INFERENCE BASED ON CONDITIONAL MOMENT INEQUALITIES

Donald W. K. Andrews
Cowles Foundation
Yale University
Xiaoxia Shi
Department of Economics
University of Wisconsin

Introduction

- model:
- true value $\theta_{0}\left(\in \Theta \subset R^{d}\right)$ satisfies conditional moment inequalities $\& /$ or equalities:

$$
\begin{aligned}
& E_{F_{0}}\left(m_{j}\left(W_{i}, \theta_{0}\right) \mid X_{i}\right) \geq 0 \text { a.s. }\left[F_{X, 0}\right] \text { for } j=1, \ldots, p \\
& E_{F_{0}}\left(m_{j}\left(W_{i}, \theta_{0}\right) \mid X_{i}\right)=0 \text { a.s. }\left[F_{X, 0}\right] \text { for } j=p+1, \ldots, p+v \\
&-\left\{W_{i}: i \geq 1\right\} \text { are i.i.d. } \mathrm{w} / \text { dist'n } F_{0}
\end{aligned}
$$

- key feature: true value θ_{0} is not (necessarily) identified
- we are interested in confidence sets for θ_{0}
- for simplicity, all formulae below take $v=0$, i.e., no mom equalities
- some examples in econometrics:
- game theory models w/ multiple equilibria: using necessary conditions for Nash equilibria, e.g., see Ciliberto \& Tamer (2003), Andrews, Berry, \& Jia (2004), Pakes, Porter, Ho, \& Ishii (2004), \& Bajari, Benkard, \& Levin (2008)
- sufficient conditions for Nash equilibria, e.g., see Ciliberto \& Tamer (2003), Beresteanu \& Molinari (2008)
- data censoring, e.g., when continuous variable only observed to lie in interval, see Manski \& Tamer (2002)
- missing data, see Imbens \& Manski (2004)
- sign restrictions, see Moon \& Schorfheide (2006)
- other industrial organization examples, see Pakes, Porter, Ishii, \& Ho (2004) \& Eisenberg (2008)

Outline

- approach: transform cond'I moment inequalities/equalities into ∞ number of uncond'l ones
- do so w/ no loss of identification power
- construct CS's by inverting Cramér-von Mises-type or Kol-Smirn-type tests
- crit vals obtained by generalized moment selection (GMS), (estimated) least favorable dist'n, or subsampling
- GMS crit vals are preferred
- show CS's have correct uniform asy cov prob's
- new methods are required b/c ∞-dimensional nuisance parameter affects asy dist'ns
- show tests are consistent against all fixed alternatives
- show tests have power against some $n^{-1 / 2}$-local alternatives
- but not all such alternatives
- for computational purposes, extend results to allow truncated sums \& simulated integrals for CvM tests
- extend results to allow preliminary est'n of add'l parameters τ that are identified when true θ is known
- often arises w/ game theory models
- arises in one model considered in simulations
- simulation results for 3 models:
- quantile model w/ selection-quantile monotone IV
- interval outcome reg'n model
- entry game model w/ multiple equilibria
- simulation results yield suitable values for tuning parameters
- also, provide comparisons of different forms of test stats and crit vals
- summary of numerical work:
- size properties are excellent in many cases, pretty good in all cases
- CvM better than KS in terms of lower false cov probs
- in some models, choice between Sum, QLR, \& Max S function doesn't matter
* when it matters, Max performs best
- GMS crit vals better than least fav cv or subsampling in terms of false cov probs
- asy GMS \& bootstrap GMS crit vals perform fairly similarly
- sentivitivity to tuning parameters is relatively low in most cases
* quite low in many cases

Extensions

- separate paper 1: extend results to allow for ∞ number, or finite but large number, of cond'l or uncond'I moment inequalities/equalities
- allows one to cover complicated game theory models, tests of stochastic dominance, cond'l stoch dominance, cond'I treatment effects, ...
- separate paper 2: extend results to allow for nonparametric parameters of interest
- allows for nonpar reg'n or nonpar quantile reg'n w/ sel'n
- in both papers,
- obtain uniform asy size results
- no loss of information-power agst all fixed alternatives
- local power results

Related Literature

- most work in literature is on uncond'l mom ineq's
- e.g., Imbens \& Manski (2004), Moon \& Schorfheide (2006), Chernozhukov, Hong, \& Tamer (2007), Andrews \& Jia (2008), Beresteanu \& Molinari (2008), Romano \& Sheik (2008, 2010), Rosen (2008), Andrews \& Guggenberger (2009), Andrews \& Soares (2010), Bugni (2010), Canay (2010), Stoye (2010)
- cond'I mom ineq's can reduce size of identified set
- so, first-order difference between uncond'I \& cond'l mom ineq's
- different from situation w/ mom equalities
- re cond'I mom ineq's: Chernozhukov, Lee, \& Rosen (2008), Fan (2008), Kim (2008)
- many moment condn's: Menzel (2008)

Confidence Sets

- we are interested in confidence sets (CS's) for true value θ_{0}
- as opposed to CS for identified set
- we consider CS obtained by inverting test
- notation: nominal level $1-\alpha \mathrm{CS}$ for θ is

$$
C S_{n}=\left\{\theta \in \Theta: T_{n}(\theta) \leq c_{1-\alpha}(\theta)\right\}
$$

where $c_{1-\alpha}(\theta)$ is a data-dependent critical value

Estimation

- re estimation: use CS with $\alpha=.5$
- yields half-median unbiased est'r asy'ly in unif'm sense
- i.e., prob of including a bdy point of the identified set is $\geq .5$ asy'ly
- solves inward-bias problem
- circumvents need for somewhat arbitrary sequence $\varepsilon_{n} \downarrow 0$
- related to method in Chernozhukov, Lee, \& Rozen (2008)

Parameter Space

- uniform results require precise parameter space \mathcal{F} for $\left(\theta_{0}, F_{0}\right)$
- \mathcal{F} is collection of (θ, F) such that

$$
\begin{aligned}
& \text { (i) } \theta \in \Theta \subset R^{d} \\
& \text { (ii) }\left\{W_{i}: i \geq 1\right\} \text { are i.i.d. under } F \\
& \text { (iii) } E_{F}\left(m_{j}\left(W_{i}, \theta\right) \mid X_{i}\right) \geq 0 \text { a.s. }\left[F_{X}\right] \forall j \leq p \\
& \text { (iv) } 0<\operatorname{Var}_{F}\left(m_{j}\left(W_{i}, \theta\right)\right)<\infty \forall j \leq p \\
& \text { (v) } E_{F}\left|m_{j}\left(W_{i}, \theta\right) / \sigma_{F, j}(\theta)\right|^{2+\delta} \leq B \forall j \leq p
\end{aligned}
$$

for some $B<\infty \& \delta>0$

- identified set given F_{0} :

$$
\Theta_{F_{0}}=\left\{\theta:\left(\theta, F_{0}\right) \in \mathcal{F}\right\}
$$

