||v||≤v
exp(w′v)

] ∫
‖v‖≤v

1

1 +
∑Jt

k=1 exp(δ̌kt(π̃t;λ) + w′ktv)π̃kt
dF (v;λ)

}

≤ −
[

min
‖w‖≤w,||v||≤v

(w′v)

]
− log(ε0/4).

Thus, supt,λ,π̃t δ̌1t(π̃t;λ) <∞.

Now we show that b`t(π̃t;λ) is uniformly bounded. By Cauchy-Schwarz inequality, it

suffices to consider the `th element of b`t(π̃t;λ):

π̃−2
`t

∫
π̃`t(v)2dF (v;λ) =

∫ (
exp(w′`tv + δ̌`t(π̃t;λ))

1 +
∑Jt

k=1 exp(w′ktv + δ̌kt(π̃t;λ))πkt

)2

dF (v;λ)

≤ exp(2δ̌`t(π̃t;λ))

∫
exp(2w′`tv)dF (v;λ).

Then by condition (ii) and supt,λ,π̃t δ̌`t(π̃t;λ) <∞, we have

sup
t

sup
λ

sup
‖π̃t−πt‖≤e2

‖π̃−2
`t

∫
π̃`t(v)2dF (v;λ)|| <∞.

This shows the uniform boundedness of the elements of b`t(π̃t;λ).

E Approximate Log Share

In this section, we show some theoretical derivation that provides further support for the

finiteness of ῑ` and the approximate value of ιu. Lemma 10 shows that ι∗(n, nπ) approaches
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(1 − π)/2 when nπ is large. Lemma 11 shows that ι∗(n, nπ) approaches nπ when nπ is

small. Both align well with the numerical results shown in Figure 2 and Table 2. Thus,

we are confident that the conclusions regarding the approximate values of ι` and ιu drawn

in Section 3.3 are correct, even though a fully rigorous theoretical proof is out of reach due

to the lack of an analytical solution for the expectation of the logarithm of mean-shifted

binomial or Poisson random variables. For two sequences of positive numbers an and bn, we

denote an ∝ bn if an/bn = O(1) and bn/an = O(1).

Lemma 10. Let q follow a binomial distribution with parameters (n, π). Consider a sequence

of binomial distributions such that π ∝ n−ν with ν ∈ [0, 1). Then along this sequence we

have:

(a) For any fixed constant ι > 0,

E[log(q + ι)− log(nπ)] =
ι

nπ
− 1− π

2nπ
+ o((nπ)−1).

where the o((nπ)−1) is uniform over ι in any bounded closed subinterval of (0,∞).

(b) ι∗(n, nπ)− (1− π)/2→ 0.

Lemma 11. Let q follow a binomial distribution with parameters (n, π). consider a sequence

of binomial distributions such that π ∝ n−ν with ν > 1. Then along this sequence we have

ι∗(n, nπ)

nπ
→ 1.

Proof of Lemma 10. (a) First note that by the Chernoff’s inequality, we have for any c > 0

Pr(|q − nπ| > (nπ)0.5+c) ≤ 2 exp

(
−(nπ)2c

3

)
. (122)

Decompose E[log(q + ι)− log(nπ)] as

E[log(q + ι)− log(nπ)] = E[(log(q + ι)− log(nπ))1{|q − nπ| ≤ (nπ)0.5+c}]

+ E[(log(q + ι)− log(nπ))||q − nπ| > (nπ)0.5+c] Pr(|q − nπ| > (nπ)0.5+c)

(123)

To bound each of the summands of the right-hand side of (123), first consider the derivation

exp(−(nπ)2c/3) = exp(−(nπ)2c/3)n2n−2

= exp(−(nπ)2c/3 + 2 log n)n−2 = o(n−2) (124)
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where the last equality holds because (nπ)2c/(3 log n) ∝ n2c(1−ν)/(3 log n)→∞.

Now consider the second summand of the right-hand side of (123). By (122), it is bounded

by

2 max{| log(ι)− log(nπ)|, | log(n+ ι)− log(nπ)|} exp(−(nπ)2c/3)

≤ C log(n) exp(−(nπ)2c/3)

= o(n−2 log n) = o((nπ)−1), (125)

where C is a universal constant, the inequality holds because ι is a fixed positive constant

and log(nπ) ≤ log n, the first equality holds due to (124) and the second equality holds

because nπ ∝ n(1−ν) = o(n2/ log(n)). It is easy to see that the o(·)’s are uniform in ι on any

compact interval on (0,∞).

Write (q + ι)/(nπ) = 1 + (q − nπ + ι)/(nπ), and use a Taylor series expansion of the

logarithm around 1, and we can write the first summand of the right-hand side of (123) as

E[(log(q + ι)− log(nπ))1{|q − nπ| ≤ (nπ)0.5+c}]

= (nπ)−1E[(q − nπ + ι)1{|q − nπ| ≤ (nπ)0.5+c}]

− 2−1(nπ)−2E[(q − nπ + ι)21{|q − nπ| ≤ (nπ)0.5+c}]

+ 2(3!)−1(nπ)−3E[(1 + x̃)−3(q − nπ + ι)31{|q − nπ| ≤ (nπ)0.5+c}], (126)

where x̃ is a value on the interval [0, (q − nπ + ι)/(nπ)]. Consider the derivation:

