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a b s t r a c t

This paper studies the problem of specification testing in partially identified models defined by moment
(in)equalities. This problemhas not been directly addressed in the literature, although several papers have
suggested a test based on checking whether confidence sets for the parameters of interest are empty or
not, referred to as Test BP. We propose two new specification tests, denoted Test RS and Test RC, that
achieve uniform asymptotic size control and dominate Test BP in terms of power in any finite sample and
in the asymptotic limit.
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1. Introduction

This paper studies the problem of specification testing in par-
tially identified models defined by a finite number of moment
equalities and inequalities (henceforth, referred to as (in)equa-
lities). The model can be written as follows. For a parameter vector
(θ, F), where θ ∈ Θ is a finite dimensional parameter of inter-
est and F denotes the distribution of the observed data, the model
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states that

EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p,

EF [mj(Wi, θ)] = 0 for j = p + 1, . . . , k, (1.1)

where {Wi}
n
i=1 is an i.i.d. sequence of random variables with distri-

bution F and m : Rd
× Θ → Rk is a known measurable function.

This model is partially identified because the sampling process and
the maintained assumptions (that is, Eq. (1.1) together with reg-
ularity conditions) restrict the value of the parameter of interest θ
to a set, called the identified set, which is smaller thanΘ but poten-
tially larger than a single point.

The model is said to be correctly specified (or statistically ad-
equate) when the moment (in)equalities hold for at least one
parameter value, i.e., when the identified set is non-empty.1 A
specification test takes correct specification of the model as the
null hypothesis and rejects if the data seem to be inconsistent

1 The concept of statistical adequacy was introduced by Koopmans (1937) and
referred to as the Fisher’s axiom of correct specification. The discussion of the
importance of a correct specification for inference purposes dates back to Haavelmo
(1944).

http://dx.doi.org/10.1016/j.jeconom.2014.10.013
http://www.elsevier.com/locate/jeconom
http://www.elsevier.com/locate/jeconom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jeconom.2014.10.013&domain=pdf
mailto:federico.bugni@duke.edu
mailto:iacanay@northwestern.edu
mailto:xshi@ssc.wisc.edu
http://dx.doi.org/10.1016/j.jeconom.2014.10.013


260 F.A. Bugni et al. / Journal of Econometrics 185 (2015) 259–282
with it. Specification tests for partially identifiedmodels have been
studied by a small number of authors (reviewed below), but the
only existent test applicable to the general specification of Eq. (1.1)
is the one based on checking whether a confidence set for θ is
empty or not. We refer to this procedure as ‘‘Test BP’’, to empha-
size that it is a by-product of confidence sets for θ , and describe it
formally in the next section.

In this paper, we propose two new specification tests for the
model above and show that they have the following properties.
First, our tests achieve uniform size control, just like Test BP. Sec-
ond, our tests dominate Test BP in terms of power in any finite sam-
ple and in the asymptotic limit. Specifically, our tests havemore or
equal power than Test BP in all finite samples, and there are se-
quences of local alternative hypotheses for which our tests have
strictly higher asymptotic power.

Both of our tests use the same ‘‘infimum’’ test statistic
infθ∈Θ Qn(θ), where Qn(θ) is the criterion function typically used
to construct confidence sets for θ , much in the spirit of the popular
J-test in (point-identified) GMMmodels (see Remark 4.1). The dif-
ference between them lies in the critical value used to implement
the test. Computing one of these critical values requires little ad-
ditional work beyond the computation involved in the confidence
set construction, just like in Test BP. We therefore always recom-
mend the use of this test, as it attains better power at almost no
additional cost. On the other hand, our second test has even better
power, but it requires a separate resampling procedure to imple-
ment. For this reason, we recommend its use when one has serious
interest in the statistical adequacy of the model.2

From a methodological point of view, there are two aspects of
our paperworth highlighting. First, we derive the limiting distribu-
tion of the ‘‘infimum’’ test statistic under drifting sequences of data
distributions and provide two methods to approximate its quan-
tiles. To the best of our knowledge, we are the first ones to obtain
these kinds of results in partially identified moment (in)equality
models. These methodological contributions are relevant in prob-
lems that go well beyond specification testing. For example, Bugni
et al. (2014) show that hypothesis tests based on the ‘‘infimum’’
test statistic can be adapted to address a large class of interesting
new problems, which includes inference on a particular coordinate
of a multivariate parameter θ . Second, the asymptotic framework
we use is one where the tuning parameter κn that determines if
a moment inequality is binding, diverges to infinity at an appro-
priate rate, c.f. Andrews and Soares (2010). In this framework, the
arguably best possible implementation of Test BP is the onewe use,
see Definition 2.4. Recent contributions to the literature have used
an alternative asymptotic framework where this tuning parame-
ter κn converges to a constant κ < ∞ that affects the limiting dis-
tribution, see Andrews and Barwick (2012), Romano et al. (2014),
McCloskey (2014). One could potentially use these methods to de-
fine another version of Test BP, and then study the behavior of our
tests using fixed-κ asymptotics. We do not pursue this strategy as
it involves technical tools that are well beyond those developed
here.3

The motivation behind our interest in misspecified models
stems from the view that most econometric models are only ap-
proximations to the underlying phenomenon of interest. This is
also the case for partially identified models, where strong and
usually unrealistic assumptions are replaced by weaker and more
credible ones (see, e.g., Manski, 1989, 2003). In other words, the

2 It isworth pointing out that a version of our second test has been used in Gandhi
et al. (2013), with p = 401 and a parameter θ withmore than 20 coordinates, which
illustrates the feasibility of this test in real scale applications.
3 For example, all tests would suffer from asymptotic size distortion and size

correction would be needed.
partial identification approach to inference allows the researcher
to conduct inference on the parameter of interest without im-
posing assumptions on certain fundamental aspects of the model,
typically related to the behavior of economic agents. Still, for com-
putational or analytical convenience, the researcher has to impose
certain other assumptions, that are typically related to functional
forms or distributional assumptions.4 If these assumptions are not
supported by the data, and so themodel is misspecified, the result-
ing statistical inferences are usually invalid (see, e.g., Ponomareva
and Tamer, 2011; Bugni et al., 2012).

Specification tests for partially identified models have been
studied in Guggenberger et al. (2008), Romano and Shaikh (2008),
Andrews and Guggenberger (2009), Andrews and Soares (2010),
Santos (2012). Guggenberger et al. (2008) propose to transform
a linear moment (in)equality model into a dual form that does
not involve parameters and, in this way, eliminate the partial-
identification problem. Innovative as it is, their approach only
applies to linear models and is not practical when the dimension
of the parameter is large because the dimension of the dual form
grows exponentially with the dimension of the parameters. Santos
(2012) defines specification tests in a partially identified non-
parametric instrumental variable model and, thus, his results are
not directly applicable to the model in Eq. (1.1). To the best of
our knowledge, the only valid specification test for the model
in Eq. (1.1) that has been described in the literature is Test BP.
This specification test has been proposed by Romano and Shaikh
(2008, Remark 3.7), Andrews and Guggenberger (2009, Section 7),
and Andrews and Soares (2010, Section 5).5

It is worthmentioning that the specification testswe propose in
this paper are a type of omnibus tests, in the sense that the specific
structure of certain nonparametric alternatives is unknown. How-
ever, a partially identifiedmodel is typically the result of removing
undesirable restrictions in a certain point identified model. As a
consequence, refuting the partially identified model leaves the re-
searcher with a reduced set of assumptions that could potentially
be wrong. In addition, in some cases testing the specification of a
partially identified model can be analogous to directly testing an
interesting economic behavior. For example, Kitamura and Stoye
(2012) recently proposed a specification test for the Axiom of Re-
vealed Stochastic Preference that shares similarities to our specifi-
cation tests. In their case, rejecting the specification of the model
through their non-parametric test directly means rejection of the
Axiom of Revealed Stochastic Preferences. We note, however, that
there are substantial differences between our approach and that
in Kitamura and Stoye (2012) in terms of the nature of the model,
the construction of the test statistic, and the range of applications
in which each of these tests can be applied.

The rest of the paper is organized as follows. Section 2 intro-
duces the basic notation we use in our formal analysis and de-
scribes the aforementioned Test BP. The tests proposed in this
paper compare a test statistic with a critical value. Section 3 in-
troduces our test statistic. The description of our tests is then com-
pleted by introducing appropriate critical values that are presented
in the succeeding sections. Section 4describes a critical value based
on the asymptotic approximation or bootstrap approximation of
the limiting distribution of the test statistic. We call this test the
re-sampling test or ‘‘Test RS’’. Section 5 describes a critical value
that is based on recycling critical values that have already been

4 See Manski (2003) and Tamer (2003) for a discussion on the role of different
assumptions and partial identification.
5 It is important to clarify that Test BP was conceived by papers whose

main objective was the construction of confidence sets and not the design of
a specification test. In addition, Test BP has some robustness properties, see
Remark 6.7.
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considered in the literature. We call this test the re-cycling test or
‘‘Test RC’’. Section 6 compares the asymptotic size and power of the
new tests we propose and the existing test, Test BP. Finally, Sec-
tion 7 presents evidence from Monte Carlo simulations and Sec-
tion 8 concludes. The Appendix includes all of the proofs of the
paper and several intermediate results. Finally, throughout the pa-
perwe divide the assumptions in two groups:maintained assump-
tions indexed by the letter M (to denote the assumptions that have
been already assumed by the literature) and regular assumptions
indexed by the letter A (to denote the assumptions that introduced
by this paper).

2. Framework

The objective of our inferential procedure is to test whether the
moment conditions in Eq. (1.1) are valid or not for at least one
parameter value, while maintaining a set of regularity conditions
that we use to derive uniform asymptotic statements. We assume
throughout the paper that F , the distribution of the observed data,
belongs to a baseline probability space that we define below. Given
this baseline space, we define an appropriate subsetwhere the null
hypothesis holds, denoted null probability space. These two spaces
are the main pieces in the description of our testing problem. We
then introduce more technical assumptions in Section 3 before
presenting the main results. The next three definitions provide the
basic framework of our problem.

Definition 2.1 (Baseline Probability Space). The baseline space of
probability distributions, denoted by P ≡ P (a,M, Ψ ), is the set
of distributions F such that for some θ ∈ Θ , (θ, F) satisfies:

(i) {Wi}
n
i=1 are i.i.d. under F ,

(ii) σ 2
F ,j(θ) = VarF (mj(Wi, θ)) ∈ (0, ∞), for j = 1, . . . , k,

(iii) CorrF (m(Wi, θ)) ∈ Ψ ,
(iv) EF [|mj(Wi, θ)/σF ,j(θ)|2+a

] ≤ M ,

whereΨ is a specified closed set of k×k correlationmatrices6, and
M and a are fixed positive constants.

Definition 2.2 (Null Probability Space). The null space of probabil-
ity measures, denoted by P0 ≡ P0(a,M, Ψ ), is the set of distribu-
tions F such that for some θ ∈ Θ , (θ, F) satisfies:

• Conditions (i)–(iv) in Definition 2.1,

(v) EF [mj(Wi, θ)] ≥ 0 for j = 1, . . . , p,
(vi) EF [mj(Wi, θ)] = 0 for j = p + 1, . . . , k,

where Ψ , M , and a are as in Definition 2.1.

Definition 2.3 (Identified Set). For any distribution F ∈ P , the
corresponding identified set ΘI(F) is the set of parameters θ ∈ Θ

such that (θ, F) satisfies the moment (in)equalities in Eq. (1.1) or,
equivalently, conditions (v)–(vi) in Definition 2.2.

We can now use these definitions to describe the null and al-
ternative hypothesis of our test in a concise way. Under the main-
tained hypothesis that F ∈ P , our objective is to conduct the
following hypothesis test,

H0 : F ∈ P0 vs. H1 : F ∉ P0. (2.1)

By Definitions 2.2 and 2.3, it follows that F ∈ P0 if and only if
ΘI(F) ≠ ∅, and thus the hypotheses in Eq. (2.1) can be alterna-
tively expressed as

H0 : ΘI(F) ≠ ∅ vs. H1 : ΘI(F) = ∅, (2.2)

6 See Andrews and Soares (2010) or Bugni et al. (2012) for a description of the
parameter space Ψ .
which is a convenient representation to characterize the existing
test, Test BP, in the next subsection.

To test the hypothesis in Eq. (2.1), we use φn to denote a non-
randomized test thatmaps data into a binary decision, where φn =

1 (φn = 0) denotes rejection (non-rejection) of the null hypothesis.
The exact size of the test φn is given by supF∈P0

EF [φn], while the
asymptotic size is
AsySz ≡ lim sup

n→∞

sup
F∈P0

EF [φn]. (2.3)

Given a significance level α ∈ (0, 1), the test is said to be asymp-
totically level α if AsySz ≤ α and is said to be asymptotically size α
or asymptotically size correct if AsySz = α. In order to adequately
capture the finite sample behavior, the recent literature on infer-
ence in partially identifiedmodels has emphasized the importance
that hypothesis tests satisfy AsySz ≤ α rather than pointwise re-
quirement
lim sup
n→∞

EF [φn] ≤ α, ∀F ∈ P0.

See, e.g., Imbens and Manski (2004); Romano and Shaikh (2008);
Andrews and Guggenberger (2009); Andrews and Soares (2010),
and Mikusheva (2010).

2.1. The existent specification test

This section formally introduces Test BP,which is currently used
by the literature as the specification test in partially identified
models. As we have already explained, this test arises as a by-
product of confidence sets for partially identified parameters
and has been described in Romano and Shaikh (2008, Remark
3.7), Andrews and Guggenberger (2009, Section 7), and Andrews
and Soares (2010, Section 5). Before describing this test, we need
additional notation.

All the specification tests that this paper considers build upon
the criterion function approach developed by Chernozhukov et al.
(2007). In this approach, we define a non-negative function of the
parameter space, QF : Θ → R+, referred to as population criterion
function, with the property that
QF (θ) = 0 ⇐⇒ θ ∈ ΘI(F). (2.4)
As the notation suggests, QF (θ) depends on the unknown proba-
bility distribution F ∈ P and, thus, it is unknown. We therefore
use a sample criterion function, denoted by Qn, that approximates
the population criterion function and can be used for inference. In
the context of themoment (in)equality model in Eq. (1.1), it is con-
venient to consider criterion functions that are specified as follows
(see, e.g., Andrews and Guggenberger, 2009; Andrews and Soares,
2010; Bugni et al., 2012),
QF (θ) = S(EF [m(W , θ)], ΣF (θ)), (2.5)
whereΣF (θ) ≡ VarF (m(W , θ)) and S : Rp

[+∞]
×Rk−p

×Ψ → R+ is
the test function specified by the econometrician that needs to sat-
isfy several regularity assumptions.7 The (properly scaled) sample
analogue criterion function is given by

Qn(θ) = S(
√
nm̄n(θ), Σ̂n(θ)), (2.6)

where m̄n(θ) ≡ (m̄n,1(θ), . . . , m̄n,k(θ)),
m̄n,j(θ) ≡ n−1n

i=1 mj(Wi, θ) for j = 1, . . . , k, and Σ̂n(θ) is a
consistent estimator ofΣF (θ). A natural choice for this estimator is

Σ̂n(θ) = n−1
n

i=1

(m(Wi, θ) − m̄n(θ))(m(Wi, θ) − m̄n(θ))′. (2.7)

7 See Assumptions M.4–M.8 in the Appendix for these regularity conditions.
Two popular functions that satisfy these conditions are the Modified Method
of Moments (MMM) and the Quasi-Likelihood ratio (QLR), see Andrews and
Guggenberger, 2009.
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Using this notation, we can now define a generic 1− α confidence
set for θ as

CSn(1 − α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1 − α)}, (2.8)

where ĉn(θ, 1 − α) is such that CSn(1 − α) has the correct asymp-
totic coverage, i.e.,

lim inf
n→∞

inf
(θ,F)∈F0

PF (θ ∈ CSn(1 − α)) ≥ 1 − α, (2.9)

where F0 denotes the set of parameters (θ, F) that satisfy the con-
ditions in Definition 2.2.

Confidence sets that have the structure in Eq. (2.8) and sat-
isfy Eq. (2.9) have been proposed by Romano and Shaikh (2008);
Andrews and Guggenberger (2009); Andrews and Soares (2010);
Canay (2010); and Bugni (2010), among others. In particular, An-
drews and Soares (2010) consider confidence sets using plug-
in asymptotics, subsampling, or generalized moment selection
(GMS), and show that all of these methods satisfy Eq. (2.9). We are
now ready to define Test BP.

Definition 2.4 (Test BP). Let CSn(1 − α) be a confidence set for θ
that satisfies Eq. (2.9). The specification Test BP rejects the null
hypothesis in Eq. (2.1) according to the following rejection rule

φBP
n ≡ 1{CSn(1 − α) = ∅}. (2.10)

Given Eq. (2.9), it follows that Test BP is asymptotically level
α (see Theorem C.2 in the Appendix). However, as pointed out
in Andrews and Guggenberger (2009) and Andrews and Soares
(2010), this test is admittedly conservative, i.e., its asymptotic size
may be strictly smaller than α. Although it has not been formally
established in the literature, one might also suspect that this test
suffers from low (asymptotic) power. Our formal analysis shows
that Test BP can have strictly less power than the new specification
tests developed in this paper.

Definition 2.4 shows that Test BP depends on the confidence
set CSn(1 − α). It follows that Test BP inherits its size and power
properties from the properties of CSn(1 − α), and these properties
in turn depend on the particular choice of test statistic and critical
value used in its construction. All the tests we consider in this
paper are functions of the sample criterion function defined in
Eq. (2.6) and therefore their relative power properties do not
depend on the choice of the particular function S(·). However,
the relative performance of Test BP with respect to the two tests
we propose in this paper does depend on the choice of critical
value used in the construction of CSn(1 − α). Bugni (2010, 2014)
shows that GMS tests have more accurate asymptotic size than
subsampling tests. Andrews and Soares (2010) show that GMS
tests are more powerful than Plug-in asymptotics or subsampling
tests. This means that, asymptotically, Test BP implemented with
a GMS confidence set will be less conservative and more powerful
than the analogous test implemented with Plug-in asymptotics or
subsampling. Since our objective is to propose new specification
tests on the grounds of better asymptotic size control and
asymptotic power improvements, we adopt the GMS version of
the specification test in Definition 2.4 as the ‘‘benchmark version’’
of Test BP. This is summarized in the following assumption,
maintained throughout the paper.

Assumption M.1. Test BP is computed using the GMS approach
in Andrews and Soares (2010). In other words, φBP

n in Eq. (2.10) is
based on

CSn(1 − α) = {θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1 − α)}, (2.11)

where ĉn(θ, 1 − α) is the GMS critical value constructed using a
function ϕ and a positive thresholding sequence {κn}n≥1 satisfying
κn → ∞ and κn/

√
n → 0.
We conclude this section by presenting a simple example that
illustrates how the identified set can be empty under misspecifi-
cation. The example is also used in Section 7, as it captures the
types of situations where there are power gains of implementing
the specification tests we propose.

Example 2.1 (Missing Data). The economic model states that the
true parameters (θ, F) satisfy

EF [Y |X = x] = H(x, θ) ∀x ∈ SX , (2.12)

where H is a known continuous function specified by the re-
searcher and SX = {xl}

dx
l=1 is the (finite) support of X . As there

is missing data on Y , we let Z denote the binary variable that
takes value of one if Y is observed and zero if Y is missing. Con-
ditional on X = x, Y has logical lower and upper bounds given by
YL(x) and YH(x), respectively. The observed data are {Wi}

n
i=1, where

∀i = 1, . . . , n,Wi = (YiZi, Zi, Xi). The model in Eq. (2.12) therefore
results in the following moment inequalities for l = 1, . . . , dx:

EF [ml,L(W , θ)]

≡ EF [(H(xl, θ) − YZ − YL(xl)(1 − Z))1{X = xl}] ≥ 0,
EF [ml,H(W , θ)]

≡ EF [(YZ + YH(xl)(1 − Z) − H(xl, θ))1{X = xl}] ≥ 0. (2.13)

We now choose a simple parametrization that we can use in our
Monte Carlo simulations. Suppose that SX = {(1, 0, 0), (−1, 0, 1),
(0, 1, 0)}, that Y represents a non-negative outcome variablewith-
out an upper bound, i.e., YL(x) = 0 and YH(x) = ∞, that H is the
linear model H(x, θ) = x′θ , θ = (θ1, θ2, 1), and that there are
missing data for all covariate values, i.e., P(Z = 1|X = xl) < 1∀l =
1, 2, 3. In this context, Eq. (2.13) is equivalent to

EF [m1,L(W , θ)] ≡ EF [(θ1 − YZ)1{X = x1}] ≥ 0,
EF [m2,L(W , θ)] ≡ EF [(1 − θ1 − YZ)1{X = x2}] ≥ 0,

EF [m3,L(W , θ)] ≡ EF [(θ2 − YZ)1{X = x3}] ≥ 0. (2.14)

It is straightforward to show that for any distribution F ∈ P , the
identified set ΘI(F) is given by

ΘI(F) =


(θ1, θ2) ∈ Θ :
θ1 ∈ [EF [YZ |X = x1], EF [1 − YZ |X = x2]],
θ2 ≥ EF [YZ |X = x3]


. (2.15)

It follows that this model is strictly partially identified (i.e. if
ΘI(F) is non-empty, it is not a singleton) and it is correctly spec-
ified (i.e. ΘI(F) is non-empty) if and only if EF [YZ |X = x1] ≤

EF [1 − YZ |X = x2]. �

3. The new test statistic

The specification tests we present in this paper use the natural
test statistic for specification testing, namely, the infimum of
the sample criterion function Qn(θ) defined in Eq. (2.6). The
justification for this test statistic follows immediately from the
following two mild assumptions which we maintain throughout
the paper.

Assumption M.2. Θ is a nonempty and compact subset of Rdθ

(dθ < ∞).

Assumption M.3. For any F ∈ P , QF is a lower semi-continuous
function.



F.A. Bugni et al. / Journal of Econometrics 185 (2015) 259–282 263
Under Assumptions M.2 and M.3, the population criterion
function achieves a minimum value in Θ . This minimum value
is zero when the identified set is non-empty. More precisely,
infθ∈Θ QF (θ) ≥ 0 and

inf
θ∈Θ

QF (θ) = 0 ⇐⇒ ΘI(F) ≠ ∅. (3.1)

It then follows that the hypotheses in Eq. (2.1) can be re-written
as

H0 : inf
θ∈Θ

QF (θ) = 0 vs. H1 : inf
θ∈Θ

QF (θ) > 0. (3.2)

Based on this formulation of the problem, it is natural to suggest
implementing the test using the infimum of the sample analogue
criterion function as a test statistic, i.e.,

Tn ≡ inf
θ∈Θ

Qn(θ). (3.3)

In particular, the specification of the model should be rejected
whenever the test statistic exceeds a certain critical value. This
leads to the following hypothesis testing procedure.