Conditional \rightarrow Unconditional Moment Conditions

$$
\begin{equation*}
E_{F_{0}} m_{j}\left(W_{i}, \theta\right) g_{j}\left(X_{i}\right) \geq 0, \forall j \leq p \text { for } g=\left(g_{1}, \ldots, g_{p}\right)^{\prime} \in \mathcal{G} \tag{1}
\end{equation*}
$$

- where $g=\left(g_{1}, \ldots, g_{p}\right)^{\prime}$ are functions of X_{i}
$-\mathcal{G}$ is infinite
- identified set, $\Theta_{F_{0}}(\mathcal{G})$, defined by these uncond'I mom ineq's:
$\Theta_{F_{0}}(\mathcal{G})=\left\{\theta \in \Theta:(1)\right.$ holds $\&\left(\theta, F_{0}\right)$ satisfies (i), (ii), (iv), (v) of $\left.\mathcal{F}\right\}$
- choose \mathcal{G} so that $\Theta_{F_{0}}(\mathcal{G})=\Theta_{F_{0}}$

Class of Test Statistics

- notation:

$$
\bar{m}_{n}(\theta, g)=n^{-1} \sum_{i=1}^{n}\left(\begin{array}{c}
m_{1}\left(W_{i}, \theta\right) g_{1}\left(X_{i}\right) \\
m_{2}\left(W_{i}, \theta\right) g_{2}\left(X_{i}\right) \\
\vdots \\
m_{p}\left(W_{i}, \theta\right) g_{p}\left(X_{i}\right)
\end{array}\right) \text { for } g \in \mathcal{G}
$$

- sample variance-covariance matrix of $n^{1 / 2} \bar{m}_{n}(\theta, g)$:

$$
\widehat{\boldsymbol{\Sigma}}_{n}(\theta, g)=n^{-1} \sum_{i=1}^{n}\left(m\left(W_{i}, \theta, g\right)-\bar{m}_{n}(\theta, g)\right)\left(m\left(W_{i}, \theta, g\right)-\bar{m}_{n}(\theta, g)\right)^{\prime}
$$

- nonsingular adjustment:

$$
\bar{\Sigma}_{n}(\theta, g)=\hat{\Sigma}_{n}(\theta, g)+\varepsilon \cdot \operatorname{Diag}\left(\hat{\Sigma}_{n}\left(\theta, 1_{p}\right)\right)
$$

- in simulations, use $\varepsilon=5 / 100$
- Cramér-von Mises-type (CvM) statistic:

$$
T_{n}(\theta)=\int S\left(n^{1 / 2} \bar{m}_{n}(\theta, g), \bar{\Sigma}_{n}(\theta, g)\right) d Q(g)
$$

- S is non-negative function
- Q is a probability measure on \mathcal{G} (weight function)
- integral is over \mathcal{G}
- Kolmogorov-Smirnov-type (KS) statistic:

$$
T_{n}(\theta)=\sup _{g \in \mathcal{G}} S\left(n^{1 / 2} \bar{m}_{n}(\theta, g), \bar{\Sigma}_{n}(\theta, g)\right)
$$

- Examples: Sum test function

$$
S_{1}(m, \Sigma)=\sum_{j=1}^{p}\left[m_{j} / \sigma_{j}\right]_{-}^{2}
$$

QLR test function

$$
S_{2}(m, \Sigma)=\inf _{t \in R_{+}^{p}}(m-t)^{\prime} \Sigma^{-1}(m-t)
$$

Max test function

$$
S_{3}(m, \Sigma)=\max \left\{\left[m_{1} / \sigma_{1}\right]_{-}^{2}, \ldots,\left[m_{p} / \sigma_{p}\right]_{-}^{2}\right\}
$$

S Function

(a) $S(m, \Sigma)$ is non-increasing in m
(b) $S(m, \Sigma)=S(D m, D \Sigma D) \forall p d$ diagonal $D \in R^{p \times p}$
(c) $S\left(m, \boldsymbol{\Sigma}+\boldsymbol{\Sigma}_{1}\right) \leq S(m, \boldsymbol{\Sigma}) \forall p \times p$ psd matrices Σ_{1}
(d) $S(a m, \Sigma)=a^{\chi} S(m, \boldsymbol{\Sigma})$ for some $\chi>0, \forall$ scalars $a>0, \forall m, \& \forall \Sigma$
(e) $S(m, \Omega) \geq 0$
(f) $S(m, \Omega)>0$ iff $m_{j}<0$ for some $j \leq p$
(g) $S(m, \Sigma)$ is uniformly continuous

Collection \mathcal{G}

- \mathcal{G} must satisfy 2 assumptions
- given (θ, F), let

$$
\mathcal{X}_{F}(\theta)=\left\{x \in R^{d_{x}}: E_{F}\left(m_{j}\left(W_{i}, \theta\right) \mid X_{i}=x\right)<0 \text { for some } j \leq p\right\}
$$

- Assumption CI. For any $\theta \in \Theta \& F$ for which $P_{F}\left(X_{i} \in \mathcal{X}_{F}(\theta)\right)>0$ $\& E_{F}\left\|m\left(W_{i}, \theta\right)\right\|<\infty$, there exists $g \in \mathcal{G}$ such that

$$
E_{F} m_{j}\left(W_{i}, \theta\right) g_{j}\left(X_{i}\right)<0 \text { for some } j \leq p
$$

- note (θ, F) are not in \mathcal{F}
- simple result: Assumption Cl implies $\Theta_{F}(\mathcal{G})=\Theta_{F}$ for all F $\mathrm{w} / \sup _{\theta \in \Theta} E_{F}\left\|m\left(W_{i}, \theta\right)\right\|<\infty$
- use "manageability" condition, Assumption M, on stoc processes $\left\{g\left(X_{n, i}\right): g \in \mathcal{G}, i \leq n, n \geq 1\right\}$
- from Pollard (1990)
- regulates complexity of \mathcal{G}
- ensures that $\left\{n^{1 / 2}\left(\bar{m}_{n}(\theta, g)-E_{F_{n}} \bar{m}_{n}(\theta, g)\right): g \in \mathcal{G}\right\}$ satisfies FCLT under drifting sequences $\left\{F_{n}: n \geq 1\right\}$

