INFERENCE BASED ON CONDITIONAL MOMENT INEQUALITIES

.

Donald W. K. Andrews Cowles Foundation Yale University

Xiaoxia Shi Department of Economics University of Wisconsin

Introduction

- model:
 - true value θ_0 ($\in \Theta \subset R^d$) satisfies conditional moment inequalities &/or equalities:

$$E_{F_0}(m_j(W_i, \theta_0) | X_i) \geq 0 \text{ a.s. } [F_{X,0}] \text{ for } j = 1, ..., p$$

$$E_{F_0}(m_j(W_i, \theta_0) | X_i) = 0 \text{ a.s. } [F_{X,0}] \text{ for } j = p+1, ..., p+v$$

-
$$\{W_i: i \ge 1\}$$
 are i.i.d. w/ dist'n F_0

- key feature: true value θ_0 is not (necessarily) identified
- we are interested in confidence sets for θ_0
- for simplicity, all formulae below take v = 0, i.e., no mom equalities

- some examples in econometrics:
 - game theory models w/ multiple equilibria: using necessary conditions for Nash equilibria,
 e.g., see Ciliberto & Tamer (2003), Andrews, Berry, & Jia (2004),
 Pakes, Porter, Ho, & Ishii (2004), & Bajari, Benkard, & Levin (2008)
 - sufficient conditions for Nash equilibria, e.g., see Ciliberto & Tamer (2003), Beresteanu & Molinari (2008)
 - data censoring, e.g., when continuous variable only observed to lie in interval, see Manski & Tamer (2002)

- missing data, see Imbens & Manski (2004)
- sign restrictions, see Moon & Schorfheide (2006)
- other industrial organization examples, see Pakes, Porter, Ishii, & Ho
 (2004) & Eisenberg (2008)

Outline

- approach: transform cond'l moment inequalities/equalities into ∞ number of uncond'l ones
 - do so w/ no loss of identification power
- construct CS's by inverting Cramér-von Mises-type or Kol-Smirn-type tests
- crit vals obtained by generalized moment selection (GMS), (estimated) least favorable dist'n, or subsampling
 - GMS crit vals are preferred

- show CS's have correct uniform asy cov prob's
 - new methods are required b/c ∞ -dimensional nuisance parameter affects asy dist'ns
- show tests are consistent against all fixed alternatives
- show tests have power against some $n^{-1/2}$ -local alternatives

- but not all such alternatives

- for computational purposes, extend results to allow truncated sums & simulated integrals for CvM tests
- extend results to allow preliminary est'n of add'l parameters τ that are identified when true θ is known
 - often arises w/ game theory models
 - arises in one model considered in simulations

- simulation results for 3 models:
 - quantile model w/ selection—quantile monotone IV
 - interval outcome reg'n model
 - entry game model w/ multiple equilibria
- simulation results yield suitable values for tuning parameters
- also, provide comparisons of different forms of test stats and crit vals

- summary of numerical work:
 - size properties are excellent in many cases, pretty good in all cases
 - CvM better than KS in terms of lower false cov probs
 - in some models, choice between Sum, QLR, & Max S function doesn't matter
 - * when it matters, Max performs best
 - GMS crit vals better than least fav cv or subsampling in terms of false cov probs
 - asy GMS & bootstrap GMS crit vals perform fairly similarly
 - sentivitivity to tuning parameters is relatively low in most cases
 * quite low in many cases

Extensions

- separate paper 1: extend results to allow for ∞ number, or finite but large number, of cond'l or uncond'l moment inequalities/equalities
 - allows one to cover complicated game theory models, tests of stochastic dominance, cond'l stoch dominance, cond'l treatment effects, ...
- separate paper 2: extend results to allow for **nonparametric** parameters of interest
 - allows for nonpar reg'n or nonpar quantile reg'n w/ sel'n
- in both papers,
 - obtain uniform asy size results
 - no loss of information—power agst all fixed alternatives
 - local power results

Related Literature

- most work in literature is on uncond'l mom ineq's
 - e.g., Imbens & Manski (2004), Moon & Schorfheide (2006), Chernozhukov, Hong, & Tamer (2007), Andrews & Jia (2008), Beresteanu & Molinari (2008), Romano & Sheik (2008, 2010), Rosen (2008), Andrews & Guggenberger (2009), Andrews & Soares (2010), Bugni (2010), Canay (2010), Stoye (2010)
- cond'l mom ineq's can reduce size of identified set
- so, first-order difference between uncond'l & cond'l mom ineq's
 - different from situation w/ mom equalities
- re cond'l mom ineq's: Chernozhukov, Lee, & Rosen (2008), Fan (2008), Kim (2008)
- many moment condn's: Menzel (2008)

Confidence Sets

• we are interested in confidence sets (CS's) for true value θ_0

- as opposed to CS for identified set

- we consider CS obtained by inverting test
- notation: nominal level $\mathbf{1}-\alpha$ CS for θ is

$$CS_n = \{\theta \in \Theta : T_n(\theta) \le c_{1-\alpha}(\theta)\}$$

where $c_{1-\alpha}(\theta)$ is a data-dependent critical value

Estimation

- re estimation: use CS with $\alpha = .5$
 - yields half-median unbiased est'r asy'ly in unif'm sense
 - i.e., prob of including a bdy point of the identified set is \geq .5 asy'ly
 - solves inward-bias problem
 - circumvents need for somewhat arbitrary sequence $\varepsilon_n \downarrow \mathbf{0}$
 - related to method in Chernozhukov, Lee, & Rozen (2008)

Parameter Space

- uniform results require precise parameter space \mathcal{F} for (θ_0, F_0)
- \mathcal{F} is collection of (θ, F) such that

