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Abstract

This paper proposes a new test for inequalities that are linear in possibly par-
tially identified nuisance parameters. This type of hypothesis arises in a broad set of
problems, including subvector inference for linear unconditional moment (in)equality
models, specification testing of such models, and inference for parameters bounded by
linear programs. The new test uses a two-step test statistic and a chi-squared critical
value with data-dependent degrees of freedom that can be calculated by an elemen-
tary formula. Its simple structure and tuning-parameter-free implementation make
it attractive for practical use. We establish uniform asymptotic validity of the test,
demonstrate its finite-sample size and power in simulations, and illustrate its use in
an empirical application that analyzes women’s labor supply in response to a welfare

policy reform.
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1 Introduction

We propose a simple new test for hypotheses of the form Hy: there exists a § such that
C§ < b, where elements of the Jacobian matrix C' and the intercept vector b are reduced-form
parameters that can be consistently estimated, and elements of ¢ are unknown parameters
whose values are partially identified by the inequalities under Hy. Since the inequalities,
rather than 0, are of central interest, J is a nuisance parameter vector. Hypotheses of this
form arise in specification testing and subvector inference for linear unconditional moment
(in)equality models and in inference for parameters bounded by linear programs, including
discrete instrumental variable (IV) models with shape restrictions and policy relevant treat-
ment effect models. These models have wide applications in empirical work. We explain the
applications and give examples in Section 2.

Testing this hypothesis is non-standard both because the nuisance parameter ¢ may not
be point-identified and because the hypothesis involves inequalities. As a result, commonly
used test statistics have non-standard asymptotic distributions involving parameters that
cannot be consistently estimated, in particular, the local slackness of the inequalities eval-
uated at the true value of §. This complicates the design of critical values. A common
approach is to simulate the asymptotic distribution with a conservative estimator of the lo-
cal slackness plugged in. However, the conservative estimators typically involve user-chosen
tuning parameters that introduce arbitrariness to the procedure. Moreover, the simulated
critical values can be computationally burdensome.

In the special case that the Jacobian is known, Cox and Shi (2023), hereafter CS23,
propose the subvector conditional chi-squared (sCC) test that does not require simulation
or user-chosen tuning parameters and yet still has uniform asymptotic size control and good
power. The simplicity of the test is achieved by considering the conditional distribution of
the quasi-likelihood ratio (QLR) statistic given the identity of the active inequalities.! The
conditional distribution is shown to be bounded by a chi-squared distribution with degrees
of freedom (DoF) dependent on the conditioning event. CS23 recommends computing the
DoF by solving a sequence of linear programming problems.

Our first contribution is to derive an elementary formula for the DoF that replaces the
recommendation in CS23. The formula makes the computation of the critical value elemen-
tary. Implementing the sCC test is now no harder than calculating the test statistic, which
is a convex quadratic programming problem (CQPP). The formula also reveals an intuitive
interpretation of the sCC test: The sCC test turns out to be the same as the classic Sargan-

Hansen’s J test for a moment equality model, where the equalities are determined by the

L An inequality is active if it holds with equality at our null-imposed estimator of 6.



active inequalities.

While the sCC test is attractive, the known Jacobian assumption significantly restricts
its applicability. In both linear unconditional moment inequality models and models with a
parameter of interest bounded by linear programs, a known Jacobian only applies in special
cases. The known Jacobian assumption even rules out conditional moment inequality models
where ¢ includes coefficients on endogenous covariates. The second contribution of this paper
is to propose a new test, called the generalized conditional chi-squared (GCC) test, that
accounts for the estimation error of an unknown Jacobian while maintaining the simplicity;,
size, and power properties of the sCC test.

Estimating the Jacobian presents two challenges. The first challenge is finding the limit of
the constraint set in the definition of the QLR statistic. In general, convergence of the matrix
of coefficients in a system of inequalities is insufficient for the set defined by those inequalities
to converge in a setwise sense. We show that a simple stable rank condition on the Jacobian
is sufficient for convergence of the constraint set. The stable rank condition requires the rank
of certain submatrices of the Jacobian to not change in the limit. The submatrices that need
to satisfy the condition are minimal in some sense. They are associated with collections of
inequalities that (implicitly or explicitly) define equality restrictions in the limit. While the
stable rank condition is not innocuous, it relaxes the commonly used strong identification
assumption in moment equality models, which requires the Jacobian to be full rank.

The second challenge is finding a consistent variance estimator. The effect of the esti-
mated Jacobian on the variance depends on §, but 0 is only partially identified. This makes
the additional variance term difficult to account for. Our solution is to use a first-stage
estimator of § that converges to a point in the identified set for . The procedure resem-
bles optimal weighting in two-step generalized method of moments (GMM). The GCC test
compares this two-step statistic to a chi-squared critical value with DoF determined by the
formula from our first contribution. We also define a refinement of the GCC test in the
supplemental appendix that has slightly more power.

We next review three strands of related literature. The first consists of papers that
propose tests of moment inequalities that are possibly nonlinear in nuisance parameters.
These include Bugni et al. (2015, 2017), Chen et al. (2018), Belloni et al. (2018), Kaido et al.
(2019), and Bei (2023). These methods use critical values that are nontrivial to compute
and require user-chosen tuning parameters to be adaptive to the unknown slackness of the
inequalities.” In contrast, the GCC test uses an algebraic critical value and is adaptive to

the unknown slackness of the inequalities without any tuning parameter, at the price of

2An exception is Procedure 3 in Chen et al. (2018) in that it does not require any tuning parameter or
simulation. We include this procedure in the simulations.



requiring linearity.

The second strand of related literature is composed of CS23 and Andrews et al. (2023),
which consider conditional moment inequalities that are linear in the nuisance parameters.
These papers rely on an idea that if the Jacobian depends only on random variables on which
the inequalities hold conditionally, then the Jacobian can be treated as known. However,
this idea does not apply if the moment inequalities are unconditional or, more generally, if
the Jacobian depends on a random variable for which the moment inequalities do not hold
conditionally. Our method applies regardless of whether the Jacobian can be treated as
known.

When our test is applied to inference for a scalar parameter (say 6) bounded by linear
programs, it is related to the third strand of literature. This literature addresses the prob-
lem of inference for the value of a linear programming problem (LPP). The papers include
Freyberer and Horowitz (2015), Bai et al. (2022), Fang et al. (2023), Cho and Russell (2024),
Gafarov (2025), Voronin (2025), and Goff and Mbakop (2025), among others. There is a
subtle technical difference between our setting and this literature: while our test is inverted
to yield a confidence interval for 6, the LPP literature aims at constructing confidence in-
tervals for the upper or lower bound for 6 defined by the value of a LPP. While the two
problems are distinct, they are closely related. Our confidence interval by design can cover
either bound with correct nominal coverage probability (asymptotically), and in the LPP
literature, one-sided confidence intervals of the appropriate direction for either bound are
also valid confidence intervals for 6.° Thus, the methods can be used for the same empirical
problems. Notably, our method is the only one that is tuning parameter and simulation free.

We include a simple one-sided specification in the simulations in order to compare the
GCC test to representative papers in all three strands of the literature. In addition to the
simple simulation, we also evaluate the GCC test in two realistic simulation examples: one of
an interval outcome instrumental variables (IV) model as in Gandhi et al. (2023), hereafter
GLS23, and the other of bounds on policy relevant treatment effects as in Mogstad et al.
(2018), hereafter MST18. The simulations show that the GCC test is computationally very
fast with good size and power.

We also implement the GCC test in an empirical analysis of female labor supply in
response to a welfare policy reform. Kline and Tartari (2016), hereafter KT16, estimate
bounds on the treatment responses by manually eliminating the nuisance parameters from
revealed preference inequalities. The GCC test provides uniformly valid inference for the

treatment responses based directly on the revealed preference inequalities. Overall, we find

3In the LPP literature, two-sided confidence intervals for § can be obtained by combining two one-sided
confidence intervals via a Bonferroni adjustment.



statistically significant heterogeneous responses to the policy change, which agree with the
results in K'T'16.

The rest of the paper is organized as follows. Section 2 describes the setup and applica-
tions. Section 3 defines the GCC test. Section 4 describes the theoretical properties of the
GCC test. Section 5 presents the simulations. Section 6 presents the empirical illustration.
Section 7 concludes. An appendix contains proofs of the theorems, while a supplemental

appendix includes additional results, proofs, simulations, and discussion.

2 Setup and Examples

We are interested in testing the hypothesis
Hy : C6 < b for some § € R% (1)

where C' is a d¢ X ds matrix of reduced-form parameters, b is a dco-dimensional vector of
reduced-form parameters, ds is the dimension of §, and d¢ is the number of inequalities. To
make an invertibility assumption imposed later as unrestrictive as possible, we add some

structure to C and b. We assume that
C=DBIl+D and b=d— By, (2)

where B is a known d¢ X d, matrix, D is a known d¢ X ds matrix, d is a known dc-dimensional
vector, II is an unknown d,, x ds matrix of reduced-form parameters, and p is an unknown
d,-dimensional vector of reduced-form parameters. This structure separates the unknown
and estimated components from the known components in the Jacobian C' and the intercept
b. It is satisfied in all the examples considered below. Typically, B has more rows than
columns, and it absorbs the linear dependence across rows for the estimation noise of the
inequalities. This allows us to accommodate inequalities with linearly dependent estimation
errors, which arise when we write an equality as a pair of opposing inequalities, when the
model contains a deterministic constraint such as a shape or sign restriction, or when the
law of total probability dictates that a weighted sum of the inequalities involves no unknown
quantities under H,.

With the structure in (2), Hy can be equivalently written as:
Hy : B(p +116) + D6 < d for some § € R%. (3)

Let ,, and T1,, be estimators of wand II. Let C,=D+BIl, and b, = d— Bri,,. In the next



two subsections, we describe two classes of models that are covered by this framework.

2.1 Moment (In)equality Models

Moment (in)equality models are used to address data or modeling incompleteness issues,
including missing data, multiple equilibria, and large intractable games.” Here, we show
that both specification testing and subvector inference for moment inequality models fit the
hypothesis in equation (3) when the moments are linear in the parameters.

Consider the moment (in)equality model:

E[m;!(8)] = 0 and E[m}*‘(8)] > 0 with 3 € B C R, (4)
where m,(8) = (m(B),mi"(B)")" is a R¥-valued sample moment function, B is an

unknown vector of parameters, and B is its parameter space. Specifically, let m,(8) =
n~t 3T m(W;, B), where {W;}", is a sample of observable variables and m(-, ) is a func-
tion known up to the unknown parameter 3. Let the number of equalities be denoted d.,
and the number of inequalities be denoted diyeq, S0 that dp, = deq + dineq-

Suppose M, () is linear in 3. That is, m,(8) = [',8 + 7, for T, = 0m,(8)/9B" and
7,, = M, (0). Suppose B = R%.°> Consider the following types of problems:

1. Specification Testing. When specification testing, one evaluates whether there exists a
$ € R% such that the moment (in)equalities hold. If not, then the model is misspeci-
fied. The hypothesis is

Hy : E[m®(8)] = 0 and E[m"“?()] > 0 for some 3 € R%,

This is the type of hypothesis considered in Bugni et al. (2015). It can be written in
the form of (3) with

_Ideq (O)deq ><dineq _
B = 5 Tieq @degxdmeq , w=E[n,], I=E[l',], 6=p5, D= @(deq+dm)xdga d=0,
d —4d;

ineq X deq ineq

where [, is an identity matrix of size a and Q,«; is a a X b zero matrix. Note that we

write the equalities as pairs of opposing inequalities via the first 2d., rows of B.

4For empirical applications and current statistical methods for such models, see the survey papers by
Canay and Shaikh (2017), Ho and Rosen (2017), and Molinari (2020).

SMore generally, if B is a polyhedral set, then the deterministic inequalities that define B should be
included when writing the hypothesis in the form of (3). We show how deterministic constraints can be
incorporated in the next subsection.



2. Subvector Inference. In subvector inference, one constructs a confidence set for a
subvector of the parameters. Suppose the subvector of interest is composed of the first
¢ elements of 5 and denote it by #. Let 6 denote the rest of the elements in 5. Then
a confidence set for € can be constructed by testing the following hypothesis at each

value of # and collecting the values of # at which the hypothesis is not rejected:
Hy : E[m®(0,0)] = 0 and E[m™*(6,5)] > 0 for some § € R%.

This is the type of hypotheses considered in Bugni et al. (2017), and it can be written
in the form of (3) with

I

ineq X deq ineq

_]deq ®deq Xdine
“ _ -
B — < Ideq (O)dequineq) B M - E[mn(07 O):I, H — E[Fn], D — @(dqurdm)X(d,g*E)’ d — 0,
d

where fi = 0m,(0,0)/0d', which is the last dg — ¢ columns of T,,.

Two remarks are in order regarding subvector inference:
Remarks: (1) Linearity in 0 is not needed for subvector inference. The discussion remains
unchanged if m,(0,0) is linear in 6 and nonlinear in 6.

(2) Sometimes, the parameter of interest is not a subvector of 3, but instead a linear
function of 8. That is, 0 = AB for a known dgy x dg full-rank matriz A with dy < dg. One
approach is to reparameterize 3 so that 6 becomes a subvector of the new parameter. Let A° be
a (dg—dy) x dg row-augmenting matriz so that ( {%) is nonsingular.® The reparameterization
is given by v = () B. Then, plugging B = ( f% )71 v into (4) reparameterizes the model so
that 0 is a subvector of ~v. Equivalently, one can add 0 = AS to the model as deterministic
constraints and treat 5 as the nuisance parameter.

We end this subsection with two examples of linear moment inequality models.

Example 1 (Interval Outcome IV Regression). Consider a linear model Y* = X' + ¢ with
EleZ] = 0, where Z is a vector of instruments. The dependent variable Y* is not observed.
Instead, we observe YL and YV that satisfy: E[Y*Z] < E[Y*Z] < E[YYZ]. Then, we have

the following unconditional moment inequalities:
EY*Z - ZX'B] <0 and E[ZX'B-Y"Z] < 0. (5)

This is an example of (4). The interval outcome IV regression model was proposed in Manski

and Tamer (2002). A generalization of such a model to a non-standard aggregate demand

6In Matlab, one can find such a matrix by applying the function null( ) on A.



estimation problem is studied in GLS23. In their generalization, Y* and YV can be nonlinear
functions of the parameter of interest.

CS23 and Andrews et al. (2023) cover a related model where the inequalities in (5) hold
conditionally on Z. Their tests apply to hypotheses that fix the coefficients on all the endoge-
nous regressors. Then, the Jacobian of the inequalities with respect to the nuisance parameter
1s known after conditioning on Z since it is not a function of the endogenous regressors. Their

tests do not apply when a nuisance parameter is a coefficient on an endogenous regressor.

Example 2 (Panel Data Multinomial Choice Model). Consider a panel data multinomial
choice model where individual i at time t obtains utility u;;; from choosing option j. Let y;j; =
1 if i chooses j at time t, and y;;: = 0 otherwise. The random utility model stipulates that
Yije = 1 if and only if u;j > wijy for all j' € {0,1,2,...,J}. Consider the linear index model
of the random utility: w;;; = X{jt7+)\i]~ +e4jt, where Xiji 1s a vector of observed covariates, \;j
is an unobserved fized effect, and ;51 s an idiosyncratic taste shock. Normalize X;or = 0. For
illustration, let there be only two time periods (t = 1,2) and let the individuals be independent
and identically distributed. Under a conditional time homogeneity assumption on €;;, Shi

et al. (2018) show that the following moment inequality holds:

where Ay, is a J-dimensional vector with its jth element being yijo — yij1, AX; is a J X d,
dimensional matriz with its jth row being (X,;jo — X;1), and X; collects X;j for all j €
{1,2,...,J} and t € {1,2}. Note that none of the elements of Ay.AX; can be considered
exogenous because they depend on y,j:. Thus, the inequalities do not fit into the conditional
moment inequality setup in CS23 or Andrews et al. (2023). Let Z(X;) be a non-negative

vector-valued instrumental function. Then,
E[Z(X:))Ay;AXin] > 0 (7)
rewrites the inequalities in (6) into the form of (4).

2.2 Parameters Bounded by Linear Programming

Recently, an important class of models have arisen in the structural estimation literature

where a scalar parameter of interest is not point-identified but bounded by the values of

"In this model, a normalization is usually imposed on ~, such as the first element being one, that can be
accommodated by simply setting that element to 1.



linear programming problems (LPPs).® The constraint sets for the LPPs are defined by
linear (in)equalities, where the constants and coefficients in the (in)equalities are unknown

parameters to be estimated. To fix ideas, suppose the parameter of interest is
0=+, (8)

where v € R% is a known vector that defines a linear combination of the nuisance parameters

d. The constraint set is defined by a collection of (in)equalities:
I'd=m and Ad <, (9)

where the elements of m € R and I' € R *9% are known or can be consistently estimated,
A'is a known d4 x ds matrix, and b € R% is a known vector.” The known inequalities in (9)
define a parameter space for §. For example, if 0 is a vector of weights, then § takes values
in the simplex, which can be represented by an appropriate choice of A and b.

Inference on 6 can be based on the GCC test for the existence of a value of § that
simultaneously satisfies (8) and (9) at a hypothesized value of . A confidence interval for
0 can be calculated by inverting a family of tests. The restrictions in (8) and (9) can be

written in the form of (3) with

/
Oy ¥ 0
o’ —~! —0
dr ¥
B = Iy, ,pp=-—m, II=T, D= | Osxas |, andd= | % |. (10)
—Iap, Oarxdg Oap.
Od 4 xdr A

Note that the first two rows and the last d4 rows of B are zeros to accommodate the
deterministic constraints # = ~vd and Ad < b.

Another approach to inference on 6 is to use LPPs. From the point of view of identifi-
cation, 0 is bounded sharply by Onin = mins. (o) hotas 7’0 and Omax = Maxs, (o) noas ¥'6. Then
one can construct one-sided confidence intervals that are bounded from below (above) for
Omin (Omax) and use them as confidence intervals for §. Inference for the value of a LPP is
generally based on plugging the estimators of m and I' into the LPPs and simulating or
bootstrapping the asymptotic distributions of these estimators. However, the asymptotic
distributions depend on which corner or face of the constraint set solves the LPP, which
is not smooth as a function of the estimated reduced-form parameters. Thus, the naive

strategy of bootstrapping the value of a LPP is generally invalid. In order to obtain valid

8Some notable examples appear in KT16, MST18, Kalouptsidi et al. (2021), and Syrgkanis et al. (2021).
9We focus on the case A and b are known because it is common in applications. Unknown and estimated
A and/or b can also be covered.



inference, the LPP literature recommends various modifications that involve tuning param-
eters and/or simulating/bootstrapping nonstandard distributions. Using the GCC test to
obtain a confidence interval for 6 avoids these complications.
Remarks: (1) The GCC test is valid for any hypothesized value of 0 in [Omin, Omax|, including
the endpoints. Thus, the GCC test is a valid way to do inference for the value of a LPP.
However, the GCC test may direct power in a one-sided way. In particular, when 0. — Omin
is not small, the GCC test is effectively one-sided for the value of the LPP (though still
two-sided for ). Therefore, when the parameter of interest is Opin 0T Omax instead of 0 and
the researcher desires two-sided inference, then some of the inference recommendations from
the LPP literature are preferred.

(2) In some applications, v is unknown and estimated. There is a convenient way to
write (8) and (9) in the form of (3). The idea is to add an element to p that is always zero,
while adding ' as a row of I1. Specifically, (3) can be satisfied when 7 is unknown by letting

!
1 OdF 0:15 0
S , 0, 0
_ _( 0 — (~ — s — 0
B=1 o4 I ,u—(_m),H—(F),D— Oup s , and d = OZF . (11)
O4p —lap Odp xdg r
04, Od,xdp A

More generally, if one of the equations in (9) has a known intercept but the corresponding
row of the Jacobian is unknown, then the intercept should be included wn d while the row
of the Jacobian should be included in 11, possibly including a zero in y and augmenting the
columns of B.'° This demonstrates the flexibility of the specification in (3).

We demonstrate the relevance of the setup in (8) and (9) with examples.

Example 3 (Discrete IV Regression with Shape Restrictions). IV regressions with discrete
regressors and instruments are common in practice. Prominent examples include Permutt
and Hebel (1989), Angrist and Krueger (1991), and Angrist and Evans (1998). Freyberer
and Horowitz (2015) consider an IV model with discrete X; and Z;:

Y, =6(X)) +e, Elg|Z] =0, (12)

where Y; 1s the dependent variable, X; a discrete endogenous regressor, Z; is a discrete

instrument, 6(-) an unknown function that represents the structural relationship between X

0This idea can be applied more generally. Consider a generalization of (2), where C' can be written as
C = BII1+ BoIlls +D and b = d— Bypp. That is, Bolls is a component of C' that needs to be estimated but
cannot be written as a linear combination of the columns of B;. Then, we can satisfy the structure in (2)
by taking B = [By, Bs] and p = (1}, 0")’. This works because we do not require the estimator of p to have
a nonsingular variance matrix, but we only require the estimator of y + II§ to have a nonsingular variance
matrix for a value of d in the identified set; see Assumption 1(iii), below.

10



and Y;, and €; is the error term. While linearity of §(-) is often assumed, Freyberer and
Horowitz (2015) emphasize that no such functional form restrictions are needed.

Let the support of X; and Z; be {xy,...,xq,} and {z1,...,24.}, respectively. Let o) =
dxg) for k € {1,...,d,}, and 6 = (61,...,04,). The model in (12) implies that 0 satisfies
the equalities in (9) with

E[Y;1{Z;=21}] P(X;=x1,Zi=21) P(Xi=22,Z;=21) - P(Xi=wxq,,Z;=21)
E[Y;1{Z;=z22}] P(X;,=x1,Z;=22) P(Xi=22,Z;=22) - P(Xi=zq,,Zi=22)

m = ) and ' = ) ] , ‘ . (13)
E[Y;1{Zi=2c, }] P(Xi=21,Zi=24,) P(Xi=x2,Zi=2q,) - P(Xi=2a,,Zi=24,)

Note that m and I' are reduced-form parameters that can be estimated by sample averages.
When d, < d,, 0 is not point identified by the equalities in (9). To sharpen identification,
Freyberer and Horowitz (2015) add shape restrictions of the form Ad < b for some known
matrix A and known vector b. This covers several types of shape restrictions including
monotonicity and/or convexity of 6(-). The parameter of interest is typically a linear function
of 6. For example, = [—1,1,0,...,0]0 = 0o — &y is the effect of changing X from x1 to xs.
Thus, inference for the structural function in (12) falls into the framework of (8)-(9).

Example 4 (Policy Relevant Treatment Effects (PRTE)). Treatment effects that are relevant
for policy are often not equal to the local average treatment effects (LATEs) associated with
any available instrument. In a standard program evaluation model, they are weighted averages
of underlying marginal treatment responses (MTRs), where the weights are identified or
known, but the MTRs are not. MST18 show that the MTRs can be partially identified from
the LATEs, or more generally from IV-like estimands, because these estimands are weighted
averages of the MTRs. Then, bounds on a PRTE can be deduced from the identified set of
the MTRs. Under a parameterization of the MTRs, MST18 show that the bounds are values
of LPPs."!

To be specific, consider an outcome Y, a binary treatment indicator D, and covariates
Z = (X, Zy), where X is a vector of control variables and Zy is the vector of excluded instru-
ments. Let Yy and Y, denote the potential outcomes corresponding to the two treatment arms.
Suppose treatment is determined by a weakly separable selection equation: D = 1{p(Z) > U}
for some unobserved uniformly distributed variable U, where p(Z) is the propensity score.
The MTR functions are defined to be

ko(u,z) = E[Yo|U = u, X = z] and k1(u,z) = EY1|U = u, X = z]. (14)

1Tn some cases, MST18 show that even the nonparametric bounds can be written as finite-dimensional
LPPs; see their Proposition 4.

