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The study of partially identified models originated from the recognition that eco-

nomic models often fail to yield point identification. Foundational contributions by

Manski (1989, 1990, 1993) developed the use of bounds and incomplete models to

draw inference under minimal assumptions, particularly in treatment effect and se-

lection settings.1 Building on these early insights, a rich literature has developed

on partially identified models. The applications of such models span all major ar-

eas of empirical economics including labor economics (e.g. Blundell et al. (2007)),

industrial organization (e.g. Ciliberto and Tamer (2009)), trade (e.g. Morales et al.

(2019), Kalouptsidi et al. (2020)), market design (e.g. He (2017) and Fack et al.

(2019)), macroeconomics (e.g. Giacomini and Kitagawa (2021)), network formation

and interaction (e.g. Sheng (2020)), and political economics (e.g. Iaryczower et al.

(2018)). A more thorough overview of the applications can be found in the survey

papers Ho and Rosen (2017), Pakes et al. (2015), Molinari (2020), and Kline et al.

(2021). Canay et al. (2023) provide a user’s guide for doing inference in such models.

In many applications, partially identified models are characterized by infinitely

many moment (in)equalities. The combination of partial identification and the sheer

number of inequality constraints poses distinct challenges for statistical inference.

Over the past two decades, a rich set of methods has been developed, including

diverse testing procedures and new asymptotic tools. Nevertheless, important ques-

tions remain open. This review seeks to synthesize key contributions from the ex-

isting literature and to highlight unresolved issues and promising avenues for future

1In parallel, Phillips (1989) formalized partial identification as a consequence of singularity in
the information matrix, highlighting how weak instruments and local identification failure can lead
to nonstandard asymptotic behavior.
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research.

This paper complements the comprehensive review of other aspects of partially

identified models, by Molinari (2020) and Canay and Shaikh (2017). The former

provides a high-level overview of the key issues including consistent set estimation,

uniform coverage, and the effect of misspecification, with more detailed treatment

on random set theory and computation. The latter focuses on inference methods for

models defined by a finite number of moment inequalities.

1 Setup and Examples

A generic form of models defined by inequalities is as follows:

gP (θ, t) ≤ 0 for all t ∈ T , (1)

for an index set T , where gP (·, ·) is an unknown function that is determined by the

unknown data generating process (DGP) P , and θ is an unknown parameter living

in the parameter space Θ. This setup allows equalities: when there is an equality

restriction, we can simply write it as a pair of opposing inequalities. For much of the

subsequent discussion, it is not necessary to write the equalities out, but it should

be noted that some test statistics used in the literature may benefit from an explicit

equality/inequality notation.

This model is defined by an infinite number of inequalities when T contains an

infinite number of points. There are a few reasons that T may be infinite, which I

illustrate with examples:
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Example 1 (Conditional Moment Inequalities). Many models used in structural es-

timation are conditional ones, where the model specifies the conditional generating

process of the endogenous variables given exogenous variables. When model incom-

pleteness and/or data imperfection lead to moment inequalities, they are conditional

moment inequalities given the exogeneous variables. Mathematically, they are

EP [m(W, θ)|Z] ≤ 0 almost surely, (2)

where m(·, ·) is a known Rd-valued moment function for a d > 0, W is the vector

of observables which may include exogenous and endogenous variables, and Z is the

vector of exogenous variables. When Z is a continuous variables, (2) stands for a

continuum of inequalities.

There are two ways to write (2) in the form of (1). The first is the non-parametric

conditional mean approach, where

gP (θ, t) = EP [m(W, θ)|Z = t], for all t ∈ T , (3)

where T = Supp(Z), where Supp(Z) stands for the support of Z. The second is the

instrumental function approach, where

gP (θ, t) = EP [m(W, θ)t(Z)], for all t ∈ T , (4)

where T is a sufficiently rich class of functions mapping the support of Z to [0,∞).

The classes of functions that are sufficiently rich are discussed in Andrews and Shi
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(2013). These two representations are equivalent, but they motivate different infer-

ence procedures as I discuss later.

Example 2 (Sharp Identified Set). A common feature of many incomplete structural

models is that the correspondence between observables and unobservables are multi-

valued. Let Y stand for the vector of observables and ε stand for the vector of

unobservables. The model imposes the following restrictions:

ε ∈ E(θ, Y ), (5)

where E(θ, y) is a known closed set for each value of θ and y, and ε ∼ Gε(·|θ). Then

the sharp identified set is the set of θ ∈ Θ such that the following inequalities hold:

P (E(θ, Y ) ⊆ A) ≤ Gε(A|θ). (6)

for all measurable subsets A of the support of ε. See e.g. Chesher and Rosen (2017).

Clearly, (6) stands for an infinite number of inequalities. The inequalities in (6) can

be written in the form of (1) as follows:

gP (θ, t) = E[1{E(θ, Y ) ⊆ t}]−Gε(t|θ), for all t ∈ T , (7)

where T is the set of all measurable subsets of the support of Y . For specific models,

such as discrete choice models with instrumental variables, selectively observed data,

and some auction models, Galichon and Henry (2011), Chesher et al. (2013) and

Chesher and Rosen (2017) develop methods to reduce the class of all measurable
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subsets to a much smaller core-determining class, but even that class can contain

many elements.

Example 3 (Support Function Characterization of Sharp Identified Set). When cer-

tain moment conditions are imposed and some mild conditions are satisfied, Beresteanu

et al. (2011) show that (6) can be equivalently expressed in terms of support functions.

For example, E[ε] = 0 and (6) together can be written equivalently as:

EhE(θ,Y )(u) ≥ 0 for all u ∈ Sdu−1, (8)

where hA(u) = supe∈A u′e is the support function of the set A, Sdu−1 = {u ∈ Rdu :

∥u∥ = 1} and du is the dimension of ε.

Example 4 (Infinite Number of Conditional Moment Inequalities). In Examples 2

and 3, I abstracted away from exogenous variables for simplicity. However, in prac-

tice, there often are exogenous variables, and the model is often regarding conditional

distributions of Y given exogenous variables. To be precise, let X be the vector of

exogenous variables. Instead of (5), we have

ε ∈ E(θ, Y,X), (9)

where ε ∼ Gε(·|X, θ). Instead of (6), we have

P (E(θ, Y ) ⊆ A|X) ≤ Gε(A|X, θ), a.s. (10)

for all measurable subsets A of the support of ε. Instead of EP [ε] = 0, we have
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EP [ε|X] = 0, and instead of (8), we have

E[hE(θ,Y,X)(u)|X] ≥ 0 for all u ∈ Sdu−1. (11)

When X contains a continuous variable, both (10) and (11) involve infinite number

of conditional moment inequalities. We can write them in the form of (1) either

by taking the non-parametric conditional mean approach as in (3) or by taking the

instrumental function approach as in (4).

1.1 Inference by Test Inversion

The inequality model (1) often does not point identify θ. Instead, it defines an

identified set for θ:

Θ0(P ) = {θ ∈ Θ : gP (θ, t) ≤ 0 for all t ∈ T }. (12)

If gP (·, ·) is known, one can calculate this set using numerical or analytical tools.

This is the exercise that, for example, Chesher et al. (2013) do in the numerical part

of their paper, where they design a DGP and calculate Θ0(P ) under this artificial

DGP. Such exercises are useful for studying the identification power of various model

assumptions under a designed P , but not applicable in an empirical environment.

