
The Stata Journal (yyyy) vv, Number ii, pp. 1–27

Stata Commands for Full-vector and Subvector
Inference in Moment Inequality Models

Woosik Gong
University of Wisconsin at Madison

Madison, WI
wgong28@wisc.edu

Gregory F. Cox
National University of Singapore

Singapore
ecsgfc@nus.edu.sg

Xiaoxia Shi
University of Wisconsin at Madison

Madison, WI
xshi@ssc.wisc.edu

Abstract. In this paper, we present two commands – ccscc and sccintreg.
The ccscc command implements two tests: the CC test for moment-(in)equality
hypotheses and the sCC test for moment-(in)equality hypotheses with nuisance
parameters. The CC test can be used to construct joint confidence set for all
the parameters in a moment inequality model, while the sCC test for a subset
(subvector) of parameters in such a model. The sccintreg command applies the
subvector submodule in ccscc and computes marginal confidence intervals for each
parameter in an interval outcome linear regression model. We demonstrate the use
of our commands in two simulation examples.

Keywords: ccscc, sccintreg, moment inequality models, conditional chi-squared test

1 Introduction

Moment-(in)equality models are an important class of models used in econometrics to
address challenges such as missing or interval data, multiple equilibria, and large-scale
game theoretical models that are infeasible to solve.1 However, estimation and infer-
ence based on such models are often not easy because their parameters may be partially
identified and because there are inequality constraints. Many existing methods involve
simulated critical values that are nontrivial to compute and tuning parameters that are
hard to choose. Moreover, due to partial identification, estimation and inference for pa-
rameters are typically done by test inversion, which requires one to conduct (in)equality
testing at all points in a dense enough subset of the parameter space. The number of
points to be tested increases exponentially with the parameter dimension. For these
reasons, Stata implementation of moment inequality models is uncommon. To our
knowledge, there are two Stata journal papers that propose Stata commands for such
models, namely, Chernozhukov et al. (2015) who implement the estimation and infer-
ence procedure developed by Chernozhukov et al. (2013), and Andrews et al. (2017)
who implement the methods developed by Andrews and Shi (2013). Both can be used
to calculate joint confidence sets for moment inequality models with an infintie number

1. See the review papers: Canay and Shaikh (2017), Ho and Rosen (2017) and Molinari (2020).

© yyyy StataCorp LP st0001

2 Inference in Moment Inequality Models

of inequalities. Both also incur high computational cost when there are more than a
handful of unknown parameters in the model. For a survey of the current empirical
practice, see, for example, Canay et al. (2023).

Cox and Shi (2023b) depart from the literature by providing two computationally
easy and tuning-parameter-free tests for moment-(in)equality models. The first is a
conditional chi-squared (CC) tests for constructing joint confidence sets for all the un-
known parameters (full-vector inference), and the second is a subvector CC (sCC) test
for constructing marginal confidence sets for a subset of the uknown parameters (sub-
vector inference) when the rest of the parameters enter the moment functions linearly.
One still needs to obtain confidence sets by test inversion, but their proposal simplifies
the computation greatly: (a) the CC and the sCC tests use test statistics computable
by efficient convex quadratic programming algorithms and critical values from a chi-
squared distribution (with a data-dependent degree of freedom), and (b) the sCC test
allows one to construct confidence sets of the lower dimensional parameter of interest
by searching over only the lower dimensional space. Moreover, the sCC test is further
simplified by a closed-form formula for the degree-of-freedom (dof) for the chi-squared
distribution. The closed-form formula is derived in Cox et al. (2024).

The computationally easy procedures developed in Cox and Shi (2023b) already
have been adopted in a number of papers, including Elliot et al. (2022) for detecting
p-hacking, Dickstein et al. (2024) for revealing physician’s information about patient
costs, and Yuan and Barwick (2024) for studying airline competition in a network
environment. These applications showcase the versatility of those procedures. We are
thus motivated to provide Stata implementation to further facilitate their adoption.
First, we design the ccscc command which implements both the CC and the sCC test
through a unified syntax. The user can indicate whether they are in a CC test situation
or a sCC test situation by specifying different options. When implementing the sCC
test, the command uses the closed form formula derived in Cox et al. (2024).

Next, we narrow down the focus to a particular moment-(in)equality model, namely,
the interval outcome linear regression model. This model has a similar structure as
the standard linear regression model except that the outcome variable is measured in
a random interval. It finds applications in linear regressions with missing and interval
measured data and in certain aggregate demand models with mismeasured market shares
(ref. Gandhi et al. (2023)). In this setting, it is useful to report marginal confidence
intervals for each of the regression coefficients, similarly to the reg command. We design
the sccintreg command to do that using the sCC module in the source code of ccscc.

We note that there is a Stata command intreg, which also deals with linear re-
gression models with an interval-measured outcome. This command estimates a Tobit
model that relies on a homoskedastic normal error term and a truncation model struc-
ture. Our command sccintreg does not require one to make such assumptions. Thus,
it can be used in heteroskedastic models, in non-normal models, and in models where the
interval measurement of the outcome may be caused by reasons other than truncation.

This article is organized as follows. In section 2, we explain our framework for full-
vector and subvector inference for moment-(in)equality models. Section 3 explains the

Gong, Cox, and Shi 3

procedures implemented in detail. Section 4 provides instructions for installing the Stata
package for our commands. Sections 5 and 6 explain the syntax and options for ccscc
and sccintreg. Section 7 reports Monte Carlo simulation results. Section 8 presents
simulation examples to illustrate how to use our commands. Section 9 concludes.

2 Framework

As summarized above, our ccscc command implements the CC test for moment-
(in)equality models and the sCC test for a special class of linear conditional moment-
(in)equality models. We describe the models in Subsections 2.1 and 2.2 below.

Our sccintreg command computes marginal confidence intervals for the coefficients
in an interval outcome linear regression model. This model is described in Subsection
2.3 below.

2.1 Moment-(in)equality model: full-vector inference

Let m(Wi, θ) = (m1(Wi, θ), ...,mdm
(Wi, θ))

′ be a dm-dimensional moment function
known up to the dθ-dimensional unknown parameter θ, where {Wi}ni=1 is the sam-
ple of observables for n units. Let Θ be the parameter space of θ. Consider a model
defined by the following moment inequalities:

BE [m̄n(θ0)] ≤ d, (1)

where θ0 is the unknown true value of θ, B is a dB × dm known matrix, d is a dB × 1
known vector, m̄n(θ) = 1

n

∑n
i=1 m(Wi, θ), and E[·] is the expectation with respect to

distribution of {Wi}ni=1. The matrix B is used to absorb linear dependence across the
inequalities, for example, to write a moment equality into a pair of opposing moment
inequalities. See Cox and Shi (2023b) for details.

The parameter θ may or may not be point identified by the moment inequalities.
The identified set of θ is defined as

Θ0 = {θ ∈ Θ : BE [m̄n(θ)] ≤ d}.

Since Θ0 may contain points other than the true value θ0, it may not be possible to
consistently estimate θ0. However, we can still construct a confidence set for θ0 by test
inversion. That is, at each given value of θ ∈ Θ, we test the null hypothesis

H0 : BE [m̄n(θ)] ≤ d, (2)

and collect all the θ values at which this hypothesis is not rejected. Mathematically,
the 100(1− α)%-CS of θ0 is defined by

CSn(1− α) = {θ ∈ Θ : Tn(θ) < cn,α(θ)}, (3)

where α ∈ (0, 1) is the nominal significance level, Tn(θ) is a test statistic, and cn,α(θ)
is the critical value. We say that the confidence set is asymptotically uniformly valid if

4 Inference in Moment Inequality Models

the probability that CSn(1 − α) covers θ0 converges to a value no smaller than 1 − α
uniformly over all θ ∈ Θ0 and over a reasonable set of data generating processes. More
discussions of uniform asymptotic validity can be found in Canay and Shaikh (2017)
and in Cox and Shi (2023b).

2.2 Conditional moment-(in)equality model: subvector inference

Suppose that in addition to the parameter of interest θ, the model contains another
unknown parameter vector δ ∈ Rdδ that is not of central interest at the moment.
Additionally, suppose that there are exogenous variables Zi which we call instruments.
The instruments Zi are part of the vector of observables Wi.

Let Z denote the n observations of Zi: Z := {Zi}ni=1.