11



A wide range of PRTEs can be written as weighted averages of the MTRs. The MTRs can be
parameterized as a linear combination of functions belonging to some basis. Let & be a vector
of coefficients on the basis functions. Then, a PRTE, say 6, can be written as 0 = ~'d, where
v 18 a vector of weighted averages applied to each basis function. This writes the parameter
of interest in the form of (8).

An IV-like estimand is a parameter of the form mg = E[s(D, Z)Y] for some identified
or known function s(D,Z). MSTI18 show that every IV-like estimand can be written as a
weighted average of the MTRs with a simple formula for the weights. This means that each
ms can be written as a linear combination of 0. If m denotes a vector of finitely many IV-like
estimands, then m satisfies the equalities in (9) with each row of T' being the weighted average
of the basis functions with weights corresponding to the IV-like estimand.

In addition, MST18 allow the researcher to specify additional shape restrictions on the
MTEs, in a similar manner as Example 3. Depending on the choice of basis functions, these
can sometimes be written as deterministic linear inequalities on d. Querall, this shows that
6 is bounded by LPPs and satisfies the structure in (8) and (9). We demonstrate the GCC

test in a simulation of this example in Appendix E.

Example 5 (State Transition Probabilities). Consider a model where individuals choose
between finitely many states, s € S. A policy change may induce individuals to choose a

different state. The state transition probabilities are defined by
dss = Pr(S, = §'|S, = s) fors,s' €8, (15)

where S, denotes an individual’s choice after a policy change and S, denotes an individ-
ual’s choice before a policy change. These transition probabilities represent the fraction of
individuals who start in state s and change to state s’ in response to the policy change.

The transition probabilities are not identified from the data if all one has is a repeated
cross-section of individuals before and after the treatment, or a cross-section of individuals
randomly assigned to different policy regimes. On the other hand, the marginal probabilities
of S, and Sy, denoted p, and py, respectively, are identified. Then, the transition probabilities
are partially identified through their relationship with p, and py:

Do = Apln (16)

where A is the matriz of dss values for s,s'" € S. These equations fit the structure of the

equalities in (9), with elements of A forming the nuisance parameter vector §."

120me of the equations in (16) is redundant because the sum of the elements in p, is one. This is not a

12



In addition, the transition probabilities satisfy:

dss >0 forall s, € S and Z ds0 =1 forall s € S. (17)

s'eS

These restrictions can be written as the inequalities in (9) with known A and b. Then,
inference for a particular transition probability fits (8) and (9).

KT16 use such a model to study women’s labor supply in response to a welfare policy
change. In their model, the transition probabilities represent the fraction of women who
gain/lose employment and/or register for welfare. KT16 analyze the data from an experi-
ment that randomized exposure to a new welfare policy. The policy change could have het-
erogeneous effects on labor supply through the extensive margin (encouraging some women
to gain employment) and the intensive margin (encouraging some women to decrease their
hours or wages in order to qualify for welfare). The experiment identifies the distribution of
employment, welfare participation, and income for women under two welfare policies. KT16
point out that the details of the policy change, combined with weak assumptions on the utility
functions of the individuals, restrict many of the transition probabilities to zero. They then
manually solve for bounds on each of the remaining transition probabilities from (16) and
(17) and find significant labor market effects along both the extensive and intensive margins.
In Section 6, we employ the GCC test to construct confidence intervals for this example,

avoiding the need to solve for the bounds manually.

3 The Generalized Conditional Chi-Squared Test

In this section, we define the generalized conditional chi-squared (GCC) test. The test
depends on 7z, and II,, consistent and asymptotically normal estimators of y and II. The
test also depends on ©,,, a consistent estimator of the asymptotic variance of (i, vec(IL,,)’)’,
where vec(A) denotes the vectorization of a matrix, A.

We start with preliminary Hy-restricted estimators for p and 9:

(Fin,0n) = argmin  n(f, — 1) Tn (M1, — 1), (18)
1,0:Bu+Crd<d
where T, is a preliminary weight matrix that is converging in probability to a deterministic

positive definite limit."* While fi, is always unique, o, need not be. In that case, we can

problem.
'®This is similar to the weight matrix used in the first step of two-step GMM; the limit theory is invariant
to the choice of weight matrix used. We take T,, to be the identity matrix.
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take gn to be the minimizer that has the smallest norm:

o, = argmin ||d]]. (19)
8:Bfin+Cré<d

Equation (19) is a tie-breaking procedure that is only used if the value of gn that minimizes
(18) is not unique.'* Later, we add assumptions so that gn is consistent for its population
analogue, 05."

We next estimate the asymptotic variance of 7, + I8} using

- L \N= [ I
En =1~ i Qn ~ ia ) (20)
On ® [du On ® Idu

where ® denotes the Kronecker product. Define the QLR test statistic as

1,0:Bu+Cré<d

-~

Let (fin,d,) solve the minimization problem in (21). Similar to the initial estimators, i, is
always unique and ;5\,1 may not be unique. In that case, we can take gn to be any minimizer.'°

For any K C {1,...,dc}, let |K| denote the cardinality of K, and let I denote the
submatrix of the dc X d¢ identity matrix formed by taking the rows corresponding to the
indices in K. In this way, conformable premultiplication of I to a matrix B selects the
rows of B corresponding to the indices in K to form the submatrix of B with |K| rows.

We are ready to define the DoF and the critical value. Let En = d — B, and K =
{je{l,...,dc}: e;-@ngn = e;@n}, where e; is the jth standard normal basis vector. Note
that KX denotes the set of indices at which the inequality constraint holds as equality for the
minimizers in (21). Let

5. =1k (I [B,D]) — tk(IzC,). (22)

For a significance level a, let cv(s, ) denote the 1 — o quantile of the x? distribution with
DoF equal to s. The GCC test rejects if T), is greater than cv(S,,, @).

We end this section with some remarks on the definition of the GCC test.
Remarks: (1) Equation (22) gives an algebraic formula for the DoF. In CS23, the DoF, T,

is defined as the dimension of the span of a polyhedral cone. Theorem 1, below, shows that

“4Equation (19) uses the Euclidean norm, although it could be replaced with any other norm.

15We formally define 6% in (27), below. For now, it is enough to think of 3 as the probability limit of b

16Note the subtlety in the definitions of gn and gn: gn is required to minimize (19) because it has to be
consistent for 0%, while gn can be arbitrary because its consistency is not essential.
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Ty is equal to S, with probability one in the limit. For computational reasons, we recommend
S, over T,.

(2) The GCC test is in some sense a “naive” test. It is equivalent to first selecting the
inequalities that are active according to the finite sample CQPP in (21), pretending that
these inequalities are equalities, and then forming a Sargan-Hansen’s J-test for overidentifi-
cation of a model defined by these equalities. To see this, note that the typical case is when
tk(Iz[B, D)) = K| and rk(IzC) = ds. Then, the DoF used by the GCC test is |IA(|—d5,
which represents the number of active inequalities minus the number of nuisance parameters.

(3) The weight matriz, in, used in the definition of the GCC test is an estimator of the
asymptotic variance of /n(fi, + 11,0%) instead of that of \/nfi,. The latter is used in CS23
for the sCC test. The new weight matriz accounts for the estimation error in Il,. To gain

some intuition for this weight matriz, note that T, can be rewritten as

T, = min (Xn - U)'iﬁl(Xn - 77)7 (23)
n,7:Bn+Crny<hn,

where v = \/n(6 — 67), n = /n(p — pp + (I, = p)d3), Xo = V/n(f, — pre + (I, — 1p)d7),
and h, = \/n(d — Cpd} — Bur), where pup, Ip, and Cg stand for the true values of p, 11,
and C'. With this change of variables, one can see that in estimates the asymptotic variance
of X,.

(4) The GCC test is very easy to compute since it only requires solving two CQPPs.
Efficient interior-point algorithms for CQPPs are available in most commonly used software,
and they are known to have a worst-case computational complexity of O((dc + ds)*), where
dc 1s the number of inequalities and dg is the dimension of the nuisance parameter. This is
only slightly slower than the computational complexity of LPPs, which is O((d¢ + ds)>®); see
Karmarkar (1984) and Ye and Tse (1989). Most importantly, no simulation or bootstrap is
needed to perform the test.

4 Theoretical Properties

In this section, we present the three main theoretical results of the paper: (1) a theorem
that justifies using s,, and hence simplifies the rank calculation, (2) a theorem that shows
the consistency of 8, for &%, and (3) a theorem that shows the uniform asymptotic validity
of the GCC test.
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4.1 Rank Calculation Theorem

We now present the result that justifies using s,,. One can also define the DoF in the GCC
test using the Karush-Kuhn-Tucker (KKT) multipliers. Let L= {je{l,..,dc}: e;@n > 0},
where @n is a vector of nonnegative multipliers that satisfy the KKT conditions for (21).
Then

t, =1k (I3 B, D)) — 1k(I;C,) (24)

is another way to define the DoF. Also note that
7, = dim(B'{h >0:1'C, =0,N(Bi, — d) = 0}) (25)

is the definition of the DoF for the sCC test in CS23, where dim(-) denotes the dimension
of a set, or the maximum number of linearly independent elements. The following theorem
shows that S, t,, and 7, are equal with probability one in the limit. This theorem plays a

vital role in the proof of the uniform asymptotic validity of the GCC test, below.

Theorem 1. Suppose 3, is positive definite. Then, (a) t, < T < Sn.
(b) For fized C,, and in, there is a Lebesque measure zero subset of R%, My, such that

~

Ty =8, = tAn, unless i, € M. (26)

Remarks: (1) Theorem 1 justifies the use of s, as the DoF. This overrides CS23, which
recommends calculating 7, using an algorithm that includes a series of LPPs. The new
recommendation applies to both the sCC test in CS23 and to the GCC test.

(2) Theorem 1 is not random—it does not rely on the distribution of Ti,,, C.,, or S,. The
result is a general feature of CQPPs. Part (a) shows that, regardless of the distribution, S,
is (weakly) more conservative than 7,. Part (b) shows that equality holds with probability
one if the conditional distribution of T, given C, and in is absolutely continuous. A key
case where this holds is in the limit, where C,, and in are deterministic and [, is Gaussian.
Thus, a simple corollary of Theorem 1 is that T,, = S,, with probability one in the limit.

(3) The expression for My can be found in the Supplemental Appendiz, equation (46).
The value of My may depend on the value of C, or in that s fived. Note that gn (and
I?) may not be unique for the definition of s, and U (and 2}\) may not be unique for the
definition of t,,. When they are not unique, My does not depend on the choice of gn or @n

(4) In general, My is not the empty set. To clarify the necessity of Mg in part (b),

we give a simple example to show that T, < S, is possible, albeit on a set of measure zero.

Suppose d, = ds = 1 and do = 2. Let B = (0,1)', C,, = D = (1,1), and d = (0,0)".
If @, = 0, then i, = 8, = 0 solves (21) (for any positive scalar ). From (22), §, = 1
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because K = {1,2}, but from (25), 7, = 0. This example requires degenerate features that

make 7,, < S, unlikely to occur in practice.

4.2 Uniform Asymptotic Validity of the GCC Test

Before describing the assumptions and theorems, we first clarify the true values of the param-
eters and the underlying distribution of the estimators. Let F' denote the joint distribution
of 7, Cpn, and €, and let Pp(-) denote probabilities taken with respect to F. Let F, be
a parameter space for F.'" Let up and IIy denote the true values of x4 and II. Also let
Cr = Bllp + D and bp = d, — Bup. The F in the subscript makes explicit that these
quantities depend on F'. We allow the values of these parameters, together with the value of
d, to depend on n to incorporate the situation where we test a sequence of null hypotheses.'®
We make explicit the dependence of d on n, denoting it by d,,. For notational simplicity, we
keep the dependence of pup, llp, Cr, and brp on n implicit.

Let F,o be the subset of F, that satisfies the null hypothesis: F,,0 = {F € F,, : Cpd <
br for some § € Rdé}. For F' € F0, let 0}, be the value of ¢ that satisfies Cpd < bp. If there

is more than one such value of §, we take d7 to be the one that has minimum norm:

% = argmin [|0]|. (27)

5:Cpd<bp
This mimics the definition of gn
The following assumption ensures asymptotic normality of the estimators of the reduced-
form parameters and consistent estimation of the asymptotic variance, at least along a

subsequence of true data generating processes. It is used to show consistency of 5n and

asymptotic uniform validity of the GCC test.

Assumption 1. For every sequence {F,}>° | with F,, € Fno and for every subsequence,
{nn}, there exists a further subsequence, {n,}, a vector ps, a vector ds, a matriz I, a
positive semi-definite matrix, o, and a positive definite matriz, T, such that:

(i) ., = too, IIp,, = I, and dp, — do

i) /n d a —q N(0,Q

(i) ! ( vec(Il,, —1IIp, ) > ( )

(iii) Eoo == (42 I®1)/QOO (s:'51) is positive definite, where &7 := argmin 10]l,
>~ > 8:Blioo+(D+Bllog )6 <doo

1"We subscript F,, with n because 7, C,,, and €0, are typically functions of a sample, {W;}™ ;, with
sample size n. Thus, their distribution naturally depends on n. We allow F,, to depend arbitrarily on n.

18Testing a sequence of null hypotheses is required to evaluate the uniform coverage probability of a
confidence set for a parameter of interest, §. Then, the inequalities that define the null hypothesis may
depend on the hypothesized value of 6.
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(iv) ﬁnq —p Qs
(v) ’/fnq —p Yoo, and
(vi) {0 € R% : B + (D + Blly)d < doo} # 0.

Remarks: (1) Assumption 1 is stated using subsequences in order to ensure uniformity over
Fno- Part (1) assumes that d,, and the sequence of true parameter values for the reduced-form
parameters converge to some limits along a subsequence. This is equivalent to assuming that
the parameter space for these parameters is compact.

(2) Part (ii) assumes asymptotic normality of the estimators for the reduced-form pa-
rameters along a subsequence. Part (iil) requires Yo to be positive definite. While this
may seem restrictive, it is mitigated by the way the inequalities are specified in equation (3).
Specifically, the B matriz allows us to write the inequalities as a linear function of a core
collection of reduced-form parameters that admit an estimator with a positive definite asymp-
totic variance matriz. The matriz B absorbs any linear dependence among the estimation
errors of the inequalities. Also note that 0%, is well-defined by Assumption 1(vi). Part (iv)
assumes consistency of the estimator of the asymptotic variance. Part (v) assumes consis-
tency of the first-step weight matrixz in equation (18) for a positive definite limit. Parts (ii),
(iv), and (v) can be verified using standard consistency and asymptotic normality arguments.
For example, when the data are i.i.d. and the model is a moment (in)equality model, they
can be verified by the Lindeberg-Feller central limit theorem and a law of large numbers for
triangular arrays.

(3) Part (vi) assumes the constraint set for the limit is nonempty. Part (vi) is guaranteed
under part (i) if, for example, there is a fized compact set A such that {6 € R% : Cpd <
br} C A for all F € Fpo." In that case, for any sequence F,, € Fn,0, there exists a 6an
such that B,upnq + (BHan + D)épnq < dyn,. This sequence has a subsequence that converges
to some limit 0o, that satisfies Blis + (Bllo + D)oo < doo, showing part (vi). Appendiz D

shows another way to verify part (vi) under a strengthened version of Assumption 2, below.

Next, we state the stable rank condition mentioned in the introduction. We first introduce
some new notation. Let K= C {1, ..., d¢} be a set that contains the indices for the inequalities
that were originally equalities. This set is special because it is always included in the set of
active inequalities: K= C K. For any do X ds matrix C' and for any de-dimensional vector
b, let A(C,b) = {K C {1,....,dc} : Cx < band Ix(Cx —b) = 0 for some x € R%} be the
collection of all subsets of inequalities that could be simultaneously active for the system of
inequalities defined by C' and b.%

9This type of assumption is common in the literature. For example, it is assumed by Voronin (2025) and
Goff and Mbakop (2025).
20A combination of inequalities cannot be simultaneously active if, for example, it involves an upper and

18



Assumption 2 (Stable Rank). For every sequence {F,}2, with F, € F,o and for any
subsequence, {n,,}, satisfying Assumption 1(i) with Coo = Blloo + D and by = doo — Bliso,

there is a further subsequence, {n,}, along which
Pr,, (rk(]Kﬁnq) =1k(IxCF,, ) = rk(IxCy)) — 1, as ¢ — o0, (28)

for any K € A(Cw,bs) that satisfies K= C K.

Remarks: (1) We refer to Assumption 2 as a “stable rank” condition because perturbations
of the Cy, matriz in the directions of the estimation error do not change the rank.

(2) Assumption 2 is not a necessary condition for the validity of the GCC test. It is
possible to relax Assumption 2 by reducing the number of collections of indices, K, for which
the rank equality in (28) needs to be assumed. In Appendiz B.2, we show that the rank
equality only needs to hold for index sets, K corresponding to collections of inequalities that
define a linear subspace in the limit. In cases where there are no equalities and the identified
set for the nuisance parameters has a positive volume in the parameter space, every inequality
could be slack, and no stable rank condition is needed. Due to the nuances of this discussion,
it is relegated to the Supplemental Appendizx.

(3) While Assumption 2 is not necessary, it is used in an essential way in the proofs of
consistency of gn and asymptotic validity of the GCC test. Moreover, a more than superficial
connection of Assumption 2 with the weak IV problem in linear IV regression models suggests
that relaxing Assumption 2 completely may require insights from that literature. We discuss
this connection in Section 4.3, below.

(4) Assumptions playing a similar role as Assumption 2 are common in the literature
on subvector inference in moment inequality models and in models defined by linear systems.
One type of such assumptions is a known and fized C, as in Guggenberger et al. (2008), Kaido
and Santos (2014), and Fang et al. (2023). In that case C,, = Cr = C, and Assumption
2 holds trivially. Other types of assumptions appear in Pakes et al. (2015), Bugni et al.
(2017), Cho and Russell (2024), and Goff and Mbakop (2025).*' We discuss the connection

between these assumptions in a simple example in Section B.3.2.

The following theorem states an important preliminary result: consistency of gn

a lower bound that are parallel and separated. Such combinations are excluded from A(C,b).

21 Assumption 2 differs from constraint qualification, as considered in Kaido et al. (2022). Constraint
qualification restricts a fixed collection of constraints to ensure KKT conditions are necessary or sufficient
or the KKT multipliers are unique. In contrast, Assumption 2 concerns a sequence of linear inequality
constraints and restricts the way they converge to a limiting set of constraints.

19



Theorem 2. Suppose Assumption 2 holds. Let {F,}°, be a sequence with F, € Fy, and
let {n,} be a subsequence satisfying Assumptions 1(i), (ii), (v), and (vi). We have that

On, —p 05 and 5}'}nq — 05, as q — 00,

where 8%, is defined in Assumption 1(iii).

Remark: Consistency of estimators defined by tie-breaking procedures, such as the norm
minimization in the definition of gn, is especially challenging. It is surprising that Assump-
tion 2 s sufficient in this case. The proof uses a novel argument that establishes setwise

convergence of the constraint set.

The following theorem is the main theoretical result of the paper.

Theorem 3. If Assumptions 1 and 2 hold, then

limsup sup Pr(T,, > cv(s,, @) < a.
n—oo  FEFno
Remarks: (1) Theorem 3 establishes the uniform asymptotic validity of the GCC test. This
extends the result for the sCC test from CS23 to allow C' to be estimated, as long as the
estimator is consistent and asymptotically normal and a stable rank condition is satisfied.
The generalization is essential for handling the applications discussed in Section 2.

(2) The asymptotic validity of the GCC test is surprising because, intuitively, the active
nequalities are not necessarily binding in population and even when all inequalities are bind-
ing, the limit distribution of T, is not x*. Indeed, the set of active inequalities does not
converge to the set of binding-in-population inequalities but remains random in the limat.
The key to validity of the GCC test is that the limit conditional distribution of T,, given the
set of active inequalities is bounded by the x? distribution with the associated DoF.

(3) When Pr(s, = 0) > 0, the GCC test can be slightly conservative: Its null rejection
probability is between o(1 — Pr(S,, = 0)) and « asymptotically. The refinement in CS23
can be used to remove the conservativeness. We define the refined GCC (RGCC) test in
Appendiz B.4. The RGCC test differs from the GCC test only when s, = 1 and is also
tuning parameter and simulation free. However, the refinement requires calculating A and
g such that {u € R% : By + C,0 < d for some§ € R4} = {u € R% : Ay < g}. The
computation is relatively easy when do and ds are small but gets exponentially harder when
de and dgs increase. In particular, it can have a high memory requirement. We investigate the
performance of the RGCC test along with the GCC test in the simulations and the empirical

illustration.
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4.3 Assumption 2 and Instrumental Variable Regressions

To better understand Assumption 2, we now relate it to the linear IV regression model.

Example 6 (IV Regression). Let Y be a scalar dependent variable and X be a d,-vector of
potentially endogenous regressors. Consider the IV regression model: Y = X' + e, where
e is the error term. Let Z be a d,-vector of instruments that satisfy BE[Ze] = 0. Suppose
we are interested in the first element of B, denoted by 6. Then the rest of the elements of
B are nuisance parameters, denoted by 0. Let X, denote the first element of X and X_;
denote the rest of the elements. Then, the model can be represented by the following moment
conditions: E[ZY|—0E[Z X ]-E[ZX"]6 = 0. If we conduct inference for 0 by test inversion,
the hypothesis to be tested for each 6 value is

Hy:E[ZY] - 0E[ZX,] — E[ZX',]6 = 0 for some § € R%. (29)

This hypothesis is a special case of that in equation (3) with B = <f}l§ ) = E[ZY] -
E[ZX,], 1= ~E[ZX',], D=0, and d = 0.

In this model, Assumption 2 allows E[Z X" ] to change with n as long as the rank does not
change in the limit. Equivalently, the smallest nonzero eigenvalue of E[ZX"||E[X_;Z’] does
not converge to zero. Notably, zero eigenvalues are allowed. This happens, for example, when
the number of instruments is smaller than the number of nuisance parameters. Assumption 2
is weaker than the usual rank condition for strong identification of § (under a hypothesis that
fixes a value of @), which is that the smallest eigenvalue of E[Z X’ |]E[X_;Z’] is bounded away
from zero. This means that Assumption 2 can be thought of as a “no weak identification”
condition, where linear combinations of § can be strongly identified or non-identified as long
as they are not weakly identified.

Even in the weak instruments/weak identification literature, strong identification of the
nuisance parameters is a useful assumption. For example, Stock and Wright (2000), Kleiber-
gen (2005), and Andrews and Mikusheva (2016) propose identification-robust hypothesis
tests for subvectors only when the nuisance parameters are strongly identified under the null.
Papers that cover inference with weakly identified nuisance parameters, including Chaud-
huri and Zivot (2011), Andrews (2018), and Guggenberger et al. (2024), recommend some
version of two-step inference requiring a tuning parameter, among other complications.?”
Cox (2025) states separate limit theory depending on whether the nuisance parameters are
strongly identified under the null. In this literature, strong identification of the nuisance pa-

rameters under the null is used to guarantee that the null-imposed estimator of the nuisance

22 An exception is Guggenberger et al. (2012). They focus on a homoskedastic linear IV model and show
that the plug-in Anderson-Rubin test remains valid with weakly identified nuisance parameters.
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parameters is consistent and asymptotically normal. In contrast, we use Assumption 2 to
ensure convergence of the constraint set in the QLR statistic to its limit in a setwise sense.
These different purposes reflect the compounding complications that arise when trying to

relax Assumption 2.

