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Introduction

� model:
� true value �0 (2 � � Rd) satis�es conditional moment
inequalities &/or equalities:

EF0(mj (Wi; �0) jXi) � 0 a.s. [FX;0] for j = 1; :::; p

EF0(mj (Wi; �0) jXi) = 0 a.s. [FX;0] for j = p+ 1; :::; p+ v

� fWi : i � 1g are i.i.d. w/ dist�n F0

� key feature: true value �0 is not (necessarily) identi�ed

� we are interested in con�dence sets for �0

� for simplicity, all formulae below take v = 0; i.e., no mom equalities



� some examples in econometrics:
� game theory models w/ multiple equilibria: using necessary
conditions for Nash equilibria,
e.g., see Ciliberto & Tamer (2003), Andrews, Berry, & Jia (2004),
Pakes, Porter, Ho, & Ishii (2004), & Bajari, Benkard, & Levin (2008)

� su¢ cient conditions for Nash equilibria, e.g., see Ciliberto & Tamer
(2003), Beresteanu & Molinari (2008)

� data censoring, e.g., when continuous variable only observed to lie in
interval, see Manski & Tamer (2002)



� missing data, see Imbens & Manski (2004)

� sign restrictions, see Moon & Schorfheide (2006)

� other industrial organization examples, see Pakes, Porter, Ishii, & Ho
(2004) & Eisenberg (2008)



Outline

� approach: transform cond�l moment inequalities/equalities into
1 number of uncond�l ones

� do so w/ no loss of identi�cation power

� construct CS�s by inverting Cramér-von Mises-type or
Kol-Smirn-type tests

� crit vals obtained by generalized moment selection (GMS), (estimated)
least favorable dist�n, or subsampling

� GMS crit vals are preferred



� show CS�s have correct uniform asy cov prob�s

� new methods are required b/c 1-dimensional nuisance parameter
a¤ects asy dist�ns

� show tests are consistent against all �xed alternatives

� show tests have power against some n�1=2-local alternatives
� but not all such alternatives



� for computational purposes, extend results to allow truncated sums &
simulated integrals for CvM tests

� extend results to allow preliminary est�n of add�l parameters � that are
identi�ed when true � is known

� often arises w/ game theory models

� arises in one model considered in simulations



� simulation results for 3 models:
� quantile model w/ selection� quantile monotone IV

� interval outcome reg�n model

� entry game model w/ multiple equilibria

� simulation results yield suitable values for tuning parameters

� also, provide comparisons of di¤erent forms of test stats and crit vals



� summary of numerical work:
� size properties are excellent in many cases, pretty good in all cases

� CvM better than KS in terms of lower false cov probs

� in some models, choice between Sum, QLR, & Max S function doesn�t
matter
� when it matters, Max performs best

� GMS crit vals better than least fav cv or subsampling in terms of false
cov probs

� asy GMS & bootstrap GMS crit vals perform fairly similarly

� sentivitivity to tuning parameters is relatively low in most cases
� quite low in many cases



Extensions

� separate paper 1: extend results to allow for1 number, or �nite but large
number, of cond�l or uncond�l moment inequalities/equalities
� allows one to cover complicated game theory models, tests of stochastic
dominance, cond�l stoch dominance, cond�l treatment e¤ects, ...

� separate paper 2: extend results to allow for nonparametric parameters
of interest
� allows for nonpar reg�n or nonpar quantile reg�n w/ sel�n

� in both papers,
� obtain uniform asy size results
� no loss of information� power agst all �xed alternatives
� local power results



Related Literature

� most work in literature is on uncond�l mom ineq�s
� e.g., Imbens & Manski (2004), Moon & Schorfheide (2006),
Chernozhukov, Hong, & Tamer (2007), Andrews & Jia (2008),
Beresteanu & Molinari (2008), Romano & Sheik (2008, 2010),
Rosen (2008), Andrews & Guggenberger (2009), Andrews &
Soares (2010), Bugni (2010), Canay (2010), Stoye (2010)

� cond�l mom ineq�s can reduce size of identi�ed set

� so, �rst-order di¤erence between uncond�l & cond�l mom ineq�s
� di¤erent from situation w/ mom equalities