We consider models defined by the following conditional moment inequalities:

BZE [m̄n(θ0)|Z]− CZδ0 ≤ dZ , a.s, (4)

where BZ is a dB × dm matrix, CZ is a dB × dδ matrix, dZ is a dB × 1 vector, m̄n(θ) =
1
n

∑n
i=1 m(Wi, θ), E[·|Z] denotes expectation with respect to {Wi}ni=1 conditional on

Z = {Zi}ni=1, (θ
′
0, δ

′
0)

′ is the unknown true parameter value, and “a.s.” in (4) means
that the inequality in (4) holds almost surely with respect to the distribution of Z. The
quantities BZ , CZ , and dZ are known and may depend on {Zi}ni=1 and θ0.

Comparing to the model in (1), the model in (4) is more restrictive in two ways:
First, the moment inequalities in (4) are restricted to be linear in a subset of the
unknown parameters–the δ parameters, and the δ parameters have to be coefficients
of the exogenous variables {Zi}, while those in (1) can depend on the whole set of
parameters arbitrarily. Second, there needs to be exogenous instruments Zi and the
moment inequalities need to hold conditionally given {Zi}ni=1 in model (4), while the
moment inequalities only need to hold unconditionally in model (1).

Similar to the full-vector inference case, the parameter (θ′0, δ
′
0)

′ may be partially
identified. Here since we want to construct a marginal confidence set (MCS) for θ, we
do so by inverting a test for

H0 : ∃δ ∈ Rdδ s.t. BZE [m̄n(θ)|Z]− CZδ ≤ dZ , a.s, (5)

for a given value θ ∈ Θ. The MCS can be written as

MCSn(1− α) = {θ ∈ Θ : Tn(θ) < cn,α(θ)}, (6)

where Tn(θ) is a test statistic for the null hypothesis (5), and cn,α(θ) is a critical value
of nominal significance level α. When the quantities BZ , CZ , and dZ depend on θ0, one
simply plugs the given θ value in them to form the null hypothesis (5).

Gong, Cox, and Shi 5

2.3 Interval Outcome Linear Regression Model

We now describe the interval outcome linear regression model, which is an example of
the conditional moment inequality model in (4). Consider the linear regression model

Y ∗
i = X ′

iβ0 + ϵi, E[ϵi|{Xi}ni=1] = 0, (7)

where Y ∗
i ∈ R is a dependent variable, and Xi ∈ Rdβ is a vector of exogenous regressors,

and β0 ∈ Rdβ is the unknown true parameter value. Suppose that the outcome Y ∗
i is not

observed. Instead, we observe an upper bound variable YUi and a lower bound variable
YLi, and we have the background knowledge that

E[Y ∗
i |Xi] ∈ [E[YLi|Xi],E[YUi|Xi]]. (8)

The restrictions in (7) and (8) imply an infinite number of moment inequalities if Xi

contains continuous variables and imply k moment inequalities if Xi is discrete and
can take k values. Constructing tests using only the moment functions YLi −X ′

iβ and
YUi −X ′

iβ would be inefficient. Instead, we boost the efficiency by choosing a vector of
instrumental functions I(Xi), which is a nonnegative vector-valued function of Xi. We
discuss the construction of I(Xi) in a later section. Using the instrumental functions,
we obtain the moment inequalities:

E

[
n−1

n∑
i=1

(
YLiI(Xi)
−YUiI(Xi)

)
− n−1

n∑
i=1

(
I(Xi)X

′
i

−I(Xi)X
′
i

)
β0

∣∣∣∣∣{Xi}ni=1

]
≤ 0. (9)

We can use the sCC test to construct marginal confidence intervals for each element of
β. For example, suppose we want to construct a confidence interval for the jth element
of β, βj . Let β−j denote β with its jth element removed. Then, βj is the parameter of
interest and β−j the nuisance parameter, and they are respectively denoted θ and δ in
the notation of Section 2.2. Now let Xj,i denote the jth element of Xi, and let X−j,i

denote Xi with its jth element removed. Then, (9) can be written as

E

[
1

n

n∑
i=1

(
(YLi−θ0Xj,i)I(Xi)
−(YUi−θ0Xj,i)I(Xi)

)
− 1

n

n∑
i=1

(
(I(Xi)X

′
−j,i)

−(I(Xi)X
′
−j,i)

)
δ0

∣∣∣∣∣{Xi}ni=1

]
≤ 0. (10)

It is easy to see that this is a special case of (4) with {Zi} = {Xi}, Wi = (YLi, YUi, X
′
i)

′,

BZ = I, m(Wi, θ) =
(

(YLi−θXj,i)I(Xi)
−(YUi−θXj,i)I(Xi)

)
, CZ = 1

n

∑n
i=1

(
(I(Xi)X

′
−j,i)

−(I(Xi)X
′
−j,i)

)
, and dZ = 0.

Therefore, a confidence interval of βj can be obtained by inverting a test for (5).

3 Description of the Procedures

In this section, we explain the CC test and the sCC test implemented by the command
ccscc and explain the confidence interval construction implemented in sccintreg.

In models other than the interval outcome linear regression model, one cannot use
sccintreg to calculate the marginal confidence interval for each unknown parameter.

6 Inference in Moment Inequality Models

Instead, a joint confidence set of θ can be obtained by constructing a grid of θ to run
ccscc over and collecting θ’s that the test does not reject. Marginal confidence intervals
for an element of θ can be obtained by finding the lowest and the highest values of that
element that correspond to a θ value in the joint confidence set.

3.1 CC test: full-vector test

The test statistic for the null hypothesis in (2) is

Tn(θ) = min
µ:Bµ≤d

n(m̄n(θ)− µ)′Σ̂n(θ)
−1(m̄n(θ)− µ), (11)

where Σ̂n(θ) is an estimator of Var(
√
nm̄n(θ)). When {Wi}ni=1 are independent and

identically distributed (i.i.d.) across i, a natural choice is

Σ̂n(θ) =
1

n

n∑
i=1

(m(Wi, θ)− m̄n(θ))(m(Wi, θ)− m̄n(θ))
′. (12)

When {Wi}ni=1 are not i.i.d. across i, users can plug in Σ̂n(θ) obtained by a different
formula to take into account cluster dependence, autocorrelation, or other types of
dependence.

Let µ̂ be the solution to the minimization problem (11). Let b′j denote the jth row
of B and dj denote the jth element of d for j = 1, ..., dB . Define the set of indices for
active constraints of the minimization problem (11) to be2

Ĵ = {j ∈ {1, ..., dB} : b′j µ̂ = dj}.

For any subset J ⊂ {1, ..., dB}, let BJ be the submatrix of B that is formed by all
the rows of B corresponding to the indices in J . Let r̂ = rk(BĴ) be the rank of the
matrix BĴ . Then, the critical value cn,α(θ) in (3) is defined to be χ2

r̂,1−α which is the
100(1 − α)% quantile of the chi-squared distribution with r̂ degrees of freedom. Note

that µ̂, Ĵ , and r̂ are obtained for each θ and thus they depend on θ. The dependence is
suppressed for simpler notation.

The critical value cn,α(θ) sometimes can be refined (reduced) when r̂ = 1 so that the
test has more accurate size. Section A.1 of Cox and Shi (2023b) describes the refinement
in full details. We implement the refinement step in the ccscc command but omit the
description here.

3.2 SCC test: subvector test

The test statistic for the null hypothesis in (5) is

Tn(θ) = min
µ,δ:BZµ−CZδ≤dZ

n(m̄n(θ)− µ)′Σ̂n(θ)
−1(m̄n(θ)− µ), (13)

2. Typically, due to numerical imprecision of computer algorithms, a tolerance level (tol) is used when
determining which inequality is active. If b′j µ̂− dj ≥ −tol, the jth inequality is considered active.

Gong, Cox, and Shi 7

where Σ̂n(θ) is an estimator of Var(
√
nm̄n(θ)|Z). When the data are i.i.d. across i

and Zi is a discrete random variable with a finite support set Z, a natural estimator of
Var(

√
nm̄n(θ)|Z) is

Σ̂n(θ) =
∑
ℓ∈Z

nℓ

n

1

nℓ − 1

n∑
i=1

(m(Wi, θ)− m̄ℓ
n(θ))(m(Wi, θ)− m̄ℓ

n(θ))
′I(Zi = ℓ), (14)

where I(E) is the dummy variable that equals 1 if event E occurs and equals 0 otherwise,
nℓ =

∑n
i=1 I(Zi = ℓ), and m̄ℓ

n(θ) = 1
nℓ

∑n
i=1 m(Wi, θ)I(Zi = ℓ). The proof of the

consistency of this estimator is in Theorem 6(b) in Section B of Cox and Shi (2023a).

