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Abstract
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parametric models based on a general quasi-likelihood ratio criterion. An important feature
of the new test is its uniformly exact asymptotic size in the overlapping nonnested case,
as well as in the easier nested and strictly nonnested cases. The uniform size control is
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1 Introduction

Model selection is an important issue in many empirical work. For example, in economic studies,
there are often competing theories for one phenomenon. Even when there is only one theory, it
can rarely pin down an empirical model to take to the data. Model selection tests are tools to
determine the best model out of multiple competing models with a pre-specified statistical confi-
dence level. One such test was proposed in |Vuong (1989) to select from two parametric likelihood
models according to their Kullback-Leibler information criterion (KLIC). The test determines the
statistical significance of KLIC difference and, when the difference is significant, draws the direc-
tional conclusion that one model is closer to the truth than the other. This test has been widely
used in empirical work due to its straightforward interpretation and implementationE] and it has
been extended to many settings besides the likelihood one.

The studentized quasi-likelihood ratio (QLR) test statistic used in |Vuong| (1989) may have
different asymptotic distributions under the null hypothesis, depending on whether the asymptotic
variance of the QLR is degenerate. The degeneracy is unknown when the models compared are
overlapping nonnested. In this case, a test based on such a test statistic and a standard critical
value may not be uniformly valid and adding a pretest of the degeneracy does not provide a
satisfactory solution, as shown in Shi (2015b). What is especially troubling is that the QLR-based
test has a bias term that favors complex models. As a result, a user could manipulate the model
selection result by unnecessarily increasing or decreasing the complexity of certain models. Shi
(2015b) develops a solution in the context of parametric models, but Shi’s test does not apply to
semi/nonparametric models where the problem is in fact exacerbated.

The first contribution of this paper is to extend the conceptual idea of Shi (2015b)) to semi/non-
parametric models. Like Shi’s test, our test corrects for bias caused by difference in model com-
plexity and achieves uniform asymptotic validity regardless of model relationship. Unlike Shi’s
test, our revised QLR statistic is uniformly asymptotically normal, leading to a very simple test-
ing procedure. The nonparametric component in one or both of the models, while making the
asymptotic theory much more complicated, remarkably simplifies the testing procedure relative
to [Shi| (2015b). We use linear sieve approximation for the nonparametric components (ref, e.g.,
Chen| (2007)). As such, the asymptotic theory also provides a good approximation for parametric
models with a large number of parameters.

The second contribution of this paper is a valid inference for the model parameters after

the model selection test. Post model selection inference on one hand is unavoidable in most

1See, e.g., (Cameron and Heckman| (1998)/Coate and Conlin| (2004),Paulson et al| (2006), (Gowrisankaran and
Rysman| (2012)), [Moines and Pouget| (2013)), |Barseghyan et al.| (2013)), [Karaivanov and Townsend| (2014}, |Kendall
et al.| (2015)), |Gandhi and Serrano-Padial (2015, to name only a few.



applications, and on the other hand is difficult to do correctly. For example, if post-model selection
confidence intervals are constructed as if no model selection had been conducted, Leeb and Potscher
(2005)) show that the resulting confidence intervals may have coverage probabilities very different
from the nominal level. In this paper, we provide two types of uniformly asymptotically valid
confidence intervals for parameters post model selection.

The rest of the introduction is devoted to the discussion of related literature.

The literature on the QLR model selection test. Although the QLR test proposed in
Vuong (1989) has been widely used in the empirical studies and extended to many non-likelihood
settingsE] its property on the size control draws researchers’ attention only recently. As men-
tioned above, the model selection part of this paper extends the conceptual idea of [Shi (2015b)) to
semi/non-parametric models and propose a test with uniform size control for semi/non-parametric
models. A few other papers in the literature of the Vuong test also achieve uniform asymptotic
size control. These include |Li| (2009)), Schennach and Wilhelm| (2017)), Hsu and Shi (2017) and [Shi
(2015a)). These papers do not deal with semi/non-parametric models and each achieves uniform
size control by a different technique. |Li (2009) achieves uniformity thanks to the simulation noise
brought about by numerical integration. Schennach and Wilhelm| (2017)) employ a sophisticated
split-sample technique. Hsu and Shi| (2017) introduce artificial noise to their test statistic. |Shi
(2015a)) uses a pretest with a diverging threshold.

The consistent model specification testing literature. Although the main advantage of
our revised QLR test is in the overlapping nonnested cases, it can be applied to and has uniform
asymptotic similarity in the nested cases as well. In such cases, our test is a model specification
test of the nested model against the alternative of the nesting model. As such, it is related to
Hong and White (1995), Fan and Li| (1996)), |[Lavergne and Vuong (2000), and Ait-Sahalia et al.
(2001) among others (see e.g. |Alt-Sahalia et al. (2001)) for a comprehensive literature review). Our
test reduces to the heteroskedasticity-robust version of [Hong and White| (1995) based on series
regression when a parametric conditional mean model is compared to a nonparametric one, and
reduces to a series regression-based version of |Ait-Sahalia et als (2001) test when two nested
nonparametric regressions are compared based on a weighted mean-squared error criterion. Our
test applies to the testing problems in |Fan and Li (1996) and |Lavergne and Vuong| (2000) but
differs from the tests therein.

Post model selection inference. Our post model selection (PMS) inference has two parts.
The first part regards conditional inference on model-specific parameters. This part is inspired by
Tibshirani et al.| (2016), who provide valid p-values and confidence intervals for post Lasso inference
in a linear regression context with Gaussian noise. Their result is extended in [Tibshirani et al.

(2015) and Tian and Taylor (2015]) to other linear regressions settings. We generalize Tibshirani

“Extensions include Lavergne and Vuong| (1996)), [Rivers and Vuong (2002), Kitamura, (2000), among others.
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et al. (2010) to post model test interence for general semi-nonparametric models, and provide
asymptotically exact confidence intervals without imposing special structures on the models or
requiring knowledge of a variance-covariance matrix. The second part of our PMS inference
analysis regards inference on common parameters of the two models. This part shares the objective
of the methods surveyed in [Belloni et al. (2014]). However, this type of post selection inference
is highly context specific, and the surveyed methods do not apply to post selection inference in
general models.

The nonnested hypotheses literature. Since Vuong’s (1989) test is most commonly used
to select between nonnested models, it is often linked to the literature of nonnested hypotheses
featuring Cox (1961, 1962), Atkinson| (1970), Pesaran| (1974), Pesaran and Deaton| (1978), Mizon
and Richard (1986)), Gourieroux and Monfort| (1995), Ramalho and Smith/ (2002), and Bontemps
et al. (2008)) among others. This literature does not share the objective of Vuong’s test. Rather
than focusing on the relative fit of the models, earlier part of this literature focuses on testing the
correct specification of one model with power directed toward the other model. Later part of this
literature focuses on the ability of one model to encompass empirical features of the other model.
To our knowledge, the uniform validity of these tests when the models under consideration are
overlapping nonnested has not been studied, and may be an interesting topic for future research.rf]

The rest of the paper is organized as follows. Section [2| sets up our testing framework and
gives three examples. Section [3| describes our test in detail. Section 4] establishes the asymptotic
size and the local power of our test. Section [5] illustrates the construction of our test in the
mean-regression context. Section [0] provides the uniformly valid post model selection inference
procedures. Section [7| shows Monte Carlo results of a mean-regression example. Section [§| applies
the proposed nondegenerate test and conditional confidence interval to a schooling choice example,
and Section [9concludes. Proofs and other supplemental materials are included in the Supplemental
Appendix.

Notation. Let C, C'; and C5 be generic positive constants whose values do not change with
the sample size. For any column vector a, let a’ denote its transpose and ||a|| its f;-norm. For any
square matrix A, A(7,j) denotes the element in the ith row and jth column of A, ||A| denotes
the operator norm, and A" denotes its Moore-Penrose inverse. Let pmin(A) and pnax(A) be the
smallest and largest eigenvalues of A in terms of absolute value, respectively. Let tr(A) denote the
trace of matrix A. For any square matrices A; and Ay, diag(A;, A2) denotes the block diagonal
matrix with A; being the leading submatrix. Let N(u, ) stand for a normal random vector with

mean p and variance-covariance matrix ¥. For any (possibly random) positive sequences {a, }°

3The lack of uniform size control of the Cox test when the DGP space is not restricted is illustrated in Loh
(1985). However, uniform size control under reasonable restrictions on the DGP space for the Cox test and other
nonnested hypotheses tests is still an interesting problem yet to be explored.



and {b,}> ,, a, = Op(b,) means that lim._,, limsup,, Pr (a, /b, > ¢) = 0; and a,, = op(b,,) means
that for all € > 0, lim,,_,o Pr (a,/b, > ¢) = 0. For any p € (0,1), let z, denote the p quantile of

the standard normal distribution.

2 General Setup

2.1 Setup

Let Z € Z C R% be an observable random vector with distribution Fy. Let M; and My be two
models about Fy; that is, M; and M, are two sets of probability distributions on R% defined by

modeling assumptions. We are interested in testing the null hypothesis of equal fit:
Hy: f(My, Fy) = f(Ma, Fy), (2.1)
where f(-,-) is a generic measure of fit. The alternative hypothesis can be either
HEsd s f(My, Fy) # f(Ma, Fy) or H{¥: f(My, Fy) > f(M, Fy). (2.2)

The two-sided test indicates that the two models have (statistically) significantly different fit for
the observed data when it rejects Hy, and the one-sided test indicates that model M, fits the
observed data significantly better when it rejects Hy. It is the goal of this paper to develop a
simple test of equal fitting with uniform asymptotic validity and good power properties.

The fit measure f(-,-) is context-specific and should be chosen to best suit the empirical model

comparison need. We focus on a given fit measure of the following form:

f(M;, Fy) = mg\( Eg, [m;(Z; ;)] = EFR, [mj(Z;oc}M)} , for j =1,2, (2.3)
ajEA;
where Ep, [] denotes the expectation taken under Fp, m;(+;-) is a user-chosen link function that
is the central component of the fit measure, «; is the parameter in model M;, A; is the possibly
infinite-dimensional parameter space, and o, ; is the pseudo-true parameter value of model j
defined as o, ; = argmaxy;ca; Er, [m;(Z; aj)]ﬁ

To fix ideas, consider the most common examples of M; and f(M;, Fp), j = 1,2:

4Following the literature (see, e.g., Stone (1985) and |Ai and Chen| (2007)), we assume that the pseudo true
parameter o, ; exists, is unique, and lies in the interior of A; for j = 1,2 throughout the paper. The sufficient
conditions to ensure the existence of the pseudo true parameter aj, in general semi/nonparametric models are:
(i) the population function Qp, (o) = Er, [m(Z,a)] is continuous at any o € A under certain metric d (e.g., the
Lo-metric or the uniform metric); and (ii) the parameter space A is compact with respect to d. Low level sufficient
conditions for the existence and uniqueness of a7, ; in specific models can be found in Stone| (1985) and Ai and
Chen (2007). See Section [5| for more discussion in the regression models.
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Example 1 (Likelihood Ratio) Consider Z = (W', X"). Many structural models used in em-
pirical economics can be written as a conditional likelihood model of Z given X, i.e. (ignoring the

model index j)
M = {F : dFyx(z|z)/dp. = ¢(z|z; @), Vz, for some o € A}, (2.4)

where Fyx is the conditional distribution of Z given X implied by F, dFzx(z|x)/dp. is the
Radon-Nykodym density of Fzx with respect to a basic measure (u.) on the space of Z, ¢ is a
known function, a is a possibly infinite-dimensional unknown parameter, and A is its parameter

space. For such a model, a natural fit measure is the population conditional log-likelthood, which

is the f(M, Fy) defined in equation with
m(Z;a) =log o(Z|X; ). (2.5)

Note that with f(M, Fy) defined this way, {f(M, Fo)—f({Fo}, Fo)} is the Kullback-Leibler pseudo-
distance from model M to the true distribution Fy. Vuong’s (1989) original test is designed for
such a likelihood context with o for both models being finite-dimensional, although |Shi (2015b)
shows that it may have size distortion. |Shi (20150) proposes a uniformly valid procedure for the

parametric likelihood case.

Example 2 (Squared Error) Consider Z = (Y, X'), where Y is a dependent variable, X is a

vector of regressors. A mean-regression model may be written as
M =A{F: Ep[Y|X =2] = g(z;a), Vz, for some a € A}, (2.6)

where g(+;+) is a known regression function, « is a possibly infinite-dimensional unknown parameter
and A 1is its parameter space.ﬂ For such a model, a commonly used fit measure is the population
regression mean-squared error, which is f(M, Fy) defined in equation with

m(Z;a) = =Y — g(X;a)[* /2. (2.7)

Example 3 (Check Function) Consider Z = (Y, X'), where Y is a dependent variable, X is a

vector of regressors. A quantile-regression model may be written as

M=A{P:Q,rY|X =2) = g(z;a), Yo, for some a € A}, (2.8)

5Sometimes, regression models are used without explicitly or implicitly assuming the best fitting regression
function to be E(Y|X = x). Nonetheless, the regression mean-squared error criterion often still is used to compare
the models. In those cases, the test developed in this paper still applies.



where Q. r(Y|X) is the conditional T-th quantile of Y given X under F' with 7 € (0,1), g(-;-) is
a known regression function, « is a possibly infinite-dimensional unknown parameter, and A is
its parameter space. Similar to the example above, a reasonable fit measure is the expected check
function of Y from the best conditional T-th quantile function in the model, which is f(M, Fy)

defined in equation with
m(Z;a) = ([{Y <g(X;a)} —7)[Y — g(X; )] (2.9)

where I {-} denotes the indicator function.

2.2 Model Relationships

The following terms for model relationships are mentioned in the introduction, and will be used

in later sections when we discuss the uniform validity of our test in detail.

Definition 1 (Strictly Nonnested) Models My and My are strictly nonnested if there does

not exist a pair (aq, ag) € Ay X Ay such that my(z;01) = mo(z;00) V 2 € Z.
Definition 2 (Overlapping) Models My and My are overlapping if they are not strictly nonnested.

Definition 3 (Nested) Model M, nests model My if, for each ag € Ay, there exists an a; € Ay

such that my(z; cn) = ma(z; ) for any z € Z.

Clearly, the overlapping case include the nested case. If the models are overlapping but not
nested, we say that the models are overlapping nonnested. If the models are mutually nested
(i.e. M nests My, and My nests M;), then the models are observationally equivalentﬁ We
exclude the case where the models are observationally equivalent from our discussion, since
in this trivial case, Hy always holds regardless of the true data distribution and no statistical
method can distinguish the two. The model relationship determines whether the random variable
mi(Z; g, 1) — ma(Z;af, o) is always, never, or sometimes degenerate (i.e., almost surely zero)
under H, |Z| ﬂ Since whether m(Z; o, ;) —ma(Z; af, 5) is degenerate or not affects the asymptotic
distribution of standard quasi-likelihood ratio statistic, uniformity issue arises when its status is

unknown.

6This definition of model equivalence is consistent with that in [Pesaran and Ulloa/ (2008]).

"This variable is clearly not almost surely zero under H;, because its mean is different from zero.

8Some readers may confuse the degeneracy of m1(Z; o) —ma(Z; ) under Hy with the observational equivalence
of the models M; and M. The former does not imply the latter, as one can easily see in the following simplistic
example. Let M; be a mean-regression model E[Y|X] = a;(X) with the space A; of a; including the zero
function, and let My be another mean-regression model E[Y|X] = 0. Then our Hy is the same as the hypothesis
that E[Y|X] = 0 a.s.. Under Hy, the difference in squared residuals is degenerate to zero. But the models M; and
My are clearly not observationally equivalent.



As we will see, the test statistic that we construct is asymptotically standard normal under
Hy regardless of whether mi(Z;ag, 1) — ma(Z; af, ,) is degenerate. This leads to a test that is
uniformly asymptotically valid across all cases and all types of model relationship. Such uniformity
is of practice importance for a number of reasons. First, in many nonnested model selection
scenarios, the competing models are not completely incompatible to each other, in which case they
are overlapping. Second, establishing strict nonnestedness is difficult for structural models used in
empirical analysis. Using our test obviates the need for doing this. Third, even when the models
are strictly nonnested, tests ignoring the uniformity issue may still have severe size distortion
(over-rejection) in finite samples when both models can closely describe the data distribution,

while our test does not suffer from this kind of distortion.

2.3 Illustration of the Uniformity Issue

To further illustrate the uniformity issue, we presents a simple simulation study in Figure
compares two parametric linear regression models based on their mean-squared error. We show
both the distribution of the standardized QLR statistic (as used in [Vuong| (1989), 7V') and our
test statistic (7),) in the figure. Here, model 1 has two regressors and model 2 has 17 regressors.

The red dashed line represents the finite sample density of 7,V defined in below. In the
pointwise asymptotic framework, under Hy, TV has asymptotic standard normal distribution when
the latent parameters (a,b) # 0 and asymptotic weighted chi-square distribution when (a, b) = 0.
Suppose that one conducts model selection test using the critical value from the standard normal
distribution. Although such a test is justified by the asymptotic distribution of TV when (a,b)
are not zero, we see that it over-rejects under the null even in this case, as illustrated in the first
three scenarios considered in Figure [l When the latent parameters (a,b) are close to zero, this
test is severely over-sized and strongly in favor of the large model, i.e., model 2. As the figure
also shows, the standard normal distribution is a poor approximation to the finite sample density
of TV when (a,b) are not far enough away from zero, this also suggests that it is tricky to use
pre-testing of the latent model structure construct a valid model selection test.

The green dash-dotted line represents the finite sample density of our revised QLR statistic
T,, defined in below. It is clear that the distribution of T}, is robust against small values of
(a,b), and its finite sample density is very close to the standard normal. Thus, the test using 7,
and critical value from the standard normal has better size control than the test based on T and

it is also not biased by the relative complexities of the two models.



Figure 1: Finite Sample Densities of T and T}, under the Null Hypothesis

1. (a, b) = (0.5, 0.125) and n = 1000 2. (a, b) = (0.1, 0.025) and n = 1000
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Notes: (i). The simulated data is generated from the equation Y; = 0.5X1,i+aX2’i+bZ,1€6=1 Xotk.i+u;, where (a,b)
is set to different values in the four subgraphs and the values guarantee equal fitting of the candidate models, and
(X1,i, s X18,i, u;)" is a standard normal random vector; (ii) model 1: Y; = X3 ;61,1 + aXs ;61,2 + u1,; is compared
with model 2: Y; = X5 ,6020 + bzllf’:l Xotk,ib2,2+4% + ug,; in their expected squared errors; (iii) the finite sample

densities of the existing QLR statistic 7 and our statistic T}, are approximated using 1,000,000 simulated samples.

3 Description of Our Model Selection Test

Suppose that there is an i.i.d. sample {Z;}" ; of Z. In this section we describe our test for
based on this sample. The construction of the test is grounded on the asymptotic expansion
established in the next section. We focus on the steps of the construction in this section for easy
reference for potential users of the test.

We use linear sieve approximation for the unknown functions, and use sieve M-estimator for

estimationﬂ The specific procedure is explained now. For j = 1,2, let A;; denote a finite

9Many properties of the sieve M-estimator, including consistency, rate of convergence and asymptotic normality
are established in the literature. See, e.g., |Chen| (2007) for a recent survey on this topic.



dimensional approximation of the parameter space A;, which satisfies
Ajg, = i, () 2, () = aj(Bix,) = Pk, () Biw, : Bik; € Bjx, C R}, (3.1)

where Py (1) = [pj1 (1), ... Djx; ()], is a kj;-dimensional vector of user-chosen approximating
functions such as polynomials and splines, k; is a positive integer which may diverge with the
sample size n. In the rest of the paper, we write ay, () = ok, (), Pr, (-) = Pjx; (-) and By; = B,
for 7 = 1,2 for ease of notation.

To construct the test, we first estimate the fit of each model with the sample analogue estimator.
For j = 1,2, define

~

FM; Fo) =n' > my(Ziay,) (3.2)

where ay; = a; (Bk]) is an M-estimator defined with

Bkj —arg max n ij [Zi; 05 (Br;)] - (3.3)

For notation simplicity, we define the pseudo-density ratio:
UZ;0) =my (Z;00) — ma (Z; ag) (3.4)

where a = (a1, az) € A; x Ay. We also define of, = (af, 1,0 0), A = A1 X Ay, k = (ki ka),
B = (Brys Br,)'s A = Av gy X Aa gy, i = a(Bi) = (1(Bry); @2(Br,)), and ax = (Q,, Q)

Since the null hypothesis Hy is equivalent to Eg, [((Z; o, )] = 0, one may be tempted to suggest
treating Ep,[((Z; af,)] as a parameter and constructing a Student t-like test for this hypothesis.
In other words, the suggestion would be to construct the test statistic

TV = Zn(&k) (n_l/zfun(&k))_l, (35)

n

*

where ,,(0) is the sample analogue estimator of Ep,[((Z;a},)] and n™/?@,(dk) is the sample
analogue of its standard deviation:

n

Co(@i) = 0" U(Z3;8y) and @5 (@) =n~ "> [((Zia) — La(@)]- (3.6)

i=1 i=1

Then one would construct tests of the form: )25 (p) = 1{|TV| > z_,)2} or @) =4ed(p) =
{TY > 2 _,}. In fact, such tests are analogous extensions of Vuong’s (1989) (one-step) test to

the semi/non-parametric context. Thus, we refer to them as the “naive extension” tests hereafter.
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The rationale behind the naive extension test is that n'/20,(ak) = n'/20,(af,) + 0,(1) —4
N(0,w},,) and &) = w¥, , + 0,(1), where w?, , = Varg,(€(Z; o). However, this asymptotic
approximation can be very poor when wl%o’* is close to or equal to zero. When the models are
overlapping nonnested, both small positive values and the zero value are possible for w%m* under
Hy, depending on the unknown data distribution Fy. Thus, the naive extension test often fails to
have the correct level in a finite sample[l]

The intuition of the failure of the naive extension test can be seen from the following heuristic

second order expansion of the QLR statisticﬂ Let

By =arg max Fpg [mj(Z;aj(ﬁkj))} , (3.7)
’ kj €Bjk;
where we suppress the dependence of ﬁ;;] on Fj for notational convenience. We assume that the sieve
. % . . . . % I A
coefficients §; are in the interior of their spaces Bjy, for any k;. Let aj (-) = P, ()" 8;,. Then
Otzj is the sieve approximator of the pseudo true parameter aj, ; on the finite dimensional space
Ak, Let Lok (Z; ) be the “score” function of /(Z; a) evaluated at o € Ax. When £(Z; o)) is

differentiable in Sy, we can let

n

lox(Z;00) = 00 (Z; ) /OBy and Ly yp(ag) =n? Z Cox(Zi; o) (3.8)

i=1

* * * : i * -~ : .
where o = (o}, ;). Then a second order Taylor expansion of £, (ay) around ay gives:

ln(ax) — Ery[((Z; a)] = Gu(ag) — Er[U(Z; ag)] = 27 Wagn(05) H wlagen (%), (3.9)
where
. 62EF [m1<Z (093 )] 82EF [TTLQ(Z (093 )]> .
Hp, x = dia K e — . —=22 ) =diag (Hp, gy, —Hpy k) - 3.10
FO:k g< aﬁklaﬁ;ﬂ aﬁ’maﬁ]/m g( F7k F,k ) ( )

Appropriate conditions and the central limit theorem imply that n'/2 {,(af) — Eg,[((Z; aj,)]} —a
N(0,wf, ) and n'/?lgxn(of,) —a N(0, Dp, x), where

DFo,k = EFD [ga,k(Z; ali)fa’k(Z; Oélt)/]. (311)

10A pretest for whether £(; af,) = 0 could be performed. But the two-step procedure may (a) not be uniformly
asymptotically valid if the pretest does not use a conservative critical value, and (b) not be powerful because the
pretest makes rejection difficult.