� re cond�l mom ineq�s: Chernozhukov, Lee, & Rosen (2008), Fan (2008),
Kim (2008)

� many moment condn�s: Menzel (2008)



Con�dence Sets

� we are interested in con�dence sets (CS�s) for true value �0
� as opposed to CS for identi�ed set

� we consider CS obtained by inverting test

� notation: nominal level 1� � CS for � is

CSn = f� 2 � : Tn(�) � c1��(�)g

where c1��(�) is a data-dependent critical value



Estimation

� re estimation: use CS with � = :5
� yields half-median unbiased est�r asy�ly in unif�m sense

� i.e., prob of including a bdy point of the identi�ed set is � :5 asy�ly
� solves inward-bias problem

� circumvents need for somewhat arbitrary sequence "n # 0
� related to method in Chernozhukov, Lee, & Rozen (2008)



Parameter Space

� uniform results require precise parameter space F for (�0; F0)

� F is collection of (�; F ) such that

(i) � 2 � � Rd

(ii) fWi : i � 1g are i.i.d. under F
(iii) EF (mj (Wi; �) jXi) � 0 a.s. [FX] 8j � p
(iv) 0 < V arF (mj(Wi; �)) <1 8j � p

(v) EF
���mj(Wi; �)=�F;j(�)

���2+� � B 8j � p

for some B <1 & � > 0

� identi�ed set given F0:
�F0 = f� : (�; F0) 2 Fg



Conditional ! Unconditional Moment Conditions

EF0mj (Wi; �) gj (Xi) � 0; 8j � p for g = (g1; :::; gp)0 2 G (1)

� where g = (g1; :::; gp)0 are functions of Xi
� G is in�nite

� identi�ed set, �F0(G); de�ned by these uncond�l mom ineq�s:

�F0(G) = f� 2 � : (1) holds & (�; F0) satis�es (i), (ii), (iv), (v) of Fg

� choose G so that �F0(G) = �F0



Class of Test Statistics

� notation:

mn(�; g) = n
�1

nX
i=1

0BBB@
m1(Wi; �)g1(Xi)
m2(Wi; �)g2(Xi)

...
mp(Wi; �)gp(Xi)

1CCCA for g 2 G

� sample variance-covariance matrix of n1=2mn(�; g):

b�n(�; g) = n�1 nX
i=1

(m(Wi; �; g)�mn(�; g)) (m(Wi; �; g)�mn(�; g))0



� nonsingular adjustment:

�n(�; g) = b�n(�; g) + " �Diag(b�n(�; 1p))
� in simulations, use " = 5=100



� Cramér-von Mises-type (CvM) statistic:

Tn(�) =
Z
S(n1=2mn(�; g);�n(�; g))dQ(g)

� S is non-negative function

� Q is a probability measure on G (weight function)
� integral is over G

� Kolmogorov-Smirnov-type (KS) statistic:

Tn(�) = sup
g2G

S(n1=2mn(�; g);�n(�; g))



� Examples: Sum test function

S1(m;�) =
pX
j=1

[mj=�j]
2
�

QLR test function

S2(m;�) = inf
t2Rp+

(m� t)0��1(m� t)

Max test function

S3(m;�) = maxf[m1=�1]2�; :::; [mp=�p]2�g



S Function

(a) S(m;�) is non-increasing in m

(b) S(m;�) = S(Dm;D�D) 8pd diagonal D 2 Rp�p

(c) S (m;�+ �1) � S (m;�) 8p� p psd matrices �1

(d) S(am;�) = a�S(m;�) for some � > 0; 8 scalars a > 0; 8m; & 8�

(e) S(m;
) � 0

(f) S(m;
) > 0 i¤ mj < 0 for some j � p

(g) S(m;�) is uniformly continuous



Collection G

� G must satisfy 2 assumptions

� given (�; F ); let

XF (�) = fx 2 Rdx : EF (mj (Wi; �) jXi = x) < 0 for some j � pg

� Assumption CI. For any � 2 � & F for which PF (Xi 2 XF (�)) > 0
& EF jjm(Wi; �)jj <1; there exists g 2 G such that

EFmj(Wi; �)gj(Xi) < 0 for some j � p

� note (�; F ) are not in F

� simple result: Assumption CI implies �F (G) = �F for all F
w/ sup�2�EF jjm(Wi; �)jj <1



� use �manageability� condition, Assumption M, on stoc processes
fg(Xn;i) : g 2 G; i � n; n � 1g
� from Pollard (1990)

� regulates complexity of G
� ensures that fn1=2(mn(�; g)� EFnmn(�; g)) : g 2 Gg
satis�es FCLT under drifting sequences fFn : n � 1g



Collections G that satisfy Assumptions CI & M

� Example 1. (Countable Hypercubes).