When the data are i.i.d. across i and Zi is a continuous random variable, we can
use a nearest neighbor matching estimator similar to the one adopted by Abadie et al.
(2014). To define this estimator, let Σ̂Z,n = n−1

∑n
i=1(Zi − Z̄n)(Zi − Z̄n)

′ where Z̄n =
n−1

∑n
i=1 Zi. For each i, let the nearest neighbor be ℓZ(i) = argminj∈{1,...,n},j ̸=i(Zi −

Zj)
′Σ̂−1

Z,n(Zi−Zj), and ℓZ(i) picks one randomly when the argmin is not unique. Then,

the nearest neighbor matching estimator of Var(
√
nm̄n(θ)|Z) is

Σ̂n(θ) =
1

2n

n∑
i=1

(m(Wi, θ)−m(WℓZ(i), θ))(m(Wi, θ)−m(WℓZ(i), θ))
′. (15)

The proof of the consistency of this estimator is in Theorem 6(c) in Section B of Cox

and Shi (2023a). Users can also plug in Σ̂n(θ) obtained by a different formula to take
into account clustering, autocorrelation, or other types of dependence.

Let (µ̂′, δ̂′)′ be the solution to the minimization problem (13). Let b′j,Z and c′j,Z be
the jth rows of BZ and CZ , respectively, and dj,Z be the jth element of dZ . Define

Ĵ = {j ∈ {1, ..., dB} : b′j,Z µ̂− c′j,Z δ̂ = dj,Z},

which is set of indices of the inequalities that are active for the minimization problem
(13).3 Let BĴ and CĴ be the submatrices of BZ and CZ , respectively, which contain

the jth rows of BZ and CZ if and only if j ∈ Ĵ . To obtain the critical value of the sCC
test, let

r̂ = rk
([

BĴ CĴ

])
− rk

(
CĴ

)
, (16)

where
[
BĴ CĴ

]
is the matrix obtained by concatenating the matrices BĴ and CĴ

side-by-side. The critical value is then

cn,α(θ) = χ2
r̂,1−α, (17)

which is the 100(1 − α)% quantile of the chi-squared distribution with r̂ degrees of

freedom. Note that Ĵ and r̂ depend on θ, although the dependence is suppressed for
simpler notation.

3. Due to the numerical imprecision of quadratic programming algorithms, we use a tolerance level(tol)

to determine which inequalities are active. We say that the jth inequality is active if b′j,Z µ̂−c′j,Z δ̂−
dj,Z ≥ −tol.

8 Inference in Moment Inequality Models

3.3 Marginal Confidence Intervals for Interval Outcome Regression

Now we specialize to the interval outcome linear regression model defined in (7) and
(8) and describe the construction of marginal confidence intervals for each regression
coefficient.

In broad strokes, the task is straightforward. To construct a marginal confidence
interval for the jth element, βj , of β, we first realize that the parameter of interest θ
is βj and the nuisance parameter δ is β−j . The following steps will give us the desired
confidence interval:

Step 1. Define BZ , m(Wi, θ), CZ , and dZ according to the two lines below (10).

Step 2. Define the test statistic Tn(θ) and the critical value cn,α(θ) as functions of θ
according to (13) and (17).

Step 3. Find θ̂U (α) = max{θ ∈ R : Tn(θ) ≤ cn,α(θ)} and θ̂L(α) = min{θ ∈ R : Tn(θ) ≤
cn,α(θ)}.

Then, [θ̂L(α), θ̂U (α)] is the marginal confidence interval for βj with nominal confidence
level 1− α.

The broad-stroke steps are applicable to all settings to which the sCC test is appli-
cable. However, important implementation details are left unspecified. Filling in those
details is a model-specific task, which we do for the interval outcome linear regression
model now:

• First, to define m(Wi, θ) and CZ , one needs the vector of instrumental functions
I(Xi). We allow different ways to generate I(Xi) fromXi. By default, we generate

binarized variable X̃i = (I(X1,i > xmed
1 , ..., I(Xdβ ,i > xmed

dβ
))′, where xmed

j is the

sample median of {Xj,i}ni=1 for j ∈ {1, ..., dβ}. Then, we let I(Xi) = (I(X̃i =

x̃1), ..., I(X̃i = x̃X))′ ∈ RX , where {x̃1, x̃2, ..., x̃X } is the support of X̃i.

If Xi takes only finite number of values, say {x1, x2, . . . , xM}, the user can specify
the “discrete” option. When this option is specified, I(Xi) is defined to be (I(Xi =
x1), . . . , I(Xi = xM))′ ∈ RM .

We also allow the user to directly input their preferred I(Xi) as a variable list in
the option “instrument”. The user should make sure that I(Xi) are nonnegative-
valued functions of Xi.

The options are explained in more details in Section 6.3 below. See Cox and Shi
(2023b) for more guidance on constructing I(Xi).

• Second, in Step 3, the command carries out a constrained maximization and a
constrained minimization to obtain θ̂U (α) and θ̂L(α), respectively. This could be
done accurately in a variety of ways since θ is one-dimensional. By default, we
use a bisection algorithm, which goes as follows (for a MCI with nominal coverage
probability 1− α):

Gong, Cox, and Shi 9

1. Set a lower bound θ and an upper bound θ for θ. They are set to prevent the
iterations below from going on indefinitely. One should set them reasonably
wide so that they do not meaningfully affect the result. By default, θ = 100,
and θ = −100 in our command.

2. Compute θ̂0 = argminθ∈R minµ,δ:µ−CZδ≤dZ
n(m̄n(θ) − µ)′Σ̂−1

n (m̄n(θ) − µ).
This is our first guess for a point inside the marginal confidence interval
(MCI). Note that Σ̂n(θ) does not depend on θ in this model as it is an esti-

mator of the conditional variance-covariance of 1√
n

∑n
i=1

(
I(Xi)YLi

−I(Xi)YUi

)
given

{Xi}ni=1. If θ̂0 is not between θ and θ, we set θ̂0 to be the midpoint (θ+θ)/2.

We verify whether θ̂0 is in fact inside the MCI by testing (5) with θ = θ̂0
using the sCC test with nominal level α. If the test does not reject, we have
found θ̂0 to be a point inside the MCI. Then we proceed to the next step to
find the point below the lower end point and that above the upper end point
of the MCI.

If the sCC test rejects (5) with θ = θ̂0, we attempt again to find a point in
the MCI via a grid search. That is, we carry out a nominal level α sCC test
for (5) at θ = θ̂0+q×10−1 · crel(θ− θ̂0) and θ = θ̂0−q×10−1 · crel(θ̂0−θ) for
q = 1, 2, . . . , ⌊10(crel)−1⌋ until we find a point that is not rejected or q reaches
⌊10(crel)−1⌋ whichever comes first. Here ⌊x⌋ stands for the largest integer

that is no greater than x. If a point of non-rejection is found, we replace θ̂0
with the value of this point and proceed to the next step. Otherwise, our
command reports that the MCI is empty and proceeds no further, in which
case, one can try again with a wider [θ, θ] or a reduced crel.

Here, crel is a scaling factor for the step size of the search and we call it the
relative step size. By default, our command sets crel = 0.1. The user can
specify these values in options as described in Section 6.3 below.

3. To find a point below the lower end point of the MCI. We test (5) with

θ = θ̂0 − (q × crel|θ − θ̂0|) sequentially for q = 1, 2, ... until we find a point
where the sCC test rejects, or until we reach the lower bound, θ of the
parameter space for θ, whichever comes first. Denote the value of θ where
we stop by θ̂LL. Let θ̂LU = θ̂LL + crel|θ − θ̂0|, which is an upper bound of

θ̂L(α) since the test is not rejected at θ = θ̂LU and hence θ̂LU is inside the
MCI.

4. If θ̂LL = θ, let θ̂L(α) = θ.

5. Otherwise, test (5) at θ = (θ̂LU + θ̂LL)/2 using the sCC test.

6. If the sCC test rejects θ = (θ̂LU + θ̂LL)/2, replace the value of θ̂LL with

(θ̂LU + θ̂LL)/2, which is a new point below θ̂L(α). Note that each time the

value of θ̂LL is changed, it moves closer to θ̂L(α).

