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Abstract

This paper proposes a new test for inequalities that are linear in possibly par-

tially identified nuisance parameters. This type of hypothesis arises in a broad set of

problems, including subvector inference for linear unconditional moment (in)equality

models, specification testing of such models, and inference for parameters bounded by

linear programs. The new test uses a two-step test statistic and a chi-squared critical

value with data-dependent degrees of freedom that can be calculated by an elemen-

tary formula. Its simple structure and tuning-parameter-free implementation make

it attractive for practical use. We establish uniform asymptotic validity of the test,

demonstrate its finite-sample size and power in simulations, and illustrate its use in

an empirical application that analyzes women’s labor supply in response to a welfare

policy reform.
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1 Introduction

We propose a simple new test for hypotheses of the form H0: there exists a δ such that

Cδ ≤ b, where elements of the Jacobian matrix C and the intercept vector b are reduced-form

parameters that can be consistently estimated, and elements of δ are unknown parameters

whose values are partially identified by the inequalities under H0. Since the inequalities,

rather than δ, are of central interest, δ is a nuisance parameter vector. Hypotheses of this

form arise in specification testing and subvector inference for linear unconditional moment

(in)equality models and in inference for parameters bounded by linear programs, including

discrete instrumental variable (IV) models with shape restrictions and policy relevant treat-

ment effect models. These models have wide applications in empirical work. We explain the

applications and give examples in Section 2.

Testing this hypothesis is non-standard both because the nuisance parameter δ may not

be point-identified and because the hypothesis involves inequalities. As a result, commonly

used test statistics have non-standard asymptotic distributions involving parameters that

cannot be consistently estimated, in particular, the local slackness of the inequalities eval-

uated at the true value of δ. This complicates the design of critical values. A common

approach is to simulate the asymptotic distribution with a conservative estimator of the lo-

cal slackness plugged in. However, the conservative estimators typically involve user-chosen

tuning parameters that introduce arbitrariness to the procedure. Moreover, the simulated

critical values can be computationally burdensome.

In the special case that the Jacobian is known, Cox and Shi (2023), hereafter CS23,

propose the subvector conditional chi-squared (sCC) test that does not require simulation

or user-chosen tuning parameters and yet still has uniform asymptotic size control and good

power. The simplicity of the test is achieved by considering the conditional distribution of

the quasi-likelihood ratio (QLR) statistic given the identity of the active inequalities.1 The

conditional distribution is shown to be bounded by a chi-squared distribution with degrees

of freedom (DoF) dependent on the conditioning event. CS23 recommends computing the

DoF by solving a sequence of linear programming problems.

Our first contribution is to derive an elementary formula for the DoF that replaces the

recommendation in CS23. The formula makes the computation of the critical value elemen-

tary. Implementing the sCC test is now no harder than calculating the test statistic, which

is a convex quadratic programming problem (CQPP). The formula also reveals an intuitive

interpretation of the sCC test: The sCC test turns out to be the same as the classic Sargan-

Hansen’s J test for a moment equality model, where the equalities are determined by the

1An inequality is active if it holds with equality at our null-imposed estimator of δ.
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active inequalities.

While the sCC test is attractive, the known Jacobian assumption significantly restricts

its applicability. In both linear unconditional moment inequality models and models with a

parameter of interest bounded by linear programs, a known Jacobian only applies in special

cases. The known Jacobian assumption even rules out conditional moment inequality models

where δ includes coefficients on endogenous covariates. The second contribution of this paper

is to propose a new test, called the generalized conditional chi-squared (GCC) test, that

accounts for the estimation error of an unknown Jacobian while maintaining the simplicity,

size, and power properties of the sCC test.

Estimating the Jacobian presents two challenges. The first challenge is finding the limit of

the constraint set in the definition of the QLR statistic. In general, convergence of the matrix

of coefficients in a system of inequalities is insufficient for the set defined by those inequalities

to converge in a setwise sense. We show that a simple stable rank condition on the Jacobian

is sufficient for convergence of the constraint set. The stable rank condition requires the rank

of certain submatrices of the Jacobian to not change in the limit. The submatrices that need

to satisfy the condition are minimal in some sense. They are associated with collections of

inequalities that (implicitly or explicitly) define equality restrictions in the limit. While the

stable rank condition is not innocuous, it relaxes the commonly used strong identification

assumption in moment equality models, which requires the Jacobian to be full rank.

The second challenge is finding a consistent variance estimator. The effect of the esti-

mated Jacobian on the variance depends on δ, but δ is only partially identified. This makes

the additional variance term difficult to account for. Our solution is to use a first-stage

estimator of δ that converges to a point in the identified set for δ. The procedure resem-

bles optimal weighting in two-step generalized method of moments (GMM). The GCC test

compares this two-step statistic to a chi-squared critical value with DoF determined by the

formula from our first contribution. We also define a refinement of the GCC test in the

supplemental appendix that has slightly more power.

We next review three strands of related literature. The first consists of papers that

propose tests of moment inequalities that are possibly nonlinear in nuisance parameters.

These include Bugni et al. (2015, 2017), Chen et al. (2018), Belloni et al. (2018), Kaido et al.

(2019), and Bei (2023). These methods use critical values that are nontrivial to compute

and require user-chosen tuning parameters to be adaptive to the unknown slackness of the

inequalities.2 In contrast, the GCC test uses an algebraic critical value and is adaptive to

the unknown slackness of the inequalities without any tuning parameter, at the price of

2An exception is Procedure 3 in Chen et al. (2018) in that it does not require any tuning parameter or
simulation. We include this procedure in the simulations.
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requiring linearity.

The second strand of related literature is composed of CS23 and Andrews et al. (2023),

which consider conditional moment inequalities that are linear in the nuisance parameters.

These papers rely on an idea that if the Jacobian depends only on random variables on which

the inequalities hold conditionally, then the Jacobian can be treated as known. However,

this idea does not apply if the moment inequalities are unconditional or, more generally, if

the Jacobian depends on a random variable for which the moment inequalities do not hold

conditionally. Our method applies regardless of whether the Jacobian can be treated as

known.

When our test is applied to inference for a scalar parameter (say θ) bounded by linear

programs, it is related to the third strand of literature. This literature addresses the prob-

lem of inference for the value of a linear programming problem (LPP). The papers include

Freyberer and Horowitz (2015), Bai et al. (2022), Fang et al. (2023), Cho and Russell (2024),

Gafarov (2025), Voronin (2025), and Goff and Mbakop (2025), among others. There is a

subtle technical difference between our setting and this literature: while our test is inverted

to yield a confidence interval for θ, the LPP literature aims at constructing confidence in-

tervals for the upper or lower bound for θ defined by the value of a LPP. While the two

problems are distinct, they are closely related. Our confidence interval by design can cover

either bound with correct nominal coverage probability (asymptotically), and in the LPP

literature, one-sided confidence intervals of the appropriate direction for either bound are

also valid confidence intervals for θ.3 Thus, the methods can be used for the same empirical

problems. Notably, our method is the only one that is tuning parameter and simulation free.

We include a simple one-sided specification in the simulations in order to compare the

GCC test to representative papers in all three strands of the literature. In addition to the

simple simulation, we also evaluate the GCC test in two realistic simulation examples: one of

an interval outcome instrumental variables (IV) model as in Gandhi et al. (2023), hereafter

GLS23, and the other of bounds on policy relevant treatment effects as in Mogstad et al.

(2018), hereafter MST18. The simulations show that the GCC test is computationally very

fast with good size and power.

We also implement the GCC test in an empirical analysis of female labor supply in

response to a welfare policy reform. Kline and Tartari (2016), hereafter KT16, estimate

bounds on the treatment responses by manually eliminating the nuisance parameters from

revealed preference inequalities. The GCC test provides uniformly valid inference for the

treatment responses based directly on the revealed preference inequalities. Overall, we find

3In the LPP literature, two-sided confidence intervals for θ can be obtained by combining two one-sided
confidence intervals via a Bonferroni adjustment.
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statistically significant heterogeneous responses to the policy change, which agree with the

results in KT16.

The rest of the paper is organized as follows. Section 2 describes the setup and applica-

tions. Section 3 defines the GCC test. Section 4 describes the theoretical properties of the

GCC test. Section 5 presents the simulations. Section 6 presents the empirical illustration.

Section 7 concludes. An appendix contains proofs of the theorems, while a supplemental

appendix includes additional results, proofs, simulations, and discussion.

2 Setup and Examples

We are interested in testing the hypothesis

H0 : Cδ ≤ b for some δ ∈ Rdδ , (1)

where C is a dC × dδ matrix of reduced-form parameters, b is a dC-dimensional vector of

reduced-form parameters, dδ is the dimension of δ, and dC is the number of inequalities. To

make an invertibility assumption imposed later as unrestrictive as possible, we add some

structure to C and b. We assume that

C = BΠ+D and b = d−Bµ, (2)

where B is a known dC×dµ matrix, D is a known dC×dδ matrix, d is a known dC-dimensional

vector, Π is an unknown dµ × dδ matrix of reduced-form parameters, and µ is an unknown

dµ-dimensional vector of reduced-form parameters. This structure separates the unknown

and estimated components from the known components in the Jacobian C and the intercept

b. It is satisfied in all the examples considered below. Typically, B has more rows than

columns, and it absorbs the linear dependence across rows for the estimation noise of the

inequalities. This allows us to accommodate inequalities with linearly dependent estimation

errors, which arise when we write an equality as a pair of opposing inequalities, when the

model contains a deterministic constraint such as a shape or sign restriction, or when the

law of total probability dictates that a weighted sum of the inequalities involves no unknown

quantities under H0.

With the structure in (2), H0 can be equivalently written as:

H0 : B(µ+Πδ) +Dδ ≤ d for some δ ∈ Rdδ . (3)

Let µn and Πn be estimators of µ and Π. Let Cn = D+BΠn and b̄n = d−Bµn. In the next
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two subsections, we describe two classes of models that are covered by this framework.

2.1 Moment (In)equality Models

Moment (in)equality models are used to address data or modeling incompleteness issues,

including missing data, multiple equilibria, and large intractable games.4 Here, we show

that both specification testing and subvector inference for moment inequality models fit the

hypothesis in equation (3) when the moments are linear in the parameters.

Consider the moment (in)equality model:

E[meq
n (β)] = 0 and E[mineq

n (β)] ≥ 0 with β ∈ B ⊆ Rdβ , (4)

where mn(β) = (meq
n (β)

′,mineq
n (β)′)′ is a Rdm-valued sample moment function, β is an

unknown vector of parameters, and B is its parameter space. Specifically, let mn(β) =

n−1
∑n

i=1m(Wi, β), where {Wi}ni=1 is a sample of observable variables and m(·, β) is a func-

tion known up to the unknown parameter β. Let the number of equalities be denoted deq

and the number of inequalities be denoted dineq, so that dm = deq + dineq.

Suppose mn(β) is linear in β. That is, mn(β) = Γnβ + ηn for Γn = ∂mn(β)/∂β
′ and

ηn = mn(0). Suppose B = Rdβ .5 Consider the following types of problems:

1. Specification Testing. When specification testing, one evaluates whether there exists a

β ∈ Rdβ such that the moment (in)equalities hold. If not, then the model is misspeci-

fied. The hypothesis is

H0 : E[meq
n (β)] = 0 and E[mineq

n (β)] ≥ 0 for some β ∈ Rdβ .

This is the type of hypothesis considered in Bugni et al. (2015). It can be written in

the form of (3) with

B =

(
−Ideq Odeq×dineq

Ideq Odeq×dineq

Odineq×deq −Idineq

)
, µ = E[ηn], Π = E[Γn], δ = β, D = O(deq+dm)×dβ , d = 0,

where Ia is an identity matrix of size a and Oa×b is a a× b zero matrix. Note that we

write the equalities as pairs of opposing inequalities via the first 2deq rows of B.

4For empirical applications and current statistical methods for such models, see the survey papers by
Canay and Shaikh (2017), Ho and Rosen (2017), and Molinari (2020).

5More generally, if B is a polyhedral set, then the deterministic inequalities that define B should be
included when writing the hypothesis in the form of (3). We show how deterministic constraints can be
incorporated in the next subsection.
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2. Subvector Inference. In subvector inference, one constructs a confidence set for a

subvector of the parameters. Suppose the subvector of interest is composed of the first

ℓ elements of β and denote it by θ. Let δ denote the rest of the elements in β. Then

a confidence set for θ can be constructed by testing the following hypothesis at each

value of θ and collecting the values of θ at which the hypothesis is not rejected:

H0 : E[meq(θ, δ)] = 0 and E[mineq(θ, δ)] ≥ 0 for some δ ∈ Rdδ .

This is the type of hypotheses considered in Bugni et al. (2017), and it can be written

in the form of (3) with

B =

(
−Ideq Odeq×dineq

Ideq Odeq×dineq

Odineq×deq −Idineq

)
, µ = E[mn(θ,0)], Π = E[Γδn], D = O(deq+dm)×(dβ−ℓ), d = 0,

where Γ
δ

n = ∂mn(θ, δ)/∂δ
′, which is the last dβ − ℓ columns of Γn.

Two remarks are in order regarding subvector inference:

Remarks: (1) Linearity in θ is not needed for subvector inference. The discussion remains

unchanged if mn(θ, δ) is linear in δ and nonlinear in θ.

(2) Sometimes, the parameter of interest is not a subvector of β, but instead a linear

function of β. That is, θ = Λβ for a known dθ × dβ full-rank matrix Λ with dθ < dβ. One

approach is to reparameterize β so that θ becomes a subvector of the new parameter. Let Λc be

a (dβ−dθ)×dβ row-augmenting matrix so that ( Λ
Λc ) is nonsingular.6 The reparameterization

is given by γ = ( Λ
Λc ) β. Then, plugging β = ( Λ

Λc )
−1
γ into (4) reparameterizes the model so

that θ is a subvector of γ. Equivalently, one can add θ = Λβ to the model as deterministic

constraints and treat β as the nuisance parameter.

We end this subsection with two examples of linear moment inequality models.

Example 1 (Interval Outcome IV Regression). Consider a linear model Y ∗ = X ′β + ε with

E[εZ] = 0, where Z is a vector of instruments. The dependent variable Y ∗ is not observed.

Instead, we observe Y L and Y U that satisfy: E[Y LZ] ≤ E[Y ∗Z] ≤ E[Y UZ]. Then, we have

the following unconditional moment inequalities:

E[Y LZ − ZX ′β] ≤ 0 and E[ZX ′β − Y UZ] ≤ 0. (5)

This is an example of (4). The interval outcome IV regression model was proposed in Manski

and Tamer (2002). A generalization of such a model to a non-standard aggregate demand

6In Matlab, one can find such a matrix by applying the function null( ) on Λ.
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estimation problem is studied in GLS23. In their generalization, Y L and Y U can be nonlinear

functions of the parameter of interest.

CS23 and Andrews et al. (2023) cover a related model where the inequalities in (5) hold

conditionally on Z. Their tests apply to hypotheses that fix the coefficients on all the endoge-

nous regressors. Then, the Jacobian of the inequalities with respect to the nuisance parameter

is known after conditioning on Z since it is not a function of the endogenous regressors. Their

tests do not apply when a nuisance parameter is a coefficient on an endogenous regressor.

Example 2 (Panel Data Multinomial Choice Model). Consider a panel data multinomial

choice model where individual i at time t obtains utility uijt from choosing option j. Let yijt =

1 if i chooses j at time t, and yijt = 0 otherwise. The random utility model stipulates that

yijt = 1 if and only if uijt ≥ uij′t for all j′ ∈ {0, 1, 2, . . . , J}. Consider the linear index model

of the random utility: uijt = X ′
ijtγ+λij+εijt, where Xijt is a vector of observed covariates, λij

is an unobserved fixed effect, and εijt is an idiosyncratic taste shock. Normalize Xi0t = 0. For

illustration, let there be only two time periods (t = 1, 2) and let the individuals be independent

and identically distributed. Under a conditional time homogeneity assumption on εijt, Shi

et al. (2018) show that the following moment inequality holds:

E[∆y′i∆Xiγ|Xi] ≥ 0, (6)

where ∆yi is a J-dimensional vector with its jth element being yij2 − yij1, ∆Xi is a J × dx

dimensional matrix with its jth row being (Xij2 − Xij1)
′, and Xi collects Xijt for all j ∈

{1, 2, . . . , J} and t ∈ {1, 2}. Note that none of the elements of ∆y′i∆Xi can be considered

exogenous because they depend on yijt. Thus, the inequalities do not fit into the conditional

moment inequality setup in CS23 or Andrews et al. (2023). Let I(Xi) be a non-negative

vector-valued instrumental function. Then,

E[I(Xi)∆y
′
i∆Xiγ] ≥ 0 (7)

rewrites the inequalities in (6) into the form of (4).7

2.2 Parameters Bounded by Linear Programming

Recently, an important class of models have arisen in the structural estimation literature

where a scalar parameter of interest is not point-identified but bounded by the values of

7In this model, a normalization is usually imposed on γ, such as the first element being one, that can be
accommodated by simply setting that element to 1.
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linear programming problems (LPPs).8 The constraint sets for the LPPs are defined by

linear (in)equalities, where the constants and coefficients in the (in)equalities are unknown

parameters to be estimated. To fix ideas, suppose the parameter of interest is

θ = γ′δ, (8)

where γ ∈ Rdδ is a known vector that defines a linear combination of the nuisance parameters

δ. The constraint set is defined by a collection of (in)equalities:

Γδ = m and Aδ ≤ b, (9)

where the elements of m ∈ RdΓ and Γ ∈ RdΓ×dδ are known or can be consistently estimated,

A is a known dA× dδ matrix, and b ∈ RdA is a known vector.9 The known inequalities in (9)

define a parameter space for δ. For example, if δ is a vector of weights, then δ takes values

in the simplex, which can be represented by an appropriate choice of A and b.

Inference on θ can be based on the GCC test for the existence of a value of δ that

simultaneously satisfies (8) and (9) at a hypothesized value of θ. A confidence interval for

θ can be calculated by inverting a family of tests. The restrictions in (8) and (9) can be

written in the form of (3) with

B =


0′
dΓ

0′
dΓ
IdΓ
−IdΓ

OdA×dΓ

 , µ = −m, Π = Γ, D =

 γ′

−γ′
OdΓ×dδ
OdΓ×dδ

A

 , and d =

 θ
−θ
0dΓ
0dΓ
b

 . (10)

Note that the first two rows and the last dA rows of B are zeros to accommodate the

deterministic constraints θ = γδ and Aδ ≤ b.

Another approach to inference on θ is to use LPPs. From the point of view of identifi-

cation, θ is bounded sharply by θmin = minδ: (9) holds γ
′δ and θmax = maxδ: (9) holds γ

′δ. Then

one can construct one-sided confidence intervals that are bounded from below (above) for

θmin (θmax) and use them as confidence intervals for θ. Inference for the value of a LPP is

generally based on plugging the estimators of m and Γ into the LPPs and simulating or

bootstrapping the asymptotic distributions of these estimators. However, the asymptotic

distributions depend on which corner or face of the constraint set solves the LPP, which

is not smooth as a function of the estimated reduced-form parameters. Thus, the näıve

strategy of bootstrapping the value of a LPP is generally invalid. In order to obtain valid

8Some notable examples appear in KT16, MST18, Kalouptsidi et al. (2021), and Syrgkanis et al. (2021).
9We focus on the case A and b are known because it is common in applications. Unknown and estimated

A and/or b can also be covered.
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inference, the LPP literature recommends various modifications that involve tuning param-

eters and/or simulating/bootstrapping nonstandard distributions. Using the GCC test to

obtain a confidence interval for θ avoids these complications.

Remarks: (1)The GCC test is valid for any hypothesized value of θ in [θmin, θmax], including

the endpoints. Thus, the GCC test is a valid way to do inference for the value of a LPP.

However, the GCC test may direct power in a one-sided way. In particular, when θmax−θmin

is not small, the GCC test is effectively one-sided for the value of the LPP (though still

two-sided for θ). Therefore, when the parameter of interest is θmin or θmax instead of θ and

the researcher desires two-sided inference, then some of the inference recommendations from

the LPP literature are preferred.

(2) In some applications, γ is unknown and estimated. There is a convenient way to

write (8) and (9) in the form of (3). The idea is to add an element to µ that is always zero,

while adding γ′ as a row of Π. Specifically, (3) can be satisfied when γ is unknown by letting

B =


1 0′

dΓ

−1 0′
dΓ

0dΓ
IdΓ

0dΓ
−IdΓ

0dA
OdA×dΓ

 , µ = ( 0
−m ) , Π =

(
γ′

Γ

)
, D =


0′
dδ

0′
dδ

OdΓ×dδ
OdΓ×dδ

A

 , and d =

 θ
−θ
0dΓ
0dΓ
b

 . (11)

More generally, if one of the equations in (9) has a known intercept but the corresponding

row of the Jacobian is unknown, then the intercept should be included in d while the row

of the Jacobian should be included in Π, possibly including a zero in µ and augmenting the

columns of B.10 This demonstrates the flexibility of the specification in (3).

We demonstrate the relevance of the setup in (8) and (9) with examples.

Example 3 (Discrete IV Regression with Shape Restrictions). IV regressions with discrete

regressors and instruments are common in practice. Prominent examples include Permutt

and Hebel (1989), Angrist and Krueger (1991), and Angrist and Evans (1998). Freyberer

and Horowitz (2015) consider an IV model with discrete Xi and Zi:

Yi = δ(Xi) + εi, E[εi|Zi] = 0, (12)

where Yi is the dependent variable, Xi a discrete endogenous regressor, Zi is a discrete

instrument, δ(·) an unknown function that represents the structural relationship between Xi

10This idea can be applied more generally. Consider a generalization of (2), where C can be written as
C = B1Π1+B2Π2+D and b = d−B1µ1. That is, B2Π2 is a component of C that needs to be estimated but
cannot be written as a linear combination of the columns of B1. Then, we can satisfy the structure in (2)
by taking B = [B1, B2] and µ = (µ′

1,0
′)′. This works because we do not require the estimator of µ to have

a nonsingular variance matrix, but we only require the estimator of µ + Πδ to have a nonsingular variance
matrix for a value of δ in the identified set; see Assumption 1(iii), below.
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and Yi, and εi is the error term. While linearity of δ(·) is often assumed, Freyberer and

Horowitz (2015) emphasize that no such functional form restrictions are needed.

Let the support of Xi and Zi be {x1, . . . , xdx} and {z1, . . . , zdz}, respectively. Let δk =

δ(xk) for k ∈ {1, . . . , dx}, and δ = (δ1, . . . , δdx)
′. The model in (12) implies that δ satisfies

the equalities in (9) with

m =

 E[Yi1{Zi=z1}]
E[Yi1{Zi=z2}]

...
E[Yi1{Zi=zcz}]

 and Γ =

 P(Xi=x1,Zi=z1) P(Xi=x2,Zi=z1) ··· P(Xi=xdx ,Zi=z1)

P(Xi=x1,Zi=z2) P(Xi=x2,Zi=z2) ··· P(Xi=xdx ,Zi=z2)

...
...

...
...

P(Xi=x1,Zi=zdz ) P(Xi=x2,Zi=zdz ) ··· P(Xi=xdx ,Zi=zdz )

 . (13)

Note that m and Γ are reduced-form parameters that can be estimated by sample averages.

When dz < dx, δ is not point identified by the equalities in (9). To sharpen identification,

Freyberer and Horowitz (2015) add shape restrictions of the form Aδ ≤ b for some known

matrix A and known vector b. This covers several types of shape restrictions including

monotonicity and/or convexity of δ(·). The parameter of interest is typically a linear function

of δ. For example, θ = [−1, 1, 0, ..., 0]δ = δ2 − δ1 is the effect of changing X from x1 to x2.

Thus, inference for the structural function in (12) falls into the framework of (8)-(9).

Example 4 (Policy Relevant Treatment Effects (PRTE)). Treatment effects that are relevant

for policy are often not equal to the local average treatment effects (LATEs) associated with

any available instrument. In a standard program evaluation model, they are weighted averages

of underlying marginal treatment responses (MTRs), where the weights are identified or

known, but the MTRs are not. MST18 show that the MTRs can be partially identified from

the LATEs, or more generally from IV-like estimands, because these estimands are weighted

averages of the MTRs. Then, bounds on a PRTE can be deduced from the identified set of

the MTRs. Under a parameterization of the MTRs, MST18 show that the bounds are values

of LPPs.11

To be specific, consider an outcome Y , a binary treatment indicator D, and covariates

Z = (X,Z0), where X is a vector of control variables and Z0 is the vector of excluded instru-

ments. Let Y0 and Y1 denote the potential outcomes corresponding to the two treatment arms.

Suppose treatment is determined by a weakly separable selection equation: D = 1{p(Z) ≥ U}
for some unobserved uniformly distributed variable U , where p(Z) is the propensity score.

The MTR functions are defined to be

κ0(u, x) = E[Y0|U = u,X = x] and κ1(u, x) = E[Y1|U = u,X = x]. (14)

11In some cases, MST18 show that even the nonparametric bounds can be written as finite-dimensional
LPPs; see their Proposition 4.
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A wide range of PRTEs can be written as weighted averages of the MTRs. The MTRs can be

parameterized as a linear combination of functions belonging to some basis. Let δ be a vector

of coefficients on the basis functions. Then, a PRTE, say θ, can be written as θ = γ′δ, where

γ is a vector of weighted averages applied to each basis function. This writes the parameter

of interest in the form of (8).

An IV-like estimand is a parameter of the form ms = E[s(D,Z)Y ] for some identified

or known function s(D,Z). MST18 show that every IV-like estimand can be written as a

weighted average of the MTRs with a simple formula for the weights. This means that each

ms can be written as a linear combination of δ. If m denotes a vector of finitely many IV-like

estimands, then m satisfies the equalities in (9) with each row of Γ being the weighted average

of the basis functions with weights corresponding to the IV-like estimand.

In addition, MST18 allow the researcher to specify additional shape restrictions on the

MTEs, in a similar manner as Example 3. Depending on the choice of basis functions, these

can sometimes be written as deterministic linear inequalities on δ. Overall, this shows that

θ is bounded by LPPs and satisfies the structure in (8) and (9). We demonstrate the GCC

test in a simulation of this example in Appendix E.

Example 5 (State Transition Probabilities). Consider a model where individuals choose

between finitely many states, s ∈ S. A policy change may induce individuals to choose a

different state. The state transition probabilities are defined by

δs,s′ = Pr(Sa = s′|Sb = s) for s, s′ ∈ S, (15)

where Sa denotes an individual’s choice after a policy change and Sb denotes an individ-

ual’s choice before a policy change. These transition probabilities represent the fraction of

individuals who start in state s and change to state s′ in response to the policy change.