5 Simulations

This section evaluates the finite-sample performance of the GCC test for testing inequalities
that are linear in nuisance parameters. We also evaluate the RGCC test, defined in Appendix
B.4. Section 5.1 considers a simple one-sided hypothesis testing problem with one nuisance
parameter. Section 5.2 considers a more realistic model with more nuisance parameters: an
interval outcome IV regression model. Also, a simulation of Example 4 can be found in
Section E. The bottom line of all the simulations is that the GCC and RGCC tests are easy

to compute and have good size and power.

5.1 A Simple One-Sided Model

Consider a simple one-sided hypothesis testing problem with one nuisance parameter and
normally distributed randomness. The model is designed to abstract from computational and
asymptotic complications, so as to focus on size and power. The validity of any test for linear
inequalities in this simple specification should be a necessary condition for implementing the
test in practice. Also note that, because the bound on the parameter of interest is one-sided,
we can compare to methods from the literature on one-sided inference for the value of a LPP.

The simple model has one nuisance parameter, no equalities, and J inequalities:

M1+Cl(5+9§0
M2+025+0§0
3 + c30 <0

fy + o <0. (30)

This model is a special case of (3) with B = I, u = (u1, plo, ..., oy)’s I = C = (1,9, .. ¢y,
D =0y, and d = —(1,1,0,...,0)'0. The first two inequalities give an upper bound on 6,
while the remaining J — 2 inequalities only bound 4.

Suppose p is estimated by 7, and C by C,. Suppose fi,, and C, are sample means

of independent random samples from N(u, I;) and N(C,2I;), respectively. The covariance
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Table 1: Simulated Null Rejection Probabilities (NRP) and Computation Times of Various
Tests of Nominal Level 5% in the Simple Model

NRP Time (seconds) NRP Time (seconds) NRP Time (seconds)
GCC  0.035 (0.003) 0.035 (0.003) 0.045 (0.008)
RGCC  0.051 (0.003) 0.038 (0.004) 0.045 (0.008)
sCC 0.193 (0.025) 0.324 (0.070) 0.560 (0.343)
sRCC  0.207 (0.026) 0.327 (0.071) 0.560 (0.343)
ARP  0.204 (1.159) 0.248 (1.097) 0.476 (1.988)
CCT  0.045 (0.124) 0.179 (0.138) 0.430 (0.267)
BCS  0.025 (0.575) 0.015 (1.048) 0.004 (3.525)
Bei 0.052 (0.238) 0.072 (0.267) 0.112 (0.597)
FSST  0.231 (1.725) 0.408 (3.585) 0.609 (3.083)
Gaf  0.064 (0.129) 0.179 (0.123) 0.420 (0.127)
CR1  0.002 (25.83) 0.002 (25.84) 0.014 (26.22)
CR2 0.026 (25.87) 0.055 (25.91) 0.130 (26.33)
CR3  0.036 (25.85) 0.074 (25.83) 0.168 (26.08)

Note: The “NRP” columns report the null rejection probabilities for the hypothesis § = 0 in
the simple specification with 1000 simulations. The “Time” columns report the median time in
seconds to compute the test for all the tests except Gaf and CR1-CR3. For Gaf and CR1-CRS3,
the “Time” columns report the median number of seconds to compute a confidence interval.

matrix of 7z, and C,, are estimated by the sample variances and covariances. Below, we
consider = (—=1,1,1 —gn=Y2, ..., 1 —gn=?) and C = (1,1, —1,...,—1) with n = 500,
J € {3,10,50}, and ¢ € {0,4}. Inequalities 3 through J may be binding or slack depending
on the value of ¢. The identified set for 6 is (—oo, 0]. For a fixed a value of 6 in (—o0, 0], the
identified set for § is [max(1+ 6,1 — gn=/2),1 — 6].

We first consider testing the null hypothesis Hy : § = 0. Table 1 reports the simulated
rejection probabilities for various tests when ¢ = 0. This means that all J inequalities are
binding. We implement four groups of tests. The first group consists of the GCC and RGCC
tests. The second group consists of the sCC and sRCC tests from CS23 and the hybrid test
(ARP) from Andrews et al. (2023). These tests are implemented using C, as if it were
the true value. The third group consists of the MR test (BCS) from Bugni et al. (2017),
procedure 3 (CCT) from Chen et al. (2018), and the recommended test (Bei) from Bei (2023),
which are designed for nonlinear inequalities. The fourth group consists of the recommended
test (FSST) from Fang et al. (2023), the recommended test (Gaf) from Gafarov (2025), and
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three tests (CR1-CR3) from Cho and Russell (2024) implemented with three choices of the
tuning parameter.”> These tests are from the literature on inference for the value of a LPP.
They are implemented for one-sided inference on the upper bound of §.%*

As we can see in Table 1:

(1) The GCC and RGCC tests are valid for every J. The GCC test is somewhat conser-
vative when J = 3, which is expected. Unexpected is that the GCC and RGCC tests are
somewhat conservative when J = 10. This could be due to simulation noise.

(2) The sCC, sRCC, and ARP tests are invalid. This demonstrates the need to account
for the estimation error in C,,.%

(3) Concerning the tests in the third group, CCT is invalid for J > 3. It is only valid
under a high-level condition that is not satisfied in this model; see Assumption 4.7 in Chen
et al. (2018). BCS is valid and becomes quite conservative when J = 50. Bei is a more
computationally feasible version of BCS. Table 1 suggests Bei has mild to moderate over-
rejection. It is unclear why the null rejection probabilities for BCS and Bei are so different.

(4) Concerning the tests in the fourth group, FSST is understandably invalid because it
requires known Jacobian. Surprisingly, Gaf is also invalid for J > 3. This could be because
a rank condition is not satisfied; see Assumption 2 in Gafarov (2025). CR1-CR3 appear to
be very sensitive to the choice of the tuning parameter. CR1 is very conservative while CR2
and CR3 have moderate over-rejection when J = 50.

(5) Computationally, the GCC and RGCC tests are by far the fastest among the tests
considered. Comparing their times to the sCC and sRCC tests demonstrates the computa-
tional improvement of the new algebraic formula for the DoF. For CR1-CR3 and Gaf, the
computational time is for the calculation of a confidence interval and thus is not comparable

to the computation time for a single hypothesis.

We also consider the power functions of some of the tests as a function of the hypothesized
value of 6. In addition to the GCC and RGCC tests, we include the BCS and Bei tests as
benchmarks and the CR1 and CR2 tests to see whether the sensitivity of their NRPs to the
tuning parameter carries over to the power functions. These tests are included because they

are the ones that are valid or exhibit only moderate over-rejection in Table 1.

23CR1, CR2, and CR3 are implemented with € = 0.1, e = 0.01, and € = 0.001, respectively.

24Gaf and CR1-CR3 report confidence intervals instead of hypothesis tests. For these methods, we say
that a value of 6 is rejected if 6 does not belong to the confidence interval.

25 Another way to implement these tests is to consider the case that the inequalities in (30) hold condition-
ally on C,,. Then, the sCC, sRCC, and ARP tests can be implemented with the conditional variance of Ji,,
given C,,. Since fi,, is independent of C,,, the conditional variance is the same as the unconditional variance
and the implementation is the same. Thus, Table 1 shows that neither way to implement these tests is valid.
The problem is that the inequalities in (30) do not hold conditionally on C,,.
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Figure 1: Simulated Power Curves and Computation Times of Various Tests of Nominal
Level 5% in the Simple Model (n = 500)
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Note: The shaded regions indicate the identified set for 8. The number of simulations is 1000. The
numbers in the square brackets in the legends are the median time needed to calculate the test at

all grid points for one simulation (measured in seconds).
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We test the inequalities in (30) for a grid of values of 6 between —1/y/n and 6//n.
Dividing the grid by 1/n ensures the power function approaches the asymptotic local power
function as n — oo. For # < 0 (the shaded region), the rejection probabilities are under the
null and thus should be less than or equal to o = 5%. For € > 0, the rejection probabilities
represent the power of the tests. Figure 1 reports the power curves for ¢ € {0,4} and
J € {3,10,50}. When ¢ = 0, the 3rd to the Jth inequalities are binding at § = 1, and when
q = 4, these inequalities are slack at 6 = 1.

As we can see in Figure 1:

(1) The GCC and RGCC tests are very fast with good power for all J € {3,10,50} and
q € {0,4}. The power is especially impressive when g = 4, so J — 2 of the inequalities are
slack. Also note that, when the number of inequalities increases, the difference between the
GCC and RGCC power curves decreases, especially when all the inequalities bind.

(2) The BCS test has good power for J = 3, but becomes more conservative, and therefore
less powerful, for larger J. The Bei test is more powerful than BCS, GCC, and RGCC, with
especially high power when ¢ = 0 and J € {10,50}. These specifications correspond to the
cases of moderate over-rejection of the Bei test at 6 = 0.

(3) The sensitivity that the CR tests show in Table 1 is reflected in power. CR1 has low

power, and the power of CR2 is closely related to the over-rejection of the test at 6 = 0.

5.2 An Interval Outcome IV Regression Model

This subsection considers the interval outcome IV regression model from Example 1. We
simulate the power curves of the GCC and RGCC tests. We also include the BCS and Bei
tests as benchmarks. Since this is a two-sided problem, we do not include recommendations
from the literature on inference for the value of a LPP.

The model is based on the aggregate demand model considered in GLS23, where the
market shares are noisy measures of conditional choice probabilities and may contain zero
values. The model boils down to the interval outcome IV regression in Example 1. Write
out X = (X, Xy, W), where X; is a scalar endogenous regressor, X, is a scalar exogenous
regressor, and W is a dy-vector of additional exogenous controls. Similarly, write out g =
(01,05,7")" with v € R¥. Also let Z, be an excluded exogenous instrument. We take
Z =TI(Xy, W, Z,) to be a non-negative vector-valued instrumental function.

In this model, there is a latent market share that satisfies a logit specification:

S* . exp (910X1 -+ 820X2 + 6)
1 + exp (010X1 + 920X2 + E) ’

(31)
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where 0, and 9y denote the true values of ¢, and 6, and € is an error term. (The true value of
7 is zero.) In the framework of GLS23, s* is the (unobserved) conditional probability that a
representative consumer buys a product, and Y* = log(s*) —log(1— s*) is the mean utility of
the product. We observe a market share sy ~ Binomial(N,s*)/N, where N is the number
of participants in the market. GLS23 argue that YV = log(sy +2/N)—log(1 — sy +0.00125)
and Y = log(sy + 0.00125) — log(1 — sy + 2/N) satisfy E[Y|Z] < E[Y*|Z] < E[YY|Z],
which justifies the use of the model in Example 1.

We take X5, Z., and the components of W to be independent Bernoulli(0.5) random
variables, except for the first element of W, which is taken to be the constant one. We take
Z =TI(Xy, W, Z,) to be the vector of indicators for each point in the support of (Xo, W, Z,).
When dy = 1,2,3, the dimension of Z is 4,8, 16, respectively. Also, the fact that there
are two inequalities in (5) means that there are 8, 16, and 32 inequalities, respectively.
Independently of Z, let € ~ min (max (N(0,1),—4),4). Then, let X; = 1{Z. + ¢/2 > 0}
be the endogenous regressor. We calculate s* according to (31) with 619 = 650 = —1. We
simulate sy with N = 100 independently from Z and e. This specifies the data generating
process for all the observed variables: sy, X1, X5, W, and Z,. We simulate a sample of
size n from this model for n € {500, 1000} and calculate confidence intervals for # treating
§ = (01,7')" as nuisance parameters.”

Figure 2 plots simulated power curves for the GCC, RGCC, BCS, and Bei tests. In
each graph, the horizontal axis represents the value of 65, while the vertical axis represents
the rejection probability.”” The shaded region indicates the identified set for #5. Since the
control variables have zero coefficients and are independent of the other random variables,
they do not affect the identified set of 5. In the legend, each number in the square brackets
is the median computational time (in seconds) to compute one confidence interval. We make
the following remark on Figure 2.

Remark: The power curves of the GCC, RGCC, BCS, and Bei tests are remarkably similar.
All four have rejection probabilities below the nominal level 5% in the shaded region. All four
have increasing power as 0y deviates from its identified set and as the sample size increases
from 500 to 1000. QOverall, the GCC and RGCC tests are able to match the size and power

performance of the BCS and Bei tests while being much faster computationally.

26The same model is considered in Section 5.2 of CS23. However, CS23 construct confidence intervals for
61, treating (f2,7’)" as nuisance parameters. Since X5 and W are both exogenous, it is valid to conduct
inference conditional on (Xs, W, Z,) using the sCC test in CS23 because the Jacobian of the sample moments
with respect to (62,7')" is known given the sample for (Xo, W, Z.). In contrast, this paper takes (61,7')" to
be the nuisance parameters. Then, the Jacobian with respect to ; is not known even after conditioning on
(X2, W, Z,). Thus, the sCC test in CS23 is invalid.

2"The rejection probabilities reported are frequencies that each 6, value lies outside the confidence interval
for 6. The confidence intervals are computed using a bisection algorithm for the endpoints.
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Figure 2: Power Curves and Computation Times of Various Tests of Nominal Level 5% in

the Interval Outcome IV Regression Model
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Note: The shaded regions indicate the identified set for 63. The number of simulations is 5000.
The numbers in the square brackets in the legends are the median time needed to calculate the
confidence interval for one simulation (measured in seconds).
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6 Empirical Illustration: Female Labor Supply

This section demonstrates the GCC test in the model of female labor supply considered in
KT16. KT16 use a model of state transition probabilities with states that indicate (1) the
earnings of the individual (zero or not employed, positive and below the federal poverty
line, or above the federal poverty line), (2) whether the individual participates in welfare,
and (3) whether the individual under-reports her earnings in order to qualify for welfare.
KT16 use data from the Manpower Development Research Corporation (MDRC) Jobs First
study, which is a random experiment that assigned women with young children to one of two
welfare programs: the Aid to Families with Dependent Children (AFDC) welfare program
or the Jobs First Temporary Family Assistance (JF) program.*

Relative to AFDC, the JF program primarily changes how eligibility for and the amount
of government transfers respond to earnings.”” Under JF, for individuals earning under the
federal poverty line (FPL), the government transfer does not decrease as earnings increase:
everyone under the FPL receives the same government transfer. This is more generous than
the policy under AFDC, which had government transfers decrease after earnings reached a
threshold. This more generous policy may induce unemployed women (or women who would
be unemployed under AFDC) to gain employment that pays below the FPL. This represents
a labor supply response along the extensive margin. Another noteworthy feature of the JF
program is that the government transfers abruptly drop to zero when earnings cross the
FPL. This may incentivize some women who would be employed with earnings above the
FPL (under AFDC) to decrease their earnings (or under-report their earnings) in order to
be eligible for welfare. This represents a labor supply response along the intensive margin.
The goal in K'T'16 is to distinguish these two responses without imposing strong assumptions
on the utility functions of the individuals.

KT16 distinguish 7 labor supply/welfare participation states:
On: zero earnings, welfare nonparticipation,
In: positive earnings below FPL, welfare nonparticipation,
2n: earnings above FPL, welfare nonparticipation,

Or: zero earnings, welfare participation, truthful reporting of earnings,

28Instructions for accessing the datasets and the replication codes provided by KT16 can be found on the
AEA webpage: https://www.aeaweb.org/articles?id=10.1257/aer.20130824.

29The JF welfare reform introduces other changes too, such as stricter work requirements and changed
administration of the Food Stamps program. We focus on the changes that are relevant for bounding the
state transition probabilities. For more information, see the description in KT16.
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1r: positive earnings below FPL, welfare participation, truthful reporting of earnings,
lu: positive earnings below FPL, welfare participation, underreporting of earnings, and
2u: earnings above FPL, welfare participation, underreporting of earnings.

In the label for each state, the number indicates the level of earnings: “0” indicates zero
earnings or not employed, “1” indicates positive earnings below the FPL, and “2” indicates
earnings above the FPL. The letter indicates welfare participation and under-reporting of
earnings: “n” indicates nonparticipation in welfare, “r” indicates welfare participation with
truthful reporting of earnings, and “u” indicates welfare participation with under-reporting
of earnings.

Each individual is associated with two states, the one she would choose under AFDC
and the one she would choose under JF. Because AFDC is the status quo, we label the
state transition probabilities with an individual’s choice under AFDC first. For example,
Ton,1r 1S the conditional probability that an individual who chooses On under AFDC would
choose 1r under JF. Because of the features of the JF reform, KT16 argue that only nine
state transition probabilities need to be considered. The first group are flows out of Or:
(70,00 TOr,1ns Tor,2n, Tor 1r> Tor,2u)- Individuals with zero earnings and participating in welfare
under AFDC may transition to any other state except 1u.?’ The second group are flows into
Ir: (Mo 1rs Tin,1rs Ton 1rs Tor1rs T2u1r)- 1ndividuals who choose 1r under JF may have chosen
any state under AFDC.?! KT16 argue that all other transition probabilities can be set to
zero either because the budget sets for the individuals is unchanged between the two policies
or because the combination of choices would violate weak assumptions on individuals’ utility

functions. Let

/
0= (WOn,lra T1in,1rs T2n,1r> 7T0r,0n5 7T0r,1ns 70r,2n; 7T0r,1r; 7T0r,2u; 7T2u,1r)

collect the transition probabilities into a vector of nuisance parameters. (Note that one of
the transition probabilities is common to both groups.)

There is an additional problem: it is unobserved whether an individual under-reports her
income. Thus, the marginal probabilities of only six observable states—combining 1r and

lu—is identified. KT16 show that after accounting for this problem, the resulting equalities

30Under JF, no one chooses 1lu because everyone earning under the FPL receives the same government
transfer, so there is no reason to under-report earnings. Also note that mo, o, is not needed because it can
be calculated as one minus the others. This is true in general. We do not need to include the transition
probabilities from one state into itself because they are determined by the other transition probabilities.

31Tndividuals who choose 1u under AFDC are guaranteed to choose 1r under JF, so Tu,1r = 1 and there
is no need to include it as a free parameter.
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are still linear in ¢ and they can be rewritten into five non-redundant equalities of the form

I'0 = m, where

—pd 0 0 py O 0 0 0 0 o =P
0 —-p 0 0 p& 0 0 0 0 pl —pf,
I = 0 0 —p& 0 0 pA 0 0 0 and m = | pd,—p5 |, (32)
0 0 0 —py —po —Ph —Por P O Phe—Phy
0 0 0 0 0 0 0 py —ph, p3. Do,

where p2 denotes the marginal probability that the individual chooses state s under the
AFDC policy for s € {On, 1n, 2n, Or, 2u}, and similarly for p? for the JF policy. In addition,
§ € [0,1]° and moron + Torin + Tor2n + Torar + Tor2u < 1, which can be imposed by an
appropriate choice of A and b in (9).*

We follow KT16 and report confidence intervals for each transition probability. In ad-
dition to the GCC test, we also implement the RGCC test, defined in Section B.4. The
GCC and RGCC tests are implemented by rewriting the restrictions in terms of B, u, I, D,
and d using (10). We can similarly define estimators of p and II from the sample averages
that estimate p’ for s € {On, 1n,2n,0r,2u} and t € {A,J}.** We estimate the asymptotic
variance by bootstrapping the sample averages with a cluster bootstrap, clustered at the case
level and with 1000 bootstrap draws.** The endpoints of the GCC and RGCC confidence
intervals are calculated using a bisection algorithm.

KT16 manually eliminate the nuisance parameters and work out explicit formulas for
the bounds of each element of . To avoid the dependence on tuning parameters that is
prevalent in the literature on testing inequalities, they report two confidence intervals. One
confidence interval, called Naive, is constructed by ignoring the uncertainty in which bounds
bind. This interval is formed by the single lowest upper (highest lower) estimated bound plus
(minus) its standard error. The asymptotic coverage probability of this interval is unknown.
The other interval, called Conservative, assumes all population bounds bind simultaneously,
leading to asymptotically valid but often overly conservative inference.

Table 2 reports the confidence intervals for each transition probability.*> As Table 2

shows:

32Tn Section B.3.1, we give a simple sufficient condition for Assumption 2 in this model.

33We copy KT16 and use weighted sample averages with propensity score weights to adjust for baseline
differences.

34This is the same implementation of the bootstrap that KT16 use, except that we bootstrap the esti-
mators of p! while they bootstrap the formulas for the bounds that they calculate after eliminating the
nuisance parameters manually. This means that our variance estimators, while asymptotically equivalent,
are numerically different.

35The values for the Naive and Conservative confidence intervals are slightly different from the ones in the
published version of KT16. We calculated these values using the KT16 replication code without changes.
The differences are likely due to differences in random number generation across versions of Stata when
implementing the bootstrap.
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Table 2: Confidence Intervals for Transition Probabilities

95% CI

0 Estimated bound GCC RGCC Naive Conservative
Tontr  [0.055, 0.620]  [0.000, 0.764] [0.000, 0.741] [0.000, 0.740] [0.000, 0.782]
T1in,1r [0.382, 0.987] [0.303, 1.000] [0.316, 1.000] [0.318, 1.000] [0.318 1.000]
Ton,1r [0.280, 1.000] [0.171, 1.000] [0.189, 1.000] [0.193, 1.000] [0.193 1.000]
T0r,0n [0.000, 0.170] [0.000, 0.210] [0.000, 0.204] [0.000, 0.204] [0.000 0.215]
Tor,1n [0.000, 0.170] [0.000, 0.195] [0.000, 0.195] [0.000, 0.211] [0.000 0.215]
TOr,2n [0.000, 0.154] [0.000, 0.179] [0.000, 0.179] [0.000, 0.171] [0.000 0.226]
T [0.000, 0.170]  [0.000, 0.210] [0.000, 0.204] [0.000, 0.204] [0.000, 0.220]
Tor,2u [0.031, 0.051] [0.020, 0.060] [0.022, 0.059] [0.022, 0.059] [0.022 0.099]
Tou,1r [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]
Note: “Estimated bound” denotes an estimator of the bounds derived in KT16. “GCC” and “RGCC”

refer to confidence intervals formed by inverting the GCC and RGCC tests using bisection. “Naive” and
“Conservative” refer to the confidence intervals reported in Table 5 in KT16.

(1) All the confidence intervals are qualitatively similar. They provide evidence for the
same heterogeneous labor supply responses: statistically significant outflows from state Or,
corresponding to an increase in labor supply along the extensive margin, and statistically
significant inflows into state 1r, especially from state 2n, corresponding to a decrease in labor
supply along the intensive margin as women decrease their earnings to qualify for welfare.

(2) One would expect the endpoints of the GCC and RGCC confidence intervals to lie
between the endpoints of the Naive and Conservative confidence intervals. That is mostly
For 7oy 1n, the GCC and RGCC

confidence intervals are narrower than the Naive confidence interval. In this case, the two

true, but there are a few noteworthy exceptions. (a)

smallest upper bounds are very close to each other. Together, they provide stronger statistical
evidence than just the one that is active. The GCC and RGCC tests respond to this statistical
evidence in a way that the Naive confidence interval does not. (b) For 7y, 1, and oy 1, the
GCC and RGCC confidence intervals are wider than the Conservative confidence intervals.
This is not surprising for the GCC confidence interval because the GCC test is conservative
when there is one binding inequality.*® This is surprising for the RGCC confidence interval
because with one binding inequality, the RGCC test is asymptotically equivalent to the
optimal one-sided test. This is likely due to the numerical difference between the variance
matrix estimators used in the RGCC and the Conservative confidence intervals.

(3) To compute all nine confidence intervals, the GCC and RGCC methods took about 4

36For all the transition probabilities in Table 2, there is only one nontrivial lower bound. This explains
both why the Naive lower bounds are equal to the Conservative lower bounds and why the GCC confidence
interval appears conservative for the lower bounds.