If the sCC test does not reject θ = (θ̂LU + θ̂LL)/2, replace the value of θ̂LU

with θ = (θ̂LU + θ̂LL)/2, which is a new point inside the MCI. Note that each

time the value of θ̂LU is changed, it also moves closer to θ̂L(α).

10 Inference in Moment Inequality Models

7. Repeat the last two steps until |θ̂LU − θ̂LL| is below a precision level (prec,

by default, prec = 10−8), at which time let θ̂L(α) = θ̂LL. Note that each

time we repeat steps 4 and 5, the distance |θ̂LU − θ̂LL| is halved. Thus, the
algorithm converges exponentially fast.

8. Analogously work on the upper end point and find θ̂U (α).

The interval [θ̂L(α), θ̂U (α)] is the calculated MCI of nominal coverage probability 1−α.

Another method for constructing the confidence intervals of the coefficients is doing
grid search. An equidistant grid of the parameter {θ1, θ2, ..., θM}, θ = θ1 ≤ θ2 ≤ ... ≤
θM = θ, is constructed while M is set by users. Check Section 6.3 for more details on
how the grid is constructed. An MCI can be obtained by implementing the sCC test at
each θ value on the grid and collect the values at which the test does not reject. The
grid search approach takes longer time than the bisection one above to reach the same
precision. On the other hand, grid search computes Tn(θ) and cn,α(θ) on an equidistant
grid, which can be useful for plotting, as shown in Figure 2 of Section 8.3.

4 Installation of the ccscc Package

The Stata commands proposed in this paper are available in the Statistical Software
Components (SSC) archive. Our Stata package, ccscc, can be installed from within
Stata by typing ssc install ccscc or ssc install ccscc, all. The former installs
the commands and the help files, while the latter installs those as well as the ancillary
data file that allows the user to run the examples in the help files.

The commands ccscc and sccintreg use Stata/Python integration for quadratic
programming. Python and its CVXOPT (2023) package should be installed before
using our commands because there currently is no Mata package that solves a convex
quadratic programming problem such as that in (13), and we use the python package
CVXOPT for that task. The included help files explain how to install python and the
CVXOPT (2023) package. The instructions on how to set up the python environment
can be found in the Stata manual [P] PyStata integration or on the official website
of Stata.

5 The ccscc command

5.1 Syntax

The syntax of ccscc is as follows:

ccscc (instruments) moments
[
if

] [
in

] [
, alpha(real 0.05) matineq(matname)

vecineq(matname) matnuisa(matname) ivdiscrete refined

sigma(matname) activetol(real 1e-05) qpabstol(real 1e-08) qpreltol(real

Gong, Cox, and Shi 11

1e-08) qpfeastol(real 1e-08)
]

5.2 Description

To implement ccscc for the CC test described in Section 3.1, one first generates Stata
variables m1(Wi, θ), ..., mdm

(Wi, θ) for observations i = 1, ..., n and input the names
of these variables in the variable list moments. The variable list instruments should be
empty. The options matnuisa and ivdiscrete should not be specified.

To implement ccscc for the sCC test described in Section 3.2, one also generates
Stata variables m1(Wi, θ), ..., mdm

(Wi, θ) for observations i = 1, ..., n, and input the
names of these variables in the variable list moments. The variable list instruments
should not be empty. Instead, it should contain the variable names for the variables in
Zi. The option matnuisa should be specified and its argument should be the matrix
CZ . The option refined should not be specified.

5.3 Options

alpha(real 0.05) specifies the size of the test. By default, it is set to 0.05.

matineq(matname) specifies the matrix B in (1) and BZ in (4). Inside the parentheses,
matname should be the name of a Stata dB×dm matrix. If this option is not specified,
B or BZ is taken to be the dm × dm identity matrix.

vecineq(matname) specifies the vector d in (1) and dZ in (4). Inside the parentheses,
matname should be the name of a Stata dB×1 matrix. If this option is not specified,
d or dZ is taken to be a dB-dimension zero vector.

matnuisa(matname) specifies CZ in (4). It needs and only needs to be specified for
subvector inference. Inside the parentheses, matname should be the name of a Stata
dB × dδ matrix.

ivdiscrete specifies that the instruments are discrete. This option affects how Σ̂n(θ)
is calculated as explained below. It should not be specified for full-vector inference.

refined adjusts the critical value to make the size of the CC test more accurate. Details
of it is provided in Section A.1 of Cox and Shi (2023a). The refined sCC test is not
implemented in the present code package, and thus this option should not be used
when doing subvector inference.4

sigma specifies a user-defined Σ̂n(θ). Its argument matname should be the name of a
Stata dm × dm positive-definite matrix. If this option is not specified, the command
calculate Σ̂n(θ) according to (12) for full-vector inference, and according to (15) for
subvector inference if ivdiscrete is not specified and according to formula (14)
otherwise.

4. The reason that the refined sCC test is not implemented is that implementing it would require a
vertex enumeration algorithm for polyhedrons, which is currently not available in MATA.

12 Inference in Moment Inequality Models

activetol specifies the tolerance level used to determine which inequalities are active
as explained in Sections 3.1 and 3.2. By default, it is set to 10−5.

qpabstol, qpreltol, qpfeastol sets ‘abstol’, ‘reltol’ and ‘feastol’ for quadratic pro-
gramming via CVXOPT (2023). See its documentation for precise descriptions.

5.4 Saved Results

ccscc stores the following results in r():

Scalars
r(N) number of observations r(alpha) nominal significance level of the

test
r(reject) 1 if the test is rejected, r(rank) r̂ that determines the critical

0 if not value of the test
r(cv) critical value for the test, r(t stats) test statistic, Tn(θ)

χ2
r̂,1−α

r(pval) p-value for the test

Matrix
r(Sigmainv) the inverse of estimated

(conditional) variance
-covariance matrix of

moments, (Σ̂n(θ))−1

Macros
r(cmd) ccscc r(title) “Conditional Moment

Inequalities Test”

6 The sccintreg command

6.1 Syntax

The syntax of sccintreg is as follows:

sccintreg y low y up exog
[
if

] [
in

] [
, alpha(real 0.05) instrument(varname)

subset(varname) discrete noconstant sigma(matname) ub(matname)

lb(matname) precision(real 1e-08) relstep(real 0.1) activetol(real 1e-05)

qpabstol(real 1e-08) qpreltol(real 1e-08) qpfeastol(real 1e-08)

gridsearch(integer 1)
]

6.2 Description

To implement sccintreg, one needs to have ready the bounding variables YLi, YUi, and
the regressors in Xi, and input the variable names of these variables in the variable lists
y low, y up, and exog, respectively.

Gong, Cox, and Shi 13

6.3 Options

alpha(real 0.05) sets the coverage rate of each confidence interval to 100(1− α)%. By
default, it is set to 0.05.

instrument specifies the user-defined nonnegative instrument functions I(Xi) in (10).
Inside the parentheses, one should input a Stata variable list. For example, one can
use instrument("Z1 Z2 Z3") if “Z1”, “Z2”, and “Z3” are the Stata variable names
of the instruments {I1(Xi)}ni=1, {I2(Xi)}ni=1, and {I3(Xi)}ni=1, respectively, when
I(Xi) = (I1(Xi), I2(Xi), I3(Xi))

′. If this option is not specified, default instruments
are constructed according to the description in Section 3.3.

subset(varnames) specifies the subset of regressors that the user wants to construct
MCIs for. Inside the parentheses, one inputs a variable list that is a subset of
the regressor list exog unless the MCI of the intercept is of interest. For exam-
ple, subset("X1 X2") instructs Stata to report MCIs of the coefficients for vari-
ables “X1” and “X2”. To include intercept, add "cons" to subset. For instance,
subset("cons X1") returns MCIs of intercept and the coefficient for “X1”. The
order of variable list in subset is irrelevant in a sense that MCIs in the outcome
table are always sorted in the same order as exog and the intercept always come
first. For example, if exog is X1 X2 X3 and subset("X3 cons X1") is specified as
option, then MCIs in the outcome table is ordered as: intercept, coefficient for “X1”,
and coefficient for “X3”. If this option is not specified, MCIs for all the coefficients
are reported.