The transition probabilities are not identified from the data if all one has is a repeated

cross-section of individuals before and after the treatment, or a cross-section of individuals

randomly assigned to different policy regimes. On the other hand, the marginal probabilities

of Sa and Sb, denoted pa and pb, respectively, are identified. Then, the transition probabilities

are partially identified through their relationship with pa and pb:

pa = ∆pb, (16)

where ∆ is the matrix of δs,s′ values for s, s′ ∈ S. These equations fit the structure of the

equalities in (9), with elements of ∆ forming the nuisance parameter vector δ.12

12One of the equations in (16) is redundant because the sum of the elements in pa is one. This is not a
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In addition, the transition probabilities satisfy:

δs,s′ ≥ 0 for all s, s′ ∈ S and
∑
s′∈S

δs,s′ = 1 for all s ∈ S. (17)

These restrictions can be written as the inequalities in (9) with known A and b. Then,

inference for a particular transition probability fits (8) and (9).

KT16 use such a model to study women’s labor supply in response to a welfare policy

change. In their model, the transition probabilities represent the fraction of women who

gain/lose employment and/or register for welfare. KT16 analyze the data from an experi-

ment that randomized exposure to a new welfare policy. The policy change could have het-

erogeneous effects on labor supply through the extensive margin (encouraging some women

to gain employment) and the intensive margin (encouraging some women to decrease their

hours or wages in order to qualify for welfare). The experiment identifies the distribution of

employment, welfare participation, and income for women under two welfare policies. KT16

point out that the details of the policy change, combined with weak assumptions on the utility

functions of the individuals, restrict many of the transition probabilities to zero. They then

manually solve for bounds on each of the remaining transition probabilities from (16) and

(17) and find significant labor market effects along both the extensive and intensive margins.

In Section 6, we employ the GCC test to construct confidence intervals for this example,

avoiding the need to solve for the bounds manually.

3 The Generalized Conditional Chi-Squared Test

In this section, we define the generalized conditional chi-squared (GCC) test. The test

depends on µn and Πn, consistent and asymptotically normal estimators of µ and Π. The

test also depends on Ωn, a consistent estimator of the asymptotic variance of (µ′
n, vec(Πn)

′)′,

where vec(A) denotes the vectorization of a matrix, A.

We start with preliminary H0-restricted estimators for µ and δ:

(µ̃n, δ̃n) = argmin
µ,δ:Bµ+Cnδ≤d

n(µn − µ)′Υ̂n(µn − µ), (18)

where Υ̂n is a preliminary weight matrix that is converging in probability to a deterministic

positive definite limit.13 While µ̃n is always unique, δ̃n need not be. In that case, we can

problem.
13This is similar to the weight matrix used in the first step of two-step GMM; the limit theory is invariant

to the choice of weight matrix used. We take Υ̂n to be the identity matrix.
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take δ̃n to be the minimizer that has the smallest norm:

δ̃n = argmin
δ:Bµ̃n+Cnδ≤d

∥δ∥. (19)

Equation (19) is a tie-breaking procedure that is only used if the value of δ̃n that minimizes

(18) is not unique.14 Later, we add assumptions so that δ̃n is consistent for its population

analogue, δ∗F .
15

We next estimate the asymptotic variance of µn +Πnδ
∗
F using

Σ̃n =

(
Idµ

δ̃n ⊗ Idµ

)′

Ωn

(
Idµ

δ̃n ⊗ Idµ

)
, (20)

where ⊗ denotes the Kronecker product. Define the QLR test statistic as

Tn = min
µ,δ:Bµ+Cnδ≤d

n(µn − µ)′Σ̃−1
n (µn − µ). (21)

Let (µ̂n, δ̂n) solve the minimization problem in (21). Similar to the initial estimators, µ̂n is

always unique and δ̂n may not be unique. In that case, we can take δ̂n to be any minimizer.16

For any K ⊆ {1, ..., dC}, let |K| denote the cardinality of K, and let IK denote the

submatrix of the dC × dC identity matrix formed by taking the rows corresponding to the

indices in K. In this way, conformable premultiplication of IK to a matrix B selects the

rows of B corresponding to the indices in K to form the submatrix of B with |K| rows.
We are ready to define the DoF and the critical value. Let b̂n = d − Bµ̂n and K̂ =

{j ∈ {1, . . . , dC} : e′jCnδ̂n = e′j b̂n}, where ej is the jth standard normal basis vector. Note

that K̂ denotes the set of indices at which the inequality constraint holds as equality for the

minimizers in (21). Let

ŝn = rk
(
IK̂ [B,D]

)
− rk(IK̂Cn). (22)

For a significance level α, let cv(s, α) denote the 1 − α quantile of the χ2 distribution with

DoF equal to s. The GCC test rejects if Tn is greater than cv(ŝn, α).

We end this section with some remarks on the definition of the GCC test.

Remarks: (1) Equation (22) gives an algebraic formula for the DoF. In CS23, the DoF, r̂n,

is defined as the dimension of the span of a polyhedral cone. Theorem 1, below, shows that

14Equation (19) uses the Euclidean norm, although it could be replaced with any other norm.
15We formally define δ∗F in (27), below. For now, it is enough to think of δ∗F as the probability limit of δ̃n.
16Note the subtlety in the definitions of δ̃n and δ̂n: δ̃n is required to minimize (19) because it has to be

consistent for δ∗F , while δ̂n can be arbitrary because its consistency is not essential.
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r̂n is equal to ŝn with probability one in the limit. For computational reasons, we recommend

ŝn over r̂n.

(2) The GCC test is in some sense a “näıve” test. It is equivalent to first selecting the

inequalities that are active according to the finite sample CQPP in (21), pretending that

these inequalities are equalities, and then forming a Sargan-Hansen’s J-test for overidentifi-

cation of a model defined by these equalities. To see this, note that the typical case is when

rk(IK̂ [B,D]) = |K̂| and rk(IK̂C) = dδ. Then, the DoF used by the GCC test is |K̂|−dδ,
which represents the number of active inequalities minus the number of nuisance parameters.

(3) The weight matrix, Σ̃n, used in the definition of the GCC test is an estimator of the

asymptotic variance of
√
n(µn +Πnδ

∗
F ) instead of that of

√
nµn. The latter is used in CS23

for the sCC test. The new weight matrix accounts for the estimation error in Πn. To gain

some intuition for this weight matrix, note that Tn can be rewritten as

Tn = min
η,γ:Bη+Cnγ≤hn

(Xn − η)′Σ̃−1
n (Xn − η), (23)

where γ =
√
n(δ− δ∗F ), η =

√
n(µ−µF + (Πn−ΠF )δ

∗
F ), Xn =

√
n(µn−µF + (Πn−ΠF )δ

∗
F ),

and hn =
√
n(d − CF δ

∗
F − BµF ), where µF , ΠF , and CF stand for the true values of µ, Π,

and C. With this change of variables, one can see that Σ̃n estimates the asymptotic variance

of Xn.

(4) The GCC test is very easy to compute since it only requires solving two CQPPs.

Efficient interior-point algorithms for CQPPs are available in most commonly used software,

and they are known to have a worst-case computational complexity of O((dC + dδ)
4), where

dC is the number of inequalities and dδ is the dimension of the nuisance parameter. This is

only slightly slower than the computational complexity of LPPs, which is O((dC +dδ)
3.5); see

Karmarkar (1984) and Ye and Tse (1989). Most importantly, no simulation or bootstrap is

needed to perform the test.

4 Theoretical Properties

In this section, we present the three main theoretical results of the paper: (1) a theorem

that justifies using ŝn and hence simplifies the rank calculation, (2) a theorem that shows

the consistency of δ̃n for δ∗F , and (3) a theorem that shows the uniform asymptotic validity

of the GCC test.
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4.1 Rank Calculation Theorem

We now present the result that justifies using ŝn. One can also define the DoF in the GCC

test using the Karush-Kuhn-Tucker (KKT) multipliers. Let L̂ = {j ∈ {1, ..., dC} : e′jψ̂n > 0},
where ψ̂n is a vector of nonnegative multipliers that satisfy the KKT conditions for (21).

Then

t̂n = rk
(
IL̂ [B,D]

)
− rk(IL̂Cn) (24)

is another way to define the DoF. Also note that

r̂n = dim(B′{h ≥ 0 : h′Cn = 0, h′(Bµ̂n − d) = 0}) (25)

is the definition of the DoF for the sCC test in CS23, where dim(·) denotes the dimension

of a set, or the maximum number of linearly independent elements. The following theorem

shows that ŝn, t̂n, and r̂n are equal with probability one in the limit. This theorem plays a

vital role in the proof of the uniform asymptotic validity of the GCC test, below.

Theorem 1. Suppose Σ̃n is positive definite. Then, (a) t̂n ≤ r̂n ≤ ŝn.

(b) For fixed Cn and Σ̃n, there is a Lebesgue measure zero subset of Rdµ, M0, such that

r̂n = ŝn = t̂n, unless µn ∈ M0. (26)

Remarks: (1) Theorem 1 justifies the use of ŝn as the DoF. This overrides CS23, which

recommends calculating r̂n using an algorithm that includes a series of LPPs. The new

recommendation applies to both the sCC test in CS23 and to the GCC test.

(2) Theorem 1 is not random—it does not rely on the distribution of µn, Cn, or Σ̃n. The

result is a general feature of CQPPs. Part (a) shows that, regardless of the distribution, ŝn

is (weakly) more conservative than r̂n. Part (b) shows that equality holds with probability

one if the conditional distribution of µn given Cn and Σ̃n is absolutely continuous. A key

case where this holds is in the limit, where Cn and Σ̃n are deterministic and µn is Gaussian.

Thus, a simple corollary of Theorem 1 is that r̂n = ŝn with probability one in the limit.

(3) The expression for M0 can be found in the Supplemental Appendix, equation (46).

The value of M0 may depend on the value of Cn or Σ̃n that is fixed. Note that δ̂n (and

K̂) may not be unique for the definition of ŝn, and ψ̂n (and L̂) may not be unique for the

definition of t̂n. When they are not unique, M0 does not depend on the choice of δ̂n or ψ̂n.

(4) In general, M0 is not the empty set. To clarify the necessity of M0 in part (b),

we give a simple example to show that r̂n < ŝn is possible, albeit on a set of measure zero.

Suppose dµ = dδ = 1 and dC = 2. Let B = (0, 1)′, Cn = D = (1, 1)′, and d = (0, 0)′.

If µn = 0, then µ̂n = δ̂n = 0 solves (21) (for any positive scalar Σ̃n). From (22), ŝn = 1
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because K̂ = {1, 2}, but from (25), r̂n = 0. This example requires degenerate features that

make r̂n < ŝn unlikely to occur in practice.

4.2 Uniform Asymptotic Validity of the GCC Test

Before describing the assumptions and theorems, we first clarify the true values of the param-

eters and the underlying distribution of the estimators. Let F denote the joint distribution

of µn, Cn, and Ωn, and let PF (·) denote probabilities taken with respect to F . Let Fn be

a parameter space for F .17 Let µF and ΠF denote the true values of µ and Π. Also let

CF = BΠF + D and bF = dn − BµF . The F in the subscript makes explicit that these

quantities depend on F . We allow the values of these parameters, together with the value of

d, to depend on n to incorporate the situation where we test a sequence of null hypotheses.18

We make explicit the dependence of d on n, denoting it by dn. For notational simplicity, we

keep the dependence of µF , ΠF , CF , and bF on n implicit.

Let Fn0 be the subset of Fn that satisfies the null hypothesis: Fn0 = {F ∈ Fn : CF δ ≤
bF for some δ ∈ Rdδ}. For F ∈ Fn0, let δ

∗
F be the value of δ that satisfies CF δ ≤ bF . If there

is more than one such value of δ, we take δ∗F to be the one that has minimum norm:

δ∗F = argmin
δ:CF δ≤bF

∥δ∥. (27)

This mimics the definition of δ̃n.

The following assumption ensures asymptotic normality of the estimators of the reduced-

form parameters and consistent estimation of the asymptotic variance, at least along a

subsequence of true data generating processes. It is used to show consistency of δ̃n and

asymptotic uniform validity of the GCC test.

Assumption 1. For every sequence {Fn}∞n=1 with Fn ∈ Fn0 and for every subsequence,

{nm}, there exists a further subsequence, {nq}, a vector µ∞, a vector d∞, a matrix Π∞, a

positive semi-definite matrix, Ω∞, and a positive definite matrix, Υ∞, such that:

(i) µFnq
→ µ∞, ΠFnq

→ Π∞, and dnq → d∞

(ii)
√
nq

(
µnq

− µFnq

vec(Πnq − ΠFnq
)

)
→d N(0,Ω∞)

(iii) Σ∞ :=
(

I
δ∗∞⊗I

)′
Ω∞

(
I

δ∗∞⊗I
)
is positive definite, where δ∗∞ := argmin

δ:Bµ∞+(D+BΠ∞)δ≤d∞
∥δ∥,

17We subscript Fn with n because µn, Cn, and Ωn are typically functions of a sample, {Wi}ni=1, with
sample size n. Thus, their distribution naturally depends on n. We allow Fn to depend arbitrarily on n.

18Testing a sequence of null hypotheses is required to evaluate the uniform coverage probability of a
confidence set for a parameter of interest, θ. Then, the inequalities that define the null hypothesis may
depend on the hypothesized value of θ.
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(iv) Ωnq →p Ω∞,

(v) Υ̂nq →p Υ∞, and

(vi) {δ ∈ Rdδ : Bµ∞ + (D +BΠ∞)δ ≤ d∞} ≠ ∅.

Remarks: (1) Assumption 1 is stated using subsequences in order to ensure uniformity over

Fn0. Part (i) assumes that dn and the sequence of true parameter values for the reduced-form

parameters converge to some limits along a subsequence. This is equivalent to assuming that

the parameter space for these parameters is compact.

(2) Part (ii) assumes asymptotic normality of the estimators for the reduced-form pa-

rameters along a subsequence. Part (iii) requires Σ∞ to be positive definite. While this

may seem restrictive, it is mitigated by the way the inequalities are specified in equation (3).

Specifically, the B matrix allows us to write the inequalities as a linear function of a core

collection of reduced-form parameters that admit an estimator with a positive definite asymp-

totic variance matrix. The matrix B absorbs any linear dependence among the estimation

errors of the inequalities. Also note that δ∗∞ is well-defined by Assumption 1(vi). Part (iv)

assumes consistency of the estimator of the asymptotic variance. Part (v) assumes consis-

tency of the first-step weight matrix in equation (18) for a positive definite limit. Parts (ii),

(iv), and (v) can be verified using standard consistency and asymptotic normality arguments.

For example, when the data are i.i.d. and the model is a moment (in)equality model, they

can be verified by the Lindeberg-Feller central limit theorem and a law of large numbers for

triangular arrays.

(3) Part (vi) assumes the constraint set for the limit is nonempty. Part (vi) is guaranteed

under part (i) if, for example, there is a fixed compact set ∆ such that {δ ∈ Rdδ : CF δ ≤
bF} ⊆ ∆ for all F ∈ Fn0.

19 In that case, for any sequence Fnq ∈ Fnq0, there exists a δFnq

such that BµFnq
+ (BΠFnq

+D)δFnq
≤ dnq . This sequence has a subsequence that converges

to some limit δ∞ that satisfies Bµ∞ + (BΠ∞ +D)δ∞ ≤ d∞, showing part (vi). Appendix D

shows another way to verify part (vi) under a strengthened version of Assumption 2, below.

Next, we state the stable rank condition mentioned in the introduction. We first introduce

some new notation. LetK= ⊆ {1, ..., dC} be a set that contains the indices for the inequalities
that were originally equalities. This set is special because it is always included in the set of

active inequalities: K= ⊆ K̂. For any dC × dδ matrix C and for any dC-dimensional vector

b, let A(C, b) = {K ⊆ {1, ..., dC} : Cx ≤ b and IK(Cx − b) = 0 for some x ∈ Rdδ} be the

collection of all subsets of inequalities that could be simultaneously active for the system of

inequalities defined by C and b.20

19This type of assumption is common in the literature. For example, it is assumed by Voronin (2025) and
Goff and Mbakop (2025).

20A combination of inequalities cannot be simultaneously active if, for example, it involves an upper and
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Assumption 2 (Stable Rank). For every sequence {Fn}∞n=1 with Fn ∈ Fn0 and for any

subsequence, {nm}, satisfying Assumption 1(i) with C∞ = BΠ∞ +D and b∞ = d∞ − Bµ∞,

there is a further subsequence, {nq}, along which

PFnq
(rk(IKCnq) = rk(IKCFnq

) = rk(IKC∞)) → 1, as q → ∞, (28)

for any K ∈ A(C∞, b∞) that satisfies K= ⊆ K.

Remarks: (1) We refer to Assumption 2 as a “stable rank” condition because perturbations

of the C∞ matrix in the directions of the estimation error do not change the rank.

(2) Assumption 2 is not a necessary condition for the validity of the GCC test. It is

possible to relax Assumption 2 by reducing the number of collections of indices, K, for which

the rank equality in (28) needs to be assumed. In Appendix B.2, we show that the rank

equality only needs to hold for index sets, K corresponding to collections of inequalities that

define a linear subspace in the limit. In cases where there are no equalities and the identified

set for the nuisance parameters has a positive volume in the parameter space, every inequality

could be slack, and no stable rank condition is needed. Due to the nuances of this discussion,

it is relegated to the Supplemental Appendix.

(3) While Assumption 2 is not necessary, it is used in an essential way in the proofs of

consistency of δ̃n and asymptotic validity of the GCC test. Moreover, a more than superficial

connection of Assumption 2 with the weak IV problem in linear IV regression models suggests

that relaxing Assumption 2 completely may require insights from that literature. We discuss

this connection in Section 4.3, below.

(4) Assumptions playing a similar role as Assumption 2 are common in the literature

on subvector inference in moment inequality models and in models defined by linear systems.

One type of such assumptions is a known and fixed C, as in Guggenberger et al. (2008), Kaido

and Santos (2014), and Fang et al. (2023). In that case Cn = CF = C, and Assumption

2 holds trivially. Other types of assumptions appear in Pakes et al. (2015), Bugni et al.

(2017), Cho and Russell (2024), and Goff and Mbakop (2025).21 We discuss the connection

between these assumptions in a simple example in Section B.3.2.

The following theorem states an important preliminary result: consistency of δ̃n.

a lower bound that are parallel and separated. Such combinations are excluded from A(C, b).
21Assumption 2 differs from constraint qualification, as considered in Kaido et al. (2022). Constraint

qualification restricts a fixed collection of constraints to ensure KKT conditions are necessary or sufficient
or the KKT multipliers are unique. In contrast, Assumption 2 concerns a sequence of linear inequality
constraints and restricts the way they converge to a limiting set of constraints.
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Theorem 2. Suppose Assumption 2 holds. Let {Fn}∞n=1 be a sequence with Fn ∈ F0n and

let {nq} be a subsequence satisfying Assumptions 1(i), (ii), (v), and (vi). We have that

δ̃nq →p δ
∗
∞ and δ∗Fnq

→ δ∗∞ as q → ∞,

where δ∗∞ is defined in Assumption 1(iii).

Remark: Consistency of estimators defined by tie-breaking procedures, such as the norm

minimization in the definition of δ̃n, is especially challenging. It is surprising that Assump-

tion 2 is sufficient in this case. The proof uses a novel argument that establishes setwise

convergence of the constraint set.

The following theorem is the main theoretical result of the paper.

Theorem 3. If Assumptions 1 and 2 hold, then

limsup
n→∞

sup
F∈Fn0

PF (Tn > cv(ŝn, α)) ≤ α.

Remarks: (1) Theorem 3 establishes the uniform asymptotic validity of the GCC test. This

extends the result for the sCC test from CS23 to allow C to be estimated, as long as the

estimator is consistent and asymptotically normal and a stable rank condition is satisfied.

The generalization is essential for handling the applications discussed in Section 2.

(2) The asymptotic validity of the GCC test is surprising because, intuitively, the active

inequalities are not necessarily binding in population and even when all inequalities are bind-

ing, the limit distribution of Tn is not χ2. Indeed, the set of active inequalities does not

converge to the set of binding-in-population inequalities but remains random in the limit.

The key to validity of the GCC test is that the limit conditional distribution of Tn given the

set of active inequalities is bounded by the χ2 distribution with the associated DoF.

(3) When PF (ŝn = 0) > 0, the GCC test can be slightly conservative: Its null rejection

probability is between α(1 − PF (ŝn = 0)) and α asymptotically. The refinement in CS23

can be used to remove the conservativeness. We define the refined GCC (RGCC) test in

Appendix B.4. The RGCC test differs from the GCC test only when ŝn = 1 and is also

tuning parameter and simulation free. However, the refinement requires calculating A and

g such that {µ ∈ Rdµ : Bµ + Cnδ ≤ d for some δ ∈ Rdδ} = {µ ∈ Rdµ : Aµ ≤ g}. The

computation is relatively easy when dC and dδ are small but gets exponentially harder when

dC and dδ increase. In particular, it can have a high memory requirement. We investigate the

performance of the RGCC test along with the GCC test in the simulations and the empirical

illustration.
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4.3 Assumption 2 and Instrumental Variable Regressions

To better understand Assumption 2, we now relate it to the linear IV regression model.

Example 6 (IV Regression). Let Y be a scalar dependent variable and X be a dx-vector of

potentially endogenous regressors. Consider the IV regression model: Y = X ′β + ε, where

ε is the error term. Let Z be a dz-vector of instruments that satisfy E[Zε] = 0. Suppose

we are interested in the first element of β, denoted by θ. Then the rest of the elements of

β are nuisance parameters, denoted by δ. Let X1 denote the first element of X and X−1

denote the rest of the elements. Then, the model can be represented by the following moment

conditions: E[ZY ]−θE[ZX1]−E[ZX ′
−1]δ = 0. If we conduct inference for θ by test inversion,

the hypothesis to be tested for each θ value is

H0 : E[ZY ]− θE[ZX1]− E[ZX ′
−1]δ = 0 for some δ ∈ Rdδ . (29)

This hypothesis is a special case of that in equation (3) with B =
(

Idz
−Idz

)
, µ = E[ZY ] −

θE[ZX1], Π = −E[ZX ′
−1], D = O, and d = 0.

In this model, Assumption 2 allows E[ZX ′
−1] to change with n as long as the rank does not

change in the limit. Equivalently, the smallest nonzero eigenvalue of E[ZX ′
−1]E[X−1Z

′] does

not converge to zero. Notably, zero eigenvalues are allowed. This happens, for example, when

the number of instruments is smaller than the number of nuisance parameters. Assumption 2

is weaker than the usual rank condition for strong identification of δ (under a hypothesis that

fixes a value of θ), which is that the smallest eigenvalue of E[ZX ′
−1]E[X−1Z

′] is bounded away

from zero. This means that Assumption 2 can be thought of as a “no weak identification”

condition, where linear combinations of δ can be strongly identified or non-identified as long

as they are not weakly identified.

Even in the weak instruments/weak identification literature, strong identification of the

nuisance parameters is a useful assumption. For example, Stock and Wright (2000), Kleiber-

gen (2005), and Andrews and Mikusheva (2016) propose identification-robust hypothesis

tests for subvectors only when the nuisance parameters are strongly identified under the null.

Papers that cover inference with weakly identified nuisance parameters, including Chaud-

huri and Zivot (2011), Andrews (2018), and Guggenberger et al. (2024), recommend some

version of two-step inference requiring a tuning parameter, among other complications.22

Cox (2025) states separate limit theory depending on whether the nuisance parameters are

strongly identified under the null. In this literature, strong identification of the nuisance pa-

rameters under the null is used to guarantee that the null-imposed estimator of the nuisance

22An exception is Guggenberger et al. (2012). They focus on a homoskedastic linear IV model and show
that the plug-in Anderson-Rubin test remains valid with weakly identified nuisance parameters.
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parameters is consistent and asymptotically normal. In contrast, we use Assumption 2 to

ensure convergence of the constraint set in the QLR statistic to its limit in a setwise sense.

These different purposes reflect the compounding complications that arise when trying to

relax Assumption 2.

5 Simulations

This section evaluates the finite-sample performance of the GCC test for testing inequalities

that are linear in nuisance parameters. We also evaluate the RGCC test, defined in Appendix

B.4. Section 5.1 considers a simple one-sided hypothesis testing problem with one nuisance

parameter. Section 5.2 considers a more realistic model with more nuisance parameters: an

interval outcome IV regression model. Also, a simulation of Example 4 can be found in

Section E. The bottom line of all the simulations is that the GCC and RGCC tests are easy

to compute and have good size and power.

5.1 A Simple One-Sided Model

Consider a simple one-sided hypothesis testing problem with one nuisance parameter and

normally distributed randomness. The model is designed to abstract from computational and

asymptotic complications, so as to focus on size and power. The validity of any test for linear

inequalities in this simple specification should be a necessary condition for implementing the

test in practice. Also note that, because the bound on the parameter of interest is one-sided,

we can compare to methods from the literature on one-sided inference for the value of a LPP.

The simple model has one nuisance parameter, no equalities, and J inequalities:

µ1 + c1δ + θ ≤ 0

µ2 + c2δ + θ ≤ 0

µ3 + c3δ ≤ 0

...
...

µJ + cJδ ≤ 0. (30)

This model is a special case of (3) with B = IJ , µ = (µ1, µ2, ..., µJ)
′, Π = C = (c1, c2, ..., cJ)

′,

D = 0J , and d = −(1, 1, 0, ..., 0)′θ. The first two inequalities give an upper bound on θ,

while the remaining J − 2 inequalities only bound δ.

Suppose µ is estimated by µn and C by Cn. Suppose µn and Cn are sample means

of independent random samples from N(µ, IJ) and N(C, 2IJ), respectively. The covariance
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Table 1: Simulated Null Rejection Probabilities (NRP) and Computation Times of Various
Tests of Nominal Level 5% in the Simple Model

J = 3 J = 10 J = 50

NRP Time (seconds) NRP Time (seconds) NRP Time (seconds)

GCC 0.035 (0.003) 0.035 (0.003) 0.045 (0.008)
RGCC 0.051 (0.003) 0.038 (0.004) 0.045 (0.008)

sCC 0.193 (0.025) 0.324 (0.070) 0.560 (0.343)
sRCC 0.207 (0.026) 0.327 (0.071) 0.560 (0.343)
ARP 0.204 (1.159) 0.248 (1.097) 0.476 (1.988)

CCT 0.045 (0.124) 0.179 (0.138) 0.430 (0.267)
BCS 0.025 (0.575) 0.015 (1.048) 0.004 (3.525)
Bei 0.052 (0.238) 0.072 (0.267) 0.112 (0.597)

FSST 0.231 (1.725) 0.408 (3.585) 0.609 (3.083)
Gaf 0.064 (0.129) 0.179 (0.123) 0.420 (0.127)
CR1 0.002 (25.83) 0.002 (25.84) 0.014 (26.22)
CR2 0.026 (25.87) 0.055 (25.91) 0.130 (26.33)
CR3 0.036 (25.85) 0.074 (25.83) 0.168 (26.08)

Note: The “NRP” columns report the null rejection probabilities for the hypothesis θ = 0 in
the simple specification with 1000 simulations. The “Time” columns report the median time in
seconds to compute the test for all the tests except Gaf and CR1-CR3. For Gaf and CR1-CR3,
the “Time” columns report the median number of seconds to compute a confidence interval.

matrix of µn and Cn are estimated by the sample variances and covariances. Below, we

consider µ = (−1, 1, 1 − qn−1/2, ..., 1 − qn−1/2)′ and C = (1,−1,−1, ...,−1)′ with n = 500,

J ∈ {3, 10, 50}, and q ∈ {0, 4}. Inequalities 3 through J may be binding or slack depending

on the value of q. The identified set for θ is (−∞, 0]. For a fixed a value of θ in (−∞, 0], the

identified set for δ is [max(1 + θ, 1− qn−1/2), 1− θ].