(nπ)−3E[(1 + x̃)−3(q − nπ + ι)31{|q − nπ| ≤ (nπ)0.5+c}] ≤ C(nπ)−3(ι3 + (nπ)1.5+3c)

= o((nπ)−1), (127)

where C is a universal constant, and the equality holds when we pick a c ∈ (0, 1/6). Also

consider the derivation

E[(q − nπ + ι)21{|q − nπ| ≤ (nπ)0.5+c}]

= E[(q − nπ + ι)2]− E[(q − nπ + ι)2||q − nπ| > (nπ)0.5+c] Pr(|q − nπ| > (nπ)0.5+c)

= E[(q − nπ + ι)2]−O(n2 exp(−(nπ)2c/3))

= E[(q − nπ + ι)2] + o(1)

= nπ(1− π) + ι2 + o(1), (128)

where the second equality holds by (122) and q ≤ n, the third equality holds by (124) and

the last equality holds because q follows the binomial distribution with parameters (n, π).
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By similar derivation, we have

E[(q − nπ + ι)1{|q − nπ| ≤ (nπ)0.5+c}] = ι+ o(1). (129)

Combining (126)-(129), we have

E[(log(q + ι)− log(nπ))1{|q − nπ| ≤ (nπ)0.5+c}] = (nπ)−1(ι− 2−1(1− π) + o(1)). (130)

Equations (123), (125), and (130) together prove part (a) of the lemma.

(b) It is without loss of generality to assume that π → π∞ for some π∞ ∈ [0, 1] as

n → ∞. (If not, we can consider subsubsequences of arbitrary subsequences of {n} along

with π converges. Such subsubsequences always exist because [0, 1] is a compact set.) We

consider two cases:

(i) π∞ = 1. Suppose there exists a c > 0 such that ι∗(n, nπ) > c infinitely often. Then by

the monotonicity of the logarithm function, we have, infinitely often,

(nπ)E[log(q + c)− log(nπ)] ≤ (nπ)E[log(q + ι∗(n, nπ))− log(nπ)] = 0, (131)

where the equality holds by the definition of ι∗(n, nπ). On the other hand, part(a) of

the lemma implies that

(nπ)[log(q + c)− log(nπ)]→ c > 0. (132)

This and (131) form a contradiction. Thus, there does not exist a c > 0 such that

ι∗(n, nπ) > c infinitely often. This implies that ι∗(n, nπ)→ 0, and in turn implies part

(b) of the lemma.

(ii) π∞ ∈ (0, 1). Let c = (1 − π∞)/4 and c = (1 − π∞). Suppose that ι∗(n, nπ) < c

(ι∗(n, nπ) > c) infinitely often. Then by the monotonicity of the logarithm function,

we have, infinitely often, (nπ)E[log(q+c)−log(nπ) ≥ 0 ((nπ)E[log(q+c)−log(nπ) ≤ 0).

But part(a) of the lemma implies that (nπ)E[log(q+c)− log(nπ)]→ c−(1−π∞)/2 < 0

((nπ)E[log(q+c)− log(nπ)]→ c−(1−π∞)/2 > 0). These form a contradiction. Thus,

ι∗(n, nπ) ∈ [c, c] eventually. This, the compactness of the interval [c, c], and part (a)

of the lemma together imply that

(nπ)[log(q + ι∗(n, nπ))− log(nπ)]− (ι∗(n, nπ)− (1− π)/2)→ 0. (133)

But log(q + ι∗(n, nπ)) − log(nπ) = 0 by the definition of ι∗(n, nπ). Thus,ι∗(n, nπ) −
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(1− π)/2→ 0, which shows part (b) of the lemma.

Proof of Lemma 11. By the definition of ι∗(n, nπ), we have

0 = E[log(q + ι∗(n, nπ))− log(nπ)]

= E[log((q + ι∗(n, nπ))/(nπ))]

= (1− π)n log(ι∗(n, nπ)/(nπ)) + (1− (1− π)n)E[log((q + ι∗(n, nπ))/(nπ))|q > 0]. (134)

Thus,

log

(
ι∗(n, nπ)

nπ

)
= −1− (1− π)n

(1− π)n
E[log((q + ι∗(n, nπ))/(nπ))|q > 0] (135)

For 1 ≤ q ≤ n, since ι∗(n, nπ) ≤ n, we have 0 < log((q + ι∗(n, nπ))/(nπ)) ≤ log(2)− log(π).

Thus,

|E[log((q + ι∗(n, nπ))/(nπ))|q > 0]| ≤ (log(2)− log(π)) ≤ 2| log(π)|. (136)

where the second inequality holds for large enough n since nπ → 0. Also consider

1− (1− π)n =

(
n

1

)
π −

(
n

2

)
π2 + · · ·+ (−1)n+1

(
n

n

)
πn

≤ nπ + (nπ)2 + · · ·+ (nπ)n =
nπ(1− (nπ)n)

1− nπ
(137)

Thus, for large enough n, we have∣∣∣∣log

(
ι∗(n, nπ)

nπ

)∣∣∣∣ ≤ 2| log π| nπ(1− (nπ)n)

1− nπ − nπ(1− (nπ)n)

= 2nπ| log(π)|(1 + o(1))

= o(1), (138)

where the inequality holds by (136) and (137), and the equalities hold by π ∝ n−v with

v > 1. This proves the lemma.
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