� transform regr�s to [0; 1]dx

� let

Gc-cube = fg(x) : g(x) = 1(x 2 C) � 1p for C 2 Cc-cubeg

� Cc-cube contains cubes in [0; 1]dx with side-lengths (2r)�1 for integers
r = r0; r0 + 1; :::

� this class is countable & countable center points



� Example 2 (Uncountable Boxes).

� Example 3 (Data-dependent Boxes).

� Example 4. (B-splines & Finite-Support Kernels).

� Example 5. (Continuous/Discrete Regressors)

� Result: Assumptions CI and M hold for Gc-cube; Gbox; Gbox;dd; GB-spline;
and Gc=d



Weight Function Q

� for test to have power against all �xed alternatives, Q cannot �ignore�any
elements g 2 G

� let �X be L2 pseudo-metric on G:

�X(g; g
�) = (EFX;0jjg(Xi)� g

�(Xi)jj2)1=2 for g; g� 2 G

where FX;0 is distribution of Xi under F0

� Assumption Q. Support of Q under pseudo-metric �X contains G:
I.e., 8� > 0; Q(B�X(g; �)) > 0 8g 2 G:



� Q for Gc-cube
� 9 1-1 mapping �c-cube : Gc-cube ! AR = f(a; r) 2 f1; :::; 2rgdx �
fr0; r0 + 1; :::gg

� let QAR be a probability measure on AR w/ full support

� e.g., uniform on a 2 f1; :::; 2rgdx & dist�n for r with pmf fw(r) :
r = r0; r0 + 1; :::g

� simulations use w(r) = (r2 + 100)�1

� then, Q = ��1c-cubeQ
� is probability measure on Gc-cube



� for Q for Gc-cube; test statistic is

Tn(�) =
1X
r=r0

w(r)
X

a2f1;:::;2rgdx
(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r))

where ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cube



Computation

� test statistic Tn(�) involves 1 sum or integral wrt Q

� analogous 1 sum or integral appear in defn�s of crit vals

� can�t compute them exactly

� 1 sums can be approx�d by truncation & integrals by simulation or
quasi-Monte Carlo methods



� approx test stat for count hyper-cubes:

Tn(�) =
snX
r=r0

w(r)
X

a2f1;:::;2rgdx
(2r)�dxS(n1=2mn(�; ga;r);�n(�; ga;r))

where ga;r(x) = 1(x 2 Ca;r) � 1k for Ca;r 2 Cc-cube

� for simulated test stat, let fg1; :::; gsng be sn i.i.d. functions drawn from
G according to the distribution Q

� simulated test statistic is

bTn;sn(�) = s�1n snX
`=1

S(n1=2mn(�; g`);�n(�; g`))



� we show if sn ! 1 as n ! 1 uniform asymptotic validity of tests &
CS�s hold

� main issue is uniformity

� asymptotic power results under �xed alternatives hold

� most results under n�1=2-local alternatives hold



Pointwise Vs Uniform Asymptotics

� asy distn�s of Tn(�) are discont. in F
� due to mom. ineq. slackness function

� get di¤erent pointwise asy dist�n depending on

n1=2EFmj(Wi; �)g(Xi)

(
= 0 8n if EFmj(Wi; �)g(Xi) = 0
!1 if EFmj(Wi; �)g(Xi) > 0

� this does not re�ect �nite-sample situation

� no discont�y in �nite samples

� pointwise asy dist�ns do not capture �nite-sample behavior



� e¤ect of asy discont�y greater w/ cond�l mom ineq�s than
uncond�l mom. ineq.s

� in several respects

� e.g., if cond�l mean function �j(x; �) = EFmj(Wi; �)jXi = x) is cont.
in x; then at bdy pts � there are always points x for which �j(x; �) is
positive, but arbitrarily close to 0

