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Vuong Test (Vuong, 1989)

e Data {X;}" ;.
@ Two competing parametric models:

f(x,0),0c0 vs. g(x,B),p€B.
o Evaluate the relative fit:

Hy: LR = Ellogf (X;,0)] — E |l X, =0
o max E [log f (X;, 6)] max [log g (X, B)]
@ Likelihood ratio statistic:

LR, =n"1)"

n
i=1

[Iogf (X,-,@n) —logg (Xian)] :
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Vuong Test (Vuong, 1989)

@ If the two models are nonnested, under Hp:
VLR, —p N (0, w?)
where w? = E [log f (Xi,0.) — log g (Xi, B,)]*.

o One-Step Test: (W2: sample version of w?)

nLR,
Reject Hy if ‘\f > Zy/2.
n
@ Two-step Test: reject Hy if
nLR
n@?% > ¢, (1 —a) \/;] 2 >z
n
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Approximation Quality of Normal (n=1000)
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About the Graph

@ From the comparison of two normal regression models with 10 and 2
regressors respectively.

@ Data generated under Hy.

w? > 0, and the variance test n@? rejects almost all the time.

Rejection probability of a 5% test: 7.3%.
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About the Graph

@ From the comparison of two normal regression models with 10 and 2
regressors respectively.

@ Data generated under Hy.

e w? > 0, and the variance test n@? rejects almost all the time.

@ Rejection probability of a 5% test: 7.3%.

e AIC, BIC corrections mentioned in Vuong (1989), but they do not
move the red curve to the right place.
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About the Graph

@ From the comparison of two normal regression models with 10 and 2
regressors respectively.

@ Data generated under Hy.

e w? > 0, and the variance test n@? rejects almost all the time.

@ Rejection probability of a 5% test: 7.3%.

e AIC, BIC corrections mentioned in Vuong (1989), but they do not
move the red curve to the right place.

@ | propose a new correction.
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Approximation Quality of Normal (n=1000)
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Outline

Bias in LR,

(]

Over-rejection of the Vuong tests

Modified Test

@ Examples

o Extensions to GMM Models
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Bias in LRn

VLR, = n Y [logf (X,.0,) ~log (X,.,)]

i=1

n~1/2 i llog f (Xi,0+) —logg (Xi, B,)] —

M V(B =) AV (§, = ¢.) +o0p ()

LR1, — n"Y2LR2, 4+ o, (n7?).

Under Ho, E [LR1,] =0, but E[LR2,] #0

X. Shi (UW-Mdsn) Ho:LR =0 IUPUI  8/30



Bias in LRn

o —nY2E[LR2,] is the higher-order bias in \/nLR,,.

@ How influential is the higher-order bias?
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o It depends on the relative magnitude of LR1, and —n"1/2LR2,

o —n1/21R2, is important if

e nw? small
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Bias in LRn

o —nY2E[LR2,] is the higher-order bias in \/nLR,,.

@ How influential is the higher-order bias?

o It depends on the relative magnitude of LR1, and —n"1/2LR2,

o —n1/21R2, is important if

e nw? small

o |E[LR2,]| large.
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Bias in LRn - Asymptotic Form of E[LR2n]

Let A; (¢) = log f (X;,0) —logg (X, B); ¢ = (6'.B') .

Vi (,—¢,) e ArZy=A"1-N(0,B),

where

_ A, _ L [9Ai(9,) 9Ai(¢,)
A=t "y’ 8=

Under standard conditions,

Z'A"1Z
LR2, —q -2 5 ?
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Bias in LRn - Asymptotic Form of Bias

trace (A*1 B)

E[LR2,] = ;

trace (Al_lBl) — trace (Az_le)
5 :

where A; and B; are respectively the Hessian and the outer-product
versions of the information matrix of model j.
o Special case: under mild or no misspecification: bias=(dy — dg) /2.

e It can be quite large (relative to nw?), and it favors the model with
more parameters.