We first consider testing the null hypothesis H0 : θ = 0. Table 1 reports the simulated

rejection probabilities for various tests when q = 0. This means that all J inequalities are

binding. We implement four groups of tests. The first group consists of the GCC and RGCC

tests. The second group consists of the sCC and sRCC tests from CS23 and the hybrid test

(ARP) from Andrews et al. (2023). These tests are implemented using Cn as if it were

the true value. The third group consists of the MR test (BCS) from Bugni et al. (2017),

procedure 3 (CCT) from Chen et al. (2018), and the recommended test (Bei) from Bei (2023),

which are designed for nonlinear inequalities. The fourth group consists of the recommended

test (FSST) from Fang et al. (2023), the recommended test (Gaf) from Gafarov (2025), and
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three tests (CR1-CR3) from Cho and Russell (2024) implemented with three choices of the

tuning parameter.23 These tests are from the literature on inference for the value of a LPP.

They are implemented for one-sided inference on the upper bound of θ.24

As we can see in Table 1:

(1) The GCC and RGCC tests are valid for every J . The GCC test is somewhat conser-

vative when J = 3, which is expected. Unexpected is that the GCC and RGCC tests are

somewhat conservative when J = 10. This could be due to simulation noise.

(2) The sCC, sRCC, and ARP tests are invalid. This demonstrates the need to account

for the estimation error in Cn.
25

(3) Concerning the tests in the third group, CCT is invalid for J > 3. It is only valid

under a high-level condition that is not satisfied in this model; see Assumption 4.7 in Chen

et al. (2018). BCS is valid and becomes quite conservative when J = 50. Bei is a more

computationally feasible version of BCS. Table 1 suggests Bei has mild to moderate over-

rejection. It is unclear why the null rejection probabilities for BCS and Bei are so different.

(4) Concerning the tests in the fourth group, FSST is understandably invalid because it

requires known Jacobian. Surprisingly, Gaf is also invalid for J > 3. This could be because

a rank condition is not satisfied; see Assumption 2 in Gafarov (2025). CR1-CR3 appear to

be very sensitive to the choice of the tuning parameter. CR1 is very conservative while CR2

and CR3 have moderate over-rejection when J = 50.

(5) Computationally, the GCC and RGCC tests are by far the fastest among the tests

considered. Comparing their times to the sCC and sRCC tests demonstrates the computa-

tional improvement of the new algebraic formula for the DoF. For CR1-CR3 and Gaf, the

computational time is for the calculation of a confidence interval and thus is not comparable

to the computation time for a single hypothesis.

We also consider the power functions of some of the tests as a function of the hypothesized

value of θ. In addition to the GCC and RGCC tests, we include the BCS and Bei tests as

benchmarks and the CR1 and CR2 tests to see whether the sensitivity of their NRPs to the

tuning parameter carries over to the power functions. These tests are included because they

are the ones that are valid or exhibit only moderate over-rejection in Table 1.

23CR1, CR2, and CR3 are implemented with ϵ = 0.1, ϵ = 0.01, and ϵ = 0.001, respectively.
24Gaf and CR1-CR3 report confidence intervals instead of hypothesis tests. For these methods, we say

that a value of θ is rejected if θ does not belong to the confidence interval.
25Another way to implement these tests is to consider the case that the inequalities in (30) hold condition-

ally on Cn. Then, the sCC, sRCC, and ARP tests can be implemented with the conditional variance of µn
given Cn. Since µn is independent of Cn, the conditional variance is the same as the unconditional variance
and the implementation is the same. Thus, Table 1 shows that neither way to implement these tests is valid.
The problem is that the inequalities in (30) do not hold conditionally on Cn.
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Figure 1: Simulated Power Curves and Computation Times of Various Tests of Nominal
Level 5% in the Simple Model (n = 500)
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(b) J = 3 and q = 4
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(c) J = 10 and q = 0
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(e) J = 50 and q = 0
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(f) J = 50 and q = 4

Note: The shaded regions indicate the identified set for θ. The number of simulations is 1000. The

numbers in the square brackets in the legends are the median time needed to calculate the test at

all grid points for one simulation (measured in seconds).
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We test the inequalities in (30) for a grid of values of θ between −1/
√
n and 6/

√
n.

Dividing the grid by
√
n ensures the power function approaches the asymptotic local power

function as n→ ∞. For θ ≤ 0 (the shaded region), the rejection probabilities are under the

null and thus should be less than or equal to α = 5%. For θ > 0, the rejection probabilities

represent the power of the tests. Figure 1 reports the power curves for q ∈ {0, 4} and

J ∈ {3, 10, 50}. When q = 0, the 3rd to the Jth inequalities are binding at δ = 1, and when

q = 4, these inequalities are slack at δ = 1.

As we can see in Figure 1:

(1) The GCC and RGCC tests are very fast with good power for all J ∈ {3, 10, 50} and

q ∈ {0, 4}. The power is especially impressive when q = 4, so J − 2 of the inequalities are

slack. Also note that, when the number of inequalities increases, the difference between the

GCC and RGCC power curves decreases, especially when all the inequalities bind.

(2) The BCS test has good power for J = 3, but becomes more conservative, and therefore

less powerful, for larger J . The Bei test is more powerful than BCS, GCC, and RGCC, with

especially high power when q = 0 and J ∈ {10, 50}. These specifications correspond to the

cases of moderate over-rejection of the Bei test at θ = 0.

(3) The sensitivity that the CR tests show in Table 1 is reflected in power. CR1 has low

power, and the power of CR2 is closely related to the over-rejection of the test at θ = 0.

5.2 An Interval Outcome IV Regression Model

This subsection considers the interval outcome IV regression model from Example 1. We

simulate the power curves of the GCC and RGCC tests. We also include the BCS and Bei

tests as benchmarks. Since this is a two-sided problem, we do not include recommendations

from the literature on inference for the value of a LPP.

The model is based on the aggregate demand model considered in GLS23, where the

market shares are noisy measures of conditional choice probabilities and may contain zero

values. The model boils down to the interval outcome IV regression in Example 1. Write

out X = (X1, X2,W
′)′, where X1 is a scalar endogenous regressor, X2 is a scalar exogenous

regressor, and W is a dW -vector of additional exogenous controls. Similarly, write out β =

(θ1, θ2, γ
′)′ with γ ∈ RdW . Also let Ze be an excluded exogenous instrument. We take

Z = I(X2,W, Ze) to be a non-negative vector-valued instrumental function.

In this model, there is a latent market share that satisfies a logit specification:

s∗ =
exp (θ10X1 + θ20X2 + ϵ)

1 + exp (θ10X1 + θ20X2 + ϵ)
, (31)
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where θ10 and θ20 denote the true values of θ1 and θ2 and ϵ is an error term. (The true value of

γ is zero.) In the framework of GLS23, s∗ is the (unobserved) conditional probability that a

representative consumer buys a product, and Y ∗ = log(s∗)− log(1−s∗) is the mean utility of

the product. We observe a market share sN ∼ Binomial(N, s∗)/N , where N is the number

of participants in the market. GLS23 argue that Y U = log(sN+2/N)− log(1−sN+0.00125)

and Y L = log(sN + 0.00125) − log(1 − sN + 2/N) satisfy E[Y L|Z] ≤ E[Y ∗|Z] ≤ E[Y U |Z],
which justifies the use of the model in Example 1.

We take X2, Ze, and the components of W to be independent Bernoulli(0.5) random

variables, except for the first element of W , which is taken to be the constant one. We take

Z = I(X2,W, Ze) to be the vector of indicators for each point in the support of (X2,W, Ze).

When dW = 1, 2, 3, the dimension of Z is 4, 8, 16, respectively. Also, the fact that there

are two inequalities in (5) means that there are 8, 16, and 32 inequalities, respectively.

Independently of Z, let ϵ ∼ min (max (N(0, 1),−4) , 4). Then, let X1 = 1{Ze + ϵ/2 > 0}
be the endogenous regressor. We calculate s∗ according to (31) with θ10 = θ20 = −1. We

simulate sN with N = 100 independently from Z and ϵ. This specifies the data generating

process for all the observed variables: sN , X1, X2, W , and Ze. We simulate a sample of

size n from this model for n ∈ {500, 1000} and calculate confidence intervals for θ2 treating

δ = (θ1, γ
′)′ as nuisance parameters.26

Figure 2 plots simulated power curves for the GCC, RGCC, BCS, and Bei tests. In

each graph, the horizontal axis represents the value of θ2, while the vertical axis represents

the rejection probability.27 The shaded region indicates the identified set for θ2. Since the

control variables have zero coefficients and are independent of the other random variables,

they do not affect the identified set of θ2. In the legend, each number in the square brackets

is the median computational time (in seconds) to compute one confidence interval. We make

the following remark on Figure 2.

Remark: The power curves of the GCC, RGCC, BCS, and Bei tests are remarkably similar.

All four have rejection probabilities below the nominal level 5% in the shaded region. All four

have increasing power as θ2 deviates from its identified set and as the sample size increases

from 500 to 1000. Overall, the GCC and RGCC tests are able to match the size and power

performance of the BCS and Bei tests while being much faster computationally.

26The same model is considered in Section 5.2 of CS23. However, CS23 construct confidence intervals for
θ1, treating (θ2, γ

′)′ as nuisance parameters. Since X2 and W are both exogenous, it is valid to conduct
inference conditional on (X2,W,Ze) using the sCC test in CS23 because the Jacobian of the sample moments
with respect to (θ2, γ

′)′ is known given the sample for (X2,W,Ze). In contrast, this paper takes (θ1, γ
′)′ to

be the nuisance parameters. Then, the Jacobian with respect to θ1 is not known even after conditioning on
(X2,W,Ze). Thus, the sCC test in CS23 is invalid.

27The rejection probabilities reported are frequencies that each θ2 value lies outside the confidence interval
for θ2. The confidence intervals are computed using a bisection algorithm for the endpoints.
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Figure 2: Power Curves and Computation Times of Various Tests of Nominal Level 5% in
the Interval Outcome IV Regression Model
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(e) n = 500, dδ = 4, dC = 32
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Note: The shaded regions indicate the identified set for θ2. The number of simulations is 5000.

The numbers in the square brackets in the legends are the median time needed to calculate the

confidence interval for one simulation (measured in seconds).
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6 Empirical Illustration: Female Labor Supply

This section demonstrates the GCC test in the model of female labor supply considered in

KT16. KT16 use a model of state transition probabilities with states that indicate (1) the

earnings of the individual (zero or not employed, positive and below the federal poverty

line, or above the federal poverty line), (2) whether the individual participates in welfare,

and (3) whether the individual under-reports her earnings in order to qualify for welfare.

KT16 use data from the Manpower Development Research Corporation (MDRC) Jobs First

study, which is a random experiment that assigned women with young children to one of two

welfare programs: the Aid to Families with Dependent Children (AFDC) welfare program

or the Jobs First Temporary Family Assistance (JF) program.28

Relative to AFDC, the JF program primarily changes how eligibility for and the amount

of government transfers respond to earnings.29 Under JF, for individuals earning under the

federal poverty line (FPL), the government transfer does not decrease as earnings increase:

everyone under the FPL receives the same government transfer. This is more generous than

the policy under AFDC, which had government transfers decrease after earnings reached a

threshold. This more generous policy may induce unemployed women (or women who would

be unemployed under AFDC) to gain employment that pays below the FPL. This represents

a labor supply response along the extensive margin. Another noteworthy feature of the JF

program is that the government transfers abruptly drop to zero when earnings cross the

FPL. This may incentivize some women who would be employed with earnings above the

FPL (under AFDC) to decrease their earnings (or under-report their earnings) in order to

be eligible for welfare. This represents a labor supply response along the intensive margin.

The goal in KT16 is to distinguish these two responses without imposing strong assumptions

on the utility functions of the individuals.

KT16 distinguish 7 labor supply/welfare participation states:

0n: zero earnings, welfare nonparticipation,

1n: positive earnings below FPL, welfare nonparticipation,

2n: earnings above FPL, welfare nonparticipation,

0r: zero earnings, welfare participation, truthful reporting of earnings,

28Instructions for accessing the datasets and the replication codes provided by KT16 can be found on the
AEA webpage: https://www.aeaweb.org/articles?id=10.1257/aer.20130824.

29The JF welfare reform introduces other changes too, such as stricter work requirements and changed
administration of the Food Stamps program. We focus on the changes that are relevant for bounding the
state transition probabilities. For more information, see the description in KT16.
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1r: positive earnings below FPL, welfare participation, truthful reporting of earnings,

1u: positive earnings below FPL, welfare participation, underreporting of earnings, and

2u: earnings above FPL, welfare participation, underreporting of earnings.

In the label for each state, the number indicates the level of earnings: “0” indicates zero

earnings or not employed, “1” indicates positive earnings below the FPL, and “2” indicates

earnings above the FPL. The letter indicates welfare participation and under-reporting of

earnings: “n” indicates nonparticipation in welfare, “r” indicates welfare participation with

truthful reporting of earnings, and “u” indicates welfare participation with under-reporting

of earnings.

Each individual is associated with two states, the one she would choose under AFDC

and the one she would choose under JF. Because AFDC is the status quo, we label the

state transition probabilities with an individual’s choice under AFDC first. For example,

π0n,1r is the conditional probability that an individual who chooses 0n under AFDC would

choose 1r under JF. Because of the features of the JF reform, KT16 argue that only nine

state transition probabilities need to be considered. The first group are flows out of 0r:

(π0r,0n, π0r,1n, π0r,2n, π0r,1r, π0r,2u). Individuals with zero earnings and participating in welfare

under AFDC may transition to any other state except 1u.30 The second group are flows into

1r: (π0n,1r, π1n,1r, π2n,1r, π0r,1r, π2u,1r). Individuals who choose 1r under JF may have chosen

any state under AFDC.31 KT16 argue that all other transition probabilities can be set to

zero either because the budget sets for the individuals is unchanged between the two policies

or because the combination of choices would violate weak assumptions on individuals’ utility

functions. Let

δ = (π0n,1r, π1n,1r, π2n,1r, π0r,0n, π0r,1n, π0r,2n, π0r,1r, π0r,2u, π2u,1r)
′

collect the transition probabilities into a vector of nuisance parameters. (Note that one of

the transition probabilities is common to both groups.)

There is an additional problem: it is unobserved whether an individual under-reports her

income. Thus, the marginal probabilities of only six observable states—combining 1r and

1u—is identified. KT16 show that after accounting for this problem, the resulting equalities

30Under JF, no one chooses 1u because everyone earning under the FPL receives the same government
transfer, so there is no reason to under-report earnings. Also note that π0r,0r is not needed because it can
be calculated as one minus the others. This is true in general. We do not need to include the transition
probabilities from one state into itself because they are determined by the other transition probabilities.

31Individuals who choose 1u under AFDC are guaranteed to choose 1r under JF, so π1u,1r = 1 and there
is no need to include it as a free parameter.
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are still linear in δ and they can be rewritten into five non-redundant equalities of the form

Γδ = m, where

Γ =


−pA0n 0 0 pA0r 0 0 0 0 0

0 −pA1n 0 0 pA0r 0 0 0 0

0 0 −pA2n 0 0 pA0r 0 0 0

0 0 0 −pA0r −pA0r −pA0r −pA0r −pA0r 0

0 0 0 0 0 0 0 pA0r −pA2u

 and m =


pJ0n−pA0n
pJ1n−pA1n
pJ2n−pA2n
pJ0r−pA0r
pJ2u−pA2u

 , (32)

where pAs denotes the marginal probability that the individual chooses state s under the

AFDC policy for s ∈ {0n, 1n, 2n, 0r, 2u}, and similarly for pJs for the JF policy. In addition,

δ ∈ [0, 1]9 and π0r,0n + π0r,1n + π0r,2n + π0r,1r + π0r,2u ≤ 1, which can be imposed by an

appropriate choice of A and b in (9).32

We follow KT16 and report confidence intervals for each transition probability. In ad-

dition to the GCC test, we also implement the RGCC test, defined in Section B.4. The

GCC and RGCC tests are implemented by rewriting the restrictions in terms of B, µ, Π, D,

and d using (10). We can similarly define estimators of µ and Π from the sample averages

that estimate pts for s ∈ {0n, 1n, 2n, 0r, 2u} and t ∈ {A, J}.33 We estimate the asymptotic

variance by bootstrapping the sample averages with a cluster bootstrap, clustered at the case

level and with 1000 bootstrap draws.34 The endpoints of the GCC and RGCC confidence

intervals are calculated using a bisection algorithm.

KT16 manually eliminate the nuisance parameters and work out explicit formulas for

the bounds of each element of δ. To avoid the dependence on tuning parameters that is

prevalent in the literature on testing inequalities, they report two confidence intervals. One

confidence interval, called Näıve, is constructed by ignoring the uncertainty in which bounds

bind. This interval is formed by the single lowest upper (highest lower) estimated bound plus

(minus) its standard error. The asymptotic coverage probability of this interval is unknown.

The other interval, called Conservative, assumes all population bounds bind simultaneously,

leading to asymptotically valid but often overly conservative inference.

Table 2 reports the confidence intervals for each transition probability.35 As Table 2

shows:

32In Section B.3.1, we give a simple sufficient condition for Assumption 2 in this model.
33We copy KT16 and use weighted sample averages with propensity score weights to adjust for baseline

differences.
34This is the same implementation of the bootstrap that KT16 use, except that we bootstrap the esti-

mators of pts while they bootstrap the formulas for the bounds that they calculate after eliminating the
nuisance parameters manually. This means that our variance estimators, while asymptotically equivalent,
are numerically different.

35The values for the Näıve and Conservative confidence intervals are slightly different from the ones in the
published version of KT16. We calculated these values using the KT16 replication code without changes.
The differences are likely due to differences in random number generation across versions of Stata when
implementing the bootstrap.
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Table 2: Confidence Intervals for Transition Probabilities

95% CI
θ Estimated bound GCC RGCC Näıve Conservative

π0n,1r [0.055, 0.620] [0.000, 0.764] [0.000, 0.741] [0.000, 0.740] [0.000, 0.782]
π1n,1r [0.382, 0.987] [0.303, 1.000] [0.316, 1.000] [0.318, 1.000] [0.318, 1.000]
π2n,1r [0.280, 1.000] [0.171, 1.000] [0.189, 1.000] [0.193, 1.000] [0.193, 1.000]
π0r,0n [0.000, 0.170] [0.000, 0.210] [0.000, 0.204] [0.000, 0.204] [0.000, 0.215]
π0r,1n [0.000, 0.170] [0.000, 0.195] [0.000, 0.195] [0.000, 0.211] [0.000, 0.215]
π0r,2n [0.000, 0.154] [0.000, 0.179] [0.000, 0.179] [0.000, 0.171] [0.000, 0.226]
π0r,1r [0.000, 0.170] [0.000, 0.210] [0.000, 0.204] [0.000, 0.204] [0.000, 0.220]
π0r,2u [0.031, 0.051] [0.020, 0.060] [0.022, 0.059] [0.022, 0.059] [0.022, 0.099]
π2u,1r [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]

Note: “Estimated bound” denotes an estimator of the bounds derived in KT16. “GCC” and “RGCC”
refer to confidence intervals formed by inverting the GCC and RGCC tests using bisection. “Näıve” and
“Conservative” refer to the confidence intervals reported in Table 5 in KT16.

(1) All the confidence intervals are qualitatively similar. They provide evidence for the

same heterogeneous labor supply responses: statistically significant outflows from state 0r,

corresponding to an increase in labor supply along the extensive margin, and statistically

significant inflows into state 1r, especially from state 2n, corresponding to a decrease in labor

supply along the intensive margin as women decrease their earnings to qualify for welfare.

(2) One would expect the endpoints of the GCC and RGCC confidence intervals to lie

between the endpoints of the Näıve and Conservative confidence intervals. That is mostly

true, but there are a few noteworthy exceptions. (a) For π0r,1n, the GCC and RGCC

confidence intervals are narrower than the Näıve confidence interval. In this case, the two

smallest upper bounds are very close to each other. Together, they provide stronger statistical

evidence than just the one that is active. The GCC and RGCC tests respond to this statistical

evidence in a way that the Näıve confidence interval does not. (b) For π1n,1r and π2n,1r, the

GCC and RGCC confidence intervals are wider than the Conservative confidence intervals.

This is not surprising for the GCC confidence interval because the GCC test is conservative

when there is one binding inequality.36 This is surprising for the RGCC confidence interval

because with one binding inequality, the RGCC test is asymptotically equivalent to the

optimal one-sided test. This is likely due to the numerical difference between the variance

matrix estimators used in the RGCC and the Conservative confidence intervals.

(3) To compute all nine confidence intervals, the GCC and RGCC methods took about 4

36For all the transition probabilities in Table 2, there is only one nontrivial lower bound. This explains
both why the Näıve lower bounds are equal to the Conservative lower bounds and why the GCC confidence
interval appears conservative for the lower bounds.
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seconds and 220 seconds, respectively. Both approaches are quite feasible, especially consid-

ering the fact that manual elimination of the nuisance parameters is not needed to implement

the GCC and RGCC tests.

7 Conclusion

This paper proposes a simple, tuning-parameter-free test that is designed for inequality

testing problems that are linear in nuisance parameters, including specification testing and

subvector inference in moment (in)equality models and inference for parameters bounded

by linear programs. We prove asymptotic uniform validity of the test under a stable rank

condition and demonstrate its size, power, and computational performance in simulations

and an empirical illustration.

A Proofs of Theorems 1-3

The proofs of Theorems 1-3 rely on lemmas that are stated and proved in Sections B and C

in the Supplemental Appendix. The proofs also use the following notation/definitions. For

a matrix C and conformable vector b, let poly(C, b) = {δ ∈ Rdδ : Cδ ≤ b} be the polyhedral

set defined by the inequalities with coefficients C and intercepts b. For matrices B and C

and a conformable vector d let ppoly(B, d;C) = {µ ∈ Rdµ : Bµ+ Cδ ≤ d for some δ ∈ Rdδ}
be the projection of a polyhedral set onto a subvector. A sequence of sets, Sn, Kuratowski

converges to a limit set, S∞, denoted by Sn
K→ S∞, if (1) for every x ∈ S∞ there exists a

sequence xn → x such that xn ∈ Sn eventually, and (2) for every subsequence, nm, and for

every converging sequence xm ∈ Snm with limit x∞, we have x∞ ∈ S∞. This definition of

Kuratowski convergence agrees with common definitions in the setwise analysis literature as

found in, for example, Definition 1.1.1 in Aubin and Frankowska (2009). The proofs also

use definitions of activatable sets of indices for a collection of linear inequalities that are

explained in Appendix B.1.

A.1 Proof of Theorem 1

By Lemma 1 in CS23, for the matrix H whose rows are the vertices of the polytope {h ∈
RdC |h ≥ 0, h′Cn = 0, h′1 = 1}, and for A = HB and g = Hd,

ppoly(B, d;Cn) = poly(A, g). (33)
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Let dA denote the number of rows in A. Let Ĵ = {j ∈ {1, ..., dA} : e′jAµ̂n = e′jg}. Also, for

any J ⊆ {1, ..., dA}, let AJ denote the submatrix of A formed from the rows corresponding

to the indices in J . Lemma 2 and its proof in CS23 show that r̂n = rk(AĴ).

The KKT conditions associated with the CQPP in (21) are:

2nΣ̃−1
n (µn − µ̂n) = B′ψ̂n (34)

0 = C
′
nψ̂n (35)

ψ̂n ≥ 0 (36)

d ≥ Bµ̂n + Cnδ̂n (37)

0 = (d−Bµ̂n − Cnδ̂n)
′ψ̂n, (38)

where ψ̂n are the KKT multipliers on Bµ+ Cnδ ≤ d. For CQPPs, the KKT conditions are

necessary and sufficient; see Chapter 16 in Nocedal and Wright (2006). If, instead, we write

the constraints as Aµ ≤ g with corresponding KKT multipliers λ̂n, then the KKT conditions

are:

2nΣ̃−1
n (µn − µ̂n) = A′λ̂n (39)

λ̂n ≥ 0 (40)

g ≥ Aµ̂n (41)

0 = (g − Aµ̂n)
′λ̂n. (42)

These are also necessary and sufficient for the same reason.

Let CK be shortened notation for IKCn for any K ⊆ {1, ..., dC}.

A.1.1 Proof of Theorem 1(a)

We first prove that t̂n ≤ r̂n. LetMC = IdC−C(C ′C)+C ′ for a matrix C, where the superscript

“+” stands for the Moore-Penrose generalized inverse. We may also use the Moore-Penrose

generalized inverse for the asymmetric matrix C: C+ = (C ′C)+C ′ = C ′(CC ′)+.

The way we prove t̂n ≤ r̂n is by showing that span(B′
L̂
MC

L̂
) ⊆ span(A′

Ĵ
), where span(·)

denotes the span of the columns of a matrix in Rdµ . This is sufficient because r̂n is the

dimension of span(A′
Ĵ
) and, by Lemma 6(a), t̂n is the dimension of span(B′

L̂
MC

L̂
).

Let (µ̂n, δ̂n, ψ̂n) satisfy (34)-(38) and (µ̂n, λ̂n) satisfy (39)-(42). By the definition of L̂,

ψ̂n = I ′
L̂
IL̂ψ̂n. This implies that B′ψ̂n = B′

L̂
IL̂ψ̂n and, using (35), 0 = C ′

L̂
IL̂ψ̂n, and therefore

IL̂ψ̂n = MC
L̂
IL̂ψ̂n. By complementary slackness applied to λ̂n, λ̂n = I ′

Ĵ
IĴ λ̂n, which implies

that A′λ̂n = A′
Ĵ
IĴ λ̂n. Putting these together, (34) and (39) imply that B′

L̂
MC

L̂
IL̂ψ̂n =
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A′
Ĵ
IĴ λ̂n ∈ span(A′

Ĵ
).