' The use of higher order expansion to develop more robust asymptotic theory is not new. It has been used in
many contexts including, for example, |Jun and Pinkse| (2012]).
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The latter implies that nf, ,(ag)’ ;Ol lon(y) is approximately Z' | LG ) where |k| = ki +ko,
{X]( )} -, are independent chi-squares with one degree of freedom and {\; } _, are the eigenvalues

of DFo,kHka- ThUS,

K
n{0a(@x) = Er[U(Z; o]} = 02N (0,w,,) — 271 AG (1) (3.12)

=1

Note that since E[x3(1)] = 1, we have E[Zlkl AxG(1)] = lekz‘l A;, which is typically nonzero
12w, «, the standard deviation of nf,(aj,). This means
that, even when the null hypothesis Hy holds (Ep,[¢(Z; af,)] = 0), the numerator of the statistic

TY may not be centered around zero, causing the naive extension test to be biased. A similar

and can be of comparable scale as n

expansion of the denominator unveils that ni, (dx)* is a biased estimator of w , as well, and the
dominating term of the bias is coincidentally 21 Z'k‘ )\2 Thus, the naive extension test not only
has a numerator bias that leads it to favor one model over the other when both have equal fit, but
also has a denominator bias that tends to make it conservative. The two biases could cancel each
other in certain context, but in general do not, and can exacerbate each other when the power
against one-sided alternatives is considered.

Our nondegenerate test corrects the two biases by estimating and removing them. Specifically,

we construct estimators j\j :7=1,...,|k| and propose the bias removed statistics:
} B Ikl LI
ly = Lo(@h) + (20) 71> N and @) = @2 (@) — (2n) 71D A;. (3.13)
j=1 j=1

Then the approximation in (3.12)) implies that under Hy,

|
nly, ~n'PN(0,wh L) =27 ) NG - 1) (3.14)

7j=1

Recall that |k| — oo as n — oo in semi/non-parametric models, and apply the central limit
theorem on the sum of independent mean-zero variables X? —1:5=1,...,]k| to find that the
second term is approximately normal as well. We also show that the two terms are asymptotically
independent, suggesting that nf, is asymptotically mean-zero normal under H,. Moreover, ni?

also consistently estimate the variance of this mean-zero normal limit. As a result, we have

ln,
TO = n— —d

"= i N(0,1), as n — o0. (3.15)
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There is a minor issue with using TV as our test statistic because @2 is defined as the difference of
two non-negative terms. In finite sample, this difference can be zero or negative even though the
probability of that happening approaches zero as n — oo. To avoid this finite sample irregularity,
we recommend a slightly regularized version:

ni,

~2 k| 2
T, = TP where 7, = max{ ,(2n)” Z )\j} . (3.16)

i=1

The regularization has no effect on the asymptotic distribution as we show that (2n)~ Zlk‘ )\ is
less than or equal to @? asymptotically. Thus, we still have T,, —4 N(0,1) as n — oc.
Estimating A\; : j = 1,...,|k]| is straightforward as they are eigenvalues of DFo,kHEOI,k It is
in fact unnecessary to estimate these eigenvalues individually since it is clear from the discussion
above that all we need are the two sums: Z;(:l A; and Z?:l A2, which are equal to tr(Dp,Hp'y)
and tr((DFO,kHEO{k)Z), respectively, by matrix algebra identities. These can be constructed in a
plug-in manner once we have estimates D,, and H,, for Dg, x and Hp, . When ¢(Z;-) is differen-

tiable, we let

) " 0*U(Z;;
D, =n! Zgock(Zm i )lax(Z;;0x)" and Hy=n! Z %T;:{).

i=1

(3.17)

The score functions ¢, x(Z;; k) and estimators of the Hessian matrix are available case by case in
the literature when differentiability does not hold. For example, suitable choices for the nonpara-
metric quantile regression example are given in Belloni et al.| (2011)).

The two-sided test and the one-sided test of Hy in of nominal size p (€ (0,1)) are,
therefore,

P p) = 1{|T,| > 21-yy0} and E4(p) = YT, > 21} (3.13)

n

respectively. The test does not select a better fitting model when it does not reject the null
hypothesis. Such indeterminacy reflects the data fact that the fit of the two models are not
statistically significantly different. In practice, if a model must be selected, one needs to analyze
other, perhaps nonstatistical, features of the models. Often times the researcher has a preferred
model based on features such as dimensionality and interpretability, and can set that one as the
benchmark model. The benchmark model is selected when the null of equal fit is not rejected.
We show the uniform asymptotic validity of the above tests in the next section. Specifically,

we show that:

Jim  inf Ep[on(p)] = lim Sup Er[en(p)] = p, (3.19)
2-sided 1-sided

where ¢, = @2 or ¢, = ey and Fy is the set of data generating processes (DGPs) that
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the null hypothesis and the assumptions (given below) allow, which shows that the tests that we

propose are asymptotically size-exact and similar.

4 Uniform Asymptotic Validity

In this section, we establish the uniform asymptotic validity and the local power of our test
under high-level assumptions. These assumptions are verified in a nonparametric mean-regression
example and in a quantile-regression example in Supplemental Appendices [C] and [D] respectively.

We begin by stating the regularity conditions on the DGP space F and null DGP space Fy. In
the assumptions below, {&}x is an array of non-decreasing positive numbers which may diverge

with |k| = k1 + ko, and may not depend on Fj.

Assumption 4.1 The set F is the set of Fy’s such that
(a) {Z;}i>1 are i.i.d. draws from Fy;
(b) for every k, Eg [0(Z; a(fk))] is twice-differentiable in Py;
(c) the sieve approzimator oy, satisfies Ep, [lax(Z; ay)] = O for every k;
(d) B, [0(Z;03,)%] < C, and for every k, Eg, [[|[lax(Z; 041*()||4] < C& k|,
(e) Eg, “( (Z;ap,) — EFO(E(Z'a}}O)))/wFO,*ﬂ < C whenever wi, , = Varg,[((Z;ay,)] > 0;
(f) for j =1,2, =C < puin(Hro k;) < Prmax(Hrp ;) < —C7! and pmax(Dryx) < C for all k.

Assumption 4.2 Fy = {F, € F: Eg, [((Z;a},)] =0}.

Assumption [4.1(b) ensures that the matrix Hp,x in (3.10) is well defined. Assumption [4.1](c)
generally follows from the first order optimality condition of ay. Let Ag,1,..., Ag, |k denote the

k| eigenvalues of D}p{) ?kHEO%kD% ?k, and let

Okyn = Wiy + (207) (0 — DwE, (4.1)
where W 1) = Z|k| Mo = tr((DFO,kHED{k)Q). Assumptions (d) and (f) together ensure that

wFM, Dp, x, wFO’U’k, and aFO,n are well defined. The array & depends on the approximating
function used. For example, it is the order of ka on the jth direction if power series is used for
model j, and it is the order of k; if Fourier or spline series is used. Assumption (e) implies the
Linderberg condition on the pseudo-density ratio.

The definition of the supremum (infimum) operator implies that, to show the uniformity results
(3.19)), it is sufficient to consider all sequences of DGPs {F, },>1 in Fy. Moreover, to study the
local power properties, we need to consider sequences of DGPs {F,},>1 in F\Fy. In general,
we consider sequences {F} },>1 in F. For any F,, € F, we let o], abbreviate ay, ;, and let
abbreviate (aj ;a3 ,). Let lon(a) =073 low(Zi @) for any a € A.
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Assumption 4.3 Under any sequence of DGP’s {F,, }n,>1 such that F,, € F for all n, we have
(a) En(ak) = Zn(%t) - 2_1za,n(alt)/H_nl,kza,n(alt) + 01?(”_1/20Fn,n);'
(b) (nof, )" = o(1) and [k|ék(n?oF, ,,)~! = o(1).

Assumption [4.3{(a) is a second order expansion of £, (d)) around aZ;. We verify this assumption
in the nonparametric mean regression example (Supplemental Appendix and the nonparametric
quantile regression example (Supplemental Appendix @ With the formula of this expansion, we
can add more details to the heuristic discussion in Section [3] The variance of the leading term,
n_lw%m*, in the expansion comes from estimating the expectation, and the variance of the second

term, approximately 27 'n =2

Wi i comes from estimating o, The quantity w?, , can be either
zero or positive in the overlapping nonnested case. Indeed, it can converge to zero at any rate in
that case. On the other hand, the quantity w%n,U,k typically is nonzerom The relative magnitude
of the two terms is proportional to %, which can be zero or positive. It is such ambiguity of
the relative asymptotic order of the two expansion terms that makes a uniformly valid test difficult
to construct[”]

Assumption (b) is an important condition for the uniform asymptotic validity of our test.
The first part of it ensures that the approximation residual in Assumption (a) diminishes at a
fast enough rate as the sample size grows. The second part of the assumption allows us to apply a
U-statistic central limit theorem to the quadratic term 27/, ,(a5)’ H;nljkza,n(alt). To understand
this assumption, note that o3 , = wi , + (2n*) 7' (n — 1)w}, ) If wE , is bounded below by a
positive constant (as is typical for strictly nonnested models), Assumption [£.3(b) is satisfied as
long as |k|&n™2 = o(1) as n — oo, which simply requires that the number of sieve terms not
to grow too fast. Otherwise, Assumption (b) imposes restriction on the U-statistic variance

Wh gk = T ((H;:’kmek)Q). Specifically, it requires, as n — oo, that
w%n,U,k — 0o and |k|£k(n(,u%;mm{)’1 =o(1). (4.2)

This is satisfied if |k| grows with n and there are not too many near zero eigenvalues for the
matrix H;n{kDka. Both can be assessed in practice because k is user-chosen and H;ikDka

can be consistently estimated. Moreover, the requirement that |k| grows with n is natural and

12For example, consider M;: Y = X3 + X482 +u and Ms: Y = X|B; + u. Suppose that X = (X7, X3)" is
uncorrelated with u and Er, [X X'] = I}y for simplicity. The null hypothesis Hy is equivalent to 2 = 0 and there
is £(Z;a},) = 0 under Hy as a result. Yet, 27 0o n (o) Hy' \lam(og) =27 07230 > = uiug X5 ; Xo j which is
clearly not degenerate. See Hong and White (1995) for more sophisticated examples.

13 Ambiguity of this type also arises in the analysis of weak instruments and weak identification, where the
common techniques include pretesting with conservative critical value, Anderson-Rubin type robust procedures,
and conditional likelihood inference. The first two in general do not yield asymptotically similar tests, indicating
power loss under some data generating processes, while the last one is not a general technique that can be applied
here.
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necessary in the literature of series estimation of semi/nonparametric models.ﬁ

Under the above assumptions, the following intermediate result holds.

Theorem 4.1 Suppose that Assumptions and hold. Then under any sequence {F,},>1
such that F,, € F for all n, we have

n(ln(@x) — Er, [((Z;03)]) + (1/2)tr(Dy(0f) Hy )

1/2
n / O'an

—4 N(0,1), (4.3)

where Dy (o) = n"! > i Lo (Zi; o) lax(Zi; o)

Remark 1 Note that Theorem[].1] applies whether or not F,, € Fo. In the case that F,, € Fy for
all n, it again covers two special sub-cases: (i) The statistic n'/2(,(qy) is non-degenerate (F, = F
for some F and for all n, and w}, > 0); (ii) the statistic n*/?(,(ax) is degenerate (F,, = F for
some F' and for all n, and w%’* = 0). More importantly, it allows w%m* to converge to zero at all
rates, and thus covers all types of DGP sequences in the overlapping nonnested case.

Lor is exactly zero, the asymp-

When w%m* converges to zero at an equal or faster rate than n~
totic normality in is achieved by the central limit theorem of U-statistic which requires that |k|
grows with n. The normal approximation of the U-statistic is widely used in the literature of model
specification test. See e.g., |Hall (1984), |Hong and White (1995), |Horowitz and Hardle (1994),
Fan and Li (1996), [Ait-Sahalia et al| (2001) and[Donald et al] (2005). Theorem[{.1] shares similar

features with the results in these papers, in that they also require the number of approximating

functions to diverge with n or the bandwidth of kernel functions to go to zero with n.

In order to use the intermediate result in Theorem [£.1], we need to construct consistent estima-
tors of ﬁn(al*(), Hp, x, and 07, . The estimators that we consider are respectively the ﬁn, the ﬁIn,
and the Ei defined in the previous section. Assumption below ensures their consistency. In
this assumption, 6, = min {n'?op, ,|[k|7*, 1}, and {p(a) = Ep[((Z;a)] for all F € F and « € A.

Assumption 4.4 Under any sequence of DGP’s {F, },>1 with F,, € F for all n, we have:
(2) [[Hn = Hp, xll = 0p(0n), | Dn = Dulaf)ll = 0,(6s) and [|Dy(0i) = D, el = 0,(0n);
(b) n" o0, (s, @) = U Zis @) [* = lan () (H R D icH gy o (@) + 0p(0F, )
(c) n™' 32, (U Zis o) — Ur, () [U(Ziy Q) = U(Zs, o)) = 0p(0F;, )5
(d) [k|n™" = o(1).

4The asymptotic theory established in this paper also provides a good approximation for the comparison of
parametric models with fixed but large |k|. Simulation results in Supplemental Appendix [F| show that our test
works well even when |k| is only 7.
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Conditions in Assumption [4.4] are verified in the nonparametric mean-regression example in
Supplemental Appendix [C] Under this assumption, we can easily show that the large sample bias

of nl, () can be estimated up to the appropriate rate:

Lemma 4.1 Suppose that Assumptions [1.1|c) and (e)-(g), and [£.4(a) hold. Then under any
sequence {F,}n>1 such that F,, € F for all n, we have

~

tr(D,H,") — tr(Dy(af) Hyl ) = 0p(n'op, ).

. ~9 . POPIN .
Next, we derive the convergence of @,. First, we show the convergence of W, (ax) in the

following lemma.

Lemma 4.2 Suppose that Assumptions and hold. Then under any sequence {F, }n>1
such that F,, € F for all n, we have

~2 s~ _
wn(ak) - (w%n,* +n 1(")%7‘7L,U,k)| - Op(o-l%'n,n)'

Remark 2 Note that &2 (dy) may be viewed as a sample-analogue estimator of w%m*. Lemma
shows that, in general, &2 (Qy) over-estimates Wi, .. In fact, it even over-estimates the overall
asymptotic variance of the size-corrected quasi-likelihood ratio statistic: o3 by (2n?)"Y(n +

Fnno

Dw? k- The upward bias is due to the estimation error in Q.

Lemma suggests that a%mn can be consistently estimated by estimating and then removing
the large-sample bias (2n°)~'(n + 1)wf, ;) from &2 (@y). This motivates the estimator o defined
in the previous section. In the definition of 75, tr((D,H,;")?) is used to estimate w? ;.. The
lemma below shows that this estimator of w%n,U,k is consistent in an appropriate sense, and so is

the resulting bias-removed estimator of o7, .

Lemma 4.3 Suppose that Assumptions and hold. Then under any sequence {F, }n>1
such that F,, € F for all n, we have
(a) tr((DuH,")?) = wh, ya = 0p(no, ), and
) ~

(b) @; — 0%, , = 0p(0F, ), where & = @2 (@x) — (2n) " r((D.H;Y)?) as defined in (3.13).

Lemma is used to show the consistency of 62: 72 — 0% n = 0p(0% ,). This along with
Theorem and Lemmas 4.1 immediately leads to the uniform asymptotic size control and
the asymptotic similarity results in (3.19]). These results also immediately lead to a local power
formula because the assumptions used for them do not require F,, € Fy. These are summarized

in the theorem below.
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Theorem 4.2 Suppose that Assumptions hold. Then:
(a) (B19) holds for @, = 5% and i, = pLoited,
(b) Under any sequence F,, € F such that F,, — Fy for some Fy € Fy in the Kolmogorov-Smirnov

distance, and that n**Er, [((Z;a2)] /op, n — ¢ for some constant ¢ € R, we have

lim Ep, (029 (p)] =2 — ®(21-p2 — ¢) — ®(21-pj2 + ¢), and

n—oo

lim Ep, [¢y " (p)] =1 - ®(z1 —¢),

n—oo

where ®(-) is the CDF' of the standard normal distribution.

Remark 3 Note that op,,, = O(1), and it can be o(1) when wp, , — 0. Thus, part (b) of the
theorem implies that the test has nontrivial power against all local alternatives with Eg, [((Z; )]
converging to 0 at the rate n*/?, and against alternatives with Er, [((Z; )] converging to 0 at a

rate faster than n'/?

if w%m* — 0. Such power property is not shared by a pre-test based model
selection test like that in Shi (2015a), or a model selection test that uses added noise to augment

the variance either through sample splitting or other means.

Remark 4 As we have discussed, Shi (2015b) proposes a nondegenerate test for the parametric
case. Her test statistic, if directly applied to the sieve approximation of the semi/nonparametric

models, takes the following form

nl,(@y) + 2~ 4r(D,H;Y)
~ o~ 1/27
ni/2 (@i(ak) + cn—ltr((DnH,;l)2))

Tpara (C) —

n

(4.4)

where ¢ > 0 is a tuning parameter. Compared with TF**(c), our test statistic T,, has the same
2@k  (2n)"Yr((DnHpY?) o 1 which
— 5 » 1, whic

2
UFn,n UFn,n

implies that O (G) > (2n) " tr((D,H:)?) with probability approaching one. This and the def-

inition of G- together imply that &2 (Qy) > G- with probability approaching one, which in turn

numerator but a different denominator. By Lemma 4.3(b),

implies that |TP*(c)| < |T,,| with probability approaching one for any ¢ > 0. On the other hand,
the critical value of the test proposed in |Shi (20150) by construction is not smaller than the crit-
ical value of our test. Therefore the asymptotic theory established in this section automatically
Justifies the test proposed in |Shi (2015b) in terms of asymptotic size control when applied to the
semi/nonparametric models. However, when |k| is large, there are a large number of nuisance
parameters (which are not consistently estimable) for Shi’s (2015b) approach to consider, which
makes it difficult to use. In contrast, our test is much easier to use, also has asymptotic size
control, and has better power in the semi/nonparametric setting, where the better power is implied

by its bigger test statistic and smaller critical value. Moreover, the asymptotic standard normal
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distribution of our test statistic T, also makes the post model selection inference easy in practice

as we discuss in later sections.

5 Example: Semi/Nonparametric Mean-Regression

In this section we illustrate the construction of our test using the nonparametric mean-regression
example. We verify the high-level assumptions in this example in Supplemental Appendix [C|
Another illustrating example—quantile-regression—is given in Supplemental Appendix [D] where
we also verify the high level assumptions.

For j = 1,2, model j is to maximize Eg[-27' Y — a;(X;)|’] over a; € A;, where a;(z) is
a possibly infinite dimensional parameter, 4; is its parameter space, and F denotes the joint
distribution of Z = (Y, X, X3). The regressors X; and X5 of the two models may be nested, over-
lapping, or strictly non-nested sets of variables. Even when the regressors are strictly nonnested
sets of variables (i.e., there are no common regressors across the two regressions), the two regres-
sion models are still overlapping according to the definitions in Section because it is possible
that a3 (X7) = ae(Xy) = Constant.

The model studied in this section covers a richer class of models than it looks. Depending on
what one sets A; to be, it can represent a fully nonparametric mean-regression model, a partial
linear model, a separable model, or a parametric linear model. See below for an example. We do
not require that there exists an «; € A; such that o (X;) = Eg[Y]X];] as.

The sieve approximating functions for this case have to do with the structure of A;. For
example, suppose that we have a partial linear model o;(X;) = 81X;1 + g(X;2). Then, we should
let Py, (X;) = [pja(X;), ... ,pj,kj(Xj)}, such that p;,(X;) = X, and the rest of the sequence of
p;.¢(X;)’s be an appropriate sieve approximation of g(Xj ), such as splines or polynomials on Xj 5.

