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Abstract. In this paper, we present two commands – cmi test and cmi interval
– to implement the testing and inference methods for conditional moment in-
equalities/equalities models proposed in Andrews and Shi (2013). The command
cmi test tests the validity of a finite number of conditional moment equalities
and/or inequalities. This test returns the value of the test statistic, the critical
values at significance levels 1%, 5%, and 10%, and the p-value. The command
cmi interval returns the confidence interval for a one-dimensional parameter de-
fined by intersection bounds. This confidence interval is obtained by inverting
cmi test. All procedures implemented are uniformly asymptotically valid under
appropriate conditions (specified in Andrews and Shi (2013)).
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1 Introduction

This paper provides a brief introduction to conditional moment inequality/equality
testing, and describes the new Stata commands cmi test and cmi interval. The
command cmi test implements the testing procedure proposed in Andrews and Shi
(2013) for general moment inequality models with a finite number of conditional moment
restrictions and a finite-dimensional parameter. The command cmi interval returns
confidence intervals for an one-dimensional parameter bounded above and/or below by
a finite number of conditional moments by inverting the testing procedure proposed in
Andrews and Shi (2013).

The Stata package described in this paper is not intended as a tool to compute
confidence intervals for θ, unless the setting is the one associated with cmi interval.
Computing confidence intervals in a general setting requires numerically sketching out
the set of θ values at which cmi test returns an acceptence. Simple grid-search algo-
rithms for this task become exponentially more costly as the dimension of θ increases.
More efficient algorithms are available in other commonly used statistical softwares, but
we are not aware of an implementation of them in Stata.
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2 Testing Conditional Moment Inequalities/Equalities

Null hypotheses in the form of conditional moment inequalities and/or equalities
arise frequently in econometrics, for example, when testing the sign of the conditional
average treatment effect, when certain incomplete models lead to conditional moment
inequality/equality restrictions on parameters, and when testing the fundamental as-
sumptions for the local average treatment effect estimator (LATE) (see Mourifié and
Wan, 2014). The approach in Andrews and Shi (2013) first transforms the conditional
moment inequalities/equalities into a large number of unconditional moment inequali-
ties/equalities and then constructs a test statistic based on these unconditional moment
inequalities/equalities. The resulting test is uniformly asymptotically valid and con-
sistent against all fixed alternatives. Two main alternatives to the Andrews and Shi
(2013) test are proposed in Chernozhukov, Lee and Rosen (2013) and Lee, Song and
Whang (2013), both based on nonparametric estimators of the conditional moment in-
equalities/equalities.1 All three tests are consistent, and do not dominate one another
in terms of power. In practice, one may choose one based on computational feasibility
or implement more than one for more robust conclusions.

The Stata commands in this paper offer a rich set of options to allow the user to
fine tune the procedure. However, in most applications, the default options, which are
the recommended options in Andrews and Shi (2013), work well and the user need not
make many choices.

We use the following notation throughout this paper: bac denote the largest integer
less than or equal to a and dae denote the smallest integer larger than or equal to a.

2 Framework

2.1 Parameter Inference Based on Conditional Moment
Inequalities/Equalities

Consider an independent and identically distributed (i.i.d.) sample {Wi}ni=1. Let Xi be
a vector of instrumental variables, which is a subvector of Wi. A conditional moment
inequality/equality (CMI) model is of the form

E[mj(Wi, θ0)|Xi] ≥ 0 for j = 1, . . . , p,

E[mj(Wi, θ0)|Xi] = 0 for j = p+ 1, . . . , k, almost surely, (1)

where p and k are two non-negative integers such that k ≥ p andm(·, θ0) := m1(·, θ0), . . . ,
mk(·, θ0))′ is a vector of moment functions of the observables that are known up to the
parameter θ0. The set Θ ⊆ Rdθ denotes the parameter space for θ0. The moment func-
tions need not depend on some elements of Wi, which makes those elements excluded
variables. The CMI model arises in many modeling contexts. An example is given later
in this paper, and more are given in Andrews and Shi (2013).

In a CMI model, the parameter θ0 may or may not be point identified. Thus, a con-

1. Stata commands for the procedure in Chernozhukov, Lee and Rosen (2013) are introduced in
Chernozhukov, Kim, Lee and Rosen (2015).
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sistent point estimator for θ0 may or may not exist, and typical t-test based confidence
intervals do not apply. However, one can still test hypotheses on the parameter such as

H0 : θ0 = θ, (2)

for a given value θ. Andrews and Shi (2013) propose, and the testing command cmi test
implements, a test of the above hypothesis. Testing this hypothesis amounts to testing
(1) with θ0 replaced by θ. The test is of the standard form:

φn(θ) = 1{Tn(θ) > cn(θ, 1− α)}, (3)

where Tn(θ) is a test statistic, cn(θ, 1 − α) is a simulated critical value, and α is the
nominal level of the test.