(i)
$$\theta \in \Theta \subset \mathbb{R}^d$$

(ii) $\{W_i : i \ge 1\}$ are i.i.d. under F
(iii) $E_F(m_j(W_i, \theta) | X_i) \ge 0$ a.s. $[F_X] \forall j \le p$
(iv) $0 < Var_F(m_j(W_i, \theta)) < \infty \forall j \le p$
(v) $E_F \left| m_j(W_i, \theta) / \sigma_{F,j}(\theta) \right|^{2+\delta} \le B \; \forall j \le p$

for some $B<\infty$ & $\delta>\mathbf{0}$

• identified set given F_0 : $\Theta_{F_0} = \{\theta : (\theta, F_0) \in \mathcal{F}\}$

Conditional \rightarrow **Unconditional** Moment Conditions

$$E_{F_0}m_j(W_i,\theta)g_j(X_i) \ge 0, \ \forall j \le p \text{ for } g = (g_1,...,g_p)' \in \mathcal{G}$$
(1)

- where g = (g₁, ..., g_p)' are functions of X_i
 G is infinite
- identified set, Θ_{F0}(G), defined by these uncond'l mom ineq's:
 Θ_{F0}(G) = {θ ∈ Θ : (1) holds & (θ, F0) satisfies (i), (ii), (iv), (v) of F}
- choose $\mathcal G$ so that $\Theta_{F_0}(\mathcal G)=\Theta_{F_0}$

Class of Test Statistics

• notation:

$$\overline{m}_n(\theta, g) = n^{-1} \sum_{i=1}^n \begin{pmatrix} m_1(W_i, \theta)g_1(X_i) \\ m_2(W_i, \theta)g_2(X_i) \\ \vdots \\ m_p(W_i, \theta)g_p(X_i) \end{pmatrix} \text{ for } g \in \mathcal{G}$$

• sample variance-covariance matrix of $n^{1/2}\overline{m}_n(\theta,g)$:

$$\widehat{\Sigma}_n(\theta,g) = n^{-1} \sum_{i=1}^n \left(m(W_i,\theta,g) - \overline{m}_n(\theta,g) \right) \left(m(W_i,\theta,g) - \overline{m}_n(\theta,g) \right)'$$

• nonsingular adjustment:

$$\overline{\mathbf{\Sigma}}_n(heta,g) = \widehat{\mathbf{\Sigma}}_n(heta,g) + arepsilon \cdot Diag(\widehat{\mathbf{\Sigma}}_n(heta,\mathbf{1}_p))$$

• in simulations, use $\varepsilon=5/100$

• Cramér-von Mises-type (CvM) statistic:

$$T_n(\theta) = \int S(n^{1/2}\overline{m}_n(\theta,g), \overline{\Sigma}_n(\theta,g)) dQ(g)$$

- ${\cal S}$ is non-negative function
- Q is a probability measure on \mathcal{G} (weight function)
- integral is over ${\cal G}$
- Kolmogorov-Smirnov-type (KS) statistic:

$$T_n(\theta) = \sup_{g \in \mathcal{G}} S(n^{1/2}\overline{m}_n(\theta,g), \overline{\Sigma}_n(\theta,g))$$

• Examples: **Sum** test function

$$S_1(m, \Sigma) = \sum_{j=1}^p [m_j / \sigma_j]_-^2$$

QLR test function

$$S_2(m, \boldsymbol{\Sigma}) = \inf_{t \in R^p_+} (m-t)' \boldsymbol{\Sigma}^{-1}(m-t)$$

Max test function

$$S_3(m, \Sigma) = \max\{[m_1/\sigma_1]^2_-, ..., [m_p/\sigma_p]^2_-\}$$

${\bf S}$ Function

(a) S(m, Σ) is non-increasing in m
(b) S(m, Σ) = S(Dm, DΣD) ∀pd diagonal D ∈ R^{p×p}
(c) S(m, Σ + Σ₁) ≤ S(m, Σ) ∀p × p psd matrices Σ₁
(d) S(am, Σ) = a^χS(m, Σ) for some χ > 0, ∀ scalars a > 0, ∀m, & ∀Σ
(e) S(m, Ω) ≥ 0
(f) S(m, Ω) > 0 iff m_j < 0 for some j ≤ p
(g) S(m, Σ) is uniformly continuous

$\textbf{Collection} \ \mathcal{G}$

- G must satisfy 2 assumptions
- given (θ, F) , let $\mathcal{X}_F(\theta) = \{x \in \mathbb{R}^{d_x} : E_F(m_j(W_i, \theta) | X_i = x) < 0 \text{ for some } j \leq p\}$
- Assumption CI. For any θ ∈ Θ & F for which P_F(X_i ∈ X_F(θ)) > 0 & E_F||m(W_i, θ)|| < ∞, there exists g ∈ G such that E_Fm_j(W_i, θ)g_j(X_i) < 0 for some j ≤ p
- note (θ, F) are not in \mathcal{F}
- simple result: Assumption CI implies $\Theta_F(\mathcal{G}) = \Theta_F$ for all Fw/ $\sup_{\theta \in \Theta} E_F ||m(W_i, \theta)|| < \infty$

- use "manageability" condition, **Assumption M**, on stoc processes $\{g(X_{n,i}) : g \in \mathcal{G}, i \leq n, n \geq 1\}$
 - from Pollard (1990)
 - regulates complexity of ${\mathcal G}$
 - ensures that $\{n^{1/2}(\overline{m}_n(\theta,g) E_{F_n}\overline{m}_n(\theta,g)) : g \in \mathcal{G}\}$ satisfies FCLT under drifting sequences $\{F_n : n \geq 1\}$