The sieve M-estimator is simply the sieve least squares estimator:
akj () = ij(.)//Bkj Wlth Bkj = ( ;i‘j,nij,n)_lp;Cj,nYn7 (51)

where Py, , = [Py, (Xj1) .-+, Py, (Xj0)] for j = 1,2, and Y,, = (Y1, ..., Y,)". The link function
18

UZ:0) =27 Y —ag(Xo) | = 271V — o (X)) (5.2)

Using the above two displays, the pseudo-likelihood ratio and the standard error statistics can be
constructed easily following ({3.6)).

The pseudo true parameter aj(-) is defined as of = argmaxy,ea, Er[—27" Y — a; (X)),
which depends on the functional form restrictions imposed on the parameter space A;. If there

is no functional form restriction, then o}(X;) = Eg[Y|X;]. If an additive form is imposed,

19



ie., aj(X;) = g(X;1) + ... + g(X,,) for some finite ¢, the pseudo true parameter exists and
is unique under general conditions (see Condition 1 and Lemma 1 in Stone (1985)). When a
partially linear form is imposed, i.e., a;(X;) = X},81 + g(Xj2), then the pseudo true parameter
aj(X;) = X5, 87 + g7(Xj2) where

Bt = (Br, [X X)) B [X2,Y*] and ¢°(X;0) = Eg, [Y — X161 X;2] (5.3)

where Xj*,l = Xj,l — EFO [Xj,llXjQ] and Y* =Y — EFO [Y’X]”2].
Let uy; =Y — o (X;), where o (-) = Py, (")’ 85, g, and

Brsry = argmmEFO “Y P, ( j)’ﬁkjﬂ . (5.4)
B €R"i

By the first order optimality condition for uy, =Y — Py (X;)'8;, g, we have Er, [ur,; Pr;(X;)] =
O, x1. With the sieve approximation in (3.1)), £(Z; a(Bx)) is differentiable in . Thus, the score

function can be obtained by the chain rule:
lag(Z;a) = (Y = ar(X1)) Py (X01), = (Y = @2(X2)) Pr, (X)) (5.5)
Then, the expectation of the outer product of the score function evaluated at aj is

Dyt ( Ep[uf, P (X0) Py (X2 =By [t g, Pry (X2) Pes (X2 ) 56)
’ _EFD [uklukzka (XQ)P’ﬁ (Xl),] EFO [uigpk2(X2)Pk2 (XZ)/] 7

and the population Hessian matrix is:
Hpyx = diag (—Eg, [P, (X1) P, (X1)'], Ery[Pr,(Xa)Pr,(X2)'). (5.7)
It is natural to use the plug-in estimators of Dp, x and Hp, k:
ﬁnk: ( __112 1ulsz1 (Xlz) Pk1<Xlz) _n__l Z?nlalzﬂzzpkl (Xlz) PkQ(Xzz)/ ) 7
—n Y Uil i Pry (Xag) Pry (X12) 7t 00 U3 Py (Xo,) Pry (Xa)

(5.8)
where the residual u;; = Y; — ay, (X;;); and

H, ) = diag <—n ZP,Q (X1.) Pry (X124, ZPk2 (X2.) P, (Xm)). (5.9)

=1 =1

Finally, the test statistic may be constructed easily using the above quantities following (3.16).
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6 Uniformly Valid Post Selection Test Inference

Up to this point, we have focused on how to properly conduct model selection that takes into
account sample noise. Sometimes, model selection is the sole purpose of a research project (e.g.,
Coate and Conlin (2004) and Gandhi and Serrano-Padial (2015))). But, sometimes, one is also
interested in the model parameters that are estimated using the same data set on which the model
selection test is conducted. |Leeb and Potscher| (2005]) show the size-distortion of naive post-model-
selection (PMS) inference that does not account for the randomness of model selection. Uniformly
valid post model selection test inference procedures for possibly misspecified semi/nonparametric
models have not been developed in the literature.

The QLR model selection test framework treats the parameters in the two models as separate
parameters in the sense that there is no across-model restrictions. In practice, while some pa-
rameters of a model may only have meaningful interpretation in its own model environment, it is
also possible that a parameter from one model and a parameter from the other model represent
the same economic parameter of interest. Thus, we treat these two different scenarios separately
when considering post model selection test inference.

In the first scenario, the parameter of interest is only well-defined in model M; (j =1 or 2),
and the researcher is interested in it only when M; is selected by the model selection test. In this
scenario, we would like to make the inference conditional on the event that M is selected. Leeb
and Potscher (2006]) pointed out that in general it is impossible to approximate the conditional
distribution of the parameter estimator given that the model is selected. Instead of studying
the conditional distribution, we take a different route, and construct confidence interval for the
parameter using a conditionally asymptotically pivotal statistic. We devote subsection to this
approach.

In the second scenario, the parameter of interest, 6, is well-defined in both models: it equals
¥1(aq) in model M; and equals ¥5(as) in model M, for two known functionals ¢ : A; — R and
gy 1 Ay — R. Its (pseudo)-true value is determined by the better fitting model:

0" = P1(a])1(f(My, Fo) > f(Ma, Fy)) + ¥2(az)1(f(My, Fo) < f(Ma, Fp)). (6.1)

For example, if the competing models are two regression models, #* could be the expected point
prediction from the better fitting model. We devote subsection below to this problem.

To prepare for subsections and [6.3] we let ¢y (a}) and 15(a3) be estimated by the plug-in
estimators v (Qy, ) and 1y (@, ) respectively. Both subsections [6.2] and [6.3] rely on the joint normal

limiting distribution of (11 (Q, ), ¥a(Q, ), {n(0k))" (after proper re-centering and rescaling), which

we derive in the next subsection.

21



6.1 Preliminaries

We first introduce some notation. Let ¢4, (Z; ;) denote the sub-vector of the first k; coordi-
nates of £, x(Z;a), and let {, j,(Z; o) denote minus the sub-vector of the last ko coordinates of
lox(Z;a). Let Dpyg; = Ery[lak;(Z; gy Mok, (Z; ay, ;)] for j = 1,2. Also define

0;(a;(B;))

- - L\ 12
8/3k and U¢7kj — <¢a7kj (Oékj )/HFol,k‘J DF(),k‘j HF()l,k] ¢a,kj (Oékj )) ) (62)

Vak; () =
where Uy g, 18 the well-established formula for the asymptotic standard deviation of functionals of
sieve-M estimator.

Let vy, ;. denote the estimator of v}, , ~which is defined as
~%2 ~ 7-1 N 7—1 ~
U?z,kj = ¢067kj (ak‘j),ij,nijanij,n¢aakj (akj)

where H, k;m and ﬁkj,n are the leading k; x k; submatrices of ﬁn and ﬁn respectively for 7 = 1,
and the last k; x k; submatrices of —PA[n and lA)n respectively for 7 = 2.

We shall derive the asymptotic distribution of

n[ln (@)= Er, (U(Z;0))|+(1/2)tr(Dn Hy ')
~ nl/zan

Gupe = | 02 [gn(@,) = di(al,)] @) |- (6:3)
n!/? [yn(@,) — va(as,,)] (T 4,) 7"

For this purpose, define the correlation coefficients

p0j7F0 = ¢a1kj (Oé;;j),Hgol,k’jEFO |:£a>kj (Z’ @Z])g(z’ Oéjl,)i| (v;/:,kjo-an)_l for .] = ]‘? 27
P12,ry = waJﬁ (altl),Hfzol,klDF07k1,k2H};:,k2woc,k2 (QZQ)(UZ,kWZ,kQ)_1> (64)
where l)kal,k2 = EFO [ga,kl (Z, Oé;;l)fodm (Z, oz,’ja)’].
For any sequence {F),}n>1, we write pojn = pojr, and pia, = piap, for ease of notation.

The following lemma gives the limiting distribution of @n r, under an arbitrary sequence F,, € F,

which extends the asymptotic distribution result in Section [4] to joint convergence.

Lemma 6.1 Suppose that Assumptions and in Supplemental Appendiz B hold.
Then under any sequence {Fy, },>1 and any subsequence {u,} of {n} such that with F,, € F for all

N, Pojun — Poj ANd P12, — pr2 for some po; and p1s € [—1,1], we have

én,Fn —q N(03,%2¢)
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where X is symmetric with ¥¢(i,1) = 1 for i = 1,2,3, ¥g(i,i + 1) = p;; for i = 0,1 and
2a(1,3) = poo-

Lemma [6.1] follows immediately from Lemmas [4.2] and [4.3]in Section [4], and Lemmas [B.I] and
in Supplemental Appendix B and hence is omitted.

6.2 Conditional Inference for Model-Specific Parameters

In this subsection, we consider the conditional inference of a functional — denoted () — of
the parameter in model M given that M, is selectedﬂ Specifically, we construct a level 1 — p
conditional confidence interval, CI,, (1 — p) such that

ligrl)io:gf F;Ié;n Pr g, (¢1(af) € Cly, (1 = p)|T,, > t) =1 —p, (6.5)
where F,, is a sequence of subsets of F defined below. Note that we allow ¢ to be an arbitrary
number, which the user can choose according to her interpretation of the event that M is selected.

To describe our conditional confidence interval, first define a function ¥ : R x (—o00, 00| x
—1,1] = R:

—

O(c)—P(c—h/p)/[1—P(c—h/p)] ifp>0andheR
U(c,h,p) =14 P(c) if p=0orh=o00 (6.6)
O(c)/P(c—h/p) if p<0Oandh € R.

For any t € R and p € (0,1), let ¢, be the solution to the equation:

‘P(Cl’p, Tn - t’ﬁOl,n) =D (67)

where 7y, , = 1/}047;%.(akj)'ﬁ,;%n(%ykjﬁn)*lnfl Yoii bag, (Zis aw, ) Zi; ax), for j = 1,2. This equa-
tion only needs to be solved when T,, > t because the confidence interval is only needed then.
The equation always has a unique solution when T,, > ¢ because U(c, h, p) is a strictly increasing
function in 6 with range (0,1), for any h > 0 and any p € [—1,1]. Our conditional confidence

interval is of the form:

Cly, (1= p) = [1(@r,) — 02011 200 4y ¥1(@Qy) — 12012001 ] - (6.8)

These critical values depend on 7,, and hence are not approximations of the conditional quan-
tiles of /n(y1(Qr,) — ¥1(a7))/V;,, given T,, > t. Therefore, the validity of our construction is

15Conditional inference for a functional of the parameter in model M, given that M, is selected is analogous
and thus omitted.
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not contradictory to the impossibility results in Leeb and Potscher| (2006)). The construction of
the critical values is inspired by the construction in Tibshirani et al.| (2016)) of valid p-values and
confidence intervals for post Lasso inference in a linear regression context with known Gaussian
noise.m We generalize Tibshirani et al. (2016) to post model selection test inference for general
semi-nonparametric models, and provide asymptotically exact confidence intervals without impos-
ing special structure on the models compared or requiring knowledge about the variance-covariance
Yq of the statistics (A;n,pn.

The formal justification of the above construction requires us to rule out the case where
n'2Er [((Z;a)] /G, — —oo because in that case the conditioning event occurs with diminishing
probability, and the conditional distribution of our test statistic becomes difficult to characterize.

We rule out this troublesome case by considering
Fpn={Fye F:n'?Ep [((Z;a})]) 0t —t > —C}, (6.9)

for some large C' > 0. The formal validity result is stated as Theorem below. The proof of
this theorem is given in Appendix [B]

Theorem 6.1 Suppose that Assumptions and in Supplemental Appendix [B] hold.
Then equation (6.5) holds with F,, defined in .

6.3 Inference for Common Parameters

In this subsection, we consider the inference for the parameter # that equals () in model M,
and 19(ag) in model M. Let ¢y = f(My, Fy) — f(Ma, Fy). Then the pseudo-true value of 6 is

0" = ¥y (a7)1(lo = 0) + 1ha(a3)1(fo < 0). (6.10)

Note that 0* is a function of (¢1(af),va(as),4y). Because this function is discontinuous, we
cannot obtain uniformly asymptotically valid inference via the Delta method even though the
vector (11 (af), ¥a(as), o) has an asymptotically jointly normal estimator by Lemma[6.1] Instead,
we construct a confidence interval for 8* by projecting a joint confidence set for (11 (ay), ¥e(a3), £5).

We let the joint confidence set of (11 (af), ¥a(a3), €y) of confidence level 1—p to be all (zq, 2, 7o)
such that

~

Gn<x1, T, Io)/ialan<x1, X2, .I()) S Xffp(3)7 (611)

16 Asymptotically conservative one-sided inference is also available in Tibshirani et al. (2016) when the variance
of the noise is unknown.
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where Xip(?)) is the 1 — p quantile of the chi-squared distribution with three degrees of freedom,

1 501,71 //302,11 T, — n1/2x0/8n
EG = /p\Ol,n 1 /p\12’n ; and GTI<CC17 X2, LU()) = n1/2(w1 (al,n) - xl)/%,k1
Pozn Pran 1 "1/2(¢2(a27n) - xg)/ﬁf/,,,@

where ﬁojm is defined in the previous subsection for j = 1,2 and

;512,71 - wa,kl (akl )/HI;{nDkLkank_;nd}a,@ (ak2 ) (a:b,kli)\:b,kg)_l

where ﬁkl,kz,n =0 Y0 loky (Zi5 0y )iy (Zi5Qk,)'. Then the projected confidence set of confi-

dence level 1 — p for 6* is
Clo(1—p) = {0 = 211(x0 > 0)+wal(z0 < 0) : Gu(@1, 22, 20) S5 Co(1, 22, 20) < X3_,(3)}. (6.12)

Theorem below shows the uniform asymptotic validity of this confidence interval. The proof
of this theorem is given in Appendix [B]

Theorem 6.2 Suppose that Assumptions and in Supplemental Appendix[B] hold.
In addition, suppose that there is a constant C' > 0 such that under all Fy € F, we have pyin(Xa) >

C~'. Then liminf infg 7 Pr g (6* € CIy(1 —p)) > 1 —p.
n—oo
7 Simulation Studies

In this section, we report Monte Carlo simulation results on the finite sample performance of the
nondegenerate test and the conditional confidence interval C'1,(1 — p).

Consider the following two models,
My : E[Y|X1] = Bio + X1511 and M : E[Y|X2,X3] = Xo01 + 9(X3)> (7-1)

where (810, f11)" € R?, 321 € R and g(-) € C*([0,1]). This example readily fits into the framework
of regression model studied in Sectionwith ai(z1) = Bio+ Py, Ay = {bo+x1by : (bo,b1) € R?},
a(29,73) = 2921 + g(x3), and Ay = {9y + g(3) : by € R, g(-) € C>([0,1])}.
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Figure 2: Null Rejection Rates of the Tests

(a) Two-sided test (n = 500) (b) Two-sided test (n = 1000)
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To generate the data, let X, X5 be independent standard normal random variables, and let
X3 be a uniform random variable independent of X; and X5. Let ¢ be standard normal and
independent of X, X5 and X3. Let

Y =14 Xia+ Xob+ cv2sin(107X3) + €. (7.2)

7.1 Uniform Model Selection Test

Independence between the regressors and the additive structure in the generation process of Y are

not important for the performance of our test, but they allow us to derive an analytical form of
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the fit measures and hence to conveniently characterize the null hypothesis. By exploiting them,
we see that u; = Xob+ cﬁsin(lOﬂXg) + ¢, and uy, = Xya + €. Thus,

—2f(My, Fy) = Eg[ui] = b +1+c* and — 2f( My, Fy) = Ep,[u3] = a® + 1. (7.3)

Therefore, the null hypothesis holds if and only if a® = v*>+¢?, and when a? > b*+c2, f(M,, Fy) >
f(Ms, Fy). When a* = b* 4+ ¢* = 0, uy = uy, in which case, wg, , = 0. Otherwise, wg, , > 0.

Figure 3: Null and Alternative Rejection Rates of the Tests

(a) Two-sided test (n = 500) | (b) Two-sided test (n = 1000)
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To evaluate the performance of the nondegenerate test, we consider two collections of DGPs.
One collection sets a? = b* + ¢?, b = ¢, and b (and ¢) to grid points in [0,0.4] with the spacing of
0.02 between adjacent points. This is the null collection in which, as b runs from 0 to 0.4, w%o,*
grows from zero up. The other collection sets b = ¢ = 0.2, a? = b?> + ¢2 +n, and 7 to grid points in
[0, 0.2] with the spacing of 0.01 between adjacent points. This is the alternative collection in which,
as n runs from 0 to 0.2, model M, gets worse and worse relative to model M;. We implement the
nondegenerate test as well as the naive extension test as they are defined in Section [3] We use
cubic spline to approximate g() in model Q.E

Selection of the number of series terms on approximating g(-) is important for the implemen-

tation of our nondegenerate test and conditional confidence intervals. For regression examples like

"Fourier series yields similar results.
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the one considered in this section, we recommend using cross-validation with a slowly diverging
lower bound imposed on the number of sieve terms. Cross-validation is a commonly used method
in the semi/nonparametric regression literature for selecting smoothing parameters and has been
shown to yield optimal rate of convergence in nonparametric series regression (ref. [Li (1987)) and
Andrews (1991a)) as well as in nonparametric series quantile regression (ref. |Chetverikov and Liao
(2019)). The slowly diverging lower bound — we use 2log(log(n)) — ensures that the dimension of
at least one model to diverge to infinity which is needed for our Assumption 4.3(b)1§| E

The finite sample rejection rates of the tests are calculated using 50,000 simulated samples.
Figure [2 presents the rejection rates of the two-sided and one-sided tests under the first collection
of DGPs—the collection of null DGPs. Graphs (a) and (b) show the tests for Hy against H; :
f(My, Fy) # f(My, Fy) with sample size n = 500 and n = 1000 respectively. In graph (a),
the naive extension test (dotted line) over-rejects noticeably when w%m* is zero or close to zero.
On the other hand, the rejection rate of the nondegenerate test (solid line) never exceeds the
nominal level by much, although there is some under-rejection at very small b’s and slight over-
rejection at bigger b’s. When the sample size is increased from 500 to 1000, the rejection rate of
the nondegenerate test gets closer to the nominal level while the naive extension test maintains
overall over-rejection and under-rejection respectively. Graphs (c¢) and (d) show the one-sided tests
for Hy against Hy : f(My, Fy) > f(Ma, Fy) with sample sizes n = 500 and n = 1000 respectively,
and graphs (e) and (f) show the one-sided tests for Hy against Hy : f(My, Fy) < f(May, Fy) with
sample size n = 500 and n = 1000 respectively. Recall that model M is the more parsimonious
one. As we can see, our robust test has a rejection rate of approximately 5% against both one-
sided alternative hypotheses. The naive extension test has severe under-rejection when M is
better under the alternative (graphs (c) and (d)) and severe over-rejection when My is better
under the alternative (graphs (e) and (f)). This behavior is in line with our theoretical derivation.

The rejection rates of the two-sided and one-sided tests under the second collection of DGPs—
the collection of null and alternative DGPs are included in Figure 3| In this set of DGPs, the null
hypothesis Hy holds when = 0 and the alternative hypothesis H; : f(My, Fy) > f(Ma, Fy) holds
when 77 £ 0. The model My becomes worse when the magnitude of n becomes large. Moreover, in
this set of DGPs, w%w > 0 since b = ¢ = 0.2 for all different values of 7. In Figure , we see that
the nondegenerate test has rejection rates close to the nominal level 5% under the null Hy (when
n = 0), while the naive extension test over-rejects for the two-sided alternative (graphs (a) and

(b)) and under-rejects for the one-sided alternative (graphs (c) and (d)). This is again in line with

18Tn our simulations, we also impose an upper bound of 15 on the cross-validation search range.

19Gtrictly speaking, the theory presented in earlier sections applies only to non-data-dependent choices of se-
ries terms. However, in practice, cross-validation is often employed, which is why we suggest it for empirical
implementation of our tests and why we use it in this simulation example. The performance of our test with the
cross-validated series terms is encouraging.
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our theoretical results that the naive extension test favors large models. For the power properties,
the nondegenerate test has the best power across most of the range of 1 in the two-sided test. It

also has better power than the naive extension test in the one-sided test.

Figure 4: Performance of Conditional Confidence Interval for [3;;.
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7.2 Conditional Confidence Interval

In this subsection, we evaluate the performance of the conditional confidence interval CI, (1 — p)
with p = 0.1. Consider the parameters of interest $;; and (5. Let model M; be selected if
T, > 2995 and model M, be selected otherwise. Consider the DGPs with b = 0, ¢ = 0 and
a running from 0 to 0.32. We report the probability of the model being selected, as well as
the coverage probability, the median length, and other quantiles of the length of the conditional
confidence interval. For comparison, we also report the performance of the naive confidence interval

that ignores the model selection step, that is, for j = 1,2,
CL*(1 = p) = [0 (@) — 0221000 5, 05 (@) — 07220005 4, (7.4)

where z, stands for the p quantile of the standard normal distribution. Note that the conditional
CI is only different from the naive CI in that it uses the critical value ¢;, instead of z,.
Figure [4| shows the results for 51, and Figure [5| shows those for (1. In graphs (b) and (c)
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of both figures, the blue dotted lines are for the naive Cls and the red solid lines are for our
conditional CIs; in graph (d), the five lines are respectively the 25%, 40%, 50%, 60%, and 75%
quantile of the length of the conditional CI. As we can see, the naive CI may severely under-
cover when the probability that the model is selected is small. On the other hand, the coverage
probability of our conditional CI is always very close to the nominal level. In terms of length, our
conditional CI is longer than the naive CI when the naive CI under-covers, and is about the same

as the naive CI when the latter has good coverage properties.