� so, there is always a uniformity issue



� second, we want to show:

lim inf
n!1 inf

(�;F )2F
PF (� 2 CSn) = 1� � (2)

� with �nite # of uncond�l mom. ineq.s, it is su¢ cient to consider certain
seq.s of drifting dist�ns, see Andrews & Guggenberger (2009) or Andrews,
Cheng, & Guggenberger (2009)

� w/ cond�l mom ineq.s, this is not su¢ cient

� b/c 1 dim�l nuisance par a¤ects asy dist�n

� di¤erent method is required to show (2)



Uniform Asymptotic Distribution of Tn(�)

� let

�n;F (�; g) = n1=2[mn(�; g)� EFm(Wi; �; g)]

h1;n;F (�; g) = n1=2EFm(Wi; �; g)

h2;F (�; �:�) = CovKernel of �n;F (�; �) under F

� h1;n;F (�) is function from G to R
p
+ that depends on slackness of moment

inequalities & n

� let hn;F (�; �) = (h1;n;F (�); h2;F (�; �:�))0



� write test stat as

Tn(�) =
Z
S
�
n1=2mn(�; g);�n(�; g)

�
dQ(g)

=
Z
S(�n;F (�; g) + h1;n;F (�; g); h2;F (�; g; g) + "Ip + op(1))dQ(g)



� let f�h2(g) : g 2 Gg be mean zero R
p-valued Gaussian process with

cov kernel h2(�; �) on G � G
� let H2 be parameter space for h2(�; �) in model given F

� let h1(�) be any function from G to Rp+;1

� for h = (h1; h2); let

T (h) =
Z
S(�h2(g) + h1(g); h2(g; g) + "Ik)dQ(g)



� Result: Under Assumptions M & S, 8 compact subsets H2;cpt of H2; 8
constants xhn;F (�) 2 R that may depend on hn;F (�); & 8� > 0;

lim sup
n!1

sup
(�;F )2F :

h2;F (�)2H2;cpt

h
PF (Tn(�)>xhn;F (�))� P (T (hn;F (�))+�>xhn;F (�))

i
� 0

lim inf
n!1 inf

(�;F )2F :
h2;F (�)2H2;cpt

h
PF (Tn(�)>xhn;F (�))� P (T (hn;F (�))��>xhn;F (�))

i
� 0



Critical Values

� denote 1� � quantile of T (hn;F (�)) by

c0(h1;n;F (�); h2;F (�); 1� �)

� h1;n;F (�) & h2;F (�) are not known

� replace h2;F (�) by uniformly consistent estimator bh2;n(�) (= bh2;n(�; �; �))
� h1;n;F (�) (= h1;n;F (�; �)) cannot be consistently estimated

� can replace h1;n;F (�) by zero function, 0G; on G
� least-favorable choice
� or worse than least favorable

� poor power properties



� subsampling crit vals
� usual de�nition

� for uncond�l mom ineq�s, Bugni (2010) & Andrews & Soares (2010)
show that subsampling is dominated by generalized moment selection
(GMS) crit values re asy size & power

� focus on generalized moment selection (GMS) crit vals



GMS Crit Values

� replace h1;n;F (�) by data-dependent function 'n(�) (= 'n(�; �)) on G
� 'n(�; g) is constructed to be � h1;n(�; g) 8g 2 G w/ prob ! 1

� GMS crit val is

c0('n(�);
bh2;n(�); 1� �+ �) + �

for in�nitessimal uniformity factor � > 0

� bootstrap version: replace estimated Gaussian process �bh2;n(�)(�) by boot-
strap emp�l process ��n(�) & replace estimated variance process bh2;n(�) by
bootstrap version

� no higher-order improvements� test stat not asy�ly pivotal



� de�nition of 'n(�; g):
� measure of slackness of mom. ineq.:

�n(�; g) = �
�1
n
cD�1=2n (�)n1=2mn(�; g)