32



seconds and 220 seconds, respectively. Both approaches are quite feasible, especially consid-
ering the fact that manual elimination of the nuisance parameters is not needed to implement
the GCC and RGCC tests.

7 Conclusion

This paper proposes a simple, tuning-parameter-free test that is designed for inequality
testing problems that are linear in nuisance parameters, including specification testing and
subvector inference in moment (in)equality models and inference for parameters bounded
by linear programs. We prove asymptotic uniform validity of the test under a stable rank
condition and demonstrate its size, power, and computational performance in simulations

and an empirical illustration.

A Proofs of Theorems 1-3

The proofs of Theorems 1-3 rely on lemmas that are stated and proved in Sections B and C
in the Supplemental Appendix. The proofs also use the following notation/definitions. For
a matrix C' and conformable vector b, let poly(C,b) = {6 € R% : C§ < b} be the polyhedral
set defined by the inequalities with coefficients C' and intercepts 0. For matrices B and C
and a conformable vector d let ppoly(B,d;C) = {u € R% : By + Cd < d for some § € R%}
be the projection of a polyhedral set onto a subvector. A sequence of sets, S,,, Kuratowski
converges to a limit set, S,,, denoted by S, 5 Seo, if (1) for every x € S, there exists a
sequence x, — x such that z, € S, eventually, and (2) for every subsequence, n,,, and for
every converging sequence x,, € S,, with limit x,,, we have x,, € S,. This definition of
Kuratowski convergence agrees with common definitions in the setwise analysis literature as
found in, for example, Definition 1.1.1 in Aubin and Frankowska (2009). The proofs also
use definitions of activatable sets of indices for a collection of linear inequalities that are

explained in Appendix B.1.

A.1 Proof of Theorem 1

By Lemma 1 in CS23, for the matrix H whose rows are the vertices of the polytope {h €
Ré|h > 0,h'C,, = 0,h'1 =1}, and for A = HB and g = Hd,

ppoly(B, d; C,,) = poly(A4, g). (33)
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Let d4 denote the number of rows in A. Let J = {j € {1,...,d4} : e Al = €jg}. Also, for
any J C {1,...,da}, let A; denote the submatrix of A formed from the rows corresponding
to the indices in J. Lemma 2 and its proof in CS23 show that 7, = rk(A45).

The KKT conditions associated with the CQPP in (21) are:

20y, (1, — > = B'dy, (34)
=Cin (35)

by >0 (36)
d > Bii, + Cpb, (37)
0= (d — Blin — Cn,)tn, (38)

where @n are the KKT multipliers on By + C,6 < d. For CQPPs, the KKT conditions are
necessary and sufficient; see Chapter 16 in Nocedal and Wright (2006). If, instead, we write
the constraints as Au < g with corresponding KKT multipliers /)\\n, then the KKT conditions

are:

2%, (T, — fin) = A\, (39)
A >0 (40)

9> A, (41)

0= (g — Afin) An. (42)

These are also necessary and sufficient for the same reason.
Let Cg be shortened notation for IxC,, for any K C {1,...,d¢c}.

A.1.1 Proof of Theorem 1(a)

We first prove that ¢, < 7,. Let M¢ = I, —C(C'C)*C" for a matrix C', where the superscript
“4+” stands for the Moore-Penrose generalized inverse. We may also use the Moore-Penrose
generalized inverse for the asymmetric matrix C: Ct = (C'C)*TC" = C'(CC")* .

The way we prove &, < 7, is by showing that span(B%:Mc; ) C span(A%), where span(-)
denotes the span of the columns of a matrix in R%. This is sufficient because 7, is the
dimension of span(A’;) and, by Lemma 6(a), t,, is the dimension of span(B%:Mc, ).

Let (ﬁn, On, ) satisfy (34)- (38) and (ﬁn,)\ ) satisfy (39)-(42). By the definition of L,
1/)” = [’ Lwn This implies that B’@/}n = B. ]Lwn and, using (35) 0= C” L@/)n, and therefore

Ll/)n Mc. qun By complementary slackness applied to )\n, /\ = I AI /\n, which 1mpl1es
that A\, = A’jIJ)\n. Putting these together, (34) and (39) imply that B-Mc, Lwn =
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AL j;\\n € span(A%).

Let e, be a standard normal basis vector in R, We want to show that B’ZMCEeg S
span(A’j). It is sufficient to show that B%Mcieg + &B’ZMCEIZ@D” € span(A’j) for some
a € R (because span(A%) is a linear subspace of R?). Let o > 0 be large enough so that
every element of Mc_e, + alzi, is positive (by the definition of L, every element of 131, is
positive). Let o = I+ (Mc, e+ alpy,) and fi = fi, + X, B¢ /(2n). 1t follows that (fin, o, 1)
satisfy (34)-(38) with 1, replaced by ji. Therefore, by (33), (Jin, A) solves (39)-(42) for some
multipliers (again, with 7z, replaced by ji). By complementary slackness applied to N,

=151 =\, which implies that A’\ = AL 2\ Therefore, by (34) and (39) (with 7, replaced
by fi),

B:Me e+ aB:Me. Iz, = BiMe_eq + aBilph, = B'Y = ALIA € span(A}),  (43)

where the first equality follows because Mcz[ﬂzn = Zzzn (as in the previous paragraph).
Since e, was arbitrary, span(B;Mc; ) C span(A%), which shows that ¢, < 7.

We next prove that 7, < s,. The way we do this is by showing that span(A’j) -
span(B;?MCR). This is sufficient because 7, is the dimension of span(A’j) and, by Lemma
6(a), sy is the dimension of span(B% Mc_ ).

Let (fin, On, 1) satisty (34)-(38) and (fi,, A,) satisfy (39)-(42). Let e; be a standard
normal basis vector in RV, We want to show that Ae; € span(B% Mc,). Recall from the
definition of H that every entry must be nonnegative and it must satisfy HC,, = 0. Note that
(d—Bfin—C,d,) H'I%; = (9— Afi,)'I3¢; = 0 because A = HB, g = Hd, HC,, = 0, and the
definition of J. This, combined with the fact that H > 0 and the definition of K, implies that
H'I%; =TIz H'T ;. (For any k € {1,...,dc}, e,H'I%; > 0 and e}(d — Bfi, — Cd,) > 0,
and the inequalities cannot both be strict for the same value of k.) This is the key step in
showing that

Ale; = B'H'Ije; = BelgH'Ize; = BMc Iz H'Ie;, (44)

where the final equality follows from the fact that 0 = U;H T }ej = C’%{I rH'I }ej, which
shows that IzH'I%e; = Mc IzH'I%e;. Overall, (44) shows that A%e; € span(BLMc,).
Since e; was arbitrary, span(A’;) C span(B% Mc, ), which shows that 7,, <. O

A.1.2 Proof of Theorem 1(b)

Because of part (a), it suffices to prove that S, = #,. We prove part (b) under the additional
assumption that ENJn = I4,. The theorem then follows for f]n # 14, by considering Bt =
B, it = S0, and Al = S&/*7,., where $5/% denotes the symmetric matrix square

root. Note that the definitions of §,,, and %, are unchanged.
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For any K C {1,...,dc}, let sk = rk(Me,Bk). With this definition, 5, = sz and
t, = s; by Lemma 6(a). Let Sx = span(Bj Mg, ), a linear subspace of R%. Also let
¢k = (Me Br)tMe, Ixd. For any K, L C {1,....,dc}, let

M(K,L) = (SkNS) @ ((Sg + k) N (St +€1)), (45)

where “@” denotes the Minkowski sum and “1” denotes the orthogonal complement. For
any K, L with s; < sk, we have that Sx NSy, is a linear subspace of R% with dimension
at most s, and (Sf( + & K) N (8,% + & L) is an affine subspace of R% with dimension at most
d, — sx. Therefore, M(K, L) is an affine subspace of R% with dimension at most d, — 1

and therefore has Lebesgue measure zero. Let
MO = UK,L:SL<SKM(K7 L)7 (46)

where K and L are arbitrary subsets of {1, ...,d¢}. M, has Lebesgue measure zero because
it is the union of finitely many measure zero sets.

To finish the proof, we show that if %, < S, then i, € My. Fix i, and suppose K
and 5, are defined using some (ﬁn,gn,@n) that satisfy (34)-(38). Also suppose L and 7,
are defined using some (fi,, 0., 1,) that satisfy (34)-(38). (Since 6, and 1, are not unique,
we want to allow 5, and %, to be defined using different values of the delta and psi.) By
Lemma 7 applied to (ﬁn,gn,zzn), M, — Il € S and [, € SI% + {%. By Lemma 7 applied
to (ln, 0n, V), @, — n € S; and L1, € S]% + &;. Therefore, @, — 11, € S NSz and
[in € (S}{ + é}() N (SZl + f;-fi). This shows that 7, € M(K, L) with s; < sp. O

A.2 Proof of Theorem 2

We first show that
ppoly(B, dy,; Cr,. ) # 0 and ppoly(B, d,,; Cy,) # 0 for all q. (47)

The fact that F,, € Fp o implies pp, € ppoly(B,dnq;Can). Then there exists a 5; €
R% such that Bur,, + Cr,,0f < dy,. Tt follows that py = 1E,, — (IL,, — Mg, )of €
ppoly(B, dnq;anq) because B,ug + 6%5; = Bur,, + Cr,, 64 < dp,. This verifies (47).
Consider an arbitrary subsequence of {n,}. There exists a further subsequence {n,} such
that (1), , vec(IL,, ), vee(Tn,)) — (1., vee(Iy ), vee(Yoo )') almost surely and rk(IxCl, ) —
rk(IxCs) and tk(IxCr, ) — rk(IxCs) almost surely for K = K'(pioo; B, Cso, doo), Where

KT (f100; B, Coo, ds) is the minimal activatable set defined in Section B.1. Such a further
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subsequence exists under Assumption 1(i, ii, v) and Assumption 3 (or Assumption 2, us-
ing Lemma 4) because every sequence that converges in probability has a subsequence that
converges almost surely. We fix one such further subsequence and one realization from the
sample space and show that &, — 0% and dp,  — 0%, deterministically. This is sufficient to
show that gnq —p 0% and 5}nq —p 0%, along the original subsequence.

We next show that, as a — oo,
poly([B, Cy.], dy,) A poly([B, Cxl, dso). (48)

We verify the conditions of Lemma 9. Condition (i) follows from C,,, = BII,, +D — Bll,,+
D = Cy and d,,, — d. Condition (ii) follows from (47). Condition (iii) follows because
tk(Ix[B,C,)) = 1k([B, BIL, + D)) = tk(Ix|B, D]) = rk(Ix[B, Blly, + D]) = rk(Ix[B, Cs])
for all K C {1,...,dc}, where the second and third equalities hold by Lemma 6(b). Then
(48) follows from Lemma 9.

We next show that

Png = Moo (49)

as a — o0o. Recall 05 = arg minsepoly(cu,do—Buo) ||0]]; Where poly(Cu, dos — Blioo) is not
empty by Assumption 1(vi). Note that (i, d%) € poly([B, Cxl, ds). Then, by (48), there
exists a sequence (uf, 8} ) € poly([B,Ch,],d,,) such that uf, — pe and 8f — 67,. More-
over,

oo — ol < llih, = T 2 (50)

since fi, = argmin,c o (s a0l — ,uH% . The right-hand side in (50) converges to 0
because ,u;fla — foo, With 11, — s and T, = Yo by Assumption 1(i, ii, v). This verifies
(49).

We next show that, as a — oo,

poly(Cr,. . dn, — Bpur,,) =+ poly(Cuo, doe — Bjioo) and
poly(C,,, dyn, — Bjin,) 5 poly(Coo, dsw — Blio)- (51)

We verify the conditions of Lemma 9. Condition (i) follows because C,,, — Cs, Cr,, = Cuo,
dn, — Bpip,, — do — Bliso, and, using (49), dn, — Bjin, — dog — Blis. Condition (ii)
follows because 7, € poly(CF,,,dn, — Bur,,) and O, € poly(C,,, dyn, — Bjiy,). Condition
(iii) follows from the fact that rk(IxC,,) — rk(IxCx) and rk(IxCFr, ) — rk(IxCs) for
K = K'(jioo; B, Cw, ds). Note that, since the sequence of ranks is discrete, equality must
hold eventually. Also note that, by Lemma 1, the only activatable K C {1,...,d¢} such
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that poly(IxCau, Ix(do — Blis)) is an affine subspace of R% is K = K'(fioo; B, Coo, doo).
Therefore, (51) follows from Lemma 9. Then, §,, — 6% and 0%, — 05 follow from Lemma
8 with z,, = 2o = 0 and X, = YXiw = Iy;. O

A.3 Proof of Theorem 3

Let n, be a subsequence that achieves the limsup. Let F, € F, o approximately achieve the
sup so that lim, .. P, (an > cv(Sn,, a)) = limsup,,_,o, Suppcr,, Pr (T > cv(5,, a)). It is
sufficient to find a further subsequence along which this quantity is less than or equal to «.
For simplicity, we denote all further subsequences by n,.

First, we find a further subsequence along which the following convergence results hold:

Xq,u - W(ﬁ"q_“FQ) Xy
(Vec(Xq,C)> T (\/@vec(ﬂnqﬂpq)) —d (VeC(Xc)> ~ N<O7QOO) (52)
~ I ! I
By = <3nq®f> n, (gnq@) =y (sor) 2 (sor) = T (53)
C,, = BIl,, + D =, Cyx, = Bll, + D (54)
hy :== \/ng(dn, — Bur, — Cr,0F,) = hoo (55)
tk(IxCh,) = tk(IxCyx), for every K € K(B,Cuo, hoo) UL(B, Cuo, hoo) w.p.al,  (56)

where K(B,Cy, hso) and L(B,Cy, hy) are defined in Section B.1 and w.p.a.1 stands for
“with probability approaching 1”. Equation (52) follows from Assumption 1(ii) for some
further subsequence and some 2. Equation (53) follows from Assumption 1(iv) and The-
orem 2. Equation (54) follows from Assumption 1(i, ii). Equation (55) holds elementwise
along a further subsequence for some h,, € [0, 00]% because F, € Fng0 implies that kg > 0.
Equation (56) holds by Lemma 4 under Assumption 2.

We next define the limiting problem. Let X = X, + X¢0%. Consider the following
CQPP:

T, = i X —nl?_..
5 W:Bngnclgvgth Nll5= (57)

Let n%, be the unique value of n that solves (57). (Recall ho, > 0, so the constraint set is not
empty.) Let 7% € poly(Cw, hoo — Bnl,) and achieve the minimal activatable set as defined
in Section B.1. Note that, trivially,

Ve = argmin [ly — 5|l (58)
v:BnE, +Coov<hoo

Let K* ={j € {1,...,dc} : €;Bnl +¢e;Coi, = €hoo} and s = 1k (I« [B, D]) —rk (Ix+ Oy ).

For any value of the multipliers, ¢*, solving the KKT conditions for (57), we can define
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L* ={je{l,...dc} : ejyp* > 0} and t* = 1k (I1-[B, D]) — rk (I1-C). By Theorem 1(b),
there exists a Lebesgue measure zero set, M, such that for all X ¢ M, r* = s* = t*, where
r*=dim (B{h>0:1Cx =0, (Bn, — hs) =0}).

By the almost sure representation theorem, there is a copy of X, ,, X, ¢, inq and 6%
with identical joint distribution such that the convergence in (52)-(54) holds almost surely
and the equality in (56) holds eventually, almost surely.’” Abusing notation, we refer to the
copies that converge almost surely using the original notation. Now fix a sample sequence
along which the convergence in (52)-(54) holds and the equality in (56) holds eventually. We

can also take the sample sequence to satisfy X ¢ M, and

[(Mey Ik BEL?) " Moy I (BX — hoo)[[5.17 cv(rk(Me, [k B), )
for all K C{1,...,d¢} such that M¢, I[xB # 0 and Ixhs < 00, (59)

where Me,, = Ik — IxCoo(Cll i Ik Coo)t CL I} Such sample sequences occur with prob-
ability one by the almost sure representation, Theorem 1(b), and Lemma 12. Note that
Lemma 12 applies because E;}/Z(MCKIKBZif)JrMCKIKBE%Q is not a zero matrix when
Me, IxB # 0.

In the rest of the proof, we show that, for the fixed sample sequence, we have

limsup 1{7T},, > cv(5,,,a)} < H{Tw > cv(r*, a)}. (60)
q—>00
If this is true, then (60) is satisfied with probability 1. We can apply Fatou’s lemma and
conclude that
limsup Pr, (T, > cv(5,,,a)) < P(Tw > cu(r*, a)). (61)

q—0

(The probability on the left-hand side does not depend on which copy of the random variable
is used because they have identical joint distribution.) Also, by Theorem 3(a) of CS23, we
have P(T > cv(r*, a)) < a. This is sufficient to prove Theorem 3.

Now we show (60) for the fixed sample sequence. Take a further subsequence along which
the limsup on the left-hand side is achieved. Then, it is sufficient to show that there exists
a further subsequence along which (60) holds. We proceed in four steps.

Step 1. We rewrite the test statistic using a change of variables:

T, = min [ X, —nl%, (62)
n,7:Bn+Cnyv<hq a

37Note that the eventuality occurs almost surely but not necessarily uniformly. That is, for almost every
realization, w, there exists an N(w) < oo such that (56) holds for all ¢ > N(w). It need not be the case that
there exists an N such that for all ¢ > N, (56) holds almost surely.
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where X, = Xy .+ X, 005, 1 = /Mg(l—pr,)+Xqc0F,, and v = \/ng(d—07, ). The expression
in (62) should clarify that (57) represents the limit experiment. Let 7, = \/ng(fin, — itr,) +
Xg,c0F, be the unique value of 7 that solves (62). Also let

Yo = argmin |ly — 5|17 (63)
~:Biig+Cnygv<hg

-~

Note that 7, does not have to be equal to ,/ng(d,, — 5, ) if the solution to (62) is not unique.
Also note that 7, need not achieve the minimal activatable set, as defined in Section B.1.

By Lemma 2, we can take %, to be within n;l

of 7, solve (62), and achieve the minimal
activatable set of poly(C,,, hy— Bi),). The %, defined here is used in Step 3 below. Moreover,

let @/Z)\q be the minimum norm Lagrange multiplier that satisfies the KK'T conditions:

zZq =argmin [[¢]] s.t. (64)
$>0

25 1(X, —7y) — By =0 (65)

C, =0 (66)

(hq - Bﬁq - 6%%)%’ =0. (67)

Note that (65)-(67) are the KKT conditions for (62).

Step 2. We next show that there exists a further subsequence such that:
Tay = Toos g = Maes Vg = Voos Tg = Vaor a0d g = U5, (68)

for some 9%, that, along with n’ and 7%, satisfy the KKT conditions for (57).
First note that
ppoly(B, hq;@q) A ppoly (B, heo; Coo) (69)

by Lemma 10, which applies because 6% — Coos hy = ho, rk(IJ[B,Unq]) = rk(I,[B, Bﬁnq—l—
D)) = rk(I;[B,D]) = 1k(I,[B,Blly + D]) = rk(I;[B,C]) for any J C {1,...,d¢},
and for any n € R%, the minimal activatable set KT(n) of poly(Cu, he — Bn) satisfies
rk(Ixt()Cn,) = tk(Igt(Co) eventually. That rk(Igt(Ch,) = tk(Ix1(;)Coo) eventually fol-
lows from (56) because K'(n) € K(B,Cx, hoo). Using (69) and (53), we can apply Lemma
8 to conclude that

Mg = TMao- (70)
Next, observe that T, = || X, — 7,/2_, and T = || X — 7 ||2-.. We have that X, — X

Xn oo

because of (52) and the fact that 67 — d5, from Theorem 2. Therefore, by (70), the
invertibility of ¥, from Assumption 1(iii), and X, = X, we have T,,, — Ti.
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Next, we show that 7, — % . We verify the conditions of Lemma 9 to get

poly(Cy,, hy — Bijy) 2 poly(Cao, b — B1). (71)

Condition (i) is satisfied because C,, . — O and hq — By — hoo — B1,, using the previous
paragraph. Condition (ii) is satisfied because 7, € poly(C.,,, hy — B7j,). Condition (iii) is
satisfied because any K C {1,...,d¢} that is activatable for poly(Cw, hoo — Bn?,) for which
poly(IxCou, Ixcheo — I Bn?,) defines an affine subspace of R% also belongs to (B, Cop, hoo)
(with x = n%,) by Lemma 1(c). Condition (iii) then follows from (56). Therefore, by Lemma
9, (71) holds. We then verify the conditions of Lemma 8 to get 7, — 7% . Note that 7, is
the projection of 7%, onto poly(Ch,, hy — Bij,) and ~Z is trivially the projection of 4%, onto
poly(Cuo, hoo — Bn,) by (63) and (58), respectively. The K-convergence condition is satisfied
by (71) and poly(Cu, heo — Bnl) is nonempty because it includes 7% . Therefore, 7, — .
Since 7, is within n;l distance from 7, we also have 7, — 7% .

To show convergence of v,, we use Lemma 11. Since 1, is defined to satisty (64)-(67),
it is the minimum norm multiplier that satisfies (106)-(109). Note that, by complementary
slackness, Ikg’;b\q — 0, where K, = {j : ¢/(hg — Bijy — Cn,Hq) = 0}. Also note that (7,,%,) —
(k.. 7%,) by the previous two paragraphs. Consider a further subsequence along which K|
does not depend on ¢. Along this further subsequence, 1Zq — %, where 9% > 0 satisfies:
Y (X =) = By, Cll, =0, and [(g-)e0l, = 0, where K* = {j : €}(ho — B}, —
Cxi) = 0}. The last condition implies that (heo — Bnk, — Cool,)' ¢, = 0, which shows
that (%, 75, ¥k ) satisfies all the KKT conditions for (57).

Step 3. We next bound the limit of 5,,,. Recall IA(q ={j: e;(Bﬁnq + émﬁnq —dy,) =0}
and Ly = {j : €jpy > 0}. Let L* = {j : el > 0} and t* = rk([1+[B, Cs]) — rk([1-Cs).
Note that

*cL,C K,CK, (72)

eventually, where the first set inclusion follows from the convergence of 1Zq to 9%, the middle
set inclusion follows from complementary slackness, and the final set inclusion follows from

the fact that 4, was chosen to achieve the minimal activatable set. We next show that
s* =1" = t" =1k(I;-[B,Cp]) — vk(I-C,) < 1, < 30, (73)

eventually as ¢ — oco. The first two equalities follow because X & My, the third equality

follows from (56) and L* € L(B,Cx, hs) so that tk(/;+C,) = rk(I;+Cw) eventually, and
the two inequalities follow from applying Lemma 6(c) to (72).%

38Note that L* € L(B,Cw,hoo) because (ni,, i, ) satisfy the KKT conditions for (57) and ~Z%, is
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Step 4. To finish the proof, we verify (60) in three cases. (A) Suppose 5,, = 0
along a subsequence. Fix that subsequence. By Lemma 13, T;, = 0. Therefore, 1{7,,6 >
cv(8y,, @)} = 0 along the subsequence, which satisfies (60).

(B) Suppose 5, > 1 eventually and r* = 0. By Lemma 13, T, = 0. Therefore, T;,, — 0
must satisfy 1{7},, > cv(s,,,a)} = 0 eventually. This satisfies (60).

