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Introduction

e model:

— true value 0 (€ © C Rd) satisfies conditional moment
inequalities & /or equalities:

Epy(m; (Wi, 00)1X;) > 0Oas. [Fxp]forj=1,...p
Epy(mj (Wi, 00) |X;) = Oas. [Fxo]forj=p+1,.,p+v

— {W; :1> 1} arei.id. w/ dist'n Fj
e key feature: true value 6 is not (necessarily) identified
e we are interested in confidence sets for O

e for simplicity, all formulae below take v = 0, i.e., no mom equalities



e some examples in econometrics:

— game theory models w/ multiple equilibria: using necessary
conditions for Nash equilibria,
e.g., see Ciliberto & Tamer (2003), Andrews, Berry, & Jia (2004),
Pakes, Porter, Ho, & Ishii (2004), & Bajari, Benkard, & Levin (2008)

— sufficient conditions for Nash equilibria, e.g., see Ciliberto & Tamer
(2003), Beresteanu & Molinari (2008)

— data censoring, e.g., when continuous variable only observed to lie in
interval, see Manski & Tamer (2002)



— missing data, see Imbens & Manski (2004)
— sign restrictions, see Moon & Schorfheide (2006)

— other industrial organization examples, see Pakes, Porter, Ishii, & Ho
(2004) & Eisenberg (2008)



Outline

e approach: transform cond’'l moment inequalities/equalities into
oo number of uncond’l ones

— do so w/ no loss of identification power

e construct CS's by inverting Cramér-von Mises-type or
Kol-Smirn-type tests

e crit vals obtained by generalized moment selection (GMS), (estimated)
least favorable dist'n, or subsampling

— GMS crit vals are preferred



e show CS's have correct uniform asy cov prob's

— new methods are required b/c co-dimensional nuisance parameter
affects asy dist'ns

e show tests are consistent against all fixed alternatives

e show tests have power against some n~1/2|ocal alternatives

— but not all such alternatives



e for computational purposes, extend results to allow truncated sums &
simulated integrals for CvM tests

e extend results to allow preliminary est'n of add’'l parameters 7 that are
identified when true 6 is known

— often arises w/ game theory models

— arises in one model considered in simulations



e simulation results for 3 models:
— quantile model w/ selection—quantile monotone IV
— interval outcome reg'n model

— entry game model w/ multiple equilibria
e simulation results yield suitable values for tuning parameters

e also, provide comparisons of different forms of test stats and crit vals



e summary of numerical work:

size properties are excellent in many cases, pretty good in all cases
CvM better than KS in terms of lower false cov probs

in some models, choice between Sum, QLR, & Max S function doesn’t

matter
x when it matters, Max performs best

GMS crit vals better than least fav cv or subsampling in terms of false

cov probs
asy GMS & bootstrap GMS crit vals perform fairly similarly

sentivitivity to tuning parameters is relatively low in most cases
x quite low in many cases



Extensions

separate paper 1: extend results to allow for oo number, or finite but large
number, of cond’l or uncond’'l moment inequalities/equalities

— allows one to cover complicated game theory models, tests of stochastic
dominance, cond’l stoch dominance, cond’l treatment effects, ...

separate paper 2: extend results to allow for nonparametric parameters
of interest

— allows for nonpar reg'n or nonpar quantile reg'n w/ sel’'n

in both papers,
— obtain uniform asy size results
— no loss of information—power agst all fixed alternatives

— local power results



Related Literature

most work in literature is on uncond’l mom ineq'’s

— e.g., Imbens & Manski (2004), Moon & Schorfheide (2006),
Chernozhukov, Hong, & Tamer (2007), Andrews & Jia (2008),
Beresteanu & Molinari (2008), Romano & Sheik (2008, 2010),
Rosen (2008), Andrews & Guggenberger (2009), Andrews &
Soares (2010), Bugni (2010), Canay (2010), Stoye (2010)

cond’| mom ineq’s can reduce size of identified set

so, first-order difference between uncond’l & cond’'l mom ineq's

— different from situation w/ mom equalities

re cond'l mom ineq's: Chernozhukov, Lee, & Rosen (2008), Fan (2008),
Kim (2008)

many moment condn’s: Menzel (2008)