Collections G that satisfy Assumptions CI & M

- Example 1. (Countable Hypercubes).
 - transform regr's to $[0,1]^{d_x}$

– let

$$\mathcal{G}_{c-cube} = \{g(x) : g(x) = \mathbf{1}(x \in C) \cdot \mathbf{1}_p \text{ for } C \in \mathcal{C}_{c-cube}\}$$

- C_{c-cube} contains cubes in $[0, 1]^{d_x}$ with side-lengths $(2r)^{-1}$ for integers $r = r_0, r_0 + 1, ...$
- this class is countable & countable center points

- Example 2 (Uncountable Boxes).
- Example 3 (Data-dependent Boxes).
- Example 4. (B-splines & Finite-Support Kernels).
- Example 5. (Continuous/Discrete Regressors)
- Result: Assumptions CI and M hold for $\mathcal{G}_{c-cube}, \mathcal{G}_{box}, \mathcal{G}_{box,dd}, \mathcal{G}_{B-spline},$ and $\mathcal{G}_{c/d}$

Weight Function Q

- for test to have power against all fixed alternatives, Q cannot "ignore" any elements $g\in \mathcal{G}$
- let ρ_X be L^2 pseudo-metric on \mathcal{G} :

$$ho_X(g,g^*) = (E_{F_{X,0}}||g(X_i) - g^*(X_i)||^2)^{1/2}$$
 for $g,g^* \in \mathcal{G}$

where $F_{X,0}$ is distribution of X_i under F_0

Assumption Q. Support of Q under pseudo-metric ρ_X contains G.
 I.e., ∀δ > 0, Q(B_{ρ_X}(g, δ)) > 0 ∀g ∈ G.

- Q for \mathcal{G}_{c-cube}
 - ∃ 1-1 mapping Π_{c-cube} : $\mathcal{G}_{c-cube} \to AR = \{(a, r) \in \{1, ..., 2r\}^{d_x} \times \{r_0, r_0 + 1, ...\}\}$
 - let Q_{AR} be a probability measure on $AR \ {\rm w}/$ full support
 - e.g., uniform on $a \in \{1, ..., 2r\}^{d_x}$ & dist'n for r with pmf $\{w(r) : r = r_0, r_0 + 1, ...\}$
 - simulations use $w(r) = (r^2 + 100)^{-1}$
 - then, $Q = \Pi_{c-cube}^{-1} Q^*$ is probability measure on \mathcal{G}_{c-cube}

 \bullet for Q for $\mathcal{G}_{c\text{-}cube},$ test statistic is

$$T_n(\theta) = \sum_{r=r_0}^{\infty} w(r) \sum_{a \in \{1,\dots,2r\}^{d_x}} (2r)^{-d_x} S(n^{1/2} \overline{m}_n(\theta, g_{a,r}), \overline{\Sigma}_n(\theta, g_{a,r}))$$

where $g_{a,r}(x) = \mathbf{1}(x \in C_{a,r}) \cdot \mathbf{1}_k$ for $C_{a,r} \in \mathcal{C}_{c-cube}$

Computation

- test statistic $T_n(\theta)$ involves ∞ sum or integral wrt Q
- $\bullet\,$ analogous $\infty\,$ sum or integral appear in defn's of crit vals
 - can't compute them exactly
- ∞ sums can be approx'd by truncation & integrals by simulation or quasi-Monte Carlo methods

• approx test stat for count hyper-cubes:

$$\overline{T}_n(heta) = \sum_{r=r_0}^{s_n} w(r) \sum_{a \in \{1,...,2r\}^{d_x}} (2r)^{-d_x} S(n^{1/2} \overline{m}_n(heta, g_{a,r}), \overline{\Sigma}_n(heta, g_{a,r}))$$

where $g_{a,r}(x) = \mathbf{1}(x \in C_{a,r}) \cdot \mathbf{1}_k$ for $C_{a,r} \in \mathcal{C}_{c-cube}$

- for simulated test stat, let $\{g_1, ..., g_{s_n}\}$ be s_n i.i.d. functions drawn from \mathcal{G} according to the distribution Q
- simulated test statistic is

$$\widehat{T}_{n,s_n}(\theta) = s_n^{-1} \sum_{\ell=1}^{s_n} S(n^{1/2} \overline{m}_n(\theta, g_\ell), \overline{\Sigma}_n(\theta, g_\ell))$$

- we show if $s_n \to \infty$ as $n \to \infty$ uniform asymptotic validity of tests & CS's hold
 - main issue is uniformity
 - asymptotic power results under fixed alternatives hold
 - most results under $n^{-1/2}$ -local alternatives hold

Pointwise Vs Uniform Asymptotics

- asy distn's of $T_n(\theta)$ are discont. in F
 - due to mom. ineq. slackness function
 - get different **pointwise** asy dist'n depending on

$$n^{1/2} E_F m_j(W_i, \theta) g(X_i) \begin{cases} = 0 \ \forall n \quad \text{if } E_F m_j(W_i, \theta) g(X_i) = 0 \\ \to \infty \quad \text{if } E_F m_j(W_i, \theta) g(X_i) > 0 \end{cases}$$

- this does not reflect finite-sample situation
 - * no discont'y in finite samples
- pointwise asy dist'ns do not capture finite-sample behavior

- effect of asy discont'y greater w/ cond'l mom ineq's than uncond'l mom. ineq.s
 - in several respects
- e.g., if cond'l mean function $\mu_j(x,\theta) = E_F m_j(W_i,\theta) | X_i = x$ is cont. in x, then at bdy pts θ there are always points x for which $\mu_j(x,\theta)$ is positive, but arbitrarily close to 0
- so, there is always a uniformity issue