(C) Suppose r* > 0. This implies that s* # 0 by Theorem 1(a). Therefore, M, . Ix+B #
0 because s* = rk (Mc,..[x+B) by Lemma 6(a,b). By (59),

[(Meye. L BEY?) Mo, I (BX = hog)[[5,17 co(s™, av), (74)
using the fact that Ix+h., < 0o by the definition of K™*. Also note that, using Lemma 7,
Too = | X = nll3cs= (Mo L BEL) Moy I (BX — hoo) [[321- (75)

Therefore, T,,, — T # cv(s*,a). This implies that 1{T,, > cv(5,,,a)} < HT,, >
cv(s*,a)} = H{Tw > cv(r*,a)} eventually, where the inequality uses (73). This verifies
(60) in this case. O
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This supplemental appendix is organized as follows:

e Section B extends and generalizes Theorems 2 and 3, including a discussion of As-

sumption 2.
e Section C states and proves lemmas used in the proofs.
e Section D discusses Assumption 1(vi).

e Section E presents simulations for the policy relevant treatment effect example.

B Extensions/Generalizations of Theorems 2-3

This section extends and generalizes the GCC test and Theorems 2-3. Section B.1 gives
precise definitions for activatability of a set of indices for a system of linear inequalities.
Section B.2 states theorems that relax Assumption 2. Section B.3 discusses Assumption
2. Section B.4 defines the Refined GCC (RGCC) test and proves its validity. Section B.5
defines the GCC test with KK'T multipliers and proves its validity.

B.1 Definitions of Activatability

Assumption 2 requires the rank stability equation to hold for all K € A(Cy,bs) with
K= C K. In this section, we define two subcollections of {K € A(Cy,bs) : K~ C K} and
state weaker conditions where the rank stability equation is only required to hold on these
subcollections. We are especially careful to cover potential non-uniqueness of the solution
to the CQPP as well as potential non-uniqueness of the KK'T multipliers.

The first concept of activatability is defined with respect to the polyhedral set poly(C,b).
We say that a collection of inequalities, J C {1, ...,d¢} is activatable for poly(C, b) if there
exists a § € poly(C,b) such that J = {j € {1,...,dc} : €;,C = €;b}. Let J denote the set of
all J C {1,...,dc} that are activatable for poly(C,b). Note that J depends on the initial C'
and b, which we keep implicit. We also define

J'=Nyesd. (76)
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We call JT the minimal activatable set of poly(C,b). Lemma 1, below, explains the sense in

which it is “minimal” and “activatable”. The lemma is proved at the end of this subsection.
Lemma 1. (a) J' € J.

(b) The inequalities specified by J' define an affine subspace of R%. That is, we have
pOIY(IJTO, ]JTb) = {(5 - Rd5 : ]JTC(s = ]th}.

(c) For any J € J such that poly(I;C, 1b) = {6 € R% : [;C6 = I;b}, we have J = J*.

Intuitively, the minimal activatable set corresponds to a & € poly(C,b) in the interior
or relative interior for which any inequality that can be slack is slack. Any inequality that
cannot be slack is implicitly an equality that defines an affine subspace of R%.

The next concept of activatability is with respect to the CQPP:

- -1

P R C e DR G D (77)
for some positive definite 3. For each z € R% | let u(z) denote the unique minimizing value of
(. The minimizing value of ¢ is not unique. Instead, the set of possible minimizing values for
d are A(z) := poly(C,d — Bu(z)). For each K C {1,...,dc}, we call K a K-activatable set
for the CQPP (77) if K is activatable for A(z) in the sense defined above. By definition, any
K-activatable set for (77) is of the form K(x,0) = {k € {1,...,dc} : €, Bu(z) + €,Co = € d}
for some § € A(z). Let the collection of K-activatable sets for (77) be denoted K(z) =
{K(z,0):6 € Ax)}.

By Lemma 1, for each # € R% | there exists a unique minimal K-activatable set for (77),

and we denote it by KT(z). Furthermore, let the collection of minimal K-activatable sets be
K ={K'(z): 2z € R¥}. Note that K'(z) and K depend on the original specification of B,
C, d, and ¥. We can make this dependence explicit with KT(x; B,C,d,¥) and K(B,C,d, ).

The following lemma shows that for any 6 € A(x), there is a point in A(z) arbitrarily
close to it that achieves the minimal K-activatable set. It is used in the proof of Theorem 3,

and its proof is at the end of this subsection.

Lemma 2. For any 6 € A(z) and for any € > 0, there exists a 0 € A(z) such that |6 —0||< e
and K (z,9) = Kf(z).

There is another way to define activatability with respect to (77), based on the KKT
multipliers. Write out the KKT conditions associated with (77):

0=2""Y(u(x) —z)+ By (78)
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0=C" (
0< (80
0= ¢/(Bu(x) + C5 — d) (
0> Bu(z)+Co —d, (

where 1 denotes the KKT multipliers. For any z € R% and for any § € A(z), (78)-(81)
specify a system of linear equalities/inequalities (a polyhedral set) for values of 1 that solve
the KKT problem. Denote that set by W(x,d). Notice that this set does not depend on §
except through K(z,0). That is, for any K, let U(z, K) (abusing notation) denote the set
of values of ¥ that satisfy (78)-(80), together with

0 = Icet), (83)

where K¢ ={1,...,dc}/K. We then have ¥(z,0) = V(x, K(z,9)).
We only concern ourselves with KK'T multipliers associated with the minimal K-activatable
set for (77) in the proofs. Let
Ul(z) = U(z, Ki(z)). (84)

For any ¢ € Wi(z), let L(x,¢) = {¢ € {1,...,dc} : €)1y > 0} be an L-activatable set for
(77). Let the collection of L-activatable sets be given by £(x) = {L(x,) : ¢ € ¥T(x)} and
L=U,gaL(x)”

Note that £ depends on the specification of B, C, d, and ¥. We can write it as
L(B,C,d,>). The following lemma shows that 3 is redundant in the notation. The same is
true for the collection of K-activatable sets: K(B,C,d, ), and for some x, for the minimal

K-activatable set K'(z; B,C,d,Y). The lemma is proved at the end of this subsection.

Lemma 3. The sets K(B,C,d,%) and L(B,C,d,Y) do not depend on 3. Furthermore, if
x € ppoly(B,d; C), then K'(x; B,C,d, ) does not depend on .

In light of Lemma 3, we can denote (B, C,d, ¥) by K(B, C,d), L(B,C,d, %) by L(B,C,d),
and K'(x; B,C,d,Y) by K'(x; B,C,d) for x € ppoly(B,d;C).
B.1.1 Proofs of Lemmas 1-3

Proof of Lemma 1. (a) For each J € J, let 6; € poly(C,b) be such that J = {j €
{1,....dc} : €,C6; = €b}. Take 0" = ﬁZJej‘SJ' This satisfies JT = {j € {1,...,d¢} :

39For the purpose of proving Theorem 3, we could further restrict L£(x) to be {L(z,%) : o €
Ul (z) and rk (I1,(5,4)[B, C]) =1k (I1(5,6)C) =1k (It (2)[B,C]) =k (It (+)C) }. Then, all the L-activatable
sets give the same DoF as KT(z).
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e;-C'éT = e}b}. Thus J' € J.

For part (b), suppose poly(1;+C, I;+b) is not an affine subspace of R%. Then there exists
ade poly(1,;+C, I;:b) and a nonempty J*= C J' such that every element of I+ C9 is strictly
less than the corresponding one in I;+b. Define 6" as in the proof of part (a). Then §(n) :=
n0 + (1 —1)8" € poly(C,b) for small enough n > 0. Also, {j € {1,....dc} : e;Co(n) = e;b}
does not include elements in J* and thus is a strict subset of Jf. This contradicts the
definition of JT. Thus, poly(I,+C, ;) is an affine subspace of R%.

For part (c), poly(1;C, I;b) = {6 € R% : [;C§ = I;b} implies that J C J for any J € J.

Thus, J' = J. O

Proof of Lemma 2. Let 61 be a point in A(x) such that IKT(x)C%ST = Ixt(z)(d — Bu(x)) and
for any j ¢ K'(z), €,C6" < €/(d — Bu(x)). Then 0= (1 —=n)d+ndét € A(z) and for any
ne (0,1), K(z,0) C K(x). Since K'(z) is the minimal K-activatable set of A(x), we have
that K (x,0) = K'(z). Choosing a 1 small enough so that ||§ — §||< e proves the lemma. [

Proof of Lemma 3. If, for some x and ¢, L(x,v) € L(B,C,d, %), then L(z,v) = L(y,¢) €
L(B,C,d, f]) for any positive definite 3 by taking y = p(x) — iE‘l(,u(:z:) — x). This follows
because the same 1 (as well as the same § and p = p(x)) satisfies the KKT conditions in (78)
- (82) with y in place of z and 3 in place of . Similarly, if for some z, K'(x; B,C,d,X) €
K(B,C,d,Y), then K'(y; B,C,d, i) € K(B,C,d, f]) If z € ppoly(B,d;C), then u(x) =z
and A(z) does not depend on ¥. O

B.2 Relaxing Assumption 2

Theorems 2-3 use Assumption 2 to ensure Kuratowski convergence of the constraint set that
defines T,,. Also, Theorem 3 uses Assumption 2 to bound the limit of 5,,. We can relax
Assumption 2 by clarifying precisely for which sets of indices, K, the rank condition in
Assumption 2 needs to hold.

Assumptions 3 and 4 state relaxed versions of Assumption 2 for certain collections of
activatable sets. Lemma 4, below, shows that Assumption 2 is sufficient for Assumptions 3

and 4. These assumptions use the definitions of activatable sets from Section B.1.

Assumption 3. For every sequence {F,}> | with F,, € F,o and for every subsequence,
{nm}, satisfying Assumption 1(i) with Cs, = Bllo + D and bo, = do — Bliso, there exists a

further subsequence, {n,}, such that
Pan (rk<IK6nq> = I'k(IKCan) = rk(IKC’OO)) — 1
as ¢ — o0 for K = K'(pieo; B, Cuo, o).
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Assumption 4. For every sequence {F,}>2, with F,, € F,o and for every subsequence,
{nm}, satisfying Assumption 1(i) with Cs, = Bllo+ D and also satisfying hy, = /Mo (dn,, —

W05 ) = heo elementwise for some vector ha, € [0,00]%, there exists a further

n

B,anm — CF

subsequence, {n,}, such that
P, (tk(IxCy,) = tk(IgCy)) — 1

as ¢ — oo for all K € K(B,Cuo, hoo) U L(B, Coo, hoo).

Remarks: (1) Assumptions 3 and j only require the stable rank condition to hold for sets
of inequalities that are activatable for the limit polyhedral set. In Assumption 3, the limit
polyhedral set is defined without scaling the slackness, while for Assumption /, the limait
polyhedral set is defined by scaling the slackness at the \/n rate. (The difference between
K-activatable and L-activatable sets of inequalities is practically irrelevant.) Furthermore,
Assumptions 3 and J only require the stable rank condition to hold for minimal activatable
sets. By Lemma 1, minimal activatable sets are the inequalities associated with equalities,
either explicitly or implicitly. Any inequality that can possibly be slack is excluded. Of course,
several different limits can arise depending on the sequence {F,}>° | and uniformity requires
the stable rank condition to hold for minimal activatable sets of inequalities in all of these
limits. See Section B.3, below, for more discussion in some simple examples.

(2) Voronin (2025) considers the problem of uniformly consistent estimation of the value
of a LPP. They point out that no uniformly consistent estimator exists if the optimal vertex
15 allowed to become arbitrarily “sharp” as the sample size increases. This is related to the
rank stability condition because the problematic set of inequalities defines a linear subspace
in the limit, and the rank stablility equation does not hold for the K corresponding to this

set.
The following lemma shows that these assumptions are weaker than Assumption 2.
Lemma 4. Assumption 2 implies Assumptions 3 and 4.

Proof of Lemma 4. Fix a sequence {F,}>° | with F,, € F,o and fix a subsequence n,, satis-
fying Assumption 1(i) with Cy, = Bll, + D and by, = do — Bliso. If poly(Cx, bs) is empty,
then Assumptions 3 and 4 hold trivially. Therefore, suppose poly(Cy, bso) is not empty. For
verifying Assumption 4, suppose further that h,, — he (elementwise). By Assumption 2,

there exists a further subsequence, n,, such that
Pan (I‘k([Kénq) = I'k(IKCan) = rk(IKC’OO)) —1 (85)
for all K € A(Cw,bs) with K= C K.
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To verify Assumption 3, note that for K = KT(pioe; B, Cso, ds ), there exists a § such that
K={je{l,...,dc} : (Bl + Cd — ds) = 0}. This implies that K € A(Cx,bso). Also
note that K= C K because any activatable set contains K~ and K is an activatable set.
Therefore, (85) holds. This verifies Assumption 3.

To verify Assumption 4, let K € K(B,Cy,hoo) U L(B,Cy, hs). By the definition of
K(B, Cso, hoo) and L(B, Cs, hso ), there exists an x € R% and a § € poly(C, hoo— Bu(x)) such
that e (Bpu(r) + Cood — hoo) = 0 for all j € K. Here the function p(z) is the solution to the
CQPP miny, 5.5+ coos<ha, (T — @)X (2 — p) for some positive definite matrix 3. The solution
w(z) is finite because (p/,d") = 0 satisfies By + Cood < hoo and hence (z — p(x))'S 1 (x —
p(z)) < a’S7'e < oo. Therefore, for any j € K, we have €}hy = €(Bu(z) + Cxd) < 00.
This and the definition of h., together imply that

¢;(dn, — Bur,, — Cr,, 05, ) = 0 for any j € K. (86)
Next, we invoke Lemma 9 to get poly(Ch, ,dn, — Bur,,) — poly(Cw, bs), where the condi-
tions of the lemma are guaranteed by Assumptions 1(i), 2 and the fact that poly(Cw, bso) i8
nonempty. It then follows from Lemma 8 that (51*% — 0%, which, together with Assumption
1(i), implies that d,, — Bur,, — C’an5}nq — boo — Co0’,. This combined with (86) implies
that for o = 0%, Ix(Coot — bso) = 0, and hence K € A(Cy,bs). Also note that K= C K

because any activatable set contains K=. Therefore, (85) holds verifying Assumption 4. [
We next state the generalizations of Theorems 2 and 3.
Theorem 4. Theorem 2 continues to hold if Assumption 2 is replaced by Assumption 3.

Proof of Theorem 4. The proof of Theorem 4 follows the same argument as the proof of
Theorem 2. Assumption 2 is only used in the proof of Theorem 2 to ensure rk(IxC,,) =
k(I Cy) eventually for K = KT (pioo; B, Coo, ds ), which follows from Assumption 3. ]

Theorem 5. Theorem 3 continues to hold if Assumption 2 is replaced by Assumptions 3
and 4.

Proof of Theorem 5. The proof of Theorem 5 follows the same argument as the proof of
Theorem 3 with two minor modifications. First, Assumption 3 is sufficient for Theorem
2, by Theorem 4. Second, when (56) is required to hold for every K € K(B,Cx,hoo) U
L(B,Cy, hs) along a subsequence, this follows from Assumption 4. O

Remark: The relazation in Theorem 5

15 a substantial improvement over requiring the
stable rank condition to hold for all activatable sets of inequalities in Assumption 2. In a

moment equality model, weak identification is determined by the Jacobian of the moments.
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The relazation to Assumptions 3 and j means that in a model with both moment equalities
and inequalities, the same rank condition that would be required for strong identification of the
model defined only by the equalities is sufficient for validity of the GCC (and RGCC) tests.
The addition of possibly slack inequalities to a model does not change the rank condition.

Section B.3 gives further discussion on the relaxation of Assumption 2.

B.3 Assumption 2 Discussion

This section discusses Assumption 2 and its relaxations and relates it to existing assumptions
in the literature. Section B.3.1 gives a sufficient condition for Assumption 2 in the empirical
illustration of Example 5. Section B.3.2 demonstrates the content of Assumptions 3 and 4
in simple moment inequality examples. Section B.3.3 shows that the regularity conditions

in Cho and Russell (2024) are stronger than Assumption 2.

B.3.1 A Sufficient Condition for the Empirical Illustration of Example 5

Suppose the parameter of interest is § = €jd. Then, Cr = (el —e; I'p =T A’)/,
where I'r is defined in (32). A subscript F' is included to indicate dependence on the true
distribution of the sample. Similarly, let p; 7 denote the true marginal probabilities for
t € {A,J} and s € {On, In,2n,0r,2u}. Let I, be the estimated version, so that C, =

=/

!/
<61 —e; I, —f; A ) . In this case, a sufficient condition for Assumption 2 is that
e dc > 0 such that pﬁF > ¢ for all s € {On, 1In, 2n,0r,2u}, F' € F,o, and n > 1.

With this condition imposed, under the subsequence in Assumption 2, the exact sparse
structure of I, is preserved in the probability limit. As a result, the linear dependence of
the rows of I, with the rows of A is also preserved.”” This ensures that the rank of any

collection of the rows of C), is unchanged in the limit.

B.3.2 Assumption 2 in Simple Moment Inequality Examples

This section demonstrates the content of Assumptions 2-4 in simple moment inequality

examples.

Example 7. Consider the moment inequality model in (4) with no equalities, B = R?, and

inequalities specified by

B+ B2a+mp >0

4ONote that the row of the Jacobian associated with the inequality “T0r,0n +Tor,1n +Tor,2n +Tor, 1r + Tor,2u <
17 is perfectly collinear with the rows of the Jacobian associated with the fourth row in I'. This demonstrates
the importance of allowing the rank to be singular as long as it is stable.
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Figure 3: Illustration of Example 7

(a) cp, =1 (b) ¢p close to zero (¢)ecrp=0

Note: Sets of (81, 82)" defined by (87) for various values of cp. The coordinate axes are omitted to
avoid clutter. The horizontal axis is 81 and the vertical axis is S2. Shade indicates the direction
of the inequalities. The vertical dotted line in (a) and (b) represents imposing the null hypothesis
that 81 = 0.

P —crBa+ner >0
=P+ n3r 20, (87)

where B = (B1, f2)" are structural parameters and n;p and cp are reduced-form parameters
for j € {1,2,3}. If the reduced-form parameters are expectations of observed variables, then
these inequalities represent moment inequalities; for example, n;r = Ep[Y;] for observed

random variables Y;. If nip are all estimated at the \/n rate with positive definite asymptotic

variance-covariance matriz, then (87) can be written in the form of (3) with B = —Ij,
D = 0349, d =0, II = [_%1 _%F], = (mr,mor,n3r), and 6 = (B, B2) . We maintain

that mp = mop = 0, n3p = 1, and cp > 0. For fized cp > 0, the inequalities in (87) define a
triangular region in R? of possible values of §; see Figure 3(a).

We walk through the content of Assumptions 2-4 for specification testing the inequalities
in (87) in two cases: (a) cp converges to a co > 0, and (b) cp converges to 0.

(a) coo > 0. Start with Assumption 2 and the definition of A(Cwx,bs). Note that Cy, =
[:ﬁ c_ai} and by, = (0,0,1). We seek the collections of inequalities that are simultaneously
activatable. Consider the vertices of poly(Cw, beo), depicted in Figure 3(a). At the leftmost
point, the first two inequalities are active. At the upper-right point, the second and the third

41 Alternatively, if only some of the ;5 are estimated, then (87) can be written in the form of (3) in other
ways. For example, if 71 and n3p are known to be zero, then (87) can be written in the form of (3) with

B=-(0,1,0)', D =— [_(1,1 é], d=0,I1=(1,—cp), p = n2r, and § = (81, B2)". If nop is known to be zero,
then the strategy in Remark (2) above Example 3 can be used.
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inequalities are active. At the lower-right point, the first and the third inequalities are active.
Thus, A(Cw,bso) includes {1,2}, {2,3}, and {1,3}. Also, A(Cx,bs) includes all subsets
of activatable sets, so A(Cx,bs) = {0,{1},{2},{3},{1,2},{1,3}, {2,3}}. Next, note that
there are no equalities, so K= = (). Assumption 2 considers submatrices of Cy, formed by
the rows associated with indices in K for all K € A(Cx,bx). For any two rows of C,
the rank of the submatriz is 2. Also, any one row of Cy is nonzero and thus has rank 1.
In both cases, the rank of the limit is full, and therefore the rank stability equation holds
automatically for any sequence of matrices converging to Cy.

Next, consider Assumption 3. For Assumption 3, we view the inequalities in (87)
as functions of both 6 = (p1,52) and p = (mpr,mer,n3r) . Plug in p = pe, and the
resulting collection of inequalities is still represented by Figure 3(a). In this figure, all
the inequalities are possibly inactive, and therefore the minimal collection of inequalities
i8 K'(loo; B, Coo,dss) = 0. Therefore, the rank stability equation for Assumption 3 holds
trivially.

Next, consider Assumption 4. We need to rescale the inequalities by /n. Notice that
03 =(0,0)" because that is the minimum norm value of § that satisfies the inequalities. Also
note that pr = (0,0,1)". Therefore, after rescaling, the limit is ho = (0,0,00)". Because the
third inequality is infinitely slack, it cannot be K- or L- activatable for (B, Cy, hs). For the
first and second inequalities, we consider the CQPP (77) with some “shift” x € R3. For any
x, we can select a p(x) = x that solves the CQPP while satisfying the inequalities strictly with
some . Hence, both inequalities can be slack. Therefore, the minimal activatable set for any
shift is KT(z; B, Cuo, hoo) = 0. Also note that L(x,v) C K'(z) for any v € ¥T(z). Therefore,
K(B,Cx,he) = L(B,Cw, heo) = {0}, and the rank stability equation in Assumption 4 is
satisfied trivially.*

(b) coo = 0. The limit for this case is depicted in Figure 3(c), while Figure 3(b) de-
picts the case that cp is small but positive. Concerning Assumption 2, the definition of
A(Cy, bso) is changed because there is no longer a vertex associated with the second and the
third inequalities. Therefore, A(Cs,bss) = {0,{1},{2},{3},{1,2},{1,3}}. The difference
is crucial. The rank stability equation holds for K € A(Cw,bs), but it would not hold for
K =1{2,3}. That is, the rank of [_11 _SF} is 2 for cp positive while the rank of the limit is
1. Still, Assumption 2 holds because K = {2,3} is excluded from A(Cx,boo)-

Next, consider Assumptions 3 and 4. For Assumption 3, all the inequalities are still

possibly inactive, and therefore K'(pioo; B, Coo,dso) = 0. Similarly, for Assumption /, the

42The fact that the K- and L- activatable sets are empty is a general property when the identified set for
0 has positive volume or measure. All inequalities are possibly slack, so the minimal K- and L- activatable
sets of inequalities are empty. Thus, the rank stability equations (and Assumptions 3 and 4) hold trivially.
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limit of the rescaled inequalities is the same. Also, for any shift of the constants, the resulting

inequalities are still feasible. Therefore, the minimal activatable set is always the empty set,

and K(B, Ce, hoo) = L(B, Coo, hoo) = {0}.

The next example uses the same inequalities as Example 7. The difference is that it

focuses on subvector inference for f;.

Example 8. Consider the inequalities in (87), but suppose we are testing the lower bound
on the identified set for By. That is, Hy : f1 = 0. This hypothesis is depicted by the vertical
dotted line in Figure 3(a). This problem can be written in the form of (3) with B = —I3,
D=0,d=0,11=(1,—cp,0), u= (mpr,m2r,n3r), and § = B2. Suppose mp = ner = 0 and
n3r = 1. We walk through the content of Assumptions 2-4 in two cases: (a) cgp converges to
a positive value, say ¢, and (b) cg converges to zero.

(a) co > 0. In this example, it is obvious that the rank of every submatriz formed by
the rows of Cp = (—1,cp,0) is unchanged in the limit, and Assumptions 2-4 hold. Still, it
is instructive to go through the definitions of A(Cso,beo), KT (iso; B, Css,d), K(B, Cus, hoo),
and L(B, Coo, heo).

Start with Assumption 2. The set of values for (o defined by the inequalities is just
{0}. The first and second inequalities are active while the third is inactive. Therefore,
A(Coo, o) = {0, {1}, {2}, {1,2}}.