Confidence Sets

we are interested in confidence sets (CS's) for true value 6

— as opposed to CS for identified set
we consider CS obtained by inverting test

notation: nominal level 1 — o CS for 0 is

CSn=1{0€0:Th) < c1_a(0)}

where c1_,(0) is a data-dependent critical value



Estimation

e re estimation: use CS with a = .5
— vyields half-median unbiased est'r asy'ly in unif'm sense
— i.e., prob of including a bdy point of the identified set is > .5 asy'ly
— solves inward-bias problem
— circumvents need for somewhat arbitrary sequence €y, | O

— related to method in Chernozhukov, Lee, & Rozen (2008)



Parameter Space
e uniform results require precise parameter space F for (6g, Fp)

e F is collection of (6, F') such that

(i) € © Cc R

(i) {W; : ¢ > 1} are i.i.d. under F

(iii) EF(TrL‘7 (Wia 9) |Xz) > 0 as. [FX] \V/] < p
(

iv) 0 < Varp(m;(W;,0)) <ocoVj<p
240

(v) Ep |mj(W;,0)/op;(0)] " <BVi<p
forsome B < oo & 0> 0

e identified set given Fp:
O, =1{0:(0, Fp) € 7}



Conditional — Unconditional Moment Conditions
Epym; (W;,0)g; (X;) >0, Vj<pforg=(91,.-,9p) €G (1)

e where g = (g1, ---,gp) are functions of X;

— @G is infinite

e identified set, © ,(G), defined by these uncond’l mom ineq'’s:

O, (G) = {0 € ©: (1) holds & (0, Fp) satisfies (i), (i), (iv), (v) of F}

e choose G so that O, (J) = OF,



Class of Test Statistics

e notation:
[ m(Wi,0)91(X;)
in(0,9) = 1S ma (Wi, ‘:9)92(Xi) for g€ G
T\ mp(Wi, 0)gp(X;)

1/2

e sample variance-covariance matrix of n*/“my(0, g):

i77,((97 g) — n_l Z (m(Wu ‘97 g) — mn(ea g)) (m(Wu 97 g) — mn(ea g)),
1=1



e nonsingular adjustment:

Yn(0,9) = Tn(0,9) + ¢ - Diag(Zn(6,1p))

e in simulations, use ¢ = 5/100



e Cramér-von Mises-type (CvM) statistic:
To(6) = [ S(n}/?mn(9, 9), £n(6, 9))dQ(g)

— S is non-negative function
— ( is a probability measure on G (weight function)

— integral is over G

e Kolmogorov-Smirnov-type (KS) statistic:

Th(0) = sup S(n1/2mn(9,9)7fn(979))
geg



e Examples: Sum test function

P
S1(m, L) = > [m;/o,]%
j=1
QLR test function

So(m,X) = inf (m—t)'T Y (m —1t)
te R
Max test function

S3(m7 Z) — max{[ml/al]z—a ERE) [mp/ap]z_}



S Function

a) S(m, X) is non-increasing in m
b) S(m,X) = S(Dm, DX D) Vpd diagonal D € RP*P

(
(
(c) S(m, X+ %1) <S(m,X) Vp X p psd matrices > 1
(d) S(am,X) = aXS(m,X) for some x > 0, V scalars a > 0, Vm, & VX
(e) S(m,€2) >0

(f) S(m,Q2) > 0 iff m; < 0 for some 5 < p

(

g) S(m,X) is uniformly continuous



Collection ¢

G must satisfy 2 assumptions

given (6, F'), let
Xp(0) = {z € R% : Ep(m; (W;,0)|X; = x) <0 for some j < p}

Assumption Cl. For any 8 € © & F for which Pp(X; € Xr(0)) >0
& Ep|im(W;,0)|| < oo, there exists g € G such that