Let eℓ be a standard normal basis vector in R|L̂|. We want to show that B′
L̂
MC

L̂
eℓ ∈

span(A′
Ĵ
). It is sufficient to show that B′

L̂
MC

L̂
eℓ + αB′

L̂
MC

L̂
IL̂ψ̂n ∈ span(A′

Ĵ
) for some

α ∈ R (because span(A′
Ĵ
) is a linear subspace of Rdµ). Let α > 0 be large enough so that

every element of MC
L̂
eℓ + αIL̂ψ̂n is positive (by the definition of L̂, every element of IL̂ψ̂n is

positive). Let ψ̈ = I ′
L̂
(MC

L̂
eℓ+αIL̂ψ̂n) and µ̈ = µ̂n+ Σ̃nB

′ψ̈/(2n). It follows that (µ̂n, δ̂n, ψ̈)

satisfy (34)-(38) with µn replaced by µ̈. Therefore, by (33), (µ̂n, λ̈) solves (39)-(42) for some

multipliers λ̈ (again, with µn replaced by µ̈). By complementary slackness applied to λ̈,

λ̈ = I ′
Ĵ
IĴ λ̈, which implies that A′λ̈ = A′

Ĵ
IĴ λ̈. Therefore, by (34) and (39) (with µn replaced

by µ̈),

B′
L̂
MC

L̂
eℓ + αB′

L̂
MC

L̂
IL̂ψ̂n = B′

L̂
MC

L̂
eℓ + αB′

L̂
IL̂ψ̂n = B′ψ̈ = A′

Ĵ
IĴ λ̈ ∈ span(A′

Ĵ
), (43)

where the first equality follows because MC
L̂
IL̂ψ̂n = IL̂ψ̂n (as in the previous paragraph).

Since eℓ was arbitrary, span(B
′
L̂
MC

L̂
) ⊆ span(A′

Ĵ
), which shows that t̂n ≤ r̂n.

We next prove that r̂n ≤ ŝn. The way we do this is by showing that span(A′
Ĵ
) ⊆

span(B′
K̂
MC

K̂
). This is sufficient because r̂n is the dimension of span(A′

Ĵ
) and, by Lemma

6(a), ŝn is the dimension of span(B′
K̂
MC

K̂
).

Let (µ̂n, δ̂n, ψ̂n) satisfy (34)-(38) and (µ̂n, λ̂n) satisfy (39)-(42). Let ej be a standard

normal basis vector in R|Ĵ |. We want to show that A′
Ĵ
ej ∈ span(B′

K̂
MC

K̂
). Recall from the

definition of H that every entry must be nonnegative and it must satisfy HCn = 0. Note that

(d−Bµ̂n−Cnδ̂n)
′H ′I ′

Ĵ
ej = (g−Aµ̂n)′IĴej = 0 because A = HB, g = Hd, HCn = 0, and the

definition of Ĵ . This, combined with the fact that H ≥ 0 and the definition of K̂, implies that

H ′I ′
Ĵ
ej = I ′

K̂
IK̂H

′I ′
Ĵ
ej. (For any k ∈ {1, ..., dC}, e′kH ′I ′

Ĵ
ej ≥ 0 and e′k(d−Bµ̂n − Cnδ̂n) ≥ 0,

and the inequalities cannot both be strict for the same value of k.) This is the key step in

showing that

A′
Ĵ
ej = B′H ′IĴej = B′

K̂
IK̂H

′IĴej = B′
K̂
MC

K̂
IK̂H

′IĴej, (44)

where the final equality follows from the fact that 0 = C
′
nH

′I ′
Ĵ
ej = C ′

K̂
IK̂H

′I ′
Ĵ
ej, which

shows that IK̂H
′I ′
Ĵ
ej = MC

K̂
IK̂H

′I ′
Ĵ
ej. Overall, (44) shows that A′

Ĵ
ej ∈ span(B′

K̂
MC

K̂
).

Since ej was arbitrary, span(A
′
Ĵ
) ⊆ span(B′

K̂
MC

K̂
), which shows that r̂n ≤ ŝn.

A.1.2 Proof of Theorem 1(b)

Because of part (a), it suffices to prove that ŝn = t̂n. We prove part (b) under the additional

assumption that Σ̃n = Idµ . The theorem then follows for Σ̃n ̸= Idµ by considering B† =

BΣ̃
−1/2
n , µ†

n = Σ̃
1/2
n µn, and µ̂†

n = Σ̃
1/2
n µ̂n, where Σ̃

1/2
n denotes the symmetric matrix square

root. Note that the definitions of ŝn, and t̂n are unchanged.
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For any K ⊆ {1, ..., dC}, let sK = rk(MCK
BK). With this definition, ŝn = sK̂ and

t̂n = sL̂ by Lemma 6(a). Let SK = span(B′
KMCK

), a linear subspace of Rdµ . Also let

ξK = (MCK
BK)

+MCK
IKd. For any K,L ⊆ {1, ..., dC}, let

M(K,L) = (SK ∩ SL)⊕
((
S⊥
K + ξK

)
∩
(
S⊥
L + ξL

))
, (45)

where “⊕” denotes the Minkowski sum and “⊥” denotes the orthogonal complement. For

any K,L with sL < sK , we have that SK ∩ SL is a linear subspace of Rdµ with dimension

at most sL, and
(
S⊥
K + ξK

)
∩
(
S⊥
L + ξL

)
is an affine subspace of Rdµ with dimension at most

dµ − sK . Therefore, M(K,L) is an affine subspace of Rdµ with dimension at most dµ − 1

and therefore has Lebesgue measure zero. Let

M0 = ∪K,L:sL<sKM(K,L), (46)

where K and L are arbitrary subsets of {1, ..., dC}. M0 has Lebesgue measure zero because

it is the union of finitely many measure zero sets.

To finish the proof, we show that if t̂n < ŝn, then µn ∈ M0. Fix µn and suppose K̂

and ŝn are defined using some (µ̂n, δ̂n, ψ̂n) that satisfy (34)-(38). Also suppose L̂ and t̂n

are defined using some (µ̂n, δ̈n, ψ̈n) that satisfy (34)-(38). (Since δ̂n and ψ̂n are not unique,

we want to allow ŝn and t̂n to be defined using different values of the delta and psi.) By

Lemma 7 applied to (µ̂n, δ̂n, ψ̂n), µn − µ̂n ∈ SK̂ and µ̂n ∈ S⊥
K̂
+ ξK̂ . By Lemma 7 applied

to (µ̂n, δ̈n, ψ̈n), µn − µ̂n ∈ SL̂ and µ̂n ∈ S⊥
L̂
+ ξL̂. Therefore, µn − µ̂n ∈ SK̂ ∩ SL̂ and

µ̂n ∈
(
S⊥
K̂
+ ξK̂

)
∩
(
S⊥
L̂
+ ξL̂

)
. This shows that µn ∈ M(K̂, L̂) with sL̂ < sK̂ .

A.2 Proof of Theorem 2

We first show that

ppoly(B, dnq ;CFnq
) ̸= ∅ and ppoly(B, dnq ;Cnq) ̸= ∅ for all q. (47)

The fact that Fnq ∈ Fnq0 implies µFnq
∈ ppoly(B, dnq ;CFnq

). Then there exists a δ+q ∈
Rdδ such that BµFnq

+ CFnq
δ+q ≤ dnq . It follows that µ0

q := µFnq
− (Πnq − ΠFnq

)δ+q ∈
ppoly(B, dnq ;Cnq) because Bµ

0
q + Cnqδ

+
q = BµFnq

+ CFnq
δ+q ≤ dnq . This verifies (47).

Consider an arbitrary subsequence of {nq}. There exists a further subsequence {na} such

that (µ′
na
, vec(Πna)

′, vec(Υ̂na)
′)′ → (µ′

∞, vec(Π∞)′, vec(Υ∞)′)′ almost surely and rk(IKCna) →
rk(IKC∞) and rk(IKCFna

) → rk(IKC∞) almost surely for K = K†(µ∞;B,C∞, d∞), where

K†(µ∞;B,C∞, d∞) is the minimal activatable set defined in Section B.1. Such a further
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subsequence exists under Assumption 1(i, ii, v) and Assumption 3 (or Assumption 2, us-

ing Lemma 4) because every sequence that converges in probability has a subsequence that

converges almost surely. We fix one such further subsequence and one realization from the

sample space and show that δ̃na → δ∗∞ and δ∗Fna
→ δ∗∞ deterministically. This is sufficient to

show that δ̃nq →p δ
∗
∞ and δ∗Fnq

→p δ
∗
∞ along the original subsequence.

We next show that, as a→ ∞,

poly([B,Cna ], dna)
K→ poly([B,C∞], d∞). (48)

We verify the conditions of Lemma 9. Condition (i) follows from Cna = BΠna+D → BΠ∞+

D = C∞ and dna → d∞. Condition (ii) follows from (47). Condition (iii) follows because

rk(IK [B,Cn]) = rk([B,BΠn +D]) = rk(IK [B,D]) = rk(IK [B,BΠ∞ +D]) = rk(IK [B,C∞])

for all K ⊆ {1, . . . , dC}, where the second and third equalities hold by Lemma 6(b). Then

(48) follows from Lemma 9.

We next show that

µ̃na → µ∞ (49)

as a → ∞. Recall δ∗∞ = argminδ∈poly(C∞,d∞−Bµ∞)∥δ∥, where poly(C∞, d∞ − Bµ∞) is not

empty by Assumption 1(vi). Note that (µ∞, δ
∗
∞) ∈ poly([B,C∞], d∞). Then, by (48), there

exists a sequence (µ†
na
, δ†na

) ∈ poly([B,Cna ], dna) such that µ†
na

→ µ∞ and δ†na
→ δ∗∞. More-

over,

∥µ̃na − µna
∥2
Υ̂na

≤ ∥µ†
na

− µna
∥2
Υ̂na

(50)

since µ̃n = argminµ∈poly(B,dn;Cn)
∥µn − µ∥2

Υ̂n
. The right-hand side in (50) converges to 0

because µ†
na

→ µ∞, with µna
→ µ∞ and Υ̂n → Υ∞ by Assumption 1(i, ii, v). This verifies

(49).

We next show that, as a→ ∞,

poly(CFna
, dna −BµFna

)
K→ poly(C∞, d∞ −Bµ∞) and

poly(Cna , dna −Bµ̃na)
K→ poly(C∞, d∞ −Bµ∞). (51)

We verify the conditions of Lemma 9. Condition (i) follows because Cna → C∞, CFna
→ C∞,

dna − BµFna
→ d∞ − Bµ∞, and, using (49), dna − Bµ̃na → d∞ − Bµ∞. Condition (ii)

follows because δ∗Fna
∈ poly(CFna

, dna −BµFna
) and δ̃na ∈ poly(Cna , dna −Bµ̃na). Condition

(iii) follows from the fact that rk(IKCna) → rk(IKC∞) and rk(IKCFna
) → rk(IKC∞) for

K = K†(µ∞;B,C∞, d∞). Note that, since the sequence of ranks is discrete, equality must

hold eventually. Also note that, by Lemma 1, the only activatable K ⊆ {1, ..., dC} such
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that poly(IKC∞, IK(d∞ − Bµ∞)) is an affine subspace of Rdδ is K = K†(µ∞;B,C∞, d∞).

Therefore, (51) follows from Lemma 9. Then, δ̃na → δ∗∞ and δ∗Fna
→ δ∗∞ follow from Lemma

8 with xn = x∞ = 0 and Σn = Σ∞ = Idδ .

A.3 Proof of Theorem 3

Let nq be a subsequence that achieves the limsup. Let Fq ∈ Fnq0 approximately achieve the

sup so that limq→∞ PFq

(
Tnq > cv(ŝnq , α)

)
= lim supn→∞ supF∈Fn0

PF (Tn > cv(ŝn, α)). It is

sufficient to find a further subsequence along which this quantity is less than or equal to α.

For simplicity, we denote all further subsequences by nq.

First, we find a further subsequence along which the following convergence results hold:(
Xq,µ

vec(Xq,C)

)
:=

( √
nq(µnq

−µFq)
√
nqvec(Πnq−ΠFq)

)
→d

(
Xµ

vec(XC)

)
∼ N(0,Ω∞) (52)

Σ̃nq =
(

I
δ̃nq⊗I

)′
Ωnq

(
I

δ̃nq⊗I

)
→p

(
I

δ∗∞⊗I
)′
Ω
(

I
δ∗∞⊗I

)
= Σ∞ (53)

Cnq = BΠnq +D →p C∞ = BΠ∞ +D (54)

hq :=
√
nq(dnq −BµFq − CFqδ

∗
Fq
) → h∞ (55)

rk(IKCnq) = rk(IKC∞), for every K ∈ K(B,C∞, h∞) ∪ L(B,C∞, h∞) w.p.a.1, (56)

where K(B,C∞, h∞) and L(B,C∞, h∞) are defined in Section B.1 and w.p.a.1 stands for

“with probability approaching 1”. Equation (52) follows from Assumption 1(ii) for some

further subsequence and some Ω∞. Equation (53) follows from Assumption 1(iv) and The-

orem 2. Equation (54) follows from Assumption 1(i, ii). Equation (55) holds elementwise

along a further subsequence for some h∞ ∈ [0,∞]dC because Fq ∈ Fnq ,0 implies that hq ≥ 0.

Equation (56) holds by Lemma 4 under Assumption 2.

We next define the limiting problem. Let X = Xµ + XCδ
∗
∞. Consider the following

CQPP:

T∞ = min
η,γ:Bη+C∞γ≤h∞

∥X − η∥2
Σ−1

∞
. (57)

Let η∗∞ be the unique value of η that solves (57). (Recall h∞ ≥ 0, so the constraint set is not

empty.) Let γ∗∞ ∈ poly(C∞, h∞ − Bη∗∞) and achieve the minimal activatable set as defined

in Section B.1. Note that, trivially,

γ∗∞ = argmin
γ:Bη∗∞+C∞γ≤h∞

∥γ − γ∗∞∥. (58)

Let K∗ = {j ∈ {1, ..., dC} : e′jBη
∗
∞+e′jC∞γ

∗
∞ = e′jh∞} and s∗ = rk (IK∗ [B,D])−rk (IK∗C∞).

For any value of the multipliers, ψ∗, solving the KKT conditions for (57), we can define
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L∗ = {j ∈ {1, ..., dC} : e′jψ
∗ > 0} and t∗ = rk (IL∗ [B,D]) − rk (IL∗C∞). By Theorem 1(b),

there exists a Lebesgue measure zero set, M0, such that for all X /∈ M0, r
∗ = s∗ = t∗, where

r∗ = dim (B′{h ≥ 0 : h′C∞ = 0, h′(Bη∗∞ − h∞) = 0}).
By the almost sure representation theorem, there is a copy of Xq,µ, Xq,C , Σ̃nq and Cnq

with identical joint distribution such that the convergence in (52)-(54) holds almost surely

and the equality in (56) holds eventually, almost surely.37 Abusing notation, we refer to the

copies that converge almost surely using the original notation. Now fix a sample sequence

along which the convergence in (52)-(54) holds and the equality in (56) holds eventually. We

can also take the sample sequence to satisfy X /∈ M0 and

∥(MCK
IKBΣ1/2

∞ )+MCK
IK(BX − h∞)∥2

Σ−1
∞
̸= cv(rk(MCK

IKB), α)

for all K ⊆ {1, . . . , dC} such that MCK
IKB ̸= 0 and IKh∞ <∞, (59)

where MCK
= I|K| − IKC∞(C ′

∞I
′
KIKC∞)+C ′

∞I
′
K . Such sample sequences occur with prob-

ability one by the almost sure representation, Theorem 1(b), and Lemma 12. Note that

Lemma 12 applies because Σ
−1/2
∞ (MCK

IKBΣ
1/2
∞ )+MCK

IKBΣ
1/2
∞ is not a zero matrix when

MCK
IKB ̸= 0.

In the rest of the proof, we show that, for the fixed sample sequence, we have

lim sup
q→∞

1{Tnq > cv(ŝnq , α)} ≤ 1{T∞ > cv(r∗, α)}. (60)

If this is true, then (60) is satisfied with probability 1. We can apply Fatou’s lemma and

conclude that

lim sup
q→∞

PFq(Tnq > cv(ŝnq , α)) ≤ P (T∞ > cv(r∗, α)). (61)

(The probability on the left-hand side does not depend on which copy of the random variable

is used because they have identical joint distribution.) Also, by Theorem 3(a) of CS23, we

have P (T∞ > cv(r∗, α)) ≤ α. This is sufficient to prove Theorem 3.

Now we show (60) for the fixed sample sequence. Take a further subsequence along which

the limsup on the left-hand side is achieved. Then, it is sufficient to show that there exists

a further subsequence along which (60) holds. We proceed in four steps.

Step 1. We rewrite the test statistic using a change of variables:

Tnq = min
η,γ:Bη+Cnqγ≤hq

∥Xq − η∥2
Σ̃−1

q
, (62)

37Note that the eventuality occurs almost surely but not necessarily uniformly. That is, for almost every
realization, ω, there exists an N(ω) <∞ such that (56) holds for all q ≥ N(ω). It need not be the case that
there exists an N such that for all q ≥ N , (56) holds almost surely.
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whereXq = Xq,µ+Xq,Cδ
∗
Fq
, η =

√
nq(µ−µFq)+Xq,Cδ

∗
Fq
, and γ =

√
nq(δ−δ∗Fq

). The expression

in (62) should clarify that (57) represents the limit experiment. Let η̂q =
√
nq(µ̂nq − µFq) +

Xq,Cδ
∗
Fq

be the unique value of η that solves (62). Also let

γ̂q = argmin
γ:Bη̂q+Cnqγ≤hq

∥γ − γ∗∞∥2. (63)

Note that γ̂q does not have to be equal to
√
nq(δ̂nq −δ∗Fq

) if the solution to (62) is not unique.

Also note that γ̂q need not achieve the minimal activatable set, as defined in Section B.1.

By Lemma 2, we can take γ̈q to be within n−1
q of γ̂q, solve (62), and achieve the minimal

activatable set of poly(Cnq , hq−Bη̂q). The γ̈q defined here is used in Step 3 below. Moreover,

let ψ̂q be the minimum norm Lagrange multiplier that satisfies the KKT conditions:

ψ̂q =argmin
ψ≥0

∥ψ∥ s.t. (64)

2Σ̃−1
nq
(Xq − η̂q)−B′ψ = 0 (65)

C
′
nq
ψ = 0 (66)

(hq −Bη̂q − Cnq γ̈q)
′ψ = 0. (67)

Note that (65)-(67) are the KKT conditions for (62).

Step 2. We next show that there exists a further subsequence such that:

Tnq → T∞, η̂q → η∗∞, γ̂q → γ∗∞, γ̈q → γ∗∞, and ψ̂q → ψ∗
∞, (68)

for some ψ∗
∞ that, along with η∗∞ and γ∗∞, satisfy the KKT conditions for (57).

First note that

ppoly(B, hq;Cnq)
K→ ppoly(B, h∞;C∞) (69)

by Lemma 10, which applies because Cnq → C∞, hq → h∞, rk(IJ [B,Cnq ]) = rk(IJ [B,BΠnq+

D]) = rk(IJ [B,D]) = rk(IJ [B,BΠ∞ + D]) = rk(IJ [B,C∞]) for any J ⊆ {1, . . . , dC},
and for any η ∈ Rdµ , the minimal activatable set K†(η) of poly(C∞, h∞ − Bη) satisfies

rk(IK†(η)Cnq) = rk(IK†(η)C∞) eventually. That rk(IK†(η)Cnq) = rk(IK†(η)C∞) eventually fol-

lows from (56) because K†(η) ∈ K(B,C∞, h∞). Using (69) and (53), we can apply Lemma

8 to conclude that

η̂q → η∗∞. (70)

Next, observe that Tnq = ∥Xq − η̂q∥2Σ̃−1
nq

and T∞ = ∥X − η∗∞∥2
Σ−1

∞
. We have that Xq → X

because of (52) and the fact that δ∗Fq
→ δ∗∞ from Theorem 2. Therefore, by (70), the

invertibility of Σ∞ from Assumption 1(iii), and Xq → X, we have Tnq → T∞.
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Next, we show that γ̂q → γ∗∞. We verify the conditions of Lemma 9 to get

poly(Cnq , hq −Bη̂q)
K→ poly(C∞, h∞ −Bη∗∞). (71)

Condition (i) is satisfied because Cnq → C∞ and hq −Bη̂q → h∞ −Bη∗∞, using the previous

paragraph. Condition (ii) is satisfied because γ̂q ∈ poly(Cnq , hq − Bη̂q). Condition (iii) is

satisfied because any K ⊆ {1, ..., dC} that is activatable for poly(C∞, h∞ − Bη∗∞) for which

poly(IKC∞, IKh∞− IKBη
∗
∞) defines an affine subspace of Rdδ also belongs to K(B,C∞, h∞)

(with x = η∗∞) by Lemma 1(c). Condition (iii) then follows from (56). Therefore, by Lemma

9, (71) holds. We then verify the conditions of Lemma 8 to get γ̂q → γ∗∞. Note that γ̂q is

the projection of γ∗∞ onto poly(Cnq , hq − Bη̂q) and γ
∗
∞ is trivially the projection of γ∗∞ onto

poly(C∞, h∞−Bη∗∞) by (63) and (58), respectively. The K-convergence condition is satisfied

by (71) and poly(C∞, h∞ −Bη∗∞) is nonempty because it includes γ∗∞. Therefore, γ̂q → γ∗∞.

Since γ̈q is within n
−1
q distance from γ̂q, we also have γ̈q → γ∗∞.

To show convergence of ψ̂q, we use Lemma 11. Since ψ̂q is defined to satisfy (64)-(67),

it is the minimum norm multiplier that satisfies (106)-(109). Note that, by complementary

slackness, IK̈c
q
ψ̂q = 0, where K̈q = {j : e′j(hq −Bη̂q −Cnq γ̈q) = 0}. Also note that (η̂q, γ̈q) →

(η∗∞, γ
∗
∞) by the previous two paragraphs. Consider a further subsequence along which K̈q

does not depend on q. Along this further subsequence, ψ̂q → ψ∗
∞, where ψ∗

∞ ≥ 0 satisfies:

Σ−1
∞ (X − η∗∞) = B′ψ∗

∞, C ′
∞ψ

∗
∞ = 0, and I(K∗)cψ

∗
∞ = 0, where K∗ = {j : e′j(h∞ − Bη∗∞ −

C∞γ
∗
∞) = 0}. The last condition implies that (h∞ − Bη∗∞ − C∞γ

∗
∞)′ψ∗

∞ = 0, which shows

that (η∗∞, γ
∗
∞, ψ

∗
∞) satisfies all the KKT conditions for (57).

Step 3. We next bound the limit of ŝnq . Recall K̂q = {j : e′j(Bµ̂nq +Cnq δ̂nq − dnq) = 0}
and L̂q = {j : e′jψ̂q > 0}. Let L∗ = {j : e′jψ

∗
∞ > 0} and t∗ = rk(IL∗ [B,C∞]) − rk(IL∗C∞).

Note that

L∗ ⊆ L̂q ⊆ K̈q ⊆ K̂q (72)

eventually, where the first set inclusion follows from the convergence of ψ̂q to ψ
∗
∞, the middle

set inclusion follows from complementary slackness, and the final set inclusion follows from

the fact that γ̈q was chosen to achieve the minimal activatable set. We next show that

s∗ = r∗ = t∗ = rk(IL∗ [B,Cq])− rk(IL∗Cq) ≤ t̂nq ≤ ŝnq (73)

eventually as q → ∞. The first two equalities follow because X ̸∈ M0, the third equality

follows from (56) and L∗ ∈ L(B,C∞, h∞) so that rk(IL∗Cq) = rk(IL∗C∞) eventually, and

the two inequalities follow from applying Lemma 6(c) to (72).38

38Note that L∗ ∈ L(B,C∞, h∞) because (η∗∞, γ
∗
∞, ψ

∗
∞) satisfy the KKT conditions for (57) and γ∗∞ is
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Step 4. To finish the proof, we verify (60) in three cases. (A) Suppose ŝnq = 0

along a subsequence. Fix that subsequence. By Lemma 13, Tnq = 0. Therefore, 1{Tnq >

cv(ŝnq , α)} = 0 along the subsequence, which satisfies (60).

(B) Suppose ŝnq ≥ 1 eventually and r∗ = 0. By Lemma 13, T∞ = 0. Therefore, Tnq → 0

must satisfy 1{Tnq > cv(ŝnq , α)} = 0 eventually. This satisfies (60).

(C) Suppose r∗ > 0. This implies that s∗ ̸= 0 by Theorem 1(a). Therefore, MCK∗IK∗B ̸=
0 because s∗ = rk (MCK∗IK∗B) by Lemma 6(a,b). By (59),

∥(MCK∗IK∗BΣ1/2
∞ )+MCK∗IK∗(BX − h∞)∥2

Σ−1
∞
̸= cv(s∗, α), (74)

using the fact that IK∗h∞ <∞ by the definition of K∗. Also note that, using Lemma 7,

T∞ = ∥X − η∗∞∥2
Σ−1

∞
= ∥(MCK∗IK∗BΣ1/2

∞ )+MCK∗IK∗(BX − h∞)∥2
Σ−1

∞
. (75)

Therefore, Tnq → T∞ ̸= cv(s∗, α). This implies that 1{Tnq > cv(ŝnq , α)} ≤ 1{Tnq >

cv(s∗, α)} = 1{T∞ > cv(r∗, α)} eventually, where the inequality uses (73). This verifies

(60) in this case.
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This supplemental appendix is organized as follows:

• Section B extends and generalizes Theorems 2 and 3, including a discussion of As-

sumption 2.

• Section C states and proves lemmas used in the proofs.

• Section D discusses Assumption 1(vi).

• Section E presents simulations for the policy relevant treatment effect example.

B Extensions/Generalizations of Theorems 2-3

This section extends and generalizes the GCC test and Theorems 2-3. Section B.1 gives

precise definitions for activatability of a set of indices for a system of linear inequalities.

Section B.2 states theorems that relax Assumption 2. Section B.3 discusses Assumption

2. Section B.4 defines the Refined GCC (RGCC) test and proves its validity. Section B.5

defines the GCC test with KKT multipliers and proves its validity.

B.1 Definitions of Activatability

Assumption 2 requires the rank stability equation to hold for all K ∈ A(C∞, b∞) with

K= ⊆ K. In this section, we define two subcollections of {K ∈ A(C∞, b∞) : K= ⊆ K} and

state weaker conditions where the rank stability equation is only required to hold on these

subcollections. We are especially careful to cover potential non-uniqueness of the solution

to the CQPP as well as potential non-uniqueness of the KKT multipliers.