Definition 3.1 (New Specification Test). The new specification test
rejects the null hypothesis in Eq. (2.1) according to the following
rejection rule

φn = 1

Tn > ĉn(1 − α)


, (3.4)

where Tn is as in Eq. (3.3) and ĉn(1− α) is an approximation to the
(1 − α)-quantile of the asymptotic distribution of Tn.

In order to make the test in Definition 3.1 feasible, we need to
specify the critical value ĉn(1 − α). The challenging part of our
analysis is to propose a critical value in Eq. (3.4) that results in
a test that: (a) controls asymptotic size, (b) has superior power
properties, and (c) is amenable to computation. We propose two
critical values that result in two hypothesis tests that satisfy these
requirements. The first critical value is based on an approximation
of the distribution of the test statistic under the null hypothesis
using resampling methods. This critical value gives rise to ‘‘Test
RS’’. The second critical value is based on ‘‘recycling’’ GMS critical
values described in the previous section. This critical value gives
rise to ‘‘Test RC’’. We describe each of these tests in the next two
sections.

Before introducing the new tests, it is convenient to first
derive the asymptotic distribution of infθ∈Θ Qn(θ) along (relevant)
sequences of data generating processes {Fn}n≥1.

Assumption A.1. For every F ∈ P and j = 1, . . . , k, {σ−1
F ,j (θ)

mj(·, θ) : W → R} is a measurable class of functions indexed by
θ ∈ Θ .

Assumption A.2. The empirical process vn(θ) with j-component

vn,j(θ) = n−1/2σ−1
F ,j (θ)

n
i=1

(mj(Wi, θ) − EF [mj(Wi, θ)]),

for j = 1, . . . , k, (3.5)

is asymptotically ρF -equicontinuous uniformly in F ∈ P in the
sense of van der Vaart and Wellner (1996, page 169). This is, for
any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
F∈P

P∗

F


sup

ρF (θ,θ ′)<δ

∥vn(θ) − vn(θ
′)∥ > ε


= 0,

where P∗

F denotes outer probability and ρF denotes the coordinate-
wise version of the intrinsic variance semimetric (see Eq. (A.2) in
Appendix A for details).
Assumption A.3. For some constant a > 0 and all j = 1, . . . , k,

sup
F∈P

EF


sup
θ∈Θ

mj(W , θ)

σF ,j(θ)

2+a


< ∞.

Assumption A.4. For any F ∈ P and θ, θ ′
∈ Θ , let ΩF


θ, θ ′


be a

k × k correlation matrix with typical [j1, j2]-component

ΩF

θ, θ ′


[j1,j2]

≡ EF


mj1(W , θ) − EF [mj1(W , θ)]

σF ,j1(θ)


×


mj2(W , θ ′) − EF [mj2(W , θ ′)]

σF ,j2(θ
′)


.

The matrix ΩF satisfies

lim
δ↓0

sup
∥(θ1,θ ′

1)−(θ2,θ ′
2)∥<δ

sup
F∈P

ΩF

θ1, θ

′

1


− ΩF


θ2, θ

′

2

 = 0.

Assumption A.1 is a mild measurability condition. In fact, the
kind of uniform laws large numbersweneed for our analysiswould
not hold without this basic requirement (see van der Vaart and
Wellner, 1996 page 110). Assumption A.2 is a uniform stochastic
equicontinuity assumption which, in combination with the other
three assumptions, is used to show that, the class of functions
{σ−1

F ,j (θ)mj(·, θ) : W → R}j≤k is Donsker and pre-Gaussian
uniformly in F ∈ P (see LemmaD.2 and van der Vaart andWellner
(1996, Theorem 2.8.2)). For interpretable sufficient conditions for
uniform stochastic equicontinuity, consider the uniform version
of Examples 19.6–19.11 in van der Vaart (1998). Assumption A.3
provides a uniform (in F and θ ) envelope function that satisfies a
uniform integrability condition. This is essential to obtain uniform
versions of the laws of large numbers and central limit theorems.
Finally, Assumption A.4 requires the correlation matrices to be
uniformly equicontinuous, which is used to show pre-Gaussianity.
This condition implies that the Euclidean metric for θ is uniformly
stronger than the variance semimetric (see van der Vaart and
Wellner, 1996 problem 3, page 93).

The next theorem derives the limit distribution of our test
statistic under the above assumptions. In the theorem, we let
C(Θ2) denote the space of continuous functions that map Θ2 to
Ψ , and S(Θ × Rk

[±∞]
) denote the space of compact subsets of the

metric space (Θ × Rk
[±∞]

, d(·)), where d(·) is the metric defined

in Appendix A, Eq. (A.1). We use the symbols
u

→ and
H
→ to denote

uniform convergence and convergence in Hausdorff distance (see
Appendix A). Finally, we let DF (θ) ≡ Diag(ΣF (θ)) and

Λn,F ≡


(θ, ℓ) ∈ Θ × Rk

: ℓ =
√
nD−1/2

F (θ)EF [m(W , θ)]

. (3.6)

Theorem 3.1. Let Assumptions A.1–A.4 hold. Let {Fn}n≥1 be a
(sub)sequence of distributions such that for some (Ω, Λ) ∈ C(Θ2)×

S(Θ ×Rk
[±∞]

), (i) Fn ∈ P0 for all n ∈ N, (ii) ΩFn(θ, θ ′)
u

→ Ω(θ, θ ′),

and (iii) Λn,Fn
H
→ Λ. Then, along the (sub)sequence {Fn}n≥1,

Tn
d

→ J(Λ, Ω) ≡ inf
(θ,ℓ)∈Λ

S(vΩ(θ) + ℓ, Ω(θ, θ)), (3.7)

where vΩ : Θ → Rk is a Rk-valued tight Gaussian process with
covariance (correlation) kernel Ω ∈ C(Θ2).

Theorem 3.1 gives the asymptotic distribution of our test
statistic under a (sub)sequence of distributions that satisfies
certain properties. It turns out that these types of (sub)sequences
are the relevant ones to determine the asymptotic size of our tests
(see Appendix C for additional details).
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Having an expression for J(Λ, Ω), our goal is to construct fea-
sible critical values that asymptotically approximate the 1 − α
quantile of this distribution, denotedby c(1−α)(Λ, Ω). This requires
approximating the limiting setΛ and the limiting correlation func-
tion Ω . The limiting correlation function can be estimated using
standard methods. On the other hand, the approximation of Λ is
non-standard and presents novel difficulties. In the next sections
we propose two approaches to circumvent these challenges.

4. Test RS: Re-Sampling

The critical value of Test RS is based on directly approximating
the quantiles of J(Λ, Ω). The main challenge in approximating
these quantiles lies in the approximation of the set Λ which, by
definition, is composed of the cluster points of the sequences of
the form

{(θn,
√
nD−1/2

Fn (θn)EFn [m(W , θn)] ) }n≥1. (4.1)

Notice that the second component in Eq. (4.1) represents the
slackness parameter for the moment (in)equalities.

Approximating the limiting behavior of these sequences
presents two main difficulties. The first one is a typical problem
in this literature: approximating the slackness parameter for the
moment inequalities. This problemhas been described byAndrews
and Soares (2010), which argues that the limit of the slackness
parameter cannot be uniformly consistently estimated at a suitable
rate of convergence. Their paper overcomes this problem by
proposing the GMS method. The idea of this method is to take
advantage of the monotonicity of the test function and replacing
the slackness parameter with a function of the following sample
measure of slackness

ξn,j(θn) = κ−1
n

√
nσ̂−1

n,j (θn)m̄n,j(θn), for j = 1, . . . , p, (4.2)

where {κn}n≥1 is a thresholding sequence that satisfies κn → ∞

and κn/
√
n → 0.

In their GMS approximation, Andrews and Soares (2010) con-
sider sequences of {(θn, Fn)}n≥1 that are (a) deterministic and (b)
such that θn ∈ ΘI(Fn) for all n ∈ N. While these are sequences
are suitable for their GMS approximation, they prove to be insuf-
ficient for our analysis. To be more precise, the second difficulty
in approximating the limit of the sequences in Eq. (4.1) is that, by
the nature of our test statistic, we are specifically interested in se-
quences for which θn is the infimum of Qn(θ) over Θ . This requires
us to consider sequences of {(θn, Fn)}n≥1 that are (a) random and
(b) such that θn ∈ Θ/ΘI(Fn) for some n ∈ N. This second difficulty
is completely novel to this paper and cannot be addressed by the
approximation methods currently available in the literature.

Despite the aforementioned difficulties, we show that one
can approximate the quantiles of J(Ω, Λ) much in the spirit of
the resampling GMS procedure in Andrews and Soares (2010),
provided that the relevant values of θ are restricted to the argmin
set of Qn(θ). The role of the restriction is to guarantee that the
resampling procedure does not consider excessive violations of the
sample moment (in)equalities.

Definition 4.1. For Tn as in Eq. (3.3), the approximation to the
identified set is given by

Θ̂I ≡ {θ ∈ Θ : Qn(θ) ≤ Tn}. (4.3)

By definition, Θ̂I is the argmin set ofQn(θ), which is non-empty.
As in other M-estimation problems, it is not necessary to impose
that Θ̂I is the set of exact minimizers of Qn(θ). This set could
be replaced with an ‘‘approximate’’ set of minimizers, i.e., Θ̂I ≡

{θ ∈ Θ : Qn(θ) ≤ Tn + op(1)}, without affecting our results.
In addition, it is important to note that Θ̂I does not coincide with
the consistent estimator of ΘI(F) proposed in Chernozhukov et al.
(2007, see p. 1247 and Theorem 3.1). In fact, Θ̂I is not generally
consistent for ΘI(F) in the Hausdorff distance, which is not a
problem in our setting. All we need is for Θ̂I to lie in the expansion
of ΘI(F) specified in Definition 4.3 below.

Now we can define the resampling test statistic that we use to
construct an approximation to c(1−α)(Λ, Ω). In order to do this, let
Ω̂n(θ) ≡ D̂−1/2

n (θ)Σ̂n(θ)D̂−1/2
n (θ), where D̂n(θ) ≡ Diag(Σ̂n(θ))

and Σ̂n(θ) is as in Eq. (2.7). In addition, let {v̂∗
n(θ) : θ ∈ Θ} be

a stochastic process indexed by θ , whose conditional distribution
given the original sample is known and can be simulated. For
example, this can be done via a bootstrap approximation, in which
case

v̂∗

n(θ) =
1

√
n

n
i=1

D̂−1/2
n (θ)(m(W ∗

i , θ) − m̄n(θ)), (4.4)

where {W ∗

i }
n
i=1 is an i.i.d. sample drawn with replacement from

original sample {Wi}
n
i=1, or via an asymptotic approximation, in

which case

v̂∗

n(θ) =
1

√
n

n
i=1

D̂−1/2
n (θ)(m(Wi, θ) − m̄n(θ))ζi, (4.5)

and {ζi}
n
i=1 is an i.i.d. sample satisfying ζi ∼ N(0, 1). Now consider

the following test statistic

T ∗

n ≡ inf
θ∈Θ̂I

S(v̂∗

n(θ) + ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)), (4.6)

and ξn(θ) = {ξn,j(θ)}
p
j=1 with ξn,j(θ) is as in Eq. (4.2), and ϕ =

(ϕ1, . . . , ϕp, 0k−p)
′

∈ Rk
[+∞]

is the function in Assumption M.1
that is assumed to satisfy the assumptions in Andrews and Soares
(2010). Examples of ϕ include ϕj(ξ , Ω) = ∞1{ξj > 1} (with
the convention that ∞0 = 0), ϕj(ξ , Ω) = max{ξj, 0}, and
ϕj(ξ , Ω) = ξj for j = 1, . . . , p (see Andrews and Soares, 2010
for other examples). Conditional on the sample, the distribution of
T ∗
n is known and its quantiles can be approximated byMonte Carlo

simulation. This leads us to Test RS.

Definition 4.2 (Test RS). The specification Test RS rejects the null
hypothesis in Eq. (2.1) according to the following rejection rule

φRS
n ≡ 1


Tn > ĉRSn (1 − α)


, (4.7)

where Tn is as in Eq. (3.3) and ĉRSn (1 − α) is a resampling
approximation to the (1 − α)-quantile of T ∗

n .

Remark 4.1. In the special case of point identified moment
equality models, Test RS reduces to a standard J-test. In par-
ticular, if S(·) is the QLR test statistic it follows that Tn =

infθ∈Θ nm̄n(θ)′Σ̂−1
n (θ)m̄n(θ), so that Test RS is a J-test imple-

mented with Continuously Updating GMM and a bootstrapped
critical value.

The following result shows that the test proposed in Defini-
tion 4.2 is asymptotically level correct.

Theorem 4.1. Let Assumptions A.1–A.7 hold. Then, for any α ∈

(0, 1),

lim sup
n→∞

sup
F∈P0

EF [φRS
n ] ≤ α. (4.8)

Remark 4.2. Theorem 4.1 requires Assumption A.6which is a high
level assumption. In Lemma D.10 we show that Assumption A.8 is
sufficient for Assumption A.6. Assumption A.8(a) states that QF (θ)
can be bounded below in a neighborhood of the identified setΘI(F)
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and so it corresponds to the polynomial minorant condition in
Chernozhukov et al. (2007, Eqs. (4.1) and (4.5)). The convexity in
Assumption A.8(b) and the equicontinuity in Assumption A.8(c)
are both used exclusively when applying the intermediate value
theorem in the proof of Lemma D.10. Assumption A.8 is certainly
easier to interpret than Assumption A.6, but it is mildly stronger.

In order to provide intuition for Theorem 4.1, it is convenient to
re-write the test statistic T ∗

n in a way that facilitates comparisons
with the set Λn,F defined in Eq. (3.6). This can be done by noting
that

T ∗

n = inf
(θ,ℓ)∈Λ̂∗

n

S(v̂∗

n(θ) + ℓ, Ω̂n(θ))

where Λ̂∗

n =


(θ, ℓ) : θ ∈ Θ̂I , ℓ = ϕ(ξn(θ), Ω̂n(θ))


. (4.9)

Test RS therefore consists in replacing the set Λ with the approxi-
mation Λ̂∗

n , which is (generally) not consistent forΛ. The important
aspect here is that Λ̂∗

n restricts θ ∈ Θ̂I as opposed to θ ∈ Θ inΛn,F .
Since ϕj(·) ≥ 0 for j = 1, . . . , p and ϕj(·) = 0 for j = p + 1, . . . , k,
using such random set in the definition of T ∗

n guarantees that the
(in)equality restrictions are not violated by much when evaluated
at the θ that approximates the infimum in Eq. (4.6). This makes the
function ϕ(·) a valid replacement for ℓ and plays an important role
in establishing the consistency in level of our test. In fact, ifwewere
to define the set Λ̂∗

n with Θ instead of Θ̂I , we would not obtain a
test that controls asymptotic size as in Theorem 4.1 for functions ϕ
satisfying Assumption A.5. In other words, using a similar statistic
to T ∗

n but with an infimum over Θ (as it is the case for the original
test statistic) would not result in a valid asymptotic approxima-
tion.8

The result in Theorem 4.1 follows from arguments that use the
following expansion of ΘI(F).

Definition 4.3. Let Θ
ln κn
I (F) be defined as

Θ
ln κn
I (F) ≡ {θ ∈ Θ : S(

√
nEF [m(W , θ)], ΣF (θ)) ≤ ln κn}.

Note that Θ
ln κn
I (F) is a non-random expansion of ΘI(F).

Lemma D.13 in the Appendix shows that, asymptotically, our ap-
proximation of the identified set is included in this expansion uni-
formly over P0, i.e.,

lim
n→∞

inf
F∈P0

PF (Θ̂I ⊆ Θ
ln κn
I (F)) = 1. (4.10)

Now consider an auxiliary random variable T̃ ∗
n , which is defined

as T ∗
n but with Λ̂∗

n replaced by
(θ, ℓ) : θ ∈ Θ

ln κn
I (Fn), ℓ = ϕ∗(ξn(θ))


, (4.11)

where ϕ∗(·) is a continuous function that satisfies ϕ(·) < ϕ∗(·, Ω)

for allΩ (see Assumption A.5). Notice that T̃ ∗
n is a ‘‘hybrid’’ object in

the sense that it depends both on the data sample and on unknown
population parameters. It is more convenience to work T̃ ∗

n rather
than T ∗

n for the following reasons: (a) T̃ ∗
n uses a non-random set

Θ
ln κn
I (Fn) instead of the random set Θ̂I and (b) the function ϕ∗ is

continuous and does not depend on Ω̂n(θ), which is not necessarily
the case for the original GMS function ϕ. We denote by J∗(Λ∗, Ω)

8 We note that a special choice of the function ϕ can be shown to circumvent the
problem and result in a test that controls asymptotic size (see Bugni et al., 2014
Remark 2.2 for details). However, such function does not belong to the class of
functions considered in Andrews and Soares (2010) and thus not suitable for the
type of power comparisons we study in this paper.
the conditional limiting distribution of T̃ ∗
n , which is characterized

in Theorem C.1 in the Appendix.
Having defined these objects, Theorem 4.1 is the result of the

following argument. We show first that

J(Λ, Ω) ≤ J∗(Λ∗, Ω), (4.12)

meaning that, asymptotically, the quantiles of Tn could be
approximated by the infeasible conditional quantiles of T̃ ∗

n . Second,
we note that Eq. (4.10) implies that, asymptotically,

T̃ ∗

n ≤ T ∗

n . (4.13)

This allows us to replace the infeasible conditional quantiles of
T̃ ∗
n with the feasible conditional quantiles of T ∗

n . In summary,
Eqs. (4.12) and (4.13) ensure that, asymptotically, the resampling
approximation of the (1 − α)-quantile of T ∗

n , ĉ
RS
n (1 − α), is a

uniformly valid approximation to the (1 − α)-quantile of Tn. From
this, the uniform asymptotic validity of Test RS follows.

Remark 4.3. The non-random expansion Θ
ln κn
I (Fn) is used in

intermediate steps of the proof of Theorem 4.1 but is not needed
to implement Test RS.

Remark 4.4. The set in Eq. (4.11) assumes the existence of the
function ϕ∗(·). This assumption is not restrictive as it is satisfied
for the functions ϕ(1)(·) − ϕ(4)(·) described in Andrews and
Soares (2010) and Andrews and Barwick (2012) (see Remark B.1
in Appendix B).

Remark 4.5. To put the computational feasibility of Test RS into
perspective, we compare it to the computation of confidence sets
for θ , a problem that the literature has become familiar with.
Typically, Test RS is easier than confidence set construction. To
construct the confidence set as described in Section 2, one needs
to compute ĉn(θ, 1− α) for ‘‘enough’’ number of grid points on Θ .
This is generally considered very difficult to do accurately unless
Θ is low dimensional (3 dimensions or less). On the other hand,
to implement Test RS, the challenging part is to compute T ∗

n in
Eq. (4.6) a large number of times (say, 1000 times), each time
for a different simulation draw of v̂∗

n(·). Although this amounts
to solving a minimization problem accurately a large number
of times, the task often is quite feasible because the objective
functions to be minimized often are well-behaved, especially for
smooth versions of ϕ(·).

5. Test RC: Re-cycling existent critical values

In practice, the researcher often needs to compute the confi-
dence set CSn(1 − α) for reasons other than specification testing.
In that case, it is reasonable to take the computation of the confi-
dence set as given when implementing a model specification test.
From this perspective, Test BP becomes more attractive than Test
RS computation-wise because it is an immediate by-product of
the confidence set construction. In this section, we propose a new
specification test that involves a simple transformation of exactly
the same critical values used for Test BP, therefore marginally in-
creasing the computational effort. We call it the re-cycling test or
Test RC precisely for the reason that it recycles existing critical val-
ues. Even with such a simple modification, Test RC presents power
advantages over Test BP that we formalize in Section 6.

Definition 5.1 (Test RC). The specification Test RC rejects the null
hypothesis in Eq. (2.1) according to the following rejection rule

φRC
n ≡ 1


Tn > ĉRCn (1 − α)


, (5.1)
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where Tn is as in Eq. (3.3), ĉRCn (1 − α) is given by

ĉRCn (1 − α) = inf
θ∈Θ̂I

ĉn(θ, 1 − α), (5.2)

where Θ̂I is as in Eq. (4.3) and ĉn(θ, 1−α) is the GMS critical value
used by Test BP, see Assumption M.1.

Remark 5.1. Test BP requires computation of the sample criterion
function Qn(θ) and the GMS quantile ĉn(θ, 1−α) for every θ ∈ Θ .
With this information in hand, it is relatively easy to compute the
approximation to the identified set Θ̂I . Thus, relative to Test BP,
implementing Test RC requires little additional work.

Remark 5.2. Test RC is defined as a test whose critical value is the
minimum of the critical values used by Test BP (c.f. Eq. (5.2)). This
implies that Test RC and Test BP are implemented with the same
choice of GMS function ϕ(·) and tuning parameter κn, as Test RC
inherits this choice from Test BP. We use this fact in the power
comparisons of Section 6.

Remark 5.3. For a given θ ∈ Θ , the GMS quantile ĉn(θ, 1 − α)
coincides with the (1−α)-quantile of the random variable Jn(θ) ≡

S(v̂∗
n(θ)+ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)), used in to implement Test RS.9

From this observation, it follows that the critical value of Test RS is
the (1 − α)-quantile of the infimum of Jn(θ) over Θ̂I , while the
critical value of Test RC is the infimum of the (1 − α)-quantiles of
Jn(θ) over Θ̂I . Since the quantile of an infimum is weakly smaller
than the infimum of the quantiles, we deduce that

ĉRSn (1 − α) ≤ inf
θ∈Θ̂I

ĉn(θ, 1 − α) = ĉRCn (1 − α). (5.3)

The following result shows that the test proposed in Defini-
tion 4.2 is asymptotically level correct and it is an immediate con-
sequence of Theorem 4.1 and Eq. (5.3).

Theorem 5.1. Let Assumptions A.1–A.7 hold. Then, for any α ∈

(0, 1),

lim sup
n→∞

sup
F∈P0

EF [φRC
n ] ≤ α. (5.4)

Remark 5.4. Theorems 4.1 and 5.1 show that Test RS and Test
RC are asymptotically level correct but are silent about the type
of conditions that could make these test asymptotically non-
conservative. Unfortunately, we could not find such conditions
with sufficient level of generality.

