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Vuong Test (Vuong, 1989)

Data fXigni=1.

Two competing parametric models:

f (x , θ) , θ 2 Θ vs. g (x , β) , β 2 B .

Evaluate the relative �t:

H0 : LR � max
θ2Θ

E [log f (Xi , θ)]�max
β2B

E [log g (Xi , β)] = 0

Likelihood ratio statistic:

LRn = n�1
n

∑
i=1

�
log f

�
Xi , θ̂n

�
� log g

�
Xi , β̂n

��
.

X. Shi (UW-Mdsn) H0 : LR = 0 IUPUI 2 / 30



Vuong Test (Vuong, 1989)

If the two models are nonnested, under H0:

p
nLRn !p N

�
0,ω2�

where ω2 = E [log f (Xi , θ�)� log g (Xi , β�)]
2.

One-Step Test: (ω̂2
n: sample version of ω2)

Reject H0 if

����pnLRnω̂n

���� > zα/2.

Two-step Test: reject H0 if

nω̂2
n > cn (1� α) and

����pnLRnω̂n

���� > zα/2.
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Approximation Quality of Normal (n=1000)
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About the Graph

From the comparison of two normal regression models with 10 and 2
regressors respectively.

Data generated under H0.

ω2 > 0, and the variance test nω̂2
n rejects almost all the time.

Rejection probability of a 5% test: 7.3%.

AIC, BIC corrections mentioned in Vuong (1989), but they do not
move the red curve to the right place.

I propose a new correction.
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Bias in LRn

p
nLRn = n�1/2

n

∑
i=1

�
log f

�
Xi , θ̂n

�
� log g

�
Xi , β̂n

��
= n�1/2

n

∑
i=1
[log f (Xi , θ�)� log g (Xi , β�)]�

1
2
p
n
�
p
n
�
φ̂n � φ�

�0 Apn �φ̂n � φ�
�
+ op

�
n�1

�
� LR1n � n�1/2LR2n + op

�
n�1

�
.

Under H0, E [LR1n ] = 0, but E [LR2n ] 6= 0
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Bias in LRn

�n�1/2E [LR2n ] is the higher-order bias in
p
nLRn.

How in�uential is the higher-order bias?

It depends on the relative magnitude of LR1n and �n�1/2LR2n

�n�1/2LR2n is important if

nω2 small

jE [LR2n ]j large.
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Bias in LRn - Asymptotic Form of E[LR2n]

Let Λi (φ) = log f (Xi , θ)� log g (Xi , β); φ =
�
θ0, β0

�0
.

p
n
�
φ̂n � φ�

�
!d A

�1Zφ � A�1 �N (0,B) ,
where

A = E
�

∂2Λi (φ�)

∂φ∂φ0

�
, B = E

�
∂Λi (φ�)

∂φ
� ∂Λi (φ�)

∂φ0

�
.

Lemma
Under standard conditions,

LR2n !d
Z 0φA

�1Zφ

2
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Bias in LRn - Asymptotic Form of Bias

E [LR2n ] =
trace

�
A�1B

�
2

=
trace

�
A�11 B1

�
� trace

�
A�12 B2

�
2

,

where Aj and Bj are respectively the Hessian and the outer-product
versions of the information matrix of model j .

Special case: under mild or no misspeci�cation: bias=
�
dθ � dβ

�
/2.

It can be quite large (relative to nω2), and it favors the model with
more parameters.

AIC and BIC correct too much and result in an opposite bias.
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Over-rejection of the Vuong Tests

(Mainly) due to the bias in LRn, the Vuong tests can over-reject the
null.

The over-rejection can be arbitrarily large (close to 1� α) � far worse
than illustrated in previous graph.

The over-rejection can be captured asymptotically by considering a
drifting sequence of null DGPs fPng

nω2
Pn ! σ2 2 [0,∞], APn ! A, BPn ! B, and

ρ�Pn = EPn

�
Λi (φ�) �

∂Λi (φ�)

∂φ

�
! ρ�
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Over-rejection of the Vuong Tests

Lemma
Under fPng and standard MLE conditions�

nLRn
nω̂2

n

�
!d

�
σZ0 � 2�1Z 01VZ1

σ2 � 2σρVZ1 + Z 01V
2Z1

�
.

where [Q,V ] = eig
�
A�1B

�
, (Z0,Z1) � N (0, [1, ρ0; ρ, I ]) and

ρ = Q 0
�
Ω1/2�+ ρ�.

p
nLRn/ω̂n is close to N (0, 1) if σ is large relative to trace (V )

the bias dominates if trace (V ) is large relative to σ
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Over-rejection of the Vuong Tests

Theorem
Under fPn,kg∞

n,k=1 such that H0 holds and
(i) for all k, (nω2

Pn,k
,APn,k ,BPn,k , ρPn,k )! (σ2k ,Ak ,B , ρ)

(ii) �tr (Vk )σk
! ∞, �tr (Vk )q

tr(V 2k )
! ∞, and

tr(V 4k )

[tr(V 2k )]
2 ! 0

then

lim
k!∞

lim
n!∞

Pr
�p

nLRn
ω̂n

> zα/2

�
= 1.