discrete specifies that regressors are discrete. Specifying this option may have two
effects: First, Σ̂n(θ) will be computed according to (14) unless the user manually
sets the variance-covariance matrix using the option sigma; Second, I(Xi) will be
constructed according to the discrete case described in Section 3.3 unless the user
manually sets the instruments using the option instrument.

noconstant instructs Stata that the constant term be excluded from the regression.

sigma specifies a user-defined Σ̂n(θ). Its argument matname should be the name of a
Stata dm × dm positive-definite matrix. If this option is not specified, the command
calculates Σ̂n(θ) according to (15) if discrete is not specified and according to (14)
otherwise.

ub(matname) is a vector consisting of θ in Section 3.3. It specifies an upper bound
vector for βsub, where βsub is a subvector of the full-coefficients β that includes and
only includes the coefficients for variables specified by the option subset. If users
do not specify subset, βsub is just β. Be mindful that the full-vector β includes an
intercept unless the noconstant option is specified, and hence its dimension is the
number of variables in exog added by 1 in this case. The argument matname should
be the name of a Stata 1 × dβsub

matrix, where dβsub
is the dimension of βsub. By

default, it is a dβsub
-dimensional vector whose elements are all 100.

lb(matname) is a vector consisting of θ in Section 3.3. It specifies a lower bound vector
for βsub, where βsub is explained above. The argument matname should be a Stata

14 Inference in Moment Inequality Models

1× dβsub
matrix. By default, it is a dβsub

-dimensional vector whose elements are all
-100.

precision(real 1e-08) specifies the constant prec in the bisection algorithm explained
in Section 3.3. By default, it is 10−8.

relstep specifies the relative step size crel in the bisection algorithm explained in
Section 3.3. It should be a real number between 0 and 1. By default, it is set to 0.1.

activetol specifies the tolerance level used to determine which inequalities are active
as explained in Section 3.2. By default, it is set to 10−5.

qpabstol, qpreltol, qpfeastol sets ‘abstol’, ‘reltol’ and ‘feastol’ for quadratic pro-
gramming via CVXOPT (2023). See its documentation for precise description.

gridsearch(int 1) instructs Stata to use the grid search algorithm instead of the bi-
section algorithm to find the end points of the CI. Its value should be the number of
grid points. If β and β denote lb and ub, respectively, and ng is the number of grid
points specified by gridsearch, then the resulting grid for βj , the jth coefficient of
βsub, becomes {β

j
+ k(βj − β

j
)/(ng − 1) : k = 0, ..., ng − 1}, where β

j
and βj are

the jth elements of β and β, respectively. If the user accidentally sets the argument
of this option to 1, then the bisection algorithm is used instead of the grid search.

6.4 Saved Results

sccintreg stores the following in r():

Scalars
r(N) number of observations r(alpha) nominal significance level

Matrix
r(table) table of the marginal CIs r(Tns) test statistics evaluated at each

grid point (available only if
gridsearch is used)

r(CVs) critical values evaluated at r(TESTs) test results at each grid point,
each grid point (available 1 if rejected and 0 otherwise
only if gridsearch is used) (available only if gridsearch

r(GRIDs) grid of parameter that is used is used)
(available only if gridsearch
is used)

Macros
r(cmd) sccintreg r(title) “Conditional Moment

Inequalities Tests for Linear
Regression with Interval
Outcome”

7 Monte Carlo simulations

In this section, we test the command on the simulation examples from Cox and Shi
(2023b). Specifically, we run Monte Carlo experiments using both our ccscc command
and the Matlab code of Cox and Shi (2023b), and then compare the results. For the

Gong, Cox, and Shi 15

sCC test, we adjusted the Matlab code to compute critical values using the r̂ formula
derived in Cox et al. (2024) because this is how r̂ is calculated in the ccscc command.
The number of Monte Carlo repetitions is 1000, and the significance level for the CC
and sCC tests is 5%.

For full-vector inference, we use the simulation example from Andrews and Bar-
wick (2012), which is also implemented in Cox and Shi (2023b). In this example, the
inequalities tested are

E[Zi − θ] ≤ 0,

where {Zi}ni=1 is n draws from the dm dimensional random vector Zi. We consider three
cases of dm: dm = 2, 4, 10. We consider the sample size n = 100.

To generate the simulated data set, we let Zi ∼ N(0,Ω) and be i.i.d. across i
for a variance-covariance matrix Ω. We consider three cases of Ω: ΩZero, ΩNeg, ΩPos,
respectively representing the cases were the moment inequalities are independent, have
negative correlations, and are positive correlated. The specific values of these matrices
are the same as those set in Andrews and Barwick (2012) and Cox and Shi (2023b).

We consider one null value of θ, which satisfies θ ≥ 0, and three alternative parameter
values of θ which do not satisfy θ ≥ 0. The null parameter is set to θ = 0, while the
alternative parameter values are set to the first three elements of Mdm

(Ω) that appears
in Section S7.1 of the Supplemental Material of Andrews and Barwick (2012), which
depends on dm and Ω.

For subvector inference, we use the interval outcome regression example similar to the
example in Cox and Shi (2023b). We modify this example by replacing its endogenous
variable with an exogenous covariate. Specifically, instead of generating the regressors
according to Cox and Shi (2023b), we let the regressors be Xi = (1, X1i, X2i, . . . , Xdci)

′

where the non-constant elements of Xi are independent Bernoulli random variables
with success probability 0.5.5 We consider dc = 2 and 4. The full parameter is β =
(βcons, β1, β2, . . . , βdc

)′, where the parameter of interest is β1. Hence, θ = β1 while
δ = (βcons, β2, . . . , βdc)

′ in the notation of Section 2.2. We set the true parameters to
θ0 = −1 and δ0 = (0,−1,0′

dc−2)
′. Other elements of the model remain the same to

the description of the model in Cox and Shi (2023b). We consider two sample sizes:
n = 500 and n = 1000. We implement the sCC test for θ at the hypothesized values:
{−1.5,−1.25,−1,−0.75,−0.5}, where −1 is the true value and the others are values
outside the identified set for θ.

Table 1 reports the results of the CC test. It shows that the empirical null rejection
probability is close to the nominal level 5% as expected. The CC test also exhibits
nontrivial power against alternative parameter values. The results from our Stata ccscc
command are almost identical to those from the Matlab code of Cox and Shi (2023b),
with the maximum difference between the number of rejections by the two codes not
exceeding 1 out of 1000 trials in any case.

Table 2 reports the results of the sCC test. The empirical rejection probabilities do

5. Note that in Cox and Shi (2023b), X1i in Xi defined above is endogenous. We change it to
exogenous because sccintreg does not apply to regression models with endogenous regressors.

16 Inference in Moment Inequality Models

not exceed 5% for the true hypothesis θ = −1 while the rejection probabilities increases
as θ deviates from the true value. In most cases, the rejection probabilities for the
two different commands do not exceed 0.002, except when dc = 4 and n = 1000 with
θ = −0.75, where the difference is 0.006.

The small differences between the Matlab results and the Stata results are not un-
expected. They occur because the quadratic programming implementation by Python’s
CVXOPT package is not exactly the same as that by the quadprog package of Matlab.
Due to the different implementation, they can display different numerical imprecision
even when their tolerance levels are all set to be the same. In Tables 1 and 2, the
differences in rejection probabilities are all in the third decimal point. The CC and the
sCC tests implemented by both programs display excellent finite sample size and power
properties.

8 Examples

We illustrate how to use the ccscc command to do inference for moment inequality
models and the sccintreg command for an interval regression.

8.1 Full-vector inference: ccscc

For illustration of the CC test, we use the first simulation example in Section 7. Let
Zi ∼ i.i.d.N(0, I2) for i = 1, ..., n, with sample size n = 100, where I2 is the identity
matrix of size 2. For this example, m(Zi, θ) = Zi − θ.

First, we use the CC test to test the value θ = (0, 0)′. That is, we set θ = (0, 0)′,
and use ccscc to test: H0 : E[m̄n(θ)] ≤ 0. We first import the data set dataex1, which
contains the variables Z1 and Z2, then generate the matrices A and b which in this
case are A = I2 and b = (0, 0)′, then generate the input variable lists: m1 = Z1− θ(1)
and m2 = Z2 − θ(2), and finally run the command ccscc with the inputs generated.
Below is the the log file that shows the command lines implemented and the output of
the ccscc test:

. use dataex1

.

. matrix A = (1, 0 \ 0, 1)

. matrix b = (0 \ 0)

.

