Size Distortion and Modification of **Classical Vuong Tests**

Xiaoxia Shi

University of Wisconsin at Madison

March 2011

Vuong Test (Vuong, 1989)

- Data $\{X_i\}_{i=1}^n$.
- Two competing parametric models:

$$
f(x,\theta), \theta \in \Theta \text{ vs. } g(x,\beta), \beta \in B.
$$

 \bullet Evaluate the relative fit:

$$
H_0: LR \equiv \max_{\theta \in \Theta} E \left[\log f \left(X_i, \theta \right) \right] - \max_{\beta \in B} E \left[\log g \left(X_i, \beta \right) \right] = 0
$$

. Likelihood ratio statistic:

$$
LR_n = n^{-1} \sum_{i=1}^n \left[\log f\left(X_i, \hat{\theta}_n\right) - \log g\left(X_i, \hat{\beta}_n\right) \right].
$$

Vuong Test (Vuong, 1989)

If the two models are nonnested, under H_0 :

$$
\sqrt{n}LR_n \to_p N(0, \omega^2)
$$

where $\omega^2 = E [\log f(X_i, \theta_*) - \log g(X_i, \beta_*)]^2$.
• One-Step Test: $(\hat{\omega}_n^2)$: sample version of ω^2)

$$
\text{Reject } H_0 \text{ if } \left| \frac{\sqrt{n}LR_n}{\hat{\omega}_n} \right| > z_{\alpha/2}.
$$

• Two-step Test: reject H_0 if

$$
n\hat{\omega}_n^2 > c_n (1-\alpha)
$$
 and $\left| \frac{\sqrt{n}LR_n}{\hat{\omega}_n} \right| > z_{\alpha/2}.$

Approximation Quality of Normal (n=1000)

- From the comparison of two normal regression models with 10 and 2 regressors respectively.
- \bullet Data generated under H_0 .
- $\omega^2 >$ 0, and the variance test $n \hat{\omega}_n^2$ rejects almost all the time.
- Rejection probability of a 5% test: 7.3%.
- From the comparison of two normal regression models with 10 and 2 regressors respectively.
- \bullet Data generated under H_0 .
- $\omega^2 >$ 0, and the variance test $n \hat{\omega}_n^2$ rejects almost all the time.
- Rejection probability of a 5% test: 7.3% .
- AIC, BIC corrections mentioned in Vuong (1989), but they do not move the red curve to the right place.
- From the comparison of two normal regression models with 10 and 2 regressors respectively.
- \bullet Data generated under H_0 .

 $\omega^2 >$ 0, and the variance test $n \hat{\omega}_n^2$ rejects almost all the time.

- Rejection probability of a 5% test: 7.3% .
- AIC, BIC corrections mentioned in Vuong (1989), but they do not move the red curve to the right place.
- I propose a new correction.

Approximation Quality of Normal (n=1000)

- \bullet Bias in LR_n
- Over-rejection of the Vuong tests
- Modified Test
- Examples
- Extensions to GMM Models

$$
\sqrt{n}LR_n = n^{-1/2} \sum_{i=1}^n \left[\log f(X_i, \hat{\theta}_n) - \log g(X_i, \hat{\beta}_n) \right]
$$

= $n^{-1/2} \sum_{i=1}^n \left[\log f(X_i, \theta_*) - \log g(X_i, \beta_*) \right] -$

$$
\frac{1}{2\sqrt{n}} \cdot \sqrt{n} (\hat{\phi}_n - \phi_*)' A \sqrt{n} (\hat{\phi}_n - \phi_*) + o_p(n^{-1})
$$

= $LR1_n - n^{-1/2} LR2_n + o_p(n^{-1}).$

Under H_0 , $E [LR1_n] = 0$, but $E [LR2_n] \neq 0$

- $-n^{-1/2}E\left[LR2_n\right]$ is the higher-order bias in $\sqrt{n}LR_n$.
- How influential is the higher-order bias?
- $-n^{-1/2}E\left[LR2_n\right]$ is the higher-order bias in $\sqrt{n}LR_n$.
- How influential is the higher-order bias?
	- It depends on the relative magnitude of LRI_n and $-n^{-1/2}\text{LRI}_n$
- $-n^{-1/2}E\left[LR2_n\right]$ is the higher-order bias in $\sqrt{n}LR_n$.
- How influential is the higher-order bias?
	- It depends on the relative magnitude of LRI_n and $-n^{-1/2}\text{LRI}_n$ $-n^{-1/2}LR2_n$ is important if

 $-n^{-1/2}E\left[LR2_n\right]$ is the higher-order bias in $\sqrt{n}LR_n$.