The first concept of activatability is defined with respect to the polyhedral set poly(C, b).

We say that a collection of inequalities, J ⊆ {1, ..., dC} is activatable for poly(C, b) if there

exists a δ ∈ poly(C, b) such that J = {j ∈ {1, ..., dC} : e′jCδ = e′jb}. Let J denote the set of

all J ⊆ {1, ..., dC} that are activatable for poly(C, b). Note that J depends on the initial C

and b, which we keep implicit. We also define

J† = ∩J∈J J. (76)
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We call J† the minimal activatable set of poly(C, b). Lemma 1, below, explains the sense in

which it is “minimal” and “activatable”. The lemma is proved at the end of this subsection.

Lemma 1. (a) J† ∈ J .

(b) The inequalities specified by J† define an affine subspace of Rdδ . That is, we have

poly(IJ†C, IJ†b) = {δ ∈ Rdδ : IJ†Cδ = IJ†b}.

(c) For any J̈ ∈ J such that poly(IJ̈C, IJ̈b) = {δ ∈ Rdδ : IJ̈Cδ = IJ̈b}, we have J̈ = J†.

Intuitively, the minimal activatable set corresponds to a δ ∈ poly(C, b) in the interior

or relative interior for which any inequality that can be slack is slack. Any inequality that

cannot be slack is implicitly an equality that defines an affine subspace of Rdδ .

The next concept of activatability is with respect to the CQPP:

min
(µ,δ)∈poly([B,C],d)

(x− µ)′Σ−1(x− µ), (77)

for some positive definite Σ. For each x ∈ Rdµ , let µ(x) denote the unique minimizing value of

µ. The minimizing value of δ is not unique. Instead, the set of possible minimizing values for

δ are ∆(x) := poly(C, d−Bµ(x)). For each K ⊆ {1, . . . , dC}, we call K a K-activatable set

for the CQPP (77) if K is activatable for ∆(x) in the sense defined above. By definition, any

K-activatable set for (77) is of the form K(x, δ) = {k ∈ {1, ..., dC} : e′kBµ(x) + e′kCδ = e′kd}
for some δ ∈ ∆(x). Let the collection of K-activatable sets for (77) be denoted K(x) =

{K(x, δ) : δ ∈ ∆(x)}.
By Lemma 1, for each x ∈ Rdµ , there exists a unique minimal K-activatable set for (77),

and we denote it by K†(x). Furthermore, let the collection of minimal K-activatable sets be

K = {K†(x) : x ∈ Rdµ}. Note that K†(x) and K depend on the original specification of B,

C, d, and Σ. We can make this dependence explicit with K†(x;B,C, d,Σ) and K(B,C, d,Σ).

The following lemma shows that for any δ ∈ ∆(x), there is a point in ∆(x) arbitrarily

close to it that achieves the minimal K-activatable set. It is used in the proof of Theorem 3,

and its proof is at the end of this subsection.

Lemma 2. For any δ ∈ ∆(x) and for any ϵ > 0, there exists a δ̈ ∈ ∆(x) such that ∥δ− δ̈∥< ϵ

and K(x, δ̈) = K†(x).

There is another way to define activatability with respect to (77), based on the KKT

multipliers. Write out the KKT conditions associated with (77):

0 = 2Σ−1(µ(x)− x) +B′ψ (78)
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0 = C ′ψ (79)

0 ≤ ψ (80)

0 = ψ′(Bµ(x) + Cδ − d) (81)

0 ≥ Bµ(x) + Cδ − d, (82)

where ψ denotes the KKT multipliers. For any x ∈ Rdµ and for any δ ∈ ∆(x), (78)-(81)

specify a system of linear equalities/inequalities (a polyhedral set) for values of ψ that solve

the KKT problem. Denote that set by Ψ(x, δ). Notice that this set does not depend on δ

except through K(x, δ). That is, for any K, let Ψ(x,K) (abusing notation) denote the set

of values of ψ that satisfy (78)-(80), together with

0 = IKcψ, (83)

where Kc = {1, ..., dC}/K. We then have Ψ(x, δ) = Ψ(x,K(x, δ)).

We only concern ourselves with KKTmultipliers associated with the minimal K-activatable

set for (77) in the proofs. Let

Ψ†(x) = Ψ(x,K†(x)). (84)

For any ψ ∈ Ψ†(x), let L(x, ψ) = {ℓ ∈ {1, ..., dC} : e′ℓψ > 0} be an L-activatable set for

(77). Let the collection of L-activatable sets be given by L(x) = {L(x, ψ) : ψ ∈ Ψ†(x)} and

L = ∪x∈RdµL(x).39

Note that L depends on the specification of B, C, d, and Σ. We can write it as

L(B,C, d,Σ). The following lemma shows that Σ is redundant in the notation. The same is

true for the collection of K-activatable sets: K(B,C, d,Σ), and for some x, for the minimal

K-activatable set K†(x;B,C, d,Σ). The lemma is proved at the end of this subsection.

Lemma 3. The sets K(B,C, d,Σ) and L(B,C, d,Σ) do not depend on Σ. Furthermore, if

x ∈ ppoly(B, d;C), then K†(x;B,C, d,Σ) does not depend on Σ.

In light of Lemma 3, we can denoteK(B,C, d,Σ) byK(B,C, d), L(B,C, d,Σ) by L(B,C, d),
and K†(x;B,C, d,Σ) by K†(x;B,C, d) for x ∈ ppoly(B, d;C).

B.1.1 Proofs of Lemmas 1-3

Proof of Lemma 1. (a) For each J ∈ J , let δJ ∈ poly(C, b) be such that J = {j ∈
{1, ..., dC} : e′jCδJ = e′jb}. Take δ† = 1

|J |
∑

J∈J δJ . This satisfies J† = {j ∈ {1, ..., dC} :

39For the purpose of proving Theorem 3, we could further restrict L(x) to be {L(x, ψ) : ψ ∈
Ψ†(x) and rk

(
IL(x,ψ)[B,C]

)
− rk

(
IL(x,ψ)C

)
= rk

(
IK†(x)[B,C]

)
− rk

(
IK†(x)C

)
}. Then, all the L-activatable

sets give the same DoF as K†(x).
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e′jCδ
† = e′jb}. Thus J† ∈ J .

For part (b), suppose poly(IJ†C, IJ†b) is not an affine subspace of Rdδ . Then there exists

a δ̃ ∈ poly(IJ†C, IJ†b) and a nonempty J+ ⊆ J† such that every element of IJ+Cδ̃ is strictly

less than the corresponding one in IJ+b. Define δ† as in the proof of part (a). Then δ(η) :=

ηδ̃ + (1− η)δ† ∈ poly(C, b) for small enough η > 0. Also, {j ∈ {1, . . . , dC} : e′jCδ(η) = e′jb}
does not include elements in J+ and thus is a strict subset of J†. This contradicts the

definition of J†. Thus, poly(IJ†C, IJ†b) is an affine subspace of Rdδ .

For part (c), poly(IJ̈C, IJ̈b) = {δ ∈ Rdδ : IJ̈Cδ = IJ̈b} implies that J̈ ⊆ J for any J ∈ J .

Thus, J† = J̈ .

Proof of Lemma 2. Let δ† be a point in ∆(x) such that IK†(x)Cδ
† = IK†(x)(d− Bµ(x)) and

for any j /∈ K†(x), e′jCδ
† < e′j(d − Bµ(x)). Then δ̈ := (1 − η)δ + ηδ† ∈ ∆(x) and for any

η ∈ (0, 1), K(x, δ̈) ⊆ K†(x). Since K†(x) is the minimal K-activatable set of ∆(x), we have

that K(x, δ̈) = K†(x). Choosing a η small enough so that ∥δ− δ̈∥< ϵ proves the lemma.

Proof of Lemma 3. If, for some x and ψ, L(x, ψ) ∈ L(B,C, d,Σ), then L(x, ψ) = L(y, ψ) ∈
L(B,C, d, Σ̃) for any positive definite Σ̃ by taking y = µ(x)− Σ̃Σ−1(µ(x)− x). This follows

because the same ψ (as well as the same δ and µ = µ(x)) satisfies the KKT conditions in (78)

- (82) with y in place of x and Σ̃ in place of Σ. Similarly, if for some x, K†(x;B,C, d,Σ) ∈
K(B,C, d,Σ), then K†(y;B,C, d, Σ̃) ∈ K(B,C, d, Σ̃). If x ∈ ppoly(B, d;C), then µ(x) = x

and ∆(x) does not depend on Σ.

B.2 Relaxing Assumption 2

Theorems 2-3 use Assumption 2 to ensure Kuratowski convergence of the constraint set that

defines Tn. Also, Theorem 3 uses Assumption 2 to bound the limit of ŝn. We can relax

Assumption 2 by clarifying precisely for which sets of indices, K, the rank condition in

Assumption 2 needs to hold.

Assumptions 3 and 4 state relaxed versions of Assumption 2 for certain collections of

activatable sets. Lemma 4, below, shows that Assumption 2 is sufficient for Assumptions 3

and 4. These assumptions use the definitions of activatable sets from Section B.1.

Assumption 3. For every sequence {Fn}∞n=1 with Fn ∈ Fn0 and for every subsequence,

{nm}, satisfying Assumption 1(i) with C∞ = BΠ∞ +D and b∞ = d∞ −Bµ∞, there exists a

further subsequence, {nq}, such that

PFnq
(rk(IKCnq) = rk(IKCFnq

) = rk(IKC∞)) → 1

as q → ∞ for K = K†(µ∞;B,C∞, d∞).
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Assumption 4. For every sequence {Fn}∞n=1 with Fn ∈ Fn0 and for every subsequence,

{nm}, satisfying Assumption 1(i) with C∞ = BΠ∞+D and also satisfying hm =
√
nm(dnm−

BµFnm
−CFnm

δ∗Fnm
) → h∞ elementwise for some vector h∞ ∈ [0,∞]dC , there exists a further

subsequence, {nq}, such that

PFnq
(rk(IKCnq) = rk(IKC∞)) → 1

as q → ∞ for all K ∈ K(B,C∞, h∞) ∪ L(B,C∞, h∞).

Remarks: (1) Assumptions 3 and 4 only require the stable rank condition to hold for sets

of inequalities that are activatable for the limit polyhedral set. In Assumption 3, the limit

polyhedral set is defined without scaling the slackness, while for Assumption 4, the limit

polyhedral set is defined by scaling the slackness at the
√
n rate. (The difference between

K-activatable and L-activatable sets of inequalities is practically irrelevant.) Furthermore,

Assumptions 3 and 4 only require the stable rank condition to hold for minimal activatable

sets. By Lemma 1, minimal activatable sets are the inequalities associated with equalities,

either explicitly or implicitly. Any inequality that can possibly be slack is excluded. Of course,

several different limits can arise depending on the sequence {Fn}∞n=1 and uniformity requires

the stable rank condition to hold for minimal activatable sets of inequalities in all of these

limits. See Section B.3, below, for more discussion in some simple examples.

(2) Voronin (2025) considers the problem of uniformly consistent estimation of the value

of a LPP. They point out that no uniformly consistent estimator exists if the optimal vertex

is allowed to become arbitrarily “sharp” as the sample size increases. This is related to the

rank stability condition because the problematic set of inequalities defines a linear subspace

in the limit, and the rank stablility equation does not hold for the K corresponding to this

set.

The following lemma shows that these assumptions are weaker than Assumption 2.

Lemma 4. Assumption 2 implies Assumptions 3 and 4.

Proof of Lemma 4. Fix a sequence {Fn}∞n=1 with Fn ∈ Fn0 and fix a subsequence nm satis-

fying Assumption 1(i) with C∞ = BΠ∞+D and b∞ = d∞−Bµ∞. If poly(C∞, b∞) is empty,

then Assumptions 3 and 4 hold trivially. Therefore, suppose poly(C∞, b∞) is not empty. For

verifying Assumption 4, suppose further that hm → h∞ (elementwise). By Assumption 2,

there exists a further subsequence, nq, such that

PFnq
(rk(IKCnq) = rk(IKCFnq

) = rk(IKC∞)) → 1 (85)

for all K ∈ A(C∞, b∞) with K= ⊆ K.
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To verify Assumption 3, note that for K = K†(µ∞;B,C∞, d∞), there exists a δ such that

K = {j ∈ {1, . . . , dC} : e′j(Bµ∞ +C∞δ− d∞) = 0}. This implies that K ∈ A(C∞, b∞). Also

note that K= ⊆ K because any activatable set contains K= and K is an activatable set.

Therefore, (85) holds. This verifies Assumption 3.

To verify Assumption 4, let K ∈ K(B,C∞, h∞) ∪ L(B,C∞, h∞). By the definition of

K(B,C∞, h∞) and L(B,C∞, h∞), there exists an x ∈ Rdµ and a δ ∈ poly(C, h∞−Bµ(x)) such
that e′j(Bµ(x) +C∞δ − h∞) = 0 for all j ∈ K. Here the function µ(x) is the solution to the

CQPP minµ,δ:Bµ+C∞δ≤h∞(x−µ)′Σ−1(x−µ) for some positive definite matrix Σ. The solution

µ(x) is finite because (µ′, δ′)′ = 0 satisfies Bµ + C∞δ ≤ h∞ and hence (x − µ(x))′Σ−1(x −
µ(x)) ≤ x′Σ−1x < ∞. Therefore, for any j ∈ K, we have e′jh∞ = e′j(Bµ(x) + C∞δ) < ∞.

This and the definition of h∞ together imply that

e′j(dnq −BµFnq
− CFnq

δ∗Fnq
) → 0 for any j ∈ K. (86)

Next, we invoke Lemma 9 to get poly(CFnq
, dnq −BµFnq

) → poly(C∞, b∞), where the condi-

tions of the lemma are guaranteed by Assumptions 1(i), 2 and the fact that poly(C∞, b∞) is

nonempty. It then follows from Lemma 8 that δ∗Fnq
→ δ∗∞, which, together with Assumption

1(i), implies that dnq − BµFnq
− CFnq

δ∗Fnq
→ b∞ − C∞δ

∗
∞. This combined with (86) implies

that for x = δ∗∞, IK(C∞x − b∞) = 0, and hence K ∈ A(C∞, b∞). Also note that K= ⊆ K

because any activatable set contains K=. Therefore, (85) holds verifying Assumption 4.

We next state the generalizations of Theorems 2 and 3.

Theorem 4. Theorem 2 continues to hold if Assumption 2 is replaced by Assumption 3.

Proof of Theorem 4. The proof of Theorem 4 follows the same argument as the proof of

Theorem 2. Assumption 2 is only used in the proof of Theorem 2 to ensure rk(IKCna) =

rk(IKC∞) eventually for K = K†(µ∞;B,C∞, d∞), which follows from Assumption 3.

Theorem 5. Theorem 3 continues to hold if Assumption 2 is replaced by Assumptions 3

and 4.

Proof of Theorem 5. The proof of Theorem 5 follows the same argument as the proof of

Theorem 3 with two minor modifications. First, Assumption 3 is sufficient for Theorem

2, by Theorem 4. Second, when (56) is required to hold for every K ∈ K(B,C∞, h∞) ∪
L(B,C∞, h∞) along a subsequence, this follows from Assumption 4.

Remark: The relaxation in Theorem 5 is a substantial improvement over requiring the

stable rank condition to hold for all activatable sets of inequalities in Assumption 2. In a

moment equality model, weak identification is determined by the Jacobian of the moments.
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The relaxation to Assumptions 3 and 4 means that in a model with both moment equalities

and inequalities, the same rank condition that would be required for strong identification of the

model defined only by the equalities is sufficient for validity of the GCC (and RGCC) tests.

The addition of possibly slack inequalities to a model does not change the rank condition.

Section B.3 gives further discussion on the relaxation of Assumption 2.

B.3 Assumption 2 Discussion

This section discusses Assumption 2 and its relaxations and relates it to existing assumptions

in the literature. Section B.3.1 gives a sufficient condition for Assumption 2 in the empirical

illustration of Example 5. Section B.3.2 demonstrates the content of Assumptions 3 and 4

in simple moment inequality examples. Section B.3.3 shows that the regularity conditions

in Cho and Russell (2024) are stronger than Assumption 2.

B.3.1 A Sufficient Condition for the Empirical Illustration of Example 5

Suppose the parameter of interest is θ = e′1δ. Then, CF =
(
e1 −e1 Γ′

F −Γ′
F A′

)′
,

where ΓF is defined in (32). A subscript F is included to indicate dependence on the true

distribution of the sample. Similarly, let pts,F denote the true marginal probabilities for

t ∈ {A, J} and s ∈ {0n, 1n, 2n, 0r, 2u}. Let Γn be the estimated version, so that Cn =(
e1 −e1 Γ

′
n −Γ

′
n A′

)′
. In this case, a sufficient condition for Assumption 2 is that

• ∃c > 0 such that pAs,F > c for all s ∈ {0n, 1n, 2n, 0r, 2u}, F ∈ Fn0, and n ≥ 1.

With this condition imposed, under the subsequence in Assumption 2, the exact sparse

structure of Γn is preserved in the probability limit. As a result, the linear dependence of

the rows of Γn with the rows of A is also preserved.40 This ensures that the rank of any

collection of the rows of Cn is unchanged in the limit.

B.3.2 Assumption 2 in Simple Moment Inequality Examples

This section demonstrates the content of Assumptions 2-4 in simple moment inequality

examples.

Example 7. Consider the moment inequality model in (4) with no equalities, B = R2, and

inequalities specified by

β1 + β2 + η1F ≥ 0

40Note that the row of the Jacobian associated with the inequality “π0r,0n+π0r,1n+π0r,2n+π0r,1r+π0r,2u ≤
1” is perfectly collinear with the rows of the Jacobian associated with the fourth row in Γ. This demonstrates
the importance of allowing the rank to be singular as long as it is stable.
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Figure 3: Illustration of Example 7

(a) cF = 1 (b) cF close to zero (c) cF = 0

Note: Sets of (β1, β2)
′ defined by (87) for various values of cF . The coordinate axes are omitted to

avoid clutter. The horizontal axis is β1 and the vertical axis is β2. Shade indicates the direction

of the inequalities. The vertical dotted line in (a) and (b) represents imposing the null hypothesis

that β1 = 0.

β1 − cFβ2 + η2F ≥ 0

−β1 + η3F ≥ 0, (87)

where β = (β1, β2)
′ are structural parameters and ηjF and cF are reduced-form parameters

for j ∈ {1, 2, 3}. If the reduced-form parameters are expectations of observed variables, then

these inequalities represent moment inequalities; for example, ηjF = EF [Yj] for observed

random variables Yj. If ηjF are all estimated at the
√
n rate with positive definite asymptotic

variance-covariance matrix, then (87) can be written in the form of (3) with B = −I3,
D = O3×2, d = 0, Π =

[
1 1
1 −cF
−1 0

]
, µ = (η1F , η2F , η3F )

′, and δ = (β1, β2)
′.41 We maintain

that η1F = η2F = 0, η3F = 1, and cF ≥ 0. For fixed cF > 0, the inequalities in (87) define a

triangular region in R2 of possible values of δ; see Figure 3(a).

We walk through the content of Assumptions 2-4 for specification testing the inequalities

in (87) in two cases: (a) cF converges to a c∞ > 0, and (b) cF converges to 0.

(a) c∞ > 0. Start with Assumption 2 and the definition of A(C∞, b∞). Note that C∞ =[ −1 −1
−1 c∞
1 0

]
and b∞ = (0, 0, 1)′. We seek the collections of inequalities that are simultaneously

activatable. Consider the vertices of poly(C∞, b∞), depicted in Figure 3(a). At the leftmost

point, the first two inequalities are active. At the upper-right point, the second and the third

41Alternatively, if only some of the ηjF are estimated, then (87) can be written in the form of (3) in other
ways. For example, if η1F and η3F are known to be zero, then (87) can be written in the form of (3) with

B = −(0, 1, 0)′, D = −
[

1 1
0 0
−1 0

]
, d = 0, Π = (1,−cF ), µ = η2F , and δ = (β1, β2)

′. If η2F is known to be zero,

then the strategy in Remark (2) above Example 3 can be used.
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inequalities are active. At the lower-right point, the first and the third inequalities are active.

Thus, A(C∞, b∞) includes {1, 2}, {2, 3}, and {1, 3}. Also, A(C∞, b∞) includes all subsets

of activatable sets, so A(C∞, b∞) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Next, note that

there are no equalities, so K= = ∅. Assumption 2 considers submatrices of C∞ formed by

the rows associated with indices in K for all K ∈ A(C∞, b∞). For any two rows of C∞,

the rank of the submatrix is 2. Also, any one row of C∞ is nonzero and thus has rank 1.

In both cases, the rank of the limit is full, and therefore the rank stability equation holds

automatically for any sequence of matrices converging to C∞.

Next, consider Assumption 3. For Assumption 3, we view the inequalities in (87)

as functions of both δ = (β1, β2)
′ and µ = (η1F , η2F , η3F )

′. Plug in µ = µ∞, and the

resulting collection of inequalities is still represented by Figure 3(a). In this figure, all

the inequalities are possibly inactive, and therefore the minimal collection of inequalities

is K†(µ∞;B,C∞, d∞) = ∅. Therefore, the rank stability equation for Assumption 3 holds

trivially.

Next, consider Assumption 4. We need to rescale the inequalities by
√
n. Notice that

δ∗F = (0, 0)′ because that is the minimum norm value of δ that satisfies the inequalities. Also

note that µF = (0, 0, 1)′. Therefore, after rescaling, the limit is h∞ = (0, 0,∞)′. Because the

third inequality is infinitely slack, it cannot be K- or L- activatable for (B,C∞, h∞). For the

first and second inequalities, we consider the CQPP (77) with some “shift” x ∈ R3. For any

x, we can select a µ(x) = x that solves the CQPP while satisfying the inequalities strictly with

some δ. Hence, both inequalities can be slack. Therefore, the minimal activatable set for any

shift is K†(x;B,C∞, h∞) = ∅. Also note that L(x, ψ) ⊆ K†(x) for any ψ ∈ Ψ†(x). Therefore,

K(B,C∞, h∞) = L(B,C∞, h∞) = {∅}, and the rank stability equation in Assumption 4 is

satisfied trivially.42

(b) c∞ = 0. The limit for this case is depicted in Figure 3(c), while Figure 3(b) de-

picts the case that cF is small but positive. Concerning Assumption 2, the definition of

A(C∞, b∞) is changed because there is no longer a vertex associated with the second and the

third inequalities. Therefore, A(C∞, b∞) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}}. The difference

is crucial. The rank stability equation holds for K ∈ A(C∞, b∞), but it would not hold for

K = {2, 3}. That is, the rank of
[

1 −cF
−1 0

]
is 2 for cF positive while the rank of the limit is

1. Still, Assumption 2 holds because K = {2, 3} is excluded from A(C∞, b∞).

Next, consider Assumptions 3 and 4. For Assumption 3, all the inequalities are still

possibly inactive, and therefore K†(µ∞;B,C∞, d∞) = ∅. Similarly, for Assumption 4, the

42The fact that the K- and L- activatable sets are empty is a general property when the identified set for
δ has positive volume or measure. All inequalities are possibly slack, so the minimal K- and L- activatable
sets of inequalities are empty. Thus, the rank stability equations (and Assumptions 3 and 4) hold trivially.
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limit of the rescaled inequalities is the same. Also, for any shift of the constants, the resulting

inequalities are still feasible. Therefore, the minimal activatable set is always the empty set,

and K(B,C∞, h∞) = L(B,C∞, h∞) = {∅}.

The next example uses the same inequalities as Example 7. The difference is that it

focuses on subvector inference for β1.

Example 8. Consider the inequalities in (87), but suppose we are testing the lower bound

on the identified set for β1. That is, H0 : β1 = 0. This hypothesis is depicted by the vertical

dotted line in Figure 3(a). This problem can be written in the form of (3) with B = −I3,
D = 0, d = 0, Π = (1,−cF , 0)′, µ = (η1F , η2F , η3F )

′, and δ = β2. Suppose η1F = η2F = 0 and

η3F = 1. We walk through the content of Assumptions 2-4 in two cases: (a) cF converges to

a positive value, say c∞, and (b) cF converges to zero.

(a) c∞ > 0. In this example, it is obvious that the rank of every submatrix formed by

the rows of CF = (−1, cF , 0)
′ is unchanged in the limit, and Assumptions 2-4 hold. Still, it

is instructive to go through the definitions of A(C∞, b∞), K†(µ∞;B,C∞, d), K(B,C∞, h∞),

and L(B,C∞, h∞).

Start with Assumption 2. The set of values for β2 defined by the inequalities is just

{0}. The first and second inequalities are active while the third is inactive. Therefore,

A(C∞, b∞) = {∅, {1}, {2}, {1, 2}}.
Second, consider Assumption 3. When we plug in µ = µ∞, we get a set of values for β2

that is just {0}, same as above. Both the first and second inequalities are implicitly equalities

because they cannot be slack. Therefore, the minimal activatable set is K†(µ∞;B,C∞, d∞) =

{1, 2}.43

Next, consider Assumption 4. When we rescale the inequalities, we get h∞ = (0, 0,∞)′,

as before. Then, we adjust the constants in the first two inequalities from µ∞ to an arbitrary

x. After adjustment, there are three possible cases for the set of β2 values that satisfy the

inequalities: (i) the set is an interval, (ii) the set is empty, and (iii) the set is a point. In

case (i) both inequalities are possibly slack, and the minimal activatable set is K†(x) = ∅.
Also, in this case, L(x, ψ) = ∅ for all ψ ∈ Ψ†(x). In case (ii), a value of µ(x) is found solving

the CQPP in (77). The resulting set of β2 values will be a point. Then, both inequalities

are implicitly equalities and the minimal activatable set is K†(x) = {1, 2}. Also, since both

inequalities must have positive KKT multipliers for the problem in (77), L(x, ψ) = {1, 2} for

any ψ ∈ Ψ†(x). Finally, in case (iii), as in case (ii), both inequalities are implicitly equalities

and the minimal activatable set is K†(x) = {1, 2}. The difference here is that the inequalities
43We point out a general result that, if poly(C∞, b∞ −Bµ∞) is a singleton, then the rank of IK†C∞ must

be full. Then, the rank stability equation holds for any sequence of matrices converging to IK†C∞.
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both have zero KKT multipliers for the problem in (77), and therefore L(x, ψ) = ∅ for any

ψ ∈ Ψ†(x). Overall, K(B,C∞, h∞) = L(B,C∞, h∞) = {∅, {1, 2}}.
(b) c∞ = 0. When c∞ = 0, then the second inequality does not restrict β2. At the

same time, the second inequality is active in that it holds with equality. Thus, A(C∞, b∞) =

{∅, {1}, {2}, {1, 2}}. One can see that when K = {2}, the rank stability equation does not

hold, and therefore Assumption 2 does not hold.