Eij(W’ia Q)Qj(Xi) < 0 forsome 5 <p

note (6, F') are not in F

simple result: Assumption Cl implies © p(G) = O for all F
w/ supgce Ep|[m(W;, 0)|] < oo



e use ‘manageability” condition, Assumption M, on stoc processes
{9(Xni):9€G,i<n,n>1}
— from Pollard (1990)

— regulates complexity of G

— ensures that {n/%(mn(0, g) — Ep,mn(0,9)) : g € G}
satisfies FCLT under drifting sequences {Fy, : n > 1}



Collections G that satisfy Assumptions Cl & M

e Example 1. (Countable Hypercubes).
— transform regr’s to [0, 1]%

— let
Ge-cube = {g(az) : g(w) — 1(58 S O) ' 12? for C € Cc—cube}

— C,._oype CONtains cubes in [0, 1]% with side-lengths (2r) ™! for integers
r=m79, 70+ 1, ...

— this class is countable & countable center points



Example 2 (Uncountable Boxes).

Example 3 (Data-dependent Boxes).

Example 4. (B-splines & Finite-Support Kernels).
Example 5. (Continuous/Discrete Regressors)

Result: Assumptions Cl and M hold for G.._cybe, Gvozr Gvox,dds YB-spline
and G./q



Weight Function Q

e for test to have power against all fixed alternatives, () cannot “ignore” any
elements g € G

e let py be L? pseudo-metric on G:

px(9:9%) = (Bry olla(Xi) — g*(X))|[)/? for g, 9" € G

where Fx ¢ is distribution of X; under Fg

e Assumption Q. Support of ) under pseudo-metric py contains G.
le,, V6 > 0, Q(Bpy(g,6)) >0Vg €g.



e Q for G¢_cube
— 3 1-1 mapping Mo_cype © Gecuve — AR = {(a,7) € {1,...,2r}% x
{rg,70 +1,...}}
— let @ g be a probability measure on AR w/ full support
— e.g., uniform on a € {1,...,2r}% & dist'n for r with pmf {w(r) :
r=rg,rog+ 1,...}
— simulations use w(r) = (r° + 100)~1

— then, Q = ML . Q* is probability measure on Ge-cube

c-cube



o for Q) for G. .ybe, test statistic is

o0

Tn(e) — Z w('r) Z (zr)_dxs(nl/zmn(eaga,r)afn(eaga,r))
r=ro ac{l,...,2r}dx

where gq.r(x) = 1(z € Cq,r) - 1j for Car € Cr_cype



Computation
e test statistic 77, (6) involves oo sum or integral wrt Q)

e analogous oo sum or integral appear in defn’s of crit vals

— can’'t compute them exactly

e 00 sums can be approx'd by truncation & integrals by simulation or
quasi-Monte Carlo methods



e approx test stat for count hyper-cubes:

Ta(0) =S w(r) S (@) %Sm0, gar), Tn(0, gar))
=70 ac{l,...2r}d=

where go.r(z) = 1(x € Ca,r) - 1, for Car € Cocype

e for simulated test stat, let {g1,...,gs,} be sp i.i.d. functions drawn from
G according to the distribution )

e simulated test statistic is

Sn
Tnasn(e) — 8’);1 Z S(nl/zmn(ea g@)a zn(ea gﬁ))
/=1



e we show if s, — oo as n — oo uniform asymptotic validity of tests &
CS’s hold
— main issue is uniformity
— asymptotic power results under fixed alternatives hold

— most results under n_l/Z-IocaI alternatives hold



Pointwise Vs Uniform Asymptotics

e asy distn's of T},(6) are discont. in F'
— due to mom. ineq. slackness function

— get different pointwise asy dist'n depending on

=0Vn if EFm](W27 Q)Q(XZ) =0

1/2 (T :
n*'“Epm;(W;, 0)g(X;) { — oo if Epmj(W;,0)g9(X;) >0

— this does not reflect finite-sample situation

* no discont’y in finite samples

e pointwise asy dist'ns do not capture finite-sample behavior



e effect of asy discont’y greater w/ cond’'l mom ineq'’s than
uncond’| mom. ineq.s