Second, consider Assumption 3. When we plug in u = jis, we get a set of values for Bo
that is just {0}, same as above. Both the first and second inequalities are implicitly equalities
because they cannot be slack. Therefore, the minimal activatable set is K'(jioo; B, Coo, dso) =
(1,2}.%

Next, consider Assumption 4. When we rescale the inequalities, we get ho, = (0,0, 00),
as before. Then, we adjust the constants in the first two inequalities from i to an arbitrary
x. After adjustment, there are three possible cases for the set of By values that satisfy the
inequalities: (i) the set is an interval, (i) the set is empty, and (iii) the set is a point. In
case (i) both inequalities are possibly slack, and the minimal activatable set is K'(x) = ().
Also, in this case, L(x, ) = () for all1y € WT(z). In case (i), a value of u(x) is found solving
the CQPP in (77). The resulting set of Py values will be a point. Then, both inequalities
are implicitly equalities and the minimal activatable set is K'(x) = {1,2}. Also, since both
inequalities must have positive KK'T multipliers for the problem in (77), L(z,%) = {1,2} for
any v € Ui(z). Finally, in case (i), as in case (i), both inequalities are implicitly equalities

and the minimal activatable set is K'(x) = {1,2}. The difference here is that the inequalities

43We point out a general result that, if poly(Cu, boo — Bliso) is a singleton, then the rank of I+ Cy must
be full. Then, the rank stability equation holds for any sequence of matrices converging to Ix+Coso.
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both have zero KKT multipliers for the problem in (77), and therefore L(xz,v) = 0 for any
Y € Ui(x). Overall, K(B,Cua, hoo) = L(B, Cuo, hoo) = {0,{1,2}}.

(b) ¢co = 0. When ¢y = 0, then the second inequality does not restrict By. At the
same time, the second inequality is active in that it holds with equality. Thus, A(Cu,bso) =
{0,{1},{2},{1,2}}. One can see that when K = {2}, the rank stability equation does not
hold, and therefore Assumption 2 does not hold.

Turning now to Assumption 3, note that the set of possible values for [ is [0,00). This
means that the first inequality is possibly inactive, while the second inequality must be active
and is implicitly an equality (even though it is always zero). Thus, the minimal activatable
set is K'(ioo; B, Coo, doo) = {2}. For this set of indices, the rank stability equation does not
hold, and therefore Assumption 3 does not hold. Similarly for Assumption 4: there are shifts
of the constants that make the second inequality active. Also, the first inequality is possibly
inactive for any shift. Therefore, K(B,Cu, hoo) = L(B,Coo, hoo) = {0,{2}}. (The empty
set arises when a shift makes the second inequality slack.) As before, for K = {2}, the rank
stability equation does not hold, and Assumption 4 does not hold.

To summarize, Assumptions 2-4 are not satisfied when cp converges to zero. Essentially,
Assumptions 2-4 restrict the possible values of cg to belong to {0} U [e,00) for some € > 0,
where the case cp = 0 requires cp to be known. In this case, Assumptions 3 and 4 help to
pinpoint the collection of inequalities that violate the rank stability equation.

This restriction can be compared to assumptions imposed by other approaches to testing
inequalities. For this example, the reqularity conditions in Pakes et al. (2015) as well as the
reqularity conditions in Cho and Russell (2024) both imply that cp is bounded away from
zero." Similarly, Assumption A.3 in Bugni et al. (2017) and Assumption 4.27 in Goff and
Mbakop (2025) can be shown to imply that cp belongs to {0} U|[c, 00) for some ¢ > 0. Hence,
it is common in the literature on subvector inference for moment inequality models to rule

out the case that cp — 0 when doing subvector inference on (.

Examples 7 and 8 demonstrate the content of Assumptions 2-4 in simple moment inequal-
ity models. Next, we give an example where Assumption 2 is not satisfied, but Assumptions

3 and 4 are. This motivates the relaxation of Assumption 2 in Assumptions 3 and 4.

Example 9. Consider the moment inequality model in (/) with no equalities, B = R?, and

inequalities specified by

Br+B2+mp =0

44This comes from evaluating Assumptions A1-A4 in Pakes et al. (2015) in Example 7. Similarly, for Cho
and Russell (2024), it follows from Conditions CQ and US in their Definition 3.1.
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pr—cpBr+mr >0
B — B2+ mzr >0, (88)

where = (P1, B2)" are structural parameters and n;p and cp are reduced-form parameters
for j € {1,2,3}. The inequalities in (88) are similar to the inequalities in (87) except there
s no upper bound and there is an extra lower bound for (.

Suppose mp = N3 = 0 and cp — 0. Also suppose nap is positive and converges to zero but

at a rate that is slower than n~=/?

. In this case, we evaluate Assumptions 2-/ in the context of
subvector inference for B1. Suppose we test the hypothesis that Hy : 51 = 0, which is the lower
bound on the identified set for By. If the njp forj € {1,2,3} are estimated at the \/n rate with
positive definite asymptotic variance-covariance matriz, then (88) under Hy can be written
in the form of (3) with B= —1I3, D=0,d=0,11=(1,—cp,—1), u = (mr,n2r,n3r), and
d = PBy. Note that Cp = (—1,cp, 1), and the second row is converging to zero.

We first evaluate Assumption 2. The inequalities define the set of possible values of By to
be {0}. All three inequalities are active. Thus, A(Cx,bs) = {0, {1}, {2}, {3}, {1,2}, {1, 3},
{2,3},{1,2,3}}. It follows that Assumption 2 is not satisfied because K = {2} € A(Cy,boo)-

Turning to Assumption 3, the three active inequalities delineate a point for B, which is an
affine subspace. Therefore, those active inequalities are implicitly equalities. The minimal
activatable set is given by K'(jiso; B, Coo,dso) = {1,2,3}. We see that the rank stability
equation is satisfied, and therefore Assumption 3 holds.

Finally, consider Assumption /. Note that the slackness of the second inequality is con-

112 Therefore, after rescaling the slackness of the

verging to zero at a rate slower than n~
inequalities by \/n, the second inequality has an infinite limiting slackness: ho = (0,00,0)".
Then, as in Example 7, for any arbitrary shift of the inequalities, the K- and L- activatable
sets are either empty or {1,3}. Therefore, K(B,Cx, hoo) = L(B, Cso, hoo) = {0,{1,3}} and

Assumption J holds.

B.3.3 Nesting with Cho and Russell (2024) Assumptions

Consider a moment inequality model as in (4) with no equalities. Suppose m(W, () is linear
in # and thus Eg[m(W, )] can be written as I'rf8 + ng, where I'p = Eg[Om(W, 3)/05']
and np = Ep[m(W,0)]. Let the parameter of interest be § = X3, where A # 0 is a fixed
known vector. Without loss of generality, we take ||| = 1. In this setting, we can apply the
confidence interval in Cho and Russell (2024) for Oy = maxg.e,mw,g)<o0 ' 5.

Following Remark (2) above Example 1 in Section 2.1, let A¢ be a column-augmenting
matrix so that [\, A is full rank. It is convenient to take A¢ to be orthonormal and orthogonal

to A because then § = A0 + A% with 6 = (A°)'5. In our framework, inference for § amounts
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to testing Hy : 30 s.t. Bup + Crpd < d with B = I, Cr = I'rA°, urp = np + L'pAby, and
d = 0, where 6, is a hypothesized value of §. The following assumption adapts assumptions
from Cho and Russell (2024) for this model.

Assumption 5. Given a matriz ', and vector 1., we have that (a) argmaxg.r_ g+n.. <o N

is unique (denoted by B, ), and (b) IxkT'« has full row rank for K = {k : €}, (I'ao B + 1eo) = 0}.

Remark: Assumption 5 adapts the CQ and the US conditions from Definition 3.1 in Cho
and Russell (2024) for the moment inequality model. Part (a) requires the set of B values
that achieve Oy to be a singleton. Part (b) requires the active inequalities at the maximum

to have full row rank. In particular, the number of active inequalities cannot be larger than
dg (the dimension of ).

Let T, and 7, be estimators of 'z and 7, respectively. The next lemma shows that

Assumption 5, applied to the limit along a sequence of F' values, implies Assumption 2.

Lemma 5. Suppose for any sequence {F, € Fno} and any subsequence {n,,} of {n}, there
exists a further subsequence, n,, along which I'r, = ', fnq —p Loy MR, — Moo, and

T, —p Moo GS ¢ — 00, and Assumption 5 holds for U'ag and ne. Then, Assumption 2 holds.

Remark: Cho and Russell (2024) show that their assumptions can be satisfied by perturbing
the inequalities by a random amount. That, combined with Lemma 5, implies that Assump-

tion 2 can be satisfied by perturbing the inequalities by a random amount.

Proof of Lemma 5. Fix a sequence, F,, € F,o, and a subsequence, n,,, satisfying Assumption
1(i), so ptr,, = NF,, 1 F, Mmax — oo and I'p, = T'oo. Let C = I A°. By the condition
in the statement of Lemma 5, there exists a further subsequence along which I'r,,  — ',

fnq —p L'ocs N, = Moo, and 7, —p Noo. First, we show that, under Assumption 5,
poly(Coo, —tioe) = {A“B5}. (89)

In particular, this implies that poly(Cy, — o) is nonempty.
To show (89), observe that

poly(Coo, —fioo) = {0 : Cod + pioe < 0}
= {0 : ToA + Noo + oo Amax < 0}
= {6 : Too (A0 4 Minax) + oo < 0} (90)

We know that § = A“S% € poly(Cu, — oo ) because Tog (AAY 5% +Mmax ) 700 = Lo (A°AY +
AN)BE + Moo = oo 5, + Mo < 0. To verify uniqueness, consider a dy € poly(Cuo, —fioo); then
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Lo A0+ Moo+ TooAmax < 0. Let BT = A°Fp+Max. Then, I'oo BT +1, < 0. Since the columns
of A¢ are orthogonal to A\, we have N'A°¢ = 0, and hence N'87 = N (A% + Muax) = Omax-
Therefore, 5 is an argmax of \'3 subject to the constraint I'o S+ < 0. This, together with
Assumption 5(a), implies that 8 = 8% . Multiplying A® on both sides, we get: dy = A“%.
Thus, (89) holds.

Next, consider

K = {k: €T3 + 1100) = 0}
= {k : €} (TooAAYBL + T AN B + 1) = 0}
= {k : el (Toc A°A“B, + pio) = O}
= {k : €} (Cool“B% + i) = 0}, (91)

/
k
/
k
€
/
k
where the second equality follows because I = A°A® + AX. This shows that K is the set of
active inequalities for maxg.r_gin. <0 ¢’8. By Theorem 4.5 in Szilagyi (2006), Assumption
5(a) implies that IxI's has full column rank. This, combined with Assumption 5(b), implies

that IxI'« is an invertible square matrix. Then, for any I'; — I', Ix I’y is also an invertible

square matrix eventually as ¢ — oo. This also implies that
rk(IxC,) = rk(IgT' A°) = rk(A®) = rk(Ix[ooA®) = tk([xCw). (92)

where C; = I';A°. Combined with the fact that I'r, — I'c and an —p [, (92) implies that
the rank stability equation holds with probability approaching one for K, where C,, = I',,A°
and Cp, =1'g, A

To verify Assumption 2, let K € A(Csg, —jioo). It follows from the definition of A(Cls, — o)
that K C K. We have already seen that if K=K , then the rank stability equation in As-
sumption 2 holds with probability approaching one. Below, we show that for any K C K,

rk(IzCs) = |K]. (93)

Then, since énq = an/\c —p I'aoA® = C and C’an = FanAC — ' oA = C, we have
tk(IzC,,) = rk(IzC Fo,) = | K| with probability approaching 1, verifying Assumption 2.
To show (93), consider the KKT conditions for maxg.r_g4n. <o N'f5:

A= =Tl oo, Yoo 20, ol 4 1 < 0 and ¢ (I'eo B + 1) = 0, (94)

where 1), is the vector of KKT multipliers. The KKT conditions imply that for k ¢ K, we
have €1 = 0. This implies that, A = —I", I} Ix1. Moreover, Theorems 4.8 and 4.9 of
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Szildgyi (2006) imply that, under Assumption 5(b), €. > 0 for all k € K. Thus, X is a
linear combination of the rows of Ik, where all rows receive positive weights. Since the
rows of I, are linearly independent, that means A is linearly independent with any strict

subset of rows of IxI'y,. In other words,
N # IzT for any K C K and any c € RIX1, (95)

To reach a contradiction, suppose for some K C K, we have tk(IIA°) < |K|. Then, there
exists a vector ¢ # 0 such that ¢'IzI'oA® = 0. Since the columns of A° span the orthogonal
complement of A, any v such that v/A° = 0 must be a scalar multiple of X. Also, since ¢ # 0,
we must have that ¢IzT'«c = aX for some o # 0. This implies N = o '¢/IzTw, which
violates (95). This contradiction shows that (93) holds. O

B.4 The Refined GCC Test

This subsection defines the refined GCC (RGCC) test. The RGCC test uses the same
refinement procedure as the RCC test in CS23. To implement the RGCC test, one first
calculates the GCC test statistic and critical value. If T, ¢ [cv(1,2a), cv(1, a)] or &, # 1,
then the outcome of the RGCC test is the same as the GCC test. However, when T, €
[cv(1,2a), cv(1,a)] and 8, = 1, then the critical value is reduced from the original critical
value cv(1, a) to cv(1, Bn), where B\n is defined below. This refines the GCC test to reject
slightly more often.

The new “level” of the test B\n is constructed based on the inactivity of the inequalities
after vertex enumeration, which finds a d4 x do matrix H such that HC,, = 0 and {n e
R : By + C,0 < d for some § € R%} = {y € R% : Ay < g}, where A = HB and g = Hd.
The matrix H may be random in that it depends on C,. Lemma 1 in CS23 ensures that
such an H exists and the vertex enumeration algorithm in CS23 calculates it. When 7, = 1,
there exists a j € J such that e%A #£ (0.* For simplicity, we take j = 1. We define a measure
of inactivity of the j-th inequality at any z € R% for j € {2,...,d4}:

Villaills, (9;—d}) S

L if s |lajlls —aiXna; >0
i(z) = laillg, llajlls, —a)Sna; if laallg, llajlls, — aiXna;

: (96)

00 otherwise

45Note that 7, and Bn are only calculated in the case that 5, = 1. By Theorem 1(a), this implies that
Trn € {0,1}. When 7, = 0, then T,, = 0, so the definition of §,, does not matter (the test does not reject).
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where a; and g; are the j-th row of A and g, respectively, and ||a||s= (a'Sa)'’?. Also define

B(a) = 2a9(7(x)) ifr=1 | (07)

a otherwise
where ®(-) is the cumulative distribution function of the standard normal distribution and

T(x) = inf 7(x) (98)

is the smallest inactivity of the inequalities. The refined level is 3, = A (i2). Since 7(j1) is
nonnegative, Bn € [a, 2a. The refined level is close to its maximum possible value, 2a, when
all inactive inequalities are far from binding. For further details of the refinement procedure,
including geometric intuition, see CS23.

The following theorem gives theoretical justification for the refinement.

Theorem 6. If Assumptions 1 and 2 hold, or if Assumptions 1 and 3-4 hold, then

limsup sup Pr(7, > cv(s,, B\n)) < a.
n—oo FeFno
Proof of Theorem 6. The proof of Theorem 6 follows the same argument as the proof of
Theorem 3. We describe the differences here. Note that the differences are compatible with
the changes in the proof of Theorem 5, so either Assumptions 1 and 2 or Assumptions 1 and
3-4 are sufficient.

(1) Following (57), we insert a definition of 8*. By Lemma 1 in CS23, there exist A
and g such that poly(Ae, goo) = PPOLY(B, hoo; Cs). Then, we can define 8* using (96)-(98)
applied to the problem in (57) with the constraint set given by poly(Ax, g0 ), S0 * = B(nk,).
Note that by Lemma 16, any A, and g, such that poly(As, goo) = PpOly(B, heo; Cso) yield
the same definition of 5*.

Since n* depends on the random variable X, §* is random. Thus, when we fix a sample se-
quence satisfying (59), we have to account for the randomness in 5*. For any K C {1, ...,d¢},
let Py = ZCIX/DQB}(MCK (Mg, B oo Bl Me, )t MCKBKEééQ be the projection matrix onto the

span of ZiézB’KMCK, and let MK = I, — Pg be residual matrix. Replace (59) with

(Mo, I BSY?) T Moy I (BX = hoo)[[31# cvo(tk(Me, I B), B(SYA (M B2 X + Piéx)))
for all K C{1,...,d¢} such that M¢, [xB # 0 and Ixh, < 00, (99)

where x is defined in Lemma 7. It follows from Lemma 7 that n} = ZZZ(M KO 2X +
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Préx) with K = K* where K* is defined below (58). If s* = 1, then (99) implies that
T # cv(1, 5%) by plugging in K = K*.

To show that (99) holds with probability 1, fixa K C {1,...,d¢} such that M¢, [xB # 0
and Ixhs < oo. We condition on M, KZo_ol/ .4 , so the right-hand side is a constant. For
the left-hand side, note that the conditional distribution of (MCKIKBEééQ)JrMCK[KBX =
(MCK[KBZ(%Q)JFMCK IKBZC{leKZ;}/QX is equal to the unconditional distribution because
ﬁKZ;ol/ 2X and M, KZ;ol/ ’X are independent. By Lemma 12, that unconditional distribution
is continuous because M¢, I B # 0. This implies that the conditional probability of (99) is
one, and therefore the unconditional probability is also one.

(2) The second difference is replacing o with B\n and 8* in various places in the proof of
Theorem 3. In the second sentence of the proof, replace a with B\n , twice. In (59), replace
a with g*. In (60) and (61), replace the o on the left-hand side of both expressions with
Enq and replace the o on the right-hand side of both expressions with §*. Two sentences
after (61), replace “P(T > cv(r*,a))) < a” by “P(Tw > cv(r*, 5*)) < a.” Finally, in Step
4 parts (A) and (B), replace both occurrences of o with Bnq. (We modify Step 4 part (C)
separately, below.)

(3) In Step 1, apply Lemma 1 from CS23 to get matrices H, such that A, = H, B,
gq = Hyh,, and poly(A,, g,) = ppoly(B, hq;anq). It follows from Lemma 16 that the defini-
tion of 7, and Bn is the same as using this A, and g,. As in CS23, we can use McMullen’s
upper bound theorem (see Ziegler (1995)) to ensure that the number of rows of A, is bounded.
We can take a subsequence so that the number of rows of A, does not depend on ¢, and
denote it by da. We seek to apply Lemma 9 in CS23. Without loss of generality, we can
take the rows of A, to either belong to the unit circle or be zero. Also note that the g,
are nonnegative (because poly(A,, g,) includes zero). Therefore, there exists a sequence of
matrices, G,, a sequence of nonnegative vectors, f,, and a further subsequence, n,, such
that conditions (a)-(d) in Lemma 9 of CS23 hold. In particular, we have elementwise con-
vergence of [A,; G,] and [g,; f,] to some limit, say [Al_; Gl ] and [gl_; f1]. We also have
poly([Ay; Gy, lgg; fo)) = poly([AL; GLJ, [gl; fL]) and poly(4y, g) C poly(Gy, fo)- Again,
by Lemma 16, the definition of 7,, and 3, could have been made with respect to this col-
lection of inequalities. For simplicity, we can ignore the G, and f, and just suppose without
loss of generality that the original A, and g, satisfy A, — Al and g, — gl and that
poly(Aq, g4) 2 poly(Al, gi). Note that poly(Al, gi) = ppoly(B, heo, Cx). To see this,
note that ppoly (B, hy; énq) LS ppoly (B, heo, Cs) by Lemma 10, combined with the fact that
poly(4y, g94) = ppoly(B,hq;énq) for all ¢ and poly(A,, g4) LS poly(Al_,gl.). (Among the
set of all closed subsets of any set, the Kuratowski limit of a sequence of sets is unique.)

Therefore, we can define r* and 5* using poly(Al ., gl ). By Lemma 1 in CS23, this definition
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of r* agrees with the definition following (58). By Lemma 16, this definition of 5* agrees
with the earlier definition given in (1) that used A, and g...

(4) The final difference is in Step 4, part (C): v* > 0 and 5,,, > 1. If »* > 1, then by
(73), Sn, > 1 and the proof is unchanged. A change is needed if r* = 1. If 5,,, > 1 along a
subsequence, then Bnq = a and hence (60) holds because cv(s,,,a) > cv(l,a) > cv(1, 5%),
combined with the fact that T, — T # cv(1, 3*) by (99) and (68). Thus, we focus on the
case that 5,, = 1. Also let 7, = rk(1;,A,), where J, = {j € {1,...,da} : €A, = €9}
We can take a further subsequence such that 7, does not depend on ¢g. By Theorem 1(a),
7y € {0,1}. If 7, = 0, then T, = 0 along this subsequence. This implies that 7., = 0 as well,
so (60) holds. Thus, we focus on the case that 7, = 1 as well.

In this case, we show that
limsup 3, < * (100)
q—00

along a further subsequence. Take a subsequence so that Bnq converges. If Bnq — «, then
(100) holds simply because 5* > «. Suppose lim, . Bnq > «. For every ¢ large enough,
consider a j, € J, such that e%qu # 0. We can take a further subsequence so that j, does not
depend on ¢, and for simplicity, we suppose it is 1. Note that ] A, — ¢} Al_, and the rows of
A, all belong to the unit circle, so €] AT # 0. (The proof of Lemma 9 in CS23 shows that the
rows of G also can be taken to belong to the unit circle.) Also note that €} A,n, = €} g, for
all ¢, so ey Al i, = €igl,, and 1 € J*, where J* = {j € {1,...,da} : €Al nZ, = €}gl.}. (By
Lemma 1 in CS23, 7* = rk([;- Al ).) Therefore, Bnq and §* can both be defined using e; as
the reference row. Note that Bn , s defined using equations (96)-(98) applied to Ay, gq, 2, o
and 7). Let 7} and 7% be the objects defined by (96) and (98), respectively, evaluated at 7.
Also note that 8* is defined using the same equations applied to Al_, gl_, ¥, and n*.. Let

o0

779 and 7% be the objects defined by (96) and (98), respectively, evaluated at n3,.
Let J= = {j € {2,....da} : [|SAL |||t AL ||= €Al (AL ) er}. Let J# = {2,...,da}/J~.
Fix j € {1,...,da} and consider two cases. (a) If j € J=, then 77° = oc. (b) If j € J#, then

7‘]'-1 — 75°, using the convergence of A,, g,, ¥y, and 7), to Al gl . Y, and 0. We can
then calculate that

lim 77 = lim  inf 7/ < lim inf 7/ = inf 77°= inf 7°=71> (101)
q—r00 q—00 je{2,...,da} g0 jeJ7 jeJ#

It then follows from the formula for B\n , and $* that (100) holds.
We finish by showing that

limsup 1{T},, > cv(3n,, Bn,)} < HToo > cv(r*, 5*)} (102)

q—o0
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in this case (which has 5,, = 1 and 7* = 1). Note that T # cv(r*,3*) by (99). If
T > cv(r*, 8*), then (102) holds automatically. If T, < cv(r*, 8*), then (100) implies that
cv(r, Bp,) = cv(r*, B*) — € eventually for some € < cv(r*, %) — T. Then (102) follows
because T;,, = T and 5, = 1 = r*. O

B.5 Using KKT Multipliers in the GCC Test

We can state Theorems 3 and 5 with tAn instead of 5, as long as the multipliers are chosen
carefully. The use of the minimum norm multiplies in (64) in the proof of Theorem 3
shows that, as long as %, is defined using the minimum norm multipliers satisfying the KKT
conditions, the GCC test defined with #,, will be valid. The key idea is that this sequence of
multipliers is guaranteed to converge to some limit, while a different choice of the multipliers
would not be. We state the validity of the GCC test with 7, in Theorem 7 below. However,
this version of the GCC test is not recommended because it involves additional computational
steps: making sure the delta chosen yields the minimal K-activatable set and then minimizing

the norm for choosing psi. Let

Y(z) = arg min .
v!(x) = arg min |[v]

be a generic definition of the minimum norm multipliers satisfying the KKT conditions for
(77), where WT(z) is defined in 84.