Turning now to Assumption 3, note that the set of possible values for β2 is [0,∞). This

means that the first inequality is possibly inactive, while the second inequality must be active

and is implicitly an equality (even though it is always zero). Thus, the minimal activatable

set is K†(µ∞;B,C∞, d∞) = {2}. For this set of indices, the rank stability equation does not

hold, and therefore Assumption 3 does not hold. Similarly for Assumption 4: there are shifts

of the constants that make the second inequality active. Also, the first inequality is possibly

inactive for any shift. Therefore, K(B,C∞, h∞) = L(B,C∞, h∞) = {∅, {2}}. (The empty

set arises when a shift makes the second inequality slack.) As before, for K = {2}, the rank

stability equation does not hold, and Assumption 4 does not hold.

To summarize, Assumptions 2-4 are not satisfied when cF converges to zero. Essentially,

Assumptions 2-4 restrict the possible values of cF to belong to {0} ∪ [ϵ,∞) for some ϵ > 0,

where the case cF = 0 requires cF to be known. In this case, Assumptions 3 and 4 help to

pinpoint the collection of inequalities that violate the rank stability equation.

This restriction can be compared to assumptions imposed by other approaches to testing

inequalities. For this example, the regularity conditions in Pakes et al. (2015) as well as the

regularity conditions in Cho and Russell (2024) both imply that cF is bounded away from

zero.44 Similarly, Assumption A.3 in Bugni et al. (2017) and Assumption 4.27 in Goff and

Mbakop (2025) can be shown to imply that cF belongs to {0}∪ [c,∞) for some c > 0. Hence,

it is common in the literature on subvector inference for moment inequality models to rule

out the case that cF → 0 when doing subvector inference on β1.

Examples 7 and 8 demonstrate the content of Assumptions 2-4 in simple moment inequal-

ity models. Next, we give an example where Assumption 2 is not satisfied, but Assumptions

3 and 4 are. This motivates the relaxation of Assumption 2 in Assumptions 3 and 4.

Example 9. Consider the moment inequality model in (4) with no equalities, B = R2, and

inequalities specified by

β1 + β2 + η1F ≥ 0

44This comes from evaluating Assumptions A1-A4 in Pakes et al. (2015) in Example 7. Similarly, for Cho
and Russell (2024), it follows from Conditions CQ and US in their Definition 3.1.
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β1 − cFβ2 + η2F ≥ 0

β1 − β2 + η3F ≥ 0, (88)

where β = (β1, β2)
′ are structural parameters and ηjF and cF are reduced-form parameters

for j ∈ {1, 2, 3}. The inequalities in (88) are similar to the inequalities in (87) except there

is no upper bound and there is an extra lower bound for β1.

Suppose η1F = η3F = 0 and cF → 0. Also suppose η2F is positive and converges to zero but

at a rate that is slower than n−1/2. In this case, we evaluate Assumptions 2-4 in the context of

subvector inference for β1. Suppose we test the hypothesis that H0 : β1 = 0, which is the lower

bound on the identified set for β1. If the ηjF for j ∈ {1, 2, 3} are estimated at the
√
n rate with

positive definite asymptotic variance-covariance matrix, then (88) under H0 can be written

in the form of (3) with B = −I3, D = 0, d = 0, Π = (1,−cF ,−1)′, µ = (η1F , η2F , η3F )
′, and

δ = β2. Note that CF = (−1, cF , 1)
′, and the second row is converging to zero.

We first evaluate Assumption 2. The inequalities define the set of possible values of β2 to

be {0}. All three inequalities are active. Thus, A(C∞, b∞) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3}}. It follows that Assumption 2 is not satisfied because K = {2} ∈ A(C∞, b∞).

Turning to Assumption 3, the three active inequalities delineate a point for β2, which is an

affine subspace. Therefore, those active inequalities are implicitly equalities. The minimal

activatable set is given by K†(µ∞;B,C∞, d∞) = {1, 2, 3}. We see that the rank stability

equation is satisfied, and therefore Assumption 3 holds.

Finally, consider Assumption 4. Note that the slackness of the second inequality is con-

verging to zero at a rate slower than n−1/2. Therefore, after rescaling the slackness of the

inequalities by
√
n, the second inequality has an infinite limiting slackness: h∞ = (0,∞, 0)′.

Then, as in Example 7, for any arbitrary shift of the inequalities, the K- and L- activatable

sets are either empty or {1, 3}. Therefore, K(B,C∞, h∞) = L(B,C∞, h∞) = {∅, {1, 3}} and

Assumption 4 holds.

B.3.3 Nesting with Cho and Russell (2024) Assumptions

Consider a moment inequality model as in (4) with no equalities. Suppose m(W,β) is linear

in β and thus EF [m(W,β)] can be written as ΓFβ + ηF , where ΓF = EF [∂m(W,β)/∂β′]

and ηF = EF [m(W,0)]. Let the parameter of interest be θ = λ′β, where λ ̸= 0 is a fixed

known vector. Without loss of generality, we take ∥λ∥ = 1. In this setting, we can apply the

confidence interval in Cho and Russell (2024) for θmax = maxβ:EF [m(W,β)]≤0 λ
′β.

Following Remark (2) above Example 1 in Section 2.1, let Λc be a column-augmenting

matrix so that [λ,Λc] is full rank. It is convenient to take Λc to be orthonormal and orthogonal

to λ because then β = λθ+Λcδ with δ = (Λc)′β. In our framework, inference for θ amounts
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to testing H0 : ∃δ s.t. BµF + CF δ ≤ d with B = I, CF = ΓFΛ
c, µF = ηF + ΓFλθ0, and

d = 0, where θ0 is a hypothesized value of θ. The following assumption adapts assumptions

from Cho and Russell (2024) for this model.

Assumption 5. Given a matrix Γ∞ and vector η∞, we have that (a) argmaxβ:Γ∞β+η∞≤0 λ
′β

is unique (denoted by β∗
∞), and (b) IKΓ∞ has full row rank for K = {k : e′k (Γ∞β

∗
∞ + η∞) = 0}.

Remark: Assumption 5 adapts the CQ and the US conditions from Definition 3.1 in Cho

and Russell (2024) for the moment inequality model. Part (a) requires the set of β values

that achieve θmax to be a singleton. Part (b) requires the active inequalities at the maximum

to have full row rank. In particular, the number of active inequalities cannot be larger than

dβ (the dimension of β).

Let Γn and ηn be estimators of ΓF and ηF , respectively. The next lemma shows that

Assumption 5, applied to the limit along a sequence of F values, implies Assumption 2.

Lemma 5. Suppose for any sequence {Fn ∈ Fn0} and any subsequence {nm} of {n}, there
exists a further subsequence, nq, along which ΓFnq

→ Γ∞, Γnq →p Γ∞, ηFnq
→ η∞, and

ηnq
→p η∞ as q → ∞, and Assumption 5 holds for Γ∞ and η∞. Then, Assumption 2 holds.

Remark: Cho and Russell (2024) show that their assumptions can be satisfied by perturbing

the inequalities by a random amount. That, combined with Lemma 5, implies that Assump-

tion 2 can be satisfied by perturbing the inequalities by a random amount.

Proof of Lemma 5. Fix a sequence, Fn ∈ Fn0, and a subsequence, nm, satisfying Assumption

1(i), so µFnm
= ηFnm

+ΓFnm
λθmax → µ∞ and ΓFnm

→ Γ∞. Let C∞ = Γ∞Λc. By the condition

in the statement of Lemma 5, there exists a further subsequence along which ΓFnq
→ Γ∞,

Γnq →p Γ∞, ηFnq
→ η∞, and ηnq

→p η∞. First, we show that, under Assumption 5,

poly(C∞,−µ∞) = {Λc′β∗
∞}. (89)

In particular, this implies that poly(C∞,−µ∞) is nonempty.

To show (89), observe that

poly(C∞,−µ∞) = {δ : C∞δ + µ∞ ≤ 0}

= {δ : Γ∞Λcδ + η∞ + Γ∞λθmax ≤ 0}

= {δ : Γ∞(Λcδ + λθmax) + η∞ ≤ 0}. (90)

We know that δ = Λc′β∗
∞ ∈ poly(C∞,−µ∞) because Γ∞(ΛcΛc′β∗

∞+λθmax)+η∞ = Γ∞(ΛcΛc′+

λλ′)β∗
∞+ η∞ = Γ∞β

∗
∞+ η∞ ≤ 0. To verify uniqueness, consider a δ0 ∈ poly(C∞,−µ∞); then
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Γ∞Λcδ0+η∞+Γ∞λθmax ≤ 0. Let β† = Λcδ0+λθmax. Then, Γ∞β
†+η∞ ≤ 0. Since the columns

of Λc are orthogonal to λ, we have λ′Λc = 0, and hence λ′β† = λ′(Λcδ0 + λθmax) = θmax.

Therefore, β† is an argmax of λ′β subject to the constraint Γ∞β+η∞ ≤ 0. This, together with

Assumption 5(a), implies that β† = β∗
∞. Multiplying Λc′ on both sides, we get: δ0 = Λc′β∗

∞.

Thus, (89) holds.

Next, consider

K = {k : e′k(Γ∞β
∗
∞ + η∞) = 0}

= {k : e′k(Γ∞ΛcΛc′β∗
∞ + Γ∞λλ

′β∗
∞ + η∞) = 0}

= {k : e′k(Γ∞ΛcΛc′β∗
∞ + µ∞) = 0}

= {k : e′k(C∞Λc′β∗
∞ + µ∞) = 0}, (91)

where the second equality follows because I = ΛcΛc′ + λλ′. This shows that K is the set of

active inequalities for maxβ:Γ∞β+η∞≤0 g
′β. By Theorem 4.5 in Szilágyi (2006), Assumption

5(a) implies that IKΓ∞ has full column rank. This, combined with Assumption 5(b), implies

that IKΓ∞ is an invertible square matrix. Then, for any Γq → Γ∞, IKΓq is also an invertible

square matrix eventually as q → ∞. This also implies that

rk(IKCq) = rk(IKΓqΛ
c) = rk(Λc) = rk(IKΓ∞Λc) = rk(IKC∞). (92)

where Cq = ΓqΛ
c. Combined with the fact that ΓFnq

→ Γ∞ and Γnq →p Γ∞, (92) implies that

the rank stability equation holds with probability approaching one for K, where Cn = ΓnΛ
c

and CFn = ΓFnΛ
c.

To verify Assumption 2, let K̃ ∈ A(C∞,−µ∞). It follows from the definition ofA(C∞,−µ∞)

that K̃ ⊆ K. We have already seen that if K̃ = K, then the rank stability equation in As-

sumption 2 holds with probability approaching one. Below, we show that for any K̃ ⊊ K,

rk(IK̃C∞) = |K̃|. (93)

Then, since Cnq = ΓnqΛ
c →p Γ∞Λc = C∞ and CFnq

= ΓFnq
Λc → Γ∞Λc = C∞, we have

rk(IK̃Cnq) = rk(IK̃CFnq
) = |K̃| with probability approaching 1, verifying Assumption 2.

To show (93), consider the KKT conditions for maxβ:Γ∞β+η∞≤0 λ
′β:

λ = −Γ′
∞ψ∞, ψ∞ ≥ 0, Γ∞β

∗
∞ + η∞ ≤ 0 and ψ′

∞(Γ∞β
∗
∞ + η∞) = 0, (94)

where ψ∞ is the vector of KKT multipliers. The KKT conditions imply that for k /∈ K, we

have e′kψ∞ = 0. This implies that, λ = −Γ′
∞I

′
KIKψ∞. Moreover, Theorems 4.8 and 4.9 of
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Szilágyi (2006) imply that, under Assumption 5(b), e′kψ∞ > 0 for all k ∈ K. Thus, λ is a

linear combination of the rows of IKΓ∞, where all rows receive positive weights. Since the

rows of IKΓ∞ are linearly independent, that means λ is linearly independent with any strict

subset of rows of IKΓ∞. In other words,

λ′ ̸= c′IK̃Γ∞ for any K̃ ⊊ K and any c ∈ R|K̃|. (95)

To reach a contradiction, suppose for some K̃ ⊊ K, we have rk(IK̃Γ∞Λc) < |K̃|. Then, there
exists a vector c ̸= 0 such that c′IK̃Γ∞Λc = 0. Since the columns of Λc span the orthogonal

complement of λ, any γ such that γ′Λc = 0 must be a scalar multiple of λ. Also, since c ̸= 0,

we must have that c′IK̃Γ∞ = αλ′ for some α ̸= 0. This implies λ′ = α−1c′IK̃Γ∞, which

violates (95). This contradiction shows that (93) holds.

B.4 The Refined GCC Test

This subsection defines the refined GCC (RGCC) test. The RGCC test uses the same

refinement procedure as the RCC test in CS23. To implement the RGCC test, one first

calculates the GCC test statistic and critical value. If Tn /∈ [cv(1, 2α), cv(1, α)] or ŝn ̸= 1,

then the outcome of the RGCC test is the same as the GCC test. However, when Tn ∈
[cv(1, 2α), cv(1, α)] and ŝn = 1, then the critical value is reduced from the original critical

value cv(1, α) to cv(1, β̂n), where β̂n is defined below. This refines the GCC test to reject

slightly more often.

The new “level” of the test β̂n is constructed based on the inactivity of the inequalities

after vertex enumeration, which finds a dA × dC matrix H such that HCn = 0 and {µ ∈
Rdµ : Bµ+ Cnδ ≤ d for some δ ∈ Rdδ} = {µ ∈ Rdµ : Aµ ≤ g}, where A = HB and g = Hd.

The matrix H may be random in that it depends on Cn. Lemma 1 in CS23 ensures that

such an H exists and the vertex enumeration algorithm in CS23 calculates it. When r̂n = 1,

there exists a j̄ ∈ Ĵ such that e′j̄A ̸= 0.45 For simplicity, we take j̄ = 1. We define a measure

of inactivity of the j-th inequality at any x ∈ Rdµ for j ∈ {2, . . . , dA}:

τj(x) =


√
n∥a1∥Σ̃n

(gj−a′jx)
∥a1∥Σ̃n

∥aj∥Σ̃n
−a′1Σ̃naj

if ∥a1∥Σ̃n
∥aj∥Σ̃n

− a′1Σ̃naj > 0

∞ otherwise
, (96)

45Note that r̂n and β̂n are only calculated in the case that ŝn = 1. By Theorem 1(a), this implies that

r̂n ∈ {0, 1}. When r̂n = 0, then Tn = 0, so the definition of β̂n does not matter (the test does not reject).
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where aj and gj are the j-th row of A and g, respectively, and ∥a∥Σ= (a′Σa)1/2. Also define

β(x) =

2αΦ(τ(x)) if r̂ = 1

α otherwise
, (97)

where Φ(·) is the cumulative distribution function of the standard normal distribution and

τ(x) = inf
j∈{2,...,dA}

τj(x) (98)

is the smallest inactivity of the inequalities. The refined level is β̂n = β(µ̂). Since τ(µ̂) is

nonnegative, β̂n ∈ [α, 2α]. The refined level is close to its maximum possible value, 2α, when

all inactive inequalities are far from binding. For further details of the refinement procedure,

including geometric intuition, see CS23.

The following theorem gives theoretical justification for the refinement.

Theorem 6. If Assumptions 1 and 2 hold, or if Assumptions 1 and 3-4 hold, then

limsup
n→∞

sup
F∈Fn0

PF (Tn > cv(ŝn, β̂n)) ≤ α.

Proof of Theorem 6. The proof of Theorem 6 follows the same argument as the proof of

Theorem 3. We describe the differences here. Note that the differences are compatible with

the changes in the proof of Theorem 5, so either Assumptions 1 and 2 or Assumptions 1 and

3-4 are sufficient.

(1) Following (57), we insert a definition of β∗. By Lemma 1 in CS23, there exist A∞

and g∞ such that poly(A∞, g∞) = ppoly(B, h∞;C∞). Then, we can define β∗ using (96)-(98)

applied to the problem in (57) with the constraint set given by poly(A∞, g∞), so β∗ = β(η∗∞).

Note that by Lemma 16, any A∞ and g∞ such that poly(A∞, g∞) = ppoly(B, h∞;C∞) yield

the same definition of β∗.

Since η∗ depends on the random variableX, β∗ is random. Thus, when we fix a sample se-

quence satisfying (59), we have to account for the randomness in β∗. For anyK ⊆ {1, ..., dC},
let P̃K = Σ

1/2
∞ B′

KMCK
(MCK

BKΣ∞B
′
KMCK

)+MCK
BKΣ

1/2
∞ be the projection matrix onto the

span of Σ
1/2
∞ B′

KMCK
, and let M̃K = Idµ − P̃K be residual matrix. Replace (59) with

∥(MCK
IKBΣ1/2

∞ )+MCK
IK(BX − h∞)∥2

Σ−1
∞
̸= cv(rk(MCK

IKB), β(Σ1/2
∞ (M̃KΣ

−1/2
∞ X + P̃KξK)))

for all K ⊆ {1, . . . , dC} such that MCK
IKB ̸= 0 and IKh∞ <∞, (99)

where ξK is defined in Lemma 7. It follows from Lemma 7 that η∗∞ = Σ
1/2
∞ (M̃KΣ

−1/2
∞ X +
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P̃KξK) with K = K∗ where K∗ is defined below (58). If s∗ = 1, then (99) implies that

T∞ ̸= cv(1, β∗) by plugging in K = K∗.

To show that (99) holds with probability 1, fix aK ⊆ {1, . . . , dC} such thatMCK
IKB ̸= 0

and IKh∞ < ∞. We condition on M̃KΣ
−1/2
∞ X, so the right-hand side is a constant. For

the left-hand side, note that the conditional distribution of (MCK
IKBΣ

1/2
∞ )+MCK

IKBX =

(MCK
IKBΣ

1/2
∞ )+MCK

IKBΣ
1/2
∞ P̃KΣ

−1/2
∞ X is equal to the unconditional distribution because

P̃KΣ
−1/2
∞ X and M̃KΣ

−1/2
∞ X are independent. By Lemma 12, that unconditional distribution

is continuous because MCK
IKB ̸= 0. This implies that the conditional probability of (99) is

one, and therefore the unconditional probability is also one.

(2) The second difference is replacing α with β̂n and β∗ in various places in the proof of

Theorem 3. In the second sentence of the proof, replace α with β̂nq twice. In (59), replace

α with β∗. In (60) and (61), replace the α on the left-hand side of both expressions with

β̂nq and replace the α on the right-hand side of both expressions with β∗. Two sentences

after (61), replace “P (T∞ > cv(r∗, α)) ≤ α” by “P (T∞ > cv(r∗, β∗)) ≤ α.” Finally, in Step

4 parts (A) and (B), replace both occurrences of α with β̂nq . (We modify Step 4 part (C)

separately, below.)

(3) In Step 1, apply Lemma 1 from CS23 to get matrices Hq such that Aq = HqB,

gq = Hqhq, and poly(Aq, gq) = ppoly(B, hq;Cnq). It follows from Lemma 16 that the defini-

tion of r̂n and β̂n is the same as using this Aq and gq. As in CS23, we can use McMullen’s

upper bound theorem (see Ziegler (1995)) to ensure that the number of rows of Aq is bounded.

We can take a subsequence so that the number of rows of Aq does not depend on q, and

denote it by dA. We seek to apply Lemma 9 in CS23. Without loss of generality, we can

take the rows of Aq to either belong to the unit circle or be zero. Also note that the gq

are nonnegative (because poly(Aq, gq) includes zero). Therefore, there exists a sequence of

matrices, Gq, a sequence of nonnegative vectors, fq, and a further subsequence, nq, such

that conditions (a)-(d) in Lemma 9 of CS23 hold. In particular, we have elementwise con-

vergence of [Aq;Gq] and [gq; fq] to some limit, say [A†
∞;G†

∞] and [g†∞; f †
∞]. We also have

poly([Aq;Gq], [gq; fq])
K→ poly([A†

∞;G†
∞], [g†∞; f †

∞]) and poly(Aq, gq) ⊆ poly(Gq, fq). Again,

by Lemma 16, the definition of r̂nq and β̂nq could have been made with respect to this col-

lection of inequalities. For simplicity, we can ignore the Gq and fq and just suppose without

loss of generality that the original Aq and gq satisfy Aq → A†
∞ and gq → g†∞ and that

poly(Aq, gq)
K→ poly(A†

∞, g
†
∞). Note that poly(A†

∞, g
†
∞) = ppoly(B, h∞, C∞). To see this,

note that ppoly(B, hq;Cnq)
K→ ppoly(B, h∞, C∞) by Lemma 10, combined with the fact that

poly(Aq, gq) = ppoly(B, hq;Cnq) for all q and poly(Aq, gq)
K→ poly(A†

∞, g
†
∞). (Among the

set of all closed subsets of any set, the Kuratowski limit of a sequence of sets is unique.)

Therefore, we can define r∗ and β∗ using poly(A†
∞, g

†
∞). By Lemma 1 in CS23, this definition
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of r∗ agrees with the definition following (58). By Lemma 16, this definition of β∗ agrees

with the earlier definition given in (1) that used A∞ and g∞.

(4) The final difference is in Step 4, part (C): r∗ > 0 and ŝnq ≥ 1. If r∗ > 1, then by

(73), ŝnq > 1 and the proof is unchanged. A change is needed if r∗ = 1. If ŝnq > 1 along a

subsequence, then β̂nq = α and hence (60) holds because cv(ŝnq , α) > cv(1, α) ≥ cv(1, β∗),

combined with the fact that Tnq → T∞ ̸= cv(1, β∗) by (99) and (68). Thus, we focus on the

case that ŝnq = 1. Also let r̂q = rk(IJqAq), where Jq = {j ∈ {1, . . . , dA} : e′jAqη̂q = e′jgq}.
We can take a further subsequence such that r̂q does not depend on q. By Theorem 1(a),

r̂q ∈ {0, 1}. If r̂q = 0, then Tq = 0 along this subsequence. This implies that T∞ = 0 as well,

so (60) holds. Thus, we focus on the case that r̂q = 1 as well.

In this case, we show that

lim sup
q→∞

β̂nq ≤ β∗ (100)

along a further subsequence. Take a subsequence so that β̂nq converges. If β̂nq → α, then

(100) holds simply because β∗ ≥ α. Suppose limq→∞ β̂nq > α. For every q large enough,

consider a j̄q ∈ Jq such that e′j̄qAq ̸= 0. We can take a further subsequence so that j̄q does not

depend on q, and for simplicity, we suppose it is 1. Note that e′1Aq → e′1A
†
∞, and the rows of

Aq all belong to the unit circle, so e′1A
†
∞ ̸= 0. (The proof of Lemma 9 in CS23 shows that the

rows of Gq also can be taken to belong to the unit circle.) Also note that e′1Aqη̂q = e′1gq for

all q, so e′1A
†
∞η

∗
∞ = e′1g

†
∞, and 1 ∈ J∗, where J∗ = {j ∈ {1, ..., dA} : e′jA

†
∞η

∗
∞ = e′jg

†
∞}. (By

Lemma 1 in CS23, r∗ = rk(IJ∗A†
∞).) Therefore, β̂nq and β∗ can both be defined using e1 as

the reference row. Note that β̂nq is defined using equations (96)-(98) applied to Aq, gq, Σ̃nq ,

and η̂q. Let τ
q
j and τ q be the objects defined by (96) and (98), respectively, evaluated at η̂q.

Also note that β∗ is defined using the same equations applied to A†
∞, g

†
∞,Σ∞, and η∗∞. Let

τ∞j and τ∞ be the objects defined by (96) and (98), respectively, evaluated at η∗∞.

Let J= = {j ∈ {2, ..., dA} : ∥e′jA†
∞∥∥e′1A†

∞∥= e′jA
†
∞(A†

∞)′e1}. Let J ̸= = {2, ..., dA}/J=.

Fix j ∈ {1, ..., dA} and consider two cases. (a) If j ∈ J=, then τ∞j = ∞. (b) If j ∈ J ̸=, then

τ qj → τ∞j , using the convergence of Aq, gq, Σ̃nq , and η̂q to A†
∞, g†∞, Σ∞, and η∗∞. We can

then calculate that

lim
q→∞

τ q = lim
q→∞

inf
j∈{2,...,dA}

τ qj ≤ lim
q→∞

inf
j∈J ̸=

τ qj = inf
j∈J ̸=

τ∞j = inf
j∈{2,...,dA}

τ∞j = τ∞. (101)

It then follows from the formula for β̂nq and β∗ that (100) holds.

We finish by showing that

lim sup
q→∞

1{Tnq > cv(ŝnq , β̂nq)} ≤ 1{T∞ > cv(r∗, β∗)} (102)
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in this case (which has ŝnq = 1 and r∗ = 1). Note that T∞ ̸= cv(r∗, β∗) by (99). If

T∞ > cv(r∗, β∗), then (102) holds automatically. If T∞ < cv(r∗, β∗), then (100) implies that

cv(r∗, βnq) ≥ cv(r∗, β∗) − ϵ eventually for some ϵ < cv(r∗, β∗) − T∞. Then (102) follows

because Tnq → T∞ and ŝnq = 1 = r∗.

B.5 Using KKT Multipliers in the GCC Test

We can state Theorems 3 and 5 with t̂n instead of ŝn as long as the multipliers are chosen

carefully. The use of the minimum norm multiplies in (64) in the proof of Theorem 3

shows that, as long as t̂n is defined using the minimum norm multipliers satisfying the KKT

conditions, the GCC test defined with t̂n will be valid. The key idea is that this sequence of

multipliers is guaranteed to converge to some limit, while a different choice of the multipliers

would not be. We state the validity of the GCC test with t̂n in Theorem 7 below. However,

this version of the GCC test is not recommended because it involves additional computational

steps: making sure the delta chosen yields the minimal K-activatable set and then minimizing

the norm for choosing psi. Let

ψ‡(x) = arg min
ψ∈Ψ†(x)

∥ψ∥.

be a generic definition of the minimum norm multipliers satisfying the KKT conditions for

(77), where Ψ†(x) is defined in 84.

Theorem 7. Theorems 3 and 5 continue to hold for the GCC test defined by t̂n if L(µn, ψ
‡(µn))

is used for L̂ in (24).

The proof of Theorem 7 is omitted because it is the same as the proof of Theorem 3.

Note that the proof of Theorem 3 only uses the fact that ŝn ≥ t̂n in (73). This is not affected

by the modifications in the proof of Theorem 5.

C Lemmas

Section C.1 states lemmas used in the proof of Theorem 1. Section C.2 states lemmas used

in the proofs of Theorems 2 and 3. Section C.3 states lemmas used in Section B. Section

C.4 proves the lemmas.