- How influential is the higher-order bias?
	- It depends on the relative magnitude of LRI_n and $-n^{-1/2}\text{LRI}_n$ $-n^{-1/2}LR2_n$ is important if
		- n*ω*² small

 $-n^{-1/2}E\left[LR2_n\right]$ is the higher-order bias in $\sqrt{n}LR_n$.

- How influential is the higher-order bias?
	- It depends on the relative magnitude of LRI_n and $-n^{-1/2}\text{LRI}_n$ $-n^{-1/2}LR2_n$ is important if
		- n*ω*² small
		- $|E [LR2_n]$ large.

Bias in LRn - Asymptotic Form of E[LR2n]

Let
$$
\Lambda_i(\phi) = \log f(X_i, \theta) - \log g(X_i, \beta); \phi = (\theta', \beta')'
$$
.

$$
\sqrt{n}(\hat{\phi}_n - \phi_*) \rightarrow_d A^{-1} Z_{\phi} \equiv A^{-1} \cdot N(0, B),
$$

where

$$
A = E\left[\frac{\partial^2 \Lambda_i(\phi_*)}{\partial \phi \partial \phi'}\right], \quad B = E\left[\frac{\partial \Lambda_i(\phi_*)}{\partial \phi} \cdot \frac{\partial \Lambda_i(\phi_*)}{\partial \phi'}\right]
$$

Lemma

Under standard conditions,

$$
LR2_n \rightarrow_d \frac{Z'_{\phi}A^{-1}Z_{\phi}}{2}
$$

.

Bias in LRn - Asymptotic Form of Bias

$$
E [LR2_n] = \frac{\text{trace} (A^{-1}B)}{2}
$$

=
$$
\frac{\text{trace} (A_1^{-1}B_1) - \text{trace} (A_2^{-1}B_2)}{2},
$$

where A_i and B_i are respectively the Hessian and the outer-product versions of the information matrix of model j.

- **Special case**: under mild or no misspecification: bias $=$ $\left(d_{\theta}-d_{\beta}\right)/2$.
- It can be quite large (relative to $n\omega^2$), and it favors the model with more parameters.
- AIC and BIC correct too much and result in an opposite bias.

- \bullet Bias in LR_n
- Over-rejection of the Vuong tests
- Modified Test
- Examples
- Extensions to GMM Models

Over-rejection of the Vuong Tests

- \bullet (Mainly) due to the bias in LR_n , the Vuong tests can over-reject the null.
- The over-rejection can be arbitrarily large (close to 1α) far worse than illustrated in previous graph.
- The over-rejection can be captured asymptotically by considering a drifting sequence of null DGPs $\{P_n\}$

•
$$
n\omega_{P_n}^2 \rightarrow \sigma^2 \in [0, \infty]
$$
, $A_{P_n} \rightarrow A$, $B_{P_n} \rightarrow B$, and

$$
\rho_{P_n}^* = E_{P_n} \left[\Lambda_i \left(\phi_* \right) \cdot \frac{\partial \Lambda_i \left(\phi_* \right)}{\partial \phi} \right] \rightarrow \rho^*
$$

Lemma

Under ${P_n}$ and standard MLE conditions

$$
\left(\begin{array}{c} nLR_n\\ n\hat{\omega}_n^2 \end{array}\right) \rightarrow_d \left(\begin{array}{c} \sigma Z_0 - 2^{-1}Z_1'VZ_1\\ \sigma^2 - 2\sigma\rho VZ_1 + Z_1'V^2Z_1 \end{array}\right).
$$

where
$$
[Q, V] = eig (A^{-1}B), (Z_0, Z_1) \sim N(0, [1, \rho'; \rho, I])
$$
 and $\rho = Q' [\Omega^{1/2}]^+ \rho^*$.