In an empirical environment, the researcher has a dataset drawn from P . The goal

is to infer about Θ0(P ) based on the dataset. In standard point-identified models,

one often calculates a consistent parameter estimator and builds a confidence interval

around it. However, in the literature of partially identified models, the estimation
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of Θ0(P ) is out-shadowed by confidence set construction.2 Part of the reason may

be that the sample analogue estimator Θ̂n = {θ ∈ Θ : ĝ(θ, t) ≤ 0 for all t ∈ T } is

inward biased unless strong assumptions are imposed, and removing the inward bias

requires tuning parameters that the resulting estimator is senstive to. The other

part may be that confidence sets based on a consistent set estimator are difficult to

develop except in special cases. I do not discuss the estimation problem further but

refer interested readers to Section 4.2 of Molinari (2020) for a thorough review of

existing methods.

I focus on confidence set construction. In particular, I mainly discuss confidence

sets, denoted CSn(1 − α), that cover the true value of the parameter with a given

probability (asymptotically):

inf
P∈P

inf
θ0∈Θ0(P )

Pr P (θ0 ∈ CSn(1− α)) ≥ 1− α + o(1), (13)

where P is a set of DGPs allowed by the model and α ∈ (0, 1) is a nominal significance

level. Since the researcher does not know the true DGP and does not know which

point in Θ0(P ) is the true value even given P , we would like the minimum coverage

probability under all possible combinations of (P, θ0) allowed by the model to be

bounded from below. Confidence sets that satisfy (13) are said to have uniform

asymptotic coverage for the true value of the parameter. 3

2A confidence set generalizes the concept of a confidence interval. It is a subset of the parameter
space that has certain coverage probability guarantee.

3The literature has also defined a different notion of coverage:

inf
P∈P

Pr P (Θ0(P ) ⊆ CSn(1− α)) ≥ 1− α+ o(1). (14)

Confidence sets that satisfy this coverage guarantee are said to have uniform asymptotic coverage
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Confidence sets satisfying (13) are constructed by test inversion. Specifically, one

constructs a family of tests {φn,α(θ) : θ ∈ Θ}, where for each θ ∈ Θ, φn,α(θ) is a test

for the hypothesis

H0 : gP (θ, t) ≤ 0 for all t ∈ T . (15)

Based on the tests, one defines the confidence set to be

CSn(1− α) = {θ ∈ Θ : φn,α(θ) = 0}, (16)

that is, the set of θ values at which the test does not reject. Since EP [φn,α(θ)] =

1 − Pr P (φn,α(θ) = 0), the coverage guarantee (13) is satisfied if the test has the

following uniform asymptotic level control:

sup
P∈P

sup
θ∈Θ0(P )

EP [φn,α(θ)] ≤ α + o(1). (17)

In practice, CSn(1− α) is often computed by conducting the test φn,α(θ) for a grid

of θ values on Θ, and by inferring the boundary of CSn(1− α) from the acceptance

and the rejection regions on the grid. When the projection of CSn(1 − α) on a

scalar parameter, say λ(θ), is desired, one can also compute the lower and upper

end points of the projection via the following constrained optimization problems:

min \maxθ∈Θ:φn,α(θ)=0 λ(θ).

for the identified set. This notion of coverage is stronger than (13) and typically requires the
confidence set to be wider. It is worth noting that some papers do not add infP∈P in (14). See
Chernozhukov et al. (2007). That results in the pointwise-in P asymptotic coverage of the identified
set, which is not stronger (or weaker) than (13).
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As we can see, constructing the confidence set (16) is naturally related to the lit-

erature of jointly testing an infinite number of inequalities. The hypotheses tested in

this literature include stochastic dominance (e.g. Barrett and Donald (2003),Donald

and Hsu (2016), Chetverikov et al. (2021)), conditional stochastic dominance (e.g.

Delgado and Escanciano (2013)), stochastic monotonicity (e.g. Lee et al. (2009), Seo

(2018)), regression monotonicity (e.g. Ghosal et al. (2000),Hsu et al. (2019)), density

ratio ordering (Carolan and Tebbs (2005), Beare and Moon (2015), Beare and Shi

(2019)), conditional predictive superiority (e.g. Li et al. (2022)) and so on. These

hypotheses can be viewed as a special case of (15) where a parameter θ is not there.

They can be tested using the tests developed for (15), although in some of the afore-

mentioned papers, specialized tests that are not applicable to (15) are developed.

Here I focus on the generic tests and do not discuss the specialized procedures.

2 Existing Tests

Now I discuss the existing tests for (15). Since the tests are constructed for each

given θ, we omit θ and henceforce write gP (θ, t) as gP (t) for notational simplicity.

There are two scenarios in which the literature has considered (15), depending

on the large sample property of the estimator of gP (t) : t ∈ T . Let ĝn(t) : t ∈ T

denote the estimator. The two scenarios are as follows:

1. The sequence of stochastic processes {rn(ĝn(t) − gP(t)) : t ∈ T }∞n=1 converges

weakly in ℓ∞(T ,Rd) to a tight Gaussian process G(t) : t ∈ T , for a normalizing
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sequence {rn}∞n=1.
4

2. {rn(ĝn(t) − gP(t)) : t ∈ T }∞n=1 does not converge weakly to a tight Gaussian

process for any normalizing sequence {rn}.

2.1 Scenario 1

In the first scenario, standard empirical process techniques, in e.g. van der Vaart

and Wellner (1996), can be applied. This allows one to aggregate the information

contained in each dimension of ĝn(t) for each t in a variety of ways to form the

test statistic. In particular, it allows us to derive asymptotic distributions for tests

statistics of the form

TCvM
n =

∫
T
S(rnĝn(t),Σn(t))dµ(t), (18)

where Σn(t) is an estimator of the variance-covariance matrix of rn(ĝn(t) − gP (t))

and S(·, ·) is a user-chosen function to aggregate different dimensions of ĝn(t). This

is called the Cramér-von-Mises type statistic in Andrews and Shi (2013).

Andrews and Shi (2013) define the CvM type statistic for conditional moment

inequality models. Andrews and Shi (2014) define it for a non-parametric conditional

moment inequality model where conditional moment inequalities hold at a given

value of some of the conditional variables. Andrews and Shi (2017) define it for a

model defined by infinitely many conditional moment inequalities. Hsu et al. (2019)

extend it to testing generalized regression monotonicity. In these papers, a large

4Here ℓ∞(T ,Rd) consists of all bounded functions f : T → Rd.
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sample distributional approximation of Tn is derived instead of a limit distribution.

However, under a mild assumption on the variance-covariance estimator, it is possible

to derive a limit distribution for Tn. I do so in Proposition 1.

Proposition 1. Let {Pn} be a sequence of distributions such that H0 in (15) holds

for each n. Suppose:

(i) rn(ĝn(t)− gPn(t)) ⇒ G(t) in ℓ∞(T ,Rd), where G is a tight Gaussian process;

(ii) supt∈T ∥Σn(t) − Σ(t)∥ →p 0, for some Σ ∈ ℓ∞(T ,Sd
+) with eigenvalues uni-

formly bounded below by ε > 0, where Sd
+ is the set of positive definite matrices

of size d;

(iii) −rngPn(t) → h(t) pointwise, for some h : T → [0,∞]d;

(iv) S : [−∞,∞)d × Sd
+ → R+ is continuous, non-decreasing in the first argument,

and satisfies S(m,Σ + Σ1) ≤ S(m,Σ) for all m and Σ,Σ1 ∈ Sd
+.

Then

Tn :=

∫
T
S(rnĝn(t),Σn(t))dµ(t) −→d T∞ :=

∫
T
S(G(t)− h(t),Σ(t))dµ(t).

Proof. Conditions (i) and (ii) imply, via the almost sure representation theorem, that

there exists a version of (rn(ĝn(t)− gPn(t)),Σn(t)) : t ∈ T with the same distribution

that converges almost surely to a version of (G(t),Σ(t)) : t ∈ T . Without loss of

generality, assume we are working with this version. Then, almost surely,

(rn(ĝn(t)− gPn(t)),Σn(t)) → (G(t),Σ(t)) uniformly over t ∈ T . (19)
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Fix a sample path along which the convergence in (19) holds and supt∈T G(t) < ∞.