Figure 5: Performance of Conditional Confidence Interval for (o
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By definition, the critical values of the conditional CI depends on 7,,, and thus is random. As
a result, the length of the conditional CI is also random. Part (d) of Figure [4|shows the variability
of the length of the conditional CI. As we can see, the variability is small when the probability
that the model under consideration is selected is large, and can be big otherwise. In light of the
difficulties of post model selection inference pointed out by [Leeb and Pdtscher (2005), we view
the variability and the extra length of the conditional CI as an inevitable price to pay for its good
coverage property. It is encouraging to see that the conditional CI has similar length as the naive

CI when the latter does not under-cover.
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8 An Empirical Example

In this section we illustrate the use of our robust model selection test and the conditional confidence
interval in the study of life-cycle schooling choices. We compare two models considered in|Cameron
and Heckman| (1998) using our model selection test, and also report the conditional confidence
intervals of some of the model specific parameters. The two models considered are parametric
likelihood models. We consider our theory presented for the semi/non-parametric environment as

reasonable approximation to this context since the number of parameters in each model is large.

8.1 Model Description

We apply our test on the comparison of two life cycle schooling models taken from |Cameron and
Heckman| (1998)). The paper is a classic piece of structural modeling, which is why we use it to
illustrate our model selection and post model selection inference tools.

Consider an individual deciding how much schooling (S, number of years of schooling) to
complete, and consider a vector of individual characteristics X that may be relevant for this
decision. The first model (Model M) is the logit transition model that Cameron and Heckman
(1998) set up to formalize the statistical model prevalent in the political science literature at the
time. To describe this model, define the binary variable Dy = 1{S > s}. This variable indicates
whether or not the individual completed grade s or not. The model imposes a logit form on the

transition probability from completing grade s to completing grade s + 1:

exp(X'6s)
Pr(Dg1=1Ds=1,X)= —————,
where [, is the grade-specific effect of X on the transition probability. This implies that the
probability of s being the highest grade completed is given by
1 exp(X'fs-1) exp(X'B1)

Pi(s|X,0,) = 1+ oxp(X'A.) X T+ exp(X'Bo) X - X T+ exp(X'5) (8.1)

where 0, = (51, 85, ..., 5%)" with § being the highest grade available. Note that this model contains
many parameters since [, is allowed to be different across s. However, it allows no individual
heterogeneity other than the logit error, and thus effectively assumes that the population making
the transition decision at different grade levels are the same. In technical terms, it rules out
dynamic selection as the population move up grades. This is an important drawback of the model
as discussed in (Cameron and Heckman| (1998)).

The second model (Model M) is an ordered logit model. |Cameron and Heckman, (1998) set
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up this model as an economically well-grounded yet parsimonious contestant to the first model.

In this model, the probability of s being the highest grade completed is given by

PAsX,00) = [ Flaws+y+X'8) = Flow -+ X'B)E(), (8.2)
where 0y = (ay,..., a5 1,0, F(t) = exp(t)(1 + exp(t))™!, oy = +oo for the highest possible
grade §, and w is an unobservable individual type that has support {2 and distribution F,(-).
From the statistical point of view, the ordered logit aspect is not fundamentally different from the
logit transition model since an ordered logit model can be written as a transition model with some
(albeit non-logit) shocks in the transition decisions. However, this model adds the unobservable
type w, which makes sure that the dynamic selection effect is accounted for. The model further
specifies that Q = {0,ws}, and F,(y) = p11(y > 0) + (1 — p1)1(y > wy) for unknown parameters
wy > 0 and p; € (0,1). The model uses a parsimonious specification for the effect of X on the

ordered logit cutoffs — the (8 is not indexed by s.

8.2 Implementation Details

We compare the models in terms of their population log-likelihood. We implement the two-sided
version of both our robust test and the Vuong (1989) test. The detailed implementation steps are

as follows:

1. Given the data set (S;, X;)™, define the log-density functions for the two models respectively
as m;(Si, Xi, 0;) = log P;(Si| X;, 0;) for j = 1,2.

-~

2. Define the log-likelihoods of the two models as f(M;,0;) =n~' > " m;(S;, X;,0;) for j =
1,2.

3. Respectively for j = 1,2, compute @w» = arg maxy, f(./\/lj, 6,) using a suitable maximization
algorithm, like the fminunc function in Matlab, or the ml package in Stata.

~ ~ ~
2

4. Compute £,(8,) = F(My,0,1) — F(Ms,8,5) and &2(8,) = L S0 (:(6,,) — 0,(6,))2, where
&(9) = ml(Si, X@'; 91) — mQ(Si, X@'; 92) and 5,1 = (5, /GV )/.

n,1y Y n,2

5. Compute the score Im,(.S;, Xﬁn,j)/aaj for each ¢ and j = 1, 2 either by deriving and using
the analytical formula for the first derivative function, or by numerical differentiation of the
log-density function. Let Zgﬂ- = 0mq(S;, Xi,én,l)/ael — Omay(S;, Xl-,@n,g)/OGQ.

6. Compute D, =n"" E?:l 6971'%@'
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7. Compute ﬁn,j = 0? f(./\/lj,gn,j) /00;00’ for j = 1,2 either numerically or using analytical
formula of the second derivative. Let ﬁn = diag(ﬁn,l, —ﬁmg).

Vo 1/27 (9 \(D2(F ))-1/2 _ nln (0n)+2~ tr(Dy Hy ')
8. Let T,) =n'*(,(0,)(;,(0,)) and let T, Tt 0 e BB s BT

9. Compute the p-value of our robust test as p-value = 2(1 — ®(7},)) and of the Vuong| (1989)
test as p-valueV = 2(1 — ®(TY)).

8.3 Data and Results

We compare these models using data from the 1997 wave of the National Longitudinal Survey
(NLSY 97). This is a newer wave of the NLSY 79 used in (Cameron and Heckman| (1998) that
covers a sample of young men and women born between 1980 and 1984. Following (Cameron and
Heckman| (1998)), we use the male sample only and drop observations with missing values on the
relevant variables. Our final sample contains 1938 individuals ]

The X variables for models M; contain a constant and 15 nonconstant variables including the
number of siblings, highest grade completed by father, that by mother, broken family dummy,
log family income, urban/rural residence dummy, etc. and interaction terms. The X variable
for model My contains all those 15 nonconstant variables, but does not contain a constant term.
We aggregate the grades (S) into four, following Cameron and Heckman| (1998)): completed high
school (s = 1), attended college (s = 2), graduated college (s = 3) and attended 17 or more years
of school (s = 4). As a result, Model M; contains 4 x 16 = 64 parameters and Model M, contains
4 415 + 2 = 21 parameters. Clearly, Model M, is much more parsimonious than Model M, ]

Table 1: Model Selection Tests Based on NLSY 97

Test Statistic \ p-value

Robust Test 1.856 | .063
Vuong (1989) Test 3.924 | .000

Table |1 shows the value of the test statistics as well as p-values of both tests. The Vuong
(1989) test strongly rejects the null in favor of the less parsimonious models M;. However, we
believe that the strong rejection is partly due to the bias in favor of large models. Indeed, the
robust test that corrects the bias presents much weaker evidence against the parsimonious Model

M. In particular, according to the robust test, we cannot reject the null that M, is as good as

20Results using reconstructed sample from the NLSY 79 are reported in Supplemental Appendix
21Parameter estimates are irrelevant for our analysis and thus are omitted. They are available upon request.

33



M, at significance level 5%. |Cameron and Heckman! (1998) advocate for My for its simplicity
and interpretability. Our robust test shows that it achieves the simplicity without sacrificing too
much of its fit to the data. In contrast, the [Vuongl (1989) test tells a different story and can be
misleadingF_ZI

To illustrate our conditional confidence interval, we computed these intervals for the parameters
in Model M5 conditional on the event that T, < zpg975 ~ 1.96. It turns out that the conditional
confidence intervals are the same as the naive CI's computed using the sandwich standard error
formula. Upon further inspection, we find that the correlation coefficients of 7T}, and the parameter
estimates of Model M, are nearly zero, which causes ¢z, to be the same as z, up to at least the
sixth digit. We believe that this is a special feature of this application and does not have general

implication.

9 Conclusion

This paper studies the statistical comparison of semi/nonparametric models when the compet-
ing models are overlapping nonnested, strictly nonnested, or nested. We provide a new model
selection test that achieves uniform asymptotic size control. The new test uses a critical value
from standard normal distribution and employs a bias-corrected quasi-likelihood ratio statistic
that is easy to compute in practice. This makes our test convenient for empirical implementation.
Moreover, uniformly valid post model selection test inference procedures of model parameters are
also provided. Simulation results show that our test and our post model selection test confidence
interval perform well in finite samples.

At least two future research directions arise from the findings of this paper. First, the theory
of this paper is established under the i.i.d. assumption of the data. It is important to extend
it for the comparison of time series models with dependent data. Second, when there are many
competing models to be compared, it shall be interesting to construct a model confidence set that
covers the best model with valid asymptotic size. These directions of research form part of our

ongoing work, during the course of which some preliminary results have been obtained.

22Cameron and Heckman (1998) implemented the Vuong (1989) test with the Bayesian information criterion
(BIC) penalty, and thus were effectively testing the null hypothesis that

Hy: f(My, Fy) - B8 rOrintinn) _ pug, gy - R2losm) _ rPntli )
n 2n 2n 2n
where f(Mj, Fo) = maxg, Er, log P(S|X;0;) is the Kullback-Leibler distance from model M; to the data. Their
test result strongly rejects the null in favor of the ordered logit model. The penalty would not matter asymptotically
in the asymptotic framework assuming strict nonnestedness, as argued in Vuong (1989). Yet it clearly leads to a
different testing conclusion here.
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Supplemental Appendix of
“A Nondegenerate Vuong Test and A Post

Selection Confidence Interval for
Semi/Nonparametric Models”

In this supplemental appendix, we present supporting materials for the main paper:

A

Section [A] presents the proofs for the results in Section 4 of the main paper.
Section |B| proves the results in Section 6 of the main paper.

Section [C] verifies the high-level assumptions in the main paper in a nonparametric mean-

regression example.

Section [D] includes the illustration of the high-level theory and verification of the high-level

assumptions in the main paper in a nonparametric quantile-regression example.
Section [E] includes some auxiliary results and their proofs.

Section [F] conducts simulation studies to compare the finite sample properties of our non-

parametric nondegenerate test with the test proposed in [Shi (2015b).

Section [G| includes additional results from our empirical studies in Section 8 of the main

paper.

Proofs for Results in Section 4

Proof of Theorem 4.1. First note that

tr(ﬁn(alt)Hl;nl,k) =tr (nl Zga,k(zi; ) lax(Zs; al*()/HFnl,k>

i=1

=n! Z tr (Cox(Zi; ) lax(Zis o) Hyly )

i=1

=Y Lk (Zi o) Hig sl Zis 030), (A1)
i=1

where the steps follow from properties of the trace operator. This and Assumption (a) together

implies that

(@) + (1/2)tr(Do () Hy i)



n n i—1
= UZiop) =n Y lax(Zis0p) H 'y (Z Cord(Zy; @;)) + 0,(n" %05, ). (A.2)
i'=1

i=1 =2

For the ease of notation, let

Vin = nil/Qa;;:’n[ﬁ(Zi; ay) — Eg,((Z;;a))] fori=1,...,n, and

U n=opt [fa,k(Zi; o) Hel il bax(Zii o) | 0> 2 (A3)
’ 0 i=1.
Let W;, = V,;,, — U, . Then we have
n[la(@ren) — Er, (U(Zi; a)] + (1/2)tr (Do) Hyhy) &
nop . = ZI: Win 4+ 0p(1). (A.4)

Let Zy = 0 and F;,, be the natural filtration generated by {Zy, Z1,...,Z;} under F, for i =
0,...,n. Under Assumptions [4.1fa) and (c),

EFn [Wz,n‘ -;Ei—l,n] = EFn [‘/z,n| E—l,n] - EFn [Uz,n| E—l,n] = 07 (A5)
for all ¢« = 1,...,n. This implies that W;,, is a triangle array Martingale difference sequence
(m.d.s.). Next, we use Hall and Heyde[s (1980]) Corollary 3.1—a Martingale central limit theorem—

to show the desired convergence.

To use Hall and Heydes (1980) Corollary 3.1, it suffices to verify two sufficient conditions:
(a) > Ep, W7, Ficin] = 1, and
i=1
(b) Y Ep, [W2,1{|Winl > €}] =0, Ve > 0. (A.6)
i=1

First, we verify condition (a). By Assumption [4.1](a),

> EBr, (V2| Ficvn] = 052 Er[(U(Zi; 03) = Br, (((Z5;.0)))"] = 05 w7, .- (A7)
i=1
Also, when w%m* = 0, we have V;,, = 0 a.s. for all ¢, and hence Ep, [V;,U;,| Fic1,] = 0 for

all ©+ and all n. When WIQ%* > 0 and ¢ = 1, we have U;,, = 0 by definition, which implies



Ep, [VinUin| Fic1n) = 0. When wy , >0, and i > 2,
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where pp, x = w}i*(D;{fk)*C’ov U(Z;a), lox(Z;ay)] and (D;{fkﬁ denotes the Moore-Penrose

inverse of D},{fk. Note that in (A.8)), we use

(DAY TCou [U(Z;03), lasc(Z; 03))) Dy = Cov [U(Z;0), b (Z3 030)]

which follows by Lemma [E.Ij(c). Thus,
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where the first equality holds by and Assumptions [1.1|(a) and (c), the first inequality holds
by (1—i/n)? < 1, the second inequality holds by Lemma[E.I[(b) in Supplemental Appendix [E] and
the definition of UF n» and the last equality holds by Assumptlons E and . Moreover,
observe that, for ¢ > 2,
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where the first equality holds by expanding the square of the sum over ¢ and by applying the i.i.d.
assumption (Assumption[d.1j(a)); the first inequality holds by the definition of R;; ., [Ep, (Rin)]* >
0, and Zi:l (n —4)? < n3; the second inequality holds by the property of eigenvalues and As-
sumption [4.1](f); the last inequality holds by Assumption [4.1[d); and the last equality holds by
Assumption [£.3(b). Further consider

n—1 i — 2 n—1 i'—1
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where the first equality holds by Assumptions E ) and 4.1} - , the first inequality holds by
Assumption |4. ( ) and S22 S0 (n— )2 < n?, the second mequality holds by the definition of
Ry i, and the last equahty holds by the definition of oF > and Assump‘mons E and .

The results of (A.12) m— b)) imply that
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Combining (A7), (A10) and (AI0), we get
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This verifies condition (a) in (A.6).
Now we verify condition (b) in (A.6). First, W2 1{|W;,| > e} < e*W},. Hence by the

i\n

monotonicity of expectation, we have

> Ep, W2 {|Winl > e}] <) Ep, [e2Winl] <8672 Ep, [[Vinl* + 1Uinl*] . (A18)

i=1
where the last inequality holds by the convexity of the function f(z) = |z|*. Consider that
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where the first inequality holds because w%mU’k > 0, and the second inequality holds by Assumption
4.1{(e). Now consider that
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for i > 2. Define M; s, = lox(Z;; aﬂ)'HE:,kfa,k(Zi/; ay). Then the above display leads to:
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where ¢ is some appropriate positive integers whose exact value is not important for the purpose.
The equality holds because E[M; ;M2 ] = 0 for any i’ # 7" by Assumptions (a) and (c)
Observe that, for i # 4/,

Epn [M;%z',n} = EFn }Ea,k(zi; al*c)/H}:nl,kéa,k(Zi’; Q;){4i|
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where the first inequality holds by the inequality a’Aa < (d’a)tr(A) for any semi-positive defi-
nite matrix A with a = (,x(Z;;af) and A = ng’kﬁajk(Zi/;ai)€a7k(Zi/;aﬂ)/H;:’k, and tr(A) =
lox(Zir;af) H}ZQ’kEa’k(Zi/; a;.); the second inequality holds by properties of eigenvalues and As-

n

sumptions [4.1(a) and [£.1|f); and the last inequality holds by Assumption [4.1(d). Moreover,
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Therefore, from the results in (A.18])-(A.23]), we deduce that
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where the equality holds by Assumption [4.3|(b). Thus, condition (b) in (A.€)) is verified. m

Proof of Lemma 4.1l First note that for any real symmetric matrices A and B with B > 0,
Lemma 1 in Wang et al. (1986]) implies that

[tr(AB)| < || Al tr(B). (A.25)

By the linearity of the trace operation,

~ ~ ~ ~

tr(Duf1; ") = tr(Dal0i) Hy ) = tr (Do = Daloi) ) +tr (7 = H)Dalei)) - (A.26)

Let ﬁmkl, ZA?mkl(af{), and ﬁ[n,kl be the leading k; x k; submatrices of ﬁn, ﬁn(al*(), and ﬁn,
respectively. Let lA)n,km ﬁm/@(al*(), and ﬁnm be the last ky X ko submatrices of ﬁn, ﬁn(a;‘(), and
ITIn, respectively. Then by the definitions of lA)n, ﬁn(al*(), and f]n, the triangle inequality, (A.25]),
and Assumption [4.1{f),
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where the first equality holds by Assumption (a) and by |tr((—?[n,kj)_1)| = Op(k;) which holds

by Assumptions [£.1[f) and [4.4[a).
Similarly, for the second term in the right-hand side of (A.26]),
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Therefore, the lemma is proved. m

Proof of Lemma [4.2. First note that
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Next we show the convergence of each of the three terms on the right-hand side of (A.29)).

For the first term, consider the derivation:
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where the last equality holds by the weak law of large numbers for row-wise i.i.d. triangular
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sumption [£.1|(e) with § = 2 and the constant C' in that assumption.
Next we consider the second summand on the right-hand side of (A.29): (,(qx) — £r, (a))>.
Theorem [4.T] implies that

o tr(Dn(a)Hp'y)
0a(@) = U, (07) = ———— 5 4 Oy (0 o, )
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The first summand in the last line of ({A.31)) can be bounded by similar arguments as (A.27)):
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= (2n) Yop(not, 4, kIO = 0p(0F, n), (A.32)

where the inequality is by (A.25), the equality holds by Assumptions[4.1[f) and [4.4|(a). The second
summand in the last line of (A.31]) can be bounded as follows:

1 k
tr(Dr a0 _ 2 Dl bk Z" M

2n
— |Kk[n—T ) FnUk VIkIntop, ) = o(op, n), (A.33)



where the first inequality is by the definition of Ap, ; (7 = 1,..., |k|) and the triangle inequality,

the second inequality holds by the Cauchy-Schwarz inequality, the first equality is by the definition

of w% .., the second equality is by w? ,,,.,n~! <4 0% . and the last equality is by Assumption
Fu,Uk Y15 by Wi, vk Fp.n y 18 by

[4.4(d). Therefore, from (A.31), (A.32) and (A.33)), we have
Ca(@x) — lr,(0}) = 0p(0F, ).

For the third term, consider the derivation:

n

Y (U7 @) = b, (00))* = (U2 0) = b (0}))°]

=n""> (|02, ax) — U(Zi,03)[]
=1

+2n" Z (Ziyarn) —Lp, (o)) [U(Z;, 0x) — U(Z;, )]

=1
= Zam(O‘Tc),(HI;nl,kDFn,kH}::,k)za,n(ali) + Op(al%“n,n)7

where the second equality holds by Assumptions [4.4[b)-(c). Also consider:

za,n(al*c),(Hb:nl,kDkaHI;:,k)za,n(a ) —n~ IW% Un

=0 [laxlZi,00) (Hp! \ D acHp ) lax(Zi, o) = tr((Hgy, Dr,i,))]
=1

n

+ 2n 72 Z

=2

i—1
Cose(Ziy o) (Hg . Drkn Hi 1) D Lasc(Zr, 041*{)] :

=1

By algebra, we see that the first summand on the right-hand side of (A.36]) equals
“Her(Hg D acH 7 Dlog)) — tr (HI;,Ll,kDFn,kHI;n17kDFn,k)‘

=n! ‘tr (H}::,kDFn,kHEnl’k(ﬁn(aii) — Dka)>’

< n_ltT(HE:,kDFnrkHEr}7k) HDn(Ozi’:) - DFn,kH

= nilop(’k|)0p<n‘7%?n,n|k|il) = Op(‘TIQ%,n)’

(A.34)

(A.35)

(A.36)

(A.37)

where the inequality holds by (A.27)), and the second equality holds by Assumptions [£.4(a) and

4.3(b) and by
tr(Hg  Dr, xHz! ) < K| pmax(Hz, (D Hp ) < C K],

(A.38)



where the last inequality is by Assumption [£.I|(f). Consider the second moment of the second
summand on the right-hand-side of (A.36]). By the Martingale property discussed in detail in the
proof of Theorem its second moment equals

n i—1 2
4
- > Er, |tax(Zis o) (Hg D cHg ) D lax(Zir, o)
=1 /=1

2(n — 1) Er, [lax(Zi,08) (Hg, «Dr, xHp ) Diy x(Hp D e H i v ) o (Zi, )]

TL3
EFn [ga,k(Zzﬁ O[i};)/]—‘ll‘;lkl)Fn:kj—lglkga’k(zi7 Ozi};)]
<20 s -
n
tr((Dp. «Hi7' )Y 20w2
_9c (( Fn,k2 k) ) _ FQO,U,k — oot ), (A.39)
n n ’

where the first equality holds due to the i.i.d. structure of the data, the first inequality holds
by the property of eigenvalues and Assumption (f), the second and third equality hold by the
definitions of D, x and w, ;) respectively, and the last equality is by n~'wf, 1) < 40%, ,, and
Assumption (b) The result implies that the second summand on the right-hand side of

(A.36)) is op(cF, ,,). Combining this with (A.35), (A.36]), and (A.37)), we get

n

n=t > [(UZi6a) = Ur(07)* = (U(Zi,03) — Ur,(07)] = 0w, s + 0p(0F, ). (A40)
i=1

The lemma immediately follows from (A.29)), (A.30), (A.34), and (A.40). =

Proof of Lemma The proof of part (a) is similar to that for Lemma[4.1]and is omitted

for brevity. Part (b) follows from the derivation:

On(@) =2 ' tr(DaH, ') = oF,

_~20A N (2 1 2 WUk
=W, () — (Wg, » + 17 Wk, i) + o2 o
w? tr ﬁnf—\]gl 2y — w?
— oyl + STee D)~ a (A1)

2n? 2n

where the first equality holds by the definition of 0%, , (= w7, ,+27'n"?(n—1)w; ), the second
by Lemma and the last by part (a) and by 27'n"*(n — 1)wg, 1) < 0%, ,, by definition. m

Proof of Theorem Using Lemma 4.3, we deduce that, for any ¢ > 0,

~

Pr Fn((?n)_ltr((f)n 12— afpmn >¢e)=Pr Fn(—w%m* + 0,,(012%”) >¢e) — 0, (A.42)

10



where the equality holds by the definition of a%mn, and the convergence holds by Assumption
[1.3b). Next observe that

. n~ o), n?n(ak)+(1/2)tT(Dn(ai)HEj,k)} orh 27 2 (tr(Dy(af) Hy )\ — Do HY)
n — 1 =~ - 1 =~ ’

Op,non O, n0n

which together with Theorem Lemma [4.1] and equation (A.42)) imply that T, —4 N(0,1)
under any sequence {F,} such that F,, € Fy for all n. This implies part (a) of the theorem

immediately. Part (b) follows similarly. =

B Proofs for Results in Section

B.1 Proof of Lemma 6.1

As we mentioned in the main paper, Lemma 6.1 follows immediately from Lemmas 4.2 and 4.3 in
the main paper and Lemmas [B.I] and below.