Collections \mathcal{G} that satisfy Assumptions CI \& M

- Example 1. (Countable Hypercubes).
- transform regr's to $[0,1]^{d_{x}}$
- let

$$
\mathcal{G}_{c-\text { cube }}=\left\{g(x): g(x)=1(x \in C) \cdot 1_{p} \text { for } C \in \mathcal{C}_{C-\text { cube }}\right\}
$$

$-\mathcal{C}_{c \text {-cube }}$ contains cubes in $[0,1]^{d_{x}}$ with side-lengths $(2 r)^{-1}$ for integers $r=r_{0}, r_{0}+1, \ldots$

- this class is countable \& countable center points
- Example 2 (Uncountable Boxes).
- Example 3 (Data-dependent Boxes).
- Example 4. (B-splines \& Finite-Support Kernels).
- Example 5. (Continuous/Discrete Regressors)
- Result: Assumptions Cl and M hold for $\mathcal{G}_{c-c u b e}, \mathcal{G}_{b o x}, \mathcal{G}_{b o x, d d}, \mathcal{G}_{B \text {-spline }}$, and $\mathcal{G}_{c / d}$

Weight Function Q

- for test to have power against all fixed alternatives, Q cannot "ignore" any elements $g \in \mathcal{G}$
- let ρ_{X} be L^{2} pseudo-metric on \mathcal{G} :

$$
\rho_{X}\left(g, g^{*}\right)=\left(E_{F_{X, 0}}\left\|g\left(X_{i}\right)-g^{*}\left(X_{i}\right)\right\|^{2}\right)^{1 / 2} \text { for } g, g^{*} \in \mathcal{G}
$$

where $F_{X, 0}$ is distribution of X_{i} under F_{0}

- Assumption Q. Support of Q under pseudo-metric ρ_{X} contains \mathcal{G}. I.e., $\forall \delta>0, Q\left(\mathcal{B}_{\rho_{X}}(g, \delta)\right)>0 \forall g \in \mathcal{G}$.
- Q for $\mathcal{G}_{\mathrm{c} \text {-cube }}$
$-\exists 1$-1 mapping $\Pi_{c \text {-cube }}: \mathcal{G}_{\text {c-cube }} \rightarrow A R=\left\{(a, r) \in\{1, \ldots, 2 r\}^{d_{x}} \times\right.$ $\left.\left\{r_{0}, r_{0}+1, \ldots\right\}\right\}$
- let $Q_{A R}$ be a probability measure on $A R \mathrm{w} /$ full support
- e.g., uniform on $a \in\{1, \ldots, 2 r\}^{d_{x}} \&$ dist' n for r with $\operatorname{pmf}\{w(r)$: $\left.r=r_{0}, r_{0}+1, \ldots\right\}$
- simulations use $w(r)=\left(r^{2}+100\right)^{-1}$
- then, $Q=\Pi_{c \text {-cube }}^{-1} Q^{*}$ is probability measure on $\mathcal{G}_{c \text {-cube }}$
- for \mathbf{Q} for $\mathcal{G}_{\mathbf{c} \text {-cube }}$, test statistic is

$$
T_{n}(\theta)=\sum_{r=r_{0}}^{\infty} w(r) \sum_{a \in\{1, \ldots, 2 r\}^{d_{x}}}(2 r)^{-d_{x}} S\left(n^{1 / 2} \bar{m}_{n}\left(\theta, g_{a, r}\right), \bar{\Sigma}_{n}\left(\theta, g_{a, r}\right)\right)
$$

where $g_{a, r}(x)=1\left(x \in C_{a, r}\right) \cdot 1_{k}$ for $C_{a, r} \in \mathcal{C}_{c \text {-cube }}$

Computation

- test statistic $T_{n}(\theta)$ involves ∞ sum or integral wrt Q
- analogous ∞ sum or integral appear in defn's of crit vals
- can't compute them exactly
- ∞ sums can be approx'd by truncation \& integrals by simulation or quasi-Monte Carlo methods
- approx test stat for count hyper-cubes:

$$
\begin{aligned}
& \bar{T}_{n}(\theta)=\sum_{r=r_{0}}^{s_{n}} w(r) \sum_{a \in\{1, \ldots, 2 r\} d_{x}}(2 r)^{-d_{x}} S\left(n^{1 / 2} \bar{m}_{n}\left(\theta, g_{a, r}\right), \bar{\Sigma}_{n}\left(\theta, g_{a, r}\right)\right) \\
& \text { where } g_{a, r}(x)=1\left(x \in C_{a, r}\right) \cdot 1_{k} \text { for } C_{a, r} \in \mathcal{C}_{c-c u b e}
\end{aligned}
$$

- for simulated test stat, let $\left\{g_{1}, \ldots, g_{s_{n}}\right\}$ be s_{n} i.i.d. functions drawn from \mathcal{G} according to the distribution Q
- simulated test statistic is

$$
\widehat{T}_{n, s_{n}}(\theta)=s_{n}^{-1} \sum_{\ell=1}^{s_{n}} S\left(n^{1 / 2} \bar{m}_{n}\left(\theta, g_{\ell}\right), \bar{\Sigma}_{n}\left(\theta, g_{\ell}\right)\right)
$$

- we show if $s_{n} \rightarrow \infty$ as $n \rightarrow \infty$ uniform asymptotic validity of tests \& CS's hold
- main issue is uniformity
- asymptotic power results under fixed alternatives hold
- most results under $n^{-1 / 2}$-local alternatives hold

Pointwise Vs Uniform Asymptotics

- asy distn's of $T_{n}(\theta)$ are discont. in F
- due to mom. ineq. slackness function
- get different pointwise asy dist'n depending on

$$
n^{1 / 2} E_{F} m_{j}\left(W_{i}, \theta\right) g\left(X_{i}\right) \begin{cases}=0 \forall n & \text { if } E_{F} m_{j}\left(W_{i}, \theta\right) g\left(X_{i}\right)=0 \\ \rightarrow \infty & \text { if } E_{F} m_{j}\left(W_{i}, \theta\right) g\left(X_{i}\right)>0\end{cases}
$$