Theorem 7. Theorems 3 and 5 continue to hold for the GCC test defined by t,, if L(@,,, v (70,,)
is used for L in (24).

The proof of Theorem 7 is omitted because it is the same as the proof of Theorem 3.
Note that the proof of Theorem 3 only uses the fact that 5, >, in (73). This is not affected

by the modifications in the proof of Theorem 5.

C Lemmas

Section C.1 states lemmas used in the proof of Theorem 1. Section C.2 states lemmas used
in the proofs of Theorems 2 and 3. Section C.3 states lemmas used in Section B. Section

C.4 proves the lemmas.

C.1 Lemmas for the Proof of Theorem 1

Lemma 6. Let B be a dc x d, matriz and C a do x ds matriz. Then

64



(a) rk(M¢B) = 1k([B, C]) — 1k(C), where M¢c = I, — C(C'C)*C".
(b) For any d,, x ds matriz II, we have rk([B, C' — BllI]) = 1k([B, C]).
(C) [fL g K g {1, c. ,dc}, then rk(MCLBL) S I'k(MCKBK), where CK = [KC

Lemma 7. Fiz i, € R% and let (ﬁn,gn, ”@n) satisfy (34)-(38). Fiz K C {1,...,dc} satisfying
LCKCK, where K = {j € {1,...dc} : €Bfi, +¢,Cpd = ¢id} and L= {j € {1,...,dc} :
¢y > 0}. Let & = (MCKBKE;/2>+MCKIKCZ, where Cx = IxCo, Bx = IxB, and
Me, = ljk| — Cx(CCr)TC. It follows that

5125, fi) = (Mo BxSY?) Me, B, — S2 By M, d (103
n ,un /-Ln) - CK K n CK K:un gK espan( n K CK)? an ( )

SV20, — &k € span(SY2 By Mg, )t (104)

C.2 Lemmas for the Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 rely on the convergence of the argmin of a sequence of
CQPPs. The following lemma gives a general statement of such convergence. It implies
that the key condition is Kuratowski convergence of the sequence of constraint sets. In the
following lemmas, we give sufficient conditions for Kuratowski convergence of the constraint
sets. This lemma generalizes Lemma 7 in CS23 in that it no longer requires the constraint
sets to be polyhedral sets with non-negative constants. The non-negativity condition is

replaced by the non-emptiness of the limit constraint set.

Lemma 8. Forn € NU{oo}, let x, € R% let X, be positive definite and symmetric d, x d,
matrices, and let S, C R% be closed and convex. If, as n — 00, Tn — Tog, T — Do,
and S, =k Seo with Se # 0, then argmin g (z, — )'S, (2, — ) — argmin, g_(Too —

7)Y N 20 — ) as n — oo.

The next lemma gives sufficient conditions for Kuratowski convergence of a sequence of

polyhedral sets.

Lemma 9. Consider a sequence of dg x d, matrices {A,} and da-dimensional vectors h,,.

Suppose

(i) A, — Ay and h, — ho (elementwise) for a finite matriz Ay and a (—o00, +00]% -valued

vector hg as n — oo,

(i) poly(An, hy) # 0 eventually, and
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(iii) rk(I;A,) =1k(I;Ap) eventually for any J C {1, ...,da} that is activatable for poly (Ao, ho)
and such that poly(I;Ag, Isho) is an affine subspace of R%:.

Then poly(A,, hn) 2 poly(Ao, ho).

Remarks: (1) The statement of Lemma 9 is very similar to Lemma 8 in CS23. Relative
to Lemma 8 in CS23, Lemma 9 does not require h, to be nonnegative, but instead requires
poly(A,, hy,) to be nonempty (eventually). Lemma 9 also reduces the sets J C {1,...,da} for
which tk(1;A,) = rk(I;Aq) eventually from all subsets of {1,...,da} to only those subsets
which are activatable for poly(Ag, ho) and for which poly(I;Ag, I;ho) is an affine subspace
of R,

(2) The condition that “poly(I;Ag, Iyho) is an affine subspace of R%” says that this
collection of inequalities s 1mplicitly a collection of equalities. It is equivalent to saying
{x € R¥% : [;Agx < I;jho} = {x € R% : [;Agx = I;ho}. That is, all of the inequalities are
implicitly forced to hold with equality. It is impossible for any one of them to be slack. This
is a very small subset of the set of all J C {1,...,da}, even among those that are activatable
for poly(Ag, ho). Lemma 1 implies that this is the set of minimally activatable inequalities
for poly(Ao, hg). Practically, this includes any equalities specified using two inequalities,

together with any accidental equalities specified among the inequalities.

While Lemma 9 is sufficient for a sequence of polyhedral sets, the next lemma gives Kura-
towski convergence of a sequence of polyhedral sets after projecting out nuisance parameters.
Recall that ppoly(B, h; C) = {z € R% : Bx+C§ < h for some § € R%} for a do X d, matrix
B, do x ds matrix C' and a do x 1 vector h. Here, we allow some of the elements of h be

+00. Recall the definition of the minimal activatable set given in Section B.1.

Lemma 10. Let C, be a sequence of dc x ds matrices converging to C.,. Let h, be a
sequence of nonnegative vectors converging to ho. Let B be a fized de % d,, matriz. Suppose
tk(1;[B, Cy)) = rk(1;]B, Cx)) eventually for all J C {1,2,...,dc}. Also suppose for every
x € ppoly(B, hoo; Cxo), 1k(1,C,) = tk(I;Cy) eventually as n — oo, where J is the minimal
activatable set for poly(Cu, hoo — Bx). Then, ppoly(B, hy; Cy) LS ppoly (B, heo; Cwo).

The next lemma shows that the structure of C' = BII 4+ D, together with convergence
of the minimizers of a CQPP, implies the convergence of the multipliers on the inequalities

along a subsequence.

Lemma 11. Let B and D be fized do % d,, and dc % ds matrices, respectively. Let I1,, be
a sequence of d,, x ds matrices converging to Il. Let h, be a sequence of dc-dimensional

vectors converging to ho. Let x, be a sequence of d,-dimensional vectors converging to .
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Let 32, be a sequence of d, x d,, symmetric and positive definite matrices converging to X,
also a symmetric and positive definite matriz. For any n € NU {oc}, consider the CQPP
min Ty — 1) S Nz, — 1), 105

{(N75)33N+C7z5§hn} ( N) " ( M) ( )

where C,, = BIl,, + D. Let (ﬁmgn) solve (105) with active set K, = {k € {1,...,dc} -

ey (hy — Bty — Cngn) =0}. Forn €N, let @n denote the minimum (FEuclidean) norm KKT
multipliers satisfying the KKT conditions for (105):

) (106)

25, (0 — in) = B'tn (107)
Cl by =0 (108)

Igethn =0 (109)

~ ~

where K¢ = {1,...,dc}/K,,. Assume (fin,0n) — (Tise, 0ss) asn — 00. Let ng be a subsequence
along which IA(nq does not depend on q. Then, there exists a @Zoo satisfying (106)-(109) with
n = oo such that @/Z)\nq — {Zj\oo as ¢ — oo.

Remark: The conditions of Lemma 11 can be verified using Lemmas 9 and 10, which,

combined with Lemma 8, lead to the convergence of (fin,0n) t0 (Jico;000). The Uy is well
defined because the KK'T conditions are necessary conditions for the CQPP.

The following lemma shows that a convex quadratic form of a Gaussian random vector

has a continuous distribution.

Lemma 12. For any k x ¢ matrix A, k x 1 vector b, and k X k positive semi-definite matriz
T, and a random vector X ~ N(0,%) with a positive semi-definite variance matriz 3, if

T2 A2 s not a zero matriz, then ||[AX + b||% has a continuous distribution.

Lemma 13. Consider

T = argmin{(w):chégd}HX - MH2E—17 (110)

where B and C are matrices, d and X are vectors, and X is a symmetric and positive definite
matriz. Let (1, 3\, {D\) satisfy the KKT conditions for (110), where {D\ is the vector of KKT
multipliers. Let L = {j : 69121\ > 0} and t = tk(Iz[B,C]) — tk(I;C). Ift =0, then i = X
and T = 0.

Remark: One can combine Lemma 13 with Theorem 1(a) to get that T = 0 if s =0 or

r=0.
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The next two lemmas are useful linear algebra facts.
Lemma 14. If A, is a sequence of matrices converging to A, thentk(A,) > rk(A) eventually.

Lemma 15. Let A, be a sequence of matrices converging to A. Let s, denote a vector of
the left singular values of A,, and let s denote a vector of the left singular values of A, both

in non-increasing order. Then, s, — s.

C.3 Lemma for the Proof of Theorem 6

The next lemma says that two different representations of the same polyhedral set lead to
the same values of the projection onto that set, the rank of the active inequalities, and the

minimal slackness of the additional (inactive) inequalities.

Lemma 16. Let A and B be two matrices and let c,d be two vectors. Let x € R% and
¥ be a positive definite d,, x d, matriz. Let [iy = argmin,c g aqllt — plld- and iy =
argmin,c o g olle — pl[50 . Let Ji={j € {1,....da} : e Afly = €jc} and Jy=1{j €
{1,...,d} : €;Bjiy = €}d}, where ds and dp are the number of rows of A and B, respectively.
Let 7y = tk(I3 A) and 72 = 1k(I3 B). Let 81 = B(ji1) with 3(x) defined in (96)-(98) with
respect to poly(A, ¢) and By = B(jie) with B(z) defined in (96)-(98) with respect to poly(B,d).
If poly(A, c) = poly(B,d), then iy = iy, 71 = 72, and B = .

C.4 Proof of the Lemmas

Proof of Lemma 6. For part (a), observe that the linear span of the columns of [B, C] is the
same as that of [McB,C]. Thus

tk([B, C]) = tk([McB, C]). (111)

Consider the matrix A = [McB, C]'[McB,C]. The eigenvalues of A are the squares of the
column singular values of [M¢B, C]. Thus, rk(A) = rk([M¢B, C]). Now observe that

A= (Phen 2. (112

This block-diagonal feature implies that rk(A) = rk(B’M¢B)+1k(C’C). The same argument
for 1k(A) = rk([M¢B, C]) also shows that rk(B'McB) = rk(McB) and rk(C'C) = rk(C).
Therefore

tk([MeB, C]) = tk(MeB) + tk(C). (113)
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This, combined with (111), proves part (a).
Part (b) holds because [B,C — BII| can be obtained from [B, C|] by elementary column
operations.

For part (c), note that
M, Bx = By — CgA, (114)
where A = (C,Ck)TC} Bg. Left-multiplying on both sides by .1}, we have
I I Mc, Bx = By, — CLA, (115)

where I 1;Bx = B and II},Cx = Cp, hold because L C K. Next, left-multiply (115) by
Me¢, to get

Me, I 1 Mc, Bk = M, By. (116)

Therefore, I‘k(MCLBL) = I‘k(MCLIL]}{MCKBK) S I‘k(MCKBK>. ]

Proof of Lemma 7. First note that @Zn = Ik]Kﬁn because K O L. It then follows from (35)
that C’}JK@L =0, and therefore Iy, = MCKIKQZn. From (34), it follows that 2n3 (17, —
) = B}([K{b\n = B%MCKIKzZn. Rearranging, this proves that

S22l — fin) = S Bie Moy It/ (2n) € span(EL2 B Mes,). (117)

Next, notice that 0 = I (B, + éngn —d) = BKfl,l/ziﬁl/Qﬁn + CKSn — Id because
K CK. Plugging in for i;lﬂﬂn using (117) gives

By, — BxSn By Me, It /(2n) + Cydy, — Iied = 0. (118)
Left-multiply (118) by (MCKBKii/Q)*MCK to get
(Mey BkE)?)" Moy By, — S/ Bie Moy Iictpn/ (2n) — (Mo Bk SY?) Mey Icd = 0, (119)

which uses the fact that (MCKBKiiL/Z)*MCKBKinB}(MCK = i}/zB}{M(gK. Rearrange, and
plug (119) into (117) to get

5,12 (M, — fin) = (Mcy Bk S/?) Mcy By, — ¢, (120)
which uses the definition of £x. Combining (117) and (120) proves (103).
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To prove (104), rearrange (120) to get
irjl/Qﬁn — &k = <§;1/2 - (MCKBKE}JQ)JFMCKBK) Hy- (121>

This, combined with the fact that MCKBKiiL/Q (i;lﬂ — (MCKBKil@/g)*MCKBK) =0, im-
plies that 3, /%7, — &k € span(iiﬂB}(M(;K)L, proving (104). O

Proof of Lemma 8. Let & = argmin, g (2o — )X (2 — 2), which exists and is unique
because S, is nonempty, closed, convex, and Y., is symmetric and positive definite. Let
z, € S, such that z, — 2., which exists because S, = Ss. For n € N, let z,, denote
argmingcg (z, — )X, (2, — x), which exists and is unique because S,, is nonempty, closed,
convex, and Y, is symmetric and positive definite. We want to show that =, — Z.

First note that

(x, — in)’E;I(xn — Ty) < (x, — zn)’Z;I(mn — 20) = (Too — T00) Bt (Too — Too) (122)

oo

as n — oo. Taking the limsup, we get

lim sSup (xn - j’rz)lzrzl(xn - j:n) S (xoo - fi‘oo)lzgol (xoo - :i‘oo) (123)

n—o0

It follows from (123) that Z,, is bounded. Let n,, be an arbitrary subsequence. There exists
a further subsequence, say n,, such that I, converges to some limit, say y.. It is sufficient
to show that ys, = Zoo. (If every subsequence has a further subsequence that converges to
Zoo, then the original sequence must converge to Z..)

It follows from S,, =k S that y. € S. Next, note that

lim (an_j:nq),z);l(xn —&n,) = (xoo_yoo)lzgol(xoo_yOO) > (xoo_iooyzgol(xoo_ioo)v (124)
q—>00 q q q

where the inequality follows from the fact that y,, € S,. Combining (123) and (124), we
have that equality holds in (124). This implies that Y., = £ by the uniqueness of Z,,. [

The following lemma is used in the proof of Lemma 9. It is convenient to state and prove

it separately.
Lemma 17. Consider a sequence of da x d,, matrices {A,} and da-vectors h,,. Suppose

(i) A, — Ay and h, — ho (elementwise) for a finite matriz Ay and a (—o00, +00]% -valued

vector hg as n — oo, and
(ii) poly(An, hy) # 0 eventually and poly(Ag, ho) # 0.
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Fiz 2y € poly(Ao, ho) and let J = {j € {1,...,da} : €;Aoz0 = €jho}. Further suppose
(iii) rk(I;A,) =rk(1;Ap) eventually, and

(iv) poly(I;Ag, Lyhg) is a linear subspace of R%.

Then, there ezists a sequence z, € poly(A,, h,) eventually such that z, — 20.46

Remark: The intuition for the proof of Lemma 17 is as follows. In the usual case, where
the inequalities define a polyhedron that does not belong to a proper subspace of R% , no rank
condition is needed. Any point in the interior can be easily approximated by a sequence of
points in the sequence of polyhedrons. Any point not on the interior can be approzrimated by
a sequence of points in the interior. The rank condition is only needed when the limit polyhe-
dron belongs to a proper linear subspace of R% . Then, we look at the relative interior of the
polyhedron (relative to the subspace). Every point on the relative boundary can be approz-
imated by a sequence of points in the relative interior. The only problem is approximating
points in the relative interior. For this we use the rank condition to ensure that the finite-n
inequalities also define a subspace of the same dimension. The convergence of the subspaces
then allows us to approrimate any point in the limit subspace by a sequence of points in the

finite-n subspaces.

Proof of Lemma 17. First, let S = poly(I;Ag, I hg) be a linear subspace of R%. We show
that it is without loss of generality to assume z; = 0 and hy > 0. If not, we can let
gn = h, — A,zp and gg = hg — Agzo. Notice that g, — go. Also notice that gy > 0 because
2o € poly(Ag, ho). If there exists a sequence z,, € poly(4,,g,) eventually converging to
0 € poly(Ao, go), then z,, + 2o € poly(A,, h,,) eventually and converges to zo.

When z = 0, J = {j € {1,...,da} : €jho = 0}. Let r = rk(/;4¢). Let K be a subset
of J with r elements such that rk(I/xAy) = r. We first note that rk(I/xA,) > r eventually
by Lemma 14. Second, we note that rk(/xA,) <rk(I;A,) = r eventually by condition (iii).
Therefore, rk(Ix A,) = r eventually.

For every n, let x,, € poly(A,, h,), which exists eventually by condition (ii). Let

Zn = A/TL[}((IKAnA;LI}{)_llKAn[Bn,

which is well defined whenever I A, has rank r. We show that z, € poly(I;A,, I;h,)
eventually. Note that the rows of I;A, belong to the linear span of the rows of IxA,

46The “eventually” here means that the sequence z,, must eventually belong to the set poly(4,, h,). This
accommodates the possibility that poly(A,, h,) is empty for finitely many values of n.
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whenever rk(IxA,) = rk(1;A,), which happens eventually. In that case, there is a d4 x r
matrix U,, such that [;A, = U,IxA,. Therefore

;A 2, = Up(Ig AyAL T (T Ap AL T ) M e Apey, = Up I Apy, = 17 A2, (125)

Combined with I;A,x, < I;h, (since x, € poly(A,,h,)), we have z, € poly(l;A,, I;h,)
eventually.

We show by contradiction that z, — 0. If not, then there exists an ¢ > 0 and a
subsequence n,, such that ||z, [|> € for all m. Let wu,, = ||zn,, || "2n,,, which belongs to the
unit circle. Take a further subsequence, mg, such that w,,, converges to ug, also in the unit
circle, as ¢ — co. To simplify notation, let ug = tm,, 24 = zn,,,, Tqg = Tn,,,, A=A and
h

TLmq Y

g = hn,,, . First, we note that ug € S = poly(I;Ao,0) because, for any j € J,
€ gy = T 171 1€Ayz, < Tim |11y =0,

where the inequality follows because z, € poly(I;A4,, I h,) eventually and the final equality
follows because €’h, — €;ho = 0. Second, we show that ug L S. Note that for any v € 5,
and for any j € J, ¢;Agv = 0 (because, otherwise, either z = v or x = —v would satisfy
;Ao > 0, so we would not be in the case that S = poly(l;4y,0) is a linear subspace of
R%). Therefore, for any v € S,

v'ug = (}i_}rgonqH_lv’zq = qli_}r(r)lo VAL (T AgALT ) ™ 2]l ik Agaeg = 0,

where the final equality follows because v'A} I} — v'Ajl = 0, (IgA A I)~" = O(1),
and ||z,|| "M xAgry = IxAgu, = O(1) (because u, = O(1) and IxA, = O(1)). Therefore,
ug € SNS*t = {0}. This is a contradiction because ug = 0 does not belong to the unit circle.
Therefore, z, — 0.

To finish the proof, we show that z, € poly(A,, h,) eventually. We have already shown
that z, € poly(l;A,,I;h,) eventually. For any j ¢ J, we have a;,z, — 0 < eiho, s0
Ujnzn < €;hy, eventually. Therefore, 2, € poly(Ay, hy,) eventually. O

Proof of Lemma 9. Let a}, denote the jth row of Ay and let a,, denote the jth row of A,,.
For the first half of the definition of Kuratowski convergence, let n, be a subsequence and

z, be a sequence such that z, € poly(A,,, hy,) for all ¢ and z, — zp € R% as ¢ — co. Then,

/ ERT / . .
ajozo = lim a;,, z, <limsup hjn, = hjo, (126)
q—00 q—o0
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showing that zg € poly(Ag, ho).

For the second half of the definition of Kuratowski convergence, let zg € poly (A, ho).*"
We seek a sequence, z, € poly(Ay,, h,) eventually, such that z, — 2,."®

We reduce to the case that zo = 0. Let g, = h,, — A,,20 and go = hg — Apzo. Notice that
gn — go- (Also notice that gy > 0 because zg € poly(Ag, ho).) If there exists a sequence
x, € poly(A,, gn) eventually converging to 0 € poly(Ao, go), then =, + 2o € poly(A,, hy)
eventually and converges to zy. Thus, it is sufficient to prove the second half of Kuratowski
convergence assuming zo = 0 and hg > 0.

Let J = {j € {1,...,da} : €;hg = 0}. This is the active set for poly(Ao, ho) at z = 0.
Let S denote the smallest linear subspace of R% that contains poly(I;Ag, I;hg). Let J =
{j€J:ajpL S} By Lemma 11 in CS23, there exists a = € S such that e Ao < elhyg for
all j € {1,...,da}/J°. Notice that, for any j € J®, €[4T = 0 = €}hy (because T € S), so
T € poly(Ao, ho).

Let A\, be a sequence in (0,1] converging to zero as m — oc. For every m, notice that
AnZ € poly(Ag, hy) with active inequalities given by J°. Also notice that by Lemma 13
in CS23, S = poly(I;sAg, I;shg), which is a linear subspace of R%. (Note that I;shy = 0
because J° C J .) Therefore, the existence of a sequence z,,, such that z,,,, € poly(4,, h,)
eventually and z,,,, — A\,T as n — oo follows from Lemma 17 (using Condition (iii) in
Lemma 9 to satisfy Condition (iii) in Lemma 17). Let m = m,, grow sufficiently slowly so

! eventually. Then, by the

that x,,,,, € poly(A,,h,) eventually and ||z, n — Am,Z||< m,;
triangle inequality, z,,, » — 0 = 2y as n — oo. This verifies the second half of Kuratowski

convergence and concludes the proof of Lemma 9. O]

The following lemma is used in the proof of Lemma 10. In general, a sequence of K-
converging sets, intersected with a fixed set, does not K-converge. (See Remark 3 after
Theorem 1 in Cox (2022) for a simple counterexample.) This lemma shows that when the

sets are convex, intersection preserves K-convergence.

Lemma 18. Let S, be a sequence of convex sets K-converging to S, a closed and convez set.
Let T be a closed convex set such that S N int(T) # 0, where int(-) denotes the interior of a
set. Then, S, NT — SNT.

Remark: Lemma 18 can be applied with S, = poly(A,,b,), S = poly(A,b) with b > 0, and
T ={z:||z]|ec< p} for some p > 0 because 0 € SN int(T).

47If poly( Ay, ho) is empty, then there is nothing to prove for the second half of the definition of Kuratowski
convergence. The first half of the convergence implies that poly(A,, h,) Kuratowski converges to the empty
set.

48 As in the proof of Lemma 17, the “eventually” here means that the sequence z, must eventually belong
to the set poly(Ay, hy,). This accommodates the possibility that poly(A,,h,) is empty for finitely many
values of n.
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Proof of Lemma 18. Let y € SNint(T). Let € > 0 such that {z : ||z —y||< ¢} CT. It
follows from S,, —x S that there exist y,, € S,, such that 3, — y. We show K-convergence
in two steps.