The extra assumptions referenced in Lemma 6.1 are as follows. Assumption [B.I]is regarding
the plug-in estimator 1;(ay,) for j = 1,2. Sufficient Conditions can be found in Chen et al.| (2014
and (Chen and Liao| (2015)). Assumption is regarding the consistency of i}ffkj, Pojns and Dig .
Assumption calls for some new notation: Let loqx,(Z; ) = 0oy, (Z;05(Br;))/ 9By, Define

Digon = Er, [ﬁ(z; ) oy (2507, ) oy (2 a;;j)’] and Hy, , = Er, [e(z;a;;)zaa,kj(z; a;;.)] .
(B.1)

Assumption B.1 Under any sequence {F,},>1 such that F,, € F for all n, we have for j = 1,2,
2 [5(@x,) = ()] (W5) ™ =02 e (0f,) H by bak, (Zis 07, (05,4,) " +0,(1) (B.2)
i=1

and Ep, [[an, (0g,) Hy, i o, (Zi5 05 ) (0], 1) 7] = o(n).

Assumption B.2 For any {F,},>1 such that F,, € F for all n, we have for j =1,2:
() 2 [t @) = Yk, (0] | = 0p(1677%);
(b) pmax(Dé,k:j,n) S C and pmax(HE,kj,n) S O;'
(c) the following expansion holds

n

n! Z |:£a,k'j(Zi; i, JU(Zis Qi) — Lo (Zis g, )0 Zs; 04:1)]

i=1

11



=0 oy (Zis 0 Voo Zis o) HE !\ Lan(03)
=1

+ 7t Z U Zi5 0 oy (Zis 0, Y H sy Ty (0 + 0p(0, )

i=1

(d) H?’L_l Z?:l E(Zu Oé;kz,)gaoé,k;j (ZZ, Ckzj) — Hf,kj,n — Op(‘k’_1/2);
© [[ensoi ) o5 | < €

(1) [1Hn = Hp, x| = 0p(IKk| ™) and || Dy = Dr, sl = op(kI ™).

Lemma shows the joint convergence in distribution of the normalized log-likelihood ratio and

the normalized parameter estimators.

Lemma B.1 Suppose that Assumptions 4.1, 4.3and hold. For any sequence {F,},>1 with
F, € F for all n and any subsequence {u,} of {n} such that poj., — po;j and pion, — pi2 for

some po; and piz € [—1,1], we have

n[ln (@)= Er, [1(Z50g,, )] +(1/2)tr(Dalof) H o)

G Py, = n? | (@) — Un(ag,, 1) (050,) 7" —a N (03, 5¢) .

n!/? s (an,) — va(af, o) | (V) k,) 7"

Proof of Lemma . Let k = (K1, ko, k3)' € R? be any vector with x'x = 1. For ease of
notations, let W, ,, = (W ,, Wi, Wa, ) where

¢O¢J€j (Oéltj )/Hgnl,

I/Vi,n = V;,n - Ui,n7 and I/I/j,i,n = nl/2y*
kaj

gy (Ziso,) for j = 1,2, (B.3)

where V;,, and U, ,, are defined in (A.3)). By the definition of x, and Assumptions 4.3(a) and ,
K G, =Y Wi+ o0y(1). (B.4)
i=1

Let Zy = 0 and F;,, be the natural filtration generated by {Zy, Z1,...,Z;} under F, for i =
0,...,n. Under Assumptions [4.1(b) and [4.1}(d),

EFn [/{/Wi,n| -/—-;—l,n] = 07

for all i = 1,...,n, which implies that {x'W,, }i<, is a martingale difference array. We shall use
the martingale central limit theorem (ref. Corollary 3.1 in Hall and Heyde (1980)) to show the

12



desired convergence. It suffices to verify the following two sufficient conditions:

ZEFM [|I€/Wi7un|2’ ]:i_l’un] —p K'Xgk, and (B.5)
=1
> Er, [IK Wi, [P 1{IK Wiy, | > e} =, 0, ¥e > 0. (B.6)
i=1

In order to show (B.5)), it suffices to show that
> Ep, (Wi Wi, | Fisia] — Se = 0,(1). (B.7)
i=1

Note that in part (a) of equation (A.6) in the proof of Theorem 4.1, we have shown that

> B, [W2,| Ficia] =5 L. (B.8)
i=1
Also, we have, for j = 1,2,
Z EF, [WJQHZ’ }—i—lﬂ}
i=1
"o, (0f) Hp Hp !y o, (07)
=n"! Z - —FEp, [ga,kj(zi;azj)ga,kj(zi; ay,)' —F‘ifl,n] —— -
i=1 Uy k; i ks

n x \/r7—1 -1 *
_ ¢a,k-(ak-) HFnk-DFn,k-HFnk-¢a,k-(0‘k-)
=n'y ’Jv:z?k] =1 (B.9)
i=1 kj

where the second equality is by Assumption 4.1(b) and the definition of Dp, 4, the last equality
is by the definition of vj/j’kj. Next, note that, for j = 1,2,

> Ep (WiaWiinl Ficial =Y Ep, [ViaWiinl Fician] = > Er, [UinWiin| Ficin]

=1 =1 =2
El,n]

* . * \/ -1 *
_ nil Z EFn g(ZZ, Oén) ga,k‘j (ZZ7 ak:j) HFn,kjd}a,k:j (akj)

*
i=1 UF”’” ,quvkj
n
-1
=n Zp()j,n = Pojn; (B.10)
i=1

where the second equality is by the definitions of V; ,,, U; , and W, ; ,, and Ep, [U; ,)Wjin| Fic1]) =0
which follows by the i.i.d. assumption and Assumption 4.1(c), the third equality is by the definition

13



of po;n and the i.i.d. assumption. Similarly

> Ep, [WiinWainl Fio1n)

i=1
_ ZE Va k1<ak1>/HF klga ks1(ZwO‘k1> Eixk (Z’wak )HF:k2¢a k2(ak2)
Fy

P ”“hpk nszk

El,n]
—1

,QZ)OMc ag, 1 % H Qwak’ (O[ )
= —Z () B, [Cog(Z; 05, Yoy (Z; af,)] — ke 22 T
Uy ko Vg ke

= - Z P12;n = Pi2n- (B.11)
[

Collecting the results in (B.§)), (B.9), (B.10) and (B.11)), we get

ZEFn [Wi7nwg7n|‘/—_;_17n} — Yo = ( Zz 1EFn [ zn‘ "t.ifl,n} —1 Oix2 ) _ Op(l)

i=1 02><1 02><2

which proves (B.7)) and hence (B.5]).

We next verify . First, by the monotonicity of expectation and the C) inequality,

ZEFn [|/~€'Wm’ L{|K'W,| > s}} < ZEFn [|,€Wm|4 _2]

=1 =1

C n
- e2 ZEFn [|K1Wz‘,n|4 =+ ‘H2W1,z‘,n|4 + |/13W2,i,n|4} . (B.12)
i=1

In equation ([A.24)) in the proof of Theorem 4.1, we have shown that
1 < s
gz% [[Winl'] = o(1). (B.13)
i=1
Under Assumptions 4.1(a)-(b) and [B.1], we have

1 n
8_2 Z EFn |:|/§2W1,i,n‘4 + |K'3W2,i,n‘4:|

=1
4
wak ) _
ngz%\ 2 b (2
i=1 j=1 kag
1 2 w k( ) 4
=~ 2, Z in Hy !y Loy, (Zisag)| | = o(1) (B.14)




which combined with (B.12)) and (B.13)) proves (B.6|). =

Lemma shows the consistency of the estimated variances and correlations.

Lemma B.2 Suppose that Assumptions 4.1(b)-(g), 4.3(b), and hold. Then under all se-
quences {Fy, }n>1 such that F,, € F for all n, we have

(a) max;—i 2 [%?kj/vjfk] — 1:| = Op(l);
(b) /ﬁ12,n — P12;n = Op(l);

(c) max,;=12 |//30j,n - /)Oj,n| = Op(1>'
Proof of Lemma [B.2] (a) Note that under Assumption [B.2(f), we have
1Hiy = He | = 0p(k| /%) and || Dy, o = D, g || = 0,1k 717%), (B.15)
which together with Assumption 4.1(f) imply that
0 < pmax(Di; ) < 2C and (2C) 7 < |punin(Hy, )| < | pma(Hi, )| < 2C (B.16)

with probability approaching 1. By definition, we can write

k2

) — u*2 P H! ﬁk H!
¢7If' ’¢7k ~ * k'v e k“'v ~ *
# - ¢a,kj (O[k]) - wa,kj (ak) = *2] 2o 1/1a,kj (Oék]) - 1/)04716]' (akj)
Uy k; ! Uik
~ P Dy, o *
2 [y (@) = Yy (01)| =2 ()
Uw’kj
% _ f[k7 _HFn,k’ o ~ o~ %
h,k;

. Dpn—Dpg ~_ .

+ wa,k‘j (ak]),HFnik] - *2 : ij?n/llba,k‘j (ak])

Uw’kj

" _ _ Hk:-, _HFn,k-/\_ "

+ ¢a,kj (akj),HFnl,kj DFn,k]- HF:,kj ‘ nvfk ’ Hk;nQbaakj (ak]-)- (B.17)

ks
By (B.16)) and Assumption [B.2(a),
/ gt 13 . gt
~ kinkjntlE. ~ "
[Vaty @) = W, ()| =2 [, (@) = s (0]
h,k;
prmax(Diy ) 1 . ANIE
< Btk (@) = ()| = 0p(1). (B.18)
pmin(ijyn) U’Z’vkj

15



By the Cauchy-Schwarz inequality, (B.16]), Assumptions [B.2{(a) and [B.2(e)

2

-1 -1
r Hy ' Dy, nH
kin kin
| = (a,)

wk

' [wa,kj (akj) - ¢a,kj (042]-)

2

’¢a,kj(akj)—¢a,kj(a2.) flk_,l D, . D, ﬁ],;
< L g (o e T Ty, )

w’kj vakj
P2rac(Diyn) Vo, (@5 ) ek, () ‘ Dak; (@) = Yo ()

— ) - = 0,(1). (B.19)
pfnin(ij ,n) Uy k; Uik

By the Cauchy-Schwarz inequality, (B.15 - - Assumptions E and -

2

IN

, Hry . ~ . ~

-1 kj,n Fn.k 1
wa,kj (a]:j)/HFn,kj - U*Z - ]ij,nDk n‘Hk: nl/}ak (ak )

ka/‘]
2 Yok, (0 ) Hp o, ()
2
v;'; k;
~ 1~ EE
ét,k‘j (O[]:] )ij,TLij7nHk'j ,nijvnij,nd)Oévkj (azj)
*2

Pmas ‘Hk — Hp,

B (pmin((ij,n) ))? pmin(H%O,kj)

S Hij,n - HFn,kj

2
Dk:n

Q/}a,kj (O‘ZJ )I¢a’kj (Oé;;])

2
/I_)*
w7k]

= 0,(1). (B.20)

Using the same arguments for showing (B.20)), we can prove that

* — Dk'7 DFn,
Yoy (04, ) Hy g, =g Hy L (0,)| = 0,(1) and
b,k;

* — — Hk'a _HFn,k' IT— *
1/’6!,161' (ak]' )/HFol,kj DFozkj HFol,kj - *2 - ij%nl/}aﬂkj (ak]) - Op(l) : (B21)
’ll) kj

Collecting the results in (B.17)-(B.21]), we immediately get the claimed result.
(b) By the consistency of @22,% and the fact that |pio,| < 1, it is sufficient to show that

o Y@ )VH ~ HE e, Gy
Pi2n = = *1 £ Dkl,kz, k%n f = P12 + 0p(1). (B.22)
Ui ky Ui ks
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By Assumption [B.2[f), we have

o, (k| 7?). (B.23)

HDkl,kg,n — Dg, ko ko

Note that

3k
P12,n — P12n =

(Vo (Qky) = Vs (04?21)]/}7_1 ~ ~ 1 Yok (Oky) — Yoy (af,)]

,U* kl,nDk17k27n ko,mn ,U*
¥kt k2

[wa,kl(alﬂ) - wa,lﬁ (O‘Zl)]/ﬁ_1 A 51 ¢a,k2 (QZQ)

k:l,nDkl,k%n ka,n

Ui ks

+ 2
wa,k (CV* ), _ s wak (04 )
+ 1—kl[—[Fnl,kl (Hk'l n HFn kl)Hk1 nDk17k2, Hk; i—kQ

*
¢7k1 17Z)7k2

¢k( y o ~ 1 Y (af,)
avl—leFn k1 (Dk1,k2, DFn,kl,k‘Z)Hk;naQ—kQ
k1

Yok () - H i1 o l0d,)
M 2 D H g (Hy o — HFn,kl)Hklln%

'Ukal ¢7k2

*
U by

Ui ks

+ (B.24)

Lemma together with Assumption 4.1(f) implies that
Pmas (D, iy oy DFobr k) < C (B.25)
Similarly, Lemma together with Assumptions 4.1(f) and implies that
punas(D, jynDiyian) < C (B.26)

with probability approaching 1. Using the Cauchy-Schwarz inequality, we get

2

[¢a k?2( ) — Vo ks (azz)]
U;Z’M

< [¢a,k1 (akl) - ¢a,k1 (O‘Zl)]/ﬁ_z [¢a,k1 (akl) - ¢a,k1 (0421)]

B Uy o Uy
Yoty (Oy) — Ve () ~ ~ Yo keo (Qhy) — VY iey (OF)
X [ - QU* — k2 :| Hk; D;ﬂ,kz,nDkl,km Hkgln[ = QU* 2 ke }
P,ka P, k2
~ ~ N 2 R 2
P (Diy oy n Dirkan) [k (Qky) = e ()| || Ve @ry) — Vs (0| B
Prnin (Hryn)?) i (H iy n)?) Uk, Uy

[wa,kl (akl) - wa,lﬂ (

*
/Uw7k1

P

ki,n

! Dy g 1)

ka,n

IN
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where the last equality is by Assumption [B.2(a), (B.16) and (B.26)). Similarly,

[wa,kl (akl) - ¢a,k1 (Oé;;l )]
Uy LA™

< [1/}04,761 (ak‘l) - ¢a,k1 (azl)}/ﬁ_g |:77Z)Oé7k1 (akl) - ¢a,k1 (04321)]

- v ki,n

Y kg Uy ey
¢a kz( ) 771 %,1@ (041:2)
Vg ks Ui ks

Hkg:!- D;ﬁ,kg,nDklyk%n ka,n
pmaX(D;cl,kg,nDklykzﬂ) “¢a7k1 (alﬂ) ¢a k1 akl H dja kz kg)'l/]a,k’z (04?22)
— 7y 75 2
Prin ((Hiy,0)?) Poin (s n)?) ik, Uik

where the last equality is by Assumptions [B.2(a), [B.2{e), (B.16) and (B.26). Moreover,

2
*
51 51 wa,b(ak )
Hkl nDk17k27nHk2,n :

—o0,(1) (B.28)

2
—1 7 77—1 woé,’@(alt )
HFn,kl (Hkhn - HFnykl)Hk:l nDklyk% HkQ,n :

*
Ud),kl U¢7k2

‘ ,QZ}Oé,kl (Oé;:}l )/

Qwa,kl(@zl) H 2 ¢a,k1(azl)
% MFE )k

< Hchl,n_HFn,kl ”
Ut ey Ut ey

¢a,k2 (O‘Z )/ -1 N 51 ¢a,k2(az )
X T : ko,ntk1,ka,n qu nDliw nsz, R -
Y, ko Y, k2

2 —~ ~
HHkln HF k1 pmaX(Dk1 Jkao,n Dk17k27 )

Pmm(HFn,kl)Pmm(Hkl, )P (s )
,lvba k1 (akl) ¢a k1 (akl) o,ko (akg >wa ko (akz)

q/; k1 w,kz

where the last equality is by Assumptions B.2(a) |_| , (B.15)), (B.16]) and (B.2€]). Using the
same arguments in showing (B.29)), but replacing (B.26|) with ( -, we have

= 0,(1) (B.29)

2
Yok () ~ 1 Yk ()
R e D Hi e, (Hiy o — Hp, g ) H L =222 = 0,(1). (B.30)
Ui by Ut ko
By the Cauchy-Schwarz inequality,
Yo (0},) Yosnloi)|
a,k =~ _ a,k «
I—HFlk (D s — DFn,kl,kz)Hk;nQ—b
U Usp ko
~ 2
B LT s (NP LN AT N A 2N S S
— 7y %2 *2 e ) :
Puin((HE, 1, )?) Prain ((Hiy 0)?) Uk Ui ks
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where the last equality is by Assumptions 4.1(f), [B.2(a), [B.2(e), (B.16) and (B.23). Collecting the
results in (B.24)), (B.27)-(B.31)), we immediately prove (B.22]).

(¢c) By the consistency of i)\jfkj and 7, and the fact that |po;,,| < 1, it is sufficient to show that

Vi, (@) Hi o &
= : . ga ) ZZ,A Y4 Z,L,An = in 1). B.32
pO],n nU;Z,ij'an ; 7k]< akj) ( o ) pojv + Op( ) ( )
By definition, we can write
. Dagey () Hp g &
Pojn — Pojn = L — [éa,kj (Zis a5 ) Z;; 0) — Ep, [ga,kj(z; ap W(Z; a;)H
' NUy k0 Fon — J J

%, j a j ,‘i\[_-ln - wa: j %, ,H_l N
1O/ iy ~ Vot O ) by S~ 7 0 0 2i2)
=1

*
NV, g O Fn

wa,jaj,ﬁiln - ~ ~
+ i ( , ) Ry Z [ga,kj (Zu Oékj)g(Zi; an) - éoz,kj (Zlu O‘Z]>€(Z“ afl)i| : <B33>

i=1

*
N, g O Fun

Under the i.i.d assumption, Assumptions 4.1(f), [4.3(b) and [B.2(e),

¢a7kj (azj ),Hgnl,kj _ * * * *
Var | = ; (st (Zi5 01, )0 Zi5 03) = B, [l (Z:03,)0Z;03) |
Dagey () Hi !y Hp g Yo, (0F,)
= LY [62(2;042)%,@(2; ag ), (Z; oz?;)} i :

n%U:L’ij'an n%v;‘ﬁ,kjapmn
pmax(DZ,kj,n) 1/}:)4,1% (azj)¢a,kj (O‘Zj) 1

= Op<1), (B34)

which together with the Markov inequality implies that the first summand in (B.33) is 0,(1). By
the triangle inequality

N 2
‘ Ve, (Qk; )’ k_]ln - ¢;,kj(azj)HE:,kj
U’l*ﬁkj
I~

[wa,kj (akg) - wavkj (Qz])] Hk_]?n [wa’kﬂ' <akj) - wa’kﬂ' (QZJ)]
- U':Z?kj

¢a,kj(047;j)/HE:,kj [Hk’j,n - HFTij]Hk_j?n [H’fjm B Hankj]HEaikjwavkj (04}2].)
+ ,U*Q

¥.k;
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2

‘ij,n - HFn,kj

Yok ;) — Yok, (o) ‘2 . Yok, () Vo, (af))

|

I 2)4*2 7 2 : 2 ,,%2 - Op(’k‘_l)v <B35)
pmin((ij,n) )Uw,kj pmin((ij,n) )pmin((HFn,kj) )Uw,k]-
where the last equality is by (B.15)), (B.16]), Assumptions [1.1[f), [B.2(a) and [B.2(e). By the i.i.d.
assumption,
" 2
Er, | |07 30 |62 i), (Zis o) = B, [U0Z;00)ba,(Z501) |
i=1

1
< —Ep, [52(2; ay,)
n

n

2
tos, (230 | = Ok~ (5.36)
where the equality is by Assumption [B.2(b). Also note that
2
|Er [t (Zs0i ) Z:00)] | < Br, 1602:00)P) Er, [ty (Z301,) Cany(Zi 0] = ophich, )

The above two displays together with the triangle inequality imply that

2

n Y U Zs ap) o, (Zizor)|| < Op(kn™) + 0p(kjot, ). (B.37)

i=1

Equations (B.35)) and (B.37)) imply that the second summand in (B.33]) is bounded from above by
op([K| ) (Ok; "0~ 2o ) + 0y P, mo) ) = 0,(1),

where the equality is by Assumption (b) Thus, the second summand in (B.33) is also o0,(1).
To show that the last summand in (B.33)) is 0,(1), let