- this does not reflect finite-sample situation
* no discont'y in finite samples
- pointwise asy dist'ns do not capture finite-sample behavior
- effect of asy discont'y greater w/ cond'l mom ineq's than uncond'l mom. ineq.s
- in several respects
- e.g., if cond'l mean function $\left.\mu_{j}(x, \theta)=E_{F} m_{j}\left(W_{i}, \theta\right) \mid X_{i}=x\right)$ is cont. in x, then at bdy pts θ there are always points x for which $\mu_{j}(x, \theta)$ is positive, but arbitrarily close to 0
- so, there is always a uniformity issue
- second, we want to show:

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \inf _{(\theta, F) \in \mathcal{F}} P_{F}\left(\theta \in C S_{n}\right)=1-\alpha \tag{2}
\end{equation*}
$$

- with finite \# of uncond'l mom. ineq.s, it is sufficient to consider certain seq.s of drifting dist'ns, see Andrews \& Guggenberger (2009) or Andrews, Cheng, \& Guggenberger (2009)
- w/ cond'l mom ineq.s, this is not sufficient
- b/c ∞ dim'l nuisance par affects asy dist'n
- different method is required to show (2)

Uniform Asymptotic Distribution of $\mathrm{T}_{\mathrm{n}}(\boldsymbol{\theta})$

- let

$$
\begin{aligned}
\nu_{n, F}(\theta, g) & =n^{1 / 2}\left[\bar{m}_{n}(\theta, g)-E_{F} m\left(W_{i}, \theta, g\right)\right] \\
h_{1, n, F}(\theta, g) & =n^{1 / 2} E_{F} m\left(W_{i}, \theta, g\right) \\
h_{2, F}(\theta, \cdot \cdot) & =\operatorname{CovKernel} \text { of } \nu_{n, F}(\theta, \cdot) \text { under } F
\end{aligned}
$$

- $h_{1, n, F}(\cdot)$ is function from \mathcal{G} to R_{+}^{p} that depends on slackness of moment inequalities \& n
- let $h_{n, F}(\theta, \cdot)=\left(h_{1, n, F}(\cdot), h_{2, F}(\theta, \cdot \cdot)\right)^{\prime}$
- write test stat as

$$
\begin{aligned}
T_{n}(\theta) & =\int S\left(n^{1 / 2} \bar{m}_{n}(\theta, g), \bar{\Sigma}_{n}(\theta, g)\right) d Q(g) \\
& =\int S\left(\nu_{n, F}(\theta, g)+h_{1, n, F}(\theta, g), h_{2, F}(\theta, g, g)+\varepsilon I_{p}+o_{p}(1)\right) d Q(g)
\end{aligned}
$$

- let $\left\{\nu_{h_{2}}(g): g \in \mathcal{G}\right\}$ be mean zero R^{p}-valued Gaussian process with cov kernel $h_{2}(\cdot, \cdot)$ on $\mathcal{G} \times \mathcal{G}$
- let \mathcal{H}_{2} be parameter space for $h_{2}(\cdot, \cdot)$ in model given \mathcal{F}
- let $h_{1}(\cdot)$ be any function from \mathcal{G} to $R_{+, \infty}^{p}$
- for $h=\left(h_{1}, h_{2}\right)$, let

$$
T(h)=\int S\left(\nu_{h_{2}}(g)+h_{1}(g), h_{2}(g, g)+\varepsilon I_{k}\right) d Q(g)
$$

- Result: Under Assumptions M \& S, \forall compact subsets $\mathcal{H}_{2, \text { cpt }}$ of \mathcal{H}_{2}, \forall constants $x_{h_{n, F}(\theta)} \in R$ that may depend on $h_{n, F}(\theta), \& \forall \delta>0$,

$$
\lim _{n \rightarrow \infty} \sup _{\substack{(\theta, F) \in \mathcal{F}: \\ h_{2, F}(\theta) \in \mathcal{H}_{2, c p t}}}\left[P_{F}\left(T_{n}(\theta)>x_{h_{n, F}(\theta)}\right)-P\left(T\left(h_{n, F}(\theta)\right)+\delta>x_{h_{n, F}(\theta)}\right)\right] \leq 0
$$

$\liminf _{n \rightarrow \infty} \inf _{\substack{(\theta, F) \in \mathcal{F}: \\ h_{2, F}(\theta) \in \mathcal{H}_{2, c p t}}}\left[P_{F}\left(T_{n}(\theta)>x_{h_{n, F}(\theta)}\right)-P\left(T\left(h_{n, F}(\theta)\right)-\delta>x_{h_{n, F}(\theta)}\right)\right] \geq 0$

Critical Values

- denote $1-\alpha$ quantile of $T\left(h_{n, F}(\theta)\right)$ by

$$
c_{0}\left(h_{1, n, F}(\theta), h_{2, F}(\theta), 1-\alpha\right)
$$

- $h_{1, n, F}(\theta) \& h_{2, F}(\theta)$ are not known
- replace $h_{2, F}(\theta)$ by uniformly consistent estimator $\widehat{h}_{2, n}(\theta)\left(=\widehat{h}_{2, n}(\theta, \cdot, \cdot)\right)$
- $h_{1, n, F}(\theta)\left(=h_{1, n, F}(\theta, \cdot)\right)$ cannot be consistently estimated
- can replace $h_{1, n, F}(\theta)$ by zero function, $0_{\mathcal{G}}$, on \mathcal{G}
- least-favorable choice
- or worse than least favorable
- poor power properties
- subsampling crit vals
- usual definition
- for uncond'l mom ineq's, Bugni (2010) \& Andrews \& Soares (2010) show that subsampling is dominated by generalized moment selection (GMS) crit values re asy size \& power
- focus on generalized moment selection (GMS) crit vals