• second, we want to show:

$$\liminf_{n \to \infty} \inf_{(\theta, F) \in \mathcal{F}} P_F(\theta \in CS_n) = 1 - \alpha$$
(2)

- with finite # of uncond'l mom. ineq.s, it is sufficient to consider certain seq.s of drifting dist'ns, see Andrews & Guggenberger (2009) or Andrews, Cheng, & Guggenberger (2009)
- w/ cond'l mom ineq.s, this is not sufficient - b/c ∞ dim'l nuisance par affects asy dist'n
- different method is required to show (2)

Uniform Asymptotic Distribution of $T_n(\theta)$

• let

$$egin{aligned} &
u_{n,F}(heta,g) \,=\, n^{1/2}[\overline{m}_n(heta,g) - E_F m(W_i, heta,g)] \ & h_{1,n,F}(heta,g) \,=\, n^{1/2}E_F m(W_i, heta,g) \ & h_{2,F}(heta,\cdots) \,=\, CovKernel ext{ of } \,
u_{n,F}(heta,\cdot) ext{ under } F \end{aligned}$$

• $h_{1,n,F}(\cdot)$ is function from \mathcal{G} to R^p_+ that depends on slackness of moment inequalities & n

- let
$$h_{n,F}(\theta,\cdot) = (h_{1,n,F}(\cdot), h_{2,F}(\theta,\cdot\cdot\cdot))'$$

• write test stat as

$$egin{aligned} T_n(heta) &= \int S\left(n^{1/2}\overline{m}_n(heta,g),\overline{\Sigma}_n(heta,g)
ight) dQ(g) \ &= \int S(
u_{n,F}(heta,g)+h_{1,n,F}(heta,g),h_{2,F}(heta,g,g)+arepsilon I_p+o_p(1)) dQ(g) \end{aligned}$$

let {ν_{h2}(g) : g ∈ G} be mean zero R^p-valued Gaussian process with cov kernel h₂(·, ·) on G × G

– let \mathcal{H}_2 be parameter space for $h_2(\cdot, \cdot)$ in model given \mathcal{F}

- let $h_1(\cdot)$ be any function from \mathcal{G} to $R^p_{+,\infty}$
- for $h = (h_1, h_2)$, let

$$T(h) = \int S(\nu_{h_2}(g) + h_1(g), h_2(g, g) + \varepsilon I_k) dQ(g)$$
Result: Under Assumptions M & S, ∀ compact subsets H_{2,cpt} of H₂, ∀ constants x_{h_{n,F}(θ)} ∈ R that may depend on h_{n,F}(θ), & ∀δ > 0,

$$\limsup_{\substack{n \to \infty \\ h_{2,F}(\theta) \in \mathcal{H}_{2,cpt}}} \sup_{\substack{P_F(T_n(\theta) > x_{h_{n,F}(\theta)}) - P(T(h_{n,F}(\theta)) + \delta > x_{h_{n,F}(\theta)})]} \leq 0$$

$$\lim \inf_{n \to \infty} \inf_{\substack{(\theta, F) \in \mathcal{F}: \\ h_{2,F}(\theta) \in \mathcal{H}_{2,cpt}}} \left[P_F(T_n(\theta) > x_{h_{n,F}(\theta)}) - P(T(h_{n,F}(\theta)) - \delta > x_{h_{n,F}(\theta)}) \right] \ge 0$$

Critical Values

• denote $1 - \alpha$ quantile of $T(h_{n,F}(\theta))$ by

 $c_0(h_{1,n,F}(\theta),h_{2,F}(\theta),1-\alpha)$

- $h_{1,n,F}(\theta)$ & $h_{2,F}(\theta)$ are not known
- replace $h_{2,F}(\theta)$ by uniformly consistent estimator $\hat{h}_{2,n}(\theta) (= \hat{h}_{2,n}(\theta, \cdot, \cdot))$
- $h_{1,n,F}(\theta) \ (= h_{1,n,F}(\theta, \cdot))$ cannot be consistently estimated
- can replace $h_{1,n,F}(\theta)$ by zero function, $0_{\mathcal{G}}$, on \mathcal{G}
 - least-favorable choice
 - or worse than least favorable
- poor power properties

- subsampling crit vals
 - usual definition
 - for uncond'l mom ineq's, Bugni (2010) & Andrews & Soares (2010) show that subsampling is dominated by generalized moment selection (GMS) crit values re asy size & power
- focus on generalized moment selection (GMS) crit vals

GMS Crit Values

- replace $h_{1,n,F}(\theta)$ by data-dependent function $\varphi_n(\theta) (= \varphi_n(\theta, \cdot))$ on \mathcal{G} - $\varphi_n(\theta, g)$ is constructed to be $\leq h_{1,n}(\theta, g) \ \forall g \in \mathcal{G} \ w/ \ \text{prob} \to 1$
- GMS crit val is

$$c_0(\varphi_n(\theta), \hat{h}_{2,n}(\theta), 1 - \alpha + \eta) + \eta$$

for infinitessimal uniformity factor $\eta > 0$

- bootstrap version: replace estimated Gaussian process $\nu_{\hat{h}_{2,n}(\theta)}(\cdot)$ by bootstrap emp'l process $\nu_n^*(\cdot)$ & replace estimated variance process $\hat{h}_{2,n}(\theta)$ by bootstrap version
 - no higher-order improvements—test stat not asy'ly pivotal

• definition of $\varphi_n(\theta, g)$:

- measure of slackness of mom. ineq.:

$$\xi_n(\theta,g) = \kappa_n^{-1} \widehat{D}_n^{-1/2}(\theta) n^{1/2} \overline{m}_n(\theta,g)$$
$$\varphi_{n,j}(\theta,g) = \begin{cases} B_n & \text{if } \xi_{n,j}(\theta,g) > 1\\ 0 & \text{if } \xi_{n,j}(\theta,g) \leq 1 \end{cases}$$

– not "pure" moment selection b/c $B_n < \infty$

- Assumption GMS. $\kappa_n \zeta B_n \to \infty$ as $n \to \infty$ for some $\zeta > 1$
- in simulations, use $\kappa_n = (0.3 \ln(n))^{1/2} \& B_n = (0.4 \ln(n) / \ln \ln(n))^{1/2}$

Uniform Asymptotic Coverage Probability Results

Main Result: Under Assumptions M, S, & GMS, ∀ compact subset H_{2,cpt} of H₂, GMS confidence sets CS_n satisfy

(a)
$$\liminf_{n \to \infty} \inf_{\substack{(\theta, F) \in \mathcal{F}:\\h_{2,F}(\theta) \in \mathcal{H}_{2,cpt}}} P_F(\theta \in CS_n) \ge 1 - \alpha$$

(b) if Assumption GMS2 also holds,

$$\lim_{\eta \to 0} \liminf_{\substack{n \to \infty \\ h_{2,F}(\theta) \in \mathcal{F}:}} P_F(\theta \in CS_n) = 1 - \alpha$$

Asymptotic Power Against Fixed Alternatives

- show that power of GMS tests against ''all" fixed alternatives \rightarrow 1 as $n\rightarrow\infty$
- this implies that given fixed true F_0 & any θ_* not in identified set Θ_{F_0} , GMS CS's do not include θ_* with prob $\rightarrow 1$
- here is where Assumptions CI (re G) & Q (re weight measure) are used

Asymptotic Local Power

- show GMS tests have power against some, but not all, $n^{-1/2}$ -local alternatives
 - depends on seq. $\{(\theta_n, F_n) \in \mathcal{F} : n \ge 1\}$ from which perturbations are taken
 - where θ_n is true par value

Assumption LA1.

(a) $\theta_{n,*} = \theta_n + \lambda n^{-1/2} (1 + o(1))$ for some $\lambda \in R^{d_\theta}, \theta_{n,*} \to \theta_0, \& F_n \to F_0$ for some $(\theta_0, F_0) \in \mathcal{F}$

(b) $n^{1/2}E_{F_n}m_j(W_i,\theta_n,g)/\sigma_{F_n,j}(\theta_n) \to h_{1,j}(g)$ for some $h_{1,j}(g) \in R_{+,\infty}$ $\forall j \leq p \& g \in \mathcal{G}$

Assumption LA2. The $p \times d$ matrix $\Pi_F(\theta, g) = (\partial/\partial \theta')[D_F^{-1/2}(\theta)E_Fm(W_i, \theta, g)]$ exists & is cont. in nghd of $(\theta_0, F_0) \forall g \in \mathcal{G}$

• for KS test:

Assumption LA3.

For some $g \in \mathcal{G}$, $h_{1,j}(g) < \infty \& \prod_{0,j}(g)'\lambda < 0$ for some $j \leq p$

• for CvM test:

Assumption LA3'.

 $Q(\{g \in \mathcal{G} : h_{1,j}(g) < \infty \& \Pi_{0,j}(g)'\lambda < 0 \text{ for some } j \leq p) > 0$

Result: Suppose $\lambda = \beta \lambda_0$ for $\beta \in R \& \lambda_0 \in R^d$ fixed, then $\lim_{\beta \to \infty} \lim_{n \to \infty} Power_{n,\beta}(GMS \text{ test}) = 1$

Simulation Results

- 3 models: quantile sel'n, interval outcome reg'n, entry game
- quantile sel'n model:
- conditional τ -quantile of a treatment response given value of covariate X_i
- use *quantile* monotone instrumental variable (QMIV) condition
 - variant of Manski and Pepper's (2000) Monotone Instrumental Variable (MIV) condition
 - bounds on quantiles: Manski (1994), Lee & Melenberg (1998), &
 Blundell, Gosling, Ichimura, & Meghir (2007)
- model set-up is quite similar to that in Manski and Pepper (2000)

- obs are i.i.d. for i = 1, ..., n
- $y_i(t)$ is individual *i*'s "conjectured" response given treatment $t \in \mathcal{T}$
- T_i is realization of treatment for individual i
- observed outcome variable is $Y_i = y_i(T_i)$
- X_i is a covariate
- $\theta = \text{cond'l } \tau$ -quantile of $y_i(t_0)$ given $X_i = x_0$ for some $t_0 \in \mathcal{T} \& x_0$ - denoted $\theta = Q_{y_i(t_0)|X_i}(\tau|x_0)$

- examples: (i) $y_i(t)$ is conjectured wages of individual i for t years of schooling
 - T_i is realized years of schooling
 - X_i is measured ability or wealth
- (ii) y_i(t) is conjectured wages when individual i is employed, say t = 1
 X_i is measured ability or wealth
 - selection occurs due to elastic labor supply
- (iii) $y_i(t)$ is some health response of individual *i* given treatment *t*
 - T_i is the realized treatment—non-randomized or randomized but subj to imperfect compliance
 - X_i is some characteristic of individual i, such as weight, blood pressure

• quantile monotone IV assumption is:

Assumption QMIV. If $x_1 \leq x_2$,

$$Q_{y_i(t)|X_i}(\tau|x_1) \le Q_{y_i(t)|X_i}(\tau|x_2)$$

• for Monte Carlo simulations, DGP:

$$y_i(1) = \mu(X_i) + \sigma(X_i) u_i$$
, where $\partial \mu(x) / \partial x \ge 0$ and $\sigma(x) \ge 0$
 $T_i = 1\{\varphi(X_i) + \varepsilon_i \ge 0\}$, where $\partial \varphi(x) / \partial x \ge 0$
 $X_i \sim Unif[0, 2], (\varepsilon_i, u_i) \sim N(0, I_2), X_i \perp (\varepsilon_i, u_i)$
 $Y_i = y_i(T_i), \& t = 1$

• consider the median, $\tau = 0.5,$ & $x_0 = 1.5$

• conditional moment inequalities:

$$\theta \geq \underline{\theta}(x) = \mu(x) + \sigma(x) \Phi^{-1} \left(1 - [2\Phi(\varphi(x))]^{-1} \right), \ \forall x \leq 1.5$$

$$\theta \leq \overline{\theta}(x) = \mu(x) + \sigma(x) \Phi^{-1} \left([2\Phi(\varphi(x))]^{-1} \right), \ \forall x \geq 1.5$$

• identified set for quantile selection model:

$$\sup_{x \le x_0} \underline{\theta}(x), \quad \inf_{x \ge x_0} \overline{\theta}(x)
ight]$$

- shape of lower & upper bound functions depends on the shape of $\varphi,\ \mu,$ and σ functions
- consider 2 specifications: flat bd functions & kinky bd function

- 0.1 sec for 2 tests using 5000 crit val reps
 - CvM/Max/GMS/Asy & CvM/Max/PA/Asy

	Table 1. Qualitile Sciection Model. Dascease comparisons							
		(a) (Cov Prob)S				
	Statistic:	CvM/	CvM/	CvM/	KS/	KS/	KS/	
		Sum	QLR	Max	Sum	QLR	Max	
DGP	Crit Val							
Flat Bd	PA/Asy	.979	.979	.976	.972	.972	.970	
	GMS/Asy	.953	.953	.951	.963	.963	.960	
Kinky Bd	PA/Asy	.999	.999	.999	.994	.994	.994	
	GMS/Asy	.983	.983	.983	.985	.985	.984	
		(b) Fals	se Cov P	robs				
Flat Bd	PA/Asy	.51	.50	.48	.68	.67	.66	
	GMS/Asy	.37	.37	.37	.60	.60	.59	
	, -							
Kinky Bd	PA/Asy	.65	.65	.62	.68	.68	.67	
-	GMS/Asy	.35	.35	.34	.53	.53	.52	

Table I. Quantile Selection Model: Basecase Comparisons

		/	
		(a) Cov Prob's	(b) FCP's (CP cor)
	Statistic:	CvM/Max	CvM/Max
Case	Crit Val:	GMS/Asy	GMS/Asy
Basecase ($n = 250, r_1$	= 7)	.951	.37
n = 100		.957	.40
n = 500		.954	.36
n = 1000		.948	.34
$r_1 = 5$.949	.36
$r_1 = 9$.951	.37
$r_1 = 11$.951	.37
$(\kappa_n, B_n) = 1/2(\kappa_{n,bc})$	$, B_{n,bc}$)	.948	.38
$(\kappa_n, B_n) = 2(\kappa_{n,bc}, B)$	(n.bc)	.967	.38
arepsilon=1/100		.949	.37
lpha=.5		.518	.03
lpha= .5 & $n=$ 500		.513	.03

Table II. Quantile Selection Model w/ Flat Bound: Variations on Basecase

Interval Outcome Regression Model

- Manski & Tamer (2002)
- $Y_i^* = \theta_1 + X_i \theta_2 + U_i$, where $E(U_i | X_i) = 0$ a.s.
- observe Y_{Li} & Y_{Ui} , where $Y_{Li} \leq Y_i^* \leq Y_{Ui}$
- inequalities:

$$E(\theta_1 + X_i\theta_2 - Y_{Li}|X_i) \ge 0 \text{ a.s.}$$

$$E(Y_{Ui} - \theta_1 - X_i\theta_2|X_i) \ge 0 \text{ a.s.}$$

- basecase: $n = 250, r_1 = 7, \epsilon = 5/100$
- $U_i \sim N(0, 1), X_i \sim U[0, 1]$

- 0.1 sec for 2 tests using 5000 crit val reps
 - CvM/Max/GMS/Asy & CvM/Max/PA/Asy

Table IV. Interva	I Outcome Regressior	n Model: Basecase

(a) Coverage Probs							
	Stat:	CvM	CvM	CvM	KS	KS	KS
Crit.		Sum	QLR	Max	Sum	QLR	Max
Value:							
PA/Asy		.990	.993	.990	.989	.990	.989
GMS/Asy		.950	.950	.950	.963	.963	.963
(b) False Coverage Probs							
PA/Asy		.62	.66	.61	.78	.80	.78
GMS/Asy		.37	.37	.37	.61	.61	.61

Table VI. Interval Outcome Regression Model: Variations on the Basecase

		(a) Coverage	e Probabilities
	Statistic:	CvM/Max	KS/Max
Case	Crit Val:	GMS/Asy	GMS/Asy
Basecase $(n = 250, r_1 = 7,$	$\varepsilon = 5/100)$.950	.963
n = 100	, ,	.949	.970
n = 500		.950	.956
n = 1000		.954	.955
$r_1 = 5$ (30 cubes)		.949	.961
$r_1 = 9$ (90 cubes)		.951	.965
$r_1 = 11$ (132 cubes)		.950	.968
$(\kappa_n, B_n) = 1/2(\kappa_{n,bc}, B_{n,bc})$.944	.961
$(\kappa_n, B_n) = 2(\kappa_{n,bc}, B_{n,bc})$.958	.973
arepsilon=1/100		.946	.966
$(\theta_1, \theta_2) = (1.0, 0.5)$.999	.996
$(\theta_1, \theta_2) = (1.5, 0.0)$		1.000	.996
$\alpha = .5$.472	.481
$\alpha = .5 \& n = 500$.478	.500