If in addition, σ2k
tr(V 2k )

! ∞, then we also have

lim
k!∞

lim
n!∞

Pr
�
nω̂n > cn (1� α) &

p
nLRn
ω̂n

> zα/2

�
= 1
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Over-rejection of the Vuong Tests

Implications of the Theorem:

by increasing the number of parameters of one model, one can always
make the Vuong tests pick this model, even if this model is no better
than the other.

"no better than" can be replaced with "worse".

What about AIC and BIC corrections (suggested by various authors)?

correct too much

By increasing the number of parameters of one model, one can always
make the Vuong tests reject this model, even if this model is no worse
than the other

OK if objective is forecasting; not OK if want to take Vuong tests as
hypothesis tests seriously.
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Modi�ed Test

Modi�cation contains three parts:

modi�ed LRn : LRmod
n = LRn + tr

�
V̂n
�

/(2n),

modi�ed ω̂2n :
�

ω̂mod
n

�2
= ω̂2n + n

�1tr
�
V̂ 4n
�

/tr
�
V̂ 2n
�
,

modi�ed critical value (discussed later): zmod
α/2 .

Modi�cation to LRn removes most of the over-rejection,

But tr
�
V̂n
�

/(2n) introduces slight new over-rejection when V̂n has
one dominating element � solved by the modi�cation of ω̂2

n,
p
nLRmod

n /ω̂mod
n has little bias and is close to N (0, 1), but still not

exactly N (0, 1) �fortunately we know what it is (asymptotically).
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Asymptotic Distribution of Modi�ed Statistic

Lemma
Under fPng and standard MLE conditions

n1/2LRmod
n

ω̂mod
n

!d Jσ,ρ,V

=
σZ0 � 2�1 (Z 01VZ1 � tr (V ))p

σ2 � 2σρVZ1 + Z 01V
2Z1 + tr (V 4) /tr (V 2)

.

Modi�ed critical value:

zmod
α/2 = sup

σ2[0,∞)
Quantile(jJσ,ρ̂n ,V̂n

j, 1� α).

where ρ̂n , V̂n are consistent estimators of ρ,V ,

σ cannot be consistently estimated.
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Modi�ed Test

Modi�ed Test: reject H0 if Tmod
n �

��� n1/2LRmod
n

ω̂mod
n

��� > zmod
α/2 .

Theorem
For a set of null DGPs H0, suppose the standard MLE conditions hold
uniformly over the set, then

lim sup
n!∞

sup
P2H0

PrP

�����n1/2LRmod
n

ω̂mod
n

���� > zmod
α/2

�
� α.

In words: the asymptotic size of the modi�ed test is less than or equal
to α.

In other words: the null rejection probability is uniformly
well-controlled.
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Discussion of the Critical Value

zmod
α/2 is in a sense a worst-case critical value.

How conservative is it?

in the scenario when the classical Vuong tests over-rejection is the
worst, zmod

α/2 = zα/2.

in other cases, zmod
α/2 could be bigger, but not much bigger. For

example zmod
0.05/2 is up to around z0.01/2.

in the later cases, the modi�ed test is much more powerful than the
two-step Vuong test, and does not over-reject as the one-step Vuong
test.

How di¢ cult is the computation?

fast (because only maximizing over a scalar)

convenient (because ρ̂n and V̂n can be easily obtained from the
maximum likelihood routines).
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Example 1 - Normal Regression

M1. Y = β0 +∑d1�1
j=1 βjX1,j + v , v � N(0, σ22).

M2. Y = θ0 +∑d2�1
j=1 θjX2,j + u, u � N(0, σ21);

DGP:

Y = 1+
a1 ∑d1�1

j=1 X1,jp
d1 � 1

+
a2 ∑d2�1

j=1 X2,jp
d2 � 1

+ ε

(X1,1, ...,X1,d1�1,X2,1, ...,X2,d2�1, ε) � N (0, I )
Null: a1 = a2 = 0.25; Alterative: a1 = 0, a2 = 0.25

Base case: d1 = 10, d2 = 2, n = 250.
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Table 1. Rej. Prob. of Original and Modi�ed Tests (α = 0.05)

Original Tests Modi�ed Test
2-Step 1-Step Var. Test Sel. Prob Max cmod

n
Null DGP

Base (.087,.004) (.088,.004) .949 (.015,.022) 2.00
d1 = 20 (.205,.000) (.283,.000) .680 (.015,.014) 2.00
d1 = 5 (.037,.010) (.037,.010) .990 (.018,.018) 2.04
n = 500 (.067,.005) (.067,.005) 1 (.020,.019) 1.98
n = 100 (.051,.000) (.136,.001) .276 (.012,.013) 2.17