(@ )V,
- I

An An = wa’kj (Oé;:,j)/H;;vkj

* *
Uw,ij-ann Uw,ij-ann

)

n

By =1 [lak, (Zi; 0 Yo (Zi 00) Hi L (07)

=1

By = Er, [lax, (Zi; altj)giy,k(zi; @i)]HEnl,kza,n(@ii)

Co =11 U Zi; 04 Yoo (Zi; 0 VHE  Taymla), and  Cp = Hyg nHy'y Toyn(aj), (B.38)

=1
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Using Assumption [B.2|c), we can write the last summand in (B.33) as
A\n(B\n + an + Op(O'an>)-

Next, note that (B.35) implies that

o~

A, =A, +A, —A,

@Z)a,k'(a;)/HEnlk‘ ~1/2 _ _
= L+ o, (k[T 0! ) = Oplo5),),
Uy ;O Frim

where the last equality is by Assumptions 4.1(f) and [B.2|(e). Under Assumptions 4.1(a) and (f)
- 1
B, [lon(03) B2\ Lo 0)] = ~tr (72D, i) = O(K|n™), (5.39)

which together with the Markov inequality implies that

lan (i) H \lan(0h) = Op([k|n 7). (B.40)

By the Cauchy-Schwarz inequality;,

”Bn_BnH

<2tk (200 )0 Zi 00) = B, [ty (23000025 00| Vo0t Hi2 ()

=lln ki \“iy O )t k\“is Gk Fn Yok \ &5 Ok, Jta k\“ Gk an\“k/HF, kton Sk
=1

— opnh), (B.41)

where the equality is by (B.40) and Assumption B.2(f). Note that Lemma combined with
Assumptions 4.1(f) implies that

s (B, oty (230 )l Z303)| Br, [fard Z50i) o (Zia )] ) <€ (BA2)

Under the i.i.d. assumption,

2 * 1\ g/ * H;:kDankHEnlk *\ g/ *
Er, [|1Bull*] = tr | Br, |Can,(Z:0}, )i Z: o) | R gy 0 (Z5 i), (Z5 )
pmaX(DF k) ( [ ! /
k) (Ep, [lar (200 )0 Z*V;V“Z*E'Z*l>
S ain ) NP [fo (23 00 Yoord 2300 | B [ 25 000, (7501,

=O(lk|n™ ") (B.43)
where the last equality is by Assumptions 4.1(f) and (B.42)). (B.43|) combined with the Markov
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inequality yields
1

B, = O,(|k|Z n"2). (B.44)

B.2 Proof of Theorem 6.1

Proof of Theorem [6.1 First note that

lim inf FimeT Pr g (¥1(af) € Cly, (1 —p,t)|T, > t) = liminf Pr g, (¢Y1(a)) € Cly, (1 — p, t)|T,, > t)
n—oo FoEFn n—00
(B.45)

for some sequence {F),},>1 such that F,, € F, for all n. And by the definition of liminf, there

exists a subsequence {a,} of n such that

lirr_l)ianr r,(V1(a)) € CLy, (1 —p, t)|T, > t) = li_)m Prg, (¥1(a)) € Cly, (1 —p,t)|Ts, > 1).
(B.46)

By the completeness of the Euclidean space, there exists a subsequence {u,} of {a,} such that
P01y — po1 and n*?Ep, [6(Z;a; )] Jou, =7 (B.47)
for some po; € [—1,1] and r € [—-C, o0]. Also since {u,} is a subsequence of {a,}, we have

lim Prp, (¢Y1(a]) € Cly, (1 —p,t)|T,, > t) = li_)m Prg, (¥1(a)) € Cly, (1 —p,t)|Ts, > 1).

n—oo
(B.48)
Next, we show that
li_)m Prp, (Y1(a]) € Cly, (1 —p,t)|T,, >t) =1—p, (B.49)
which combined with the above displays shows the desired result.
Let X1, = n'2(¢y(Q1,) — Y1(af)) /vy, - Then
Un(ay) € Cly, (1 —p,t)
& C1pp(t) < X < C1,1-pj2(t)
A p/2 < \P(Xl,nv TTL - ta/ﬁOl,n) < 1- p/27 <B50)

where the last lines follows from the strict monotonicity (increasing) of W(-,T,, — 1,7, ,) and this
monotonicity can be shown by taking the first derivative and using the strict monotonicity of the

hazard ratio of the standard normal distribution. Therefore,

Prp, (v1(a}) € Cly, (1 —p,t)|Ty, > 1)
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Pre,, (p/2 < V(X1 u,, Tu, —t, Po1,) < 1—p/2,T0, —t > 0)
- Prp, (T, —t > 0)

Pre, (p/2 < U( X1, T, =t Por,) <1 —p/2, Tyt > 0)
- Prp, (T, —t>0)

Xl U, Xl
’ —>d <7 ) (B.52)
Tun —t X() +r—t
-~ 1
where (X(),Xl) ~ N 02, por .
por 1

Elementary algebra show that W(c, h, p) is continuous on R x (0,00] x [—1,1]. With this
continuity, we can conclude that the last line of (B.51)) converges to

. (B.51)

Lemma 6.1 implies that

Pr(p/2 < U(Xy, Xo+7—t,pon) <1—p/2|Xg+7r—1t>0). (B.53)

Let X = p01)~(1 — Xo—r +t. Then X{ is independent of X, and the above expression can be

written as
Pr(p/2 < U(X1, por X1 — X5.po) <1 —p/2|pn X1 > X5)- (B.54)
Note that
[(I)(iﬁl) — (b(l‘o/pgl)]/[l — (I)(l'g/p()l)] lf Po1 > 0 and Zo - R
‘I’($17P01i€1 - 9507001) = ® $1) if por = 0 or po1z1 — 29 =00 .

(
O (z1)/P(x0/po1) if po1 <0and 2o € R 555)
B.55

If po1 # 0, ¥(x1, por1r1 — Tg, po1) is the conditional CDF of X, given p01)~(1 > 1 for any o € R.
Thus, \If(ffl, p01)~(1 — Ty, p01)|p01)~(1 > xy ~ Uniform[0, 1]. But since X is independent of X, that
implies

U(X1, pn X1 — X, por)|por Xy > Xg ~ Uniform|0, 1]. (B.56)

On the other hand, if po; = 0, by the independence between X and X1, U(z1, po11 — Xo, Po1)
is the conditional CDF of X; given X < 0, which means that (B.56) also holds for py; = 0.
Therefore, the expression in (B.54)) equals 1 — p. This concludes the proof of (B.49). m
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B.3 Proof of Theorem 6.2

Proof of Theorem 6.2. Consider an arbitrary sequence {F, },>1 such that I}, € F for all n. It
is sufficient to show that
liminf Pr g (6" € Clp(1 —p)) > 1 — p. (B.57)

n—oo

Consider the derivation

Pr g, (0% € Cly-(1 = p)) < Pr g, (Go(v1(a}), 0a(), 63) S5 G (101 (), v2(03), €5) < X3(1 — p))
= Prp, (Gl 1 26 G, < X3(1 D))
—Pr(x; <x3(1—p) =1-p, (B.58)

where the convergence holds by Lemmas 6.1 and [B.2{and ppi(2X¢) > C~!. This shows (B.57)) and

in turn proves the theorem. m

C Verification of the High-level Assumptions in the Mean-

Regression Example

The assumptions needed for verifying the high-level assumptions in Section [4] of the main paper
in the mean-regression example in Section [5| of the main paper are given below. Assumption
imposes conditions on the data structure and the finite-dimensional approximation. These
are commonly used conditions in the literature (see, e.g., |Andrews| (1991b), [Newey| (1997), Chen
(2007), and Belloni et al| (2015))) ]

Assumption C.1 There ezist positive constants Cy, 11, ro and nondecreasing sequences {E, try>1
and {&, try>1, such that, for any Fy € F and for j =1,2:

(i) {Z;}i>1 are i.i.d. draws from Fy;

(ii) sup, cx, | (z;) — Py (xj)’ﬁzj’FO‘ < Cik; "7 where r; > 0 and Br, ks defined in equation
(5.4) in the main paper;

2

() sup, e, | Pey()||” < &7 and

(iv) the eigenvalues of Er, [Py, (X;) Py, (X;)'] lie in the interval [CT", Cy].
Assumption below imposes condition on the error terms. For j = 1,2, define u; =Y —

o (X;). It is useful to note here that wf , = Varg, (uf —u3) /4 and oF, ,, = wf . + (2n*)"H(n —

23For some approximating functions such as power series, Assumptions ii-iv) hold under certain nonsingular
transformation on the vector of approximating functions, i.e., BP(:), where B is some non-singular constant
matrix. Since the nonparametric series estimator is invariant to any nonsingular transformation of P(-), we do not
distinguish between BP(-) and P(-) throughout this paper for notational convenience.

24



1)tr(<HI:01,kDFo,k)2> for this example.

Assumption C.2 There exist constants b > 4 and Cy > 0 such that for any Fy € F:
(i) Er, [‘w;o{* (u? —u3 — Eg,(u? — u%))|4] < Cy whenever wg, , > 0; and

(ii) Er, [|uil’| X; = z;] < Cs for all z; € X; for j =1,2.
Assumption C.3 For any Fy € Fo, we have Fy € F and Eg, [u} — u3] = 0.

Let & = &, + &k, Assumption imposes conditions on the numbers of series terms in the

finite-dimensional approximation, and on the divergence of na%n -

Assumption C.4 For any sequence of DGP’s {F,},>1 such that F,, € F, we have, for the con-
stant b in Assumption and the constants 1, ro in Assumption

(i) (n'20p, )" (1 + [kl (& log(n))/2n~(/2710) = o(1);

(i) masgj12(no, )~ ks (G dog(n) V2 (k12 40 (1/210) = o(1);
(iii) &iclog(n)n= =2/ = o(1);
(iv) max;oyz (nk; ™ + &, by log(n)n ") = O(1).

The following theorem summarizes the main results in this section.

Theorem C.1 Assumptions together imply Assumptions in the main paper.

This theorem is an immediate consequence of the following Lemmas below. Each

lemma is proved immediately after it is stated.

Lemma C.1 Under Assumptions and Assumption in the main paper holds with
C= max{8C’2, 20102}

Proof of Lemma [C.1  Assumption [4.1f(a) is implied by Assumption [C.1|i). Assumption
[.1|(b) holds because Er,[¢(Z;a(Bx))] is a quadratic function of By for any Fy. Assumption [4.1f(c)
holds by the first order condition of of. For Assumption [1.1(d), first note that

Eg, [E(Z; a}o)ﬂ = FEp, [(u% — u%)ﬂ /4 < ER, [uﬂ /2 + EF, [ug] /2 < Oy (C.1)

where the second inequality is by Assumption (ii) with Cs specified in that assumption. Since
u, = uj + aj(z;) — o (x;), by Assumptions (ii) and (ii),

4
X; = %} < 8Ep, [uj| X; = x;] +8|aj(z)) — aj, (z;)

< 8C,+8CHk; " < C (C.2)

4
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for j = 1,2 and uniformly over z; € &;. Moreover,

Ery [1as(Z i I'] <23 Ery |ut, [Py, (X) e, (X5)]°]

j=12
<O Gutr(—Hpu,) <C Y & kj = Cé K], (C.3)
j=1,2 j=1,2
where the second inequality is by and Assumption [C.1fiii), and the third inequality is by
Assumption [C.1|(iv). Hence Assumption [4.1{d) is also satisfied. Assumption [4.1|(e) holds by
Assumption [C.2[i). For Assumption [£.1(f), the first part of it holds by Assumption [C.1fiv) and
equation (5.7). To show the second part, first note that, under Assumptions [C.1[iv) and (C.2),

Pinax (EF [uszkj (X;)P,, (Xj)]) < Cpmax(—Hpy i) < CCy for j = 1,2, (C.4)

which together with the form of Dp x in (5.6) and the Aronszajn’s Inequality (see, e.g., Theorem
I11.2.9 in Bhatial (1997)) implies that pmax(Dgx) < 20C; < C. This verifies Assumption [4.1](f).
|

Lemma C.2 Under Assumptions [C.2,[C.4i) and [C.4(iv), Assumption of the main paper
holds.

Lemma C.3 Under Assumptions [C.1], [C.2] and [C.4], Assumption of the main paper holds.

The proof of Lemmas and makes use of the following three lemmas. The first one of
which follows from Lemma 6.2 of Belloni et al.| (2015)), and the other two are proved at the end of
this section.

In the rest of this section, we use the new notation U,, = [u;1,... ,ujyn]/ for y = 1,2. Let

5;;,% be abbreviated as B}';j. Let oz}';j(-) = ij(~)’ﬁ,’§j.

Lemma C.4 Suppose that Assumptions (i), (iii) and (iv) holds. Then under any sequence
{F.}n>1 such that F,, € F for alln

2

|27 P Py = B, [Py (X) Py (X5)]| = 06, Tog () ™). (C:5)

Using Lemma [C.4] Assumptions [C.1iv) and [C.4|iv), we have
0;1/2 S pmin(nilP;gj,nij,n) S pmax(nilpggj,nij,n) S 2Cfl (C6>
for y = 1,2 with probability approaching 1.
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Lemma C.5 Suppose that Assumptions [C.1] [C.2] [C.4[ii) and [C.4{iv) hold. Then under any
sequence {Fy, }n>1 such that F,, € F for all n and for j = 1,2, we have

(0) B, — B, I = Op(kyn ), and

(b) vé(ﬁk], —Br,) = (A)p(n_l/QH’ynH) for any deterministic k; x 1 vector sequence {7V, }n>1

(¢) (B = B) D (B = B) = lam(0q) (Hp, (D scH s, 1) lan (05) + 0p(0F, )

Lemma C.6 Suppose that Assumptions [C.1} |C.2| and |C.4(iv) hold. Then under any sequence
{F.}n>1 such that F,, € F for all n, we have

2
(a) forj=1,2,n"' 371, )akj (Xji) — o (Xj,i)‘ = Op(kn™1), and
(b) for dusc = (kiy/€y + kan/€ra)\/og(m)n ™/ + (k™ + ky ™ )n ™2 + k7 4 by,

_ L Con(0g) Hot \ lon(ad)
ln(Qy) = (2n) 71 Z (u%2 — ugl) — k g"’k LA O, (0nx)-
i=1

Now we present the proofs of the lemmas above.
Proof of Lemma|[C.2] First we verify Assumption [4.3|(a), which is a quadratic expansion of
0, (Qx). In Lemma[C.6[(b), we have derived the second order expansion where the remainder term

is of the order

Sne = (kin/Exy + kan/Ery) (log(n) 2032 4 (k7™ + k™) n Y2 4 k72 4 ky 272, (C.7)
Observe that

1
nz (5n,k

< 2max
Uan Jj=12

1 [mj log(n))"/2
= — INax

nl/2

+ T
NoFE,n kj] OF,,n

— /273 2y | =
REVEI— + (n/7k; 7+ nk; )] o(1), (C.8)
where the last equality holds by Assumptions[C.4[i) and (iv). This combined with Lemma [C.6|(b)
implies Assumption [4.3{a).

Assumption [£.3|(b) is directly implied by Assumptions[C.4[i). m

Proof of Lemma [C.3] We start with Assumption [{.4[a). First, Lemma implies that
|H, — Hp, i ||> = O,(&clog(n)n), where & = &, + &,. Then for 6, in Assumption [4.4{a), the
first part of Assumption (a) follows the derivation: for j = 1,2

2 2 2 )
02 n*og ., n

&, In(n)n~! B {fk] log(n)|k|* &, log(n) }
- = max
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{ L &, lk[*log(n) fkjlog(”)}zo(l) (C.9)

Y
nog o, n n

where the last equality holds by Assumptions [C.4i) and (iii).
For the second and the third parts of Assumption (a), note that by arguments similar to
those in the proof of Theorem 4.6 in Belloni et al. (2015), we have

SR s Sk log(n ~ & log(n
1D, — Dr(eq)|I> = O, (2?251))) and || Dy (ay) — Dp, xl* = O, <1;T2§b)) : (C.10)

The second and the third parts of Assumption [4.4|(a) follows from the derivation:

Silog(n) maX{ 1 &lk|*log(n) £k10g(n)} =o(1)

nl-2/b§2 na% nl—2/b T opl-2/b
where the last equality holds by Assumption [C.4(i) and (iii). Thus Assumption [4.4{a) is verified.
Next, we verify Assumption [£.4b). By Lemma [C.5(a) and Assumption [C.1|iii), we have

2

= O, (&, kn™"). (C.11)

sup |, (z;) — o (z;)
Tj E/Yj

Using Assumption ( i) and Lemma |C.6) m ) and ( -, we get

n
= Op(gkj k]n_l)Op(k]n_l)
1 &k?
= U%n,nOp (n‘j%?n,n n ]> = Op(ai“n,n)a (C.12)

where the last equality holds by Assumption[C.4|i). Using Assumptions[4.1](f),[C.4iii) and (C.10),

we have

0 < prmax(Dn(0)) < 2C and 0 < pax(Dn(a)) < 2C (C.13)

with probability approaching 1. By Lemma |C.5| m ) and -, we have

nt E uk i

2

',7; — O{Zj (Xj,i) = Op(kjn_l). (014)
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Using the Cauchy-Schwarz inequality, we get

2

n 3
Y g [akj (Xji) — o, (Xj,i)]
i=1
i |0 (X)) — g (XG)
i=1

n 4
X n,1 Z |:’Oékj (Xj,i) — CKZJ_ (Xjﬂ‘) 1

= O, (kjn™")Oy (&, kin ™) = Op(&i,kin ") = 0y(0;, ) (C.15)

n
< nt [uz :

|

where the first equality is by the third line of (C.12)) and by (C.14)), the second equality is by the
last line of (C.12), and the last equality holds by Assumptions[C.4(ii). Similarly, we can show that

2
—o)(ok,)  (C16)

2

Zuk i [ak - ay (X;, )] ‘ak_j (Xji) — g (Xja)

for (j,—7) = (1,2) or (2,1). Also, by definition,

UZ, @) — U(Z, a3) = [, (Xa) — af, (Xo)|* /2 — [, (X1) — af, (X0)|* /2
+ gy [y (X1) — o, (X1)] — g, [0k, (X2) — o, (X2)] - (C.17)

which together with - and ((C.16)) implies that

n—lzw W) — U Z, o)
=S gy [Go (X1) — 0, (X0)] = gy [y (X2) — af, (X2)]|” + 0p(0%, ). (C.18)

=1

By (C.14),
n~l Z g, [Qn, (X1) = af, (X1)] = g, [Qhy (X2) — af, (X2)]|* = Op((kr + ko)n™Y). (C.19)

Next note that

uZ — 2 u2 — 2
UZ,o) = UZ,a}) = =5 = =5
2 2
- (UI _QUkl> +(u ukl)ukl



o (U’? — uk2)2

5 — (ug — Upy ) Uy - (C.20)
By Assumption [C.1|(ii),
" 4
_ —4r;
nY (us — )t = Z 2G| = O0pk ). (C.21)
i=1 =1
By Assumption [C.[(ii), (C.2) and the Markov inequality,
n ) o
nTtY (i — i) g, = Z uf g (Xp0) — o, (X0)| = O,k ™). (C.22)
i=1
Combining the results in (C.20)), (C.21)) and (C.22)), we get
nY UZ ) = U2, )| = Ok + ky 7). (C.23)
=1
By Assumptions [C.1fi), [C.1f(ii) and [C.1|iv) and (C.20)
" 2
EF, [ nt Y (U7, 0f) = UZ,03)) Py (X5) = Er, (U7, 0f) = U(Z, ) Py (X5))] }
i=1

< ZEFn UZ,05) = UZ.0}))* Py () P, (X))

< O 4 5T B, [P (X Py ()] = O™ + k™)™, (C.24)

By Assumptions [C.1f(ii) and [C.1|iv), (C.2) and (C.20)

| Er, [((Z,05) = 47, 03)) P, (X
= pax(Br, [P, (X)) Py (X)) 1) B, [(U(Z,00) = U7, 00))] < CU™ + k5 ™). (C.25)

Using Lemma ( , - - the Markov inequality, the Cauchy-Schwarz inequality

and the triangle mequahty, we get

n! ' (U2, ax) = U(Z, q))(U(Z, eq) — U(Z, 042))‘
= |n7") (U(Z,ay) —UZ,0)) P, (X;) (5 — By

i=1
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< |Br, [(60Z,03) = 0Z,03) Py (X)) Bic = B)| + O™ + k™)l ™)
= Oyl Br, [(£(Z.0) = €(Z.03)) P, (X)] [ n™/) + O((ky ™ + by ™)l ™)
= Ok 4+ k™) (0™ 4 k")) = (0%, ,) (C.26)

where the last equality is by Assumptions [C.4[i) and [C.4(iv). By Assumption [C.4] (C.18)), (C.23)

and (C:21),

n! Z 10(Z, ay) — U(Z, o))
= nt Z ‘Uln (G, (X1) — g (X1)] — gy [Qk, (X2) — o, (X0)] ‘2 + op(a%mn)
= (Bi— B D) (B — Bi) + 00, ,)- (C.27)

By the Cauchy-Schwarz inequality;,

(Bie = 62 (Duli) = D, ) (B = B2)
<[ — i ||t — D i

= Op (w> Op((/ﬁ + k‘g)n_l) = Op(o-%n,n> (028)

nl/2—1/b

where the first equality holds by (C.10) and Lemma [C.5{(a), and the second equality holds by
Assumptions (ii). Combining ((C.27)) with (C.28)), we have

1 < ~ . - ) 3 ;
n Z [U(Zi, o) — U(Z;, an)’2 = (Bx — Bi) D, k(B — Bi) + Op(@%n,n)a (C.29)
i=1
which together with Lemma (c) implies that
- Z |6(Zi, @) = € Zi, )P = Lon(0d) H sk D s H g Lo (07) + 0p(07F, ). (C.30)

This verifies Assumption [1.4|(b).
We next verify Assumption (c) First, notice that by the Cauchy-Schwarz inequality,

> i1 (UZi, 07) = Lr, (7)) (@, (Xis) — af (X54))

2
nog o
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*\)2 7-1_1 @kj Xj’i —Oé]:. Xj,i '
< ThalllZo ) — try(02) Zim [ 50 ~ e (6]

2
nog, ., nog .,

where the equality holds by the Markov inequality, Assumption [C.1[i), Er, [(¢(Z;, o) —Lp, (a2))?] <
0%, n» and (C.12). That together with (C.17) implies that

Z (U Zi, ar,) = LR, () (U(Zi, ) — U(Zi, o))

nog
| S 0Z03) ~ 03 e 2o B = )
nog .,
_ Br,[(U(Zis03) — e, (03) bas( Zis i) | (B — Bi)
O-%‘n?
2 [(U(Zi;07) = b, (@ ))gak(Zlvak) — B, U(Zi; 0 lax(Zi: ) | (B — B
nog
op(1). (C.32)
Let v = Er, [((Z; a;)ax(Z; 05)] /07, n- Then
Y Vn = Fn EFn [ ( )Ea,k(Z§ ay) (D%fk)Jr] Dp, xEF, [(D%fk)Jrga,k(Z;O‘k) ( )}
Fn n WFE, n WFE, n
UZ; oy . UZ; o, .
< o, |20,z 07| B |2z 0} < 00 e
Fnn Fn,n

where the first inequality holds by Assumption [4.1f) which has been verified in Lemma and
the second inequality holds by Lemmal[E.1} Equation (C.33) together with Lemma [C.5|(b) implies
that

Er[0(Z;03)lap( Z; 03) ) (Bic = Bi) /0%, .0 = Op(n™ 0! ) = o(1). (C.34)

where the second equality holds by Assumption (1) Now consider,

Er, [IU(Z, a}) = tr,(a}))las(Z, o) ']

2

O-Fn
UZ,ak) — Ll (
= Ep, it 37 i Z up, Pr,(X;) Pr (X;) | - (C.35)
Fnin j=1,2
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Using the Holder inequality, Assumptions [C.1f(iii)-(iv) and (C.2)), we get

(U(Z,a) 2— lp, (a;»Quszkj (Xj)'ij (X;)

JFn,n

EF,

n

N

< |Br, [|(6(Z, 0%) = b, (0)) Jomnl']|?