6. Power analysis

Previous results reveal that the existing test, Test BP, and the
ones proposed in this paper, Test RS and Test RC, are all asymptoti-
cally level correct. The goal of this section is to compare these pro-
cedures in terms of power.We show that the tests proposed in this
paper have weakly more power than Test BP in all finite samples,
and there are sequences of local alternative hypotheses for which
they have strictly higher asymptotic power. We open the section
with the finite sample findings.

Theorem 6.1. For any (n, F) ∈ N × P ,

φRS
n ≥ φRC

n ≥ φBP
n .

9 See the proof of Theorem 6.1 for the details.
Corollary 6.1. For any sequence of local alternatives
{Fn ∈ P/P0}n≥1,

lim inf
n→∞

(EFn [φ
RS
n ] − EFn [φ

RC
n ]) ≥ 0, and

lim inf
n→∞

(EFn [φ
RC
n ] − EFn [φ

BP
n ]) ≥ 0.

The proof of Theorem 6.1 is in Appendix C and Corollary 6.1
follows directly from Theorem 6.1. Note that Theorem 6.1 is a
statement that holds for all n ∈ N and F ∈ P . This is not only a
finite sample power result, but it is also a relationship that holds
for distributions F ∈ P0. It follows that the two tests we propose
cannot be more conservative than the existing Test BP.

Remark 6.1. The tests considered in this paper are only shown to
control size asymptotically. Thus, for any distribution F ∈ P0 and
any sample size n, it is certainly possible that all of these tests over-
reject the null hypothesis, i.e., EF [φs

n] > α for s = {BP, RC, RS}. In
any case, the fact that these tests provide asymptotic uniform size
control means that, for any ϵ > 0, there exists a sample size N(ϵ)
(not dependent on F ) such that for all n ≥ N(ϵ),

EF [φs
n] ≤ α + ϵ for s = {BP, RC, RS}. (6.1)

In other words, to the extent that the sample size is reasonably
large, the amount of over-rejection of all these test is uniformly
bounded.

Remark 6.2. It would be ideal to have finite sample results for
both size and power. Unfortunately, constructing test with finite
sample size control in this type of problems is extremely hard,
which explainswhy the literature resorts exclusively to asymptotic
approximations. In light of this, we view the result in Theorem 6.1
as particularly important and novel, especially if we take into
account that it requires no assumptions beyond the maintained
ones.

Remark 6.3. The first inequality in Theorem 6.1 uses that Test
RS and Test RC are implemented with the same choice of GMS
function ϕ(·) and the same tuning parameter κn. We recommend
this practice as these objects play exactly the same role in all of
these tests. The second inequality follows by definition, as Test
RC and Test BP share the same ϕ(·) and κn by construction (see
Remark 5.2).10

Theorem 6.1 and Corollary 6.1 show that Test BP will never
do better (in terms of power or asymptotic conservativeness)
than Test RS or Test RC. However, there is nothing that prevents
a situation in which all these tests provide exactly the same
power. The last result in this section therefore provides a type of
local alternatives for which both of our tests have strictly higher
asymptotic power than Test BP. The result relies on the following
condition.

Assumption A.9. For Tn as in Eq. (3.3) and Θ̂I as in Eq. (4.3),
{Fn ∈ P }n≥1 satisfies the following:

(i) There is a (possibly random) sequence {θ∗
n ∈ Θ̂I}n≥1 such that

ĉn(θ∗
n , 1 − α)

p
→ cH ,

(ii) There is a (possibly random) sequence {θn ∈ Θ̂I}n≥1 such that
ĉn(θn, 1 − α)

p
→ cL,

(iii) Tn
d

→ J and P(J ∈ (cL, cH)) > 0.

10 As a referee pointed out, if Test BP were to be implemented with a κn smaller
than the one used by Test RC, it is possible that Test BP delivers higher finite sample
power than Test RC. This does not contradict our results, as they hold for the same
choice of κn . Importantly, our results do not rely on the fact that the power of these
tests is decreasing in κn .
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We illustrate how Assumption A.9 holds in the context of
Example 2.1 below, wherewe have simplified the example slightly
to keep the derivations as short as possible.11

Example 6.1. Let W = (W1,W2,W3) ∈ R3 be a random vector
with distribution Fn, VFn [W ] = I3, EFn [W1] = 0, EFn [W2] =

−µ/
√
n, and EFn [W3] = 0 for some µ ∈ R. Consider the following

model with Θ = [−B, B]2 for some B > 0,

EFn [m1(Wi, θ)] = EFn [θ1 − Wi,1] ≥ 0,
EFn [m2(Wi, θ)] = EFn [Wi,2 − θ1] ≥ 0,

EFn [m3(Wi, θ)] = EFn [θ2 − Wi,3] ≥ 0. (6.2)

The identified set isΘI(Fn) = {θ ∈ Θ : θ1 ∈ [0, −µ/
√
n], θ2 ≥ 0},

which is non-empty if and only if µ ≤ 0. This identified set has
the same structure as in Example 2.1 with EFn [YZ |X = x1] = 0,
EFn [YZ |X = x2] = 1 + µ/

√
n, and EFn [YZ |X = x3] = 0.

The model in Eq. (6.2) is linear in θ , and hence many relevant
parameters and estimators do not depend on θ . These include
σ̂j(θ) = σ̂j for j = 1, 2, 3, D̂−1/2

n (θ) = D̂−1/2
n , ṽn,j(θ) = ṽn,j =

√
nσ̂−1

j (EFn [Wj] − W̄n,j) for j = 1, 3,
ṽn,2 =

√
nσ̂−1

2 (W̄n,2 − EFn [W2]), and

v∗

n(θ) =
1

√
n

n
i=1

D̂−1/2
n (θ)(m(Wi, θ) − m̄n(θ))ζi = v∗

n , (6.3)

where {ζi}
n
i=1 is i.i.d. N(0, 1). It follows that {v∗

n |{Wi}
n
i=1} ∼ N(0, 1)

a.s. For simplicity here, we use the Modified Method of Moments
(MMM) criterion function given by

S(m, Σ) =

p
j=1

[mj/σj]
2
−

+

k
j=p+1

(mj/σj)
2, (6.4)

where [x]− ≡ min{x, 0}, and the first GMS function ϕ(·) proposed
by Andrews and Soares (2010),

ϕj(x) = ∞1{x > 1} for j = 1, . . . , p and

ϕj(x) = 0 for j = p + 1, . . . , k. (6.5)

The sample criterion function is given by

Qn(θ) =
√

nσ̂−1
1 (θ1 − W̄1)

2
−

+
√

nσ̂−1
2 (W̄2 − θ1)

2
−

+
√

nσ̂−1
3 (θ2 − W̄3)

2
−

.

It is easy to verify Assumptions A.1–A.7 in this context. We
now explicitly verify Assumption A.9. To do this, we exploit that
κ−1
n ṽn,j

p
→ 0 and σ̂−1

j
p

→ σ−1
j = 1 for j = 1, 2, 3. We also use the

notation Z ∼ N(04, I4).
Assumption A.9 (i): The set of minimizers of Qn(θ) over Θ is

Θ̂I ⊇{θ∗
n : θ∗

n,1 =(σ̂−1
1 W̄1+σ̂−1

2 W̄2)/(σ̂
−1
1 +σ̂−1

2 ), θ∗

n,2 ∈ [W̄3, B]}.
Let us take θ∗

n,2 = W̄3 for concreteness. Notice that the sequence
{θ∗

n ∈ Θ̂I}n≥1 is random, which is allowed by condition (i). Simple
algebra shows that

√
nθ∗

n,1 =
ṽn,2 − ṽn,1

2
+

√
nEFn [W2]

2
+ op(1)

=
ṽn,2 − ṽn,1

2
−

µ

2
+ op(1). (6.6)

11 It is worth emphasizing that Example 6.1 is the simplest example we can
construct to generate strict power differences between the specification tests. One
could use more sophisticated and realistic examples (e.g. including non-linear
moment conditions or moment equalities) to generate similar results but this
additional complexity would severely complicate the derivations.
The test statistic Tn in Eq. (3.3) therefore satisfies

Tn = Qn(θ
∗

n ) =

ṽn,1 +

√
nσ̂−1

1 θ∗

n,1

2
−

+

ṽn,2 +

√
nσ̂−1

2 (EFn [W2] − θ∗

n,1)
2
−

,

=


ṽn,1 +

ṽn,2 − ṽn,1

2
−

µ

2
+ op(1)

2
−

+


ṽn,2 −

ṽn,2 − ṽn,1

2
+

µ

2
− µ + op(1)

2
−

,

= 2


ṽn,1 + ṽn,2

2
−

µ

2
+ op(1)

2
−

d
→ J

≡


Z1 −

µ
√
2

2
−

. (6.7)

Next note that the GMS critical value along θ∗
n is the (conditional)

(1 − α)-quantile of

Q ∗

n (θ∗

n ) =

v∗

n,1 + ∞1{κ−1
n ṽn,1 + κ−1

n

√
nσ̂−1

1 θ∗

n,1 > 1}
2
−

+

v∗

n,2 + ∞1{κ−1
n ṽn,2 − κ−1

n

√
nσ̂−1

2 θ∗

n,1

− κ−1
n σ̂−1

2 µ > 1}
2
−

+

v∗

n,3

2
−

,

d
→ [Z2]2− + [Z3]2− + [Z4]2− w.p.a.1,

since κ−1
n

√
nθ∗

n,1
p

→ 0 by Eq. (6.6). If we let cH denote the
(1 − α)-quantile of RHS of the previous display, it follows that
ĉn(θ∗

n , 1 − α)
p

→ cH and condition (i) holds.
Assumption A.9 (ii): Let θn = (θ∗

n,1, θn,2) where θn,2 = W̄3 +

Cκn/
√
n for C > 1. As before, the sequence {θn ∈ Θ̂I}n≥1 is random,

which is allowed by condition (ii). The GMS critical value evaluated
at θn is the (conditional) (1 − α)-quantile of

Q ∗

n (θn) =

v∗

n,1 + ∞1{κ−1
n ṽn,1 + κ−1

n

√
nσ̂−1

1 θ∗

n,1 > 1}
2
−

+

v∗

n,2 + ∞1{κ−1
n ṽn,2 − κ−1

n

√
nσ̂−1

2 θ∗

n,1

− κ−1
n σ̂−1

2 µ > 1}
2
−

+

v∗

n,3 + ∞1{σ̂−1
3 C > 1}

2
−

,

d
→ [Z2]2− + [Z3]2− w.p.a.1,

since κ−1
n

√
nθ∗

n,1
p

→ 0 by Eq. (6.6) and C > 1. If we let cL denote
the (1 − α)-quantile of RHS of the previous display, it follows that
ĉn(θn, 1 − α)

p
→ cL and condition (ii) holds.

Assumption A.9 (iii): Tn
d

→ J follows from Eq. (6.7). In addition,
cL < cH is immediate from the previous derivations whenever
α < 50%. For example, when α = 10%, we have cL = 2.95 and
cH = 4.01. Finally, P(J ∈ (cL, cH)) > 0 holds as the distribution of
J is continuous at x > 0. For example, when α = 10% and µ = 2,
P(J ∈ (cL, cH)) = 11%. We conclude that condition (iii) holds. �

Loosely speaking, Assumption A.9 considers a sequence of local
alternatives where the set of minimizers Θ̂I includes at least two
points for which the quantiles of the limit distribution of Q ∗

n (θ)
are different. In Example 6.1, the critical value along the sequence
θ∗
n has three moments binding, while the critical value under the

sequence θn has two moments binding. It follows that the GMS
critical values satisfy ĉn(θ∗

n , 1 − α) > ĉn(θn, 1 − α) with high
probability as n gets large. At the same time, these sequences are
such that Tn = infθ∈Θ Qn(θ) = Qn(θ

∗
n ) = Qn(θn). Putting all this

together, we can informally anticipate the result in Theorem 6.2 as
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follows,
φBP
n = 1{∀θ ∈ Θ : Qn(θ) > ĉn(θ, 1 − α)}

≤ 1{Qn(θ
∗

n ) > ĉn(θ∗

n , 1 − α)}⟨1{Qn(θn)⟩ĉn(θn, 1 − α)}

≤ 1{Tn > inf
θ∈Θ̂I

ĉn(θ, 1 − α)} = φRC
n ,

where the strict inequality holds with positive probability. As-
sumption A.9 is satisfied whenever the set of minimizers of Qn(θ)
is not a singleton and the limiting distribution of Q ∗

n (θ) is not the
same along the different sequences of minimizers. On the other
hand, the assumption does not hold if the local alternatives are
such that the argmin set ofQn(·) converges to a singleton (e.g. point
identification).

Theorem 6.2. For any sequence of local alternatives
{Fn ∈ P/P0}n≥1 that satisfies Assumption A.9,

lim inf
n→∞

(EFn [φ
RC
n ] − EFn [φ

BP
n ]) > 0.

Theorem 6.2 shows that Test RC is asymptotically strictly more
powerful than Test BP for sequence of alternatives satisfying
Assumption A.9. Combining this result with Theorem 6.1, it
follows that Test RS is also strictly more powerful than Test BP
asymptotically.

Remark 6.4. We can use Example 6.1 to illustrate the asymptotic
power gains. For µ = 2 and α = 10%, the asymptotic local power
of Test RC and Test BP are 38.1% and 27.8%, respectively. Clearly,
the power differences could be significant. In addition, the same
example illustrates how all these tests could be asymptotically
conservative. For µ = 0 and α = 10%, the asymptotic size of Test
RC andTest BP are 4.4% and2.2%, respectively,which are consistent
with the simulation results in Section 7.

Remark 6.5. Wecan also use Example 6.1 to show that amodifica-
tion of Test RS that replaces Θ̂I by Θ in Eq. (4.6) would not control
asymptotic size. In this case, simple algebra shows that, condition-
ally

inf
θ∈Θ

Q ∗

n (θ) ≤ min{Q ∗

n (θ L
n),Q

∗

n (θH
n )} = min{[v∗

n,1]
2
−
, [v∗

n,2]
2
−
}

d
→min{[Z2]2−, [Z3]2−} w.p.a.1, (6.8)

where θ L
n = (θ L

n,1, θn,2) and θH
n = (θH

n,1, θn,2) are two sequences in
Θ such that

θ L
n,1 = W̄2 −

2κn
√
n
, θH

n,1 = W̄1 +
2κn
√
n
,

and θn,2 = W̄3 +
2κn
√
n
. (6.9)

Note that the (1−α)-quantile of min{[Z2]2−, [Z3]2−} is smaller than
the (1 − α)-quantile of J in Eq. (6.7) and, thus, this modified Test
RS suffers from over-rejection. For µ = 0 and α = 10%, the
asymptotic size of is 31.70%. The Test RS fromDefinition 4.2 avoids
this problem by restricting θ to Θ̂I and thus guaranteeing that se-
quences with values of θ1 that are ‘‘too’’ big or ‘‘too’’ small (like
those in Eq. (6.9)) are not feasible.

Remark 6.6. If one considers sequences of alternatives under
which the inequality in Eq. (5.3) becomes strict (asymptotically), it
is then possible that Test RS becomes strictly more powerful than
Test RC.

Remark 6.7. Test BP requires fewer assumptions to obtain asymp-
totic size control than the tests we propose here. It is fair to say
then that Test BP is more ‘‘robust’’ than Test RC and Test RS, in the
sense that if some of the Assumptions A.1–A.7 fail, Test BP would
still control asymptotic size.
7. Monte Carlo simulations

We now present Monte Carlo simulations that illustrate the
finite sample properties of the specification tests considered in this
paper. We simulate data according to the simple parametrization
presented in Example 2.1, i.e., Eq. (2.14). The data {Wi}

n
i=1 are i.i.d.,

where Wi ≡ (YiZi, Zi, Xi) is distributed such that

{YiZi|X = x1} ∼ N(0, 1), {YiZi|X = x2} ∼ N(1 + ηn, 1),
{YiZi|X = x3} ∼ N(0, 1), (7.1)

for ηn = η/n1/2
∈ R, and P(Xi = xs) = 1/3 for s ∈ {1, 2, 3}. By

plugging in this information into Eq. (2.14), we get

ΘI(F) = {(θ1, θ2) ∈ Θ : θ1 ∈ [0, −ηn], θ2 ≥ 0}. (7.2)

The parameter η ∈ R measures the amount of model misspecifi-
cation. On the one hand, η ≤ 0 implies that the model is correctly
specified and strictly partially identified, i.e., the identified set in-
cludes multiple values. On the other hand, η > 0 implies that the
model is misspecified, i.e., the identified set is empty.

The simulation results are collected in Tables 1 and 2. The
parameters we use to produce both tables are as follows: α = 10%,
n ∈ {100, 1000}, κn = C

√
ln n for C ∈ {0.01, 0.1, 0.8, 0.9, 1, 10},

ϕ(·) as in Eq. (6.5), and S(·) as in Eq. (6.4).12 The number of
replications is set to 5000.

The simulation results are consistent with the theoretical find-
ings. Under the null hypothesis (i.e. η = 0) all tests are asymp-
totically level correct (i.e. the asymptotic rejection rate does not
exceed α). In fact, Remark 6.4 shows that these tests are asymptot-
ically conservative in this example, which is consistentwith the re-
sults in Tables 1 and 2. Under the alternative hypothesis (i.e. η > 0)
the rejection rates increasemonotonicallywith the amount ofmis-
specification, measured by η. Comparing the rejection rates across
methods, we see that Test RS shows better power than Test RC, and
that Test RC has better power than Test BP. The differences can
be substantial, with the power of Test RS being almost twice the
power of Test BP for some alternatives (e.g. η = 0.3 and n = 100).
These results are consistent with Theorem 6.1 and the analytical
derivations in Example 6.1. However, as a referee pointed out, if
Test BP were to be implemented with a smaller κn than the one
used for our tests, it could deliver similar finite sample power.13 Ta-
ble 2 illustrates this possibility by comparing Test BP with C = 0.1
and Test RS with C = 10. In this case, both tests have the same
rejection probability for η = 0 (i.e. 3.52) and similar power for all
values of η > 0. This does not contradict our results, as they are
established for the same choice of κn, see Remarks 5.2 and 6.3.14

8. Conclusions

This paper studies the problem of specification testing in
partially identified models defined by a finite number of moment
(in)equalities. Under the null hypothesis of the test, there is at
least one parameter value that simultaneously satisfies all of the
moment (in)equalities whereas under the alternative hypothesis
of the test there is no such parameter value.While this problemhas
not been directly addressed in the literature (except in particular

12 Additional simulations for C ∈ {0.05, 0.5} show similar results and are
therefore omitted. Note that for n = 100, the parameter κn ranges from 0.021 (for
C = 0.01) to 21.4 (for C = 10).
13 This is why we consider such a wide range for the parameter κn in our
simulations.
14 In Example 2.1 one can show that the power gains of Test RS over Test RC vanish
asymptotically. However, there are models in which Test RS has strictly higher
asymptotic power than Test RC. We have constructed one such example and the
results of the simulations are available upon request.
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Table 1
Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (7.2). Parameter values are n = 100, α = 10%, κn = C

√
ln n.

Results based on 5000 Monte Carlo replications.

C Method η

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BP 1.88 2.18 3.24 5.32 9.24 16.52 28.88 47.68 69.92 88.78 97.50
0.01 RC 3.60 4.06 5.68 8.74 13.80 23.08 38.78 58.06 78.36 92.42 98.48

RS 3.62 4.22 5.62 8.64 13.80 22.84 38.58 58.14 78.28 92.56 98.46

BP 1.82 2.08 3.20 5.18 9.04 16.26 28.42 47.02 69.26 88.38 97.40
0.1 RC 3.58 4.00 5.64 8.66 13.76 22.98 38.64 57.96 78.26 92.38 98.48

RS 3.60 4.18 5.58 8.56 13.78 22.72 38.42 58.02 78.20 92.52 98.46

BP 1.76 2.02 3.08 4.90 8.86 15.72 27.94 46.44 68.66 88.14 97.22
0.8 RC 3.32 3.70 5.32 8.42 13.24 22.46 37.88 56.60 77.52 92.02 98.42

RS 3.36 3.84 5.24 8.36 13.30 22.16 37.62 56.68 77.52 92.16 98.40

BP 1.76 2.02 3.06 4.88 8.84 15.72 27.94 46.40 68.66 88.12 97.18
0.9 RC 3.28 3.64 5.32 8.40 13.18 22.30 37.72 56.44 77.44 91.98 98.40

RS 3.30 3.80 5.24 8.32 13.24 22.04 37.42 56.54 77.44 92.12 98.40

BP 1.76 2.02 3.06 4.86 8.80 15.72 27.94 46.38 68.66 88.10 97.18
1 RC 3.24 3.60 5.32 8.32 13.08 22.24 37.66 56.30 77.34 91.94 98.38

RS 3.26 3.76 5.22 8.24 13.20 22.00 37.36 56.40 77.32 92.08 98.38

BP 1.76 1.98 3.02 4.84 8.78 15.66 27.80 46.38 68.58 88.02 97.16
10 RC 1.82 2.02 3.08 5.02 8.86 15.86 28.26 46.90 69.06 88.32 97.30

RS 1.76 2.06 3.14 5.04 8.70 15.82 28.30 47.10 69.08 88.26 97.34
Table 2
Rejection rate (in %) of Test BP, Test RC, and Test RS for the model in Eq. (7.2). Parameter values are n = 1000, α = 10%, κn = C

√
ln n.

Results based on 5000 Monte Carlo replications.