Consider convergence along this path. Then, by the continuity of S (Condition (iv))

and Condition (iii),

S(rnĝn(t),Σn(t)) → S(G(t)− h(t),Σ(t)) for all t ∈ T . (20)

Moreover, the uniform convergence of Σn(·) to Σ(·) and condition (ii) imply that

the minimum eigenvalue of Σn(t) is eventually uniformly bounded below by ε/2.

This, combined with gPn(t) ≤ 0, the non-decreasing property of S in its first argu-

ment and the non-increasing property in its second argument (condition (iv)), im-

plies that S(rnĝn(t),Σn(t)) ≤ S(rn(ĝn(t)− gPn(t)),
ε
2
I). By the continuity of S(·, ε

2
I)

(via condition (iv)) and supt∈T G(t) < ∞, the Heine–Cantor theorem implies that

S(rn(ĝn(t)− gPn(t),
ε
2
I) converges uniformly to S(G(t), ε

2
I). Thus,

sup
t∈T

S(rnĝn(t),Σn(t)) < sup
t∈T

S(G(t), ε
2
I) + ε, eventually. (21)

Hence, the bounded convergence theorem applies and yields

∫
T
S(rnĝn(t),Σn(t)) dµ(t) →

∫
T
S(G(t)− h(t),Σ(t)) dµ(t). (22)

This holds for all sample paths where (19) holds, and supt∈T G(t) < ∞. Thus, it

holds almost surely and therefore also in distribution. This concludes the proof.

The proposition is a new result. It strengthens the distributional approximation

result in Theorem 1 of Andrews and Shi (2013) to a limit distribution one. Based
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on these results, one can obtain a simulation-based critical value after estimating a

lower bound for h(·).

We can only bound h(·) instead of consistently estimating it because it is a limit

of rngPn(t) and gPn(t) can at best be estimated rn-consistently. On the other hand,

a lower-bound is sufficient for constructing a valid test because replacing h(·) by a

lower bound enlarges the integral
∫
T S(G(t)−h(t),Σ(t))dµ(t) due to the monotonicity

of S(g,Σ) in its first argument. Therefore, the resulting simulated critical value is

asymptotically valid (i.e. not leading to excesive over-rejection uner H0).

Typically, there are two ways to bound h(t). The first is sometimes called “least

favorable” and sometimes called “plug-in asymptotics (PA)” in the literature. It is

to bound h(t) by 0 for all t, and is justified by the fact that gPn(t) ≥ 0 for all Pn

satisfying H0 in (15).

The second is called “generalized moment selection (GMS)” in the literature. The

idea is to approximate hj(t) by +∞ or something that diverges to +∞ if there is

strong evidence that hj(t) = ∞ and to replace it by zero or something that converges

to zero otherwise. Andrews and Shi (2013) recommend the following GMS bound

for h(·) (when rn = n1/2):

hn,j(t) = Bn1{κ−1
n n1/2ĝn,j(t)/σn,j(t) > 1}, (23)

where κn and Bn (e.g. κn = (0.3 log(n))1/2, Bn = (0.4 log(n)/ log(log(n)))1/2) are

user-chosen positive constants such that κn → ∞ and Bn/κn → 0 as n → ∞, and

σn,j(t) is the jth diagonal element of Σn(t).

Once a feasible bound hn(t) is chosen, one can define the critical value, cvn(α),
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to be the simulated 1− α quantile of:

T cv
n =

∫
T
S(G∗

n(t) + hn(t),Σn(t))dµ(t), (24)

where G∗
n(t) is the random component (conditional on data) to be simulated. It

can be the bootstrap empirical process rn(ĝ
∗
n(t)− ĝn(t)) : t ∈ T where ĝ∗n(t) is ĝn(t)

calculated from a bootstrap sample. It can also be a Gaussian process with variance

covariance kernel Σ̂n(t1, t2) : t1, t2 ∈ T which for each (t1, t2) is a consistent estimator

of Cov(rn(ĝn(t1)− gP (t1)), rn(ĝn(t2)− gP (t2))). Finally, the test is defined to be

φn,α = 1{Tn > cvn(α)}. (25)

A few things are left out in the foregoing discussion. First, the eigenvalues of the

matrix Σ(t) is required to be uniformly bounded away from zero. This is typically

not satisfied if Σn(t) is a consistent estimator of the variance-covariance matrix of

rn(ĝn(t)− gP (t)). This is because often the latter matrix can be arbitrarily close to

singularity when T has infinitely many elements. Thus, in order to take advantage of

the empirical process result as one does in Proposition 1 and in results like Theorem

1 of Andrews and Shi (2013), the variance-covariance matrix needs to be regularized.

In this literature, Σn(t) is often taken as Σ̂n(t) + εΣ̂n where Σ̂n is Σ̂n(t) at a par-

ticular t where the variance-covariance matrix is not degenerate. The regularization

parameter ε is not allowed to converge to zero as n → ∞. It is interesting to ask

what happens to the limit distribution of Tn if a sequence εn → 0 is used instead of
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a fixed ε. For the CvM statistic, this is an open question.5

Second, the critical value that I define above is not exactly the same as that

proposed in Andrews and Shi (2013) and the subsequent papers. Specifically, the

critical values used in that literature are η plus the simulated 1 − α + η quantile,

where η is the so-called infinitesimal constant. The constant is needed to prove

the asymptotic level control of the test because the limit distribution of Tn is not

derived in that literature, but instead, an approximate distribution that still depends

on rngPn(t) is derived. That alone is not sufficient to justify the use of the 1 − α

quantile of the approximating distribution as the critical value.

Proposition 1 establishes the limit distribution of TCvM
n , and Lemma B.3 in the

supplemental appendix of Andrews and Shi (2013) proves the continuity and strict

monotonicity of the limit distribution when the following S functions are used

Smax(g,Σ) = max
j

max{gj, 0}2

σ2
j

, and Ssum(g,Σ) =
∑
j

max{gj, 0}2

σ2
j

. (26)

In light of Lemma 5 of Andrews and Guggenberger (2010), these results together

should obviate the need for the infinitesimal constant. The validity of this conjecture

and the breadth of its applicability are open questions.

Third, there is a natural alternative to the CvM test statistic, the Kolmogorov-

5A truly studentized Kolmogorov-Smirnov (KS) type statistic is discussed extensively in Scenario
2 where penultimate distributional approximations are derived but not limit distributions. A limit
distribution result for that KS statistic is derived in Armstrong (2015) for the conditional moment
inequality hypothesis under the data generating processes that the conditional moments are binding
(= 0) on a measure-zero set. The derivation does not apply when the binding set is not of measure-
zero.
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Smirnov Statistic:

TKS
n = sup

t∈T
S(rnĝn(t)),Σn(t)) (27)

However, the arguments in the proof of Proposition 1 does not work for the KS

statistic because there is no bounded convergence theorem for the supremum oper-

ator. Nevertheless, under a fixed P satisfying H0 in (15) (as opposed to a drifting

sequence {Pn}), Barrett and Donald (2003) establish the limit distribution for an

identity weighted KS statistic6 for the hypothesis of stochastic dominance. The ar-

guments do not appear to be specific to stochastic dominance or to using identity

weighting, but do seem to depend on the fixed P . It is an open question how it

extends to drifting P . The drifting P result is necessary to prove an asymptotic size

result that is uniform over DGPs, that is, a result like (17) with the supP∈P (and

supθ∈Θ if there is a θ).

On the other hand, a limit distribution result might not be necessary for certain

KS-type statistics to justify a uniformly asymptotically valid testing procedure, as

shown in the literature on Scenario 2, which I move on to now.