The test then can be inverted to construct a confidence set for θ0. The confidence
set is defined as

CSn(1− α) = {θ ∈ Θ : φn(θ) = 0}. (4)

The standard way to compute such a confidence set is to consider many grid points in
Θ, compute φn(θ) at each grid point, and collect the values for which φn(θ) = 0.2

In some cases, it is of interest to test a null hypothesis of the form

E[mj(Wi)|Xi] ≥ 0 for j = 1, . . . , p,

E[mj(Wi)|Xi] = 0 for j = p+ 1, . . . , k, almost surely, (5)

which does not depend on a parameter θ, where m(·) := (m1(·), . . . ,mk(·))′ is a vector
of known functions of the observables and Wi, Xi, k, and p are as above. For example,
this arises when one is interested in the sign of a conditional average treatment effect,
or the shape of a dose-response function, as discussed in Examples 2.1 and 2.2 in Lee,
Song and Whang (2013). Testing the hypothesis in (5) is the same as testing (2) in the
model in (1). One just replaces m(·, θ) with m(·) and, in consequence, the test in (3)
does not depend on θ.

Now, we briefly describe a conditional average treatment effect example of the testing
problem in (5). Let D be a binary treatment variable, which equals 1 if treated, and
0 if untreated. Let Y be the outcome variable. In the potential outcome notation,
Y = DY (1) + (1−D)Y (0), where Y (1) is the treated outcome observed only if D = 1,
and Y (0) is the untreated outcome observable only if D = 0. Let X be a vector
of covariates. Suppose that D is randomly assigned, with each individual receiving
treatment with a known probability p. Then, the average conditional treatment effect

2. The testing command cmi test cam be combined with any grid search algorithm to complete this
task. Usually this grid search is computationally costly when the dimension of the parameter space
is large. One way to circumvent the computational burden is applying a response surface algorithm
for global optimization introduced by Kaido, Molinari and Stoye (2016). This algorithm can be
implemented using a MATLAB toolbox called “DACE” which is publicly available. So far, we are
not aware whether this algorithm can be used for Stata command. For details of “DACE”, see
http://www2.imm.dtu.dk/projects/dace/.
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given X can be expressed as follows:

E(Y (1)− Y (0)|X) = E

(
DY

p
− (1−D)Y

1− p

∣∣∣∣X) . (6)

Suppose that the researcher would like to test if the average treatement effect is negative
for individuals at all X values. In the framework above, this problem can be written as
testing the null hypothesis

H0 : E[mj(W )|X] ≥ 0, (7)

where j = 1,W = (Y,D,X), and m1(W ) = −DY
p
− (1−D)Y

1− p
.

2.2 Confidence Intervals Based on Intersection Bounds

The command cmi interval computes the confidence set for the special, but popular
case that the parameter θ0 is one-dimensional and the moment inequalities provide
intersection bounds for this parameter so that the confidence set of θ0 is an interval.
The command cmi interval combines a one-dimensional grid-search algorithm with
cmi test in order to compute this interval. Specifically, the command applies when the
CMI model takes the following form:

E[ρu,j(Wi)− θ0|Xi] ≥ 0 for j = 1, . . . , ku,

E[θ0 − ρ`,j(Wi)|Xi] ≥ 0 for j = 1, . . . , k`, (8)

where θ0 is a real-valued parameter and ρu,j(·) and ρ`,j(·) are known functions of the
observables. The upper bounds for θ0 are E[ρu,1(Wi)|Xi], . . . , E[ρu,ku(Wi)|Xi], and
the lower bounds are E[ρ`,1(Wi)|Xi], . . . , E[ρ`,k`(Wi)|Xi]. It is easy to see that (8) is a
special case of (1) with p = ku + k`, k = p, and

mj(Wi, θ0) =

{
ρu,j(Wi)− θ0 for j = 1, . . . , ku
θ0 − ρ`,j−ku(Wi) for j = ku + 1, . . . , ku + k`.

(9)

The command cmi interval allows one or more upper bounds ρu,j(Wi) to be identical
to some lower bounds ρ`,j′(Wi).