'n;j(�; g) =

(
Bn if �n;j(�; g) > 1
0 if �n;j(�; g) � 1

� not �pure�moment selection b/c Bn <1

� Assumption GMS. �n � �Bn !1 as n!1 for some � > 1

� in simulations, use �n = (0:3 ln(n))1=2 & Bn = (0:4 ln(n)= ln ln(n))1=2



Uniform Asymptotic Coverage Probability Results

� Main Result: Under Assumptions M, S, & GMS, 8 compact subsetH2;cpt
of H2; GMS con�dence sets CSn satisfy

(a) lim inf
n!1 inf

(�;F )2F :
h2;F (�)2H2;cpt

PF (� 2 CSn) � 1� �

(b) if Assumption GMS2 also holds,

lim
�!0

lim inf
n!1 inf

(�;F )2F :
h2;F (�)2H2;cpt

PF (� 2 CSn) = 1� �



Asymptotic Power Against Fixed Alternatives

� show that power of GMS tests against �all� �xed alternatives ! 1 as
n!1

� this implies that given �xed true F0 & any �� not in identi�ed set �F0;
GMS CS�s do not include �� with prob ! 1

� here is where Assumptions CI (re G) & Q (re weight measure) are used



Asymptotic Local Power

� show GMS tests have power against some, but not all, n�1=2-local
alternatives

� depends on seq. f(�n; Fn) 2 F : n � 1g from which perturbations
are taken

� where �n is true par value



Assumption LA1.

(a) �n;� = �n+�n�1=2(1+o(1)) for some � 2 Rd�; �n;� ! �0; & Fn ! F0
for some (�0; F0) 2 F

(b) n1=2EFnmj(Wi; �n; g)=�Fn;j(�n) ! h1;j(g) for some h1;j(g) 2 R+;1
8j � p & g 2 G

Assumption LA2. The p�dmatrix�F (�; g) = (@=@�0)[D
�1=2
F (�)EFm(Wi; �; g)]

exists & is cont. in nghd of (�0; F0) 8g 2 G

� for KS test:

Assumption LA3.

For some g 2 G; h1;j(g) <1 & �0;j(g)0� < 0 for some j � p



� for CvM test:

Assumption LA30.

Q(fg 2 G : h1;j(g) <1 & �0;j(g)0� < 0 for some j � p) > 0

Result: Suppose � = ��0 for � 2 R & �0 2 Rd �xed, then
lim�!1 limn!1 Powern;�(GMS test) = 1



Simulation Results

� 3 models: quantile sel�n, interval outcome reg�n, entry game

� quantile sel�n model:

� conditional � -quantile of a treatment response given value of covariate Xi

� use quantile monotone instrumental variable (QMIV) condition
� variant of Manski and Pepper�s (2000) Monotone Instrumental Variable
(MIV) condition

� bounds on quantiles: Manski (1994), Lee & Melenberg (1998), &
Blundell, Gosling, Ichimura, & Meghir (2007)

� model set-up is quite similar to that in Manski and Pepper (2000)



� obs are i.i.d. for i = 1; :::; n

� yi(t) is individual i�s �conjectured� response given treatment t 2 T

� Ti is realization of treatment for individual i

� observed outcome variable is Yi = yi(Ti)

� Xi is a covariate

� � = cond�l � -quantile of yi(t0) given Xi = x0 for some t0 2 T & x0
� denoted � = Qyi(t0)jXi(� jx0)



� examples: (i) yi(t) is conjectured wages of individual i for t years of
schooling

� Ti is realized years of schooling

� Xi is measured ability or wealth

� (ii) yi(t) is conjectured wages when individual i is employed, say t = 1
� Xi is measured ability or wealth

� selection occurs due to elastic labor supply

� (iii) yi(t) is some health response of individual i given treatment t
� Ti is the realized treatment� non-randomized or randomized but subj
to imperfect compliance

� Xi is some characteristic of individual i; such as weight, blood pressure



� quantile monotone IV assumption is:

Assumption QMIV. If x1 � x2;

Qyi(t)jXi(� jx1) � Qyi(t)jXi(� jx2)

� for Monte Carlo simulations, DGP:

yi(1) = �(Xi) + � (Xi)ui; where @� (x) =@x � 0 and � (x) � 0
Ti = 1f' (Xi) + "i � 0g; where @' (x) =@x � 0
Xi � Unif [0; 2]; ("i; ui) � N(0; I2); Xi ? ("i; ui)
Yi = yi(Ti); & t = 1