— in several respects

e eg., if cond’l mean function p;(z,0) = Epm;(W;,0)|X; = z) is cont.
in z, then at bdy pts 6 there are always points = for which p,(x,0) is
positive, but arbitrarily close to 0

e so, there is always a uniformity issue



second, we want to show:

lim inf (e,p)fe]—‘ Ppr(0 e CSy) =1—« (2)

with finite # of uncond’'l| mom. ineq.s, it is sufficient to consider certain
seq.s of drifting dist'ns, see Andrews & Guggenberger (2009) or Andrews,
Cheng, & Guggenberger (2009)

w/ cond’'l mom ineq.s, this is not sufficient

— b/c co dim'l nuisance par affects asy dist’'n

different method is required to show (2)



Uniform Asymptotic Distribution of Ty (60)

o let

v, p(0,9) = n'/?[mn(6, 9) — Epm(W;, 6, g)]
h’l,n,F(97g) — 7’2,1/2EF7TL(WZ', 979)
hy p(0,-.©) = CovKernel of vy, p(0,-) under I

® hjp r(-) is function from G to Rﬁ that depends on slackness of moment
inequalities & n

— let hy, p(0,-) = (h1n.r(-), ho p(6,-.-))



e write test stat as
Tn(0) = /S (n'/?m(0, 9), £n(0, 9)) dQ(g)

= /S(Vn,F(Ga 9) + h1n.7(0,9), ho. 79, 9,9) + elp + 0p(1))dQ(g)



o let {vy,(g9) : g € G} be mean zero RP-valued Gaussian process with
cov kernel ho(-,-) on G X G

— let Ho be parameter space for hy(-,-) in model given F
e let hi(:) be any function from G to Rﬂ)oo

e for h = (hl, h2), let

T(h) = [ S(ny(9) + ha(9), halg, 9) + 1x)dQ(g)



e Result: Under Assumptions M & S, V compact subsets Hy oy of Hp, V
constants gy € R that may depend on h,, (0), & V4§ > 0,

lim sup sup [PF(Tn(Q) >xp, 0)) — P(T(hp,p(0))+6> F(@))} <0
N0 (9, F)EF: ’ |
h2,F(0)€H2,cpt
lim inf inf [ Pp(Tn(0) > Zh, o(0)) = P(T (Pl p(8)) =6 > xhn’F(g))} >0

=00 (9,F)cF:
h2,F(0)€H2,cpt



Critical Values

denote 1 — « quantile of T'(h,, p(6)) by
CO(hl,n,F(9)7 h’2,F(9)7 1— Oé)

h1n,r(0) & hy p(0) are not known
replace hp f(0) by uniformly consistent estimator ?Lzm(@) (= Ez,n(e, )
hin. F(0) (= h1, p(0,-)) cannot be consistently estimated

can replace hy ,, p(0) by zero function, Og, on G
— least-favorable choice

— or worse than least favorable

poor power properties



e subsampling crit vals
— usual definition

— for uncond’'l mom ineq’s, Bugni (2010) & Andrews & Soares (2010)
show that subsampling is dominated by generalized moment selection
(GMS) crit values re asy size & power

e focus on generalized moment selection (GMS) crit vals



GMS Crit Values

e replace hy ,, p(6) by data-dependent function ¢, (0) (= ¢,,(0,-)) on G
— ©p(0, g) is constructed to be < hy ,(0,9) Vg € G w/ prob — 1

e GMS crit val is

CO(SOn(H)a /}\L2,n(9)7 l1—a+ 77) +n

for infinitessimal uniformity factor n > 0

e bootstrap version: replace estimated Gaussian process v (0)(-) by boot-
Np’

strap emp’l process v} (-) & replace estimated variance process Ez,n(e) by

bootstrap version

— no higher-order improvements—test stat not asy'ly pivotal



e definition of ¢, (0, 9):
— measure of slackness of mom. ineq.:
—1~-1/2 __
£n(6,9) = 5 Dy 2 (0)n21in (0, 9)

) Bn if ‘En,j(eag) >1
#n,j(0,9) = { 0 if¢&, (0,9) <1

— not “pure” moment selection b/c By, < oo
e Assumption GMS. k,, — (Bp — oo as n — oo for some ¢ > 1

e in simulations, use kyn, = (0.31n(n))1/2 & By, = (0.4In(n)/ Inln(n))1/?