2.2 Scenario 2

In the second scenario, weak convergence fails to hold. This arises, for instance,

when gP (t) includes nonparametrically estimated conditional expectations or if T is

a discrete set that does not have a particular structure.

6Barrett and Donald’s KS statistic equals the square root of TKS
n with Σn = I and S being

Smax defined above
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In the conditional moment inequality models described in Examples 1 and 4, if

one writes down gP (t) using the instrumental function approach illustrated in (3),

and the set of instrumental functions is appropriately chosen to be rich enough but

not too large (ref. Andrews and Shi (2013)), then one can form a ĝn(t) to satisfy

weak convergence and hence to use the techniques developed for Scenario 1. On

the other hand, if one writes down gP (t) using the nonparametric conditional mean

approach described in (4), weak convergence will not hold and one is in Scenario 2.

In Example 3, and in Example 2 when the core determining class is a finite union

of half spaces, one can be in Scenario 1, as proved in Sections 7-9 in Andrews and

Shi (2017). Otherwise, one is in Scenario 2.

In the literature that works under Scenario 2, the variety of test statistics con-

sidered has been much more limited. The predominant choice is a studentized KS

statistic, or a supremum (SUP) statistics, with the exception of Lee et al. (2013). I

discuss Lee et al. (2013) at the end of this section.

Suppose that gP (t) is scalar-valued.
7 The SUP statistic is

T sup
n = sup

t∈T

rnĝn(t)

σ̂n(t)
, (28)

where σ̂n(t) is a consistent estimator of the asymptotic standard deviation of rn(ĝn(t)−

gP (t)).
8

Let Ẑn(t) = rn(ĝn(t) − gPn(t))/σ̂n(t) for t ∈ T . Note that this process may not

7It is without loss of generality to assume that gP (t) is scalar-valued when the SUP statistic is
used. This is because each component of gP (t) enters the statistic separately. Thus, one can simply
lump the component index with t.

8Note that this statistic is the square root of TKS
n above with S being Smax and with the

diagonals of Σn(t) being σ̂n(t)
2.
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weakly converge to a tight Gaussian process even when rn(ĝn(t)−gPn(t)) : t ∈ T does

if σ̂n(t) is not bounded away from zero, let alone when rn(ĝn(t)−gPn(t)) : t ∈ T does

not converge weakly. Thus, different tools are needed to analyze the distributional

behavior of T sup
n .

One tool used in this literature is the strong approximation of Ẑn(t) : t ∈ T by a

penultimate Gaussian process Z∗
n(t) : t ∈ T :

sup
t∈T

|Ẑn(t)− Z∗
n(t)| = op(δn), (29)

where δn is a sequence such that δn → 0. See Chernozhukov et al. (2013). Strong

approximation of this type can be established using coupling arguments such as

the Yurinskii coupling for sums of independent random variables (Chapter 10 of

Pollard (2002)) and for partial sums of mixingales (Li and Liao (2020)). I describe

a distributional approximation result for T sup
n based on this tool.

A related tool is the Gaussian approximation of the supreme of Ẑn(t), such as

∣∣∣∣sup
t∈T

Ẑn(t)− sup
t∈T

Z∗
n(t)

∣∣∣∣ = op(δn), (30)

The verification of such approximation and results based on this tool are derived

in Chernozhukov et al. (2014b). Also in this genre, Li et al. (2022) use a Gaussian

approximation for the supreme over many projection directions of Ẑn(t) to derive a

test for superior predictivity. They prove the validity of the Gaussian approxima-

tion for the nonparametric series estimator for dependent data. Not requiring full

approximation of the entire vector of Ẑn(t) allows the dimenion of the vector to grow
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at a faster rate.

A different type of tools is central limit theorem (CLT) in high dimensions (e.g.

Chernozhukov et al. (2017) and Fang and Koike (2024)). Such results are stated

with a finite but increasing T . Specifically, denote the T used for a given sample

size n as Tn. The set Tn consists of pn elements.9 Let Z⃗ denote (Z(t1), . . . , Z(tpn))
′.

A CLT in high dimensions is of the form:

sup
A∈An

|Pr(⃗̂Zn ∈ A)− Pr(Z⃗∗
n ∈ A)| = o(ξn), (31)

where An is a collection of measurable sets on Rpn , such as the collection of hyper-

rectangles or of Euclidean balls, and ξn → 0. Such results are used to derive tests

for increasingly many moment inequalities, for example, in Chetverikov (2018) and

Bai et al. (2022).

One last tool used is the analytical bounds for the tail probability of supt∈Tn Ẑn(t),

derived using the subadditivity of probability measures and tail bounds for standard

normal random variables (ref. Chernozhukov et al. (2019)). These bounds are not as

accurate as the CLT approximations, but they do not require bootstrap to implement

and can allow pn to be much larger than n.

Now I describe a result from Chernozhukov et al. (2013). Consider a sequence of

data generating processes {Pn} satisfying H0. Let σn(t) be the population counter-

part of σ̂n(t). Let T
∗
n = supt∈T ∗

n
Z∗

n(t) where T ∗
n = {t ∈ T : rngPn(t) ≥ −σn(t)kn(γn)},

kn(γ) is the 100(1 − γ)% quantile of supt∈T Z∗
n(t), and γn is a sequence of positive

numbers such that γn → 0.

9The finite set Tn can be viewed as an increasingly fine discretization of an uncountable T .
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Proposition 2. Let T be a compact subset of Rd and suppose that T ∗
n is compact

for all n. Moreover, consider a sequence of DGPs {Pn} satisfying H0. Suppose that

(i) Strong Approximation: under the sequence {Pn} (29) holds,

(ii) Anti-Concentration: supx∈R Pr
(
| supt∈Tn Z

∗
n(t)− x| ≤ δn

)
→ 0 for any compact

subset Tn ⊆ T .

(iii) Variance Convergence: supt∈T

∣∣∣σn(t)
σ̂n(t)

− 1
∣∣∣ = op(δnkn(γn)

−1).

Then, uniformly over x ∈ [0,∞),

Pr Pn(T
sup
n ≤ x) ≥ Pr(T ∗

n ≤ x)− o(1). (32)

Proof. Consider the derivation

T sup
n = sup

t∈T
[Ẑn(t) + rngPn(t)/σ̂n(t)]

≤ sup
t∈T

[Z∗
n(t) + rngPn(t)/σ̂n(t)] + sup

t∈T
|Z∗

n(t)− Ẑn(t)|

≤ max

{
sup
t∈Tn

[
Z∗

n(t) +
rngPn(t)

σ̂n(t)

]
, sup
t∈T /T ∗

n

[
Z∗

n(t)− kn(γn)
σn(t)

σ̂n(t)

]}
+ op(δn)

≤ max

{
sup
t∈Tn

Z∗
n(t), sup

t∈T /T ∗
n

[
Z∗

n(t)− kn(γn)
σn(t)

σ̂n(t)

]}
+ op(δn)

≤ max

{
T ∗
n , sup

t∈T
Z∗

n(t)− kn(γn) + kn(γn) sup
t∈T

∣∣∣∣σn(t)

σ̂n(t)
− 1

∣∣∣∣}+ op(δn), (33)

where the first inequality holds because Ẑn(t) ≤ Z∗
n(t) + supt∈Tn |Z∗

n(t)− Ẑn(t)|, the

second inequality holds by supt∈T [·] = max{supt∈T ∗
n
[·], supt∈T /T ∗

n
[·]}, the definition of

kn(γn), and Condition (i), the third inequality holds because gPn(t) ≤ 0 for all t ∈ T
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since H0 holds under Pn, and the fourth inequality uses the triangular inequality and

the fact that T /T ∗
n ⊆ T . Therefore, for any x ≥ 0,

Pr(T sup
n ≤ x)

≥ Pr(T ∗
n + op(δn) ≤ x)− Pr

(
sup
t∈T

Z∗
n(t) > kn(γn)− op(δn)− kn(γn) sup

t∈T

∣∣∣∣σn(t)

σ̂n(t)
− 1

∣∣∣∣) .