@ AIC and BIC correct too much and result in an opposite bias.
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Outline

Bias in LR,

(]

Over-rejection of the Vuong tests

Modified Test

@ Examples

o Extensions to GMM Models
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Over-rejection of the Vuong Tests

@ (Mainly) due to the bias in LR,, the Vuong tests can over-reject the
null.

@ The over-rejection can be arbitrarily large (close to 1 — &) — far worse
than illustrated in previous graph.

@ The over-rejection can be captured asymptotically by considering a
drifting sequence of null DGPs {P,}

o nwy — 02 € [0,00], Ap, — A, Bp, — B, and

IA; (¢,)
d¢

—>p*

pp, = Ep, [Ai (¢.)-
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Over-rejection of the Vuong Tests

Lemma

Under {P,} and standard MLE conditions
nLRy \ oZy—271Z]vzy
n@? I\ 02— 200VZy + Z|V2Zy |-

where [Q, V] = eig (Ale), (2, Z1) ~ N(0,[1,0;p,1]) and
o= Q/ [01/2]"‘()*.

e /nLR,/&, is close to N (0, 1) if ¢ is large relative to trace (V)

o the bias dominates if trace (V) is large relative to o
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Over-rejection of the Vuong Tests

Under { P, k}°°k L such that Hy holds and

(i) for all k, (nw}, . Ap, . Bp,..0p,,) = (0}, Ak, B, p)
tr(Vk —tr(V}) d tr(V¢) 0

(i) — 09, 7”(\/3) — 0, an (V)T —

(%"

then

lim lim Pr
k—00 n—o0

> Za/2> =1

2
If in addition, T _ 00, then we also have

tr(sz)

lim lim Pr <nd),, >c(l—a) & */EALR” > zm) =1

k—00 N—00 "
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Over-rejection of the Vuong Tests

@ Implications of the Theorem:

@ by increasing the number of parameters of one model, one can always
make the Vuong tests pick this model, even if this model is no better
than the other.

e "no better than" can be replaced with "worse".

@ What about AIC and BIC corrections (suggested by various authors)?

e correct too much

e By increasing the number of parameters of one model, one can always
make the Vuong tests reject this model, even if this model is no worse
than the other

e OK if objective is forecasting; not OK if want to take Vuong tests as
hypothesis tests seriously.

X. Shi (UW-Mdsn) Ho:LR =0 IUPUI 16 /30



Outline

Bias in LR,

(]

Over-rejection of the Vuong tests

Modified Test

@ Examples

o Extensions to GMM Models
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Modified Test

@ Modification contains three parts:
o modified LRy:  LRTOY = LR, +tr (V) /(2n),
2 . .
o modified @2: (afnnod) = @2 4 nLer (V3) /er (02),

o modified critical value (discussed later): zf}%d.

@ Modification to LR, removes most of the over-rejection,

o But tr (V) /(2n) introduces slight new over-rejection when V, has
one dominating element — solved by the modification of d}%

o /nLR™od /mod has little bias and is close to N (0, 1), but still not
exactly N (0,1) — fortunately we know what it is (asymptotically).
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Asymptotic Distribution of Modified Statistic

Under {P,} and standard MLE conditions

nl/2 LR,r,nOd

~.mod —d JUvaV

Wy

0Zy — 271 (Z]VZy — tr (V))
Vo2 =20pVZ + ZIV2Zy + tr (V#) /tr (V?)

o Modified critical value:

mod __

g3 = sup Quantile(|J,, [ 1—a).
€(0,00)
o where p, \7,, are consistent estimators of p, V,
e o cannot be consistently estimated.
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Modified Test

nl/ZLR;nod

~,mod
wn

mod
> Z%/2 .

o Modified Test: reject Hy if Tmod =

For a set of null DGPs Hy, suppose the standard MLE conditions hold
uniformly over the set, then

1/2 mod
n'/2LR
—|> zg;gd> <a.

~ mod
Wy

limsup sup Prp (
n—o  PeHy

@ In words: the asymptotic size of the modified test is less than or equal
to «.