GMS Crit Values

- replace $h_{1, n, F}(\theta)$ by data-dependent function $\varphi_{n}(\theta)\left(=\varphi_{n}(\theta, \cdot)\right)$ on \mathcal{G}
- $\varphi_{n}(\theta, g)$ is constructed to be $\leq h_{1, n}(\theta, g) \forall g \in \mathcal{G}$ w/prob $\rightarrow 1$
- GMS crit val is

$$
c_{0}\left(\varphi_{n}(\theta), \widehat{h}_{2, n}(\theta), 1-\alpha+\eta\right)+\eta
$$

for infinitessimal uniformity factor $\eta>0$

- bootstrap version: replace estimated Gaussian process $\nu_{\widehat{h}_{2, n}(\theta)}(\cdot)$ by bootstrap emp'l process $\nu_{n}^{*}(\cdot) \&$ replace estimated variance process $\widehat{h}_{2, n}(\theta)$ by bootstrap version
- no higher-order improvements-test stat not asy'ly pivotal
- definition of $\varphi_{n}(\theta, g)$:
- measure of slackness of mom. ineq.:

$$
\begin{gathered}
\xi_{n}(\theta, g)=\kappa_{n}^{-1} \widehat{D}_{n}^{-1 / 2}(\theta) n^{1 / 2} \bar{m}_{n}(\theta, g) \\
\varphi_{n, j}(\theta, g)=\left\{\begin{array}{cc}
B_{n} & \text { if } \xi_{n, j}(\theta, g)>1 \\
0 & \text { if } \xi_{n, j}(\theta, g) \leq 1
\end{array}\right.
\end{gathered}
$$

- not "pure" moment selection b/c $B_{n}<\infty$
- Assumption GMS. $\kappa_{n}-\zeta B_{n} \rightarrow \infty$ as $n \rightarrow \infty$ for some $\zeta>1$
- in simulations, use $\kappa_{n}=(0.3 \ln (n))^{1 / 2} \& B_{n}=(0.4 \ln (n) / \ln \ln (n))^{1 / 2}$

Uniform Asymptotic Coverage Probability Results

- Main Result: Under Assumptions M, S, \& GMS, \forall compact subset $\mathcal{H}_{2, c p t}$ of \mathcal{H}_{2}, GMS confidence sets $C S_{n}$ satisfy
(a) $\liminf _{n \rightarrow \infty} \inf _{\substack{(\theta, F) \in \mathcal{F}: \\ h_{2, F}(\theta) \in \mathcal{H}_{2, c p t}}} P_{F}\left(\theta \in C S_{n}\right) \geq 1-\alpha$
(b) if Assumption GMS2 also holds,

$$
\lim _{\eta \rightarrow 0} \liminf _{n \rightarrow \infty} \inf _{\substack{(\theta, F) \in \mathcal{F}: \\ h_{2, F}(\theta) \in \mathcal{H}_{2, c p t}}} P_{F}\left(\theta \in C S_{n}\right)=1-\alpha
$$

Asymptotic Power Against Fixed Alternatives

- show that power of GMS tests against "all" fixed alternatives $\rightarrow 1$ as $n \rightarrow \infty$
- this implies that given fixed true $F_{0} \&$ any θ_{*} not in identified set $\Theta_{F_{0}}$, GMS CS's do not include θ_{*} with prob $\rightarrow 1$
- here is where Assumptions $\mathrm{Cl}(\mathrm{re} \mathcal{G}) \& \mathrm{Q}$ (re weight measure) are used

Asymptotic Local Power

- show GMS tests have power against some, but not all, $n^{-1 / 2}$-local alternatives
- depends on seq. $\left\{\left(\theta_{n}, F_{n}\right) \in \mathcal{F}: n \geq 1\right\}$ from which perturbations are taken
- where θ_{n} is true par value

Assumption LA1.
(a) $\theta_{n, *}=\theta_{n}+\lambda n^{-1 / 2}(1+o(1))$ for some $\lambda \in R^{d_{\theta}}, \theta_{n, *} \rightarrow \theta_{0}, \& F_{n} \rightarrow F_{0}$ for some $\left(\theta_{0}, F_{0}\right) \in \mathcal{F}$
(b) $n^{1 / 2} E_{F_{n}} m_{j}\left(W_{i}, \theta_{n}, g\right) / \sigma_{F_{n}, j}\left(\theta_{n}\right) \rightarrow h_{1, j}(g)$ for some $h_{1, j}(g) \in R_{+, \infty}$ $\forall j \leq p \& g \in \mathcal{G}$

Assumption LA2. The $p \times d$ matrix $\Pi_{F}(\theta, g)=\left(\partial / \partial \theta^{\prime}\right)\left[D_{F}^{-1 / 2}(\theta) E_{F} m\left(W_{i}, \theta, g\right)\right]$ exists \& is cont. in nghd of $\left(\theta_{0}, F_{0}\right) \forall g \in \mathcal{G}$

- for KS test:

Assumption LA3.
For some $g \in \mathcal{G}, h_{1, j}(g)<\infty \& \Pi_{0, j}(g)^{\prime} \lambda<0$ for some $j \leq p$

- for CvM test:

Assumption LA3'.
$Q\left(\left\{g \in \mathcal{G}: h_{1, j}(g)<\infty \& \Pi_{0, j}(g)^{\prime} \lambda<0\right.\right.$ for some $\left.j \leq p\right)>0$
Result: Suppose $\lambda=\beta \lambda_{0}$ for $\beta \in R \& \lambda_{0} \in R^{d}$ fixed, then $\lim _{\beta \rightarrow \infty} \lim _{n \rightarrow \infty} \operatorname{Power}_{n, \beta}(G M S$ test $)=1$

Simulation Results

- 3 models: quantile sel'n, interval outcome reg'n, entry game
- quantile sel'n model:
- conditional τ-quantile of a treatment response given value of covariate X_{i}
- use quantile monotone instrumental variable (QMIV) condition
- variant of Manski and Pepper's (2000) Monotone Instrumental Variable (MIV) condition
- bounds on quantiles: Manski (1994), Lee \& Melenberg (1998), \& Blundell, Gosling, Ichimura, \& Meghir (2007)
- model set-up is quite similar to that in Manski and Pepper (2000)
- obs are i.i.d. for $i=1, \ldots, n$
- $y_{i}(t)$ is individual i 's "conjectured" response given treatment $t \in \mathcal{T}$
- T_{i} is realization of treatment for individual i
- observed outcome variable is $Y_{i}=y_{i}\left(T_{i}\right)$
- X_{i} is a covariate
- $\theta=$ cond'l τ-quantile of $y_{i}\left(t_{0}\right)$ given $X_{i}=x_{0}$ for some $t_{0} \in \mathcal{T} \& x_{0}$
- denoted $\theta=Q_{y_{i}\left(t_{0}\right) \mid X_{i}}\left(\tau \mid x_{0}\right)$
- examples: (i) $y_{i}(t)$ is conjectured wages of individual i for t years of schooling
- T_{i} is realized years of schooling
- X_{i} is measured ability or wealth
- (ii) $y_{i}(t)$ is conjectured wages when individual i is employed, say $t=1$
- X_{i} is measured ability or wealth
- selection occurs due to elastic labor supply
- (iii) $y_{i}(t)$ is some health response of individual i given treatment t
- T_{i} is the realized treatment-non-randomized or randomized but subj to imperfect compliance
- X_{i} is some characteristic of individual i, such as weight, blood pressure
- quantile monotone IV assumption is:

Assumption QMIV. If $x_{1} \leq x_{2}$,

$$
Q_{y_{i}(t) \mid X_{i}}\left(\tau \mid x_{1}\right) \leq Q_{y_{i}(t) \mid X_{i}}\left(\tau \mid x_{2}\right)
$$

- for Monte Carlo simulations, DGP:

$$
\begin{aligned}
y_{i}(1) & =\mu\left(X_{i}\right)+\sigma\left(X_{i}\right) u_{i}, \text { where } \partial \mu(x) / \partial x \geq 0 \text { and } \sigma(x) \geq 0 \\
T_{i} & =1\left\{\varphi\left(X_{i}\right)+\varepsilon_{i} \geq 0\right\}, \text { where } \partial \varphi(x) / \partial x \geq 0 \\
X_{i} & \sim U n i f[0,2], \quad\left(\varepsilon_{i}, u_{i}\right) \sim N\left(0, I_{2}\right), X_{i} \perp\left(\varepsilon_{i}, u_{i}\right) \\
Y_{i} & =y_{i}\left(T_{i}\right), \& t=1
\end{aligned}
$$

- consider the median, $\tau=0.5, \& x_{0}=1.5$
- conditional moment inequalities:

$$
\begin{aligned}
& \theta \geq \underline{\theta}(x)=\mu(x)+\sigma(x) \Phi^{-1}\left(1-[2 \Phi(\varphi(x))]^{-1}\right), \forall x \leq 1.5 \\
& \theta \leq \bar{\theta}(x)=\mu(x)+\sigma(x) \Phi^{-1}\left([2 \Phi(\varphi(x))]^{-1}\right), \forall x \geq 1.5
\end{aligned}
$$

- identified set for quantile selection model:

$$
\left[\sup _{x \leq x_{0}} \underline{\theta}(x), \inf _{x \geq x_{0}} \bar{\theta}(x)\right]
$$

- shape of lower \& upper bound functions depends on the shape of φ, μ, and σ functions
- consider 2 specifications: flat bd functions \& kinky bd function
- 0.1 sec for 2 tests using 5000 crit val reps
- CvM/Max/GMS/Asy \& CvM/Max/PA/Asy

Table I. Quantile Selection Model: Basecase Comparisons

(a) Cov Probs

	Statistic:	CvM/	CvM/	CvM/	KS/	KS/	KS/
		Sum	QLR	Max	Sum	QLR	Max
DGP	Crit Val						
Flat Bd	PA/Asy	.979	.979	.976	.972	.972	.970
	GMS/Asy	.953	.953	.951	.963	.963	.960

Kinky Bd	PA/Asy	.999	.999	.999	.994	.994	.994
	GMS/Asy	.983	.983	.983	.985	.985	.984

(b) False Cov Probs

Flat Bd	PA/Asy	.51	.50	.48	.68	.67	.66
	GMS/Asy	.37	.37	.37	.60	.60	.59
Kinky Bd	PA/Asy		.65	.65	.62	.68	.68
	GMS/Asy	.35	.35	.34	.53	.53	.52

Table II. Quantile Selection Model w/ Flat Bound: Variations on Basecase

Statistic: Case Crit Val:	(a) Cov Prob's CvM/Max GMS/Asy	(b) FCP's (CP cor) CvM/Max GMS/Asy
Basecase ($n=250, r_{1}=7$)	. 951	. 37
$n=100$. 957	. 40
$n=500$. 954	. 36
$n=1000$. 948	. 34
$r_{1}=5$. 949	. 36
$r_{1}=9$. 951	. 37
$r_{1}=11$. 951	. 37
$\left(\kappa_{n}, B_{n}\right)=1 / 2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 948	. 38
$\left(\kappa_{n}, B_{n}\right)=2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 967	. 38
$\varepsilon=1 / 100$. 949	. 37
$\alpha=.5$. 518	. 03
$\alpha=.5 \& n=500$. 513	. 03

Interval Outcome Regression Model

- Manski \& Tamer (2002)
- $Y_{i}^{*}=\theta_{1}+X_{i} \theta_{2}+U_{i}$, where $E\left(U_{i} \mid X_{i}\right)=0$ a.s.
- observe $Y_{L i} \& Y_{U i}$, where $Y_{L i} \leq Y_{i}^{*} \leq Y_{U i}$
- inequalities:

$$
\begin{aligned}
E\left(\theta_{1}+X_{i} \theta_{2}-Y_{L i} \mid X_{i}\right) & \geq 0 \text { a.s. } \\
E\left(Y_{U i}-\theta_{1}-X_{i} \theta_{2} \mid X_{i}\right) & \geq 0 \text { a.s. }
\end{aligned}
$$

- basecase: $n=250, r_{1}=7, \varepsilon=5 / 100$
- $U_{i} \sim N(0,1), X_{i} \sim U[0,1]$
- 0.1 sec for 2 tests using 5000 crit val reps
- CvM/Max/GMS/Asy \& CvM/Max/PA/Asy

Table IV. Interval Outcome Regression Model: Basecase

(a) Coverage Probs							
	Stat:	CvM	CvM	CvM	KS	KS	KS
Crit.	Sum	QLR	Max	Sum	QLR	Max	
Value:							
PA/Asy		.990	.993	.990	.989	.990	.989
GMS/Asy		.950	.950	.950	.963	.963	.963
		b) False Coverage Probs					
PA/Asy	.62	.66	.61	.78	.80	.78	
GMS/Asy	.37	.37	.37	.61	.61	.61	