C Method η

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

BP 3.62 4.18 5.48 8.24 13.08 22.02 35.82 56.24 75.36 90.82 97.92
0.01 RC 4.24 4.96 6.34 9.20 14.32 24.08 38.66 58.74 77.72 91.82 98.28

RS 4.30 4.92 6.32 9.16 14.30 24.20 38.82 58.82 77.84 91.86 98.24

BP 3.52 4.06 5.34 7.80 12.80 21.44 35.26 55.62 74.80 90.44 97.78
0.1 RC 4.24 4.96 6.34 9.20 14.32 24.08 38.62 58.70 77.70 91.80 98.26

RS 4.30 4.92 6.32 9.16 14.30 24.20 38.78 58.78 77.82 91.86 98.24

BP 2.62 3.04 4.52 6.34 10.34 17.88 30.80 50.36 71.12 88.42 97.16
0.8 RC 4.20 4.94 6.32 9.14 14.26 24.00 38.58 58.64 77.66 91.70 98.22

RS 4.28 4.90 6.30 9.10 14.24 24.14 38.70 58.72 77.74 91.78 98.22

BP 2.60 3.00 4.52 6.26 10.32 17.76 30.68 50.22 71.10 88.36 97.16
0.9 RC 4.20 4.94 6.32 9.14 14.26 24.00 38.58 58.62 77.66 91.70 98.22

RS 4.28 4.90 6.30 9.10 14.24 24.14 38.70 58.70 77.74 91.78 98.22

BP 2.58 2.98 4.44 6.20 10.10 17.72 30.58 50.16 70.96 88.34 97.12
1 RC 4.20 4.94 6.32 9.10 14.22 23.96 38.58 58.56 77.62 91.70 98.22

RS 4.28 4.90 6.30 9.06 14.20 24.10 38.68 58.62 77.70 91.78 98.22

BP 2.10 2.50 3.66 5.58 9.14 16.40 28.62 47.26 68.82 86.98 96.80
10 RC 3.44 4.00 5.34 8.02 12.18 21.66 35.16 54.48 74.22 90.12 97.64

RS 3.52 4.00 5.38 7.98 12.44 21.64 35.28 54.72 74.26 90.08 97.64
cases), several papers in the literature have suggested addressing it
by checkingwhether confidence sets for the parameters of interest
are empty or not. We refer to this procedure as Test BP.

We propose two new specification tests that achieve uniform
asymptotic size control, which we refer to as Test RS and Test RC.
Both of these tests dominate Test BP in terms of power. In par-
ticular, we show that Test RS and Test RC have more or equal
power than Test BP in all finite samples, and we characterize
sequences of local alternative hypotheses for which they have
strictly higher asymptotic power. Our numerical results reveal that
these power differences can be substantial, even in small sample
sizes.

This paper also compares these specification tests in terms of
their computational costs. By definition, Test BP requires the com-
putation of a confidence set for the parameter of interest. If one
is willing to compute this confidence set, then Test RC is partic-
ularly convenient: it requires almost no additional work and can
potentially lead to significant power gains vis-à-vis Test BP. On the
other hand, implementing Test RS requires a separate resampling
procedure that is typically easier than the computation of the con-
fidence sets (especially in high dimensional problems encountered
in practice). In reward for this extra computation, Test RS can lead
to power gains relative to the other two procedures.

We point out that the methodological contributions in this
paper can be used to address a wide range of inferential problems
that are different from specification testing. In particular, Bugni
et al. (2014) use inferential procedures along the lines of Test RS to
conduct inference on functions of partially identified parameters
in a moment (in)equality model, i.e.,

H0 : f (θ0) = γ0 vs. H1 : f (θ0) ≠ γ0, (8.1)

where θ0 now denotes the true parameter value in the moment
inequality model, f is a known function, and γ0 is an arbitrary
number. We also point out that there are other interesting ex-
tensions that we did not pursue. First, our paper does not con-
sider conditionalmoment restrictions, c.f. Andrews and Shi (2013);
Chernozhukov et al. (2013); Armstrong (2014), and Chetverikov
(2013). Second, our asymptotic framework is one where the limit
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distributions do not depend on tuning parameters used at the mo-
ment selection stage, as opposed to Andrews and Barwick (2012);
Romano et al. (2014), andMcCloskey (2014). These two extensions
are well beyond the scope of this paper and are left for future re-
search.

Appendix A. Notation

Throughout the Appendix we use the following notation. For
any u ∈ N, 0u is a column vector of zeros of size u, 1u is a column
vector of ones of size u, and Iu is the u × u identity matrix. We use
R++ = {x ∈ R : x > 0}, R+ = R++ ∪ {0}, R+,∞ = R+ ∪ {+∞},
R[+∞] = R ∪ {+∞}, and R[±∞] = R ∪ {±∞}. For any u ∈ N, we
equip Ru

[±∞]
with the following metric d. For any x1, x2 ∈ Ru

[±∞]
,

d(x1, x2) =


u

i=1

(ϑ(x1,i) − ϑ(x2,i))2
1/2

, (A.1)

where ϑ : R[±∞] → [0, 1] is such that ϑ(−∞) = 0, ϑ(∞) = 1,
and ϑ(y) = Φ(y) for y ∈ R, where Φ is the standard normal CDF.
Finally, D̂n(θ) ≡ Diag(Σ̂n(θ)), Ω̂n(θ) ≡ D̂−1/2

n (θ)Σ̂n(θ)D̂−1/2
n (θ),

vn(θ) ≡
√
nD−1/2

F (θ)(m̄n(θ) − EF [m(W , θ)]),
ṽn(θ) ≡

√
nD̂−1/2

n (θ)(m̄n(θ) − EF [m(W , θ)]), and v∗
n(θ) is defined

as v̂∗
n(θ) in Eqs. (4.4) and (4.5) with D−1/2

F (θ) replacing D̂−1/2
n (θ).

Remark A.1. The space (Ru
[±∞]

, d) constitutes a compact metric
space. Also, if a sequence in (Ru

[±∞]
, d) converges to an element

in Ru, such a sequence will also converge in (Ru, ∥ · ∥), where ∥ · ∥

denotes the Euclidean norm.

Let C(Θ2) denote the space of continuous functions that map
Θ2 to Ψ and S(Θ × Rk

[±∞]
) denote the space of compact subsets

of the metric space (Θ × Rk
[±∞]

, d). In addition, let dH denote the
Hausdorffmetric associated to d, i.e., for any sets A, B ∈ Θ×Rk

[±∞]
,

dH(A, B) ≡ max


sup
(θ1,h1)∈A

inf
(θ2,h2)∈B

d((θ1, h1), (θ2, h2)),

sup
(θ2,h2)∈B

inf
(θ1,h1)∈A

d((θ1, h1), (θ2, h2))


.

We use ‘‘
H
→’’ to denote convergence in the Hausdorff metric,

i.e., An
H
→ B ⇐⇒ dH(An, B) → 0. Finally, for non-stochastic func-

tions of θ ∈ Θ , we use ‘‘
u

→’’ to denote uniform in θ convergence,
e.g., ΩFn

u
→ Ω ⇐⇒ supθ,θ ′∈Θ d(ΩFn(θ, θ ′), Ω(θ, θ ′)) → 0. Also,

we use Ω(θ) and Ω(θ, θ) equivalently.
We denote by l∞(Θ) the set of all uniformly bounded functions

that map Θ → Ru, equipped with the supremum norm. The
sequence of distributions {Fn ∈ P }n≥1 determine a sequence of
probability spaces {(W, A, Fn)}n≥1. Stochastic processes are then

randommaps X : W → l∞(Θ). In this context, we use ‘‘
d

→’’, ‘‘
p

→’’,
and ‘‘

a.s.
→’’ to denote weak convergence, convergence in probability,

and convergence almost surely in the l∞(Θ) metric, respectively,
in the sense of van der Vaart and Wellner (1996). In addition, for
every F ∈ P , we use M(F) ≡ {D−1/2

F (θ)m(·, θ) : W → Rk
}

and denote by ρF the coordinate-wise version of the ‘‘intrinsic’’
variance semimetric, i.e.,

ρF (θ, θ ′)

≡

VF [σ
−1
F ,j (θ)mj(W , θ) − σ−1

F ,j (θ
′)mj(W , θ ′)]1/2

k
j=1

. (A.2)

It is easy to show that ρF (θ, θ ′) =
√
2∥[Ik − Diag(ΩF (θ, θ ′))]1/2∥.
Finally, the assumptions in the next section and some of the
auxiliary results make use of the set

Λ∗

n,Fn ≡


(θ, ℓ) ∈ Θ

ηn
I (Fn) × Rk

:

ℓ = κ−1
n

√
nD−1/2

Fn (θ)EFn [m(W , θ)]


, (A.3)

where Θ
ηn
I (Fn) and {ηn}n≥1 are as in Definition 4.3 and {κn}n≥1 is

as in Assumption M.1.

Appendix B. Additional assumptions

This section collects several assumptions that are routinely
assumed in the literature of partially identified models defined by
moment (in)equalities, and some additional ones required by this
paper.

Assumption A.5. Given the function ϕ : Rp
[+∞]

× Rk−p
[±∞]

× Ψ →

Rk
[+∞]

in Assumption M.1, there is a function ϕ∗
: Rk

[±∞]
→ Rk

[+∞]

that takes the form ϕ∗(ξ) = (ϕ∗

1 (ξ1), . . . , ϕ
∗
p (ξp), 0k−p) and, for all

j = 1, . . . , p,

(a) ϕ∗

j (ξj) ≥ ϕj(ξ , Ω) for all (ξ , Ω) ∈ Rp
[+∞]

× Rk−p
[±∞]

× Ψ .
(b) ϕ∗

j is continuous.
(c) ϕ∗

j (ξj) = 0 for all ξj ≤ 0 and ϕ∗

j (∞) = ∞.

Assumption A.6. For any {Fn ∈ P0}n≥1, let Λ and Λ∗ be such that

Λn,Fn
H
→ Λ and Λ∗

n,Fn
H
→ Λ∗, where Λn,F and Λ∗

n,Fn are defined in
Eqs. (3.6) and (A.3), respectively. Then, for all (θ, ℓ∗) ∈ Λ∗ there
exists (θ, ℓ) ∈ Λ where ℓj = 0 for all j > p, ℓj ≥ ϕ∗

j (ℓ
∗

j ) for all
j ≤ p, and ϕ∗ is defined as in Assumption A.5.

Assumption A.7. For any {Fn ∈ P0}n≥1, let (Ω, Λ) be such that

ΩFn
u

→ Ω and Λn,Fn
H
→ Λ with (Ω, Λ) ∈ C(θ) × S(Θ × Rk

[±∞]
)

and Λn,Fn as in Eq. (3.6). Let c(1−α)(Λ, Ω) be the (1 − α)-quantile
of J(Λ, Ω) ≡ inf(θ,ℓ)∈Λ S(vΩ(θ) + ℓ, Ω(θ)). Then,

(a) If c(1−α)(Λ, Ω) > 0, the distribution of J(Λ, Ω) is continuous
at c(1−α)(Λ, Ω).

(b) If c(1−α)(Λ, Ω) = 0, lim infn→∞ PFn(Tn = 0) ≥ (1 − α), where
Tn is as in Eq. (3.3).

Assumption A.8. The following conditions hold.

(a) For all (θ, F) ∈ Θ × P0, QF (θ) ≥ c min{δ, infθ̃∈ΘI (F) ∥θ − θ̃∥}
χ

for constants c, δ > 0 and χ as in Assumption M.8.
(b) Θ is convex.
(c) The function gF (θ) ≡ D−1/2

F (θ)EF [m(W , θ)] is differentiable
in θ for any F ∈ P0, and the class of functions {GF (θ) ≡

∂gF (θ)/∂θ ′
: F ∈ P0} is equicontinuous, i.e.,

lim
δ→0

sup
F∈P0,(θ,θ ′):∥θ−θ ′∥≤δ

∥GF (θ) − GF (θ
′)∥ = 0.

Remark B.1. Assumption A.5 is satisfied if the function ϕ is any of
the functions ϕ(1)

− ϕ(4) described in Andrews and Soares (2010)
or Andrews and Barwick (2012). This follows from Lemma D.9, as
the functions ϕ(1)

− ϕ(4) satisfy the conditions of this result.

Remark B.2. Without Assumption A.7 the asymptotic distribution
of the test statistic could be discontinuous at the probability limit
of the critical value, resulting in asymptotic over-rejection under
the null hypothesis. One way to address this problem is by adding
an infinitesimal constant to the critical value, which introduces
an additional tuning parameter that needs to be chosen by the
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researcher. Another way is to impose Assumption A.7, so that the
limiting distribution is either continuous or has a discontinuity
that does not cause asymptotic over-rejection. Note that this
assumption holds in Example 6.1, where J in Eq. (6.7) is continuous
at x > 0.

The literature routinely assumes that the test function S in Eq.
(2.5) satisfies the following assumptions (see, e.g., Andrews and
Soares (2010); Andrews and Guggenberger (2009), and Bugni et al.
(2012)). We therefore treat the assumptions below as maintained.

Assumption M.4. The function S satisfies the following condi-
tions.

(a) S((m1,m2), Σ) is non-increasing in m1, for all (m1,m2) ∈

Rp
[+∞] × Rk−p and all variance matrices Σ ∈ Rk×k.

(b) S(m, Ω) = S(∆m, ∆Σ∆) for all m ∈ Rk, Σ ∈ Rk×k, and
positive definite diagonal ∆ ∈ Rk×k.

(c) S(m, Ω) ≥ 0 for allm ∈ Rk and Ω ∈ Ψ ,
(d) S(m, Ω) is continuous at all m ∈ Rk

[±∞]
and Ω ∈ Ψ .

Assumption M.5. For all h1 ∈ Rp
[+∞]

× Rk−p, all Ω ∈ Ψ , and
Z ∼ N (0k, Ω), the distribution function of S (Z + h1, Ω) at x ∈ R
is:

(a) continuous for x > 0,
(b) strictly increasing for x > 0 unless p = k and h1 = ∞

p,
(c) less than or equal to 1/2 at x = 0 when k > p or when k = p

and h1,j = 0 for some j = 1, . . . , p.
(d) is degenerate at x = 0 when p = k and h1 = ∞

p.
(e) P(S(Z + (m1, 0k−p), Ω) ≤ x) < P(S(Z + (m∗

1, 0k−p), Ω) ≤ x)
for all x > 0 and all m1,m∗

1 ∈ Rp
[+∞]

with m1 ≤ m∗

1 and
m1 ≠ m∗

1 .

Assumption M.6. The function S satisfies the following condi-
tions.

(a) The distribution function of S(Z, Ω) is continuous at its (1−α)
quantile, denoted c(Ω, 1 − α), for all Ω ∈ Ψ , where Z ∼

N(0k, Ω) and α ∈ (0, 0.5),
(b) c(Ω, 1 − α) is continuous in Ω uniformly for Ω ∈ Ψ .

Assumption M.7. S(m, Ω) > 0 if and only if mj < 0 for some
j = 1, . . . , p or mj ≠ 0 for some j = p + 1, . . . , k, where
m = (m1, . . . ,mk)

′ and Ω ∈ Ψ . Equivalently, S(m, Ω) = 0
if and only if mj ≥ 0 for all j = 1, . . . , p and mj = 0 for all
j = p + 1, . . . , k, wherem = (m1, . . . ,mk)

′ and Ω ∈ Ψ .

Assumption M.8. For some χ > 0, S(am, Ω) = aχS(m, Ω) for all
scalars a > 0,m ∈ Rk, and Ω ∈ Ψ .

Assumption M.9. For all n ≥ 1, S(
√
nm̄n(θ), Σ̂(θ)) is a lower

semi-continuous function of θ ∈ Θ .

Appendix C. Proofs of the main theorems

Proof of Theorem 3.1. Step 1. Let Ω̃n(θ)≡D−1/2
Fn (θ)Σ̂n(θ)D−1/2

Fn (θ)
and consider the following derivation

Tn ≡ inf
θ∈Θ

S(
√
nm̄n(θ), Σ̂n(θ))

= inf
θ∈Θ

S(
√
nD−1/2

Fn (θ)m̄n(θ), Ω̃n(θ))

= inf
θ∈Θ

S(vn(θ) +
√
nD−1/2

Fn (θ)EFn [m(W , θ)], Ω̃n(θ))

= inf
(θ,ℓ)∈Λn,Fn

S(vn(θ) + ℓ, Ω̃n(θ)).

Step 2. Let D be the space of functions that map Θ onto Rk
× Ψ

and let D0 be the space of uniformly continuous functions that
map Θ onto Rk
× Ψ . Let the sequence of functionals {gn}n≥1 with

gn : D → R be defined by

gn(v(·), Ω(·)) ≡ inf
(θ,l)∈Λn,Fn

S(v(θ) + ℓ, Ω(θ)). (C.1)

Let the functional g : D0 → R be defined by

g(v(·), Ω(·)) ≡ inf
(θ,l)∈Λ

S(v(θ) + ℓ, Ω(θ)).

We now show that if the sequence of (deterministic) functions
{(vn(·), Ωn(·))}n≥1 with (vn(·), Ωn(·)) ∈ D for all n ∈ N satisfies

lim
n→∞

sup
θ∈Θ

∥(vn(θ), Ωn(θ)) − (v(θ), Ω(θ))∥ = 0, (C.2)

for some (v(·), Ω(·)) ∈ D0, then

lim
n→∞

gn(vn(·), Ωn(·)) = g(v(·), Ω(·)).

We need to show that lim infn→∞ gn(vn(·), Ωn(·)) ≥ g(v(·),
Ω(·)). The argument to show that lim supn→∞ gn(vn(·), Ωn(·)) ≤

g(v(·), Ω(·)) is similar and therefore omitted. Suppose not,
i.e., suppose that ∃δ > 0 and a subsequence {an}n≥1 of {n}n≥1
s.t. ∀n ∈ N,

gan(van(·), Ωan(·)) < g(v(·), Ω(·)) − δ. (C.3)

By definition, there exists a sequence {(θan , ℓan)}n≥1 that
approximately achieves the infimum in Eq. (C.1), i.e., ∀n ∈ N,
(θan , ℓan) ∈ Λan,Fan and

∥gan(van(·), Ωan(·)) − S(van(θan) + ℓan , Ωan(θan))∥ ≤ δ/2. (C.4)

Since Λan,Fan ⊆ Θ × Rk
[±∞]

and since (Θ × Rk
[±∞]

, d) is a compact
metric space, there exists a subsequence {bn}n≥1 of {an}n≥1 and
(θ∗, ℓ∗) ∈ Θ × Rk

[±∞]
s.t. d((θbn , ℓbn), (θ

∗, ℓ∗)) → 0.
We first show that (θ∗, ℓ∗) ∈ Λ. Suppose not, i.e., (θ∗, ℓ∗) ∉ Λ,

and consider the following argument

d((θbn , ℓbn), (θ
∗, ℓ∗)) + dH(Λbn,Fbn , Λ)

≥ d((θbn , ℓbn), (θ
∗, ℓ∗)) + inf

(θ,ℓ)∈Λ
d((θ, ℓ), (θbn , ℓbn))

≥ inf
(θ,ℓ)∈Λ′

d((θ, ℓ), (θ∗, ℓ∗)) > 0,

where the first inequality follows from the definition of Haus-
dorff distance and the fact that (θbn , ℓbn) ∈ Λbn,Fbn , and the
second inequality follows by the triangular inequality. The final
strict inequality follows from the fact that Λ ∈ S(Θ × Rk

[±∞]
),

i.e., it is a compact subset of (Θ × Rk
[±∞]

, d), f (θ, ℓ) =

d((θ, ℓ), (θ∗, ℓ∗)) is a continuous real-valued function, and Roy-
den (1988, Theorem 7.18). Taking limits as n → ∞ and using that
d((θbn , ℓbn), (θ

∗, ℓ∗)) → 0 andΛbn,Fbn
H
→ Λ, we reach a contradic-

tion.
We now show that ℓ∗

∈ Rp
[+∞]

× Rk−p. Suppose not, i.e., sup-
pose that ∃j = 1, . . . , k s.t. ℓ∗

j = −∞ or ∃j > p s.t. ℓ∗

j = ∞.
Let J denote the set of indices j = 1, . . . , k s.t. this occurs. For any
ℓ ∈ Rk

[±∞]
define Ξ(ℓ) ≡ maxj∈J ∥ℓj∥. By definition of Λbn,Fbn ,

ℓbn ∈ Rk and thus, Ξ(ℓbn) < ∞. By the case under consideration,
limn→∞ Ξ(ℓbn) = Ξ(ℓ∗) = ∞.

Since (Θ, ∥ ·∥) is a compact metric space, d((θbn , ℓbn), (θ
∗, ℓ∗))

→ 0 implies that θbn → θ∗. Then, consider the following deriva-
tion,

∥(vbn(θbn), Ωbn(θbn)) − (v(θ∗), Ω(θ∗))∥

≤ ∥(vbn(θbn), Ωbn(θbn)) − (v(θbn), Ω(θbn))∥

+ ∥(v(θbn), Ω(θbn)) − (v(θ∗), Ω(θ∗))∥

≤ sup
θ∈Θ

∥(vbn(θ), Ωbn(θ)) − (v(θ), Ω(θ))∥

+ ∥(v(θbn), Ω(θbn)) − (v(θ∗), Ω(θ∗))∥ → 0,
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where the last convergence holds by Eq. (C.2), θbn → θ∗, and
(v(·), Ω(·)) ∈ D0.

Notice that (v(·), Ω(·)) ∈ D0 and the compactness of Θ imply
that (v(θ∗), Ω(θ∗)) is bounded. Since limn→∞ Ξ(ℓbn) = ∞ and
v(θ∗) ∈ Rk, it then follows that limn→∞ Ξ(ℓbn)

−1
∥vbn(θbn)∥ = 0.

By construction, {Ξ(ℓbn)
−1ℓbn}n≥1 is s.t. limn→∞ Ξ(ℓbn)

−1

ℓbn,j


−

= 1 for some j ≤ p or limn→∞ Ξ(ℓbn)
−1
ℓbn,j

 = 1 for some j > p.
We then conclude that limn→∞ Ξ(ℓbn)

−1
[vbn,j(θbn) + ℓbn,j]− = 1

for some j ≤ p or limn→∞ Ξ(hbn)
−1
vbn,j(θbn) + ℓbn,j

 = 1 for
some j > p. This implies that

S(vbn(θbn) + ℓbn , Ωbn(θbn))

= Ξ(ℓbn)
χS(Ξ(ℓbn)

−1(vbn(θbn) + ℓbn), Ωbn(θbn)) → ∞.

Since {(θbn , ℓbn)}n≥1 is a subsequence of {(θan , ℓan)}n≥1 which ap-
proximately achieves the infimum in Eq. (C.1), it then follows that

gn(vn(·), Ωn(·)) → ∞. (C.5)

We now show that Eq. (C.5) is a contradiction. Since {Fn ∈ P0}n≥1
then there is a sequence {θn}n≥1 s.t.

lim inf
n→∞

√
nσ−1

Fn,j(θn)EFn [mj(W , θn)] ≡ ℓ∗

j ≥ 0, for j ≤ p

lim
n→∞

√
nσ−1

Fn,j(θn)|EFn [mj(W , θn)]| ≡ ℓ∗

j = 0, for j > p.