(34)

Note that Pr(T ∗
n + op(δn) ≤ x) ≥ Pr(T ∗

n ≤ x) − Pr(|T ∗
n − x| ≤ op(δn)) and that

Pr(| supt∈T ∗
n
Z∗

n(t) − x| ≤ op(δn)) → 0 uniformly over x ∈ R by Condition (ii).

Similarly the subtracted term in the above display is bounded above by

Pr

(
sup
t∈T

Z∗
n > kn(γn)

)
+ Pr

(∣∣∣∣sup
t∈T

Z∗
n − kn(γn)

∣∣∣∣ < op(δn) + kn(γn) sup
t∈T

∣∣∣∣σn(t)

σ̂n(t)
− 1

∣∣∣∣)
= Pr

(
sup
t∈T

Z∗
n > kn(γn)

)
+ o(1), (35)

where the equality holds by Condition (ii) and kn(γn) supt∈T

∣∣∣σn(t)
σ̂n(t)

− 1
∣∣∣ = op(δn)

(Condition (iii)). By the definition of kn(γn), Pr(supt∈T Z∗
n > kn(γn)) ≤ γn. Thus it is

also o(1). Therefore, Pr(T sup
n ≤ x) ≥ Pr(T ∗

n ≤ x)+o(1) uniformly over x ∈ [0,∞)

Based on a distributional approximation result as that in Proposition 2, we can

define a simulated critical value after bounding the contact set T ∗
n , that is, finding

an index set T̂n such that

Pr(T ∗
n ⊆ T̂n) → 1. (36)
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Clearly, the least-favorable option, T̂n = T , satisfies the requirement. Chernozhukov

et al. (2013) consider a more sophisticated T̂n that can be a much smaller set than

T while still satisfying (36) when the inequalities gP (t) ≤ 0 are slack on most of

T . The smaller T̂n serves a similar role as moment selection and can greatly reduce

under-rejection comparing to the least-favorable test.

Once T̂n is constructed, one defines the critical value cvsupn (α) to be the 100(1−

α)% quantile of supt∈T̂n Z̃n(t), where Z̃n(t) is the random component to be simulated.

Its conditional distribution (given data) approximates that of supt∈T ∗
n
Z∗

n(t). The

process Z̃n(t) : t ∈ T typically is a Gaussian multiplier bootstrap process because

it is easier to establish strong approximation results for such processes. With the

critical value, the test is

φsup
n,α = 1{T sup

n > cvsupn (α)}. (37)

It is worth discussing the difference between the conditions for Propositions 1

and 2. Unlike Proposition 1, Proposition 2 does not require the weak convergence

of the empirical process and it allows unregularized studentization, that is, the σ̂n(t)

does not need to be bounded away from zero. However, Proposition 2 requires an

anti-concentration property for the distribution of supt∈T Z∗
n (Condition (ii)). It also

needs kn(γn) to not grow too fast because otherwise Condition (iii) is violated. This

is typically verified through a concentration property, or in other words, a tail prob-

ability bound, of the supremum of Gaussian processes. The anti-concentration and

concentration properties have been established under general conditions in Cher-

nozhukov et al. (2014a) and Chernozhukov et al. (2015) for supt∈T Z∗
n(t).
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Anti-concentration and concentration results are not available for more general

functionals of Gaussian processes. This may be the reason that test statistics other

than T sup
n are rarely discussed in Scenario 2.

Nevertheless, if CLT results with a convergence rate, such as those in Cher-

nozhukov et al. (2017), are used instead of strong approximation, one may not need to

separately establish anti-concentration or concentration of the approximating Gaus-

sian process, which may be a viable direction to develop tests based on other test

statistics in Scenario 2.

A different test statistic is considered in Lee et al. (2013) in the setting of con-

ditional moment inequality hypotheses of the form (4), though not using Gaussian

approximation tools described above. They propose a test statistic that is a weighted

integral of the one-sided norm of the numerator of the Nadaraya-Watson estimator

of the conditional mean:

TLSW
n =

d∑
j=1

∫
Z
max

{
0,

n∑
i=1

m(Wi)Kh(Zi − z)

}p

w(z)dz, (38)

where Kh(x) =
1
h
K(x/h), h is a bandwidth that converges to zero as n → ∞, K(·) is

a kernel function, and w(z) is a nonnegative and square-integrable weight function.

They use a Poissonization technique to show that σ−1
n (TLSW

n −an) →d N (0, 1) where

an and σn are quantities that need to be estimated. They show that the convergence

still holds when estimators of σn and an are used instead. Thus, their test rejects H0

if σ̂−1
n (TLSW

n − ân) > zα where zα is the 100(1− α)% quantile of N (0, 1).
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3 Comparison and Hybridation of Tests

As reviewed in the previous section, for some inequality testing problems, such as

conditional moment inequalities, there are quite a few uniformly asymptotically valid

tests available in the literature. In some settings, there currently is only one test

statistic proposed, that is T sup
n , but new asymptotic theory developed in the literature

may allow new tests to be introduced. Then, it is natural to ask what one should do

with these options. How should one select a test to use? Should one select just one

test or is there a way to combine different tests for better performance?

These questions are intriguing because the hypothesis in (15) is a composite null

hypothesis and as such, there is no uniformly most powerful (UMP) test. Moreover,

unlike in the context of equalities, the inequality hypothesis is not rotation invariant,

and hence it is not obvious that one could restrict attention to a reasonable class of

invariant tests and find a UMP one in the class.

In the absence of a UMP test, the relative power of competing tests necessar-

ily depends on the specific alternative under which the data are generated. Since

the data generating process is unobserved, selecting among tests becomes a clas-

sic decision-under-uncertainty problem. Two decision criteria has been suggested in

the literature of inequality testing: a weighted average power (WAP) maximization

criterion and a Maximin power criterion. I now review some existing work on this

topic.
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3.1 Existing Optimality Discussion

The WAP maximization criterion is considered in Chiburis (2008) for moment in-

equality hypotheses and in Elliott et al. (2015) to develop a general framework for

designing a nearly optimal test when testing a null hypothesis in the presence of a

nuisance parameter.10 11 These two papers do not compare tests in the literature.

Instead, they try to design a test that maximizes WAP over all tests that control

size.

Assume again that gP (t) is a scalar for each t. Chiburis’s approach discretizes

T into {t1, . . . , tK} and the space of RK into S regions, and defines a test to be a

vector of rejection probabilities on the S regions. He then numerically calculates

the WAP of such a test for a given weight over the alternative space, as well as the

null rejection probabilities (NRP) for points on a grid for the null space. Finally, he

calculates the optimal test by maximizing the WAP subject to the constraint that

the NRPs are all less than or equal to a nominal significance level. The procedure

can be computationally intensive or even infeasible when K is larger than a handful

because many regions (large S) and many grid points need to be considered in order

to get a reasonably good approximation.

Elliott et al. (2015) improves on Chiburis (2008) by making use of the Neyman-

Pearson (NP) Lemma. When applied in our context, their approach also discretizes

T and {µP ∈ RK : µP ≤ 0}, but instead of solving a linear programming problem,

10In inequality testing problems, the slackness parameter
√
ngP (t) : t ∈ T are the nuisance

parameters because their values are not uniquely determined by H0.
11Andrews and Barwick (2012) also uses the concept of WAP maximization to select tuning

parameters in tests for a finite number of inequalities.
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it uses an iterative procedure to find the least favorable mixed null (a mixure of

the distributions in {P : (gP (t1), . . . , gP (tK)) ≤ 0}). In each iteration, a NP test is

constructed for the weighted mixture null with weights from the previous iteration

against a given mixture alternative, and then the mixing weights for the null are

updated to give more weights to P ’s under which the NP test over-rejects and less

weights to P ’s under which the NP test under-rejects. The iteration procedure

converges to a least favorable mixed null and the associated NP test is the nearly

optimal test.