- $\sqrt{n} L R_n / \hat{\omega}_n$ is close to $N(0, 1)$ if σ is large relative to trace (V)
- the bias dominates if trace (V) is large relative to σ

Over-rejection of the Vuong Tests

Theorem

Under
$$
\{P_{n,k}\}_{n,k=1}^{\infty}
$$
 such that H_0 holds and
\n(i) for all k, $(n\omega_{P_{n,k}}^2, A_{P_{n,k}}, B_{P_{n,k}}, \rho_{P_{n,k}}) \rightarrow (\sigma_k^2, A_k, B, \rho)$
\n(ii) $\frac{-tr(V_k)}{\sigma_k} \rightarrow \infty$, $\frac{-tr(V_k)}{\sqrt{tr(V_k^2)}} \rightarrow \infty$, and $\frac{tr(V_k^4)}{[tr(V_k^2)]^2} \rightarrow 0$
\nthen
\n
$$
\lim_{k \to \infty} \lim_{n \to \infty} Pr\left(\frac{\sqrt{n}LR_n}{\hat{\omega}_n} > z_{\alpha/2}\right) = 1.
$$

\nIf in addition, $\frac{\sigma_k^2}{tr(V_k^2)} \rightarrow \infty$, then we also have
\n
$$
\lim_{k \to \infty} \lim_{n \to \infty} Pr\left(n\hat{\omega}_n > c_n (1 - \alpha) \& \frac{\sqrt{n}LR_n}{\hat{\omega}_n} > z_{\alpha/2}\right) = 1
$$

X. Shi (UW-Mdsn) $H_0 : LR = 0$ $H_0 : LR = 0$ $H_0 : LR = 0$ IUPUI 15 / 30

Over-rejection of the Vuong Tests

- Implications of the Theorem:
	- by increasing the number of parameters of one model, one can always make the Vuong tests pick this model, even if this model is no better than the other.
	- "no better than" can be replaced with "worse".
- What about AIC and BIC corrections (suggested by various authors)?
	- **o** correct too much
	- By increasing the number of parameters of one model, one can always make the Vuong tests reject this model, even if this model is no worse than the other
	- OK if objective is forecasting; not OK if want to take Vuong tests as hypothesis tests seriously.
- \bullet Bias in LR_n
- Over-rejection of the Vuong tests
- Modified Test
- Examples
- Extensions to GMM Models

Modified Test

- Modification contains three parts:
	- modified LR_n : $LR_n^{\text{mod}} = LR_n + tr(\hat{V}_n) / (2n)$,
	- modified $\hat{\omega}_n^2$: $\left(\hat{\omega}_n^{\text{mod}} \right)^2 = \hat{\omega}_n^2 + n^{-1} \text{tr} \left(\hat{V}_n^4 \right) / \text{tr} \left(\hat{V}_n^2 \right),$
	- modified critical value (discussed later): $z_{\alpha/2}^{\rm mod}$.
- Modification to LR_n removes most of the over-rejection,
- But $tr\left(\hat{V}_n\right)/(2n)$ introduces slight new over-rejection when \hat{V}_n has one dominating element – solved by the modification of $\hat{\omega}_n^2$,
- $\sqrt{n} L R_n^{\rm mod}/\hat{\omega}_n^{\rm mod}$ has little bias and is close to $N\left(0,1\right)$, but still not exactly $N(0, 1)$ – fortunately we know what it is (asymptotically).