By compactness of (Θ × Rk
[±∞]

, d), we can find a subsequence
{kn}n≥1 of {n}n≥1 s.t. d((θ̃kn , ℓ̃kn), (θ̃

∗, ℓ̃∗)) → 0 with (θ̃∗, ℓ̃∗) ∈

Θ × Rp
[+∞]

× Rk−p. By repeating the previous arguments, we can
show that limn→∞(vkn(θ̃kn), Ωkn(θ̃kn)) = (v(θ̃∗), Ω(θ̃∗)) ∈ Rk

×

Ψ , which implies that

inf
(θ,l)∈Λ′

kn,Fkn

S(vkn(θ) + ℓ, Ωkn(θ))

≤ S(vkn(θ̃kn) + ℓ̃kn , Ωkn(θ̃kn)) → S(v(θ̃∗) + ℓ̃∗, Ω(θ̃∗)).

Since (v(θ̃∗) + ℓ̃∗, Ω(θ̃∗)) ∈ Rp
[+∞]

× Rk−p
× Ψ , we conclude that

S(v(θ̃∗)+ ℓ̃∗, Ω(θ̃∗)) is bounded. Since {kn}n≥1 is a subsequence of
{n}n≥1, this is a contradiction to Eq. (C.5).

Since d((θbn , ℓbn), (θ
∗, ℓ∗)) → 0, we can conclude that

limn→∞(vbn(θbn), Ωbn(θbn)) = (v(θ∗), Ω(θ∗)) ∈ Rk
× Ψ re-

peating previous arguments. This implies that limn→∞(vbn(θbn) +

ℓbn , Ωbn(θbn)) = (v(θ∗)+ℓ∗, Ω(θ∗)) ∈ (Rk
[±∞]

×Ψ ) and, so, gives
us that limn→∞ S(vbn(θbn)+ℓbn , Ωbn(θbn)) = S(v(θ∗)+ℓ∗, Ω(θ∗)),
i.e, ∃N ∈ N s.t. ∀n ≥ N ,

∥S(vbn(θbn) + ℓbn , Ωbn(θbn)) − S(v(θ∗) + ℓ∗, Ω(θ∗))∥ ≤ δ/2.
(C.6)

By combining Eqs. (C.4) and (C.6), and the fact that (θ∗, ℓ∗) ∈ Λ, it
follows that ∃N ∈ N s.t. ∀n ≥ N ,

gbn(vbn(·), Ωbn(·)) ≥ S(v(θ∗) + ℓ∗, Ω(θ∗)) − δ

≥ g(v(·), Ω(·)) − δ,

which is a contradiction to Eq. (C.3).
Step 3. The proof is completed by combining the representation

in step 1, the convergence result in step 2, Lemma D.2, and the ex-
tended continuous mapping theorem (see, e.g., van der Vaart and
Wellner, 1996, Theorem 1.11.1). In order to apply this result, it is
important to notice that parts 1 and 5 in Lemma D.2 and standard
convergence results imply that (vn(·), Ω̃(·))

d
→(vΩ(·), Ω(·)) and

(vΩ(·), Ω(·)) ∈ D0 a.s. �

Proof of Theorem 4.1. We start by proving that for η ≥ 0,

lim sup
n→∞

sup
F∈P0

PF (Tn > ĉRSn (1 − α) + η) ≤ α.
Steps 1–4 hold for η ≥ 0, step 5 needs that η > 0, and step 6 holds
for η = 0 under Assumption A.7.

Step 1. For any F ∈ P0, let T̃ ∗
n be defined by as follows

T̃ ∗

n ≡ inf
θ∈Θ

ηn
I (F)

S(v̂∗

n(θ) + ϕ∗(κ−1
n

√
nD̂1/2

n (θ)m̄n(θ)), Ω̂n(θ)),

and let c̃RSn (1−α) denote its conditional (1−α)-quantile. Consider
the following derivation

PF (Tn > ĉRSn (1 − α) + η)

≤ PF (Tn > c̃RSn (1 − α) + η) + PF (ĉRSn (1 − α) < c̃RSn (1 − α))

≤ PF (Tn > c̃RSn (1 − α) + η) + PF (Θ̂I ⊈ Θ
ηn
I (F)),

where the first inequality is elementary and the second inequality
follows from the fact that Assumption A.5 and ĉRSn (1 − α) <

c̃RSn (1−α) implies Θ̂I ⊈ Θ
ηn
I (F). By this and LemmaD.13, it follows

that

lim sup
n→∞

sup
F∈P0

PF (Tn > ĉRSn (1 − α) + η)

≤ lim sup
n→∞

sup
F∈P0

PF (Tn > c̃RSn (1 − α) + η).

Step 2. By definition, there exists a subsequence {an}n≥1 of
{n}n≥1 and a subsequence {Fan}n≥1 s.t.

lim sup
n→∞

sup
F∈P0

PF (Tn > c̃RSn (1 − α) + η)

= lim
n→∞

PFan (Tan > c̃RSan (1 − α) + η). (C.7)

By Lemma D.7, there is a further sequence {bn}n≥1 of {an}n≥1

s.t. ΩFbn
u

→ Ω , Λbn,Fbn
H
→ Λ, and Λ∗

bn,Fbn

H
→ Λ∗, where Λbn,Fbn and

Λ∗

bn,Fbn
are as in Eqs. (3.6) and (A.3), respectively, for some

(Ω, Λ, Λ∗) ∈ C(θ) × S(Θ × Rk
[±∞]

)2. Since ΩFbn
u

→ Ω and

Λbn,Fbn
H
→ Λ, Theorem 3.1 implies that Tbn

d
→ J(Λ, Ω) ≡

inf(θ,ℓ)∈Λ S(vΩ(θ) + ℓ, Ω(θ)). Similarly, Theorem C.1 implies that

{T̃ ∗
an |{Wi}

an
i=1}

d
→ J∗(Λ∗, Ω) ≡ inf(θ,ℓ)∈Λ∗ S(vΩ(θ) + ϕ∗(ℓ), Ω(θ))

a.s.
Step 3. We now show that J∗(Λ∗, Ω) ≥ J(Λ, Ω). Suppose not,

i.e., ∃(θ, ℓ∗) ∈ Λ∗ s.t. S(vΩ(θ) + ϕ∗(ℓ∗), Ω(θ)) < J(Λ, Ω). By
Assumption A.6, ∃(θ, ℓ) ∈ Λ where ℓj = 0 for all j > p and
ℓj ≥ ϕ∗

j (ℓ
∗

j ) for all j ≤ p. Thus

S(vΩ(θ) + ℓ, Ω(θ)) ≤ S(vΩ(θ) + ϕ∗(ℓ∗), Ω(θ)) < J(Λ, Ω)

≡ inf
(θ,ℓ)∈Λ

S(vΩ(θ) + ℓ, Ω(θ)),

which is a contradiction to (θ, ℓ) ∈ Λ.
Step 4. We now show that for c(1−α)(Λ, Ω) being the (1 − α)-

quantile of J(Λ, Ω) and any ε > 0,

lim PFbn (c̃
RS
bn (1 − α) ≤ c(1−α)(Λ, Ω) − ε) = 0. (C.8)

Let ε̃ ∈ (0, ε) be chosen s.t. c(1−α)(Λ, Ω) − ε̃ is a continu-
ity point of the CDF of J∗(Λ∗, Ω). Then, for almost all sample se-
quences,

lim PFbn (T̃
∗

bn ≤ c(1−α)(Λ, Ω) − ε̃|{Wi}
bn
i=1)

= P(J∗(Λ∗, Ω) ≤ c(1−α)(Λ, Ω) − ε̃)

≤ P(J(Λ, Ω) ≤ c(1−α)(Λ, Ω) − ε̃) < 1 − α,

where the equality holds a.s. by step 2 and that c(1−α)(Λ, Ω) − ε̃
is a continuity point of the CDF of J∗(Λ∗, Ω), the weak inequality
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is a consequence of J∗(Λ∗, Ω) ≥ J(Λ, Ω), and the strict inequality
follows from the fact that c(1−α)(Λ, Ω) is the (1 − α)-quantile of
J(Λ, Ω). From here, the definition of quantile and ε̃ < ε imply that

{lim PFbn (T̃
∗

bn ≤ c(1−α)(Λ, Ω) − ε̃|{Wi}
bn
i=1) < 1 − α}

⊆ {lim inf{c̃RSbn (1 − α) > c(1−α)(Λ, Ω) − ε}}.

Since the RHS occurs for almost all sample sequences, then the LHS
must also occur for almost all sample sequences. Then, Eq. (C.8) is
a consequence of this and Fatou’s Lemma.

Step 5. For η > 0, we can define ε > 0 in step 4 so that η−ε > 0
and c(1−α)(Λ, Ω)+η−ε is a continuity point of the CDF of J(Λ, Ω).
It then follows that

PFbn (Tbn > c̃RSbn (1 − α) + η)

≤ PFbn (c̃
RS
bn (1 − α) ≤ c(1−α)(Λ, Ω) − ε)

+ 1 − PFbn (Tbn ≤ c(1−α)(Λ, Ω) + η − ε). (C.9)

Taking limit supremum on both sides, using steps 2 and 4, and that
η − ε > 0,

lim sup
n→∞

PFbn (Tbn > c̃RSbn (1 − α) + η)

≤ 1 − P(J(Λ, Ω) ≤ c(1−α)(Λ, Ω) + η − ε) ≤ α.

This combinedwith steps 1 and 2 completes the proof underη > 0.
Step 6. For η = 0, there are two cases to consider. First, suppose

c(1−α)(Λ, Ω) = 0. Then, by Assumption A.7,

lim sup
n→∞

PFbn (Tbn > c̃RSbn (1 − α)) ≤ lim sup
n→∞

PFbn (Tbn ≠ 0) ≤ α.

The proof is completed by combining the previous equation with
steps 1 and 2. Second, suppose c(1−α)(Λ, Ω) > 0. Consider a se-
quence {εm}m≥1 s.t. εm ↓ 0 and c(1−α)(Λ, Ω) − εm is a continuity
point of the CDF of J(Λ, Ω) for allm ∈ N. For anym ∈ N, it follows
from Eq. (C.9) and steps 2 and 4 that

lim sup
n→∞

PFbn (Tbn > c̃RSbn (1 − α)) ≤ 1 − P(J(Λ, Ω)

≤ c(1−α)(Λ, Ω) − εm).

Taking εm ↓ 0 and using continuity implies the RHS is equal to α.
Combining the previous equationwith steps 1 and 2 completes the
proof. �

Proof of Theorem 5.1. The proof follows directly from Theo-
rem 6.1. �

Proof of Theorem 6.1. This is a non-stochastic result that holds
for every sample {Wi}

n
i=1.

Part 1. Show that φRS
n ≥ φRC

n . This result follows immediately
from ĉRSn (1−α) ≤ ĉRCn (1−α). To show this, note that by definition
ĉRSn (1 − α) ≤ c̃n(θ, 1 − α) ∀θ ∈ Θ̂I , where c̃n(θ, 1 − α) is the
conditional (1 − α)-quantile of

S(v̂∗

n(θ) + ϕ(κ−1
n

√
nD̂1/2

n (θ)m̄n(θ), Ω̂n(θ)), Ω̂n(θ)). (C.10)

By definition, ĉn(θ, 1 − α) denotes the GMS critical value, which
is defined as the conditional (1 − α)-quantile of Eq. (C.10), except
that v̂∗

n(θ) is replaced by Ω̂
1/2
n (θ)Z∗, with Z∗

∼ N(0k, Ik) and Z∗

independent of {Wi}
n
i=1. Since v̂∗

n(θ) and Ω̂
1/2
n (θ)Z∗ have the same

conditional distribution, it follows that c̃n(θ, 1 − α)= ĉn(θ, 1−α)

∀θ ∈ Θ̂I . We conclude that

ĉRSn (1 − α) ≤ inf
θ∈Θ̂I

c̃n(θ, 1 − α) = inf
θ∈Θ̂I

ĉn(θ, 1 − α) = ĉRCn (1 − α).
Part 2. Show that φRC
n ≥ φBP

n . This result is a consequence of the
following argument
inf
θ∈Θ

Qn(θ) ≤ ĉRCn (1 − α)


=


inf

θ∈Θ̂I

Qn(θ) ≤ inf
θ∈Θ̂I

ĉn(θ ′, 1 − α)


⊆


inf

θ∈Θ̂I

Qn(θ) ≤ ĉn(θ ′, 1 − α), ∀θ ′
∈ Θ̂I


⊆


∃θ ∈ Θ̂I : Qn(θ) ≤ ĉn(θ, 1 − α)


⊆

∃θ ∈ Θ : Qn(θ) ≤ ĉn(θ, 1 − α)


,

where the first equality holds by infθ∈Θ Qn(θ) = infθ∈Θ̂I
Qn(θ) and

the definition of ĉRCn (1 − α), the first inclusion is elementary, the
second inclusion holds by the lower semi-continuity of Qn (implies
that Qn achieves a minimum in Θ and, hence, a minimum in Θ̂I ),
and the final inclusion holds by Θ̂I ⊆ Θ . �

Proof of Theorem 6.2. Let {Fn ∈ P }n≥1, {θ∗
n ∈ Θ}n≥1, and

{θn ∈ Θ}n≥1 be as in Assumption A.9. Then,

EFn [φ
BP
n ] = PFn(Qn(θ) > ĉn(θ, 1 − α), ∀θ ∈ Θ)

≤ PFn

Qn(θ

∗

n ) > ĉn(θ∗

n , 1 − α)


=


PFn(Qn(θ

∗

n ) > ĉn(θn, 1 − α) ∩ ĉn(θ∗

n , 1 − α)
≥ ĉn(θn, 1 − α)) − PFn(ĉn(θ

∗

n , 1 − α)
≥ Qn(θ

∗

n ) > ĉn(θn, 1 − α) ∩ ĉn(θ∗

n , 1 − α)
≥ ĉn(θn, 1 − α)) + PFn(Qn(θ

∗

n ) > ĉn(θ∗

n , 1 − α)
∩ĉn(θ∗

n , 1 − α) < ĉn(θn, 1 − α))


≤ PFn(Tn > infθ∈Θ̂I

ĉn(θ, 1 − α)) − PFn(ĉn(θ
∗

n , 1 − α)

≥ Tn > ĉn(θn, 1 − α)) + PFn

ĉn(θ∗

n , 1 − α) < ĉn(θn, 1 − α)

,

where the first equality holds by definition, the first inequality and
second equality are elementary, and the final inequality follows
from ĉn(θn, 1 − α) ≥ infθ∈Θ̂I

ĉn(θ, 1 − α) and Qn(θ
∗
n ) = Tn. Note

that PFn(Tn > infθ∈Θ̂I
ĉn(θ, 1 − α)) = EFn [φ

RC
n ], and so

lim sup
n→∞

(EFn [φ
RC
n ] − EFn [φ

BP
n ])

≥ lim sup
n→∞

PFn

ĉn(θn, 1 − α) < Tn ≤ ĉn(θ∗

n , 1 − α)


− lim sup
n→∞

PFn

ĉn(θ∗

n , 1 − α) < ĉn(θn, 1 − α)

.

It then suffices to show that the first expression on the RHS is
positive and the second expression on the RHS is zero.

We begin with the first expression. To do this, fix ε ∈

(0, (cH − cL)/3) and consider the following argument

PFn(ĉn(θn, 1 − α) < Tn ≤ ĉn(θ∗

n , 1 − α))

≥ PFn(ĉn(θn, 1 − α) < cL + ε < Tn < cH − ε ≤ ĉn(θ∗

n , 1 − α))

≥ PFn(cL + ε < Tn < cH − ε) + PFn(ĉn(θn, 1 − α) < cL + ε)

+ PFn(cH − ε ≤ ĉn(θ∗

n , 1 − α)) − 2,

where all the inequalities are elementary. Using Assumption A.9
and taking sequential limits lim inf as n → ∞ and ε ↓ 0 we
conclude that

lim inf
n→∞

PFn(ĉn(θn, 1 − α) < Tn ≤ ĉn(θ∗

n , 1 − α))

≥ lim
ε↓0

P(J ∈ (cL + ε, cH − ε)) = P(J ∈ (cL, cH)) > 0,

where the equality follows from Fatou’s Lemma and the strict
inequality is due to Assumption A.9.



274 F.A. Bugni et al. / Journal of Econometrics 185 (2015) 259–282
Now consider the second expression. To do this, fix ε ∈

(0, (cH − cL)/3) and consider the following argument

PFn

ĉn(θ∗

n , 1 − α) ≥ ĉn(θn, 1 − α)


≥ PFn

ĉn(θ∗

n , 1 − α) ≥ cH − ε > cL + ε ≥ ĉn(θn, 1 − α)


≥ PFn

ĉn(θ∗

n , 1 − α) ≥ cH − ε


+ PFn

cL + ε ≥ ĉn(θn, 1 − α)


− 1,

where all the inequalities are elementary. Using Assumption A.9
and taking sequential limits lim inf as n → ∞ and ε ↓ 0 we
conclude that the two expression on the RHS converge to one,
which leads to the desired result. �

C.1. Auxiliary theorems

Theorem C.1. Assume Assumptions A.1–A.5. Let {Fn ∈ P0}n≥1 be a
(sub)sequence of distributions s.t. for some (Ω, Λ∗) ∈ C(Θ2) ×

S(Θ × Rk
[±∞]

), (i) ΩFn
u

→ Ω , and (ii) Λ∗

n,Fn
H
→ Λ∗, where Λ∗

n,Fn is as
in Eq. (A.3) (implies that Θ

ηn
I (Fn) is as in Definition 4.3). Then, there

is a subsequence {an}n≥1 of {n}n≥1 s.t., along the sequence {Fan}n≥1,
inf

θ∈Θ
ηan
I (Fan )

S


v̂∗

an(θ) + ϕ∗(κ−1
an

√
anD̂1/2

an (θ)m̄an(θ)),

Ω̂an(θ)

{Wi}
an
i=1


d

→ J∗(Λ∗, Ω)

≡ inf
(θ,ℓ)∈Λ∗

S(vΩ(θ) + ϕ∗(ℓ), Ω(θ)),

for almost all sample sequences {Wi}i≥1, where vΩ : Θ → Rk is a
tight zero-meanGaussian processwith covariance (correlation) kernel
Ω ∈ C(Θ2).
Proof. Step 1. Consider the following derivation:

inf
θ∈Θ

ηn
I (Fn)

S

v̂∗

n(θ) + ϕ∗(κ−1
n

√
nD̂1/2

n (θ)m̄n(θ)), Ω̂n(θ)


= inf
θ∈Θ

ηn
I (Fn)

S


v̂∗

n(θ)

+ ϕ∗(µn,1(θ)+µn,2(θ)′κ−1
n

√
nD−1/2

Fn (θ)EFn [m(W , θ)]), Ω̂n(θ)


= inf

(θ,ℓ)∈Λ∗
n,Fn

S

v̂∗

n(θ) + ϕ∗(µn,1(θ) + µn,2(θ)′ℓ), Ω̂n(θ)

,

where µn(θ) = (µn,1(θ), µn,2(θ)), µn,1(θ) ≡ κ−1
n ṽn(θ) and

µn,2(θ) ≡ {σ̂−1
n,j (θ)σFn,j(θ)}kj=1. In order to obtain this expression,

wehave used that D̂−1/2
n (θ) andD1/2

Fn (θ) are both diagonalmatrices.
Step 2. We show that there is a subsequence {an}n≥1 of {n}n≥1

s.t. {{(v̂∗
an , µan , Ω̂an)|{Wi}

an
i=1}

d
→(vΩ , (0k, 1k), Ω) in l∞(θ) a.s. By

part 8 in Lemma D.2, {v̂∗
n |{Wi}

n
i=1}

d
→ vΩ in l∞(θ) a.s. Then the re-

sult would follow from finding a subsequence {an}n≥1 of {n}n≥1

s.t. {{(µan , Ω̂an)|{Wi}
an
i=1} → ((0k, 1k), Ω) in l∞(θ) a.s. Since

(µn, Ω̂n) is conditionally non-stochastic, this is equivalent to find-
ing a subsequence {an}n≥1 of {n}n≥1 s.t. (µan , Ω̂an)

a.s.
→((0k, 1k), Ω)

in l∞(θ). In turn, this follows from combining step 1, part 5 of
Lemma D.2, and Lemma D.8.

Step 3. Let D denote the space of functions that map Θ onto
Rk

× Ψ and let D0 be the space of uniformly continuous functions
that map Θ onto Rk

× Ψ . Let the sequence of functionals {gn}n≥1
with gn : D → R be defined by

gn(v(·), µ(·), Ω(·))

≡ inf
(θ,ℓ)∈Λ∗

n,Fn

S(v(θ) + ϕ∗(µ1(θ) + µ2(θ)′ℓ), Ω(θ)). (C.11)
Let the functional g : D0 → R be defined by

g(v(·), µ(·), Ω(·))

≡ inf
(θ,ℓ)∈Λ∗

S(v(θ) + ϕ∗(µ1(θ) + µ2(θ)′ℓ), Ω(θ)).

We now show that if the sequence of (deterministic) functions
{(vn(·), µn(·), Ωn(·))}n≥1 with (vn(·), µn(·), Ωn(·)) ∈ D for all
n ∈ N satisfies

lim
n→∞

sup
θ∈Θ

∥(vn(θ), µn(θ), Ωn(θ))

− (v(θ), (0k, 1k), Ω(θ))∥ = 0, (C.12)

for some (v(·), Ω(·)) ∈ D0, then

lim
n→∞

gn(vn(·), µn(·), Ωn(·)) = g(v(·), (0k, 1k), Ω(·)).