(1) Let x € SNT. It follows from S,, — S that there exist z,, € S, such that z,, — =.
Let A\, = min(2¢ ||z, — z|,1). Let 2, = (1 — X\)xn + A\u¥n. Then, 2, € S, because S, is
convex. Also, z, — x because \,, — 0. If A\, =0, then ||z, —z||= 0and z, =z € T. To show
that z,, € T eventually when \,, > 0, let 2% = A1z, +(1—\ 1)z so that 2z, = N\, 25+ (1—\,)z.
We then have ||z} —y||= ||\, (zn —2) + @ — 2+ yn — y||< €/2+ || 20 — x|+ ||yn — y]|, Which is
less than e eventually. When ||z — y||< €, then 2z} € T, and, by the convexity of T', z, € T.

(2) Let z, € S, N T and let n, be an arbitrary subsequence along which z,, — z. It
follows from S,, —x S that x € S. It also follows from the closedness of T" that x € T.
Therefore, x € S NT, completing the second half of K-convergence. n

Proof of Lemma 10. Given the assumption that rk(I;[B,C,]) = rk(I;[B,C]) eventually

for all J, we can invoke Lemma 9 to get that
poly([B, C,], hy) =k poly([B, Cul, hoo)- (127)

For the first half of Kuratowski convergence, consider an arbitrary « € ppoly (B, heo; Co)-
Then, there exists a & such that (z,0) € poly([B,Cxl,heo). By (127), there exists a
sequence (z,,0,) € poly([B,C,],h,) such that z, — x and 0, — J. It follows that
T, € ppoly(B, hy; Cy).

For the second half of the Kuratowski convergence, consider an arbitrary subsequence n,
and an arbitrary sequence of values x, € ppoly(B, hy ; Cy, ) such that z, — z. We want to
show that x € ppoly(B, hoo; Cs). Note that ppoly(B, heo; Coo) # ) because ho, > 0. Let y
be the projection of z onto ppoly(B, hao; Cs). Since y € ppoly(B, heo; C), there exists a
§ € poly(Coo, hoo—By). Let p > ||(y,0)|leo- Let Box(p) = {(z,8) € R%xR% : ||(z,0)]|< p}-
Let ppoly,(B, hn,; Cy,) = {& € R% : (2,6) € poly([B,Cy,], hn,) N Box(p) for some 6}. Let
z, denote the projection of z, onto ppoly,(B,hn,;Cy,). Let v, be such that (z,,7,) €
poly([B, Cy, ], hn,) N Box(p). Take a further subsequence so that (z4,v,) converges to some
(z,7) € Box(p). It follows from Lemma 18 that

poly([B, Cn,], hn,) N Box(p) 2 poly([B, o), hoo) N Box(p). (128)
Therefore, (z,7) € poly(|B, Cx], hoo). Notice that

lzg = 2gl*= llo = 2I*> | — 9%, (129)
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where the inequality follows because z € ppoly(B, ho;Cy). Note that the inequality in
(129) holds with equality if and only if z = y (by uniqueness of projection onto a convex set).
Also, by (128), there exists a (y,, ;) € poly([B, Cy,|, hn,)NBox(p) such that (y4,0,) — (y,6).
Notice that

0 — 2l12 g = all*= 1z — ol (130)

where the inequality follows because y, € ppoly(B, hy,; Cy,). It follows from (129) and (130)
that lim, 00|z, — 2,/1?= ||z — 2|>= ||z — y||*. Therefore, z = y.

Next, let J be the minimal activatable set for poly(Cu, ho — By). By assumption,
tk(1;Cy,) = 1k(1;C) eventually as ¢ — oco. Therefore, by Lemma 9, poly(C,,,, hn, —B2,) 5
poly(Co, hoo — By). Since ¢ € poly(Cu, hoo — By), there exists gq € poly(Ch,, hy, — Bz,) such
that gq — 6. The fact that p > ||(y, )|| implies that ||(z,, gq)|\< p eventually. Recall that z,
is the projection of x, onto ppoly,(B, hy,; Cy,). Since the restriction that (z,, Sq) € Box(p)
is not binding, it follows that z, = x,.*" Therefore, x, — y, which implies that y = = and

x € ppoly(B, hoo; Cwo)- m

Proof of Lemma 11. Fix the given subsequence and denote IA(nq by K. For q € N, let

— 1L, Ode.
B 22;(11 (Tn, — Hng)
—B’ _221::(13% - ﬁm;)
Uy=| ¢ | andb, = O,
_C;zq Od;
U 0
| R | L O\f(c\ J
Similarly, let
T _ 0, -
B 255 (Too — fhoo)
—B —2% (Too — Hoo)
[700 = c’ and goo = 04,
—-C7 Od,
Iz 0)7e
| TR | L 0|1?c|

¥To clarify this argument, let A be such that (x4, Ag) € poly([B,Cy,|, hn,). If z4 # x4, then note that

€(xq, Ag) + (1 = €)(2q,04) € poly([B,Ch,], hn,) N Box(p) for € > 0 small enough. This shows that z, cannot
be the projection of x4 onto ppoly,(B, hn,; Cp,). Therefore, z, = z,.
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Then, ¢, = argmin ||¢]|. Denote the number of inequalities by dyy = 2du—|—2d5+2|l/€c|+dc.
wepoly(Ug,bq)
We first show that

rk(1,U,) = rk(I;Us) (131)
for every J C {1, ...,dy} that is activatable for poly(ﬁq,gq) or poly([?oo,goo). Since there are
three collections of equalities, any such J must contain the final 2d, +2d; —|—2|IA( °| elements of
{1,...,dy}. We can therefore write J as JoU{dc+1,...dy} where Jy C {1, ...,dc}. Evaluate:

tk(1,0,) = 1k(Uy1)) = k(=L B, =B, Cu,y = Cuyo ey —I%.])
=1k([~1},, B, Ch,, 1%.])
= 1k([-I},, B, BIL,, +D, I%.)
= 1k([-1I}, B, D, I...))
=1k([~1},, B, Bllo+ D, I%])
=1k([~1},, B, Cx, I4.])
=1k([~1},, B, — B, Cx, —Cu, I, —I.])
(

where the second and second-to-last equalities hold by the structure of J, and the middle six
equalities hold by the rank-preservation property of basic matrix column operations. This
shows (131).

Note that poly(ﬁq,gq) is nonempty because 1an € poly(ﬁq,gq). This, combined with (131)
and Lemma 19, implies that poly([?m,gm) is nonempty. Let ’(//J\OO = argmin  ||¢|. The
~ - R $EPOLY (Tso bos)
fact that 1, € poly(Us,bs) implies that 1), satisfies conditions (106)-(108) with n = co.
For condition (109), note that I f(ez;oo = 0, which implies that f{gol/p\oo = 0 because K ¢ C Ke
(equivalently, K C IA(OO) To see this last point, note that if, for a given k& € {1,...,dc},
we have e} (hyn, — Blin, — C’nqgnq) = 0 for all ¢, then € (hoo — Blico — C’oogoo) = 0. (Recall

K= IA(nq for all q.)

Finally, it follows from Lemma 9, using (131) and the non-emptiness of poly(ﬁq,gq), that
poly(l}q,gq) —K poly(ﬁw,gm). Then, it follows from Lemma 8 and the non-emptiness of
poly(fjoo,goo), that zznq — QZOO. ]

Proof of Lemma 12. First note that X has the same distribution as X = X127, where X1/2
is the symmetric matrix square root of 3 and Z ~ N(0, ). Thus, it suffices to show that

|AX + b||% has a continuous distribution.
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Next, consider the derivation:
AX +b|2= Z'SYVPATASY2Z + 20T ASY2Z + 1/ Y. 132
=

Let SV D be the singular value decomposition of T/2A%Y2 where S and D are unitary
matrices (i.e. square matrices such that SS” = I and DD’ = I) and V is a rectangular

diagonal matrix whose diagonal elements are singular values of T'/24%'/2. Then
|AX +b||2= Z'D'VV'DZ + 20 YY2SV DZ + b/ Y. (133)

Let Z = DZ. Then Z ~ N(0,1). Let Zj be the jth element of Z for j € {1,...,¢}. Then
N ¢
IAX +b|3="> (032} + wjv; Z;) + 'Y, (134)

j=1

where v; is the jth diagonal element of V' (we let v; = 0 for j > k when ¢ > k) and
w; is the jth element of the vector 25'Y'/2bh. The lemma is proved by observing that
{?}222 +w]ij }_, are mutually independent, and for each j, ]Z —|—wj'0j2j is a continuous

random variable unless v; = 0. O

Proof of Lemma 13. The first two KKT conditions for (110) are

It follows from the definition of L that 72 =1 ’ZI ETZ' Plugging this into the first two KKT

conditions, we get that

25 (X — i) = By I3 (135)
ChIz = 0. (136)

It then follows from (136) that IZ"J = Mc. [EQ//J\. Plugging this into (135), we get that
227X — i) = B:Mc. I;9.

Then note that, by Lemma 6(a), 0 = rk(M¢_ Bz ). Therefore, X~"(X — i) = 0, which implies
that 7= X and 7' = 0. O

Proof of Lemma 14. Note that the rank of any matrix is equal to the number of nonzero
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singular values. The matrix A has rk(A) nonzero singular values. By Lemma 15, A,, has at

least rk(A) nonzero singular values eventually. Therefore, rk(A,,) > rk(A) eventually. O

Proof of Lemma 15. The left singular values of A,, and A are the non-negative square roots of
the eigenvalues of A/ A,, and A’A, respectively. The result then follows from Theorem 2.4.9.2
of Horn and Johnson (2012), which implies that the eigenvalues of a Hermitian matrix are

continuous in the entries of the matrix. O

Proof of Lemma 16. The fact that j1; = fis follows because the feasible sets are the same.

For the other two results, it is sufficient to prove them when the rows of A are a subset of
the rows of B. This is because we can define F' = [A; B] and ¢ = [¢; d], where the semicolon
denotes vertical concatenation, so that poly(F, g) = poly(A, c) = poly(B, d). Then the result
with the rows of A being a subset of the rows of F' combines with the result applied to B
and F' to yield 7; and 75 are both equal to the rank of the active inequalities for projection
onto poly(F,g) and B\l and B\Q are both equal to the value calculated when projecting onto
poly(F g).

When the rows of A are a subset of the rows of B, then r; = 75 follows from the proof of
part (c¢) of Lemma 9 in CS23 (the bottom of page 90 in the supplemental materials). The
fact that B\l = B\g follows from Lemma 10 in CS23. O

D Feasibility of the Limit

Assumption 1(vi) requires poly(Cw,bs) to be nonempty. The remark on Assumption 1
points out a sufficient condition based on a compact set A. In fact, that condition can be
weakened to {0 € R% : Opd < bp} N A #  for all F € F,,5. The argument for sufficiency
is the same. Namely, for any sequence F, € F,,, there exists a (5an € A such that
Bur,, + (Bllp,, + D)or,, < dn,. This sequence has a subsequence that converges to some
limit do, € A that satisfies B, + (Blly + D)ds < ds. The remark on Assumption 1 also
claims that Assumption 1(vi) follows from Assumption 1(i) and a strengthened version of

Assumption 2. This section states Lemma 19, which formalizes this claim.

Lemma 19. Consider a sequence of dc x ds matrices {C,,} and dc-dimensional vectors {b,}.

Suppose
(i) Cp — Cs and b, — by as n — 0o for some Cy € R4*% and by, € RéC,

(ii) poly(Chy,bn) # 0 eventually, and
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(iii) for any K C {1,...,dc} that is activatable for poly(C,,b,) infinitely often, we have
tk(IxC,) = rk(IxCy) eventually.

Then, poly(Cu, boo) # 0.

Remark: Lemma 19 verifies Assumption 1(vi) under Assumption 1(i) and a strengthened
version of Assumption 2 where we require equation (28) to hold also for every K such that
K= C K and K € U2, A(CF,,,br,, ) eventually. This is because, by Assumption 1(i),
Cpnq = D+ Bllp, — D+ Blle = Cx and bg,, = dn, — Bur,, — doc — Blico = boo- Also,
the fact that F,, € F,o itmplies that poly(CF,,bg,) is nonempty. Finally, any K C {1,...,d¢c}
that is activatable for poly(Can,ban) infinitely often must include K= and must belong to
U A(CF,, b, ). Therefore, all conditions of the lemma are satisfied, and Assumption

1(vi) is verified.

Proof of Lemma 19. This proof uses Lemma 20, stated below. By condition (ii), poly(C,, b,)
is a non-empty closed set eventually. Thus, the following argmin is well-defined for large

enough n:

&, =argmin ||z||* s.t. Cpx < by,. (137)
reR%s

Let K, = {j € {1,...,dc} : €5(CrZ, — b,) = 0}. Since K, can take at most 24c distinct
values, there exists a subsequence {nq} such that K, does not depend on ¢ and thus can

be simply denoted by K. It then follows from Lemma 7 (with no nuisance parameters) that
g = (IxCn,) " Ixchn, (138)

for all ¢ € N.
Note that K is an active set of inequalities for poly(C,, b,) infinitely often, and therefore
by condition (iii), rk(/xC,,) = rk(/xCx) eventually as ¢ — oo. It follows from Lemma 20
that (]Kqu)+ — (IxCs)™ as ¢ — 00. Let &0 = (IxCso)” Ixbs and note that Tp, — Too-
To complete the proof, note that
Coolos = boo = lim (Cy, Ty, — by,) < 0.

q—o0

Thus, &+ € poly(Cuo, boo), Which shows that poly(Cu, beo) # 0. O

Lemma 20. Let A, be a sequence of matrices converging to Ay such that tk(A,) = rk(Ay)
eventually. Then, AT — AL.

Proof of Lemma 20. Fix an arbitrary subsequence, n,,. It is sufficient to show that there

exists a further subsequence along which the convergence in the conclusion holds.
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Let A, = U,%, V! be a singular value decomposition of A,,, where U,, and V,, are orthonor-
mal matrices and ¥, is a (possibly non-square) diagonal matrix with diagonal elements equal
to the singular values of A,, in nonincreasing order. Let ¥, be the (possibly non-square)
diagonal matrix with diagonal elements equal to the singular values of A.,. Let Uy, and V,,
be orthonormal matrices and let n, be a further subsequence of n,, such that U,, — U,
Vi = Voo, and 7 = 1k(A4,,,) = k(A ) does not depend on ¢. (These exist because the set
of orthonormal matrices is compact.) It follows from Lemma 15 that X, — 3. It follows
from convergence that Ay, = U,X VL, is a singular value decomposition of A..

The fact that 33, and X, both have r nonzero diagonal elements, together with the fact
that 3, — Y., implies that Zj{q — X1. (The Moore-Penrose pseudo-inverse of a possi-
bly non-square diagonal matrix is a diagonal matrix of the same dimension with diagonal
elements equal to the pseudo-inverse of each diagonal element of the original matrix.) There-
fore, Ay = U, X3V, — UXL V5, = AL. (In general, the Moore-Penrose pseudo-inverse
of a matrix A with singular value decomposition UXV’ is AT = UXTV’; see, for example,

Chapter 6 in Ben-Israel and Greville (2003).) O

E Inference on Policy Relevant Treatment Effects

In this section, we demonstrate the GCC test in a simulation of Example 4. The simulations

show that the GCC test is fast to compute and has good size and power.

E.1 The Data Generating Process

We follow Section 5 in Mogstad et al. (2018). We generate an i.i.d. sample of {Y;, D;, Z;}",
according to the following distribution. Suppose Y is binary and there are no exogenous
covariates X. Let Z be independent of (Y, Y;) with support {0, 1,2} and distribution given
by P(Z =0) =05, P(Z =1) = 0.4, and P(Z = 2) = 0.1. Also, let D = 1{p(Z) > U}, where
U|Z ~ Uniform|0, 1] and p(z) is the propensity score, defined by p(0) = 0.35, p(1) = 0.6,
and p(2) = 0.7. Let Yy|U = u ~ Bernoulli(k4(u)), where the marginal treatment response

functions are

ko(u) = 0.605(u) + 0.4¢7 (u) + 03¢5 (u),
r1(u) = 0.75¢5 (u) 4+ 0.5¢% (u) + 0.2503 (u), (139)
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and ©Z(u), 3(u), p3(u) are the Bernstein basis polynomials of degree 2:

et = (ot - ot

These marginal treatment response functions are the same as those used in MST18 and are

depicted in Figure 1 in that paper.

E.2 Local Average Treatment Effects

For 0 <o <as <1, let
LATE(OQ,O[Q) = E[Yi — )/()|O./1 <U< 042]. (140)

As shown in Imbens and Angrist (1994), the three point-identified LATESs for the DGP spec-
ified in Section E.1 are: LATE(0.35,0.6), LATE(0.35,0.7), and LATE(0.6,0.7). Other LATEs
are generally not point identified. We take our (policy-relevant) parameter of interest to be
6 =LATE(p(0),0.9). Recall the true value of p(0) is 0.35. This parameter is closely related to
the instrument that identifies the LATE(0.35,0.7) parameter. It has the interpretation of a
policy change that includes the same compliers as that instrument plus additional compliers
with values of u up to 0.9. (Think of the instrument as being a past policy change, while the
policy change of interest is the same but with more compliers.) The true value of # for the
DGP specified in Section E.1 is approximately 0.046. This parameter of interest is not point

identified. However, we use the bounds in MST18 to calculate a confidence interval for 6.

E.3 Marginal Treatment Response Parameterization

We define a set of MTRs to be a set of functions of u € [0, 1] that are bounded between 0
and 1 and constant on the intervals U; = [0,p(0)), Us = [p(0),p(1)), Us = [p(1),p(2)), Uy =
[p(2),0.9), and Us = [0.9, 1]. The endpoints of these intervals are taken from the range of the
propensity score function, together with the boundary of the LATE that we are interested
in. By Proposition 4 in MST18, this parameterization of MTRs is sufficient to achieve tight
nonparametric bounds on 0. For d € {0,1}, let dg = (0a1,du2, 0a3, daa, da5) € [0,1]° be a
vector of coefficients such that d4 is the value of the function over U; for j € {1,...,5}. Let

d = (0(,07)". We enforce these shape restrictions on d by setting
—1I 0
A= 7" and b= [ """, (141)
I 1101
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E.4 1IV-Like Estimands

Any measurable function of D and Z could be an IV-like estimand. We consider a variety

of subsets of the following I'V-like estimands:

IV: siv(D,2) =7 —E[Z]
OLS : sors(D,Z) = D — E[D]
Wz sz(D,Z) =1{Z =0}
Vi sp(D,Z) =1{Z =1}
IVyzs: sz2(D, Z) = 1{Z =2}
)=D1{Z =0}
)=D1{Z =1}
)=D1{Z =2}
)
)
)

IVpzi0 : Spzio(
IVpzii: spzi

I

IVpzi2t spzio

Y

—(1-D)1{Z =0}

—(1-D)1{Z=1}
—(1-D)1{Z=2)}. (142)

Y

IVpzo1 : spzoi(D,

SECECEEECES
N N N N N N

(
(
IVpzoo : spzoo(
(
(

IVpzo2 © spzo2

Y

Any S C S := {IV,OLS, Z0, Z1, Z2,DZ10, DZ11,DZ12,DZ00, DZ01, DZ02} defines a collec-

tion of IV-like estimands that defines a vector m with |S| elements.

E.5 Defining and Estimating m, v, and I’

For any = € S, let m, = E[s,(D, Z)Y]. For any S C S, we can take m to be the vector of
m, for z € S. Each m, can be estimated by m, =n"'>"" | s,(D;, Z;)Y;.”

To define 7, we use the formula for the weights associated with LATE(p(0),0.9) from
Table I in MST18 combined with the piecewise constant basis functions. For d € {0,1} and
je{l,...,5} let

s — 109 - |/]l{u€L{ A [p(0), 0.9]}du. (143)

Let v = (7,71)', where va = (Ya1, Va2, Vas, Yaa, Yas) for d € {0,1}. Note that v needs
to be estimated because it depends on p(0). It also depends on U;, which need to be

~, ~,

estimated.”” We estimate the propensity scores by (p(0),p(1),p(2)) = n~t> 1 (1{Z; =

®0For x € {IV,OLS}, s,(-) is estimated by replacing E[Z] and E[D] with n='>""" | Z; and n=* Y"1 | D;,
respectively.

51Tn MST18, the basis that parameterizes the MTRs is taken as given and known throughout the paper.
However, a specific basis is required for the bounds to be equal to the endpoints of the identified set—one
that depends on the unknown propensity scores; see Proposition 4 in MST18. This basis must be estimated

82



0}, 1{Z; = 1}, 1{Z; = 2}). We then take LAIJ to be estimated versions of I; with the estimated
propensity scores plugged in. Similarly, we estimate 4 and v by 74 and 7 following (143)
with p(0) and ﬁj plugged in.

To define I", we use the formula for the weights from Proposition 1 in MST18 combined
with the piecewise constant basis functions. For z € S, let ', denote the row of I' associated
with s, (D, Z). We can define ', = (I, '), where I',qg = (I'za1, -, [za5)” and

Py = E [ s,(0,2)1{u € U;}1{u > p(Z)}du ifd=0 | (144)
E [s.(1,Z2)1{u € Uj}1{u < p(Z)}du ifd=1

for d € {0,1}, j € {1,...,5}, and # € S. We can estimate I" by

P, = S 500, Z)1{u € U1 {u > B(Z)}du  if d =0 | (145)

n Y [ sa(1, ]l{ueu}ll{u<p( Z)}du ifd=1

where, for z € {IV, OLS}, we follow footnote 50 for estimating s,(-, ).
We estimate the variance-covariance matrix of the estimators of +, m, and I by the
bootstrap with B = 1000 bootstrap draws.

E.6 Results

We implement the GCC and RGCC tests using (11) to write I, m, 7, 8, A, and b in terms
of B, u, I, D, and d.”*> We can similarly define 7,,, II,,, and €,, using the estimators of ~,
m, ', and the estimator of their variance-covariance matrix. For each of 5000 simulations,
we calculate the confidence interval implied by the GCC and RGCC tests using bisection.
We then calculate the frequency with which any given value of 6 in [—1, 1] lies outside the
confidence interval.

We consider a variety of choices of S C S. Figure 4 reports the results for only the IV
estimand: S; = {IV}. Figure 5 adds the OLS estimand: Sy = {IV,OLS}. Figure 6 breaks
the instrument into three components and keeps the OLS estimand: S3 = {Z0,71, 72, OLS}.
Figure 7 saturates the support of (D, Z2): Sy = {DZ10,DZ11,DZ12,DZ00, DZ01,DZ02}.
Note that S, gives the tightest bounds on 6. The identified sets for 8 are also depicted in

Figures 4-7 by the shaded region.”® In the legend, the number in square brackets indicates

in practice.

52Because 7 is estimated, we follow the strategy in Remark (2) above Example 3 in Section 2.2.

53For a given S C S, the identified set for # can be calculated by solving two LPPs: O, =
Ming: As<p,r5=m Y0 and Omax = Maxs. as<p rs=m Y 0 for the I and m associated with S.
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Figure 4: Power Curve with only the IV Slope Coefficient (&)

the computational time (in seconds) to compute the confidence interval once, taking the

median over simulations.
Remarks: (1) In each figure, both GCC and RGCC tests have well controlled null rejection

rates and reasonable power outside the identified set. We can see that the identified sets

shrink as we add more IV-like estimands, as expected. It is encouraging to see that the
power curves get steeper with more I'V-like estimands as well, indicating that our tests can
effectively capture the identification power of the additional 1V-like estimators despite the
added noise. The RGCC test appears to be size-exact on the boundary of the identified sets.
Also, the difference between the GCC and RGCC tests gets smaller as the number of equalities

mereases.
(2) It is interesting to note that the computational time of the RGCC does not change

monotonically as we move from Figure j to Figure 7. It takes the longest in Figure 6. The

nonmonotonicity results from the way we implement the refinement. Specifically, we do not

implement the vertex enumeration step unless s, = 1. The event §,, = 1 may occur less

frequently as the number of inequalities/equalities increases.
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