Asymptotic Distribution of Modified Statistic

Lemma

Under ${P_n}$ and standard MLE conditions

$$
\frac{n^{1/2}LR_n^{\text{mod}}}{\hat{\omega}_n^{\text{mod}}} \to_d J_{\sigma,\rho,V}
$$
\n
$$
= \frac{\sigma Z_0 - 2^{-1} (Z_1' V Z_1 - \text{tr}(V))}{\sqrt{\sigma^2 - 2\sigma\rho V Z_1 + Z_1' V^2 Z_1 + \text{tr}(V^4) / \text{tr}(V^2)}}
$$

• Modified critical value:

$$
z_{\alpha/2}^{\rm mod} = \sup_{\sigma \in [0,\infty)} \text{Quantile}(|J_{\sigma,\hat{\rho}_n,\hat{V}_n}|, 1-\alpha).
$$

- where $\hat{\rho}_{n}^{{}}$, $\hat{V}_{n}^{{}}$ are consistent estimators of ρ , V ,
- *σ* cannot be consistently estimated.

X. Shi (UW-Mdsn) $H_0 : LR = 0$ $H_0 : LR = 0$ $H_0 : LR = 0$ IUPUI 19 / 30

.

Modified Test

• Modified Test: reject
$$
H_0
$$
 if $T_n^{\text{mod}} \equiv \left| \frac{n^{1/2} L R_n^{\text{mod}}}{\hat{\omega}_n^{\text{mod}}} \right| > z_{\alpha/2}^{\text{mod}}.$

Theorem

For a set of null DGPs \mathcal{H}_0 , suppose the standard MLE conditions hold uniformly over the set, then

$$
\limsup_{n\to\infty}\sup_{P\in\mathcal{H}_0}\Pr_P\left(\left|\frac{n^{1/2}LR_n^{\text{mod}}}{\hat{\omega}_n^{\text{mod}}}\right|>z_{\alpha/2}^{\text{mod}}\right)\leq\alpha.
$$

- In words: the asymptotic size of the modified test is less than or equal to *α*.
- In other words: the null rejection probability is uniformly well-controlled.

Discussion of the Critical Value

- $z_{\alpha/2}^{\rm mod}$ is in a sense a worst-case critical value.
- **How conservative is it?**
	- in the scenario when the classical Vuong tests over-rejection is the worst, $z_{\alpha/2}^{\rm mod} = z_{\alpha/2}$.
	- in other cases, $z_{\alpha/2}^{\rm mod}$ could be bigger, but not much bigger. For example $z_{0.05/2}^{mod}$ is up to around $z_{0.01/2}$.
	- \bullet in the later cases, the modified test is much more powerful than the two-step Vuong test, and does not over-reject as the one-step Vuong test.
- How difficult is the computation?
	- fast (because only maximizing over a scalar)
	- convenient (because ${\hat\rho}_n$ and ${\hat V_n}$ can be easily obtained from the maximum likelihood routines).

 $X.$ Shi (UW-Mdsn) $H_0: IR = 0$ IUPUI 21 / 30

- \bullet Bias in LR_n
- Over-rejection of the Vuong tests
- Modified Test
- Examples
- Extensions to GMM Models

Example 1 - Normal Regression

M1.
$$
Y = \beta_0 + \sum_{j=1}^{d_1-1} \beta_j X_{1,j} + v, v \sim N(0, \sigma_2^2)
$$
.
M2. $Y = \theta_0 + \sum_{j=1}^{d_2-1} \theta_j X_{2,j} + u, u \sim N(0, \sigma_1^2)$;

• DGP:
\n
$$
Y = 1 + \frac{a_1 \sum_{j=1}^{d_1 - 1} X_{1,j}}{\sqrt{d_1 - 1}} + \frac{a_2 \sum_{j=1}^{d_2 - 1} X_{2,j}}{\sqrt{d_2 - 1}} + \varepsilon
$$
\n
$$
(X_{1,1}, ..., X_{1,d_1 - 1}, X_{2,1}, ..., X_{2,d_2 - 1}, \varepsilon) \sim N(0, I)
$$

• Null: $a_1 = a_2 = 0.25$; Alterative: $a_1 = 0$, $a_2 = 0.25$

• Base case: $d_1 = 10$, $d_2 = 2$, $n = 250$.