We now show lim infn→∞ gn(vn(·), µn(·), Ωn(·)) ≥ g(v(·),
(0k, 1k), Ω(·)). Showing lim supn→∞ gn(vn(·), µn(·), Ωn(·)) ≤

g(v(·), (0k, 1k), Ω(·)) is very similar and therefore omitted. Sup-
pose not, i.e., suppose that ∃δ > 0 and a subsequence {an}n≥1 of
{n}n≥1 s.t. ∀n ∈ N,

gan(van(·), µan(·), Ωan(·)) < g(v(·), (0k, 1k), Ω(·)) − δ. (C.13)

By definition, there exists a sequence {(θan , ℓan)}n≥1 that ap-
proximately achieves the infimum in Eq. (C.11), i.e., ∀n ∈ N,
(θan , ℓan) ∈ Λ∗

an,Fan
and

|gan(van(·), µan(·), Ωan(·)) − S(van(θan) + ϕ∗(µ1(θan)

+ µ2(θan)
′ℓan), Ωan(θan))| ≤ δ/2. (C.14)

Since Λ∗

an,Fan
⊆ Θ × Rk

[±∞]
and since (Θ × Rk

[±∞]
, d) is a com-

pactmetric space, there exists a subsequence {bn}n≥1 of {an}n≥1 and
(θ∗, ℓ∗) ∈ Θ × Rk

[±∞]
s.t. d((θbn , ℓbn), (θ

∗, ℓ∗)) → 0.
We first show that (θ∗, ℓ∗) ∈ Λ∗. Suppose not, i.e. (θ∗, ℓ∗) ∉

Λ∗, and consider the following argument

d((θbn , ℓbn), (θ
∗, ℓ∗)) + dH(Λ∗

bn,Fbn
, Λ∗)

≥ d((θbn , ℓbn), (θ
∗, ℓ∗)) + inf

(θ,ℓ)∈Λ∗
d((θ, ℓ), (θbn , ℓbn))

≥ inf
(θ,ℓ)∈Λ∗

d((θ, ℓ), (θ∗, ℓ∗)) > 0,

where the first inequality follows from the definition of Haus-
dorff distance and the fact that (θbn , ℓbn) ∈ Λ∗

bn,Fbn
, and the

second inequality follows by the triangular inequality. The final
strict inequality follows from the fact that Λ∗

∈ S(Θ × Rk
[±∞]

),
i.e., it is a compact subset of (Θ × Rk

[±∞]
, d), f (θ, ℓ) =

d((θ, ℓ), (θ∗, ℓ∗)) is a continuous real-valued function, and (Roy-
den, 1988, Theorem 7.18). Taking limits as n → ∞ and using that
d((θbn , ℓbn), (θ

∗, ℓ∗)) → 0 and Λ∗

bn,Fbn

H
→ Λ∗, we reach a contra-

diction.
Since (Θ, ∥ ·∥) is a compact metric space, d((θbn , ℓbn), (θ

∗, ℓ∗))
→ 0 implies that θbn → θ∗. Then, consider the following deriva-
tion:

∥(vbn(θbn), µbn(θbn), Ωbn(θbn)) − (v(θ∗), (0k, 1k), Ω(θ∗))∥

≤ ∥(vbn(θbn), µbn(θbn), Ωbn(θbn)) − (v(θbn), (0k, 1k), Ω(θbn))∥

+ ∥(v(θbn), Ω(θbn)) − (v(θ∗), Ω(θ∗))∥

≤ sup
θ∈Θ

∥(vbn(θ), µbn(θ), Ωbn(θ)) − (v(θ), (0k, 1k), Ω(θ))∥

+ ∥(v(θbn), Ω(θbn)) − (v(θ∗), Ω(θ∗))∥ → 0,

where the last convergence holds by Eq. (C.12), θbn → θ∗, and
(v(·), Ω(·)) ∈ D0.

By continuity of ϕ∗ and Eq. (C.12), it follows that
ϕ∗(µbn,1(θbn) + µbn,2(θbn)

′ℓbn) → ϕ∗(ℓ∗). To see why, it
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suffices to show that ϕ∗

j (µbn,1,j(θbn) + µbn,2,j(θbn)
′ℓbn,j) →

ϕ∗

j (ℓ
∗

j ) for any j = 1, . . . , k. For j > p, the result
holds because ϕ∗

j = 0. For j ≤ p, we consider the
following argument. On the one hand, d((θbn , ℓbn), (θ

∗, ℓ∗))
→ 0 implies ℓbn,j → ℓ∗

j ∈ R[±∞] and on the other hand, Eq.
(C.12) implies (µbn,1,j(θbn), µbn,2,j(θbn)) → (0, 1). Combining this,
we conclude that µbn,1,j(θbn) + µbn,2,j(θbn)ℓbn,j → ℓ∗

j , where
ℓ∗

j ∈ R[±∞]. Assumption A.5 then implies that ϕ∗

j (µbn,1,j(θbn) +

µbn,2,j(θbn)ℓbn,j) → ϕ∗

j (ℓ
∗

j ).
Notice that (v(·), Ω(·)) ∈ D0 and the compactness of Θ im-

ply that (v(θ∗), Ω(θ∗)) is bounded. Then, regardless of whether
ϕ∗(ℓ∗) is bounded or not, limn→∞(vbn(θbn) + ϕ∗(µ1(θbn) +

µ2(θbn)ℓbn), Ωbn(θbn)) = (v(θ∗)+ϕ∗(ℓ∗), Ω(θ∗)) ∈ (Rk
[±∞]

×Ψ )
and so limn→∞ S(vbn(θbn)+ϕ∗(µ1(θbn)+µ2(θbn)ℓbn), Ωbn(θbn)) =

S(v(θ∗) + ϕ∗(ℓ∗), Ω(θ∗)), i.e, ∃N ∈ N s.t. ∀n ≥ N ,

∥S(vbn(θbn) + ϕ∗(µ1(θbn) + µ2(θbn)ℓbn), Ωbn(θbn))

− S(v(θ∗) + ϕ∗(ℓ∗), Ω(θ∗))∥ ≤ δ/2. (C.15)

By combining Eqs. (C.14) and (C.15), and the fact that (θ∗, ℓ∗) ∈

Λ∗, it follows that ∃N ∈ N s.t. ∀n ≥ N ,

gbn(vbn(·), µbn(·), Ωbn(·)) ≥ S(v(θ∗) + ϕ∗(ℓ∗), Ω(θ∗)) − δ

≥ g(v(·), (0k, 1k), Ω(·)) − δ,

which is a contradiction to Eq. (C.13).
Step 4. The proof is completed by combining the representa-

tion in step 1, the convergence result in step 2, the continuity
result in step 3, and the extended continuous mapping theorem
(see, e.g., van der Vaart and Wellner, 1996, Theorem 1.11.1). In
order to apply this result, it is important to notice that parts 1
and 5 in Lemma D.2 and standard convergence results imply that
(vΩ(·), Ω(·)) ∈ D0 a.s. �

Theorem C.2. lim sup
n→∞

sup
F∈P0

EF [φBP
n ] ≤ α.

Proof. Fix (n, F) ∈ N × P0 arbitrarily. By definition, F ∈ P0 if and
only if (θ, F) ∈ F0 for some θ ∈ Θ . Then,

EF [1 − φBP
n ] = PF (CSn(1 − α) ≠ ∅) ≥ PF (θ ∈ CSn(1 − α)).

The result follows by noting that this and Eq. (2.9) imply that

lim inf
n→∞

inf
F∈P0

EF [1 − φBP
n ] ≥ lim inf

n→∞
inf
F∈P0

inf
θ∈ΘI (F)

PF (θ ∈ CSn(1 − α))

≥ 1 − α. �

Appendix D. Auxiliary lemmas

D.1. Auxiliary convergence results

Lemma D.1. Assumptions A.1–A.4 imply that:

1. (M(F), ρF ) being totally bounded uniformly in F ∈ P .
2. M(F) is Donsker and pre-Gaussian, both uniformly in F ∈ P .
3. (Θ, ∥ · ∥) is a totally bounded metric space.
4. ∀ε > 0, limδ↓0 lim supn→∞ supF∈P PF (sup∥θ−θ ′∥<δ ∥vn(θ) −

vn(θ
′)∥ > ε) = 0.

Proof. Part 1. Fix δ > 0 arbitrarily and consider the following
derivation:

{ρF (θ, θ ′) ≤ δ}

≡

VF [σ
−1
F ,j (θ)mj(W , θ) − σ−1

F ,j (θ
′)mj(W , θ ′)]1/2

k
j=1

 ≤ δ


=


∥[Ik − Diag(ΩF (θ, θ ′))]1/2∥ ≤ δ/

√
2


⊇

∥θ − θ ′

∥ ≤ δ′

,

where the identity follows from the definition of the ‘‘intrinsic’’
variance semimetric, the second equality is elementary, and the
inclusion holds for some δ′ > 0 independent of F due to
Assumption A.4.

By compactness of (Θ, ∥ · ∥), ∃{θs}
S
s=1 s.t. ∪S

s=1{θ ∈ Θ : ∥θs −

θ∥ ≤ δ′
} = Θ . Based on this, we can define {fs ∈ M(F)}Ss=1 s.t. fs ≡

D−1/2
F (θs)m(·, θs) for all s = 1, . . . , S. Let D−1/2

F (θ)m(·, θ) ∈ M(F)
be arbitrarily chosen.

We now claim that ρF (θs, θ) ≤ δ for some s = 1, . . . , S. By
the previous construction, ∃s ∈ {1, . . . , S} s.t. {∥θs − θ∥ ≤ δ′

} ⊆

{ρF (θs, θ) ≤ δ}. Since the choice of δ > 0 was arbitrary and
independent of F , the result holds.

Part 2. This follows fromvan der Vaart andWellner (1996, Theo-
rem2.8.2). AssumptionA.1 implies thatM(F) is ameasurable class.
We take the envelope function to be {supθ∈Θ |σ−1

F ,j (θ)mj(·, θ)|2}kj=1,
which is square integrable uniformly in F ∈ P due to Assump-
tion A.3.

Under these conditions, the desired result is equivalent to
the following: (i) vn being asymptotically ρF -equicontinuous
uniformly in F ∈ P and (ii) (M(F), ρF ) being totally bounded
uniformly in F ∈ P . The first condition is exactly assumed by
Assumption A.2 and the second condition follows from part 1.

Part 3. This result follows trivially from the fact that (Θ, ∥ · ∥) is
a compact metric space. See, e.g., Royden (1988, pages 154–155).

Part 4. Fix ε > 0 arbitrarily. By elementary arguments, it suffices
to show ∃δ′ > 0 s.t.

lim sup
n→∞

sup
F∈P

PF


sup

θ,θ ′∈Θ:∥θ−θ ′∥≤δ′

∥vn(θ) − vn(θ
′)∥ > ε


≤ ε. (D.1)

By Assumption A.2, ∃δ > 0 s.t.

lim sup
n→∞

sup
F∈P

PF


sup

θ,θ ′∈Θ:ρ(θ,θ ′)≤δ

∥vn(θ) − vn(θ
′)∥ > ε


≤ ε. (D.2)

In turn, for this choice of δ, we can use the argument in Part 1
to prove ∃δ′ > 0 (independent of F ) s.t. {∥θ − θ ′

∥ ≤ δ′
} ⊆

{ρF (θs, θ) ≤ δ}. From this, it follows that,

PF


sup

θ,θ ′∈Θ:∥θ−θ ′∥≤δ′

∥vn(θ) − vn(θ
′)∥ > ε



≤ PF


sup

θ,θ ′∈Θ:ρ(θ,θ ′)≤δ

∥vn(θ) − vn(θ
′)∥ > ε


.

By combining the previous equation with Eq. (D.2), Eq. (D.1)
follows. �

Lemma D.2. Assume Assumptions A.1–A.4. Let {Fn ∈ P }n≥1 be a
(sub)sequence of distributions s.t. ΩFn

u
→ Ω for some Ω ∈ C(Θ2).

Then, the following results hold:

1. vn
d

→ vΩ in l∞(Θ), where vΩ : Θ → Rk is a tight zero-
mean Gaussian process with covariance (correlation) kernel Ω . In
addition, vΩ is a uniformly continuous function, a.s.

2. Ω̃n
p

→ Ω in l∞(Θ).
3. D−1/2

Fn (·)D̂1/2
n (·) − Ik

p
→ 0k in l∞(Θ).

4. D̂−1/2
n (·)D1/2

Fn (·) − Ik
p

→ 0k in l∞(Θ).

5. Ω̂n
p

→ Ω in l∞(Θ).
6. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn → ∞,

λ−1
n vn

p
→ 0k in l∞(Θ).

7. For any arbitrary sequence {λn ∈ R++}n≥1 s.t. λn → ∞,
λ−1
n ṽn

p
→ 0k in l∞(Θ).
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8. {v∗
n |{Wi}

n
i=1}

d
→ vΩ in l∞(Θ) for almost all sample sequences

{Wi}i≥1, where vΩ is the tight Gaussian process described in part 1.

Proof. Part 1. The first part of the result follows from van der
Vaart andWellner (1996, Lemma 2.8.7), which requires three con-
ditions: (i) M(F) is Donsker and pre-Gaussian, both uniformly in
{Fn ∈ P0}n≥1, (ii) van der Vaart and Wellner (1996, Eq. (2.8.5)),
and (iii) van der Vaart and Wellner (1996, Eq. (2.8.6)). Condition
(i) follows from part 1 in Lemma D.1, condition (ii) follows from
ΩFn

u
→ Ω , and condition (iii) follows from Assumption A.3.
To show the second part, consider the following arguments. On

the one hand, Assumption A.4 and ΩFn
u

→ Ω imply that ∀ε1 > 0,
∃δ1 > 0 (independent of θ, θ ′

∈ Θ) s.t. ∥θ − θ ′
∥ ≤ δ1 implies

that ∥Diag(Ω(θ, θ ′)) − Ik∥ ≤ ε1 and this, in turn, implies that:
ρΩ(θ, θ ′) =

√
2∥[Diag(Ω(θ, θ ′)) − Ik]1/2∥ ≤

√
2ε1 where ρΩ is

the ‘‘intrinsic’’ variance semimetric when the variance–covariance
function isΩ . On the other hand, the fact that vΩ is a tight Gaussian
process and the argument in van der Vaart andWellner (1996, page
41) implies that ∀ε2 > 0, ∃δ2 > 0 (independent of θ, θ ′

∈ Θ)
s.t. ρΩ(θ, θ ′) ≤ δ2 implies that P(∥vΩ(θ) − vΩ(θ ′)∥ ≤ ε2) = 1.
Fix ε > 0 arbitrarily. By setting ε = ε2, ε1 = δ2, and δ = δ1,
we conclude from both of these arguments that ∀ε > 0, ∃δ >

0 (independent of θ, θ ′
∈ Θ) s.t. ∥θ − θ ′

∥ ≤ δ implies that
P(∥vΩ(θ) − vΩ(θ ′)∥ ≤ ε) = 1, as required.

Part 2. For any j1, j2 = {1, . . . , k}, define the classes of functions
Mj1,j2(F) ≡ {σ−1

F ,j1
(θ)mj1(·, θ)σ−1

F ,j2
(θ)mj2(·, θ) : W → Rk

} and
Mj1(F) ≡ {σ−1

F ,j1
(θ)mj1(·, θ) : W → Rk

}. The desired result can be
shown by verifying that, ∀j1, j2 = {1, . . . , k}, Mj1,j2(F) and Mj1(F)

are both Glivenko–Cantelli uniformly in F ∈ P . In order to show
such a result, we apply van der Vaart and Wellner (1996, Theorem
2.8.1) to each of these classes. We only verify the conditions of the
theorem forMj1,j2(F) (the result forMj1(F) follows fromusing very
similar arguments).

Consider Mj1,j2(F) for any j1, j2 = {1, . . . , k}. Assumption A.1
implies that Mj1,j2(F) is a measurable class for all F ∈ P . For
this class, the function maxj≤k supθ∈Θ(σ−1

F ,j (θ)mj(W , θ))2 is an
envelope function.

We now argue the envelope satisfies the first condition of
the theorem. Under Assumption A.3, we follow the argument
in Lehman and Romano (2005, page 463) to deduce that,

lim
λ→∞

sup
F∈P

EF


sup
θ∈Θ

mj(W , θ)

σF ,j(θ)

2

1

sup
θ∈Θ

mj(W , θ)

σF ,j(θ)

> λ


< ∞,

for j = 1, . . . , k,

which implies that the envelope function satisfies the first
condition of the theorem.

We now verify the second condition for Mj1,j2(F). By Assump-
tion A.3, the envelope is bounded in the L1(F)-norm, uniformly in
F ∈ P . Consequently, a sufficient requirement to verify the second
condition is that (Mj1,j2(F), L1(F)) is totally bounded uniformly in
F ∈ P , i.e., for all δ > 0 there is a set {θs ∈ Θ}

S
s=1 s.t. for all θ ∈ Θ ,

∃s ≤ S s.t.

EF

mj1(W , θ)

σ−1
F ,j1

(θ)

mj2(W , θ)

σ−1
F ,j2

(θ)
−

mj1(W , θs)

σ−1
F ,j1

(θs)

mj2(W , θs)

σ−1
F ,j2

(θs)




< δ.

Now notice that, ∀θ, θs ∈ Θ ,

EF

mj1(W , θ)

σF ,j1(θ)

mj2(W , θ)

σF ,j2(θ)
−

mj1(W , θs)

σF ,j1(θs)

mj2(W , θs)

σF ,j2(θs)



≤ EF

mj1(W , θ)

σF ,j1(θ)
−

mj1(W , θs)

σF ,j1(θs)

 mj2(W , θ)

σF ,j2(θ)


+ EF

mj2(W , θ)

σF ,j2(θ)
−

mj2(W , θs)

σF ,j2(θs)

 mj1(W , θs)

σF ,j1(θs)



≤

 max
j∈{j1,j2}


EF

mj(W , θ)

σF ,j(θ)
−

mj(W , θs)

σF ,j(θs)

2
1/2


×

2 max
j′∈{j1,j2}


EF

mj′(W , θ)

σF ,j′(θ)

2
1/2

,

where the first inequality is elementary and the second inequality
follows Hölder’s inequality. The RHS is a product of two terms.
By Assumption A.3, the second term is finite. Hence, the LHS
can be arbitrarily small by choosing the first term of the RHS
small enough. As a consequence, (Mj1,j2(F), L1(F)) is totally
bounded uniformly in F ∈ P follows from (Mj1(F), L2(F)) and
(Mj2(F), L2(F)) being totally bounded uniformly in F ∈ P . By
using the argument in van der Vaart andWellner (1996, Exercise 1,
Page 93), we can show this follows from (M(F), ρF ) being totally
bounded uniformly in F ∈ P , which has already been shown in
part 1 of Lemma D.1.

Part 3. By part 2 and that Diag(Ω̃n(θ)) = D−1
Fn (θ)D̂n(θ) and

Diag(Ω(θ)) = Ik, it follows that D−1
Fn (θ)D̂n(θ) − Ik

p
→ 0k in l∞(Θ),

i.e., supθ∈Θ |σ−2
Fn,j(θ)σ̂ 2

n,j(θ) − 1|
p

→ 0 ∀j = 1, . . . , k.
For any (a, ε̃) ∈ R × (0, 1), |a2 − 1| ≤ ε̃ implies ||a| − 1| ≤

max{
√
1 + ε̃−1, 1−

√
1 − ε̃} = 1−

√
1 − ε̃. Based on this, choose

ε ∈ (0,min{1, 2/k}) arbitrarily, set ε̃ = 1 − (1 − kε)2 > 0, and
consider the following argument,
max
θ∈Θ

∥D−1
Fn (θ)D̂n(θ) − Ik∥ ≤ ε̃


⊆


j=1,...,k


max
θ∈Θ

|σ−2
Fn,j(θ)σ̂ 2

n,j(θ) − 1| ≤ ε̃


⊆


j=1,...,k


max
θ∈Θ

|σ−1
Fn,j(θ)σ̂n,j(θ) − 1| ≤ ε/k


⊆


max
θ∈Θ

∥D−1/2
Fn (θ)D̂1/2

n (θ) − Ik∥ ≤ ε


.

The result then follows from part 2 and ε being arbitrarily chosen.
Part 4. For a finite sample size, it is possible that σ̂n,j(θ) = 0
for some (θ, j) ∈ Θ × {1, . . . , k}, in which case D̂1/2

n (θ) would
not be invertible. Let An = {D̂1/2

n (θ) is invertible ∀θ ∈ Θ} and
define D̃1/2

n (θ) ≡ D̂1/2
n (θ) if An occurs and D̃1/2

n (θ) ≡ Ik otherwise.
Note that D̃1/2

n (θ) and D̃−1/2
n (θ) are both diagonal matrices, and

denote σ̃n(θ) ≡ D̃1/2
n (θ)[j,j] and σ̃−1

n (θ) ≡ D̃−1/2
n (θ)[j,j] for all

j = 1, . . . , k. Since D̂1/2
n (θ) may not always be invertible, we prove

instead that: (i) infF∈P PF ({D̃
−1/2
n (θ) = D̂−1/2

n (θ) ∀θ ∈ Θ}) → 1
and (ii) D̃−1/2

n (θ)D1/2
Fn (θ) − Ik

p
→ 0k in l∞(Θ). Under the previous

two results, we conclude that D̂−1/2
n (θ)D1/2

Fn (θ) − Ik
p

→ 0k in l∞(Θ)
by a slight abuse of notation.

We first show that infF∈P PF ({D̃
−1/2
n (θ) = D̂−1/2

n (θ)∀θ ∈ Θ})
→ 1. Fix (n, ε) ∈ N × (0, 1) arbitrarily. Notice that
supθ∈Θ ∥D−1/2

Fn (θ)D̂1/2
n (θ) − Ik∥ ≤ ε implies that σ̂n,j(θ) > 0 for

all (θ, j) ∈ Θ × {1, . . . , k} which is equivalent to D̂1/2
n (θ) being

invertible ∀θ ∈ Θ , i.e., An. From this, we conclude that
sup
θ∈Θ

∥D−1/2
Fn (θ)D̂1/2

n (θ) − Ik∥ ≤ ε


⊆ {D̃−1/2

n (θ) = D̂−1/2
n (θ) ∀θ ∈ Θ}.
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The result then follows from part 3. The result reveals that the
matrix D̂1/2

n (θ) is invertible ∀θ ∈ Θ , uniformly in F ∈ P , for n
large enough.

We now show D̃−1/2
n (θ)D1/2

Fn (θ) − Ik
p

→ 0k in l∞(Θ). For any
arbitrarily chosen ε ∈ (0, 1) we set ε′

≡ kε/(1 − ε) > 0
s.t. ε = ε′/(k + ε′) > 0. In this case, elementary arguments imply
that
sup
θ∈Θ

∥D−1/2
Fn (θ)D̂1/2

n (θ) − Ik∥ ≤ ε


⊆


j=1,...,k


sup
θ∈Θ

σ̃n,j(θ)σ−1
Fn,j(θ) − 1

 ≤ ε



=


j=1,...,k


sup
θ∈Θ

σ̃−1
n,j (θ)σFn,j(θ) − 1

 ≤
ε′

k



⊆


sup
θ∈Θ

∥D̃−1/2
n (θ)D1/2

Fn (θ) − Ik∥ ≤ ε′


.

Since the arbitrary choice of ε ∈ (0, 1) induced a constant ε′ > 0,
the result then follows from part 3.