@ In other words: the null rejection probability is uniformly
well-controlled.
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Discussion of the Critical Value

° zf}%d is in a sense a worst-case critical value.
@ How conservative is it?
e in the scenario when the classical Vuong tests over-rejection is the
d _
worst, zg}% = Zy/2.

e in other cases, zg}ozd could be bigger, but not much bigger. For

example 261_‘83/2 is up to around zj g1/2.

e in the later cases, the modified test is much more powerful than the
two-step Vuong test, and does not over-reject as the one-step Vuong
test.

@ How difficult is the computation?

o fast (because only maximizing over a scalar)

o convenient (because p, and V, can be easily obtained from the
maximum likelihood routines).
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Example 1 - Normal Regression

ML Y =B+ L2 B XL+ v, v~ N(0,03).
M2. Y =06y —}—Z 210X+ u, u~ N(0,03);
e DGP: ity b1y
ai Zj:l 1, ar ijl 2,j
Vd —1 Vdr—1

(lel, ---1X1,d1—11X2,1v R X2'd2_1,8) ~ N (0, I)
@ Null: a1 = ap = 0.25; Alterative: a1 =0, ap = 0.25

Y =1+

@ Base case: d; =10, d» = 2, n = 250.
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Table 1. Rej. Prob. of Original and Modified Tests (&« = 0.05)

Original Tests

Modified Test

2-Step 1-Step Var. Test Sel. Prob  Max cm°d
Null DGP

Base  (.087,.004) (.088,.004) .949 (.015,.022) 2.00
di =20 (.205,.000) (.283,.000) .680 (.015,.014) 2.00
d =5 (.037,.010) (.037,.010) .990 (.018,.018) 2.04
n=500 (.067,.005) (.067,.005) 1 (.020,.019) 1.98
n =100 (.051,.000) (.136,.001) 276 (.012,.013) 2.17

Alternative DGP (M2 true)

Base  (.000,.032) (.000,.032) .625 (.000,.281) 2.00
dp =20 (.001,.000) (.001,.000) 249 (.000,.187) 2.00
dp =5 (.000,.204) (.000,.204) .830 (.000,.336) 2.10
n =500 (.000,.315) (.000,.315) 971 (.000,.724) 2.00
n =100 (.003,.001) (.004,.001) .109 (.001,.051) 2.10
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Example 2 - Joint Normal Location Model

M1. (Yl, Yz) ~ N((91,0) , /2). 91 € R;
M2. (Yl, YQ) ~ N((O,@g) , /2), 0, € R.

() ~m((52) (5 9))

o LR = 9%’0 — 9%]0

e DGP:

@ nominal size & = 0.05.
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RejectionProbabilty

8
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2
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GMM Models and GEL Criteria

e GMM models (or moment condition models):

M1 : Ems(x,¢;) = 0 for some ¢, € ¥r C R%r,
M2 Emg (x4, ) = 0 for some ¢, € ¥y C R,

(1)

where m¢ and mg are known moment functions and ¢, and ¢, are

unknown parameters.

@ Generalized Empirical Likelihood criteria: Hp:

GELR = max minE [k (v:m¢ (X, _
T aa [ (’Yf F( 4’f>)]
. , _
o e s i (50,)]
= 0.
EL: x (v) = —log (1 — v), ET (exponential tilting): x (v) = e".
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General Framework

@ In previous analysis,
o replace log f (x,0) and log g (x, B) with x (vym¢ (X, ¢¢)) and
)
!/ /
o replace 6, and B, with (’y}*lp} *) and (’y’g’*,lpé'*)

o then everything go through.
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Summary

@ Discover the higher-order bias in the Vuong test statistic

Show that the bias cause (sometimes severe) over-rejection
@ Propose a uniformly valid modified Vuong test

@ Modified Vuong test is easy to compute and has good power.

X. Shi (UW-Mdsn) Ho:LR =0 IUPUI 30/ 30