We use a censored data example similar to that in Andrews and Shi (2014) to
illustrate the model in (8). Let D be a binary variable indicating data censorship,
and X be a covariate vector. Let Y ∗ be a variable subject to censoring, that is, it
is only observed when D = 1. Let θ0 denote the conditional cumulative distribution
function (cdf) of Y ∗ given X evaluated at a certain point y0. Then, θ0 is bounded by
the inequalities in (8) with ku = k` = 1,

ρu,1(W ) = 1{Y ≤ y0, D = 1}+ 1{D = 0}, and (10)

ρ`,1(W ) = 1{Yi ≤ y0, Di = 1}. (11)

We illustrate the implementation of both Stata commands using this example in Section
7 below.
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3 Detailed Procedures

This section describe the detailed procedures that the commands implement. These
procedures are from Andrews and Shi (2013). Section 3.1 summarizes the steps in
Section 9 of Andrews and Shi (2013), and Section 3.2 describes the algorithm to compute
the confidence interval for the intersection bound model in (8).

3.1 Basic Testing Procedure

Test Statistics

Now we describe the testing procedure that cmi test implements. Although we focus on
testing the hypothesis in (2) for the model in (1), the procedure can be applied similarly
to the hypothesis in (5) as well. Following Andrews and Shi (2013), we transform the
conditional moment restrictions in (1) into unconditional moment restrictions before
using them to construct the test statistic. The instrumental functions are functions
of the instrumental variables Xi. The ones we employ are countable hypercubes on
standardized Xi. We define the standardized Xi variables first. The standardized Xi,
denoted Xo

i , equals

Xo
i = Φ(Σ̂

−1/2
X,n (Xi − X̄n)),

where X̄n = n−1
∑n
i=1Xi ∈ Rdx , Σ̂X,n = n−1

∑n
i=1(Xi − X̄n)(Xi − X̄n)′, and Φ(x) =

(Φ(x1), . . . ,Φ(xdx))′, where Φ(·) denotes the standard normal cumulative distribution
function (c.d.f.) and x = (x1, . . . , xdx)′.

The instrumental functions are of the form

ga,r(X
o
i ) = 1{Xo

i ∈ ×
dx
u=1((au − 1)/(2r), au/(2r)]}, (12)

where a = (a1, . . . , adx)′ ∈ {1, 2, . . . , 2r}dx and r = 1, 2, 3, . . . . In the implementation,
we only consider r = 1, 2, . . . , r1,n for a positive integer r1,n. The command cmi test
uses bndx/2/2c as r1,n by default, and allows the user to opt for a different positive
integer.

Next, we compute the sample average of the unconditional moment functions for
each j = 1, . . . , k, and each (a, r) described above. For notational simplicity, in the
discussion below, we suppress the possible dependence of mj(Wi, θ) on θ throughout.
We have

m̄n,j(ga,r) = n−1
n∑
i=1

mj(Wi)ga,r(X
o
i ). (13)

We also compute the sample variance, σ̂2
n,j(ga,r), of mj(Wi)ga,r(X

o
i ). Because σ̂2

n,j(ga,r)

could be zero for some (a, r), we also compute the variance, σ̂2
n,j , of the conditional

moment function mj(Wi) for the purpose of regularizing σ̂2
n,j(ga,r). The regularized

variance

σ̄2
n,j(ga,r) = σ̂2

n,j(ga,r) + εσ̂2
n,j (14)
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is used in the test statistic. The regularization parameter ε equals 0.05 in cmi test
by default and the user is allowed to set it to a different small positive number by
specifying the epsilon option. We then construct the test statistic that combines the
information in all of the sample moments. After constructing the test statistic, we
proceed to construct the critical value cn(1− α). There are two versions of the critical
value. One is based on the asymptotic approximation and the other is based on the
bootstrap. The command implements the former by default. The bootstrap version
can be activated by selecting the boot option. The test statistic and critical values are
described in next three subsections.

By default, cmi test uses summation (Sum) to aggregate over j for each (a, r), and
uses Cramer-von Mises (CvM)-type aggregation over (a, r), which yields the following
test statistic:

Tn = n

r1,n∑
r=1

∑
a∈{1,...,2r}dx

(∑p
j=1

[
m̄n,j(ga,r)
σ̄n,j(ga,r)

]2
−

+
∑k
j=p+1

(
m̄n,j(ga,r)
σ̄n,j(ga,r)

)2
)

(r2 + 100)(2r)dx
, (15)

where the negative part function [x]− = max{0,−x}. By specifying the options sfunc
and ks, cmi test allows the user to choose from the CvM-Max statistic, the Kolmogorov-
Smirnov (KS)-Sum statistic, or the Kolmogorov-Max statistic.3 Choosing Max instead
of Sum replaces the expression in the large brackets in the numerator by

max

{
max

j=1,2,...,p

[
m̄n,j(ga,r)

σ̄n,j(ga,r)

]2

−
, max
j=p+1,p+2,...,k

(
m̄n,j(ga,r)

σ̄n,j(ga,r)

)2
}
.