 $R \cap R$

Table 1. Rej. Prob. of Original and Modified Tests ($\alpha = 0.05$)

	Original Tests			Modified Test	
	2-Step	1-Step	Var. Test	Sel. Prob	Max c_n^{mod}
Null DGP					
Base	(.087, .004)	(.088, .004)	.949	(.015,.022)	2.00
$d_1 = 20$	(.205,.000)	(.283, .000)	.680	(.015, .014)	2.00
$d_1 = 5$	(.037, .010)	(.037, .010)	.990	(.018, .018)	2.04
$n = 500$	(.067, .005)	(.067, .005)	1	(.020, .019)	1.98
$n = 100$	(.051, .000)	(.136, .001)	.276	(.012, .013)	2.17
Alternative DGP (M2 true)					
Base	(.000,.032)	(.000,.032)	.625	(.000,.281)	2.00
$d_1 = 20$	(.001, .000)	(.001, .000)	.249	(.000,.187)	2.00
$d_1 = 5$	(.000,.204)	(.000,.204)	.830	(.000,.336)	2.10
$n = 500$	(.000,.315)	(.000,.315)	.971	(.000,.724)	2.00
$n = 100$	(.003, .001)	(.004, .001)	.109	(.001, .051)	2.10

Example 2 - Joint Normal Location Model

M1.
$$
(Y_1, Y_2) \sim N((\theta_1, 0), I_2), \theta_1 \in R;
$$

M2. $(Y_1, Y_2) \sim N((0, \theta_2), I_2), \theta_2 \in R.$

\n- DGP:
\n- \n
$$
\begin{pmatrix}\n Y_1 \\
Y_2\n \end{pmatrix}\n \sim N\left(\n \begin{pmatrix}\n \theta_{1,0} \\
\theta_{2,0}\n \end{pmatrix},\n \begin{pmatrix}\n 25 & 0 \\
0 & 1\n \end{pmatrix}\n \right)
$$
\n
\n- \n $LR = \theta_{1,0}^2 - \theta_{2,0}^2$ \n
\n

• nominal size $\alpha = 0.05$.

- \bullet Bias in LR_n
- Over-rejection of the Vuong tests
- Modified Test
- Examples
- **Extensions to GMM Models**

GMM Models and GEL Criteria

GMM models (or moment condition models):

M1 :
$$
Em_f(x, \psi_f) = 0
$$
 for some $\psi_f \in \Psi_f \subset R^{d_{\psi_f}}$,
M2 : $Em_g(x, \psi_g) = 0$ for some $\psi_g \in \Psi_g \subset R^{d_{\psi_g}}$, (1)

where m_f and m_g are known moment functions and ψ_f and ψ_g are unknown parameters.

• Generalized Empirical Likelihood criteria: H_0 :

$$
GELR \equiv \max_{\psi_f \in \Psi_f} \min_{\gamma_f} E\left[\kappa \left(\gamma'_f m_f(X_i, \psi_f)\right)\right] - \max_{\psi_g \in \Psi_g} \min_{\gamma_g} E\left[\kappa \left(\gamma'_g m_g\left(X_i, \psi_g\right)\right)\right] = 0.
$$

EL: $\kappa(v) = -\log(1 - v)$, ET (exponential tilting): $\kappa(v) = e^v$.

- In previous analysis,
	- $\mathsf{replace}\ \mathsf{log}\ f\ (x,\theta)$ and $\mathsf{log}\ g\ (x,\beta)$ with $\kappa\ (\gamma_f'\ m_f\ (X_i,\psi_f)\)$ and $\kappa\left(\gamma'_\mathcal{g} m_{\mathcal{g}}\left(X_i, \psi_{\mathcal{g}}\right)\right)$
	- $\mathsf{replace} \; \theta_* \; \mathsf{and} \; \beta_* \; \mathsf{with} \; \Big(\gamma'_{f,*}, \psi'_{f,*}$ $\left(\gamma'_{g,*},\psi'_{g,*}\right)$ \setminus'
	- then everything go through.
- Discover the higher-order bias in the Vuong test statistic
- Show that the bias cause (sometimes severe) over-rejection
- Propose a uniformly valid modified Vuong test
- • Modified Vuong test is easy to compute and has good power.