	(b) False Co	v Probs (CPcor)
Statistic:	CvM/Max	KS/Max
Case Crit Val:	GMS/Asy	GMS/Asy
$D_{restress} = (r_{rest}) - r_{rest} = r_{rest} = r_{rest} + r_{r_{rest}} = r_{rest} + r_{r$	27	61
Basecase $(n = 250, r_1 = 7, \epsilon = 5/100)$.37	10.
n = 100	.39	.66
n = 500	.37	.60
n = 1000	.37	.60
$r_1 = 5$ (30 cubes)	.37	.59
$r_1 = 9$ (90 cubes)	.37	.63
$r_1 = 11$ (132 cubes)	.38	.64
$(\kappa_n, B_n) = 1/2(\kappa_{n,bc}, B_{n,bc})$.40	.62
$(\kappa_n, B_n) = 2(\kappa_{n,bc}, B_{n,bc})$.39	.65
arepsilon=1/100	.39	.69
$(\theta_1, \theta_2) = (1.0, 0.5)$.91	.92
$(\theta_1, \theta_2) = (1.5, 0.0)$.99	.97
$\alpha = .5$.03	.08
lpha= .5 & $n=$ 500	.03	.07

Entry Game Model w/ Multiple Equilibria

- complete information simultaneous game (entry model)
- two players & n i.i.d. plays of the game
- consider Nash equilibria in pure strategies
- due to possibility of multiple equilibria, model is incomplete
- 2 cond'l moment ineq's & 2 conditional moment equal's arise
- Andrews, Berry, & Jia (2004), Beresteanu, Molchanov, & Molinari (2009), Galichon & Henry (2009b), Ciliberto & Tamer (2009)

• player b's utility/profits are

 $X'_{i,b}\tau_b + U_{i,b}$ if other player does not enter $X'_{i,b}\tau_b - \theta_b + U_{i,b}$ if other player enters

- $\theta_1 \in R$ indexes competitive effect on player 1 of entry by player 2
- θ_2 likewise
- $U_{i,b} \sim N(0,1)$ is known to both players

- unobserved by econometrician

- econometrician observes $X_{i,1} \in \mathbb{R}^4$, $X_{i,2} \in \mathbb{R}^4$, $Y_{i,1}$, & $Y_{i,2}$ - $Y_{i,b} = 1$ if player b enters & 0 otherwise for b = 1, 2
- unknown parameters: $\theta = (\theta_1, \theta_2)' \in [0, \infty)^2$, & $\tau = (\tau_1', \tau_2')' \in R^8$

•
$$X_{i,b} = (1, X_{i,b,2}, X_{i,b,3}, X_i^*)' \in R^4$$

- $X_{i,b,2} \sim \text{Bern}(p), X_{i,b,3} \sim N(0,1), X_i^* \sim N(0,1)$

- equil'm selection rule (ESR) employed is maximum profit ESR
 - unknown to econometrician
 - i.e., if Y_i could be either (1,0) or (0,1) in equil'm, then $Y_i = (1,0)$ if player 1's monopoly profit exceeds that of player 2 & $Y_i = (0,1)$ otherwise
- provide some results for "player 1 first" ESR

• moment ineq. functions:

$$m_1(W_i, \theta, \tau) = P(X'_{i,1}\tau_1 + U_{i,1} \ge 0, \ X'_{i,2}\tau_2 - \theta_2 + U_{i,2} \le 0|X_i) -1(Y_i = (1, 0)) m_2(W_i, \theta, \tau) = P(X'_{i,1}\tau_1 - \theta_1 + U_{i,1} \le 0, \ X'_{i,2}\tau_2 + U_{i,2} \ge 0|X_i) -1(Y_i = (0, 1))$$

- 2 mom equalities ...
- model is identified by (0,0) & (1,1) outcomes
- moment ineq's provide additional info
- we estimate au_1 & au_2 given heta
- use mom ineq's with $\hat{\tau}_{1n}(\theta)$ & $\hat{\tau}_{2n}(\theta)$ plugged in

- use hypercubes in R^2 for $X'_{i,1}\hat{\tau}_{1n}(\theta) \& X'_{i,2}\hat{\tau}_{2n}(\theta)$
- transform variables to $[0, 1]^2$
 - transform so sample covariance = 0, then apply std normal cdf
- side-edge lenghts $(2r)^{-1}$ for $r = 1, ..., r_1$
- basecase: $r_1 = 3$ yields 56 cubes

– also, $r_1=2 \Rightarrow 20$ cubes & $r_1=3 \Rightarrow 120$ cubes

- n = 500; also, 250 & 1000
- 0.24 sec for 2 tests using 5000 crit val reps

– CvM/Max/GMS/Asy & CvM/Max/PA/Asy

(a) Coverage Probs							
Case	Stat:	CvM	CvM	CvM	KS	KS	KS
		Sum	QLR	Max	Sum	QLR	Max
$(\theta_1,\theta_2)=(0,0)$.979	.972	.980	.977	.975	.985
$(heta_1, heta_2)=(1,0)$.961	.980	.965	.959	.983	.972
$(heta_1, heta_2)=(1,1)$.961	.985	.961	.955	.985	.962
$(\theta_1,\theta_2)=(2,0)$.935	.982	.935	.944	.984	.952
$(\theta_1,\theta_2)=(2,1)$.943	.974	.940	.953	.987	.947
$(\theta_1,\theta_2)=(3,0)$.921	.975	.915	.938	.935	.984
$(\theta_1,\theta_2)=(2,2)$.928	.942	.913	.943	.972	.922