As we can see, the WAP consideration leads to tests different from any of the tests

reviewed in the previous section, and thus is not helpful for guiding the selection or

combination of those tests. In fact, if one is comfortable with choosing a weight over

the alternative space and is committed to maximizing the associated WAP, and if

the problem is simple enough so that the numerical algorithms in Chiburis (2008) or

Elliott et al. (2015) are feasible, one probably should simply use the nearly optimal

test.

Often, though, the weight on the alternative space is difficult to interpret in

practice.12 This compounded with the computational burden of the nearly optimal

tests limits their practical appeal.

The maximin power rule has been considered in Chetverikov (2018), Armstrong

(2018), and Chernozhukov et al. (2019). Chetverikov (2018) studies the conditonal

inequality moment hypothesis in (2). He shows that no test with asymptotic size

12It should be noted that alternatives local to the null hypothesis are the important ones for WAP
consideration because most reasonable tests are consistent against fixed alternatives. Yet, data are
inherently unable to provide precise information about local alternatives. Thus, we typically cannot
rely on data to determine which alternatives are more relevant.
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control can have asymptotic power larger than the size uniformly against alternatives

belonging to a Hölder ball with smoothness parameter τ and having a sup distance

from the null hypothesis at least an. Here an = o((log(n)/n)τ/(2τ+dZ)) and dZ is

the number of continuous conditioning variables. The intuition for such a result

is that there are always least-rejectable Gaussian Pn’s satisfying the sup distance

requirement that is close to a P0 in the null; the difference of the expectations of

a binary statistic (that is, a test) under the Pn’s and under P0 is bounded by the

differences of Pn’s and P0. These differences are small when an is small. The least-

rejectable Pn’s are typically ones such that the null hypothesis is violated on a fast

shrinking neighborhood of a Z value as n → ∞.

Chetverikov (2018) shows that an adaptive sup statistic-based test controls asymp-

totic size and is consistent against any local alternatives such that an → ∞. In this

sense, the adpative sup statistic-based test is called maximin power rate optimal.

Armstrong (2018) shows that the truly studentized KS test is also maximin power

rate optimal and that a CvM test is not. Chernozhukov et al. (2019) consider test-

ing a large number of unstructured inequalities. Using similar techniques, they also

derive a maximin rate, and shows that the SUP-statistic based tests achieve this

rate. As we can see, the maximin power consideration clearly recommends the truly

studentized KS-type test statistic.

However, focusing only on the worst case power may be costly when there is no

UMP. The cost is the power against other alternatives, in particular, alternatives

under which the inequalities are violated on a non-shrinking or slowly shrinking set

of T albeit by a small amount at each point. Andrews and Shi (2013) show that the
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tests that they propose have nontrivial power against some alternatives that converge

to H0 at 1/
√
n rate. The tests based on T sup

n do not have nontrivial power against

such alternatives.

Alternatives under which the inequalities are vioated on a non-shrinking set nat-

urally occur in moment inequality models that are close to point identification. In

such models, pairs or groups of inequalities interact and restrict each other to be

close to binding on a nontrivial subset of T and they can be violated at all points

in that subset when one moves a parameter value away from the true value. 13 I

illustrate this with a simple interval outcome regression example.

Example 5. Consider a regression model

Y = β0 + β1X + ε, (39)

where Y is missing when a missing indicator M = 1. Suppose that Median(ε|X) = 0.

Then the model implies the following conditional moment inequality model:

mU(X) := E[1{Y ≤ β0 + β1X,M = 0}+ 1{M = 1}|X]− 0.5 ≥ 0

mL(X) := E[1{Y ≤ β0 + β1X}|X]− 0.5 ≤ 0, (40)

where the upper bound holds because 0 = E[1{ε ≤ 0}|X] − 0.5 = E[1{ε ≤ 0,M =

0} + 1{ε ≤ 0,M = 1}|X] − 0.5 ≤ E[1{ε ≤ 0,M = 0} + 1{M = 1}|X] − 0.5. This

is a simplified version of the model considered in Blundell et al. (2007) where their

Y is the wages of female individuals and their X contain covariates that may affect

13See Gandhi et al. (2023) for an example of point identified interval IV regression model.
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wages. Missingness is caused by labor market nonparticipation.

For illustration purpose, we let M = 1{X+Y < C}, where C is the 10th percentile

of X + Y . Let β0 = β1 = 1, and X and ε be independent standard normal random

variables. Note that under this DGP, there is very little missing at large values of X.

Thus, at those values of X, the two bounds are close to forming an equality. This is

illustrated in Figure 1. As illustrated in the figure, as b1 moves toward β1, the lower

bound tilts toward the horizontal 0 line instead of parallel-shift down. Thus, the set of

X values at which the bound is violated does not shrink much in the process. Andrews

and Shi (2013) and Andrews and Shi (2014) contain Monte Carlo results that show

the power trade-off of different tests in a model similar to this.

As the literature currently stands, there is no formal discussion of test comparison

and combination that does not require one to commit to a prior distribution on the

alternative space (as WAP maximization would) or to restrict attention to the most

pessimistic case (as Maximin power would). In the next subsection, I suggest a

direction toward such a formal discussion.

3.2 Minimax Power Regret: A Suggested Direction

In decision theory, an alternative decision criterion to maximin is minimax regret.

Whereas the maximin criterion leads to the safest option by focusing on the worst-

case outcome, the minimax regret criterion seeks to avoid ex post disappointment

and may favor options with better upside potential if they limit worst-case regret.

In the context of hypothesis tests, we can define the regret of a test relative to a

class of tests with guaranteed (asymptotic) level α. Specifically, let Φ = {φs,α : s ∈
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Figure 1: Bounds at Three Values of (b0, b1) For Example 5

31



S} be the class of tests under consideration where S is a finite index set. Under a

given alternative distribution P1, we can define the regret of test φs,α as

RΦ(φs,α, P1) = max
s′∈S

EP1φs′,α − EP1φs,α for s ∈ S. (41)

Thus, the maximum power regret of test φs,α on the alternative space (denoted P1)

is

RΦ(φs,α) := max
P1∈P1

RΦ(φs,α, P1). (42)

The minimax power regret criterion recommends test s if R(φs,α) ≤ R(φs′,α) for all

s′ ∈ S.

Let us consider an example, where K inequalities are tested:

gP (t) ≤ 0 for t = 1, . . . , K. (43)

Let ĝ(t) : t = 1, . . . , K be estimators of gP (t) : t = 1, . . . , K. Suppose that they

are independent and (ĝ(t)− gP (t)) ∼ N (0, 1). This setting abstracts away from the

many challenges in the general case, but suffices for illustrating the potential of the

minimax power regret criterion.
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Let us consider two test statistics:

T sum =
K∑
t=1

([ĝ(t))]+)
2,

T sup = max
t=1,...,K

ĝ(t), (44)

where [x]+ = max{0, x}. Note that since we assume mutual independence of {ĝ(t) :

t = 1, . . . , K}, T sum is the same as the quasi-likelihood ratio statistic: T qlr =

minh≥0(ĝ − h)′(ĝ − h) where ĝ = (ĝ(1), . . . , ĝ(K))′.