Part 5. By the triangular inequality and part 2, it suffices to show
that Ω̂n(θ) − Ω̃n(θ)

p
→ 0k×k in l∞(Θ). To show this, consider the

following argument:

Ω̂n(θ) − Ω̃n(θ) ≡ D̂−1/2
n (θ)Σ̂n(θ)D̂−1/2

n (θ) − Ω̃n(θ)

= D̂−1/2
n (θ)D1/2

Fn (θ)Ω̃n(θ)D1/2
Fn (θ)D̂−1/2

n (θ) − Ω̃n(θ)

= ((D1/2
Fn (θ)D̂−1/2

n (θ) − Ik) + Ik)Ω̃n(θ)

× ((D1/2
Fn (θ)D̂−1/2

n (θ) − Ik) + Ik) − Ω̃n(θ)

= 2(D1/2
Fn (θ)D̂−1/2

n (θ) − Ik)Ω̃n(θ)

+ (D1/2
Fn (θ)D̂−1/2

n (θ) − Ik)Ω̃n(θ)(D1/2
Fn (θ)D̂−1/2

n (θ) − Ik).

By the previous equation, the submultiplicative property of the
matrix norm and the fact that Ω̃n(θ) is a correlation matrix, it
follows that

∥Ω̂n(θ) − Ω̃n(θ)∥ ≤ 2∥D1/2
Fn (θ)D̂−1/2

n (θ) − Ik∥

+ ∥D1/2
Fn (θ)D̂−1/2

n (θ) − Ik∥2.

Fix ε > 0 arbitrarily and set ε′ > 0 s.t. 2ε′
+ (ε′)2 ≤ ε. Then,

the previous equation implies that
sup
θ∈Θ

∥D−1/2
Fn (θ)D̂1/2

n (θ) − Ik∥ ≤ ε′


⊆


sup
θ∈Θ

∥Ω̂n(θ) − Ω̃n(θ)∥ ≤ ε


.

The result then follows from part 3 and ε being arbitrarily chosen.
Part 6. Fix ε, δ > 0 arbitrarily. By part 3 in Lemma D.1, ∃{θs}

S
s=1

s.t. ∪S
s=1{θ ∈ Θ : ∥θs − θ∥ ≤ δ} = Θ . Based on this, consider the

following derivation:

PFn


sup
θ∈Θ

∥vn(θ)∥ > λnε


= PFn


max
s≤S

sup
{θ∈Θ:∥θs−θ∥≤δ}

∥(vn(θ) − vn(θs)) + vn(θs)∥ > λnε


≤ PFn


max
s≤S

sup
{θ∈Θ:∥θs−θ∥≤δ}

∥vn(θ) − vn(θs)∥ > λnε/2


+ PFn


max
s≤S

∥vn(θs)∥ > λnε/2


≤ PFn


sup

{θ,θ ′∈Θ:∥θ ′−θ∥≤δ}

∥vn(θ) − vn(θ
′)∥ > λnε/2



+

S
s=1

PFn(∥vn(θs)∥ > λnε/2).

Since λn → ∞, λnε/2 > ε for all n ∈ N and, so

lim sup
n→∞

PFn


sup
θ∈Θ

∥vn(θ)∥ > λnε



≤ lim sup
n→∞

PFn


sup

{θ,θ ′∈Θ:∥θ ′−θ∥≤δ}

∥vn(θ) − vn(θ
′)∥ > ε



+

S
s=1

lim sup
n→∞

PFn(∥vn(θs)∥ > λnε/2).

By taking limits as δ ↓ 0 and part 4 in Lemma D.1, we conclude
that

lim sup
n→∞

PFn


sup
θ∈Θ

∥vn(θ)∥ > λnε



≤

S
s=1

lim sup
n→∞

PFn(∥vn(θs)∥ > λnε/2),

and it then suffices to show PFn(∥vn(θ)∥ > λnε/2) → 0 ∀θ ∈ Θ .
To show this, notice that ΩFn

u
→ Ω implies ΩFn(θ, θ) → Ω(θ, θ)

which, in turn, implies that vn(θ)
d

→N(0k, Ω(θ, θ)). Since λn →

∞, the result follows.
Part 7. Fix ε > 0 arbitrarily. By definition,

ṽn(θ) ≡ D̂−1/2
n (θ)D1/2

Fn (θ)vn(θ) ∀θ ∈ Θ and, so the next derivation
follows:

PFn


sup
θ∈Θ

∥ṽn(θ)∥ > λnε


= PFn


sup
θ∈Θ

∥((D̂−1/2
n (θ)D1/2

Fn (θ) − Ik) + Ik)vn(θ)∥ > λnε



≤ PFn


sup
θ∈Θ

∥D̂−1/2
n (θ)D1/2

Fn (θ) − Ik∥ sup
θ̃∈Θ

∥vn(θ̃)∥ > λnε



+ PFn


sup
θ∈Θ

∥vn(θ)∥ > λnε


≤ PFn


sup
θ∈Θ

∥D̂−1/2
n (θ)D1/2

Fn (θ) − Ik∥ >


λnε


+ PFn


sup
θ∈Θ

∥vn(θ)∥ >


λnε


+ PFn


sup
θ∈Θ

∥vn(θ)∥ > λnε


.

By parts 4 and 6, the three terms on the RHS converge to zero,
concluding the proof.

Part 8. This result follows from a modification of van der
Vaart and Wellner (1996, Theorem 3.6.2) to allow for drifting
sequences of probabilitymeasures {Fn ∈ P }n≥1. The original result
proves that three statements are equal: (i)–(iii). For the purpose
of this part, it suffices to prove that (i) still implies (iii) in the
case of drifting sequences of probability measures. In order to
complete the proof, one could follow the steps of the original proof:
(i) implies (ii), and (i) plus (ii) imply (iii).
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Provided that the assumptions of the original theorem are valid
uniformly in F ∈ P , then it is natural that the conclusions of such
theorem are also hold uniformly. Based on this argument, we limit
ourselves to show that condition (i) is uniformly valid. First, part
2 of Lemma D.1 indicates that M(F) is Donsker and pre-Gaussian,
both uniformly in F ∈ P . Second, Assumption A.3 is a finite (2+a)-
moment condition uniformly in F ∈ P . �

D.2. Auxiliary results on S

Lemma D.3. Let the set A be defined as follows:

A ≡


x ∈ Rp

[+∞]
× Rk−p

:

max


max
j=1,...,p

{[xj]−}, max
s=p+1,...,k

{|xs|}


= 1

. (D.3)

Then, inf(x,Ω)∈A×Ψ S(x, Ω) > 0.

Proof. First, notice that (x, Ω) ∈ A × Ψ implies that either xj < 0
for j ≤ p or xs ≠ 0 for s > p, and so S(x, Ω) > 0. So suppose
not, i.e., suppose that inf(x,Ω)∈A×Ψ S(x, Ω) = 0. Then, ∃{(xn, Ωn) ∈

A × Ψ }n≥1 (and so, S(xn, Ωn) > 0) s.t. limn→∞ S(xn, Ωn) = 0.
By taking a further subsequence {an}n≥1 of {n}n≥1, {(xan , Ωan)}n≥1

converges to (x̄, Ω̄) ∈ cl(A × Ψ ) = A × Ψ and so S(x̄, Ω̄) > 0.
This implies that (xan , Ωan) → (x̄, Ω̄) and limn→∞ S(xan , Ωan) =

0 < S(x̄, Ω̄), which is a contradiction to the continuity of S on
Rp

[+∞]
× Rk−p

× Ψ . �

Lemma D.4. There exists a constant ϖ1 > 0 s.t. S(x, Ω) ≤ 1 and
Ω ∈ Ψ implies xj ≥ −ϖ1 for all j ≤ p and |xs| ≤ ϖ1 for all s > p.

Proof. Let (x, Ω) ∈ Rp
[+∞]

×Rk−p
×Ψ be arbitrary s.t. S(x, Ω) ≤ 1.

Set x̃ ≡ ({[xj]−}
p
j=1, {xs}

k
s=p+1) and note that xj ≥ −ε for all j ≤ p

and |xs| ≤ ε for all s > p is equivalent to maxj=1,...,k |x̃j| ≤ ε.
Since S((x1, x2), Σ) is non-increasing in x1 ∈ Rp

[+∞]
and {xj}

p
j=1 ≥

{[xj]−}
p
j=1, it follows that S(x, Ω) ≤ S(x̃, Ω). Thus, it suffices to

find ϖ1 > 0 s.t. S(x̃, Ω) ≤ 1 implies that maxj=1,...,k |x̃j| ≤

ϖ1. If maxj=1,...,k |x̃j| = 0, the result trivially follows so consider
the case where maxj=1,...,k |x̃j| > 0. In this case, the maintained
assumptions on S imply that

1 ≥ S(x̃, Ω) = S

 x̃
max

j=1,...,k
|x̃j|

, Ω

 max
j=1,...,k

|x̃j|
χ

≥ inf
(x,Ω)∈A×Ψ

S (x, Ω)


max

j=1,...,k
|x̃j|
χ

,

where the set A is as in Eq. (D.3). Lemma D.3 then implies that

max
j=1,...,k

|x̃j| ≤


inf

(x,Ω)∈A×Ψ
S(x, Ω)

−1/χ

,

and the result then holds for ϖ1 ≡ (inf(x,Ω)∈A×Ψ S(x, Ω))−1/χ

> 0. �

Lemma D.5. There exists a constant ϖ2 > 0 s.t. (x, Ω) ∈ Rp
[+∞]

×

Rk−p
× Ψ with xj ≥ −ϖ2 for all j ≤ p and |xs| ≤ ϖ2 for all s > p

implies S(x, Ω) ≤ 1.

Proof. Suppose not. If so, for any sequence {εm}m≥1 with εm ↓ 0,
we can find a sequence {(xm, Ωm) ∈ Rp

[+∞]
× Rk−p

× Ψ }m≥1 with
xm,j ≥ −εm for all j ≤ p, |xm,s| ≤ εm for all s > p, and S(xm, Ωm) >
1. By definition, then, lim infm→∞ S(xm, Ωm) > 1. Since
(Rp

[+∞]
× Rk−p

× Ψ , d) is compact, we can always consider a sub-
sequence {am}m≥1 of {m}m≥1 s.t. limm→∞ d((xam , Ωam), (x, Ω)) =

0 for some (x, Ω) ∈ Rp
[+∞]

× Rk−p
× Ψ . By the behavior of
the limits, (x, Ω) ∈ Rp
+,∞ × {0k−p} × Ψ . By continuity of S,

limm→∞ S(xam , Ωam) = S(x, Ω) = 0, which is a contradiction. �

Lemma D.6. Let {(xm, Ωm) ∈ Rk
[±∞]

× Ψ }m≥1 be a sequence
s.t. lim infm→∞ xm,j ≥ 0 for j ≤ p and limm→∞ xm,j = 0 for j > p.
Then, limm→∞ S(xm, Ωn) = 0.

Proof. Suppose not, i.e., suppose that lim infm→∞ S(xm, Ωm) >
0. Since (Rk

[±∞]
× Ψ , d) is compact, there is a subsequence

{am}m≥1 of {m}m≥1 s.t. limm→∞ d((xam , Ωam), (x, Ω)) = 0 for some
(x, Ω) ∈ Rk

[±∞]
× Ψ . By the behavior of the limits, x ∈ Rp

[+∞]
×

{0k−p} ⊆ Rp
[+∞]

×Rk−p. By continuity of S, limm→∞ S(xam , Ωam) =

S(x, Ω) = 0, which is a contradiction. �

D.3. Auxiliary results on subsequences

Lemma D.7. Let Assumption A.4 hold. For any arbitrary {Fn ∈

P }n≥1, there exists a subsequence {un}n≥1 of {n}n≥1 s.t. Λun,Fun
H
→ Λ,

Λ∗

un,Fun

H
→ Λ∗, and ΩFun

u
→ Ω for some (Ω, Λ, Λ∗) ∈ C(Θ2) ×

S(Θ × Rk
[±∞]

)2, where Λn,F and Λ∗

n,Fn are defined in (3.6) and (A.3),
respectively.

Proof. By Assumption A.4, {ΩF (θ, θ ′) ∈ C(Θ2)}F∈P is an
equicontinuous family of functions. Since {ΩFn(θ, θ ′)}n≥1 is a
bounded sequence in Rk×k, and its closure is compact. Then, by the
Arzelà-Ascoli theorem (see, e.g., Royden (1988, page 169)), there is
a subsequence {an}n≥1 of {n}n≥1 and Ω ∈ C(Θ2) s.t. ΩFan

u
→ Ω .

Since (Θ × Rk
[±∞]

, d) is a compact metric space, Λan,Fan ∈

Θ × Rk
[±∞]

, and the fact that any closed subset of a compact
space is compact (see, e.g., Royden (1988, page 156)), cl(Λan,Fan )

is a compact subset of Θ × Rk
[±∞]

, i.e., cl(Λan,Fan ) ∈ S(Θ ×

Rk
[±∞]

). By Corbae et al. (2009, Theorem 6.1.16), S(Θ × Rk
[±∞]

)
is compact under the Hausdorff metric. As a consequence, there
is a subsequence {bn}n≥1 of {an}n≥1 and Λ ∈ S(Θ × Rk

[±∞]
)

s.t. dH(cl(Λbn,Fbn ), Λ) → 0. To conclude, it suffices to show that
dH(Λbn,Fbn , Λ) → 0, which follows from dH(Λbn,Fbn , cl(Λbn,Fbn )) =

0 and the triangular inequality.
As a next step, we define a subsequence {cn}n≥1 of {bn}n≥1

s.t. Λ∗

cn,Fcn

H
→ Λ∗ using an identical argument to the one used

before. The proof is then concluded by setting {un}n≥1 ≡

{cn}n≥1. �

Lemma D.8. For any arbitrary {Fn ∈ P }n≥1, let Xn(θ) : Ω →

l∞(Θ) be any stochastic process s.t. Xn
p

→ 0 in l∞(Θ). Then, there
exists a subsequence {un}n≥1 of {n}n≥1 s.t. Xun

a.s.
→ 0 in l∞(Θ).

Proof. Throughout this proof, we consider an arbitrary sequence
{εn ∈ R++}n≥1 with εn ↓ 0. Then, for arbitrary δ > 0 and arbitrary
subsequence {un}n≥1 of {n}n≥1, it follows that:
lim sup
n→∞


sup
θ∈Θ

∥Xun(θ)∥ > εun

c

=


lim inf
n→∞


sup
θ∈Θ

∥Xun(θ)∥ ≤ εun


⊆


lim inf
n→∞


sup
θ∈Θ

∥Xun(θ)∥ ≤ δ


.

Then, in order to complete the proof, it suffices to con-
struct a subsequence {un}n≥1 of {n}n≥1 (solely dependent on
{εn ∈ R++}n≥1) s.t.

P

lim sup
n→∞


sup
θ∈Θ

∥Xun(θ)∥ > εun


= 0.
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Consider the following elementary argument:

P

lim sup
n→∞


sup
θ∈Θ

∥Xun(θ)∥ > εun


≡ P


∩n≥1


∪m≥n


sup
θ∈Θ

∥Xkm(θ)∥ > εkm


≤ lim sup

n→∞

P


∪m≥n


sup
θ∈Θ

∥Xkm(θ)∥ > εkm


≤ lim sup

n→∞


m≥n

PFkm


sup
θ∈Θ

∥Xkm(θ)∥ > εkm


. (D.4)

It suffices to show that we can construct a subsequence {un}n≥1 of
{n}n≥1 (solely dependent on {εn}n≥1) s.t. the limit supremumon the
RHS of Eq. (D.4) is zero.

Set u0 = 1. By the fact that Xn
p

→ 0 in l∞(Θ) and for each n ∈ N,
we can find un ≥ max{n, un−1} s.t.

PFun


sup
θ∈Θ

∥Xun(θ)∥ > εn


≤

1
2n

.

As a corollary of this, we would have constructed a subsequence
{un}n≥1 of {n}n≥1 s.t.
m≥1

PFum


sup
θ∈Θ

∥Xum(θ)∥ > εm


< ∞.

It follows that the RHS of Eq. (D.4) is zero, completing the proof. �

D.4. Auxiliary results on sufficient conditions for our assumptions

In this section we present some sufficient conditions for the
assumptions in Appendix B to hold.

Lemma D.9. Let ϕ : Rp
[+∞]

× Rk−p
[±∞]

× Ψ → Rk
[+∞]

take the form
ϕ(ξ) = (ϕ1(ξ1), . . . , ϕp(ξp), 0k−p) and be s.t., for all j = 1, . . . , p,
a. ϕj(ξj) ≤ 0 for all ξj < 0.
b. ϕj(ξj) = 0 at ξj = 0.
c. ϕj(ξj) → ∞ as ξj → ∞.
d. ϕj(ξj) has finitely many discontinuity points and ξj = 0 is not one

of them.
Then, ϕ satisfies Assumption A.5.

Proof. Consider the following argument ∀j = 1, . . . , p. If ϕj is
continuous, then set ϕ∗

j (ξj) = max{ϕj(ξj), 0} for all ξj ∈ R[±∞].
Otherwise, we split the constructive argument into the following
cases.

First, suppose that all its points of discontinuity are negative. In
this case, define ϕ∗

j (ξj) = 0 for all ξj < 0 and ϕ∗

j (ξj) = ϕ∗

j (ξj) for
all ξj ≥ 0. It is now easy to verify that this function satisfies all the
desired properties.

Second, suppose not all points of discontinuity are negative.
By condition (d), zero is not a discontinuity point and we can
find the minimum discontinuity point, which we denote by ξ ⋆⋆

j . It
follows that ϕj(ξj) is a continuous function for all ξj ∈ [0, ξ ⋆⋆

j ). By
continuity at zero, ∃ξ ⋆

j ∈ (0, ξ ⋆⋆
j ) s.t. for some real number δ > 0,

|ϕj(ξj)| ≤ δ for all ξj ∈ [0, ξ ⋆
j ]. We divide the rest of the proof into

two cases.
Case 1. ∃δ ∈ (0, 1) s.t. |ϕj(δξ

⋆
j )| > 0. In this case, define the

following constants: A ≡ (G(δ) − δ)/(1 − δ) and B ≡ δ/|ϕj(δξ
⋆
j )|,

whereG : R[±∞] → [0, 1] is the function defined in Eq. (A.1). Since
δ ∈ (0, 1), it follows that A ∈ (0, 1) and B ≥ 1. In this case, define

ϕ∗

j (ξj) =


0 if ξj ∈ [−∞, 0)
B|ϕj(ξj)| if ξj ∈ [0, δξ ⋆

j )

G−1(Aξj/ξ
⋆
j + (1 − A)) if ξj ∈ [δξ ⋆

j , ξ ⋆
j )

∞ if ξj ∈ [ξ ⋆
j , ∞]

.

It is now easy to verify that this function satisfies all the desired
properties.

Case 2. ̸ ∃δ ∈ (0, 1) s.t. |ϕj(δξ
⋆
j )| > 0, i.e., ϕj(ξj) = 0 ∀ξj ∈

[0, ξ ⋆
j ). In this case, define:

ϕ∗

j (ξj) =


0 if ξj ∈ [−∞, 0)
G−1(ξj/(2ξ ⋆

j ) + 1/2) if ξj ∈ [0, ξ ⋆
j )

∞ if ξj ∈ [ξ ⋆
j , ∞]

.

It is now easy to verify that this function satisfies all the desired
properties. �

Lemma D.10. Let Assumption A.8 hold. Then, for any {Fn ∈ P0}n≥1,
γ ∈ (0, 1), and {θn ∈ Θ

ηn
I (Fn)}n≥1 for ηn = ln κn, there is

a subsequence {un}n≥1 of {n}n≥1 and a sequence {θ̂un ∈ Θ}n≥1

s.t. ∥θ̂un − θun∥ → 0 and

lim
n→∞

√
unσ

−1
Fun ,j(θ̂un)EFun [mj(W , θ̂un)]

≥ lim
n→∞

κ−γ
un

√
unσ

−1
Fun ,j(θun)EFun [mj(W , θun)] for j ≤ p,

lim
n→∞

√
unσ

−1
Fun ,j(θ̂un)EFun [mj(W , θ̃un)]

= lim
n→∞

κ−γ
un

√
unσ

−1
Fun ,j(θun)EFun [mj(W , θun)] for j > p. (D.5)

Proof. By definition, {θn ∈ Θ
ηn
I (Fn)}n≥1 implies that

S(
√
nD−1/2

Fn (θn)EFn [m(W , θn)], ΩFn(θn)) ≤ ηn and, therefore,
QFn(θn) = S(D−1/2

Fn (θn)EFn [m(W , θn)], ΩFn(θn)) ≤ (η
1/χ
n /

√
n)χ →

0, where the convergence occurs by ηn = ln κn. By this and As-
sumption A.8(a), it follows that

O((η1/χ
n /

√
n)χ ) = c−1QFn(θn) ≥ min{δ, inf

θ̃∈ΘI (Fn)
∥θn − θ̃∥}

χ

⇒ ∥θn − θ̃n∥ ≤ O(η1/χ
n /

√
n),

(D.6)

for some sequence {θ̃n ∈ ΘI(Fn)}n≥1. By the convexity of Θ and
Assumption A.8(c), the intermediate value theorem implies that
there is a sequence {θ∗

n ∈ Θ}n≥1 with θ∗
n in the line between θn

and θ̃n s.t. for all γ > 0,

κ−γ
n

√
nD−1/2

Fn (θn)EFn [m(W , θn)]

= GFn(θ
∗

n )κ−γ
n

√
n(θn − θ̃n) + κ−γ

n

√
nD−1/2

Fn (θ̃n)EFn [m(W , θ̃n)].

Define θ̂n ≡ (1 − κ
−γ
n )θ̃n + κ

−γ
n θn or, equivalently, θ̂n − θ̃n =

κ
−γ
n (θn − θ̃n). We can write the above equation as

GFn(θ
∗

n )
√
n(θ̂n − θ̃n) = κ−γ

n

√
nD−1/2

Fn (θn)EFn [m(W , θn)]

− κ−γ
n

√
nD−1/2

Fn (θ̃n)EFn [m(W , θ̃n)]. (D.7)

By convexity of Θ and κ
−γ
n → 0, {θ̂n ∈ Θ}n≥1. By Eq. (D.6),

√
n(θ̂n−θ̃n) =

√
nκ−γ

n (θn−θ̃n) ≤ O(κ
−γ
n η

1/χ
n ) = O(1). Notice that

this implies that ∥θ̂n − θ̃n∥ → 0. Also, notice that this also implies
that ∥θn − θ̃n∥ → 0 as

√
nκ−γ

n → ∞ because of γ ≤ 1. Since θ∗
n is

in the line between θn and θ̃n, this also means that ∥θ∗
n − θ̃n∥ → 0.