Choosing KS instead of CvM replaces the
∑r1,n
r=1

∑
a∈{1,...,2r}dx

(r2+100)(2r)dx
in (15) by

max
(a,r):a∈{1,...,2r}dx ,r=1,...,r1,n

. (16)

Asymptotic Critical Values

The asymptotic approximation version of the critical value is a simulated quantile of a
statistic (denoted by TAsy

n ) that is defined in the same way Tn is defined except with
ρ̄n,j(ga,r) replaced by

n−1/2(νn,j(ga,r) + ϕn,j(ga,r)), (17)

where (νn,j(ga,r))j,a,r is a Gaussian random vector that approximates the distribution
of (n1/2 [m̄n,j(ga,r)− E[mj(Wi)ga,r(X

o
i )]])j,a,r, and ϕn,j(ga,r) is the generalized mo-

ment selection(GMS) function that approximates n1/2E[mj(Wi)ga,r(X
o
i )] and selects

the binding moment restrictions.

3. The commands do not incorporate the quasi-likelihood ratio (QLR) statistic discussed in Andrews
and Shi (2013) because the QLR statistic requires repeatedly carrying out a quadratic optimization
operation a large number of times and we are not aware of a fast quadratic optimization routine
in Stata.
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Specifically, the command simultaneously draws the k
∑r1,n
r=1(2r)dx -dimensional vec-

tor (νn,j(ga,r))j=1,...,k,a∈{1,...,2r}dr ,r=1,...,r1,n from a multivariate normal distribution.
The multivariate normal distribution has mean zero and its variance-covariance ma-
trix is the empirical variance-covariance matrix of

(mj(Wi)ga,r(X
o
i ))j=1,...,k,a∈{1,...,2r}dr ,r=1,...,r1,n . (18)

A large number of draws are taken, and each draw is used to compute a draw of the
statistic TAsy

n . Then the command computes the empirical 1−α quantile of the sample
of TAsy

n values obtained. This quantile is cn(1−α). By default, the number of draws is
set to be 5001 and the seed of the random number generator is set to 1000. These can
be changed by specifying the options rep and seed.

The GMS function ϕn,j(ga,r) is defined as

ϕn,j(ga,r) =

{
σ̂n,jBn if κ−1

n n1/2m̄n,j(ga,r)/σ̄n,j(ga,r) > 1
0 otherwise,

(19)

where Bn and κn are two user chosen tuning parameters that, in the asymptotic thought
experiment, should satisfy κn →∞, κn/n

1/2 → 0, Bn →∞ and Bn/κn → 0 as n→∞.
By default, the command uses the recommended choices from Andrews and Shi (2013):
κn =

√
0.3 log n and Bn =

√
0.4 log n/ log log n.

Bootstrap Critical Values

The bootstrap version of the critical value is a simulated quantile of a statistic (denoted
by TBoot

n ) that is defined in the same way as Tn is defined except with m̄n,j(ga,r)/σ̄n,j(ga,r)
replaced by

n−1/2(νBoot
n,j (ga,r) + ϕn,j(ga,r))

σ̄Boot
n,j (ga,r)

, (20)

where (νBoot
n,j (ga,r))j,a,r is a bootstrap approximation of (n1/2[m̄n,j(ga,r)−E[mj(Wi)ga,r(

Xo
i )]])j,a,r, ϕn,j(ga,r) is the GMS function described above, and σ̄Boot

n,j (ga,r) is a boot-
strap version of σ̄n,j(ga,r).

Specifically, the command first randomly draws n observations with replacement
from the sample {Wi}ni=1. These n observations, denoted {W ∗i }ni=1, form a boot-
strap sample. This bootstrap sample is used to compute one draw of νBoot

n,j (ga,r) and

σ̄Boot
n,j (ga,r). The draw of νBoot

n,j (ga,r) equals

n1/2
[
m̄∗n,j(ga,r)− m̄n,j(ga,r)

]
, (21)

where m̄∗n,j(ga,r) is computed using the same procedure as that for m̄n,j(ga,r) except
with {W ∗i } (and its subvector {X∗i } replaced by {Wi} (and its subvector {Xi}). The
draw of σ̄Boot

n,j (ga,r) is computed using the same procedure as that for σ̄n,j(ga,r) except
with {W ∗i } (and its subvector {X∗i }) replacing {Wi} (and its subvector {Xi}). These
are then used to compute one draw of TBoot

n . By repeating the process, a large number
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of TBoot
n draws are taken, and cn(1 − α) is defined to be the 1 − α empirical quantile

of these draws. By default, the number of draws is set to be 5001 and the seed of
the random number generator is set to 1000. These can be changed by specifying the
options rep and seed.

3.2 Confidence Interval Construction for Intersection Bound Models

In this section, we describe the algorithm used to construct a confidence interval for the
one-dimensional parameter in the model in (8).