� consider the median, � = 0:5; & x0 = 1:5



� conditional moment inequalities:

� � �(x) = �(x) + � (x) ��1
�
1� [2� (' (x))]�1

�
; 8x � 1:5

� � �� (x) = �(x) + � (x) ��1
�
[2� (' (x))]�1

�
; 8x � 1:5

� identi�ed set for quantile selection model:"
sup
x�x0

�(x); inf
x�x0

�� (x)

#

� shape of lower & upper bound functions depends on the shape of '; �;
and � functions

� consider 2 speci�cations: �at bd functions & kinky bd function



� 0.1 sec for 2 tests using 5000 crit val reps
� CvM/Max/GMS/Asy & CvM/Max/PA/Asy



Table I. Quantile Selection Model: Basecase Comparisons
(a) Cov Probs

Statistic: CvM/ CvM/ CvM/ KS/ KS/ KS/
Sum QLR Max Sum QLR Max

DGP Crit Val
Flat Bd PA/Asy .979 .979 .976 .972 .972 .970

GMS/Asy .953 .953 .951 .963 .963 .960

Kinky Bd PA/Asy .999 .999 .999 .994 .994 .994
GMS/Asy .983 .983 .983 .985 .985 .984

(b) False Cov Probs

Flat Bd PA/Asy .51 .50 .48 .68 .67 .66
GMS/Asy .37 .37 .37 .60 .60 .59

Kinky Bd PA/Asy .65 .65 .62 .68 .68 .67
GMS/Asy .35 .35 .34 .53 .53 .52



Table II. Quantile Selection Model w/ Flat Bound: Variations on Basecase
(a) Cov Prob�s (b) FCP�s (CP cor)

Statistic: CvM/Max CvM/Max
Case Crit Val: GMS/Asy GMS/Asy

Basecase (n = 250; r1 = 7) .951 .37
n = 100 .957 .40
n = 500 .954 .36
n = 1000 .948 .34
r1 = 5 .949 .36
r1 = 9 .951 .37
r1 = 11 .951 .37
(�n; Bn) = 1=2(�n;bc; Bn;bc) .948 .38
(�n; Bn) = 2(�n;bc; Bn;bc) .967 .38
" = 1=100 .949 .37

� = :5 .518 .03
� = :5 & n = 500 .513 .03



Interval Outcome Regression Model

� Manski & Tamer (2002)

� Y �i = �1 +Xi�2 + Ui; where E(UijXi) = 0 a.s.

� observe YLi & YUi; where YLi � Y �i � YUi

� inequalities:

E(�1 +Xi�2 � YLijXi) � 0 a.s.

E(YUi � �1 �Xi�2jXi) � 0 a.s.

� basecase: n = 250; r1 = 7; " = 5=100

� Ui � N(0; 1); Xi � U [0; 1]



� 0.1 sec for 2 tests using 5000 crit val reps
� CvM/Max/GMS/Asy & CvM/Max/PA/Asy



Table IV. Interval Outcome Regression Model: Basecase

(a) Coverage Probs
Stat: CvM CvM CvM KS KS KS

Crit. Sum QLR Max Sum QLR Max
Value:
PA/Asy .990 .993 .990 .989 .990 .989
GMS/Asy .950 .950 .950 .963 .963 .963

(b) False Coverage Probs

PA/Asy .62 .66 .61 .78 .80 .78
GMS/Asy .37 .37 .37 .61 .61 .61



Table VI. Interval Outcome Regression Model: Variations on the Basecase



(a) Coverage Probabilities
Statistic: CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy

Basecase (n = 250; r1 = 7; " = 5=100) .950 .963
n = 100 .949 .970
n = 500 .950 .956
n = 1000 .954 .955
r1 = 5 (30 cubes) .949 .961
r1 = 9 (90 cubes) .951 .965
r1 = 11 (132 cubes) .950 .968
(�n; Bn) = 1=2(�n;bc; Bn;bc) .944 .961
(�n; Bn) = 2(�n;bc; Bn;bc) .958 .973
" = 1=100 .946 .966