. // Testing H0 : theta=(0,0)

. generate m1 = Z1-0

. generate m2 = Z2-0

. ccscc () m1 m2, matineq(A) vecineq(b)

Number of obs : 100
Method : CC
Accept the hypothesis
test statistic : .13656579
critical value : 3.8414588
rank : 1

Gong, Cox, and Shi 17

Table 1: Empirical rejection probabilities for the CC test. Nrp denotes rejection rate
for the test at the null parameter θ = 0. Pwr1-3 denote empirical powers for the three
alternative parameter values explained in this section. stata denotes testing by the
Stata ccscc command while matlab denotes testing by the Matlab code from Cox and
Shi (2023b).

dm = 2 dm = 4 dm = 10
stata matlab stata matlab stata matlab

CC test

ΩZero

Nrp 0.037 0.036 0.034 0.033 0.049 0.049
Pwr1 0.630 0.630 0.649 0.649 0.551 0.551
Pwr2 0.639 0.639 0.666 0.666 0.575 0.575
Pwr3 0.664 0.664 0.666 0.666 0.634 0.634

ΩNeg

Nrp 0.050 0.049 0.039 0.039 0.055 0.055
Pwr1 0.571 0.571 0.663 0.663 0.569 0.569
Pwr2 0.589 0.589 0.663 0.663 0.603 0.603
Pwr3 0.598 0.598 0.663 0.663 0.605 0.605

ΩPos

Nrp 0.058 0.058 0.041 0.041 0.063 0.063
Pwr1 0.564 0.564 0.551 0.551 0.624 0.624
Pwr2 0.673 0.673 0.563 0.563 0.676 0.675
Pwr3 0.694 0.694 0.566 0.566 0.687 0.687

RCC test

ΩZero

Nrp 0.049 0.048 0.048 0.047 0.051 0.051
Pwr1 0.656 0.656 0.726 0.726 0.551 0.551
Pwr2 0.693 0.693 0.754 0.754 0.576 0.576
Pwr3 0.745 0.745 0.757 0.757 0.637 0.637

ΩNeg

Nrp 0.053 0.052 0.056 0.056 0.055 0.055
Pwr1 0.571 0.571 0.710 0.710 0.569 0.569
Pwr2 0.591 0.591 0.710 0.710 0.603 0.603
Pwr3 0.600 0.600 0.710 0.710 0.605 0.605

ΩPos

Nrp 0.058 0.058 0.051 0.051 0.063 0.063
Pwr1 0.564 0.564 0.592 0.592 0.624 0.624
Pwr2 0.676 0.676 0.611 0.611 0.676 0.675
Pwr3 0.698 0.698 0.614 0.614 0.687 0.687

p-value : .71171924

As we can see, the test does not reject θ = (0, 0)′ at the default significance level α = 5%.
The CC test statistic and critical value are respectively .13656579 and 3.8414588. And
the p-value is .71171924.

Next, we illustrate the use of the refined option. This option could make a difference
to the critical value in this case because r̂ = 1:

. // Refined CC test at theta=(0,0)

. ccscc () m1 m2, matineq(A) vecineq(b) r

18 Inference in Moment Inequality Models

Table 2: Empirical rejection probabilities for the sCC test at different values of θ. The
true value θ0 = −1. stata denotes testing by the Stata ccscc command while matlab

denotes testing by the modification of the Matlab code from Cox and Shi (2023b).
n = 500 n = 1000

dc = 2 dc = 4 dc = 2 dc = 4
θ stata matlab stata matlab stata matlab stata matlab

-1.50 0.949 0.949 0.832 0.830 0.998 0.998 0.987 0.987
-1.25 0.245 0.244 0.187 0.184 0.407 0.406 0.313 0.312
-1.00 0.005 0.005 0.016 0.015 0.002 0.002 0.007 0.007
-0.75 0.162 0.162 0.108 0.106 0.235 0.234 0.142 0.136
-0.50 0.923 0.923 0.774 0.772 0.997 0.997 0.972 0.972

Number of obs : 100
Method : RCC
Accept the hypothesis
test statistic : .13656579
critical value : 3.2282258
rank : 1
p-value : .49166099

Note that the refinement did make a difference by reducing the critical value from
3.8414588 to 3.2282258 and the p-value from .71171924 to .49166099.

Finally, we illustrate how to use the CC test to test different θ values. We try
two additional θ values: θ = (1,−1)′ and θ = (1, 1)′. The value θ = (1, 1)′ is in the
interior of the null parameter space. At this value, both moment inequalities are slack
in population. It is likely that both the test statistic and the critical value are zero, in
which case the sCC test does not reject the null hypothesis.

. // H0 : theta=(1,-1)

. replace m1 = Z1-(1)
(100 real changes made)

. replace m2 = Z2-(-1)
(100 real changes made)

. ccscc () m1 m2, matineq(A) vecineq(b)

Number of obs : 100
Method : CC
Reject the hypothesis
test statistic : 71.579337
critical value : 3.8414588
rank : 1
p-value : 0

.

. // H0 : theta=(1,1)

. replace m1 = Z1-(1)
(0 real changes made)

. replace m2 = Z2-(1)
(100 real changes made)

. ccscc () m1 m2, matineq(A) vecineq(b)

Number of obs : 100
Method : CC

Gong, Cox, and Shi 19

Accept the hypothesis
test statistic : 0
critical value : 0
rank : 0
p-value : 1

8.2 Subvector inference: ccscc

For illustration of the sCC test, we use the interval-outcome linear regression example,
which is the second simulation example in Section 7. In addition to the binary regressor
set up considered in Section 7, we also consider a case where X1i and X2i are uniform
random variables with support [0, 1]. We let the two regressors be independent to each
other in both the discrete and the continuous cases.

Set the number of observations n = 100 and the true parameters β1 = β2 = −1 and
βcons = 0, where Xi = (1, X1i, X2i)

′ and β = (βcons, β1, β2)
′. Other elements of the

model remains the same with the one in Section 7.

Testing a given value of the parameter

We first run the 5%-size sCC test for the null hypothesis H0 : β1 = −1. The nuisance
parameter is δ = (β0, β2)

′.

First, we load a dataset that contains the interval measurements Yl, Yu of the
dependent variable as well as the continuous regressors X1 and X2.

. use dataex2

. // Summary of continuous variables X1 and X2

. summarize X1 X2

Variable Obs Mean Std. dev. Min Max

X1 100 .5102962 .2887167 .0037044 .9995728
X2 100 .5091578 .2874893 .0254002 .9978425

The summary statistics reported by the command summarize X1 X2 tell us that X1i

and X2i are continuous random variables.

We define the instrumental function by

I(Xi) = I(X1i, X2i) =

I(X1i ≤ 0.5, X2i ≤ 0.5)
I(X1i ≤ 0.5, X2i > 0.5)
I(X1i > 0.5, X2i ≤ 0.5)
I(X1i > 0.5, X2i > 0.5)

 .

Each element of I(Xi) should be a variable in Stata. These variables are generated as
follows:

. // Generate I(X), instrument function

. generate iv1 = 1*(X1<=0.5) & (X2<=0.5)

. generate iv2 = 1*(X1<=0.5) & (X2>0.5)

. generate iv3 = 1*(X1>0.5) & (X2<=0.5)

20 Inference in Moment Inequality Models

. generate iv4 = 1*(X1>0.5) & (X2>0.5)

Let X−1,i = (1, X2i)
′. In the following code, we compute elements of

(
(I(Xi)X

′
−1,i)

−(I(Xi)X
′
−1,i)

)
,

which are needed for computing CZ .

. // Generate (I(X)´,-I(X)´)´*(1,X2), which are 8 x 2 matrix.

. // Sample average of it becomes the matrix Cz,

. // which is multiplied before nuisance parameter in the moment inequality

. generate c11 = iv1

. generate c21 = iv2

. generate c31 = iv3

. generate c41 = iv4

. generate c51 = -iv1

. generate c61 = -iv2

. generate c71 = -iv3

. generate c81 = -iv4

. generate c12 = iv1*X2

. generate c22 = iv2*X2

. generate c32 = iv3*X2

. generate c42 = iv4*X2

. generate c52 = -iv1*X2

. generate c62 = -iv2*X2

. generate c72 = -iv3*X2

. generate c82 = -iv4*X2

We define the 8× 2 matrix CZ = 1
n

∑n
i=1

(
(I(Xi)X

′
−1,i)

−(I(Xi)X
′
−1,i)

)
in the following code:

. // Compute Cz using the data we generated above

. matrix C = J(8,2,.)