One-sided bound

If either ku or k` is zero, the model gives a one-sided bound for the parameter. In this
case, the command uses following algorithm. The algorithm consists of iterative steps,
where step (-1) is the preparation step, and for i ≥ 0, step (i) finds the confidence
interval bounds for θ0 up to the ith digit after the decimal point.

Step (-1). First, we set a preliminary lower (upper) bound of the confidence interval:

θ̂lb,pre = min
1≤j≤kl

min
i≤n

ρl,j(Wi)

θ̂ub,pre = max
1≤j≤ku

max
i≤n

ρu,j(Wi).

In addition, we define two auxiliary statistics:

θ̂lb,bound = max
1≤j≤kl

max
i≤n

ρl,j(Wi)

θ̂ub,bound = min
1≤j≤ku

min
i≤n

ρu,j(Wi).

Note that θ̂lb,pre (θ̂ub,pre) is a preliminary conservative lower (upper) bound for the

confidence interval. Meanwhile, θ̂lb,bound (θ̂ub,bound) is trivially contained in the one-
sided confidence interval and thus is greater (smaller) than the lower (upper) bound.
The following steps take advantage of these conservative bounds.

We explain the method for deriving the lower bound here. The upper bound method
is analogous.

Step (0). If the distance between bθ̂lb,prec and dθ̂lb,bounde is 1, skip the cur-

rent step, let θ̂lb,0 = bθ̂lb,prec and move to the next step. Otherwise, consider grid

points on [bθ̂lb,prec, dθ̂lb,bounde] with distance between adjacent grid points being d0 =

bmax((dθ̂lb,bounde − bθ̂lb,prec)/20, 1)c. Apply cmi test for θ0 being each of these grid

points. Record the largest grid point rejected by the test as θ̂lb,0 and consider grid points

on [θ̂lb,0, θ̂lb,0 + d0] with the updated spacing between grids: d1 = bmax(d0/2, 1)c. Re-
peat until the distance equals 1. Record the smallest θ0 value not rejected and subtract
1. Let the resulting number be θ̂lb,0.



Andrews, Kim and Shi 9

Step (1). Apply cmi test for θ0 being each of the points θ̂lb,0, θ̂lb,0 +0.1, . . . , θ̂lb,0 +
0.9}. Record the smallest point not rejected and subtract 0.1. Let the resulting number

be θ̂lb,1.

· · ·

Step (i+1). Apply cmi test for θ0 being each of the points θ̂lb,i, θ̂lb,i+10−(i+1), . . . ,

θ̂lb,i + 9× 10−(i+1)}. Record the smallest point not rejected and subtract 10−(i+1). Let

the resulting number be θ̂lb,i+1.

By default, the command iterates this algorithm up to the thousandth place (i.e.
Step (3)). One can choose the number of iterations (i.e. the accuracy of the confidence
interval) by specifying the deci option.

Two-sided Bound

When k` > 0 and ku > 0, the model gives two-sided bounds for the parameter θ0.
In this case, we first obtain two one-sided confidence intervals each of confidence level
1 − α/2. The two one-sided confidence intervals separately employ the upper bound
and the lower bound moment inequalities. Then the algorithm forms a preliminary
two-sided confidence interval (of nominal level 1− α) by intersecting the two one-sided
bounds. If the two one-sided bounds do not intersect, cmi interval terminates and
returns empty set. This implies that the model is rejected at the specified confidence
level α (the default is 95%).

Let θ̂lb,−1 and θ̂ub,−1 be the lower and upper bounds of the crude interval just
specified. Then we obtain the Andrews and Shi (2013) confidence interval by applying
the following algorithm.

Step (0). Check the length of the crude interval. If it is less than 2, then skip

step (0), let θ̂lb,0 = θ̂lb,−1, θ̂ub,0 = θ̂ub,−1 and move to the next step. Otherwise, set

d0 = bmax({dθ̂ub,−1e−bθ̂lb,−1c}/20, 1)c and apply cmi test using all of the inequalities
for each of the evenly spaced grid points (including the endpoints) with spacing d0 on

[bθ̂lb,−1c, dθ̂ub,−1e].

(Case 1) If there exists at least one grid point not rejected, let θlb,d0 and θub,d0 denote
the smallest and the largest non-rejected points, respectively.

(Case 2) If there is no point not rejected, find the grid point with the largest p-value
(denoted by θhigh,d0) and let θlb,d0 = θub,d0 = θhigh,d0 .