Let us consider the least favorable critical values:

cvsumα (K) = F−1∑K
t=1[Zt]2+

(1− α)

cvsupα (K) = F−1
maxt=1,...,K Zt

(1− α), (45)

where (Z1, . . . , ZK)
′ ∼ N(0, IK) and F−1

X (1−α) stands for the 100(1−α)% quantile

of X. Let φsum
α,K = 1{T sum > cvsumα (K)} and φsup

α,K = 1{T sup > cvsupα (K)}.

Suppose that P1 is rich eough so that {gP = (gP (1), . . . , gP (K))′ : P ∈ P1} = RK .

That is, we do not have prior information about (gP (1), . . . , gP (K))′ beyond that is

provided by its estimator. The next proposition implies that

lim inf
K→∞

R{φsum
α,K ,φsup

α,K}(φ
sum
α,K) ≥ 1− α and lim inf

K→∞
R{φsum

α,K ,φsup
α,K}(φ

sup
α,K) ≥ 1− α. (46)

That is, both tests have large maximum power regret. Specifically, when only one

inequality is violated, in order to have non-trivial power, the SUM test needs the
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violation to diverge much faster than the SUP test does because the critical value

of the SUM test diverges faster than the SUP test as K → ∞. On the other hand,

when all the inequalities are violated by a similar amount, the SUP test statistic

cannot aggregate all the violations as effectively as the SUM test. As a result, in

order to have nontrivial power, the SUP test needs the violation (of each inequality)

to be much larger than the SUM test does.

However, we can define a hybrid test based on the two as follows

φhyb
α,K = max{φsum

α/2,K , φ
sup
α/2,K}. (47)

That is, the level α hybrid test rejects H0 when either the level α/2 SUP test rejects

H0 or the level α/2 SUM test rejects H0. The proposition also shows that under the

sequences of P1 that either the SUP test or the SUM test has a large power regret,

the hybrid test has a zero power regret. In a way, the hybrid test adapts to the data

generating process and automatically switches to the more powerful test.14

Proposition 3. (a) Let {PK} be such that gPK
= aK1K, where 1K is a vector

of ones, and aK is a positive scalar sequence such that
√
logKaK → 0 and

√
KaK → ∞ as K → ∞. Then,

R{φsum
α,K ,φsup

α,K}(φ
sup
α,K , PK) → 1− α. (48)

14It should be noted that hybriding is not without cost. Adjusting the level from α to α/2
guarantees level control of the hybrid test, but it reduces power across the board. The power
reduction may not be made up by hybriding under some data generating processes not described
in Proposition 3. Such cost is expected because of the lack of a UMP test and is part of the reason
that criteria like maximin power and minimax regret are useful in this context.
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(b) Let {PK} be such that gPK
(1) = aK and gPK

(t) = 0 for all t ̸= 1, where

aK −
√

2 log(K) → ∞ and aK = o(K1/4). Then,

R{φsum
α,K ,φsup

α,K}(φ
sum
α,K , PK) → 1− α. (49)

(c) Under each of the sequences in parts (a) and (b),

R{φsum
α,K ,φsup

α,K ,φhyb
α,K}(φ

hyb
α,K , PK) → 0. (50)

Proof. (a) It suffices to show that limK→∞max{EPK
φsup
α,K ,EPK

φsum
α,K} = 1 and that

lim
K→∞

EPK
φsup
α,K = α. Consider the derivation

EPK
φsum
α,K = Pr PK

(
K∑
t=1

([ĝ(t)]+)
2 > cvsumα (K)

)

= Pr PK

(
K∑
t=1

([Z(t) + aK ]+)
2 > cvsumα (K)

)

= Pr PK

(
WK(aK) + eK > K−1/2(cvsumα (K)−K/2)

)
, (51)

where WK(a) = K−1/2
∑K

t=1([Z(t) + a]2+ − E[Z(t) + a]2+) and eK = K1/2(E[Z(t) +

aK ]
2
+ − 1/2). By Lemma 1, we have

WK(aK) →d N(0, 5/4). (52)
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By Lemma 2,

eK = K1/2

(
2√
2π

aK + o(aK)

)
(53)

Also, by the definition of cvsumα (K), K−1/2(cvsumα −K/2) is the 100(1−α)% quantile

of WK(0). By Lemma 1, WK(0) →d N(0, 5/4). Thus,

K−1/2(cvsumα −K/2) →
√
5zα/2, (54)

where zα is the 100(1− α)% quantile of N (0, 1).

Therefore, the last line of (51) equals

Pr PK

(
(aKK

1/2)−1WK(aK) + 2/
√
2π + o(1) > 5(aKK

1/2)−1zα/2
)

= Pr PK

(
op(1) + 2/

√
2π + o(1) > o(1)

)
→ 1, (55)

where the equality holds because
√
KaK → ∞.

For φsup
α,K , consider the derivation

EPK
φsup
α,K = Pr PK

(
max

t=1,...,T
ĝ(t) > cvsupα (K)

)
= Pr PK

(
max

t=1,...,K
(Z(t) + gPK

(t)) > cvsupα (K)

)
= Pr PK

(
aK + max

t=1,...,K
Z(t) > cvsupα (K)

)
. (56)

By the Gaussian extreme value theorem, bK(maxt=1,...,K Z(t) − cK) →d G, where

G has the cumulative distribution function exp(− exp(−x)), bK =
√
2 logK and
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cK =
√
2 log(K)− (log log(K)+log(4π))

2
√

2 log(K)
. Thus, the last line of (56) is equal to,

Pr PK

(
bKaK + bK( max

t=1,...,K
Z(t)− cK) > bK(cv

sup
α (K)− cK)

)
. (57)

By design, bKaK → 0. Thus,

bKaK + bK( max
t=1,...,T

Z(t)− cK) →d G. (58)

Also by the definition of cvsupα (K), we have that bK(cv
sup
α (K)−cK) is the 100(1−α)%

quantile of bK(maxt=1,...,T Z(t)−cK). The distribution of G is continuous and strictly

increasing. Thus, bK(cv
sup
α (K) − cK) converges in probability to the 100(1 − α)%

quantile of G. This and (58) together implies that

EPK
φsup
α,K → α. (59)

(b) It is sufficient to show that limK→∞max{EPK
φsup
α,K ,EPK

φsum
α,K} = 1 and that

lim
K→∞

EPK
φsum
α,K = α. Consider the derivation:

EPK
φsup
α,K

= Pr PK

(
max{Z(1) + aK , max

t=2,...,K
Z(t)} > cvsupα (K)

)
= Pr PK

(
max{(Z(1) + aK − cK), ( max

t=2,...,K
Z(t)− cK)} > (cvsupα (K)− cK)

)
≥ Pr PK

(Z(1) + aK − cK > (cvsupα (K)− cK)) , (60)
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where cK =
√

2 log(K)− (log log(K)+log(4π))

2
√

2 log(K)
. In part (a), we have argued that bK(cv

sup
α (K)−

cK) converges in probability to the 100(1−α) quantile of G, where bK =
√
2 log(K).

Thus,

cvsupα (K)− cK →p 0. (61)

This and aK −
√
2 logK → ∞ together imply that the last line of (60) converges to

1. Thus,

EPK
φsup
α,K → 1. (62)

For φsum
α,K , consider the derivation:

EPK
φsum
α,K

= Pr PK

(
[Z(1) + aK ]

2
+ +

K∑
t=2

[Z(t)]2+ > cvsumα (K)

)

= Pr PK

(
[Z(1) + aK ]

2
+√

K
− 1

2
√
K

+

√
K − 1√
K

WK−1(0) >
1√
K

(
cvsumα (K)− K

2

))
,

(63)

Since aK = o(K1/4) and Z(1) ∼ N (0, 1), we have that
[Z(1)+aK ]2+√

K
= op(1). In the proof

of part (a), we have shown that WK−1(0) →d N(0, 5/4) and 1√
K

(
cvsumα (K)− K

2

)
→

√
5zα/2. Combining these facts, we deduce that the last line of (63) converges to

Pr(N(0, 5/4) >
√
5zα/2) = α. (64)

38



Therefore, EPK
φsum
α,K → α, concluding the proof of part (b).