]
< Gy |6, B, [P, (X,) Py (X,)]|? = O(€7 K2), (C.36)

k‘j]

Er,

n

Ui, Py (X5) Py (X5)

J J

1
2

1
<Cy

Ep, Uuijpkj (X;) Pry (X;)

which together with the Markov inequality implies that

1> 5 (U2 ) = Lr (a)) bax(Zi, o) = B, [0(Zs, 03 baxc(Zi )] | :Op<

nop . =,
(C.37)
Then we have
S Zs ) = O, (03) s Zi3 050) = B, [0(Zi5 05 b Zis )]} B = i)
na%mn
i1 15 — Bl
S Op (Z gk] ] ) 11;2—
j=1,2 T Fnyn
- (Z& ) R
7j=1,2
1 3
1 > 12 39 JSE
= Op (n1/2—0m) Op T = Op(l), (038)

where the first inequality holds by the Cauchy-Schwarz inequality and (C.37)), the first equality
holds by Lemma ( ), the second equality holds by arranging terms and the last equality holds
by Assumptions [C.4(i). By (C.32), (C.34) and (C.33),

2 i1 (UZiy aq) — r, (a3)) (U Zi, o) — U(Zi, o))

2
RUan

= 0,(1). (C.39)
By the Cauchy-Schwarz inequality;,

o (U2, ) — e, (@) (U Zi o) = U Ziy o)

244
n OFn,n

33



n

n_1z(5(zz‘704 )2 lr, (a Z U Z;, o) — U Z, 0))?
ag
=1 F

IA

n,T =1 O-ann

= Op((k ™ +ky)op2,) = 0,(1)

(C.40)

where the equality is by - Assumptlons C.2{i) and [C.4 - iv), and the Markov inequality.

Assumption ( ) is implied by (C.39) and ( -

Assumption {4.4{(d) is implied by Assumptlon CAiv). m

Proof of Lemma [C.5  Proof of the result in part (a) is standard and follows the similar

arguments in Newey (1997). We include it for completeness. By the definition of Ekj
/Bk‘j - 6;; - (P;ﬂj,nijyn>_1P;€j,nUkj7n
where Uy, , = [ukj,l, - ,ukj7n}/. Therefore

||Bk’J - /BI:J H2 = Uﬁej,nij’”(P;j,nijvn)_2P;€j,nUkj’"
< (pmin(n_lpzj,nij,n))_2n_2U;c]-,nP1€j,nP;fj,nUijl

By Assumptions [C.1|i) and (C.2),

k;j n 2 kj n
> (Z Pj (Xj,i)ukm) = B [(pu(Xs)ur, 1)°) < nCtr(—Hpyx,),
=1

=1 \i=1 i=1
which together with the Markov inequality and Assumptions (iv) implies that

=277/ / _ o1
n Ukj,nij,nij,nUkjan - Op(k]n )

The result in part (a) follows by (C.6)), (C.42) and (C.44).

For part (b), first observe that

’Y;L(/Bkj - /BZ]) - ’y;L(P;{)j,nij,n)_lPﬁi‘j,nUkjvn
= 0 'y (=Hp,k) Pl Uk
+n_1’7;1((n_1P;€j7nij,n)_l - (_HFn,kj)_l)P;c]-,nUkj,n-

By the first order condition of oy ,

EFn [ukJPkJ(X_])} = ij><1~
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By the definition of Hp, ;, - Assumptlons m and - iv), and (| .

2

D (= Hp, ) Py (X un,

i=1

2
-=.

- iEF" [‘77/1<_HFn:kj)_1P’fj (vai)ukjviﬂ
i=1
< nCEp, U%(—HFn,kj)_Iij (Xj,i)|2]
= nCy(=Hr, 1;) " = O(n|ll?), (C.47)
which together with the Markov inequality implies that
0~ Hr )" Pl Usyn = Op(n™ 2|7 (C.48)
By the Cauchy-Schwarz inequality,

’n_17;((n_1p;€j7npkj,n)_1 - (_HFn,kj )_1)P;€j,nUkj,n

. [ Hn—lej,nij,n + Hp, i, (Ut o Pry (P, Pryn) Py Uy )Y
= Op((&xk;log (k) *n~|ml)) = ( 1/QH%H) (C.49)

where the first equality is by Assumption C.1[iv), (C.5)), (C.6) and (C.44)), the last equality is by

Assumption [C.4|iv). Combining the results in (C.45), (C.48) and (C.49), we prove the result in
part (b).
For part (c), by the definitions of Bk and [y, we have

Bk - ﬁlﬁ = _(ﬁn)ilza,n(al*{)- (0'50)
Hence, we can write
(Br — B2) Dy (B = B) = Lo (@) (Ho) ™ Dy se(Hy) ™Vl () (C.51)

Using ((C.44)) and the Markov inequality, we get

Com (i) Tam(or) = Y n?Up  Pr, P Uk = Opl(ky + ka)n ). (C.52)

7=1,2
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Note that

lon(cit) (Hy )_1DFn,k(ffn)_1 — Hp v D acH g ) lon(0)

= lan(i) (Ha) ™ (Hr e = H) Hy 'y Dy ac(Hy) ™ an ()
+ Can(03) Hp 1 D s Hy) ™ (H pe = Ho)Hp !\l (o). (C.53)

By the Cauchy-Schwarz inequality,

Con(0ip) (Hn) ™ (H g ae = Hos) Hp, \ D ac(Hi) ™ o (0)
< [lan(01) (Hn) lan(0f)[V? X ||Hp, 1 — Hy||%
|Za7n(a1*<)/(H )_IDFn kH};nQ,kDFn (Hn)_lza n(al*c)|1/2

< Pmax(DF,, )pllll/aQX(HFn ) Prmax ((H. }Ean lgan( 2| X N Hr, x — Hn”
= Op((k1 + k2)n 1) Op((6x 10%(”)” )1/2) = 0p(0F,, 1) (C.54)

where the first equality is by Assumption [£.1(f) (which has been verified in Lemma [C.1]), Lemma
[C.4] (C.6) and (C.52), the last equality is by Assumptions [C.4(i). Similarly, we can show that

Con () Hp '\ Dy (Ho) ™ (Hp, s — Hy) Hp \Lon(0i)| = 0p(0%, ) (C.55)
which together with (C.53]) and (C.55]) implies that
Con () (H,) ' D s (H,) ™ = Hp !\ Dy scH Vo (05) = 0,(0%, ). (C.56)

Then part(c) is proved by collecting the results in and ( -

Proof of Lemma Proof of the results in part (a) and part (b) is standard and follows the
similar arguments in Newey (1997). We include it for completeness. Let Uy, = [ug; 1, .., U, 0.

By the definition of &, and aj
gy (Xj0) — o, (Xj4) = B, (X50) (B, — Br;) (C.57)

which implies that

2

Tty ‘akj (X)) — o, (Xj)

=1
= By, — BL) (n7'Py Py ) (B, —ﬂZ)
< (0P Py B, — 8,

O, (k™) (C.58)
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where the second equality is by Assumption [C.1|(iv), (C.6) and Lemma [C.5(a). This shows part

(a).
Now we show part (b). By (C.41)) and (C.57)),

n

a3 = 060 = S o = @ (60—, 0,0 ]

i=1 i=1

n n
= 'Y Wty ‘akj (X54) — af, (X.)
=1 =1

2

=270 (@ (X 0) — o, (X))
=1
= n—lizﬁ —n U P (P Pron) P Uy (C.59)
- k:j,’i k’j,n kj7n kj,n kjyn k’j,n k/'j/”/' ‘
=1

Since uy; ; — u; = af(Xj,) — o, (X.),

n n
-1 § 2 -1 § 2
i=1 i=1

= 07 (ugs —w)? =207y (up g — ui)us
i=1 =1

= 'Y () (X)) — (X)) + 2071 Y (of (X)) — af (X)) (C.60)
i=1 =1

The pseudo-true value of the parameter can be written as the limit of a sequence of sieve approxi-
: * o8} * * oo : o8} 2
mation: o (z;) = X552, pya(a5) 55 where (85,)22, = argminBr, [V — 3%, piu(X;)8,°]. By the

B 1ERVI

definition of u; and the first order optimality condition of (85,)72,,

Er, [ujp;(X;)] =0 (C.61)

for j = 1,2 and for any ¢ = 1,2, ..., which implies that E, [u;c}(X;)] = 0 and Ep, [ujof (X;)] =0
for 7 = 1,2. Therefore

n 2
EFn n! Z(O@ (Xj,i) O‘;(X] z))uz
=1
— n*) Ep, [(szj(Xj,z‘) - @;(Xj,i))QU?] = O(n~'k; "), (C.62)
=1
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where the first equality is by Assumption [C.1fi), the second equality is by Assumptions [C.1ii)
and [C.2[(ii). Combining the results in (C.59)), (C.60)), (C.62) and applying Assumption [C.1f(ii) and
the Markov inequality, we deduce that

1 — N .
5 2 1Y = ()] = Y= a3 (X0
=1

1 . o
= UL P (Pl P ) P Ul Oy 0 ?) 4 Ok ™). (C63)

By (C.6) and (C.44)).

;i‘j,nPk’j7”(P;€j,nij7”)_2P;€j7nUkjvn
< Pmax((07PY Py ) )P0 Py P Uy = Oy (kyn™?) (C.64)

and similarly
nilU;j’nij,nH;kajPﬁgj’nUkj’n = Op(k;). (C.65)

Using the Cauchy-Schwarz inequality, Lemma [C.4] (C.64) and (C.65), we have

2

! ! —1 / !/ —1 /
‘ Ul nPryn (Pl nPryn) " Pl Uk Ul n P (—Hp )™ Pl Uk
2

n n
2

o ‘U;Cj,nijvn(P;Cj,nijyn>_1(n_lpkj,nij,n + HFnykj)<_HFnykj)_1P;€j,nUkj»n
n

2
X ( ;i:j,nijyn(P;i‘j,nPk‘jyn)_2P;€j,nUkj7n)X

U, o PrnHz? Pl Uy
<k o ki = Op(log(kj)gkjk?n’?’). (C.66)

—-1p/
S ’n ij,nijﬂ + HFn:kj

n

That together with (C.63) implies that

n

1 N 2 . 2
o [|Yz — g, (X50)|" = Vi = (X)) ]
i—1
U?i‘ nij7n<_HFn7kj)_1P;c- nUkj,” _ —r; —2r;
i on? = + Oy ((log (kj)&x,) 2 hyn ™ 4 k"0 ™2 4 k77). (C.67)

Now observe that £,(dy.,) can be decomposed as

n

1

Q) = o D Y — o (X)) — Vi — a3 (Xa,)|?]

=1
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n

1 =~ *
* % Z UYl - Oy (*Xl,i)’2 - |Yz - a1<X1,z‘)
=1

’

1

2n 4
i=1

[1Y; = G, (Xe)[* = ¥ — a5 (Xo,)[”] (C.68)

which combined with (C.67) proves the lemma. m

D Example II: Nonparametric Quantile-Regression

In this section, we illustrate the use of our test for comparing two nonparametric quantile regression
models based on the expected check function criterion.

For 7 = 1,2, consider the model
Y:oz;(Xj)—i—uj, EFO[]{Uj S 0}|XJ] =T, (Dl)

where 7 € (0,1), u; is a unobservable error term, o () is a unknown function and Fy denotes the
joint distribution of Z = (Y, X3, X3). The regressors X; and X, in two equations may be nested,
over-lapped or strictly non-nested. Note that even when the regressors are strictly non-nested in
the intuitive sense (i.e., X; and X, do not contain any common variable), models represented by
the two equations in general are still overlapping according to the definitions in Section of the
main paper because it may be possible that af(X;) = a3(Xs) = Constant.

Suppose that the unknown function «}(-) of model j belongs to the set A;. We use the

finite-dimensional approximations:
'Aj,kj = {akj () ey () = Oéj(ﬁkj) = ij (')lﬁkj : /Bkj € Rk]} (D2>

where Py, (-) = [pj1 ()5 Djg, ()]/ is a (k;-dimensional) vector of basis functions. Let p,(u) =
(I{u <0} — 7) u. Define

Br,r = 18 min Fp, [p-(Y — Py, (X;) B,)] forj=1,2. (D.3)
Br; €R™I

We use B,’;‘j to denote the counterpart of 5,’:]_’ r,» When the expectation in 1} is taken with respect
to any DGP F € F. We suppress the dependence of sz on F' for notational convenience. The

approximate M-estimator in this example is defined as

o~

By, =arg max n 'Y p.(Y; — Py (X;) By,) for j = 1,2, (D.4)

k..
ﬁk]- ER™I i=1
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In this example, the pseudo-density ratio function is
UZ;a) = pr(Y —on (X)) — pr (Y = (X)), (D.5)

The score function ¢, x(Z; ) in this example is

— Y <o (X P (X
ga,k(Z;Oo _ (T { = 0[1( 1)}) k1 ( 1) : (D6)
(HY < as(X3)} = 7) P, (X2)
which combined with the formula in (3.11)) defines
2 P (X)) P (X1) =ty Py (X1) Py (X
Dr=Ep | i (X1) By (X0) | Tt i (X1) s ( /2) | (D.7)
_Ukluk‘zpk‘Q (XQ)Pkl (Xl) quPkQ (X2>P/€2(X2)

where uy; = I{Y < o (X;)} — 7. The Hessian matrix Hp,; is

Hryp, = = Ery | fu, (A1) X5) P, (X;) Py, (X,) ] for j = 1,2 (D.8)

where A(a;) = a;(X;) — aj(X;) and f,; (-] X;) denotes the conditional density of u; given Xj. In

this example, Hp, x can be constructed using (3.10)) and (D.8g]).

We next provide the sufficient conditions for Theorem [4.1]in this example.

Assumption D.1 For any Fy € F and for j = 1,2: (i) fu, (uj|z;) < C uniformly in u; and
zj; (1) Ofu, (uj|x;) /Ou; < C uniformly in u; and x;; (i) fu,(0lz;) > C~' uniformly in x;;
(iv) & kj(log(n))*n™" + k; 7 log(n) = o(1); (v) Eg, [pr(u1) — pr(uz)] = 0 when Fy € Fo; (vi)
Eg,[uj] < C for j = 1,2; (vii) there exists a 6 > 0 such that E [‘w;ol’*(pT(ul) — pT(uQ))‘QM] <C

whenever w, , > 0.
Let 00, = (k;log(n)n ™) 2, 81 ju = Gojn + k577 and 85, = 0o n&y” + k.

Theorem D.1 Suppose that Assumptions and hold, where sz,Fo in Assumption (zz)
15 defined in . If for any sequence of DGP’s {F,,}n,>1 such that F,, € Fy, we also have

1 01,4 (K;02,jm ] Y2kt
5— + max 1in (Kj02.5.0 108 (1)) + — =o(1), (D.9)
TLCTFn’n Jj=12 UFn,n k:]j O-Fnyn
then under F,, for all n,
nl,(a —|—12trﬁna* H:!
(Qx) + (1/2)tr(Dn(oq) H, ) Ly N(O, 1), (D.10)

2 n=1 .2
\/”“Fo,* T 5 Wh Uk
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where ﬁn(al*() =n"' 3" Pux(Xi)Pux(X;) and Py (X)) = [ug, Pr, (X14)'s gy Pry (X2,4)']-

To prove Theorem [D.I] we need to derive some useful lemmas. For this purpose, we introduce

some notations and preliminary results in the literature.

Under Assumptions and , we can invoke Theorem 1 in Belloni et al.| (2011) to get

B, — 8%,

-0, <k;/2n_1/2> for j =1,2. (D.11)

Let N = {8, € R 1 ||, — 8,

~

< 0507]-,”} where C' is some fixed and large constant. Then

we have 3, € Nj, with probability approaching 1. Using (D.11), Assumptions |C.1{ii) and (iv),

we have
2 2 —op
sup  Er, [\P,;xwkj—a;(x» ]gc swp (|8, — 8[|+ 17| = 008, (Da2)
/Bk]-ENj,n 5kj€/\fj,n

for any F, € F. Moreover, using (D.11)), Assumptions [C.1[(ii), (iii) and (iv), we get

< sup [Hﬁkj s ;ﬂ/“’] +Ck;" = O(0a5) (D.13)

Bkj E-/\/},n

sup ’P,gj (24) Bk, — aj(x;)
6kj e-/\/j,n

uniformly over z;.
For ease of notations, we define A;(ay) = a;(Xj;) — o (Xj,) and A(ey) = a;(X;) — o (X;) for
j =1,2. Then by definition,

pr(Y —a;(X;) = (I{u; < Aay)} —7) (u; — Aey))
= (Hu; <0} —7)uy — (I{u; <0} —7) Aeyy)
— (H{u; <0} — Huy < A(ay)}) (uj — Aley)), (D.14)

which together with p. (Y — aj(X})) = (I{u; <0} — 7) u implies that

pr(Y — (X)) — pr (Y — (X)) — (I{u; <0} —7) Aleyy)

J

= (H{u; <0} = Huy < A(ay)}) (uj — Alay)). (D.15)

The above expression is useful to derive the expansion of the QLR statistic.

Let p, [9(2)) =n D20 [9(Z;) — Er, [9(Z;)]] denote the empirical process indexed by function
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Lemma D.1 Under Assumptions and [D.I] we have
po [(Hoty < A@)} = Ty < 03) 5] = Oy (S m8l%,) (D.16)

ProofofLemma Define 7 j,, = { (I{u; < A(P, ( ~)’Bk )} — I{u; <0}) uj: By, € Njn}
for j =1,2. It is clear that the VC-dimension of F j, is O(k;). By - we have

; suﬁ ‘(I{uj < APy, (Xj)’/@kj)} — H{u; < 0})u]~| < , suE ‘A(ij(Xj)lﬁkj)‘ < Coyjpn. (D.1IT)
kje jn k:ENjn

J

By definition,

Eg, [ (H{u; < APy (X5) Br;) } — Huy < 0})%‘\2}
= Ep, [1{0 < u; < AP, (X;) Bi,) Y3 | + Ep, [T{A(Py,(X;)'Br,) < u; < 0}u?]. (D.18)

Using Assumption [D.1fi), we get

Er, [1{0 < u; < Aoy)}u?| X;] <

A(a)
/ W fo, (u|X;)du| < C |A(a)))? (D.19)
0

which together with (D.12)) and (D.13) implies that for any 3, € Nj,,

< CEFn [|A ij ] < CEp, [A(ij<Xj)'5kj)2] S2in < CO2 1 0asm.  (D.20)
Similarly, we have
Ep, [I{A(Py,(X;) Br,) < uj < 0hus] < C6F 5 025m (D.21)
which together with (D.18)) and (D.20]) implies that
B, U(I{Uj <0} — Huy < A(F, (Xj)'ﬂk]-)})uj|2] < C8};,.02,5m- (D.22)

Combining the results in (D.17)), (D.22)) and the VC-dimension of F j, is O(k;), we can invoke
Lemma 22.3 and Lemma 23 in Belloni et al.| (2011) to show that

o [[T{u; < A(@,)} — Huy < 03] us] = Op(8o,1,0015008 7 + 085 n025m). (D.23)

2,5,n

That together with 07 ;02 jn < 507]-7”(51734@51/.2 = 0o(1) (which is implied by Assumption [D.1{(iv))

2,5,n
implies (D.16]). m

42



Lemma D.2 Under Assumptions and [D.I] we have
pin | (H{uy < M@} = Huy <03) Alag,)| = 0y (d05001 k") (D.24)
Proof of Lemma For j = 1,2, we define
Fan = { (Huy < APy (X))} = Huy <0}) Ala},) : By € N}
It is clear that the VC-dimension of Fj, is O(k;). By Assumption [C.I[(ii), we have

, Sél/\[; (I{u; < A(Py,(X;)'Br,)} — I{u; < 0}) A(Oé;:,j)‘ < ij_’”f. (D.25)

Under Assumption (i),

Er, [1T{u; < A(ay)} — I{u; < 0} X;]
= Er, [I1{0 < u; < Aay)} Xj] + Er, [[{A(q;) < uy <0} X

<2

Aoy)
/ Fu (ulX;)du| < CA(ay)], (D.26)
0

which together with Assumption (ii) and (D.12)) implies that for any 8, € N,
Er, [|1{uj < APy (X;)Be,)} — Hu; < 0} AQ(azﬁn)] < Ck; 61 5. (D.27)

Combining the results in (D.25]), (D.27) and the VC-dimension of F3 j, is O(k;), we can invoke
Lemma 22.3 and Lemma 23 in Belloni et al|(2011) to get

pon | (It < A@,)} = Huy <03) Alag)] = Oy (Goandl 5k +03,,857) - (D2§)
That together with &y, = o(1) (which is implied by Assumption [D.1fiv)) implies (D.24). =
Lemma D.3 Under Assumptions and [D.I] we have

sup i [(I{u; < A@,)} — H{uy < 0}) X Py (X))] = Op(d0,3n350), (D.29)

AjeSkj o
where Sy, = {\; € R¥ : ||\ = 1}.