. qui mean c11 c12 c21 c22 c31 c32 c41 c42 c51 c52 c61 c62 c71 c72 c81 c82

. matrix meanC = r(table)[1,1..16]

.

. forvalues i = 1/8{
2. forvalues j = 1/2{
3. matrix C[`i´,`j´] = meanC[1,2*(`i´-1)+`j´]
4. }
5. }

We also need to compute
(

(I(Xi)X1i)
−(I(Xi)X1i)

)
that are multiplied by the parameter of interest

β1.

. // Generate (I(X)´*X1,-I(X)´*X1)´

. generate zv1 = iv1*X1

. generate zv2 = iv2*X1

. generate zv3 = iv3*X1

. generate zv4 = iv4*X1

. generate zv5 = -iv1*X1

. generate zv6 = -iv2*X1

Gong, Cox, and Shi 21

. generate zv7 = -iv3*X1

. generate zv8 = -iv4*X1

In the following code, we compute
(

(I(Xi)YLi)
−(I(Xi)YUi)

)
.

. // Generate (I(X)´*Yl,-I(X)´*Yu)´

. generate zy1 = iv1*Yl

. generate zy2 = iv2*Yl

. generate zy3 = iv3*Yl

. generate zy4 = iv4*Yl

. generate zy5 = -iv1*Yu

. generate zy6 = -iv2*Yu

. generate zy7 = -iv3*Yu

. generate zy8 = -iv4*Yu

To test β1 = −1, we need to construct m(Wi, β1) =
(

(I(Xi)(YLi−β1X1i))
−(I(Xi)(YUi−β1X1i))

)
as follows:

. // Generate (I(X)´*(Yl-(-1)*X1),-I(X)´*(Yu-(-1)*X1))´

. // Its moment is used to test H0: beta1 = (-1)

. generate m1 = zy1 - (-1)*zv1

. generate m2 = zy2 - (-1)*zv2

. generate m3 = zy3 - (-1)*zv3

. generate m4 = zy4 - (-1)*zv4

. generate m5 = zy5 - (-1)*zv5

. generate m6 = zy6 - (-1)*zv6

. generate m7 = zy7 - (-1)*zv7

. generate m8 = zy8 - (-1)*zv8

Then, all inputs for the sCC test are ready. We can run the 5%-size sCC test using the
ccscc command as follows:

. matrix dz = J(8,1,0)

. matrix B = I(8)

.

. ccscc (X1 X2) m1 m2 m3 m4 m5 m6 m7 m8, matineq(B) matnuisa(C) vecineq(dz)

Number of obs : 100
Accept the hypothesis
test statistic : .02629131
critical value : 3.8414588
rank : 1
p-value : .87119092

Note that the test for H0 : β1 = −1 is not rejected at the default significance level 5%.
The test statistic and critical value are .02629131 and 3.8414588, and the p-value is
.87119092.

We now show how to run the sCC test when the exogenous variables are discrete.
In the following example, we use a dataset where X1 and X2 are binary variables. We

need to add the ivdiscrete option to the ccscc command so that Σ̂n is efficiently
obtained.

22 Inference in Moment Inequality Models

. clear

. use dataex3

. // Summary of discrete variables X1 and X2

. summarize i.X1 i.X2

Variable Obs Mean Std. dev. Min Max

X1
0 100 .47 .5016136 0 1
1 100 .53 .5016136 0 1

X2
0 100 .43 .4975699 0 1
1 100 .57 .4975699 0 1

.

. generate iv1 = 1*(X1==0) & (X2==0)

. generate iv2 = 1*(X1==0) & (X2==1)

. generate iv3 = 1*(X1==1) & (X2==0)

. generate iv4 = 1*(X1==1) & (X2==1)

.

. generate c11 = iv1

. generate c21 = iv2

. generate c31 = iv3

. generate c41 = iv4

. generate c51 = -iv1

. generate c61 = -iv2

. generate c71 = -iv3

. generate c81 = -iv4

. generate c12 = iv1*X2

. generate c22 = iv2*X2

. generate c32 = iv3*X2

. generate c42 = iv4*X2

. generate c52 = -iv1*X2

. generate c62 = -iv2*X2

. generate c72 = -iv3*X2

. generate c82 = -iv4*X2

.

. matrix C = J(8,2,.)

. qui mean c11 c12 c21 c22 c31 c32 c41 c42 c51 c52 c61 c62 c71 c72 c81 c82

. matrix meanC = r(table)[1,1..16]

.

. forvalues i = 1/8{
2. forvalues j = 1/2{
3. matrix C[`i´,`j´] = meanC[1,2*(`i´-1)+`j´]
4. }
5. }

.

. generate zv1 = iv1*X1

. generate zv2 = iv2*X1

. generate zv3 = iv3*X1

. generate zv4 = iv4*X1

Gong, Cox, and Shi 23

. generate zv5 = -iv1*X1

. generate zv6 = -iv2*X1

. generate zv7 = -iv3*X1

. generate zv8 = -iv4*X1

.

. generate zy1 = iv1*Yl

. generate zy2 = iv2*Yl

. generate zy3 = iv3*Yl

. generate zy4 = iv4*Yl

. generate zy5 = -iv1*Yu

. generate zy6 = -iv2*Yu

. generate zy7 = -iv3*Yu

. generate zy8 = -iv4*Yu

.

. generate m1 = zy1 - (-1)*zv1

. generate m2 = zy2 - (-1)*zv2

. generate m3 = zy3 - (-1)*zv3

. generate m4 = zy4 - (-1)*zv4

. generate m5 = zy5 - (-1)*zv5

. generate m6 = zy6 - (-1)*zv6

. generate m7 = zy7 - (-1)*zv7

. generate m8 = zy8 - (-1)*zv8

.

. matrix dz = J(8,1,0)

. matrix B = I(8)

.

. ccscc (X1 X2) m1 m2 m3 m4 m5 m6 m7 m8, matineq(B) matnuisa(C) vecineq(dz) ivd

Number of obs : 100
Accept the hypothesis
test statistic : .38010528
critical value : 5.9914645
rank : 2
p-value : .8269156

Applying test inversion to obtain a confidence set

We now illustrate how to apply test inversion to construct confidence intervals using
our ccscc command. We continue using the interval outcome linear regression example
with the discrete dataset dataex3 we loaded in the last section and consider β1.

We employ the grid search method here, which involves constructing a grid of param-
eter values and conducting a sequence of tests for each value in the grid. We construct
the grid by {−2 + 0.05j : 0 ≤ j ≤ 40}.

. // Construct CS using test inversion

.

. matrix grid = J(41,1,0)

. matrix rejects = J(41,1,0)

24 Inference in Moment Inequality Models

. matrix tstats = J(41,1,0)

. matrix cvs = J(41,1,0)

.

. forvalues j = 1/41{
2. matrix grid[`j´,1] = 0.05*(`j´-1)-2
3. }

.

. forvalues j = 1/41{
2. qui replace m1 = zy1 - grid[`j´,1]*zv1
3. qui replace m2 = zy2 - grid[`j´,1]*zv2
4. qui replace m3 = zy3 - grid[`j´,1]*zv3
5. qui replace m4 = zy4 - grid[`j´,1]*zv4
6. qui replace m5 = zy5 - grid[`j´,1]*zv5
7. qui replace m6 = zy6 - grid[`j´,1]*zv6
8. qui replace m7 = zy7 - grid[`j´,1]*zv7
9. qui replace m8 = zy8 - grid[`j´,1]*zv8

10.
. qui ccscc (X1 X2) m1 m2 m3 m4 m5 m6 m7 m8, matineq(B) matnuisa(C) vecineq(dz) ivd
11.

. matrix rejects[`j´,1] = `r(reject)´
12. matrix tstats[`j´,1] = `r(t_stat)´
13. matrix cvs[`j´,1] = `r(cv)´
14. }

.

. svmat grid

. svmat tstats

. svmat cvs

.