By using the intermediate value theorem once again, there is a
sequence {θ∗∗

n ∈ Θ}n≥1 with θ∗∗
n in the line between θ̂n and θ̃n s.t.

√
nD−1/2

Fn (θ̂n)EFn [m(W , θ̂n)]

= GFn(θ
∗∗

n )
√
n(θ̂n − θ̃n) +

√
nD−1/2

Fn (θ̃n)EFn [m(W , θ̃n)]

= GFn(θ
∗

n )
√
n(θ̂n − θ̃n) +

√
nD−1/2

Fn (θ̃n)EFn [m(W , θ̃n)]

+ ϵ1,n, (D.8)
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where the second equality holds by ϵ1,n ≡ (GFn(θ
∗∗
n ) − GFn(θ

∗
n ))

√
n(θ̂n − θ̃n). Since θ∗∗

n is in the line between θ̂n and θ̃n and
∥θ̂n−θ̃n∥ → 0, thismeans that ∥θ∗∗

n −θ̃n∥ → 0. Then, we conclude
that ∥θ∗∗

n − θ∗
n ∥ ≤ ∥θ∗∗

n − θ̃n∥ + ∥θ∗
n − θ̃n∥ → 0.

Combining Eqs. (D.7) and (D.8) we get
√
nD−1/2

Fn (θ̂n)EFn [m(W , θ̂n)]

= κ−γ
n

√
nD−1/2

Fn (θn)EFn [m(W , θn)] + ϵ1,n + ϵ2,n, (D.9)

where ϵ2,n ≡ (1 − κ
−γ
n )

√
nD−1/2

Fn (θ̃n)EFn [m(W , θ̃n)]. From
{θ̃n ∈ ΘI(Fn)}n≥1 and κ

−γ
n → 0, it follows that ϵ2,n,j ≥ 0 for j ≤ p

and ϵ2,n,j = 0 for j > p. Moreover, Assumption A.8(c) implies that
∥GFn(θ

∗∗
n )−GFn(θ

∗
n )∥ = o(1) for any sequence {Fn ∈ P0}n≥1 when-

ever ∥θ∗∗
n − θ∗

n ∥ → 0. Using
√
n(θ̂n − θ̃n) = O(1), we have

∥ϵ1,n∥ ≡ ∥GFn(θ
∗∗

n ) − GFn(θ
∗

n )∥ ×
√
n∥θ̂n − θ̃n∥ = o(1). (D.10)

Finally, since (Rk
[±∞]

, d) is compact, there is a subsequence
{un}n≥1 of {n}n≥1 s.t.

√
unD

−1/2
Fun

(θ̂un)EFun [m(W , θ̂un)] and κ
−γ
un

√
unD

−1/2
Fun

(θun)EFun [m(W , θun)] converge. Then, from Eqs. (D.9),
(D.10), and the properties of ϵ2,n, we conclude that

lim
n→∞

√
unσ

−1
Fun ,j(θ̂un)EFun [mj(W , θ̂un)]

≥ lim
n→∞

κ−γ
un

√
unσ

−1
Fun ,j(θun)EFun [mj(W , θun)] for j ≤ p,

lim
n→∞

√
unσ

−1
Fun ,j(θ̂un)EFun [mj(W , θ̂un)]

= lim
n→∞

κ−γ
un

√
unσ

−1
Fun ,j(θun)EFun [mj(W , θun)] for j > p.

To conclude the proof, notice that ∥θ̂n − θn∥ ≤ ∥θ̂n − θ̃n∥ +

∥θ̃n − θn∥ → 0. �

Lemma D.11. Let {Fn ∈ P0}n≥1 be s.t. Λn,Fn
u

→ Λ and Λ∗

n,Fn
u

→ Λ∗

for some Λ, Λ∗
∈ S(Θ × Rk

[±∞]
). Then, Assumptions A.5 and

A.8 imply Assumption A.6.

Proof. Let ηn = ln κn. By definition, (θ∗, ℓ∗) ∈ Λ∗ implies that
there is a (sub)sequence {(θn, ℓn)∈Λ∗

n,Fn}n≥1 s.t. d((θn,ℓn), (θ
∗,ℓ∗))

→ 0 with ℓn ≡ κ−1
n

√
nD−1/2

Fn (θn)EFn [m(W , θn)]. The fact that
(θn, ℓn) ∈ Λ∗

n,Fn , implies that θn ∈ Θ
ηn
I (Fn) or, equivalently,

S(
√
nD−1/2

Fn (θn)EFn [m(W , θn)], Ωn(θn)) ≤ ηn. By Lemma D.4, ∃ϖ1
> 0 s.t.

κ1−γ
n ℓn,j = κ−γ

n

√
nσ−1

Fn,j(θn)EFn [mj(W , θn)]

≥ −κ−γ
n η1/χ

n ϖ1 → 0, for j ≤ p,

κ1−γ
n |ℓn,j| = κ−γ

n

√
nσ−1

Fn,j(θn)|EFn [mj(W , θn)]|

≤ κ−γ
n η1/χ

n ϖ1 → 0, for j > p, (D.11)

where γ ∈ (0, 1) is as in Lemma D.10 and the convergence occurs
by ηn = ln κn. By the previous equations, γ < 1, and the fact that
d(ℓn, ℓ

∗) → 0, we conclude that ℓ∗
∈ Rp

[+∞]
× {0k−p}.

Lemma D.10 implies that Eq. (D.5) holds. By combining this
with Eq. (D.11), we conclude that there is a subsequence {un}n≥1

of {n}n≥1 and a sequence {θ̂un ∈ Θ}n≥1 s.t. ∥θ̂un − θun∥ → 0 and

lim
n→∞

√
unσ

−1
Fun ,j(θ̂un)EFun [mj(W , θ̂un)] ≥ lim

n→∞
κ1−γ
un ℓun,j ≥ 0,

for j ≤ p,

lim
n→∞

√
unσ

−1
Fun ,j(θ̂un)EFun [mj(W , θ̂un)] = lim

n→∞
κ1−γ
un ℓun,j = 0,

for j > p.
We define ℓ̂n ≡
√
nD−1/2

Fn (θ̂n)EFn [m(W , θ̂n)] and notice that, by
definition, (θ̂n, ℓ̂n) ∈ Λn,Fn . By the compactness of (Θ × Rk

[±∞]
, d),

there is a subsequence {kn}n≥1 of {un}n≥1 s.t. d((θ̂kn , ℓ̂kn), (θ, ℓ)) →

0. Finally, since Λn,Fn → Λ ∈ S(Θ × Rk
[±∞]

), we conclude that
(θ, ℓ) ∈ Λ. We can summarize the previous construction as fol-
lows:

ℓj = lim
n→∞

ℓ̂kn,j ≥ lim
n→∞

κ
1−γ

kn ℓkn,j ≥ 0, for j ≤ p,

ℓj = lim
n→∞

ℓ̂kn,j = lim
n→∞

κ
1−γ

kn ℓkn,j = 0, for j > p. (D.12)

To conclude, we show that (θ, ℓ) satisfies the requirements in
Assumption A.6. First, d((θ̂kn , ℓ̂kn), (θ, ℓ)) → 0 and ∥θ̂kn − θkn∥ →

0 and imply that limn→∞ θ̂kn = limn→∞ θkn = θ . Second, for j > p,
Eq. (D.12) implies that ℓj = limn→∞ ℓ̂kn,j = 0. Next, consider j ≤ p
for which we know that ℓ∗

j ∈ R[+∞]. If ℓ∗

j = 0, then ϕ∗

j (ℓ
∗

j ) = 0 by
Assumption A.5. Eq. (D.12) then implies ℓj ≥ 0 = ϕ∗

j (ℓ
∗

j ). If ℓ
∗

j > 0,

then κ
1−γ

kn ℓkn,j → ∞ and so Eq. (D.12) implies ℓj = ∞. It follows
that ℓj ≥ ϕ∗(ℓ∗

j ) in this case as well. �

D.5. Auxiliary results on Θ̂I

Lemma D.12. Let {Fn ∈ P0}n≥1 be a (sub)sequence of distributions
s.t. ΩFn

u
→ Ω for some Ω ∈ C(Θ2). For any arbitrary sequence

{λn ∈ R++}n≥1 s.t. λn → ∞, λ−1
n infθ∈Θ Qn(θ)

p
→ 0.

Proof. Fix n ∈ N arbitrarily. By definition, Fn ∈ P0 implies that
θn ∈ ΘI(Fn), which implies that EFn [mj(W , θn)] ≥ 0 for j ≤ p and
EFn [mj(W , θn)] = 0 for j > p. Therefore

0 ≤ λ−1
n inf

θ∈Θ
Qn(θ) ≤ λ−1

n Qn(θn) = S(λ−1/χ
n

√
nmn(θn), Σ̂n(θn))

≤ S(λ−1/χ
n vn(θn), Ω̃n(θn)),

where the first two inequalities are elementary, the first equality is
by definition of Qn and by the fact that S is homogeneous of degree
χ , and the second equality follows from monotonicity properties
of S and θn ∈ ΘI(Fn), which implies that EFn [mj(W , θn)] ≥ 0 for
j ≤ p and EFn [mj(W , θn)] = 0 for j > p.

The proof is completed by showing that S(λ−1/χ
n vn(θn), Ω̃n(θn))

p
→ 0. Suppose not, i.e., ∃ε̄ > 0 s.t.

lim sup
n→∞

PFn
S(λ−1/χ

n vn(θn), Ω̃n(θn))
 > ε̄


> 0. (D.13)

Based on this, notice that

lim sup
n→∞

PFn
S(λ−1/χ

n vn(θn), Ω̃n(θn))
 > ε̄


= lim

n→∞
PFan

S(λ−1/χ
an van(θan), Ω̃an(θan))

 > ε̄


= lim
n→∞

PFbn
S(λ−1/χ

bn vbn(θbn), Ω̃bn(θbn))

 > ε̄

, (D.14)

where the first equality holds for a subsequence {an}n≥1 of {n}n≥1
that achieves the limit supremum, the second equality holds
for a subsequence {bn}n≥1 of {an}n≥1 s.t. Ω(θbn) → Ω∗. By
Lemma D.2 (parts 5 and 6) and λ

1/χ
n → ∞, we conclude that

λ
−1/χ
bn vbn(θbn)

p
→ 0k and Ω̃bn(θbn)−Ωbn(θbn)

p
→ 0k. This, combined

with Ω(θbn)−Ω∗
→ 0k and assumed properties of S, implies that

S(λ−1/χ
bn vbn(θbn), Ω̃bn(θbn))

p
→ S(0k, Ω∗) = 0. As a result, the RHS

of Eq. (D.14) is zero, contradicting Eq. (D.13). �

Lemma D.13. Assume Assumptions A.1–A.4 and let Θ
ln κn
I (Fn) be as

in Definition 4.3. Then,

lim
n→∞

inf
F∈P0

PF

Θ̂n ⊆ Θ

ln κn
I (F)


= 1.
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Proof. Throughout this proof, let

Θ̂UB
I ≡ {θ ∈ Θ : Qn(θ) ≤


ln κn}

= {θ ∈ Θ : S((ln κn)
−1/(2χ)

√
nD̂−1/2

n (θ)m̄(θ), Ω̂n(θ)) ≤ 1},

where the equality relies on the definition of Qn(θ) and the
maintained properties of S.

Step 1. Show that infF∈P0 PF (Θ̂I ⊆ Θ̂UB
I ) → 1. Fix (n, F) ∈

N × P0 arbitrarily. By definition, Tn ≤
√
ln κn implies Θ̂I ⊆ Θ̂UB

I
and, thus, it suffices to show that infF∈P0 PF (Tn ≤

√
ln κn) → 1. To

show this, notice that:

lim inf
n→∞

inf
F∈P0

PF (Tn ≤


ln κn) = lim

n→∞
PFan (Tan ≤


ln κan) = 1,

where the first equality holds for a subsequence {an}n≥1 of {n}n≥1

that achieves the limit, the infimum, and is s.t. ΩFan
u

→ Ω for some
Ω ∈ C(Θ2) (which can be found by Lemma D.7), and the second
equality holds by Lemma D.12.

Step 2. Show that infF∈P0 PF (Θ̂
UB
I ⊆ Θ

ln κn
I (F)) → 1. Fix (n, F) ∈

N × P0 arbitrarily. By Lemma D.5, there exists ϖ2 > 0 s.t.

Θ
ln κn
I (F) ≡ {θ ∈ Θ : S((ln κn)

−1/χ√
nEF [m(W , θ)], ΣF (θ)) ≤ 1}

⊇


θ ∈ Θ :


{
√
nσ−1

F ,j (θ)EF [mj(W , θ)] ≥ −ϖ2(ln κn)
1/χ

}
p
j=1∩

{
√
nσ−1

F ,j (θ)|EF [mj(W , θ)]| ≤ ϖ2(ln κn)
1/χ

}
k
j=p+1


.

It then follows that
Θ̂UB

I ⊆ Θ
ln κn
I (F)


⊇

 
θ∈Θ̂UB

I


{
√
nσ−1

F ,j (θ)EF [mj(W , θ)] ≥ −ϖ2(ln κn)
−1/χ

}
p
j=1∩

{
√
nσ−1

F ,j (θ)|EF [mj(W , θ)]| ≤ ϖ2(ln κn)
−1/χ

}
k
j=p+1


=


{ inf
θ∈Θ̂UB

I

√
nσ−1

F ,j (θ)EF [mj(W , θ)] ≥ −ϖ2(ln κn)
−1/χ

}
p
j=1∩

{ sup
θ∈Θ̂UB

I

√
nσ−1

F ,j (θ)|EF [mj(W , θ)]| ≤ ϖ2(ln κn)
−1/χ

}
k
j=p+1


⊇


max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F ,j (θ)EF [mj(W , θ)]| ≤ ϖ2(ln κn)
−1/χ


.

In turn, this implies that

lim inf
n→∞

inf
F∈P0

PF (Θ̂UB
I ⊆ Θ

ln κn
I (F)) ≥ lim inf

n→∞
inf
F∈P0

PF

×


max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F ,j (θ)EF [mj(W , θ)]| ≤ ϖ2(ln κn)
−1/χ


.

The proof is completed by showing that the RHS is equal to one.
By Lemma D.4, there exists ϖ1 > 0 s.t.

Θ̂UB
I = {θ ∈ Θ : S((


ln κn)

−1/χ√
nD̂−1/2

n (θ)m̄(θ), Ω̂n(θ)) ≤ 1}

⊆


θ ∈ Θ :


{
√
nσ̂−1

n,j (θ)m̄j(θ) ≥ −ϖ1(ln κn)
1/(2χ)

}
p
j=1∩

{
√
nσ̂−1

n,j (θ)|m̄j(θ)| ≤ ϖ1(ln κn)
1/(2χ)

}
k
j=p+1


.

(D.15)

Now, fix (n, F , θ, j) ∈ N×P0 × Θ̂UB
I ×{1, . . . , k} arbitrarily. By

definition,
√
nσ−1

F ,j (θ)EF [mj(W , θ)]

= −vn,j(θ) +
√
nσ̂−1

n,j (θ)m̄j(θ)σ−1
F ,j (θ)σ̂n,j(θ).

In the case of j ≤ p, θ ∈ Θ̂UB
I ⊆ Θ , and Eq. (D.15) then implies that

inf
θ∈Θ̂UB

I

√
nσ−1

F ,j (θ)EF [mj(W , θ)]

≥ − sup
θ̃∈Θ

|vn,j(θ̃)| − ϖ1(ln κn)
1/(2χ) sup

θ̆∈Θ

|σ−1
F ,j (θ̆)σ̂n,j(θ̆)|.
In the case of j > p, the same argument implies that

sup
θ∈Θ̂UB

I

√
nσ−1

F ,j (θ)EF [mj(W , θ)]

≤ sup
θ̃∈Θ

|vn,j(θ̃)| + ϖ1(ln κn)
1/(2χ) sup

θ̆∈Θ

|σ−1
F ,j (θ̆)σ̂n,j(θ̆)|.

One can combine the information ∀j ∈ {1, . . . , k} to deduce that

max
j=1,...,k

sup
θ∈Θ̂UB

I

|
√
nσ−1

F ,j (θ)EF [mj(W , θ)]|

≤ sup
θ̃∈Θ

∥vn(θ̃)∥ + ϖ1(ln κn)
1/(2χ) sup

θ̆∈Θ

∥D−1/2
F (θ̆)D̂1/2

n (θ̆)∥.

From this, it follows that

lim inf
n→∞

inf
F∈P0

PF


max

j=1,...,k
sup

θ∈Θ̂UB
I

|
√
nσ−1

F ,j (θ)EF [mj(W , θ)]|

≤ ϖ2(ln κn)
−1/χ


≥ lim inf

n→∞
inf
F∈P0

PF


sup
θ̃∈Θ

∥vn(θ̃)∥

+ ϖ1η
1/(2χ)
n sup

θ∈Θ

∥D−1/2
F (θ)D̂1/2

n (θ)∥ ≤ ϖ2(ln κn)
−1/χ


≥ lim inf

n→∞
inf
F∈P0

PF


sup
θ∈Θ

∥vn(θ)∥ ≤ ϖ2(ln κn)
−1/χ/2


+ lim inf

n→∞
inf
F∈P0

PF


sup
θ∈Θ

∥D−1/2
F (θ)D̂1/2

n (θ)∥

≤ ϖ2(ln κn)
1/(2χ)/(2ϖ1)


− 1

= lim
n→∞

PFan


sup
θ∈Θ

∥van(θ)∥ ≤ ϖ2(ln κan)
1/χ/2


+ lim

n→∞
PFan


sup
θ∈Θ

∥D−1/2
Fan

(θ)D̂1/2
an (θ)∥

≤ ϖ2(ln κan)
1/(2χ)/(2ϖ1)


− 1 = 1,

where the first two inequalities are elementary, the first equality
holds for a subsequence {an}n≥1 of {n}n≥1 that achieves the limit,
the infimum, and is s.t. ΩFan

u
→ Ω for some Ω ∈ C(Θ2) (which

can be found by Lemma D.7), and the final equality follows from
ln κn, and parts 3 and 6 of Lemma D.2. �

D.6. Auxiliary results on consistency

Theorem D.1. Assume Assumptions A.1–A.4 and let F ∈ P/P0 be
s.t. hF (θ) ≡ D−1/2

F (θ)EF [m(W , θ)] : Θ → Rk is continuous. Then,

lim EF [φBP
n ] = lim EF [φRC

n ] = lim EF [φRS
n ] = 1.

Proof. By Theorem 6.1, it suffices to show lim EF [φBP
n ] = 1. For any

C > 0, consider the following derivation:

φBP
n = 1[∀θ ∈ Θ : Qn(θ) > ĉn(θ, 1 − α)]

≥ 1[sup
θ∈Θ

ĉn(θ, 1 − α) ≤ C ∩ C < Tn],

where Tn ≡ infθ∈Θ Qn(θ) and ĉn(θ, 1 − α) is the (conditional)
(1 − α)-quantile of S(Ω̂1/2

n (θ)Z∗
+ ϕ(ξn(θ), Ω̂n(θ)), Ω̂n(θ)) with

Z∗
∼ N(0k, Ik). From here it follows that

EF [φBP
n ] ≥ PF (supθ∈Θ ĉn(θ, 1 − α) ≤ C) + PF (Tn > C) − 1.
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To complete the proof, it suffices to find C̄ > 0 s.t. both expressions
on the RHS are equal to one.

First, we show that PF (supθ∈Θ ĉn(θ, 1 − α) ≤ C̄) = 1
for some constant C̄ . By monotonicity of S(·), ĉn(θ, 1 − α) ≤

ĉPAn (θ, 1 − α), where ĉPAn (θ, 1 − α) is the (conditional) (1 − α)-
quantile of S(Ω̂1/2

n (θ)Z∗, Ω̂n(θ)) with Z∗
∼ N(0k, Ik). Since

Ω̂n(θ) ∈ Ψ , ĉPAn (θ, 1 − α) ≤ C̄ where C̄ is the (conditional)
(1 − α)-quantile of supΩ∈Ψ S(Ω1/2Z∗, Ω) with Z∗

∼ N(0k, Ik). By
definition, supθ∈Θ ĉn(θ, 1 − α) ≤ C̄ ∈ (0, ∞), which implies the
desired result.

Second, we show that PF (Tn > C̄) → 1. To show this, consider
the following derivation:

inf
θ∈Θ

S(m̄n(θ), Σ̂n(θ)) = inf
θ∈Θ

S(D−1/2
F (θ)m̄n(θ), Ω̃n(θ))

p
→ inf

θ∈Θ
S(D−1/2

F (θ)EF [m(W , θ)], ΩF (θ))

= inf
θ∈Θ

QF (θ) > 0, (D.16)

where we use Ω̃n(θ) ≡ D−1/2
F (θ)Σ̂n(θ)D−1/2

F (θ) and ΩF (θ) ≡

D−1/2
F (θ)ΣF (θ)D−1/2

F (θ). The two equalities are elementary, the
strict inequality follows from F ∈ P/P0, and the convergence
in probability is shown in the next paragraph. From Eq. (D.16),
it follows that Tn = nχ/2 infθ∈Θ S(m̄n(θ), Σ̂n(θ))

p
→ ∞, which

implies the desired result.
To complete the proof, it suffices to show the convergence in

probability in Eq. (D.16). The main steps of this argument are sim-
ilar to the ones used to prove Theorem 3.1. We now provide a
basic sketch of the main ideas. By part 6 in Lemma D.2 (with
λn =

√
n) we conclude that D−1/2

F (·)m̄n(·)
p

→D−1/2
F (·)EF [m(W , ·)]

in l∞(Θ). By part 2 in Lemma D.2 we conclude that Ω̃n
p

→ ΩF
in l∞(Θ). Elementary arguments in convergence in probability
then imply that (D−1/2

F (·)m̄n(·), Ω̃n)
p

→(D−1/2
F (·)EF [m(W , ·)], ΩF )

in l∞(Θ). Furthermore, under the assumptions of the result,
(D−1/2

F (·)EF [m(W , ·)], ΩF ) : Θ → Rk
[±∞]

× Ψ is continuous func-
tion. By these findings and the extended continuous mapping the-
orem (e.g. van der Vaart and Wellner (1996, Theorem 1.11.1)), the
result follows. �
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