C.1 Lemmas for the Proof of Theorem 1

Lemma 6. Let B be a dC × dµ matrix and C a dC × dδ matrix. Then
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(a) rk(MCB) = rk([B,C])− rk(C), where MC = IdC − C(C ′C)+C ′.

(b) For any dµ × dδ matrix Π, we have rk([B,C −BΠ]) = rk([B,C]).

(c) If L ⊆ K ⊆ {1, . . . , dC}, then rk(MCL
BL) ≤ rk(MCK

BK), where CK = IKC.

Lemma 7. Fix µn ∈ Rdµ and let (µ̂n, δ̂n, ψ̂n) satisfy (34)-(38). Fix K ⊆ {1, ..., dC} satisfying

L̂ ⊆ K ⊆ K̂, where K̂ = {j ∈ {1, ..., dC} : e′jBµ̂n + e′jCnδ̂ = e′jd} and L̂ = {j ∈ {1, ..., dC} :

e′jψ̂n > 0}. Let ξK =
(
MCK

BKΣ̃
1/2
n

)+
MCK

IKd, where CK = IKC∞, BK = IKB, and

MCK
= I|K| − CK(C

′
KCK)

+C ′
K. It follows that

Σ̃−1/2
n (µn − µ̂n) =

(
MCK

BKΣ̃
1/2
n

)+
MCK

BKµn − ξK ∈ span(Σ̃1/2
n B′

KMCK
), and (103)

Σ̃−1/2
n µ̂n − ξK ∈ span(Σ̃1/2

n B′
KMCK

)⊥. (104)

C.2 Lemmas for the Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 rely on the convergence of the argmin of a sequence of

CQPPs. The following lemma gives a general statement of such convergence. It implies

that the key condition is Kuratowski convergence of the sequence of constraint sets. In the

following lemmas, we give sufficient conditions for Kuratowski convergence of the constraint

sets. This lemma generalizes Lemma 7 in CS23 in that it no longer requires the constraint

sets to be polyhedral sets with non-negative constants. The non-negativity condition is

replaced by the non-emptiness of the limit constraint set.

Lemma 8. For n ∈ N∪{∞}, let xn ∈ Rdx, let Σn be positive definite and symmetric dx×dx
matrices, and let Sn ⊆ Rdx be closed and convex. If, as n → ∞, xn → x∞, Σn → Σ∞,

and Sn →K S∞ with S∞ ̸= ∅, then argminx∈Sn
(xn − x)′Σ−1

n (xn − x) → argminx∈S∞(x∞ −
x)′Σ−1

∞ (x∞ − x) as n→ ∞.

The next lemma gives sufficient conditions for Kuratowski convergence of a sequence of

polyhedral sets.

Lemma 9. Consider a sequence of dA × dµ matrices {An} and dA-dimensional vectors hn.

Suppose

(i) An → A0 and hn → h0 (elementwise) for a finite matrix A0 and a (−∞,+∞]dA-valued

vector h0 as n→ ∞,

(ii) poly(An, hn) ̸= ∅ eventually, and

65



(iii) rk(IJAn) = rk(IJA0) eventually for any J ⊆ {1, ..., dA} that is activatable for poly(A0, h0)

and such that poly(IJA0, IJh0) is an affine subspace of Rdµ.

Then poly(An, hn)
K→ poly(A0, h0).

Remarks: (1) The statement of Lemma 9 is very similar to Lemma 8 in CS23. Relative

to Lemma 8 in CS23, Lemma 9 does not require hn to be nonnegative, but instead requires

poly(An, hn) to be nonempty (eventually). Lemma 9 also reduces the sets J ⊆ {1, ..., dA} for

which rk(IJAn) = rk(IJA0) eventually from all subsets of {1, ..., dA} to only those subsets

which are activatable for poly(A0, h0) and for which poly(IJA0, IJh0) is an affine subspace

of Rdµ.

(2) The condition that “poly(IJA0, IJh0) is an affine subspace of Rdµ” says that this

collection of inequalities is implicitly a collection of equalities. It is equivalent to saying

{x ∈ Rdµ : IJA0x ≤ IJh0} = {x ∈ Rdµ : IJA0x = IJh0}. That is, all of the inequalities are

implicitly forced to hold with equality. It is impossible for any one of them to be slack. This

is a very small subset of the set of all J ⊆ {1, ..., dA}, even among those that are activatable

for poly(A0, h0). Lemma 1 implies that this is the set of minimally activatable inequalities

for poly(A0, h0). Practically, this includes any equalities specified using two inequalities,

together with any accidental equalities specified among the inequalities.

While Lemma 9 is sufficient for a sequence of polyhedral sets, the next lemma gives Kura-

towski convergence of a sequence of polyhedral sets after projecting out nuisance parameters.

Recall that ppoly(B, h;C) = {x ∈ Rdµ : Bx+Cδ ≤ h for some δ ∈ Rdδ} for a dC×dµ matrix

B, dC × dδ matrix C and a dC × 1 vector h. Here, we allow some of the elements of h be

+∞. Recall the definition of the minimal activatable set given in Section B.1.

Lemma 10. Let Cn be a sequence of dC × dδ matrices converging to C∞. Let hn be a

sequence of nonnegative vectors converging to h∞. Let B be a fixed dC × dµ matrix. Suppose

rk(IJ [B,Cn]) = rk(IJ [B,C∞]) eventually for all J ⊆ {1, 2, . . . , dC}. Also suppose for every

x ∈ ppoly(B, h∞;C∞), rk(IJCn) = rk(IJC∞) eventually as n → ∞, where J is the minimal

activatable set for poly(C∞, h∞ −Bx). Then, ppoly(B, hn;Cn)
K→ ppoly(B, h∞;C∞).

The next lemma shows that the structure of C = BΠ + D, together with convergence

of the minimizers of a CQPP, implies the convergence of the multipliers on the inequalities

along a subsequence.

Lemma 11. Let B and D be fixed dC × dµ and dC × dδ matrices, respectively. Let Πn be

a sequence of dµ × dδ matrices converging to Π∞. Let hn be a sequence of dC-dimensional

vectors converging to h∞. Let xn be a sequence of dµ-dimensional vectors converging to x∞.
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Let Σn be a sequence of dµ × dµ symmetric and positive definite matrices converging to Σ∞,

also a symmetric and positive definite matrix. For any n ∈ N ∪ {∞}, consider the CQPP

min
{(µ,δ):Bµ+Cnδ≤hn}

(xn − µ)′Σ−1
n (xn − µ), (105)

where Cn = BΠn + D. Let (µ̂n, δ̂n) solve (105) with active set K̂n = {k ∈ {1, ..., dC} :

e′k(hn −Bµ̂n − Cnδ̂n) = 0}. For n ∈ N, let ψ̂n denote the minimum (Euclidean) norm KKT

multipliers satisfying the KKT conditions for (105):

ψ̂n ≥ 0, (106)

2Σ−1
n (xn − µ̂n) = B′ψ̂n (107)

C ′
nψ̂n = 0 (108)

IK̂c
n
ψ̂n = 0 (109)

where K̂c
n = {1, ..., dC}/K̂n. Assume (µ̂n, δ̂n) → (µ̂∞, δ̂∞) as n→ ∞. Let nq be a subsequence

along which K̂nq does not depend on q. Then, there exists a ψ̂∞ satisfying (106)-(109) with

n = ∞ such that ψ̂nq → ψ̂∞ as q → ∞.

Remark: The conditions of Lemma 11 can be verified using Lemmas 9 and 10, which,

combined with Lemma 8, lead to the convergence of (µ̂n, δ̂n) to (µ̂∞, δ̂∞). The ψ̂n is well

defined because the KKT conditions are necessary conditions for the CQPP.

The following lemma shows that a convex quadratic form of a Gaussian random vector

has a continuous distribution.

Lemma 12. For any k× ℓ matrix A, k× 1 vector b, and k× k positive semi-definite matrix

Υ, and a random vector X ∼ N(0,Σ) with a positive semi-definite variance matrix Σ, if

Υ1/2AΣ1/2 is not a zero matrix, then ∥AX + b∥2Υ has a continuous distribution.

Lemma 13. Consider

T = argmin{(µ,δ):Bµ+Cδ≤d}∥X − µ∥2Σ−1 , (110)

where B and C are matrices, d and X are vectors, and Σ is a symmetric and positive definite

matrix. Let (µ̂, δ̂, ψ̂) satisfy the KKT conditions for (110), where ψ̂ is the vector of KKT

multipliers. Let L̂ = {j : e′jψ̂ > 0} and t̂ = rk(IL̂[B,C]) − rk(IL̂C). If t̂ = 0, then µ̂ = X

and T = 0.

Remark: One can combine Lemma 13 with Theorem 1(a) to get that T = 0 if ŝ = 0 or

r̂ = 0.
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The next two lemmas are useful linear algebra facts.

Lemma 14. If An is a sequence of matrices converging to A, then rk(An) ≥ rk(A) eventually.

Lemma 15. Let An be a sequence of matrices converging to A. Let sn denote a vector of

the left singular values of An and let s denote a vector of the left singular values of A, both

in non-increasing order. Then, sn → s.

C.3 Lemma for the Proof of Theorem 6

The next lemma says that two different representations of the same polyhedral set lead to

the same values of the projection onto that set, the rank of the active inequalities, and the

minimal slackness of the additional (inactive) inequalities.

Lemma 16. Let A and B be two matrices and let c, d be two vectors. Let x ∈ Rdµ and

Σ be a positive definite dµ × dµ matrix. Let µ̂1 = argminµ∈poly(A,c)∥x − µ∥2Σ−1 and µ̂2 =

argminµ∈poly(B,d)∥x − µ∥2Σ−1. Let Ĵ1 = {j ∈ {1, ..., dA} : e′jAµ̂1 = e′jc} and Ĵ2 = {j ∈
{1, ..., dB} : e′jBµ̂1 = e′jd}, where dA and dB are the number of rows of A and B, respectively.

Let r̂1 = rk(IĴ1A) and r̂2 = rk(IĴ2B). Let β̂1 = β(µ̂1) with β(x) defined in (96)-(98) with

respect to poly(A, c) and β̂2 = β(µ̂2) with β(x) defined in (96)-(98) with respect to poly(B, d).

If poly(A, c) = poly(B, d), then µ̂1 = µ̂2, r̂1 = r̂2, and β̂1 = β̂2.

C.4 Proof of the Lemmas

Proof of Lemma 6. For part (a), observe that the linear span of the columns of [B,C] is the

same as that of [MCB,C]. Thus

rk([B,C]) = rk([MCB,C]). (111)

Consider the matrix A = [MCB,C]
′[MCB,C]. The eigenvalues of A are the squares of the

column singular values of [MCB,C]. Thus, rk(A) = rk([MCB,C]). Now observe that

A =
(
B′MCB 0

0 C′C

)
. (112)

This block-diagonal feature implies that rk(A) = rk(B′MCB)+rk(C ′C). The same argument

for rk(A) = rk([MCB,C]) also shows that rk(B′MCB) = rk(MCB) and rk(C ′C) = rk(C).

Therefore

rk([MCB,C]) = rk(MCB) + rk(C). (113)
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This, combined with (111), proves part (a).

Part (b) holds because [B,C − BΠ] can be obtained from [B,C] by elementary column

operations.

For part (c), note that

MCK
BK = BK − CK∆, (114)

where ∆ = (C ′
KCK)

+C ′
KBK . Left-multiplying on both sides by ILI

′
K , we have

ILI
′
KMCK

BK = BL − CL∆, (115)

where ILI
′
KBK = BL and ILI

′
KCK = CL hold because L ⊆ K. Next, left-multiply (115) by

MCL
to get

MCL
ILI

′
KMCK

BK =MCL
BL. (116)

Therefore, rk(MCL
BL) = rk(MCL

ILI
′
KMCK

BK) ≤ rk(MCK
BK).

Proof of Lemma 7. First note that ψ̂n = I ′KIKψ̂n because K ⊇ L̂. It then follows from (35)

that C ′
KIKψ̂n = 0, and therefore IKψ̂n =MCK

IKψ̂n. From (34), it follows that 2nΣ̃−1
n (µn −

µ̂n) = B′
KIKψ̂n = B′

KMCK
IKψ̂n. Rearranging, this proves that

Σ̃−1/2
n (µn − µ̂n) = Σ̃1/2

n B′
KMCK

IKψ̂n/(2n) ∈ span(Σ̃1/2
n B′

KMCK
). (117)

Next, notice that 0 = IK(Bµ̂n + Cnδ̂n − d) = BKΣ̃
1/2
n Σ̃

−1/2
n µ̂n + CK δ̂n − IKd because

K ⊆ K̂. Plugging in for Σ̃
−1/2
n µ̂n using (117) gives

BKµn −BKΣ̃nB
′
KMCK

IKψ̂n/(2n) + CK δ̂n − IKd = 0. (118)

Left-multiply (118) by (MCK
BKΣ̃

1/2
n )+MCK

to get

(MCK
BKΣ̃

1/2
n )+MCK

BKµn− Σ̃1/2
n B′

KMCK
IKψ̂n/(2n)− (MCK

BKΣ̃
1/2
n )+MCK

IKd = 0, (119)

which uses the fact that (MCK
BKΣ̃

1/2
n )+MCK

BKΣ̃nB
′
KMCK

= Σ̃
1/2
n B′

KMCK
. Rearrange, and

plug (119) into (117) to get

Σ̃−1/2
n (µn − µ̂n) = (MCK

BKΣ̃
1/2
n )+MCK

BKµn − ξK , (120)

which uses the definition of ξK . Combining (117) and (120) proves (103).
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To prove (104), rearrange (120) to get

Σ̃−1/2
n µ̂n − ξK =

(
Σ̃−1/2
n − (MCK

BKΣ̃
1/2
n )+MCK

BK

)
µn. (121)

This, combined with the fact that MCK
BKΣ̃

1/2
n

(
Σ̃

−1/2
n − (MCK

BKΣ̃
1/2
n )+MCK

BK

)
= 0, im-

plies that Σ̃
−1/2
n µ̂n − ξK ∈ span(Σ̃

1/2
n B′

KMCK
)⊥, proving (104).

Proof of Lemma 8. Let x̂∞ = argminx∈S∞(x∞ − x)′Σ−1
∞ (x∞ − x), which exists and is unique

because S∞ is nonempty, closed, convex, and Σ∞ is symmetric and positive definite. Let

zn ∈ Sn such that zn → x̂∞, which exists because Sn →K S∞. For n ∈ N, let x̂n denote

argminx∈Sn
(xn− x)′Σ−1

n (xn− x), which exists and is unique because Sn is nonempty, closed,

convex, and Σn is symmetric and positive definite. We want to show that x̂n → x̂∞.

First note that

(xn − x̂n)
′Σ−1

n (xn − x̂n) ≤ (xn − zn)
′Σ−1

n (xn − zn) → (x∞ − x̂∞)′Σ−1
∞ (x∞ − x̂∞) (122)

as n→ ∞. Taking the limsup, we get

lim sup
n→∞

(xn − x̂n)
′Σ−1

n (xn − x̂n) ≤ (x∞ − x̂∞)′Σ−1
∞ (x∞ − x̂∞). (123)

It follows from (123) that x̂n is bounded. Let nm be an arbitrary subsequence. There exists

a further subsequence, say nq, such that x̂nq converges to some limit, say y∞. It is sufficient

to show that y∞ = x̂∞. (If every subsequence has a further subsequence that converges to

x̂∞, then the original sequence must converge to x̂∞.)

It follows from Sn →K S∞ that y∞ ∈ S∞. Next, note that

lim
q→∞

(xnq−x̂nq)
′Σ−1

nq
(xnq−x̂nq) = (x∞−y∞)′Σ−1

∞ (x∞−y∞) ≥ (x∞−x̂∞)′Σ−1
∞ (x∞−x̂∞), (124)

where the inequality follows from the fact that y∞ ∈ S∞. Combining (123) and (124), we

have that equality holds in (124). This implies that y∞ = x̂∞ by the uniqueness of x̂∞.

The following lemma is used in the proof of Lemma 9. It is convenient to state and prove

it separately.

Lemma 17. Consider a sequence of dA × dµ matrices {An} and dA-vectors hn. Suppose

(i) An → A0 and hn → h0 (elementwise) for a finite matrix A0 and a (−∞,+∞]dA-valued

vector h0 as n→ ∞, and

(ii) poly(An, hn) ̸= ∅ eventually and poly(A0, h0) ̸= ∅.
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Fix z0 ∈ poly(A0, h0) and let J = {j ∈ {1, ..., dA} : e′jA0z0 = e′jh0}. Further suppose

(iii) rk(IJAn) = rk(IJA0) eventually, and

(iv) poly(IJA0, IJh0) is a linear subspace of Rdµ.

Then, there exists a sequence zn ∈ poly(An, hn) eventually such that zn → z0.
46

Remark: The intuition for the proof of Lemma 17 is as follows. In the usual case, where

the inequalities define a polyhedron that does not belong to a proper subspace of Rdµ, no rank

condition is needed. Any point in the interior can be easily approximated by a sequence of

points in the sequence of polyhedrons. Any point not on the interior can be approximated by

a sequence of points in the interior. The rank condition is only needed when the limit polyhe-

dron belongs to a proper linear subspace of Rdµ. Then, we look at the relative interior of the

polyhedron (relative to the subspace). Every point on the relative boundary can be approx-

imated by a sequence of points in the relative interior. The only problem is approximating

points in the relative interior. For this we use the rank condition to ensure that the finite-n

inequalities also define a subspace of the same dimension. The convergence of the subspaces

then allows us to approximate any point in the limit subspace by a sequence of points in the

finite-n subspaces.

Proof of Lemma 17. First, let S = poly(IJA0, IJh0) be a linear subspace of Rdµ . We show

that it is without loss of generality to assume z0 = 0 and h0 ≥ 0. If not, we can let

gn = hn − Anz0 and g0 = h0 − A0z0. Notice that gn → g0. Also notice that g0 ≥ 0 because

z0 ∈ poly(A0, h0). If there exists a sequence xn ∈ poly(An, gn) eventually converging to

0 ∈ poly(A0, g0), then xn + z0 ∈ poly(An, hn) eventually and converges to z0.

When z0 = 0, J = {j ∈ {1, ..., dA} : e′jh0 = 0}. Let r = rk(IJA0). Let K be a subset

of J with r elements such that rk(IKA0) = r. We first note that rk(IKAn) ≥ r eventually

by Lemma 14. Second, we note that rk(IKAn) ≤ rk(IJAn) = r eventually by condition (iii).

Therefore, rk(IKAn) = r eventually.

For every n, let xn ∈ poly(An, hn), which exists eventually by condition (ii). Let

zn = A′
nI

′
K(IKAnA

′
nI

′
K)

−1IKAnxn,

which is well defined whenever IKAn has rank r. We show that zn ∈ poly(IJAn, IJhn)

eventually. Note that the rows of IJAn belong to the linear span of the rows of IKAn

46The “eventually” here means that the sequence zn must eventually belong to the set poly(An, hn). This
accommodates the possibility that poly(An, hn) is empty for finitely many values of n.
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whenever rk(IKAn) = rk(IJAn), which happens eventually. In that case, there is a dA × r

matrix Un such that IJAn = UnIKAn. Therefore

IJAnzn = Un(IKAnA
′
nI

′
K)(IKAnA

′
nI

′
K)

−1IKAnxn = UnIKAnxn = IJAnxn. (125)

Combined with IJAnxn ≤ IJhn (since xn ∈ poly(An, hn)), we have zn ∈ poly(IJAn, IJhn)

eventually.

We show by contradiction that zn → 0. If not, then there exists an ϵ > 0 and a

subsequence nm such that ∥znm∥≥ ϵ for all m. Let um = ∥znm∥−1znm , which belongs to the

unit circle. Take a further subsequence, mq, such that umq converges to u0, also in the unit

circle, as q → ∞. To simplify notation, let uq = umq , zq = znmq
, xq = xnmq

, Aq = Anmq
, and

hq = hnmq
. First, we note that u0 ∈ S = poly(IJA0, 0) because, for any j ∈ J ,

e′jA0u0 = lim
q→∞

∥zq∥−1e′jAqzq ≤ lim
q→∞

∥zq∥−1e′jhq = 0,

where the inequality follows because zq ∈ poly(IJAq, IJhq) eventually and the final equality

follows because e′jhq → e′jh0 = 0. Second, we show that u0 ⊥ S. Note that for any v ∈ S,

and for any j ∈ J , e′jA0v = 0 (because, otherwise, either x = v or x = −v would satisfy

e′jA0x > 0, so we would not be in the case that S = poly(IJA0, 0) is a linear subspace of

Rdµ). Therefore, for any v ∈ S,

v′u0 = lim
q→∞

∥zq∥−1v′zq = lim
q→∞

v′A′
qI

′
K(IKAqA

′
qI

′
K)

−1∥zq∥−1IKAqxq = 0,

where the final equality follows because v′A′
qI

′
K → v′A′

0I
′
K = 0, (IKAqA

′
qI

′
K)

−1 = O(1),

and ∥zq∥−1IKAqxq = IKAquq = O(1) (because uq = O(1) and IKAq = O(1)). Therefore,

u0 ∈ S∩S⊥ = {0}. This is a contradiction because u0 = 0 does not belong to the unit circle.

Therefore, zn → 0.

To finish the proof, we show that zn ∈ poly(An, hn) eventually. We have already shown

that zn ∈ poly(IJAn, IJhn) eventually. For any j /∈ J , we have aj,nzn → 0 < e′jh0, so

aj,nzn < e′jhn eventually. Therefore, zn ∈ poly(An, hn) eventually.

Proof of Lemma 9. Let a′j,0 denote the jth row of A0 and let a′j,n denote the jth row of An.

For the first half of the definition of Kuratowski convergence, let nq be a subsequence and

zq be a sequence such that zq ∈ poly(Anq , hnq) for all q and zq → z0 ∈ Rdµ as q → ∞. Then,

a′j,0z0 = lim
q→∞

a′j,nq
zq ≤ lim sup

q→∞
hj,nq = hj,0, (126)
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showing that z0 ∈ poly(A0, h0).

For the second half of the definition of Kuratowski convergence, let z0 ∈ poly(A0, h0).
47

We seek a sequence, zn ∈ poly(An, hn) eventually, such that zn → z0.
48

We reduce to the case that z0 = 0. Let gn = hn −Anz0 and g0 = h0 −A0z0. Notice that

gn → g0. (Also notice that g0 ≥ 0 because z0 ∈ poly(A0, h0).) If there exists a sequence

xn ∈ poly(An, gn) eventually converging to 0 ∈ poly(A0, g0), then xn + z0 ∈ poly(An, hn)

eventually and converges to z0. Thus, it is sufficient to prove the second half of Kuratowski

convergence assuming z0 = 0 and h0 ≥ 0.

Let J = {j ∈ {1, ..., dA} : e′jh0 = 0}. This is the active set for poly(A0, h0) at z0 = 0.

Let S denote the smallest linear subspace of Rdµ that contains poly(IJA0, IJh0). Let JS =

{j ∈ J : aj,0 ⊥ S}. By Lemma 11 in CS23, there exists a x̃ ∈ S such that e′jA0x̃ < e′jh0 for

all j ∈ {1, ..., dA}/JS. Notice that, for any j ∈ JS, e′jA0x̃ = 0 = e′jh0 (because x̃ ∈ S), so

x̃ ∈ poly(A0, h0).

Let λm be a sequence in (0,1] converging to zero as m → ∞. For every m, notice that

λmx̃ ∈ poly(A0, h0) with active inequalities given by JS. Also notice that by Lemma 13

in CS23, S = poly(IJSA0, IJSh0), which is a linear subspace of Rdµ . (Note that IJSh0 = 0

because JS ⊆ J .) Therefore, the existence of a sequence xm,n such that xm,n ∈ poly(An, hn)

eventually and xm,n → λmx̃ as n → ∞ follows from Lemma 17 (using Condition (iii) in

Lemma 9 to satisfy Condition (iii) in Lemma 17). Let m = mn grow sufficiently slowly so

that xmn,n ∈ poly(An, hn) eventually and ∥xmn,n − λmnx̃∥≤ m−1
n eventually. Then, by the

triangle inequality, xmn,n → 0 = z0 as n → ∞. This verifies the second half of Kuratowski

convergence and concludes the proof of Lemma 9.

The following lemma is used in the proof of Lemma 10. In general, a sequence of K-

converging sets, intersected with a fixed set, does not K-converge. (See Remark 3 after

Theorem 1 in Cox (2022) for a simple counterexample.) This lemma shows that when the

sets are convex, intersection preserves K-convergence.

Lemma 18. Let Sn be a sequence of convex sets K-converging to S, a closed and convex set.

Let T be a closed convex set such that S ∩ int(T ) ̸= ∅, where int(·) denotes the interior of a

set. Then, Sn ∩ T →K S ∩ T .

Remark: Lemma 18 can be applied with Sn = poly(An, bn), S = poly(A, b) with b ≥ 0, and

T = {x : ∥x∥∞≤ ρ} for some ρ > 0 because 0 ∈ S ∩ int(T ).

47If poly(A0, h0) is empty, then there is nothing to prove for the second half of the definition of Kuratowski
convergence. The first half of the convergence implies that poly(An, hn) Kuratowski converges to the empty
set.

48As in the proof of Lemma 17, the “eventually” here means that the sequence zn must eventually belong
to the set poly(An, hn). This accommodates the possibility that poly(An, hn) is empty for finitely many
values of n.
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Proof of Lemma 18. Let y ∈ S ∩ int(T ). Let ϵ > 0 such that {x : ∥x − y∥< ϵ} ⊆ T . It

follows from Sn →K S that there exist yn ∈ Sn such that yn → y. We show K-convergence

in two steps.

(1) Let x ∈ S ∩ T . It follows from Sn →K S that there exist xn ∈ Sn such that xn → x.

Let λn = min(2ϵ−1∥xn − x∥, 1). Let zn = (1 − λn)xn + λnyn. Then, zn ∈ Sn because Sn is

convex. Also, zn → x because λn → 0. If λn = 0, then ∥xn−x∥= 0 and zn = x ∈ T . To show

that zn ∈ T eventually when λn > 0, let z∗n = λ−1
n zn+(1−λ−1

n )x so that zn = λnz
∗
n+(1−λn)x.

We then have ∥z∗n−y∥= ∥λ−1
n (xn−x)+x−xn+yn−y∥≤ ϵ/2+∥xn−x∥+∥yn−y∥, which is

less than ϵ eventually. When ∥z∗n − y∥< ϵ, then z∗n ∈ T , and, by the convexity of T , zn ∈ T .

(2) Let xn ∈ Sn ∩ T and let nq be an arbitrary subsequence along which xnq → x. It

follows from Sn →K S that x ∈ S. It also follows from the closedness of T that x ∈ T .

Therefore, x ∈ S ∩ T , completing the second half of K-convergence.