(�1; �2) = (1:0; 0:5) .999 .996
(�1; �2) = (1:5; 0:0) 1.000 .996

� = :5 .472 .481
� = :5 & n = 500 .478 .500



(b) False Cov Probs (CPcor)
Statistic: CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy

Basecase (n = 250; r1 = 7; " = 5=100) .37 .61
n = 100 .39 .66
n = 500 .37 .60
n = 1000 .37 .60
r1 = 5 (30 cubes) .37 .59
r1 = 9 (90 cubes) .37 .63
r1 = 11 (132 cubes) .38 .64
(�n; Bn) = 1=2(�n;bc; Bn;bc) .40 .62
(�n; Bn) = 2(�n;bc; Bn;bc) .39 .65
" = 1=100 .39 .69

(�1; �2) = (1:0; 0:5) .91 .92
(�1; �2) = (1:5; 0:0) .99 .97

� = :5 .03 .08
� = :5 & n = 500 .03 .07



Entry Game Model w/ Multiple Equilibria

� complete information simultaneous game (entry model)

� two players & n i.i.d. plays of the game

� consider Nash equilibria in pure strategies

� due to possibility of multiple equilibria, model is incomplete

� 2 cond�l moment ineq�s & 2 conditional moment equal�s arise

� Andrews, Berry, & Jia (2004), Beresteanu, Molchanov, & Molinari (2009),
Galichon & Henry (2009b), Ciliberto & Tamer (2009)



� player b�s utility/pro�ts are

X 0i;b� b + Ui;b if other player does not enter
X 0i;b� b � �b + Ui;b if other player enters

� �1 2 R indexes competitive e¤ect on player 1 of entry by player 2

� �2 likewise

� Ui;b � N(0; 1) is known to both players

� unobserved by econometrician

� econometrician observes Xi;1 2 R4; Xi;2 2 R4; Yi;1; & Yi;2
� Yi;b = 1 if player b enters & 0 otherwise for b = 1; 2

� unknown parameters: � = (�1; �2)0 2 [0;1)2; & � = (� 01; � 02)0 2 R8



� Xi;b = (1; Xi;b;2; Xi;b;3; X�i )0 2 R4

� Xi;b;2 �Bern(p); Xi;b;3 � N(0; 1); X�i � N(0; 1)

� equil�m selection rule (ESR) employed is maximum pro�t ESR

� unknown to econometrician

� i.e., if Yi could be either (1; 0) or (0; 1) in equil�m, then Yi = (1; 0)

if player 1�s monopoly pro�t exceeds that of player 2 & Yi = (0; 1)

otherwise

� provide some results for �player 1 �rst�ESR



� moment ineq. functions:

m1(Wi; �; �) = P (X 0i;1�1 + Ui;1 � 0; X 0i;2�2 � �2 + Ui;2 � 0jXi)
�1(Yi = (1; 0))

m2(Wi; �; �) = P (X 0i;1�1 � �1 + Ui;1 � 0; X 0i;2�2 + Ui;2 � 0jXi)
�1(Yi = (0; 1))

� 2 mom equalities ...

� model is identi�ed by (0; 0) & (1; 1) outcomes

� moment ineq�s provide additional info

� we estimate �1 & �2 given �

� use mom ineq�s with b�1n(�) & b�2n(�) plugged in



� use hypercubes in R2 for X 0i;1b�1n(�) & X 0i;2b�2n(�)
� transform variables to [0; 1]2

� transform so sample covariance = 0; then apply std normal cdf

� side-edge lenghts (2r)�1 for r = 1; :::; r1

� basecase: r1 = 3 yields 56 cubes
� also, r1 = 2 ) 20 cubes & r1 = 3 ) 120 cubes

� n = 500; also, 250 & 1000

� 0.24 sec for 2 tests using 5000 crit val reps
� CvM/Max/GMS/Asy & CvM/Max/PA/Asy



(a) Coverage Probs
Case Stat: CvM CvM CvM KS KS KS

Sum QLR Max Sum QLR Max
(�1; �2) = (0; 0) .979 .972 .980 .977 .975 .985
(�1; �2) = (1; 0) .961 .980 .965 .959 .983 .972
(�1; �2) = (1; 1) .961 .985 .961 .955 .985 .962
(�1; �2) = (2; 0) .935 .982 .935 .944 .984 .952
(�1; �2) = (2; 1) .943 .974 .940 .953 .987 .947
(�1; �2) = (3; 0) .921 .975 .915 .938 .935 .984
(�1; �2) = (2; 2) .928 .942 .913 .943 .972 .922