. // Plot test statistics and critical values over the grid

. line tstats grid, legend(order(1 "Test statistics" 2 "Critical values")) xtitle("") ///
> || line cvs grid

The Stata matrix grid in the code above contains the values of the grid points. The
Stata matrix rejects stores results indicating whether the test rejected the parameter
values in the grid. The Stata matrices tstats and cvs hold the test statistic and
critical value for each parameter value in the grid. The first loop in the code constructs
the grid, while the second loop performs the sCC test for each hypothesized parameter
value within the grid. The final line of the code returns Figure 1, which displays the test
statistics and critical values for hypothesized parameter values across the grid. In Figure
1, the parameter values where the test statistics are lower than their corresponding
critical values are not rejected. The collection of these parameter values forms the 95%
confidence interval. Figure 1 shows that lower and upper bounds of the 95% confidence
interval are approximately −1.5 and −0.5. More precise bounds can be obtained either
by considering a finer grid or by a more refined search algorithm such as the bisection
algorithm implemented in sccintreg.

8.3 sccintreg

For the interval outcome linear regression model, the construction of marginal confidence
intervals is automated by the command sccintreg, so that the user does not have to
manually write the loops for the bisection or grid-search.

Gong, Cox, and Shi 25

0
5

10
15

20
25

-2 -1.5 -1 -.5 0

Test statistics Critical values

Figure 1: x-axis is the grid of hypothesized parameter values. The solid line represents
the test statistics. The dashed line represents the critical values.

To illustrate the command sccintreg, we again use the dataset dataex2, which has
the interval measures Yl and Yu and continuous regressors X1 and X2. We start with
running the command without any options:

. use dataex2 // Use continuous X dataset

.

. sccintreg Yl Yu X1 X2

Number of obs : 100

Table of confidence intervals

Variable [95 % Conf. Interval]

constant -.42101443 1.1744011
X1 -2.0398755 .03558808
X2 -2.6442282 -.55284578

The command without options set default values to all options, which are explained
in Section 7 above. In this example, the command reports a table of 95% confidence
intervals for all 3 coefficients in the model.

We use the data set dataex3 where the regressors are discrete variables to illustrate
the option discrete.

. clear

. use dataex3 // Use discrete X dataset

. sccintreg Yl Yu X1 X2, d

Number of obs : 100

Table of confidence intervals

26 Inference in Moment Inequality Models

Variable [95 % Conf. Interval]

constant -.41889411 .50473672
X1 -1.5094282 -.5111461
X2 -1.5798855 -.60470784

Users can specify options to perform the grid search instead, which typically returns
cruder confidence intervals but has the advantage of saving the test statistics and critical
values at each grid point for plotting. Now we implement the command with the grid
search option using the discrete dataset we loaded:

. // Use grid search for the coefficient of "X1"

. // Grid is from -2 to 0 and has 201 points.

. matrix lbound = (-2)

. matrix ubound = (0)

. sccintreg Yl Yu X1 X2, d lb(lbound) ub(ubound) subset("X1") grid(201)
Calculate CIs for (X1)
Bounds are set
X1 : [-2, 0]

Number of obs : 100

Table of confidence intervals

Variable [95 % Conf. Interval]

X1 -1.51 -.51

The following code shows how to make the plot of the test statistics and critical
values, Figure 2, after running sccintreg. Figure 2 provides a more detailed view
compared to Figure 1, featuring a finer grid of points.

. matrix grid = r(GRIDs)[1,1..201]´

. matrix Tns = r(Tns)[1,1..201]´

. matrix CVs = r(CVs)[1,1..201]´

. svmat grid
number of observations will be reset to 201
Press any key to continue, or Break to abort
Number of observations (_N) was 100, now 201.

. svmat Tns

. svmat CVs

.

. // Plot test statistics and critical values over the grid

. line Tns grid, legend(order(1 "Test statistics" 2 "Critical values")) xtitle("") ///
> || line CVs grid

9 Conclusion

Inequality testing arises in a variety of economic applications. In this article, we in-
troduce the new ccscc command that implements computationally simple and fast
inequality tests proposed by Cox and Shi (2023b). We also conduct Monte Carlo simu-
lations to compare the results obtained from the ccscc command with those from Cox
and Shi (2023b). Additionally, we demonstrate how to use the ccscc command for full-

Gong, Cox, and Shi 27

0
5

10
15

20
25

-2 -1.5 -1 -.5 0

Test statistics Critical values

Figure 2: x-axis is the grid of hypothesized parameter values. The solid line represents
the test statistics. The dashed line represents the critical values.

vector and subvector inferences with simulated datasets. We additionally introduce the
sccintreg command which is convenient for linear regression with an interval outcome
and show how to use the command through applications using simulated datasets. A
limitation of the commands developed in this article is that they do not directly apply
to the generalized CC test in Cox et al. (2024), but the package developed here can be
a useful basis for developing a more general command that covers the GCC test.

10 References
Abadie, A., G. W. Imbens, and F. Zheng. 2014. Inference for Misspecified Models
With Fixed Regressors. Journal of the American Statistical Association 109(508):
1601–1614.

Andersen, M. S., J. Dahl, and L. Vandenberghe. 2023. CVXOPT: A Python package
for convex optimization, version 1.1.6. Available at cvxopt.org. Technical report.

Andrews, D. W. K., and P. J. Barwick. 2012. Inference for Parameters Defined by
Moment Inequalities: A Recommended Moment Selection Procedure. Econometrica
80(6): 2805–2826.

Andrews, D. W. K., W. Kim, and X. Shi. 2017. Commands for Testing Conditional
Moment Inequalities and Equalities. The Stata Journal 17(1): 56–72.

Andrews, D. W. K., and X. Shi. 2013. Inference Based on Conditional Moment Inequal-
ities. Econometrica 81(2): 609–666.

28 Inference in Moment Inequality Models

Canay, I. A., G. Illanes, and A. Velez. 2023. A User’s guide for inference in models
defined by moment inequalities. Journal of Econometrics .

Canay, I. A., and A. Shaikh. 2017. Practical and Theoretical Advances for Inference
in Partially Identified Models In B. Honoré, A. Pakes, M. Piazzesi, and L. Samuel-
son (Eds) Advances in Economics and Econometrics: Volume 2: Eleventh World
Congress, (Econometric Society Monographs, pp. 271-306). Cambridge University
Press.

Chernozhukov, V., W. Kim, S. Lee, and A. M. Rosen. 2015. Implementing Intersection
Bounds in Stata. The Stata Journal 15(1): 21–44.

Chernozhukov, V., S. Lee, and A. M. Rosen. 2013. Intersection Bounds: Estimation
and Inference. Econometrica 81(2): 667–737.

Cox, G., and X. Shi. 2023a. Supplemental Appendix for “Simple Adaptive
Size-Exact Testing for Full-Vector and Subvector Inference in Moment Inequal-
ity Models,” The Review of Economic Studies 90, 201-228. Available on aca-
demic.oup.com/restud/article/90/1/201/6548809. Technical report.

. 2023b. Simple Adaptive Size-Exact Testing for Full-Vector and Subvector In-
ference in Moment Inequality Models. The Review of Economic Studies 90: 201–228.

Cox, G., X. Shi, and Y. Shimizu. 2024. Testing Inequalities Linear In Nuisance Param-
eters unpublished manuscript.

Dickstein, M. J., J. Jeon, and E. Morales. 2024. Patient Costs and Physicians Informa-
tion NBER working paper.

Elliot, G., N. Kudrin, and K. Wuthrich. 2022. Detecting p-Hacking. Econometrica 90:
887–906.

Gandhi, A. K., Z. Lu, and X. Shi. 2023. Estimating Demand for Differentiated Products
with Zeroes in Market Share Data. Quantitative Economics 14: 381–418.

Ho, K., and A. Rosen. 2017. Partial Identification in Applied Research: Benefits and
Challenges In B. Honoré, A. Pakes, M. Piazzesi, and L. Samuelson (Eds) Advances
in Economics and Econometrics: Volume 2: Eleventh World Congress, (Econometric
Society Monographs, pp. 307-359). Cambridge University Press.

Molinari, F. 2020. Econometrics with Partial Identification In S. Durlauf, L. Hansen, J.
Heckman, and R. Matzkin (Eds) Handbook of Econometrics: Volume 7A, 1st Edition.
North Holland.

Yuan, Z., and P. J. Barwick. 2024. Network Competition in the Airline Industry: An
Empirical Framework Working paper, University of Wisconsin at Madison.

	Stata Commands for Full-vector and Subvector Inference in Moment Inequality Modelsto.44em.Gong, Cox, and Shi