Proof of Lemma 10. Given the assumption that rk(IJ [B,Cn]) = rk(IJ [B,C∞]) eventually

for all J , we can invoke Lemma 9 to get that

poly([B,Cn], hn) →K poly([B,C∞], h∞). (127)

For the first half of Kuratowski convergence, consider an arbitrary x ∈ ppoly(B, h∞;C∞).

Then, there exists a δ such that (x, δ) ∈ poly([B,C∞], h∞). By (127), there exists a

sequence (xn, δn) ∈ poly([B,Cn], hn) such that xn → x and δn → δ. It follows that

xn ∈ ppoly(B, hn;Cn).

For the second half of the Kuratowski convergence, consider an arbitrary subsequence nq

and an arbitrary sequence of values xq ∈ ppoly(B, hnq ;Cnq) such that xq → x. We want to

show that x ∈ ppoly(B, h∞;C∞). Note that ppoly(B, h∞;C∞) ̸= ∅ because h∞ ≥ 0. Let y

be the projection of x onto ppoly(B, h∞;C∞). Since y ∈ ppoly(B, h∞;C∞), there exists a

δ ∈ poly(C∞, h∞−By). Let ρ > ∥(y, δ)∥∞. Let Box(ρ) = {(x, δ) ∈ Rdµ×Rdδ : ∥(x, δ)∥∞≤ ρ}.
Let ppolyρ(B, hnq ;Cnq) = {x ∈ Rdµ : (x, δ) ∈ poly([B,Cnq ], hnq) ∩ Box(ρ) for some δ}. Let

zq denote the projection of xq onto ppolyρ(B, hnq ;Cnq). Let γq be such that (zq, γq) ∈
poly([B,Cnq ], hnq) ∩ Box(ρ). Take a further subsequence so that (zq, γq) converges to some

(z, γ) ∈ Box(ρ). It follows from Lemma 18 that

poly([B,Cnq ], hnq) ∩ Box(ρ)
K→ poly([B,C∞], h∞) ∩ Box(ρ). (128)

Therefore, (z, γ) ∈ poly([B,C∞], h∞). Notice that

∥xq − zq∥2→ ∥x− z∥2≥ ∥x− y∥2, (129)
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where the inequality follows because z ∈ ppoly(B, h∞;C∞). Note that the inequality in

(129) holds with equality if and only if z = y (by uniqueness of projection onto a convex set).

Also, by (128), there exists a (yq, δq) ∈ poly([B,Cnq ], hnq)∩Box(ρ) such that (yq, δq) → (y, δ).

Notice that

∥xq − zq∥2≤ ∥xq − yq∥2→ ∥x− y∥2. (130)

where the inequality follows because yq ∈ ppoly(B, hnq ;Cnq). It follows from (129) and (130)

that limq→∞∥xq − zq∥2= ∥x− z∥2= ∥x− y∥2. Therefore, z = y.

Next, let J be the minimal activatable set for poly(C∞, h∞ − By). By assumption,

rk(IJCnq) = rk(IJC∞) eventually as q → ∞. Therefore, by Lemma 9, poly(Cnq , hnq−Bzq)
K→

poly(C∞, h∞−By). Since δ ∈ poly(C∞, h∞−By), there exists δ̃q ∈ poly(Cnq , hnq−Bzq) such
that δ̃q → δ. The fact that ρ > ∥(y, δ)∥∞ implies that ∥(zq, δ̃q)∥< ρ eventually. Recall that zq

is the projection of xq onto ppolyρ(B, hnq ;Cnq). Since the restriction that (zq, δ̃q) ∈ Box(ρ)

is not binding, it follows that zq = xq.
49 Therefore, xq → y, which implies that y = x and

x ∈ ppoly(B, h∞;C∞).

Proof of Lemma 11. Fix the given subsequence and denote K̂nq by K̂. For q ∈ N, let

Ũq =



−IdC
B′

−B′

C ′
nq

−C ′
nq

IK̂c

−IK̂c


and b̃q =



0dC
2Σ−1

nq
(xnq − µ̂nq)

−2Σ−1
nq
(xnq − µ̂nq)

0dδ
0dδ
0|K̂c|

0|K̂c|


.

Similarly, let

Ũ∞ =



−IdC
B′

−B′

C ′
∞

−C ′
∞

IK̂c

−IK̂c


and b̃∞ =



0dC
2Σ−1

∞ (x∞ − µ̂∞)

−2Σ−1
∞ (x∞ − µ̂∞)

0dδ
0dδ
0|K̂c|

0|K̂c|


.

49To clarify this argument, let λq be such that (xq, λq) ∈ poly([B,Cnq ], hnq ). If zq ̸= xq, then note that

ϵ(xq, λq) + (1− ϵ)(zq, δ̃q) ∈ poly([B,Cnq ], hnq ) ∩ Box(ρ) for ϵ > 0 small enough. This shows that zq cannot
be the projection of xq onto ppolyρ(B, hnq ;Cnq ). Therefore, zq = xq.
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Then, ψ̂n = argmin
ψ∈poly(Ũq ,̃bq)

∥ψ∥. Denote the number of inequalities by dU = 2dµ+2dδ+2|K̂c|+dC .

We first show that

rk(IJ Ũq) = rk(IJ Ũ∞) (131)

for every J ⊆ {1, ..., dU} that is activatable for poly(Ũq, b̃q) or poly(Ũ∞, b̃∞). Since there are

three collections of equalities, any such J must contain the final 2dµ+2dδ+2|K̂c| elements of

{1, ..., dU}. We can therefore write J as J0∪{dC+1, ...dU} where J0 ⊆ {1, ..., dC}. Evaluate:

rk(IJ Ũq) = rk(Ũ ′
qI

′
J) = rk([−I ′J0 , B, −B, Cnq , − Cnq , I

′
K̂c , − I ′

K̂c ])

= rk([−I ′J0 , B, Cnq , I
′
K̂c ])

= rk([−I ′J0 , B, BΠnq +D, I ′
K̂c ])

= rk([−I ′J0 , B, D, I
′
K̂c ])

= rk([−I ′J0 , B, BΠ∞ +D, I ′
K̂c ])

= rk([−I ′J0 , B, C∞, I
′
K̂c ])

= rk([−I ′J0 , B, −B, C∞, − C∞, I
′
K̂c , − I ′

K̂c ])

= rk(Ũ∞I
′
J) = rk(IJ Ũ∞),

where the second and second-to-last equalities hold by the structure of J , and the middle six

equalities hold by the rank-preservation property of basic matrix column operations. This

shows (131).

Note that poly(Ũq, b̃q) is nonempty because ψ̂nq ∈ poly(Ũq, b̃q). This, combined with (131)

and Lemma 19, implies that poly(Ũ∞, b̃∞) is nonempty. Let ψ̂∞ = argmin
ψ∈poly(Ũ∞ ,̃b∞)

∥ψ∥. The

fact that ψ̂∞ ∈ poly(Ũ∞, b̃∞) implies that ψ̂∞ satisfies conditions (106)-(108) with n = ∞.

For condition (109), note that IK̂cψ̂∞ = 0, which implies that IK̂c
∞
ψ̂∞ = 0 because K̂c

∞ ⊆ K̂c

(equivalently, K̂ ⊆ K̂∞). To see this last point, note that if, for a given k ∈ {1, ..., dC},
we have e′k(hnq − Bµ̂nq − Cnq δ̂nq) = 0 for all q, then e′k(h∞ − Bµ̂∞ − C∞δ̂∞) = 0. (Recall

K̂ = K̂nq for all q.)

Finally, it follows from Lemma 9, using (131) and the non-emptiness of poly(Ũq, b̃q), that

poly(Ũq, b̃q) →K poly(Ũ∞, b̃∞). Then, it follows from Lemma 8 and the non-emptiness of

poly(Ũ∞, b̃∞), that ψ̂nq → ψ̂∞.

Proof of Lemma 12. First note that X has the same distribution as X̃ = Σ1/2Z, where Σ1/2

is the symmetric matrix square root of Σ and Z ∼ N(0, I). Thus, it suffices to show that

∥AX̃ + b∥2Υ has a continuous distribution.
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Next, consider the derivation:

∥AX̃ + b∥2Υ= Z ′Σ1/2A′ΥAΣ1/2Z + 2b′ΥAΣ1/2Z + b′Υb. (132)

Let SV D be the singular value decomposition of Υ1/2AΣ1/2, where S and D are unitary

matrices (i.e. square matrices such that SS ′ = I and DD′ = I) and V is a rectangular

diagonal matrix whose diagonal elements are singular values of Υ1/2AΣ1/2. Then

∥AX̃ + b∥2Υ= Z ′D′V V ′DZ + 2b′Υ1/2SV DZ + b′Υb. (133)

Let Z̃ = DZ. Then Z̃ ∼ N(0, I). Let Z̃j be the jth element of Z̃ for j ∈ {1, . . . , ℓ}. Then

∥AX̃ + b∥2Υ=
ℓ∑

j=1

(v2j Z̃
2
j + wjvjZ̃j) + b′Υb, (134)

where vj is the jth diagonal element of V (we let vj = 0 for j > k when ℓ > k) and

wj is the jth element of the vector 2S ′Υ1/2b. The lemma is proved by observing that

{v2j Z̃2
j +wjvjZ̃j}kj=1 are mutually independent, and for each j, v2j Z̃

2
j +wjvjZ̃j is a continuous

random variable unless vj = 0.

Proof of Lemma 13. The first two KKT conditions for (110) are

2Σ−1(X − µ̂) = B′ψ̂

C ′ψ̂ = 0.

It follows from the definition of L̂ that ψ̂ = I ′
L̂
IL̂ψ̂. Plugging this into the first two KKT

conditions, we get that

2Σ−1(X − µ̂) = B′
L̂
IL̂ψ̂ (135)

C ′
L̂
IL̂ψ̂ = 0. (136)

It then follows from (136) that IL̂ψ̂ =MC
L̂
IL̂ψ̂. Plugging this into (135), we get that

2Σ−1(X − µ̂) = B′
L̂
MC

L̂
IL̂ψ̂.

Then note that, by Lemma 6(a), 0 = rk(MC
L̂
BL̂). Therefore, Σ

−1(X− µ̂) = 0, which implies

that µ̂ = X and T = 0.

Proof of Lemma 14. Note that the rank of any matrix is equal to the number of nonzero
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singular values. The matrix A has rk(A) nonzero singular values. By Lemma 15, An has at

least rk(A) nonzero singular values eventually. Therefore, rk(An) ≥ rk(A) eventually.

Proof of Lemma 15. The left singular values of An and A are the non-negative square roots of

the eigenvalues of A′
nAn and A

′A, respectively. The result then follows from Theorem 2.4.9.2

of Horn and Johnson (2012), which implies that the eigenvalues of a Hermitian matrix are

continuous in the entries of the matrix.

Proof of Lemma 16. The fact that µ̂1 = µ̂2 follows because the feasible sets are the same.

For the other two results, it is sufficient to prove them when the rows of A are a subset of

the rows of B. This is because we can define F = [A;B] and g = [c; d], where the semicolon

denotes vertical concatenation, so that poly(F, g) = poly(A, c) = poly(B, d). Then the result

with the rows of A being a subset of the rows of F combines with the result applied to B

and F to yield r̂1 and r̂2 are both equal to the rank of the active inequalities for projection

onto poly(F, g) and β̂1 and β̂2 are both equal to the value calculated when projecting onto

poly(F, g).

When the rows of A are a subset of the rows of B, then r̂1 = r̂2 follows from the proof of

part (c) of Lemma 9 in CS23 (the bottom of page 90 in the supplemental materials). The

fact that β̂1 = β̂2 follows from Lemma 10 in CS23.

D Feasibility of the Limit

Assumption 1(vi) requires poly(C∞, b∞) to be nonempty. The remark on Assumption 1

points out a sufficient condition based on a compact set ∆. In fact, that condition can be

weakened to {δ ∈ Rdδ : CF δ ≤ bF} ∩ ∆ ̸= ∅ for all F ∈ Fn0. The argument for sufficiency

is the same. Namely, for any sequence Fnq ∈ Fnq0, there exists a δFnq
∈ ∆ such that

BµFnq
+ (BΠFnq

+D)δFnq
≤ dnq . This sequence has a subsequence that converges to some

limit δ∞ ∈ ∆ that satisfies Bµ∞ + (BΠ∞ +D)δ∞ ≤ d∞. The remark on Assumption 1 also

claims that Assumption 1(vi) follows from Assumption 1(i) and a strengthened version of

Assumption 2. This section states Lemma 19, which formalizes this claim.

Lemma 19. Consider a sequence of dC×dδ matrices {Cn} and dC-dimensional vectors {bn}.
Suppose

(i) Cn → C∞ and bn → b∞ as n→ ∞ for some C∞ ∈ RdC×dδ and b∞ ∈ RdC ,

(ii) poly(Cn, bn) ̸= ∅ eventually, and
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(iii) for any K ⊆ {1, . . . , dC} that is activatable for poly(Cn, bn) infinitely often, we have

rk(IKCn) = rk(IKC∞) eventually.

Then, poly(C∞, b∞) ̸= ∅.

Remark: Lemma 19 verifies Assumption 1(vi) under Assumption 1(i) and a strengthened

version of Assumption 2 where we require equation (28) to hold also for every K such that

K= ⊆ K and K ∈ ∪∞
q=1A(CFnq

, bFnq
) eventually. This is because, by Assumption 1(i),

CFnq
= D + BΠFnq

→ D + BΠ∞ = C∞ and bFnq
= dnq − BµFnq

→ d∞ − Bµ∞ = b∞. Also,

the fact that Fn ∈ Fn0 implies that poly(CFn , bFn) is nonempty. Finally, any K ⊆ {1, ..., dC}
that is activatable for poly(CFnq

, bFnq
) infinitely often must include K= and must belong to

∪∞
q=1A(CFnq

, bFnq
). Therefore, all conditions of the lemma are satisfied, and Assumption

1(vi) is verified.

Proof of Lemma 19. This proof uses Lemma 20, stated below. By condition (ii), poly(Cn, bn)

is a non-empty closed set eventually. Thus, the following argmin is well-defined for large

enough n:

x̂n =argmin
x∈Rdδ

∥x∥2 s.t. Cnx ≤ bn. (137)

Let Kn = {j ∈ {1, . . . , dC} : e′j(Cnx̂n − bn) = 0}. Since Kn can take at most 2dC distinct

values, there exists a subsequence {nq} such that Knq does not depend on q and thus can

be simply denoted by K. It then follows from Lemma 7 (with no nuisance parameters) that

x̂nq =
(
IKCnq

)+
IKbnq (138)

for all q ∈ N.
Note that K is an active set of inequalities for poly(Cn, bn) infinitely often, and therefore

by condition (iii), rk(IKCnq) = rk(IKC∞) eventually as q → ∞. It follows from Lemma 20

that
(
IKCnq

)+ → (IKC∞)+ as q → ∞. Let x̂∞ = (IKC∞)+ IKb∞ and note that x̂nq → x̂∞.

To complete the proof, note that

C∞x̂∞ − b∞ = lim
q→∞

(Cnq x̂nq − bnq) ≤ 0.

Thus, x̂∞ ∈ poly(C∞, b∞), which shows that poly(C∞, b∞) ̸= ∅.

Lemma 20. Let An be a sequence of matrices converging to A∞ such that rk(An) = rk(A∞)

eventually. Then, A+
n → A+

∞.

Proof of Lemma 20. Fix an arbitrary subsequence, nm. It is sufficient to show that there

exists a further subsequence along which the convergence in the conclusion holds.
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Let An = UnΣnV
′
n be a singular value decomposition of An, where Un and Vn are orthonor-

mal matrices and Σn is a (possibly non-square) diagonal matrix with diagonal elements equal

to the singular values of An in nonincreasing order. Let Σ∞ be the (possibly non-square)

diagonal matrix with diagonal elements equal to the singular values of A∞. Let U∞ and V∞

be orthonormal matrices and let nq be a further subsequence of nm such that Unq → U∞,

Vnq → V∞, and r = rk(Anq) = rk(A∞) does not depend on q. (These exist because the set

of orthonormal matrices is compact.) It follows from Lemma 15 that Σnq → Σ∞. It follows

from convergence that A∞ = U∞Σ∞V
′
∞ is a singular value decomposition of A∞.

The fact that Σnq and Σ∞ both have r nonzero diagonal elements, together with the fact

that Σnq → Σ∞, implies that Σ+
nq

→ Σ+
∞. (The Moore-Penrose pseudo-inverse of a possi-

bly non-square diagonal matrix is a diagonal matrix of the same dimension with diagonal

elements equal to the pseudo-inverse of each diagonal element of the original matrix.) There-

fore, A+
nq

= UnqΣ
+
nq
V ′
nq

→ U∞Σ+
∞V

′
∞ = A+

∞. (In general, the Moore-Penrose pseudo-inverse

of a matrix A with singular value decomposition UΣV ′ is A+ = UΣ+V ′; see, for example,

Chapter 6 in Ben-Israel and Greville (2003).)

E Inference on Policy Relevant Treatment Effects

In this section, we demonstrate the GCC test in a simulation of Example 4. The simulations

show that the GCC test is fast to compute and has good size and power.

E.1 The Data Generating Process

We follow Section 5 in Mogstad et al. (2018). We generate an i.i.d. sample of {Yi, Di, Zi}ni=1

according to the following distribution. Suppose Y is binary and there are no exogenous

covariates X. Let Z be independent of (Y0, Y1) with support {0, 1, 2} and distribution given

by P (Z = 0) = 0.5, P (Z = 1) = 0.4, and P (Z = 2) = 0.1. Also, letD = 1{p(Z) ≥ U}, where
U |Z ∼ Uniform[0, 1] and p(z) is the propensity score, defined by p(0) = 0.35, p(1) = 0.6,

and p(2) = 0.7. Let Yd|U = u ∼ Bernoulli(κd(u)), where the marginal treatment response

functions are

κ0(u) = 0.6φ2
0(u) + 0.4φ2

1(u) + 0.3φ2
2(u),

κ1(u) = 0.75φ2
0(u) + 0.5φ2

1(u) + 0.25φ2
2(u), (139)
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and φ2
0(u), φ

2
1(u), φ

2
2(u) are the Bernstein basis polynomials of degree 2:

φ2
k(u) =

(
2

k

)
uk(1− u)2−k.

These marginal treatment response functions are the same as those used in MST18 and are

depicted in Figure 1 in that paper.

E.2 Local Average Treatment Effects

For 0 ≤ α1 < α2 ≤ 1, let

LATE(α1, α2) = E[Y1 − Y0|α1 < U < α2]. (140)

As shown in Imbens and Angrist (1994), the three point-identified LATEs for the DGP spec-

ified in Section E.1 are: LATE(0.35,0.6), LATE(0.35,0.7), and LATE(0.6,0.7). Other LATEs

are generally not point identified. We take our (policy-relevant) parameter of interest to be

θ =LATE(p(0),0.9). Recall the true value of p(0) is 0.35. This parameter is closely related to

the instrument that identifies the LATE(0.35,0.7) parameter. It has the interpretation of a

policy change that includes the same compliers as that instrument plus additional compliers

with values of u up to 0.9. (Think of the instrument as being a past policy change, while the

policy change of interest is the same but with more compliers.) The true value of θ for the

DGP specified in Section E.1 is approximately 0.046. This parameter of interest is not point

identified. However, we use the bounds in MST18 to calculate a confidence interval for θ.

E.3 Marginal Treatment Response Parameterization

We define a set of MTRs to be a set of functions of u ∈ [0, 1] that are bounded between 0

and 1 and constant on the intervals U1 = [0, p(0)), U2 = [p(0), p(1)), U3 = [p(1), p(2)), U4 =

[p(2), 0.9), and U5 = [0.9, 1]. The endpoints of these intervals are taken from the range of the

propensity score function, together with the boundary of the LATE that we are interested

in. By Proposition 4 in MST18, this parameterization of MTRs is sufficient to achieve tight

nonparametric bounds on θ. For d ∈ {0, 1}, let δd = (δd1, δd2, δd3, δd4, δd5)
′ ∈ [0, 1]5 be a

vector of coefficients such that δdj is the value of the function over Uj for j ∈ {1, ..., 5}. Let
δ = (δ′0, δ

′
1)

′. We enforce these shape restrictions on δ by setting

A =

(
−I10
I10

)
and b =

(
010×1

110×1

)
. (141)
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E.4 IV-Like Estimands

Any measurable function of D and Z could be an IV-like estimand. We consider a variety

of subsets of the following IV-like estimands:

IV : sIV (D,Z) = Z − E[Z]

OLS : sOLS(D,Z) = D − E[D]

IVZ0 : sZ0(D,Z) = 1{Z = 0}

IVZ1 : sZ1(D,Z) = 1{Z = 1}

IVZ2 : sZ2(D,Z) = 1{Z = 2}

IVDZ10 : sDZ10(D,Z) = D 1{Z = 0}

IVDZ11 : sDZ11(D,Z) = D 1{Z = 1}

IVDZ12 : sDZ12(D,Z) = D 1{Z = 2}

IVDZ00 : sDZ00(D,Z) = (1−D) 1{Z = 0}

IVDZ01 : sDZ01(D,Z) = (1−D) 1{Z = 1}

IVDZ02 : sDZ02(D,Z) = (1−D) 1{Z = 2}. (142)

Any S ⊆ S := {IV,OLS,Z0,Z1,Z2,DZ10,DZ11,DZ12,DZ00,DZ01,DZ02} defines a collec-

tion of IV-like estimands that defines a vector m with |S| elements.

E.5 Defining and Estimating m, γ, and Γ

For any x ∈ S, let mx = E[sx(D,Z)Y ]. For any S ⊆ S, we can take m to be the vector of

mx for x ∈ S. Each mx can be estimated by mx = n−1
∑n

i=1 sx(Di, Zi)Yi.
50

To define γ, we use the formula for the weights associated with LATE(p(0),0.9) from

Table I in MST18 combined with the piecewise constant basis functions. For d ∈ {0, 1} and

j ∈ {1, ..., 5}, let

γdj =
(−1)d+1

|0.9− p(0)|

∫
1{u ∈ Uj ∩ [p(0), 0.9]}du. (143)

Let γ = (γ′0, γ
′
1)

′, where γd = (γd1, γd2, γd3, γd4, γd5)
′ for d ∈ {0, 1}. Note that γ needs

to be estimated because it depends on p(0). It also depends on Uj, which need to be

estimated.51 We estimate the propensity scores by (p̂(0), p̂(1), p̂(2)) = n−1
∑n

i=1(1{Zi =

50For x ∈ {IV,OLS}, sx(·) is estimated by replacing E[Z] and E[D] with n−1
∑n
i=1 Zi and n

−1
∑n
i=1Di,

respectively.
51In MST18, the basis that parameterizes the MTRs is taken as given and known throughout the paper.

However, a specific basis is required for the bounds to be equal to the endpoints of the identified set—one
that depends on the unknown propensity scores; see Proposition 4 in MST18. This basis must be estimated
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0},1{Zi = 1},1{Zi = 2}). We then take Ûj to be estimated versions of Uj with the estimated

propensity scores plugged in. Similarly, we estimate γdj and γ by γ̂dj and γ̂ following (143)

with p̂(0) and Ûj plugged in.

To define Γ, we use the formula for the weights from Proposition 1 in MST18 combined

with the piecewise constant basis functions. For x ∈ S, let Γx denote the row of Γ associated

with sx(D,Z). We can define Γx = (Γ′
x0,Γ

′
x1), where Γxd = (Γxd1, ...,Γxd5)

′ and

Γxdj =

E
∫
sx(0, Z)1{u ∈ Uj}1{u > p(Z)}du if d = 0

E
∫
sx(1, Z)1{u ∈ Uj}1{u ≤ p(Z)}du if d = 1

, (144)

for d ∈ {0, 1}, j ∈ {1, ..., 5}, and x ∈ S. We can estimate Γ by

Γ̂xdj =

n−1
∑n

i=1

∫
sx(0, Zi)1{u ∈ Ûj}1{u > p̂(Zi)}du if d = 0

n−1
∑n

i=1

∫
sx(1, Zi)1{u ∈ Ûj}1{u ≤ p̂(Zi)}du if d = 1

, (145)

where, for x ∈ {IV,OLS}, we follow footnote 50 for estimating sx(·, ·).
We estimate the variance-covariance matrix of the estimators of γ, m, and Γ by the

bootstrap with B = 1000 bootstrap draws.

E.6 Results

We implement the GCC and RGCC tests using (11) to write Γ, m, γ, θ, A, and b in terms

of B, µ, Π, D, and d.52 We can similarly define µn, Πn, and Ωn using the estimators of γ,

m, Γ, and the estimator of their variance-covariance matrix. For each of 5000 simulations,

we calculate the confidence interval implied by the GCC and RGCC tests using bisection.

We then calculate the frequency with which any given value of θ in [−1, 1] lies outside the

confidence interval.

We consider a variety of choices of S ⊆ S. Figure 4 reports the results for only the IV

estimand: S1 = {IV}. Figure 5 adds the OLS estimand: S2 = {IV,OLS}. Figure 6 breaks

the instrument into three components and keeps the OLS estimand: S3 = {Z0,Z1,Z2,OLS}.
Figure 7 saturates the support of (D,Z): S4 = {DZ10,DZ11,DZ12,DZ00,DZ01,DZ02}.
Note that S4 gives the tightest bounds on θ. The identified sets for θ are also depicted in

Figures 4-7 by the shaded region.53 In the legend, the number in square brackets indicates

in practice.
52Because γ is estimated, we follow the strategy in Remark (2) above Example 3 in Section 2.2.
53For a given S ⊆ S, the identified set for θ can be calculated by solving two LPPs: θmin =

minδ:Aδ≤b,Γδ=m γ
′δ and θmax = maxδ:Aδ≤b,Γδ=m γ

′δ for the Γ and m associated with S.
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Figure 4: Power Curve with only the IV Slope Coefficient (S1)

the computational time (in seconds) to compute the confidence interval once, taking the

median over simulations.

Remarks: (1) In each figure, both GCC and RGCC tests have well controlled null rejection

rates and reasonable power outside the identified set. We can see that the identified sets

shrink as we add more IV-like estimands, as expected. It is encouraging to see that the

power curves get steeper with more IV-like estimands as well, indicating that our tests can

effectively capture the identification power of the additional IV-like estimators despite the

added noise. The RGCC test appears to be size-exact on the boundary of the identified sets.

Also, the difference between the GCC and RGCC tests gets smaller as the number of equalities

increases.

(2) It is interesting to note that the computational time of the RGCC does not change

monotonically as we move from Figure 4 to Figure 7. It takes the longest in Figure 6. The

nonmonotonicity results from the way we implement the refinement. Specifically, we do not

implement the vertex enumeration step unless ŝn = 1. The event ŝn = 1 may occur less

frequently as the number of inequalities/equalities increases.
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