Table VI. Interval Outcome Regression Model: Variations on the Basecase

Case	Statistic: Crit Val:	(a) Coverage Probabilities	
		CvM/Max GMS/Asy	$\begin{aligned} & \text { KS/Max } \\ & \text { GMS/Asy } \end{aligned}$
Basecase ($n=250, r_{1}=7$,	$\varepsilon=5 / 100)$	950	. 963
$n=100$. 949	. 970
$n=500$. 950	. 956
$n=1000$. 954	. 955
$r_{1}=5$ (30 cubes)		. 949	. 961
$r_{1}=9$ (90 cubes)		. 951	. 965
$r_{1}=11$ (132 cubes)		. 950	. 968
$\left(\kappa_{n}, B_{n}\right)=1 / 2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 944	. 961
$\left(\kappa_{n}, B_{n}\right)=2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 958	. 973
$\varepsilon=1 / 100$. 946	. 966
$\left(\theta_{1}, \theta_{2}\right)=(1.0,0.5)$. 999	. 996
$\left(\theta_{1}, \theta_{2}\right)=(1.5,0.0)$		1.000	. 996
$\alpha=.5$. 472	. 481
$\alpha=.5 \& n=500$. 478	. 500

Case	Statistic: Crit Val:	(b) False Cov Probs (CPcor)	
		CvM/Max GMS/Asy	$\begin{aligned} & \text { KS/Max } \\ & \text { GMS/Asy } \end{aligned}$
Basecase ($n=250, r_{1}=7$,	$\varepsilon=5 / 100)$. 37	. 61
$n=100$. 39	. 66
$n=500$. 37	. 60
$n=1000$. 37	. 60
$r_{1}=5$ (30 cubes)		. 37	. 59
$r_{1}=9$ (90 cubes)		. 37	. 63
$r_{1}=11$ (132 cubes)		. 38	. 64
$\left(\kappa_{n}, B_{n}\right)=1 / 2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 40	. 62
$\left(\kappa_{n}, B_{n}\right)=2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 39	. 65
$\varepsilon=1 / 100$. 39	. 69
$\left(\theta_{1}, \theta_{2}\right)=(1.0,0.5)$. 91	. 92
$\left(\theta_{1}, \theta_{2}\right)=(1.5,0.0)$. 99	. 97
$\alpha=.5$. 03	. 08
$\alpha=.5 \& n=500$. 03	. 07

Entry Game Model w/ Multiple Equilibria

- complete information simultaneous game (entry model)
- two players \& n i.i.d. plays of the game
- consider Nash equilibria in pure strategies
- due to possibility of multiple equilibria, model is incomplete
- 2 cond'l moment ineq's \& 2 conditional moment equal's arise
- Andrews, Berry, \& Jia (2004), Beresteanu, Molchanov, \& Molinari (2009), Galichon \& Henry (2009b), Ciliberto \& Tamer (2009)
- player b's utility/profits are

$$
\begin{aligned}
& X_{i, b}^{\prime} \tau_{b}+U_{i, b} \text { if other player does not enter } \\
& X_{i, b}^{\prime} \tau_{b}-\theta_{b}+U_{i, b} \text { if other player enters }
\end{aligned}
$$

- $\theta_{1} \in R$ indexes competitive effect on player 1 of entry by player 2
- θ_{2} likewise
- $U_{i, b} \sim N(0,1)$ is known to both players
- unobserved by econometrician
- econometrician observes $X_{i, 1} \in R^{4}, X_{i, 2} \in R^{4}, Y_{i, 1}, \& Y_{i, 2}$
$-Y_{i, b}=1$ if player b enters \& 0 otherwise for $b=1,2$
- unknown parameters: $\theta=\left(\theta_{1}, \theta_{2}\right)^{\prime} \in[0, \infty)^{2}, \& \tau=\left(\tau_{1}^{\prime}, \tau_{2}^{\prime}\right)^{\prime} \in R^{8}$
- $X_{i, b}=\left(1, X_{i, b, 2}, X_{i, b, 3}, X_{i}^{*}\right)^{\prime} \in R^{4}$
- $X_{i, b, 2} \sim \operatorname{Bern}(p), X_{i, b, 3} \sim N(0,1), X_{i}^{*} \sim N(0,1)$
- equil'm selection rule (ESR) employed is maximum profit ESR
- unknown to econometrician
- i.e., if Y_{i} could be either $(1,0)$ or $(0,1)$ in equil'm, then $Y_{i}=(1,0)$ if player 1 's monopoly profit exceeds that of player $2 \& Y_{i}=(0,1)$ otherwise
- provide some results for "player 1 first" ESR
- moment ineq. functions:

$$
\begin{aligned}
m_{1}\left(W_{i}, \theta, \tau\right)= & P\left(X_{i, 1}^{\prime} \tau_{1}+U_{i, 1} \geq 0, X_{i, 2}^{\prime} \tau_{2}-\theta_{2}+U_{i, 2} \leq 0 \mid X_{i}\right) \\
& -1\left(Y_{i}=(1,0)\right) \\
m_{2}\left(W_{i}, \theta, \tau\right)= & P\left(X_{i, 1}^{\prime} \tau_{1}-\theta_{1}+U_{i, 1} \leq 0, X_{i, 2}^{\prime} \tau_{2}+U_{i, 2} \geq 0 \mid X_{i}\right) \\
& -1\left(Y_{i}=(0,1)\right)
\end{aligned}
$$

- 2 mom equalities ...
- model is identified by $(0,0) \&(1,1)$ outcomes
- moment ineq's provide additional info
- we estimate $\tau_{1} \& \tau_{2}$ given θ
- use mom ineq's with $\widehat{\tau}_{1 n}(\theta) \& \widehat{\tau}_{2 n}(\theta)$ plugged in
- use hypercubes in R^{2} for $X_{i, 1}^{\prime} \widehat{\tau}_{1 n}(\theta) \& X_{i, 2}^{\prime} \widehat{\tau}_{2 n}(\theta)$
- transform variables to $[0,1]^{2}$
- transform so sample covariance $=0$, then apply std normal cdf
- side-edge lenghts $(2 r)^{-1}$ for $r=1, \ldots, r_{1}$
- basecase: $r_{1}=3$ yields 56 cubes
- also, $r_{1}=2 \Rightarrow 20$ cubes $\& r_{1}=3 \Rightarrow 120$ cubes
- $n=500 ;$ also, $250 \& 1000$
- 0.24 sec for 2 tests using 5000 crit val reps
- CvM/Max/GMS/Asy \& CvM/Max/PA/Asy
(a) Coverage Probs