(D) I dise Coverage I Tops (Cov prob correcte	(b)) False	Coverage	Probs	(cov prob	corrected
---	-----	---------	----------	-------	-----------	-----------

	0	Υ.			/	
$(\theta_1,\theta_2)=(0,0)$.76	.99	.59	.91	.99	.83
$(heta_1, heta_2)=(1,0)$.60	.99	.42	.83	.66	.99
$(heta_1, heta_2)=(1,1)$.62	.96	.41	.82	.99	.58
$(heta_1, heta_2)=(2,0)$.51	.83	.35	.66	.96	.47
$(heta_1, heta_2)=(2,1)$.57	.57	.38	.69	.82	.44
$(heta_1, heta_2)=(3,0)$.49	.41	.36	.61	.43	.64
$(\theta_1,\theta_2)=(2,2)$.59	.34	.39	.65	.42	.49

	(a) Coverage Probs		(b) False Cov Prob		
	CvM/Max	KS/Max	CvM/Max	KS/Max	
Case	GMS/Asy	GMS/Asy	GMS/Asy	GMS/Asy	
Basecase ($n = 500$,					
$r_1 = 3; = 5/100)$.961	.962	.41	.58	
n = 250	.948	.963	.39	.56	
n = 1000	.979	.968	.52	.65	
$r_1 = 2 \; (20 \; \text{cubes})$.962	.956	.41	.55	
$r_1 = 4$ (120 cubes)	.962	.964	.42	.59	
$(\kappa_n, B_n) = 1/2(\kappa_{n,bc}, B_{n,bc})$.954	.959	.39	.57	
$(\kappa_n, B_n) = 2(\kappa_{n,bc}, B_{n,bc})$.967	.962	.42	.58	
arepsilon=1/100	.926	.873	.32	.66	
Reg'r Variances = 2	.964	.968	.54	.71	
Reg' r Variances = 1/2	.963	.966	.29	.43	
Player 1 First Eq Sel Rule	.955	.957	.39	.57	
- · ·					
lpha=.5	.610	.620	.05	.13	
lpha= .5 & $n=$ 1000	.695	.650	.06	.16	

Many Moment Inequalities

- allow for infinite # mom ineq's by indexing $m_j(W_i, \theta)$ by $t \in \mathcal{T}$ - cond'l or uncond'l
- model is: $\forall t \in \mathcal{T}$,

$$E_F(m_j(W_i, \theta, t) | X_i) \ge 0$$
 a.s. $[F_X] \forall j \le p_t$

 $\bullet\,$ can use same functions $g\in \mathcal{G}$ & measure Q as above

- specifiy weight function $Q_{\mathcal{T}}$ on \mathcal{T}
- test stat is

$$T_n(\theta) = \int \int S(n^{1/2}\overline{m}_n(\theta, t, g), \overline{\Sigma}_n(\theta, t, g)) dQ(g) dQ_{\mathcal{T}}(t)$$

where

$$\overline{m}_n(\theta, t, g) = n^{-1} \sum_{i=1}^n \left(\begin{array}{c} m_1(W_i, \theta, t) g_1(X_i) \\ \vdots \\ m_p(W_i, \theta, t) g_p(X_i) \end{array} \right)$$

- use emp'l process result for $\nu_n(t,g) = n^{1/2}(\overline{m}_n(\theta,t,g) E_F \overline{m}_n(\theta,t,g))$
- show analogous results as above hold for GMS tests & CS's
 - unif asy validity, etc.

- note: results for infinite # mom ineq's cover tests w/ no par θ
- example 1. test of stoch dominance
 - related work: Linton, Maasoumi, & Whang (2005), Linton, Song, & Whang (2008)

-
$$Y_{1,i} \sim G_1(\cdot) \& Y_{2,i} \sim G_2(\cdot)$$

$$- H_0: G_1(t) - G_2(t) \ge 0, \, \forall t \in R \ (= \mathcal{T})$$

- take $m(W_i, \theta, t) = \mathbf{1}(Y_{1,i} \le t) \mathbf{1}(Y_{2,i} \le t)$
- no θ appears; no functions $g(X_i)$ needed
- get uniformity results for CvM & KS tests

- example 2. test of stoch dominance of cond'l dist'ns
 - related work: Lee & Whang (2008)

$$-Y_{1,i}|(X_i = x) \sim G_1(\cdot|x) \& Y_{2,i}|(X_i = x) \sim G_2(\cdot|x)$$

- $H_0: G_1(t, x) G_2(t, x) \ge 0, \forall t \in R (= \mathcal{T}), \forall x \in R^{d_x}$
- take $m(W_i, \theta, t)$ as above, use functions $g \in \mathcal{G}$

Summary

- provide methods to construct CS's for parameters based on cond'l mom ineq's & equalites
- parameters need not be identified
- CS's based on CvM or KS-type statistics
 - allow for truncation of ∞ sums & simulation of integrals
- combine w/ generalized mom selection critical values
- establish uniform asy validity
- show CS shrinks to identified set: no info loss
- $\bullet\,$ show tests have power against some $n^{-1/2}\mbox{-alternatives}$
- simulation results show CvM/Max w/ GMS crit val performs well in terms of cov probs & false cov probs