Alternative DGP (M2 true)
Base (.000,.032) (.000,.032) .625 (.000,.281) 2.00
d1 = 20 (.001,.000) (.001,.000) .249 (.000,.187) 2.00
d1 = 5 (.000,.204) (.000,.204) .830 (.000,.336) 2.10
n = 500 (.000,.315) (.000,.315) .971 (.000,.724) 2.00
n = 100 (.003,.001) (.004,.001) .109 (.001,.051) 2.10
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Example 2 - Joint Normal Location Model

M1. (Y1,Y2) � N ((θ1, 0) , I2), θ1 2 R;
M2. (Y1,Y2) � N ((0, θ2) , I2), θ2 2 R.

DGP: �
Y1
Y2

�
� N

��
θ1,0
θ2,0

�
,

�
25 0
0 1

��
LR = θ21,0 � θ22,0.

nominal size α = 0.05.

X. Shi (UW-Mdsn) H0 : LR = 0 IUPUI 25 / 30



0 0. 5 1 1. 5 2 2. 5
0

0. 02

0. 04

0. 06

0. 08

0. 1

0. 12

R
ej

ec
tio

n 
Pr

ob
ab

ilit
y

Null Rej. Prob. of the TwoStep Test

n  =  100
n  =  250
n  =  500
n  =  750
n  =  1000
5%  l i ne

0 0. 5 1 1. 5 2 2. 5
0

0. 02

0. 04

0. 06

0. 08

0. 1

0. 12

Null Rej. Prob. of the OneStep Test

R
ej

ec
tio

n 
Pr

ob
ab

ilit
y

n  =  100
n  =  250
n  =  500
n  =  750
n  =  1000
5%  l i ne

0 0. 5 1 1. 5 2 2. 5
0

0. 02

0. 04

0. 06

0. 08

0. 1

0. 12

Null Rej. Prob. of the Modified Test

θ2,0 ( = θ1,0)

R
ej

ec
tio

n 
Pr

ob
ab

ilit
y

n  =  100
n  =  250
n  =  500
n  =  750
n  =  1000
5%  l i ne

0 0. 5 1 1. 5 2 2. 5
0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1
Power of the TwoStep Test

n  =  100
n  =  250
n  =  500
n  =  750
n  =  1000
5%  l i ne

0 0. 5 1 1. 5 2 2. 5
0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1
Power of the OneStep Test

n  =  100
n  =  250
n  =  500
n  =  750
n  =  1000
5%  l i ne 0 0. 5 1 1. 5 2 2. 5

0

0. 1

0. 2

0. 3

0. 4

0. 5

0. 6

0. 7

0. 8

0. 9

1
Power of the Modified Test

θ2,0     ( θ1,0 = 0)

n  =  100
n  =  250
n  =  500
n  =  750
n  =  1000
5%  l i ne

X. Shi (UW-Mdsn) H0 : LR = 0 IUPUI 26 / 30



Outline

Bias in LRn

Over-rejection of the Vuong tests

Modi�ed Test

Examples

Extensions to GMM Models

X. Shi (UW-Mdsn) H0 : LR = 0 IUPUI 27 / 30



GMM Models and GEL Criteria

GMM models (or moment condition models):

M1 : Emf (x ,ψf ) = 0 for some ψf 2 Ψf � Rdψf ,

M2 : Emg
�
x ,ψg

�
= 0 for some ψg 2 Ψg � Rdψg , (1)

where mf and mg are known moment functions and ψf and ψg are
unknown parameters.

Generalized Empirical Likelihood criteria: H0:

GELR � max
ψf 2Ψf

min
γf
E
�
κ
�
γ0fmf (Xi ,ψf )

��
�

max
ψg2Ψg

min
γg
E
h
κ
�

γ0gmg
�
Xi ,ψg

��i
= 0.

EL: κ (v) = � log (1� v), ET (exponential tilting): κ (v) = ev .
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General Framework

In previous analysis,

replace log f (x , θ) and log g (x , β) with κ
�
γ0f mf (Xi ,ψf )

�
and

κ
�

γ0gmg
�
Xi ,ψg

��
replace θ� and β� with

�
γ0f ,�,ψ

0
f ,�

�0
and

�
γ0g ,�,ψ

0
g ,�

�0
then everything go through.
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Summary

Discover the higher-order bias in the Vuong test statistic

Show that the bias cause (sometimes severe) over-rejection

Propose a uniformly valid modi�ed Vuong test

Modi�ed Vuong test is easy to compute and has good power.

X. Shi (UW-Mdsn) H0 : LR = 0 IUPUI 30 / 30