Case	Stat:	CvM	CvM	CvM	KS	KS
KS						
	Sum	QLR	Max	Sum	QLR	Max
$\left(\theta_{1}, \theta_{2}\right)=(0,0)$.979	.972	.980	.977	.975	.985
$\left(\theta_{1}, \theta_{2}\right)=(1,0)$.961	.980	.965	.959	.983	.972
$\left(\theta_{1}, \theta_{2}\right)=(1,1)$.961	.985	.961	.955	.985	.962
$\left(\theta_{1}, \theta_{2}\right)=(2,0)$.935	.982	.935	.944	.984	.952
$\left(\theta_{1}, \theta_{2}\right)=(2,1)$.943	.974	.940	.953	.987	.947
$\left(\theta_{1}, \theta_{2}\right)=(3,0)$.921	.975	.915	.938	.935	.984
$\left(\theta_{1}, \theta_{2}\right)=(2,2)$.928	.942	.913	.943	.972	.922

(b) False Coverage Probs (cov prob corrected)

$\left(\theta_{1}, \theta_{2}\right)=(0,0)$.76	.99	.59	.91	.99	.83
$\left(\theta_{1}, \theta_{2}\right)=(1,0)$.60	.99	.42	.83	.66	.99
$\left(\theta_{1}, \theta_{2}\right)=(1,1)$.62	.96	.41	.82	.99	.58
$\left(\theta_{1}, \theta_{2}\right)=(2,0)$.51	.83	.35	.66	.96	.47
$\left(\theta_{1}, \theta_{2}\right)=(2,1)$.57	.57	.38	.69	.82	.44
$\left(\theta_{1}, \theta_{2}\right)=(3,0)$.49	.41	.36	.61	.43	.64
$\left(\theta_{1}, \theta_{2}\right)=(2,2)$.59	.34	.39	.65	.42	.49

Case	(a) Coverage Probs		(b) False Cov Probs	
	CvM/Max GMS/Asy	$\begin{aligned} & \text { KS/Max } \\ & \text { GMS/Asy } \end{aligned}$	CvM/Max GMS/Asy	$\begin{aligned} & \text { KS/Max } \\ & \text { GMS/Asy } \end{aligned}$
Basecase ($n=500$, $\left.r_{1}=3,5 / 100\right)$. 961	. 962	. 41	. 58
$n=250$. 948	. 963	. 39	. 56
$n=1000$	979	. 968	. 52	. 65
$r_{1}=2$ (20 cubes)	962	. 956	41	. 55
$r_{1}=4$ (120 cubes)	962	. 964	42	. 59
$\left(\kappa_{n}, B_{n}\right)=1 / 2\left(\kappa_{n, b c}, B_{n, b c}\right)$	954	959	. 39	. 57
$\left(\kappa_{n}, B_{n}\right)=2\left(\kappa_{n, b c}, B_{n, b c}\right)$. 967	. 962	. 42	. 58
$\varepsilon=1 / 100$	926	. 873	. 32	66
Reg'r Variances $=2$. 964	. 968	. 54	. 71
Reg'r Variances $=1 / 2$. 963	. 966	. 29	. 43
Player 1 First Eq Sel Rule	. 955	. 957	. 39	. 57
$\alpha=.5$. 610	. 620	. 05	. 13
$\alpha=.5 \& n=1000$. 695	. 650	. 06	. 16

Many Moment Inequalities

- allow for infinite $\#$ mom ineq's by indexing $m_{j}\left(W_{i}, \theta\right)$ by $t \in \mathcal{T}$ - cond'I or uncond'I
- model is: $\forall t \in \mathcal{T}$,

$$
E_{F}\left(m_{j}\left(W_{i}, \theta, t\right) \mid X_{i}\right) \geq 0 \text { a.s. }\left[F_{X}\right] \forall j \leq p_{t}
$$

- can use same functions $g \in \mathcal{G} \&$ measure Q as above
- specifiy weight function $Q_{\mathcal{T}}$ on \mathcal{T}
- test stat is

$$
T_{n}(\theta)=\iint S\left(n^{1 / 2} \bar{m}_{n}(\theta, t, g), \bar{\Sigma}_{n}(\theta, t, g)\right) d Q(g) d Q_{\mathcal{T}}(t)
$$

where

$$
\bar{m}_{n}(\theta, t, g)=n^{-1} \sum_{i=1}^{n}\left(\begin{array}{c}
m_{1}\left(W_{i}, \theta, t\right) g_{1}\left(X_{i}\right) \\
\vdots \\
m_{p}\left(W_{i}, \theta, t\right) g_{p}\left(X_{i}\right)
\end{array}\right)
$$

- use emp'l process result for $\nu_{n}(t, g)=n^{1 / 2}\left(\bar{m}_{n}(\theta, t, g)-E_{F} \bar{m}_{n}(\theta, t, g)\right)$
- show analogous results as above hold for GMS tests \& CS's
- unif asy validity, etc.
- note: results for infinite $\#$ mom ineq's cover tests w/ no par θ
- example 1. test of stoch dominance
- related work: Linton, Maasoumi, \& Whang (2005), Linton, Song, \& Whang (2008)
$-Y_{1, i} \sim G_{1}(\cdot) \& Y_{2, i} \sim G_{2}(\cdot)$
$-H_{0}: G_{1}(t)-G_{2}(t) \geq 0, \forall t \in R(=\mathcal{T})$
- take $m\left(W_{i}, \theta, t\right)=1\left(Y_{1, i} \leq t\right)-1\left(Y_{2, i} \leq t\right)$
- no θ appears; no functions $g\left(X_{i}\right)$ needed
- get uniformity results for CvM \& KS tests
- example 2. test of stoch dominance of cond'I dist'ns
- related work: Lee \& Whang (2008)
$-Y_{1, i}\left|\left(X_{i}=x\right) \sim G_{1}(\cdot \mid x) \& Y_{2, i}\right|\left(X_{i}=x\right) \sim G_{2}(\cdot \mid x)$
$-H_{0}: G_{1}(t, x)-G_{2}(t, x) \geq 0, \forall t \in R(=\mathcal{T}), \forall x \in R^{d_{x}}$
- take $m\left(W_{i}, \theta, t\right)$ as above, use functions $g \in \mathcal{G}$

Summary

- provide methods to construct CS's for parameters based on cond'I mom ineq's \& equalites
- parameters need not be identified
- CS's based on CvM or KS-type statistics
- allow for truncation of ∞ sums \& simulation of integrals
- combine w/ generalized mom selection critical values
- establish uniform asy validity
- show CS shrinks to identified set: no info loss
- show tests have power against some $n^{-1 / 2}$-alternatives
- simulation results show $\mathrm{CvM} / \mathrm{Max} w / \mathrm{GMS}$ crit val performs well in terms of cov probs \& false cov probs