Uniform Asymptotic Coverage Probability Results

e Main Result: Under Assumptions M, S, & GMS, V compact subset Ho cpt
of Ho, GMS confidence sets C'S), satisfy

(a) lim inf (0 llfr;fe]—" Ppr(0 e CSp) > 11—«

h2,F(0)€H2,cpt

(b) if Assumption GMS2 also holds,

lim lim inf inf Pr(0 € (CS,)=1—
n—0 =00 (9 F)eF: F( n) -

h2,F(0)€H2,cpt



Asymptotic Power Against Fixed Alternatives

e show that power of GMS tests against “all” fixed alternatives — 1 as
n — 00

e this implies that given fixed true Fpy & any 6« not in identified set © g,
GMS CS’s do not include 04 with prob — 1

e here is where Assumptions Cl (re G) & Q (re weight measure) are used



Asymptotic Local Power

e show GMS tests have power against some, but not all, n=1/2_|ocal
alternatives

— depends on seq. {(0n, Fn) € F : n > 1} from which perturbations
are taken

— where 6, is true par value



Assumption LAI.

(a) Onx = On+An"1/2(1+0(1)) for some XA € R%, 0, — 09, & Fp, — Fy
for some (0g, Fp) € F

(b) nY/2Ep,m;(W;, 00, 9)/0 R, j(0n) — h1;(g) for some hy j(g) € Ry oo
ViSp&geg

Assumption LA2. The pxd matrix Mg(0, g) = (8/6‘9’)[D;1/2(9)Epm(Wi, 6, g)]

exists & is cont. in nghd of (0q, Fp) Vg € G

e for KS test:

Assumption LA3.

For some g € G, hy (g) < oo & Mp_i(g)’A < 0 for some j < p



e for CvM test:

Assumption LA3'.

Q({g € G:h1,(g9) <oo&Mpy,(g)A<0forsomej <p)>0

Result: Suppose A = BAg for 8 € R & \g € R? fixed, then
limg_, oo limp—oo Power,, g(GMS test) =1



Simulation Results
3 models: quantile sel'n, interval outcome reg'n, entry game
quantile sel’n model:
conditional 7-quantile of a treatment response given value of covariate X

use quantile monotone instrumental variable (QMIV) condition

— variant of Manski and Pepper’s (2000) Monotone Instrumental Variable
(MIV) condition

— bounds on quantiles: Manski (1994), Lee & Melenberg (1998), &
Blundell, Gosling, Ichimura, & Meghir (2007)

model set-up is quite similar to that in Manski and Pepper (2000)



obs arei.id. fort =1,...,n

y;(t) is individual 7's “conjectured” response given treatment ¢t € 7
T; is realization of treatment for individual 2

observed outcome variable is Y; = y;(71;)

X; Is a covariate

6 = cond’l T-quantile of y;(tg) given X; = xg for some tg € T & xg

— denoted 6 = Qyi(t0)|Xi(T|$0)



e examples: (i) y;(t) is conjectured wages of individual ¢ for t years of
schooling

— T7 is realized years of schooling

— X Is measured ability or wealth

e (ii) y;(t) is conjectured wages when individual ¢ is employed, say t = 1
— X Is measured ability or wealth

— selection occurs due to elastic labor supply

e (iii) y;(t) is some health response of individual ¢ given treatment ¢

— T is the realized treatment—non-randomized or randomized but subj
to imperfect compliance

— X is some characteristic of individual 7, such as weight, blood pressure



e quantile monotone |V assumption is:

Assumption QMIV. If 1 < z»,

Qu.(0)1x;(T171) < Q1) x,(T|22)

e for Monte Carlo simulations, DGP:
yi(1) = p(X;) + 0 (X;) i, where 9 (x) /O > 0 and o () > 0
T; = Y (X;) +e; > 0}, where ¢ (x) /0x > 0
Xi ~ UTLZf[O, 2]7 (siaui) ~ N(Oa 12)7 X’L 1 (siaui)
Y, = yi(T3), &t =1

e consider the median, 7 = 0.5, & g = 1.5



conditional moment inequalities:

0 > 0(x) = p(z) + 0 (2) 871 (1 - 20 (¢ (2)] "), Yo <15
0 < 0(x) = p(x) + 0 () 07" (120 (9 (2))]71) , Vo > 1.5

identified set for quantile selection model:

sup 0(x), inf 9(3:)]
r<xQ T >0

shape of lower & upper bound functions depends on the shape of ¢, u,

and o functions

consider 2 specifications: flat bd functions & kinky bd function



e 0.1 sec for 2 tests using 5000 crit val reps
— CvM/Max/GMS/Asy & CvM /Max/PA/Asy



Table I. Quantile Selection Model: Basecase Comparisons

(a) Cov Probs

Statisticc: CvM/ CvM/ CvM/ KS/ KS/ KS/
Sum QLR Max Sum QLR Max
DGP Crit Val
Flat Bd  PA/Asy 979 979 976 972 972 .970
GMS/Asy 953 953 951 963 .963 .960
Kinky Bd PA/Asy 999 999 999 994 994 994
GMS/Asy 983 983 .983 985 .985 .984
(b) False Cov Probs
Flat Bd  PA/Asy b1 50 A48 68 .67 .66
GMS/Asy .37 37 37 60 .60 .59
Kinky Bd PA/Asy .65 .65 62 68 .68 .67
GMS/Asy .35 .35 .34 53 b3 B2




Table Il. Quantile Selection Model w/ Flat Bound: Variations on Basecase

(a) Cov Prob’s

(b) FCP's (CP cor)

Statistic: CvM/Max CvM/Max
Case Crit Val: GMS/Asy GMS/Asy
Basecase (n = 250,71 = 7) 951 37
n = 100 957 40
n = 500 954 .36
n = 1000 948 34
ri=5 049 36
ri=09 951 37
ri =11 951 37
(lﬁ:n, Bn) = 1/2("4"’77/,1967 Bn,bc) 948 .38
(Iﬁ:n, Bn) — 2(Hn,bca Bn,bc) 967 .38
e =1/100 949 37
a=.5 518 .03
a=.5&n =500 513 .03




Interval Outcome Regression Model
Manski & Tamer (2002)
Y;-* = 01 + X;0> + U;, where E(U;|X;) =0 a.s.
observe YLi & YU?J) where YLi S }/Z* S YUi

inequalities:

E(01 + X;02 — Y1, X;)
E(Yy; — 01 — X;602]X;)

0 a.s.

AVARAVS

0 a.s.

basecase: n =250, 111 =7, =5/100

U; ~ N(0,1), X; ~ U0, 1]



e 0.1 sec for 2 tests using 5000 crit val reps
— CvM/Max/GMS/Asy & CvM /Max/PA/Asy



Table IV. Interval Outcome Regression Model: Basecase

(a) Coverage Probs

Stat: CvWM CvM CvM KS KS KS

Crit. Sum QLR Max Sum QLR Max
Value:

PA /Asy 990 993 .990 .989 .990 .989
GMS /Asy 950 950 .950 .963 .963 .963

(b) False Coverage Probs

PA/Asy 62 66 61 .78 .80 .78
GMS /Asy 37 37 37 61 61 .61




Table VI. Interval Outcome Regression Model: Variations on the Basecase



(a) Coverage Probabilities

Statistic: ~ CvM/Max KS/Max

Case Crit Val: ~ GMS/Asy  GMS/Asy
Basecase (n = 250,71 =7, & =5/100) .950 963
n = 100 949 970
n = 500 .950 .956
n = 1000 954 955
r1 = 5 (30 cubes) 949 961
r1 =9 (90 cubes) 951 965
rq = 11 (132 cubes) 950 968
(H:n, Bn) — 1/2("{71,607 Bn,bc) 944 961
(Kn, Bn) = 2(fp pes Bn.be) 958 973
e =1/100 946 966
(601,652) = (1.0,0.5) 999 996
(601,02) = (1.5,0.0) 1.000 996
a=.5 472 481

a=.5&n=>500 478 500




(b) False Cov Probs (CPcor)