(b) False Coverage Probs (cov prob corrected)
(�1; �2) = (0; 0) .76 .99 .59 .91 .99 .83
(�1; �2) = (1; 0) .60 .99 .42 .83 .66 .99
(�1; �2) = (1; 1) .62 .96 .41 .82 .99 .58
(�1; �2) = (2; 0) .51 .83 .35 .66 .96 .47
(�1; �2) = (2; 1) .57 .57 .38 .69 .82 .44
(�1; �2) = (3; 0) .49 .41 .36 .61 .43 .64
(�1; �2) = (2; 2) .59 .34 .39 .65 .42 .49



(a) Coverage Probs (b) False Cov Probs
CvM/Max KS/Max CvM/Max KS/Max

Case GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Basecase (n = 500;
r1 = 3;" = 5=100) .961 .962 .41 .58

n = 250 .948 .963 .39 .56
n = 1000 .979 .968 .52 .65
r1 = 2 (20 cubes) .962 .956 .41 .55
r1 = 4 (120 cubes) .962 .964 .42 .59
(�n; Bn) = 1=2(�n;bc; Bn;bc) .954 .959 .39 .57
(�n; Bn) = 2(�n;bc; Bn;bc) .967 .962 .42 .58
" = 1=100 .926 .873 .32 .66

Reg�r Variances = 2 .964 .968 .54 .71
Reg�r Variances = 1/2 .963 .966 .29 .43
Player 1 First Eq Sel Rule .955 .957 .39 .57

� = :5 .610 .620 .05 .13
� = :5 & n = 1000 .695 .650 .06 .16



Many Moment Inequalities

� allow for in�nite # mom ineq�s by indexing mj(Wi; �) by t 2 T
� cond�l or uncond�l

� model is: 8t 2 T ;

EF (mj (Wi; �; t) jXi) � 0 a.s. [FX] 8j � pt

� can use same functions g 2 G & measure Q as above



� speci�y weight function QT on T

� test stat is

Tn(�) =
Z Z

S(n1=2mn(�; t; g);�n(�; t; g))dQ(g)dQT (t)

where

mn(�; t; g) = n
�1

nX
i=1

0B@ m1 (Wi; �; t) g1(Xi)
...

mp (Wi; �; t) gp(Xi)

1CA

� use emp�l process result for �n(t; g) = n1=2(mn(�; t; g)�EFmn(�; t; g))

� show analogous results as above hold for GMS tests & CS�s
� unif asy validity, etc.



� note: results for in�nite # mom ineq�s cover tests w/ no par �

� example 1. test of stoch dominance
� related work: Linton, Maasoumi, & Whang (2005), Linton, Song, &
Whang (2008)

� Y1;i � G1(�) & Y2;i � G2(�)
� H0 : G1(t)�G2(t) � 0; 8t 2 R (= T )
� take m(Wi; �; t) = 1(Y1;i � t)� 1(Y2;i � t)
� no � appears; no functions g(Xi) needed

� get uniformity results for CvM & KS tests



� example 2. test of stoch dominance of cond�l dist�ns
� related work: Lee & Whang (2008)

� Y1;ij(Xi = x) � G1(�jx) & Y2;ij(Xi = x) � G2(�jx)
� H0 : G1(t; x)�G2(t; x) � 0; 8t 2 R (= T ); 8x 2 Rdx

� take m(Wi; �; t) as above, use functions g 2 G



Summary

� provide methods to construct CS�s for parameters based on
cond�l mom ineq�s & equalites

� parameters need not be identi�ed

� CS�s based on CvM or KS-type statistics

� allow for truncation of 1 sums & simulation of integrals

� combine w/ generalized mom selection critical values



� establish uniform asy validity

� show CS shrinks to identi�ed set: no info loss

� show tests have power against some n�1=2-alternatives

� simulation results show CvM/Max w/ GMS crit val
performs well in terms of cov probs & false cov probs