(c) It suffices to show that limK→∞ EPK
φhyb
α,K = 1 under each of the sequences in

part (a) and in part (b).

Consider a sequence satisfying the conditions in part (a). Then, by the arguments

in the proof of part (a),

lim
K→∞

EPK
φsum
α/2,K = 1. (65)

No arguments in the proof there needs to be changed except that α is replaced by

α/2. By definition, EPK
φhyb
α,K ≥ EPK

φsum
α/2,K . Therefore, EPK

φhyb
α,K → 1.

Consider a sequence satisfying the conditions in part (b). Then the arguments in

the proof of that part show that

lim
K→∞

EPK
φsup
α/2,K = 1. (66)

No modificaiton to the arguments is needed except that α is replaced by α/2. More-

over, by definition, EPK
φhyb
α,K ≥ EPK

φsup
α/2,K . Therefore, EPK

φhyb
α,K → 1.

I now investigate the implication of the proposition in a simulation exercise. I

first simulate these rejection probabilities at h’s that have an Euclidean distance of

4 to the null space {h ∈ R2 : h ≤ 0}.15 In particular, I consider three sets of points

on R2 that are 4-away from the null space:

(a) gP (t) = 4/
√
K − 1 for t = 2, . . . , K, and gP (1) takes values on a grid on the

15The number 4 is somewhat arbitrarily chosen. Other distances give similar results, with smaller
distance showing less dramatic contrasts between the tests.
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interval [−3, 0];

(b) gP (1) takes values on a grid on the interval (0, 4], and gP (t) =

√
4−gP (1)2
√
K−1

for

t = 2, . . . , K;

(c) gP (1) = 4 and gP (2) takes values on a grid on the interval (−3/
√
K − 1, 0).

The points can be plotted as a curve on the space of (gP (1), ∥gP (II)∥)′ where

gP (II) = (gP (2), . . . , gP (K))′. This curve is shown in the upper left graph in Figure

2. The graph makes it clear that each point on the curve corresponds to the angle

that the ray from (0, 0) to (−∞, 0) needs to rotate (clockwise) to reach the point.

Denote that angle γ. The segment on which γ > π corresponds to the DGPs where

only one inequality is violated and the rest are increasingly slack as we increase γ.

The segment on which γ ∈ (π/2, π) corresponds to the DGPs where both inequalities

are violated, and the segment on which γ < π/2 corresponds to the DGPs where

J−1 inequalites are vioated while one inequality is increasingly slack as γ decreases.

We can plot the rejection probabilities of each test for each point on the curve

against γ. These plots are shown in the three other graphs in Figure 2. Consistent

with the conclusions of Proposition 3, the SUP test has large regret at small γ’s

(when a large number of inequalities are violated), while the SUM test has large

regret at large γ’s (when only one inequality is violated). The hybrid test seems to

achieve a balance between the two and has smaller regret than both on most γ’s

when K = 5 and on all γ’s when K = 10 and 50. The advantage of the hybrid test

is more and more clear as K increases.

The power lines are slices on the power surface and thus might not reflect the
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Figure 2: Power Lines for the SUP, SUM, and Hybrid Tests
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regrets at all P1. I also construct the heat map of the regret of each test with respect

to the 3-test collection. The heat maps are shown in Figure 3. As we can see from

the heat bar on the right of each graph, the maximum regret of the hybrid test is

much lower than the maximum regrets of the SUM and the SUP tests.

K = 10

K = 50

Figure 3: Heat Maps for the regret of the SUP, SUM, and Hybrid Tests against
(gP (1), gP (2)) (gP (t) = gP (2) for t > 2)

Proposition 3 and the simulation exercise suggest that the minimax power regret

criterion may be a useful tool for test comparison. It has the potential to provide

justfication for various test hybridation procedures.

4 Conclusion

This paper surveys the literature on inference based on infinitely many inequalities.

The emphasis is on various testing procedures for infinite dimensional inequality
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hypotheses. I summarized the two main branches of the literature on testing such

hypotheses and explained the differences between their theoretical foundations. I

pointed out a few directions for future research. Then I reviewed the two optimality

concepts used in the literature, discussed their limitations, suggested a new concept,

and connected the new optimality concept with test hybridation.
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Appendix: Useful Lemmas

Lemma 1. Let {Z(t)}Kt=1 be i.i.d. N (0, 1) random variables, and let aK → 0 as

K → ∞. Define the function fa(z) = [z + a]2+ = max(z + a, 0)2.

SK :=
1√
K

K∑
t=1

(faK (Z(t))− E[faK (Z(t))])
d−→ N(0, 5/4).

Proof. Since aK → 0, for any fixed z ∈ R, we have

faK (z) = max(z + aK , 0)
2 → max(z, 0)2 := f(z), (67)

so faK (z) → f(z) pointwise. Note that for all a ∈ R,

fa(z)
2 = max(z + a, 0)4 ≤ (z + a)4 ≤ 8z4 + 8a2. (68)

Thus,

E[faK (Z(t))
2] ≤ 8E[Z(t)4] + 8a4K → 8E[Z(t)4] < ∞, (69)

since Z(t) ∼ N (0, 1). Therefore, the random variables faK (Z(t)) have uniformly

bounded second moments. This implies the Lindeberg condition holds and ensures

uniform integrability.

For each fixed K, the terms X
(K)
t := faK (Z(t)) − E[faK (Z(t))] are i.i.d. mean-zero

random variables with variance σ2
K := Var(faK (Z)) and aK → 0. Below we show
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that σ2
K → 5/4. Hence, by the Lindeberg–Lévy Central Limit Theorem, we have:

SK =
1√
K

K∑
t=1

X
(K)
t

d−→ N(0, 5/4).

Now we show that σ2
K → 5/4. Since faK (Z) → f(Z) := [Z]2+ pointwise, and {faK (Z)}

is uniformly integrable in L2, it follows that

σ2
K = Var(faK (Z)) → Var(f(Z)) = Var([Z]2+) =

5

4
.

This concludes the proof.

Lemma 2. Let Z ∼ N (0, 1), and define f(a) := E[max(Z + a, 0)2]. Then the

function is twice-continuously differentiable and

f ′(0) =
2√
2π

.

Proof. We first write

f(a) = E[max(Z + a, 0)2] =

∫ ∞

−a

(z + a)2ϕ(z) dz, (70)

where ϕ(z) = 1√
2π
e−z2/2 is the standard normal density. Differentiate under the
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integral sign using Leibniz’s rule:

f ′(a) =
d

da

∫ ∞

−a

(z + a)2ϕ(z) dz

= −(z + a)2ϕ(z)
∣∣
z=−a

+

∫ ∞

−a

∂

∂a
(z + a)2ϕ(z) dz

=

∫ ∞

−a

2(z + a)ϕ(z) dz (71)

Similarly, we can obtain the second derivative:

f ′′(a) =

∫ ∞

−a

2ϕ(z)dz = 2Φ(a), (72)

where Φ(·) stands for the cumulative distribution functin of N (0, 1). Therefore, the

function is twice-continuously differentiable.

To evaluate f ′(0), change variables to u = z + a, so that

f ′(a) = 2

∫ ∞

0

u · ϕ(u− a) du. (73)

Setting a = 0, we obtain:

f ′(0) = 2

∫ ∞

0

uϕ(u) du

= 2 · E[Z · 1Z>0] = 2

∫ ∞

0

z · 1√
2π

e−z2/2 dz =
2√
2π

. (74)
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