For both cases, let d1 = bmax(d0/2, 1)c. Consider evenly spaced grid points (includ-
ing endpoints) with spacing d1 on [θlb,d0−d0, θlb,d0 ] and also those on [θub,d0 , θub,d0 +d0].
Apply cmi test using all of the inequalities for each of these grids. Repeat the checks in
Case 1 and Case 2 above, and define θlb,d1 and θub,d1 analogously to θlb,d0 and θub,d0 , re-

spectively. Iterate this step until dJ = 1, then let [θ̂lb,0, θ̂ub,0] = [θlb,dJ −dJ , θub,dJ +dJ ].
This interval is the Andrews and Shi (2013) confidence interval accurate up to the
integer level. If higher accuracy is desired, move on to the next step.
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. . .

Step (i+1). If θ̂ub,i− θ̂lb,i ≤ 2×10−(i+1), let θ̂lb,i+1 = θ̂lb,i, θ̂ub,i+1 = θ̂ub,i and move
to the next step. Otherwise, consider evenly spaced grid points with spacing 10−j on
the intervals [θ̂lb, θ̂lb+10−i] and [θ̂ub−10−i, θ̂ub] (including endpoints). Apply cmi test
for θ0 being each of these grid points.

(Case 1) If there exists at least one point not rejected, let θlb,j and θub,j denote the
smallest and the largest such point, respectively.

(Case 2) If all points are rejected, find the point with the largest p-value (denoted
by θhigh,i+1) and let θlb,i+1 = θub,i+1 = θhigh,i+1.

Let [θ̂lb,j , θ̂ub,i+1] = [θlb,i+1− 10−i−1, θub,i+1 + 10−i−1]. This interval is the Andrews
and Shi (2013) confidence interval with accuracy up to 10−i−1. If higher accuracy is
desired, move on to the next step.

. . .

Iterate until the desired accuracy is reached. cmi interval iterates this algorithm
up to the thousandth place by default. The user can set the accuracy level differently
using the deci option.

Remark If the confidence interval is narrower than the smallest grid, say 10−k (10−3

in the default setup), cmi interval finds a grid point with the highest p-value, θ̂p and

returns (θ̂p−10−k, θ̂p+10−k) as the confidence interval. One may adjust the last digit of
the confidence interval using the deci option or by rescaling mu,j(Wi) and m`,j(Wi) by
multiplying all of them by an appropriate power of 10 to get a more accurate confidence
interval.

4 Installation of the cmi test Package

All Stata commands below are available at the Statistical Software Components (SSC)
archive. Our Stata package, cmitest, can be installed from within Stata by typing ssc

install cmitest or ssc install cmitest, all. The former installs the commands
and the help files, while the latter installs those as well as the ancillary data file that
allows the user to run the examples in the help files.

5 The cmi test Command

5.1 Syntax

The syntax of cmi test is as follows:

cmi test (cmi vars) (cme vars) indepvars
[
if
] [

in
] [

, rnum(#) hd boot ks

sfunc(#) epsilon(real) kap(real) bn(real) rep(#) seed(#) simul
]
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5.2 Description

cmi test implements the test described in Section 3.1 for the hypothesis in (2) and
the model in (1) (or the hypothesis in (5)). To use this command, one first gener-
ates variables that equal m1(Wi, θ), . . . ,mk(Wi, θ) for observations i = 1, . . . , n (or
m1(Wi), . . . ,mk(Wi) for observations i = 1, . . . , n). The first p of them are cmi vars,
and the next k − p are cme vars. The command allows cmi vars or cme vars to be
empty. The variables in Xi are indepvars.

As described in Section 3.1, cmi test uses countable hypercubes as the collection of
instrumental functions. They are constructed according to (12) above by default. That
choice is fine when the number of indepvars is three or less. When the dimension of
indepvars is greater than 3, the number of cubes may be too large which causes long
computation time. The command allows an alternative method for high dimensional
independent variables. The user can select the hd option to opt for this method. This
option implements the method described in the last paragraph of Section 9 of Andrews
and Shi (2013).

5.3 Options

rnum(#) sets a scalar indicating the minimum side-edge lengths; default is the smallest
integer which is greater than ndx/2/2, where dx is the dimension of indepvars.

hd uses alternative method for high dimensional independent variables. This option is
designed for three or more covariates; see the previous subsection for details.

boot lets the user turn on the bootstrap option. If this option is not used, the command
computes the critical value based on a Gaussian asymptotic approximation.

ks uses the Kolmogorov-Smirnov-type statistic; the default is the Cramer-von Mises-
type statistic.

sfunc(#) sets the function S to specify the form of the test statistic. sfunc(1) yields
the modified method of moments or Sum function and sfunc(3) yields the Max
function; the default is sfunc(1)

epsilon(real) sets the regularization parameter ε for the sample variances; the default
is epsilon(0.05)

kap(real) and bn(real) are two tuning parameters in the data-dependent GMS function

ϕn(ga,r); the default for the former is (0.3 log n)1/2 and for the latter is

(
0.4 log n

log log n

)1/2

rep(#) sets the number of repetitions for the critical value simulations; the default is
rep(5001)

seed(#) sets the seed number for the critical value simulations; the default is seed(10000)

simul lets the user choose to leave the seed number for the critical value simulations
unset. This option should be turned on when the command is used inside a Monte
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Carlo simulation loop, so as not to interfere with the random number generation
process set for the Monte Carlo simulation exercise.