Statistic: ~ CvM/Max KS/Max

Case Crit Val: ~ GMS/Asy GMS/Asy
Basecase (n = 250,71 =7, & =5/100) 37 .61
n = 100 .39 .66
n = 500 37 .60
n = 1000 37 .60
r1 = 5 (30 cubes) 37 59
r1 =9 (90 cubes) 37 63
r1 = 11 (132 cubes) .38 .64
(lﬁ:n, Bn) — 1/2("{71,607 Bn,bc) 40 .62
(fn, Bn) = 2(’€n,bca Bn,bc) .39 .05
e =1/100 .39 .69
(601,05) = (1.0,0.5) 91 .92
(601,02) = (1.5,0.0) .99 97
a=.5 .03 .08

a=.5&n=>500 .03 .07




Entry Game Model w/ Multiple Equilibria
complete information simultaneous game (entry model)
two players & n i.i.d. plays of the game
consider Nash equilibria in pure strategies
due to possibility of multiple equilibria, model is incomplete

2 cond’l moment ineq’'s & 2 conditional moment equal’s arise

Andrews, Berry, & Jia (2004), Beresteanu, Molchanov, & Molinari (2009),
Galichon & Henry (2009b), Ciliberto & Tamer (2009)



player b's utility /profits are

X,L(’bTb + Uj p, if other player does not enter
X,L(’bTb — 0y, + U p if other player enters
01 € R indexes competitive effect on player 1 of entry by player 2
0> likewise
U; p ~ N(0,1) is known to both players
— unobserved by econometrician

econometrician observes X; 1 € R4, X;2 € R4, Yi1, & Y; >
— Y;, = 1 if player b enters & 0 otherwise for b = 1,2

unknown parameters: 8 = (01, 603)" € [0,00)?, & T = (74, 75) € RS



® Xi,b — (17 X?l,b,27 X’i,b,37 Xz*), S R*
— X po ~Bern(p), X;,3~ N(0,1), X ~ N(0,1)

e equil'm selection rule (ESR) employed is maximum profit ESR
— unknown to econometrician
— i.e., if Y; could be either (1,0) or (0,1) in equil'm, then Y; = (1,0)
if player 1's monopoly profit exceeds that of player 2 & Y; = (0, 1)
otherwise

e provide some results for “player 1 first” ESR



moment ineq. functions:

m1(W;,0,7) = P(X{171+U;1 >0, X[ 70 — 02+ U; o < 0[X;)

mo(W;,0,7) = P(X[171— 014+ Uj1 <0, X{,m0+ U; o > 0[X;)

2 mom equalities ...

model is identified by (0,0) & (1,1) outcomes
moment ineq’s provide additional info

we estimate 71 & 75 given 6

use mom ineq's with 71,,(0) & 72,,(0) plugged in



use hypercubes in R? for X! 71,(0) & X! ,72,,(6)

transform variables to [0, 1]

— transform so sample covariance = 0, then apply std normal cdf
side-edge lenghts (2r)~1 for r = 1,...,71