5.4 Saved Results

cmi test stores the following in r():

Scalars
r(N) number of observations r(stat) test statistic
r(pval) p-value r(cv01) critical value for the 1% signifi-

cance level
r(cv05) critical value for the 5% signifi-

cance level
r(cv10) critical value for the 10% signifi-

cance level
r(kappa) tuning parameter kappa n r(B) tuning parameter B n
r(epsilon) tuning parameter epsilon r(rep cv) repetitions for critical values
r(a obs) average number of observations

in the smallest cubes
r(r n) index for minimum side-edge

lengths
r(ncube) number of cubes

Macros
r(cmd) cmi test r(title) “Conditional Moment Inequali-

ties Test”
r(m ineq) varlist for conditional moment

inequalities, if any
r(m eq) varlist for conditional moment

equalities, if any
r(x) varlist for the instrumental vari-

ables

6 The cmi interval Command

6.1 Syntax

The syntax of cmi interval is as follows:

cmi interval (lower bound vars) (upper bound vars) indepvars
[
if
] [

in
] [

,

level(real) deci(#) rnum(#) hd boot ks sfunc(#) epsilon(real)

kap(real) bn(real) rep(#) seed(#) simul
]

6.2 Description

cmi interval constructs the confidence interval for the parameter in model (8) by
inverting cmi test. The upper bound vars are ρu,1(Wi), . . . , ρu,ku(Wi). The lower
bound vars are ρ`,1(Wi), . . . , ρ`,k`(Wi). The indepvars are the elements of Xi.

6.3 Options

cmi interval accepts all the options that cmi test does. There are two additional
options available to cmi interval which are the following.

level(real) sets the confidence level 1−α, where 1−α is the nominal confidence level;
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the default is 0.95.

deci(#) sets the accuracy of the confidence interval bounds as measured by the number
of digits after the decimal point.

6.4 Saved Results

cmi interval stores the following in r():

Scalars
r(N) number of observations r(lbound) estimated lower bound (if any)
r(ubound) estimated upper bound (if any) r(level) confidence level
r(ncube) number of cubes r(kappa) tuning parameter kappa n
r(B) tuning parameter B n r(epsilon) tuning parameter epsilon
r(rep cv) repetitions for critical values r(a obs) average number of observations

in the smallest cubes
r(r n) index for minimum side-edge

lengths

Macros
r(cmd) cmi test r(title) ”Conditional Moment Inequali-

ties Interval”
r(lbvar) varlist for conditional moment

inequalities for the lower bound,
if any

r(ubvar) varlist for conditional moment
inequalities for the upper bound,
if any

r(x) varlist for regressors

7 Examples

We provide an example of estimating a conditional distribution with censored data,
which is introduced earlier in Section 2.1. We use the data for male employees who are
not self-employed from the 15th round (year 2011) of National Longitudinal Survey of
Youth 1997 (NLSY97). From that data set, we take the log hourly dollar wage (Y), the
dummy for college enrollment (D), the year of education of father (X1) and the year of
education of mother (X2). The number of observations is 2054.

Let Y ∗i be the natural logarithm of the potential wage after college enrollment. The
variable is observed only for those who actually enrolled in a college. Suppose that the
parameter of interest is θ0 ≡ FY ∗(y0), that is, the cumulative distribution function Y ∗i
evaluated at y0. Then, θ0 is bounded by the moment inequalities (8) with the bounding
moment functions defined in (10) and (11). See Andrews and Shi (2014) for details.

For the rest of the example, define θ0 = FY ∗(log(20)). In other words, θ0 is the
percentage of the sub-population (currently working, not self-employed male) whose
expected hourly wage is lower than $20 if they had enrolled in a college. We create two
variables defined by 1{Yi ≤ y0, Di = 1} and 1{Yi ≤ y0, Di = 1}+ 1{Di = 0}:

. local y0 = log(20)

. gen lbound = ( Y < `y0´ ) * D

. gen ubound = ( Y < `y0´ ) * D + 1 - D
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7.1 cmi test

Suppose that the research question is whether 0.5 is the value of θ0. That is, we would
like to test

H0 : FY ∗(log(20)) = 0.5. (22)

Then, the researcher creates two conditional moment inequalities ((10) and (11)) by
using the following commands:

. local theta0 = 0.5

. gen CMI1 = `theta0´ - lbound

. gen CMI2 = ubound - `theta0´

cmi test results are:

. cmi_test (CMI1 CMI2) () X1 X2

Conditional Moment Inequalities Test Number of obs : 2054
--------------------------------------------------------------------------------
<Variables>
Conditional Moment Inequalities : CMI1 CMI2
No Conditional Moment Equality
Instruments : X1 X2
--------------------------------------------------------------------------------
<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Sum function
--------------------------------------------------------------------------------
<Results>
Test Statistic : 0.0331
Critical Value (1%) : 0.2363

(5%) : 0.1761
(10%) : 0.1500

p-value : 0.9872

. cmi_test (CMI1 CMI2) () X1 X2, ks

Conditional Moment Inequalities Test Number of obs : 2054
--------------------------------------------------------------------------------
<Variables>
Conditional Moment Inequalities : CMI1 CMI2
No Conditional Moment Equality
Instruments : X1 X2
--------------------------------------------------------------------------------
<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Kolmogorov-Smirnov-type statistic / Sum function
--------------------------------------------------------------------------------
<Results>
Test Statistic : 0.8413
Critical Value (1%) : 5.9032

(5%) : 4.3052
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(10%) : 3.5024
p-value : 0.9440

. cmi_test (CMI1 CMI2) () X1 X2, sfunc(3) boot

Conditional Moment Inequalities Test Number of obs : 2054
--------------------------------------------------------------------------------
<Variables>
Conditional Moment Inequalities : CMI1 CMI2
No Conditional Moment Equality
Instruments : X1 X2
--------------------------------------------------------------------------------
<Methods>
Countable Hyper Cubes
Bootstrap Critical Value
Cramer-von Mises-type statistic / Max function
--------------------------------------------------------------------------------
<Results>
Test Statistic : 0.0331
Critical Value (1%) : 0.2590

(5%) : 0.1913
(10%) : 0.1604

p-value : 0.9952

The first result shows the cmi test outcome with default options. The second result
uses the Kolmogorov-Smirnov-type statistic. The last result uses the Max function in
the test statistic and uses the bootstrapped critical value. All three versions of the test
yield high p-values, indicating that 0.5 is not rejected even at significance level 10%.

Note that the example given here is for an inequalities-only model. If a model con-
tains conditional moment equalities, then variables representing those equalities should
be positioned in the second parenthesis of the syntax.

7.2 cmi interval

Now we compute a confidence interval for θ0. In this example, the variables lbound and
ubound represent lower bound vars and upper bound vars respectively. cmi interval
returns the following results:

. cmi_interval (lbound) (ubound) X1 X2

Conditional Moment Inequalities Interval Number of obs : 2054
--------------------------------------------------------------------------------
<Variables>
Variables for the Lower Bound : lbound
Variables for the Upper Bound : ubound
Instruments : X1 X2
--------------------------------------------------------------------------------
<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Sum function
--------------------------------------------------------------------------------
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<Results>
95% confidence interval is:
( 0.413 , 0.620 )

. cmi_interval (lbound) (ubound) X1 X2, sfunc(3)

Conditional Moment Inequalities Interval Number of obs : 2054
--------------------------------------------------------------------------------
<Variables>
Variables for the Lower Bound : lbound
Variables for the Upper Bound : ubound
Instruments : X1 X2
--------------------------------------------------------------------------------
<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Max function
--------------------------------------------------------------------------------
<Results>
95% confidence interval is:
( 0.413 , 0.619 )

. cmi_interval (lbound) ( ) X1 X2, deci(2) level(0.9)

Conditional Moment Inequalities Interval Number of obs : 2054
--------------------------------------------------------------------------------
<Variables>
Variables for the Lower Bound : lbound
Variables for the Upper Bound : .
Instruments : X1 X2
--------------------------------------------------------------------------------
<Methods>
Countable Hyper Cubes
Asymptotic Critical Value
Cramer-von Mises-type statistic / Sum function
--------------------------------------------------------------------------------
<Results>
90% confidence interval is:
( 0.42 , inf )

The first case uses the default options and yields the 95% confidence interval:
(.413, .620). The second case uses the Max function for the test statistic and yields
almost the same result as the first case.

In the third case, ubound is omitted. This case illustrates how a one-sided confidence
set can be constructed. Suppose that only the lower bounds for the parameter exist
(i.e., ku = 0 in (8)). Then, by emptying the second bracket of the syntax, the command
gives a one sided confidence interval. The third case also activates the level(0.9)

option. Thus the resulting confidence level is 90%. It also activates the deci(2) option
and thus yields results with accuracy up to the second digit.
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