basecase: 71 = 3 yields 56 cubes

— also, 11 = 2 = 20 cubes & ;1 = 3 = 120 cubes

n = 500: also, 250 & 1000

0.24 sec for 2 tests using 5000 crit val reps
— CvM/Max/GMS/Asy & CvM/Max/PA/Asy



(a) Coverage Probs

Case Stat: CvM CvM CvM KS KS KS
Sum QLR Max Sum QLR Max
(61,62) = (0,0) 979 972 980 .977 975 .985
(601,602) = (1,0) 961 980 .965 959 .983 .972
(61,60) = (1,1) 961 .985 961 .955 985 .962
(61,60) = (2,0) 935 982 935 944 984 952
(01,0,) = (2,1) 043 974 940 953 .987 .947
(61,602) = (3,0) 921 975 915 938 .935 .984
(61,62) = (2,2) 928 942 913 .943 972 .922
(b) False Coverage Probs (cov prob corrected)
(61,62) = (0,0) 76 99 59 91 99 .83
(601,02) = (1,0) 60 99 42 83 66 .99
(61,60) = (1,1) 62 96 41 82 .99 .58
(601,02) = (2,0) 51 83 3, 66 .96 .47
(01,02) = (2,1) Y4 Y4 .38 .69 82 44
(61,05) = (3,0) 49 41 36 .61 .43 .64
(01,02) = (2,2) b9 .34 .39 .65 42 49




(a) Coverage Probs (b) False Cov Probs

CvM/Max  KS/Max CvM/Max  KS/Max

Case GMS/Asy GMS/Asy GMS/Asy GMS/Asy
Basecase (n = 500,

r1 = ¥ = 5/100) .961 .962 41 .58
n = 250 948 963 .39 .56
n = 1000 979 968 52 .65
r1 = 2 (20 cubes) 962 .956 41 .55
r1 = 4 (120 cubes) 962 964 42 59
(Kn, Bn) = 1/2(kp ber Bnbe) 954 .959 .39 57
(H‘,n, Bn) = 2(’{'n,bca Bn,bc) 967 962 42 .58
e =1/100 926 873 .32 .66
Reg'r Variances = 2 964 .968 b4 71
Reg'r Variances = 1/2 963 966 29 43
Player 1 First Eq Sel Rule 955 957 .39 57
a=.5 610 620 .05 13

a=.5&n=1000 695 650 .06 16




Many Moment Inequalities

e allow for infinite # mom ineq’s by indexing m;(W;,0) by t € T

— cond’l or uncond’l

e model is: Vt € T,

EF(m] (W7,7 Q,t) |XZ) > 0 as. [FX] \V/] < pt

e can use same functions g € G & measure () as above



specifiy weight function Q7 on 7T

test stat is

To(0) = [ [ S(V/2mn(6,t, 9), Tu(6, , 9))dQ(9)dQ7 (1)

where
n mi (WZ,H,t) gl(XZ)

mn(ea L, g) — n_l Z :
i=1 \ my (W3, 0,t) gp(X;)

use emp’l process result for vn (¢, g) = nY/2(mn(6, t, g)— Epmn(0,t, g))

show analogous results as above hold for GMS tests & CS's

— unif asy validity, etc.



e note: results for infinite # mom ineq's cover tests w/ no par 60

e example 1. test of stoch dominance

— related work: Linton, Maasoumi, & Whang (2005), Linton, Song, &

Whang (2008)
- Y1, ~G1() & Yo ; ~ Ga(")
— Hy:G1(t) = Go(t) >0, Vie R (=T)
— take m(W27 97t) — 1(Y1,i < t) o 1(Y2,i < t)

— no 6 appears; no functions g(X;) needed

— get uniformity results for CvM & KS tests



example 2. test of stoch dominance of cond’l dist'ns
— related work: Lee & Whang (2008)
- Y1,il(X; = 2) ~ Gi(-|z) & Y2,;[(X; = z) ~ Ga(-|z)
— Hy: Gi(t,z) — Go(t,z) > 0,Vt € R (=T), Vx € R%
— take m(W;, 0,t) as above, use functions g € G



Summary

provide methods to construct CS's for parameters based on
cond’'l mom ineq’'s & equalites

parameters need not be identified

CS’s based on CvM or KS-type statistics

— allow for truncation of oo sums & simulation of integrals

combine w/ generalized mom selection critical values



establish uniform asy validity

show CS shrinks to identified set: no info loss

—1/2

show tests have power against some n -alternatives

simulation results show CvM/Max w/ GMS crit val
performs well in terms of cov probs & false cov probs