Proof of Lemma [D.3] Using the same arguments in the proof of Lemma 33 in Belloni et al.
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(2011)), we have

sup i |(I{u; < AGk,)} — Huy < Alai )DN Py (X)] = Op (05611 + 83,60, (D.30)

)\jGSkj
As 65 .6k, = 0(1) by Assumption (iv), we get
1/2 / /:3/2 (1/4 1/2 ,1/4
5(2)7j7n k]/ /(50,/j,n k]/ ) = 50,/j,n kj/ =o(1) (D.31)

which together with (D.30]) implies that

sup g | (s < A@k,)} = Huy < Alai)}) NPy ()] = 0,077,6/Y). (D.32)

AjeSkj
For j = 1,2, we define
Fjn = {(1{uj < Alaf)} — THuy S OHN P (X)) 1 Ay € sk].} .

It is clear that the VC-dimension of Fy j, is O(k;). By Assumption [C.I[(iii), we have

sup < 5,152 (D.33)

)\jGSkj

(H{u; < Alag)} — H{u; < 0})A;F, (X;)

Under Assumptions [C.1fii), [C.1|iv) and [D.1]i),

B, || < (0} = I < 0D (X))

|

A(azj) o
< B, ||VP (X)) / fu (ulX)du| | < Ok (D.34)
0

Combining the results in (D.33)), (D.34)) and the VC-dimension of F3 ;, is O(k;), we can invoke
Lemma 22.3 and Lemma 23 in Belloni et al.| (2011) to get

sup iy, [(I{Uj < Alag,)} = Huy < 0})AP, (Xj)] = 000 juk; " + 62,67, (D.35)

J 0,5,n5k;
)\jESk]. !

which together with (D.32) and 62, ,&/%(6)/%,&/") " = (80,n&x*)/* = 0(1) (which is implied by
Assumption [D.1](iv) implies that

sup i [(T{u; < A@x,)} — THuy < 03) NPy, (X;)] = Op(85/2.67" + 8040k 7). (D.36)

07j7n kj ]
/\jeski ’
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Since 057,67 + S04k ? = 080,505/ 1), (D-29) follows by (D.36). m
0,5,n k 2Js WJs

2,j,n

Lemma D.4 Under Assumptions [C.1] and [D.I] we have

Ez.F, [(I {uj < Aaw;)} = H{u; < 0wy — (@, — ag)]

By, — Bi) Hei (B, — Bi,)
B 2
—r; —2r; — -7
+ 00702 + 00/l ey k2 T PR, (D.37)

where Ey f, [/] denotes expectation taken on Z under the joint distribution F,.

Proof of Lemma Let Hf, . = —Er, [fu;(01X;) Py, (X;) Py, (X;)']. By Assumptions

C1[(iv), [D-1(i) and [D-1(iii),

-C S pmin(H;“n,kj) S pmaX(H;“n,kj) S _0_1 (D38)

uniformly in n for j = 1,2. By Assumptions [C.1fii), [C.I[iv) and [D.1f(ii),
B, [(£2,(01X) = £, (A0 1X,)) NP ()P, () ]|
O, | (£/01) = £ (A)IX) VP, ()

< CEp [AQ(a,’;j) |A'ij(xj)\2} <Ok (D.39)

IN

which together with Assumption [D.1[iv) implies that
HHFn,kj ~ Hi, || = O ™) = o(1), (D.40)
Combining the results in and (| -, we get

- C S pmin(HFn,kj) S pmax(HFn,kj) S _C_l- (D4]-)

Let Up;n = (ug; 1, -, Uk;n)" Where uy, ; = I{Y < a,’;j (X;)} — 7. Under Assumptions and
we can invoke Lemma 4 in Belloni et al.| (2011)) to deduce that

/ -1 /
)‘k-H;n Pk- nUijl

) E3 7k:' )
)‘;fj (Bkj - @fj) =— Jn - + Op(€1jn + €25n + €35n) (D.42)
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uniformly over Ay, € Sy, = {\; € R% : ||\;]| = 1}, where

el,jn = 53/]2n ,1/4 + 50]1@ ]1,/2, 627]‘” = (ngn ]1/2 + 50’j’nkj_rj and 63]n =k; 51/2 _1 (D43)

As kn~t = 0O(82

0.jn) and 5/ ,1;4 = o(1) by Assumption [D.1{(iv), we have

0,j;n

(s ") (0026 =0y}

0,7,

o) = o(1), (D.44)
which together with (D.31)), (D.42) and (D.43) implies that
By the first order optimality condition of ﬁzj,

Ep, [Pe,(X;)ug,] = Ok, 1. (D.46)

By Assumptions [C.1{i) and [C.1}iv), (D.38), (D.40) and (D.41),

i 2
B || HE2L, — 724 Pl U }
2
= EFn Z)\/ *_ ; )Pk (Xj7z~)ukj7,~
" 2

= ZEFn [ N, Hio i, (o s — Hoi) ) H Py (X50) uiﬂ]

i=1

2 o
< Cn |V Hi b (i, = Hiri) By | = 0k ™) (D.47)
which together with the Markov inequality implies that

Combining the results in (D.45)) and (D.48), and then applying Assumption [D.1f(iv), we deduce
that

N, (B, = Br) =n "N He!y Py Uy o+ 0, (537/; Vi 5073.,”%7]') , (D.49)
By Assumptions m ii) and [D.1] -

Fuy (D0 )1X5) (an, — 07)* = fu, (Ao )1X) (aw, — o))’
= 2fu; (A0 )1X;) (o, — o )A (o) + fu, (Ao )[X;)Alag,)?
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= 2B, — 5,)' [F (A0 )1 X)) Py (X)) A0, )]| + O™ (D.50)

Let Ajn = Er, | fu;(A(og,)|X;) Py (Xj)A(osz)} . Under Assumptions |C.1(iv)

-1
)\’ )\*7]‘7” S C/\/ (EFn [Pk] (X])P];](Xj)]> /\*,j,na (D51)

which together with the same arguments in the proof of Lemma , Assumptions (ii) and
D.1i) implies that

Nojudwin < Br, [ f2(A(07,)1X)) A0}, 2] = Ok ™). (D.52)

*,7,M 7
Using and , we get
Br, = BV B, | fu (D0, )I1X,) Py (X5)A (0,

)\fk anl P,nUkn
A 0, (B + k™) .5

n J

Under the i.i.d. assumption,

/ / o /
EFn |:Pk‘j7nUkj7n k:j,nij,n] - EFn E E :Pk Jll Pk Xj,iz)ukj,ilukyiz]

Li1=11i2=1

= Ep, Zpk X;i) P, (X0) u, ] (D.54)

which together with (D.41]), Assumption [C.1fiv) and (D.52) implies that

/ -1 / / -1
E |:>\>k 7, nHFn,kj ij,nUkjankj,nijynHFn,kj /\*ajan] /\; n)\* jn
< 0 ’
n? - n

= O(k;*"nY), (D.55)

J

which together with the Markov inequality and (D.53)) implies that

Biym = B n) Aesiin = Oy (53{; T T e e ) . (D.56)

J

Combining the results in (D.50) and (D.56)), we get

Fuy (A ) X5) @y — )7 = fuy (A0, )1X5) (@r, — )
= Oy (8 k2 ) (D.57)
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where we note that 50,j,nkj_2rj = o(k;j_%) as dpjn = o(1). Let Ex, p, [] denote the expectation

taken with respect to X;. Note that using (D.56|), we also have
By, | Fuy (D01 X) A Gk, )@, — af,) = fu, (Alaf,)IX,) @, — o, )?]
= x| fuy (A0 X)) A0 @, — o)

= Bay = B, Nesin = Op (002600 H7™ + Go gy ™ 712477 ) (D.58)

J

Using integration by parts, we can write

Aley) 1 [Alay) )
/ wf, (ul;)du = + / fu ;) du
0 0

2
A a; 8fuj(u|$.7)
_ Juy (D)) A%ey)  fy i d“, (D.59)

2 2

which together with the triangle inequality and Assumption [D.1fii) implies that

u; A Oé;;. Xj A? Q;
Er, [(I{uj < A(a])} —I{Uj < 0})U]|X]] _ f]( ( J>’ )A%(a))

2
% 2 Aaj) 90 u;(ulz;)
Fu (A(IX) = fuy (Al 1) | A%(ay) |5 w22
< +
- 2 2
< C (1) | = i, | + 1Ayl (D.60)

uniformly over £, € Nj,. Using (D.12), (D.13)), (D.57), (D.60) and the triangle inequality, we

immediately get

Ezr, |(I{u; < A(ay,)} — H{u; < 0})u;

2

g (Aaf) X)) (@, — a;;)?]

Ovjvn k] J

= O0p(0; 005 + 0008y A+ kT 2T (D.61)

< CEx,p, [‘A(akj)‘z |ak]- B azj| i }A(akj)ﬂ +0, (53/2 L/47.~7; + k,;zm +n_1/2k‘;”>

Similarly, we have

Aley) afu] (U| xj)

5 udu (D.62)

Aay)
/0 Fu (ul X)) = A(ay) f (A (0)|X;) — /
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which together with the triangle inequality and Assumption (ii) implies that for any «;,
B, [Ty < Aag)} = Huy < 0D X5] = fu, (Aai, )1 X5)A(ay)

< | fuy (A0 )1X5) = fuy (01X)| 1A ()] + O |A(ey)

< C (18P + 1A (ey)] 1A ;)1 (D.63)

Using (D.12)), (D.13)), (D.58), (D.63)) and the triangle inequality, we immediately get

B, [ (1uy < A@1,)) — Ty < 0)) @, — o) — fu, (Al0}) 1X,) @, —af,)?]
< | Bz, [((Hw < MGk}~ THuy < 0}) = fiu (Al0d)[X)A(@,) ) (@, - of, )]
B [fuy (A7) XA @)@, — k) = fu, (A(ak )X @, — af,)?]|

< CExr, []A(ak, )|° + | AG@)| 1A \] +0, (53/; e Y e )

W 4 o gk T2, (D.64)

J

= 0,(0%; 000 + 07

0,7,n

Combining the results in (D.61)) and (D.64) and applying the triangle inequality, we immediately
get the claimed result. m

Lemma D.5 Under Assumptions [C.1]and [D.I] we have

~ ~ U;c- nP;c- anlk-ij,nUk’j,n 5/2 ~1/4 —r;
(Br, = B, ) Hrpey By, — Br)) = ———3 + O, (0026 + 02 ,,k;7). (D.65)

n

Proof of Lemma From (D.11)) and (D.49)), we get

(5 ﬁk; ) e Lo, (55/2 1/4

(Be, — BL,) Hry (B, — BL,) = . e 02 T) . (D66)

Under the i.i.d. assumption, (D.46) and Assumptions [C.I|iv), we have

2
U;g nP;i‘ nij,TLUkj,TL u
£, ki ]’n2 = Epn n_2 Z ij (Xj)ukj
i=1
T 2
= EFn n_2 Zpl:](Xj)uk]
| =1 || =1
< w23 N By [p(X)] = Olkn™) (D7)
=1 =1
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which together with (D.45)) and immediately implies (D.65)). =
Lemma D.6 Under Assumptions and [D.I] we have

/ ! -1
Ukj ,nij ,nHFn,kj ij 7nUkj "
2
n

O, (852 6 4+ 02, kT kT k). (D.68)

Ovjzn k] Ozjvn ]

n
nt Z ug iDi(Qy;) =
i=1

Proof of Lemma First, we note that

n

n n
Y w i Ai(@r) = 0T @k — o) 07wl A(or)
i=1 i=1

i=1
+nt (ug;;i — u;i)Ai(a,’gJ_) (D.69)
i=1
where v}, = I{u;; < 0} — 7. We can write
a ~ U;c nP;c n 5
n! Z Ukj,z'(@kj - 04}:;]-) = J’Tﬁ(ﬁkj - 52]-)7 (D.70)
i=1

which together with (D.49)) and (D.67)) implies that

! / —1
- Ukj,nij,nHkajij,nUkj,n

n2

+ 0,026 + 02, k7). (D.TL)

n! Z Uk i (O — o) 0.5, 5k;
1=1
By the definition of u;;
e, [1,] =0 (072

By the i.i.d. assumption, (D.72) and Assumption [C.1fii), we get

2
—nlEp, [(u* (af, — a))?| < Ok;¥in! (D.73)

j?i

n

—1 * * *

Ep, | |n §uj,i<akj_aj>
i=1

which together with the Markov inequality implies

nt Z uj (o, —aj) = Op(kj_rjn’%). (D.74)
i=1
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By the i.i.d. assumption, the triangle inequality and Assumption (ii),

EFn n- Zuk‘l_ #,z (k)

< Br, _\(I{uj < 0} = Huy < Aaj,))A (a3,
- A(cu,C ) ) o
< B, ||A(]) / fu(ulX,)du| | < CBr, (A} ] = ™ (D7)
0
which together with the Markov inequality implies
_ = * * —2r;
nY (ugg — u)Ailag,) = Op(k; 7). (D.76)

i=1

Collecting the results in (D.69)), (D.71)), (D.74) and (D.76]), we immediately get (D.68)). m

Lemma D.7 Under Assumptions and [D.I] we have

Buyr, | (I{u; < A@s,)} = Hu; < 0DA(@,)]

= Oy (00506 b ™ + Dok ™ T 2 4 67k, (D.77)
Proof of Lemma From (D.63]), we see that

Ep, [H{u; < Aley)} = Huy < 0} X5] = fu, (Alag,)|X5)Aey)

< O (|2%a))] + () A7)

(D.78)
for any fi, € N, which combined with the triangle inequality implies that
sup | B, [[1{us < Aay)} = Hu; <0} - fuj<A<a;;].>|Xj>A<aj>] Aai,)]|
Bkj e-/\/j,n
< sup ‘Ep [|A )| + [A(ey)] [A( o) H— 85 ks ). (D.79)
Bk]- e-/\/’j n
Invoking ([D.56)), we have
Exy, | Fuy (B0}, )1X)) A @, ) A},
= (Br, = B, B | fu, (A0 )IX5) Py (X;) 0, — )]
= O, (00706 ;™ + By ™ 0720 (D.80)

Collecting the results in (D.79)) and (D.80]), we immediately get (D.77). =
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Lemma D.8 Under Assumptions and [D.I] we have

n

n_l Z [pT(}/’L - akl (Xl,z)) - p’r(}/z - akz (XQ,Z))]

=1

1 Eoé,n(oﬁ)/H_n1 lon(ag)
= =3 lorlun) = prlug,)] = L 4 0, (6,0) (D81)
i=1

1/2 —2r; —1/27.—Tj
where 0, = Max;_1 2 {50477151,]-,”527].@ + kj 4 kj 75

Proof of Lemma Using (D.15]), we can write
n Y [pr(uge) = pr (Y = G, (X))
i—1

=n! Z (H{uys <0} = 7) Ai(ai;)

n

+n7! Z (I{ujﬂ' <0} — I{uj,i < Ai(akj)}) (uji — Az‘(akj))- (D.82)

=1

Using (D.16]) in Lemma we have

n

nt Z (I{uj; <0} — I{uy; < Ay(@ny)}) ujg

=1
= Bz p, [(I{u; <0} — I{u; < A(@x,)})15] + Op(00,n01, 005/ i)- (D.83)

Using (D.24)) in Lemma and (D.77) in Lemma [D.7 we have

n

n_l Z (I{Ujﬂ‘ S 0} - I{Ujﬂ‘ S A,(ak])}) Az(akj)

=1
n

=nt Y (Huys <0} — Hugi < Agan)}) (@, (X5) — ag, (X))

=1
n

+n7t Y (H{uys <0} — Huys < Ai(@wy)}) Ailag,)

=1
= Bz, | (I{u; < 0} = Hu; < A@,)}) @, (X) - ai, ()]
+ (B, = B2, i [y < 0} = Iy < Ay} Py (X;)]
+ OG04y 2k 4 S0k 2 T2, (D.84)

I?J?n ] J
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where in the last equality, we use

2 o B2 /4y,

O,j,n ] 3JsSK G J
_0dn (1) and S N o),
50,j,n5i/j?nkj " 50,j,n‘5i/j?nkj K

Using (D.11), and (D.29)) in Lemma [D.3] we get
(Br, = Bre)) 1 [(T{uy <0} = T{u; < A(aw)}) Pr, (X5)] = Op(02;105 ),

which together with (D.84]) implies that

n ST (H{uys < 0} — IHugs < A(@x,)}) AilG,)

=1
= Bz [(I{u; < 0} = I{u; < A@k,0) D)@ty — )
O (02,057 + G0y ks ™+ S0k 27 + 072,

0,5,n72,5,n Ljn™vj J

Combining the results in (D.83)) and (D.87), we get

n

n Y (H{ugs < 0} = Hugs < Ai(@,)}) (ug — Ai(@,))

=1
= Bz, |(I{u; < 0} = Huy < A} — (@, (X)) — af, (X))
+ Opl00,in01.3ndy i + B0k 01 2k;),

2’j’n J

where we use

50,j,n51,j,n6;/j2n = 5§,j,n5;/j'2n + 507j7n5;é~2nk;Tj and 17/jén j;r_ = 17/@” < 1
. . . 50,j,n52,j,nkj ’ 52,j,n
Using (D.37) in Lemma[D.4] and (D.8§), we get
nil [I{u]"i S O} — [{Ujﬂ' S A,L(akj)}} [iji — Al(&kj)}
=1
By — Br ) Hpyp, By, — Bt o .
_ _( k; k’g) J( k; ka) + Op(éo,j,nél,j,nééy/j?n + kj 2r; + n_l/Qk:j ])’

2

23

(D.85)

(D.86)

(D.87)

(D.88)

(D.89)

(D.90)



= O((SO’j’nél,j,n(Sl/Q ) + O(k_2rj) and

—2r;
529jzn + 2527.77nk 2,j,n ]

where we use 07 ;02 < 203 :

07j7n

3/2 £1/4, —r; 1/2 (1/4 —r
RaatT WA Do

1/2 1/2 . —
00,j,n01,5,n02..1 Oglin  O0jn +K;

Using (D.65)) in Lemma [D.5] and (D.90)), we get

nt Yy [Hugs <0} — Huyy < Ag(a)}] w0 — Ai(0,)]
=1
U/ . nP/ . nH_l .Pk-,nUk',n

= - Bl O 4 OplGin0,5in03

onm2 2,j;n

+ kY T 2T, (D.92)

where we use

5/2 ~1/4 1/2
50,/j,n kj/ < 00,j,n01,j,n0 /2 and 62

Combining the results in (D.68) of Lemma [D.6] (D.82)) and (D.92)), we get

k_rj < 507]‘7”51’]'7”51/2 (D93)

Q’j?n 07j7n .j 27j7n.

w3 [or ) = (Y =, (5,0

U;c-nP;mnHElk-ijankjvn —2r; —T;
= + Op(80jm01judy o + k5 27 + 07 2). (D.94)

Using (D.94)), and the definitions of Uy, ,, Hp, x and o x(Z; ), we immediately get the result in
D3] =

Proof of Theorem [D.1 We can use Theorem [4.1] to prove the claim. For this purpose, we
need to verify Assumptions and Assumptions (a) is implied by Assumption (1)
Using (D.14)), we can write

m(Z;05) = (I{u; < Alay)} — 7) [u; — Aley)] (D.95)
which implies that

Er[m(Z; aj)| Xj]
= Er, [I{u; < Aaj)} [u; — Aloy)]| Xj] — 7ER [u; — Alay)] Xj]

J

A(ay)
= / wfu; (u] Xj)du — A(ey) [Fuy (A(0)|X;) = 7] = 7ER,[u;] X;] (D.96)

—00
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where F,,(-| X;) denotes the conditional CDF of u; given Xj. Define

Alay)
95(X;, ;) = / uj fu, (5] Xj)du; — Aley) [Fuy (Aley) | X;) — 7] (D.97)
Since a;(-) = Py,(-)'By;, it is clear that g;(x;,a;) is continuously differentiable at 8, for any x;

with
9g;(x;, Pr,(x;) Br,)

ok,

and uniformly over z; and S,

= [1 = Fu;(Aley)| z))] i, () (D.98)

' <&’ < o0 (D.99)

B,

We can use the dominated convergence theorem to show that the

9g;(X;, ;) }
OBy, '

OER, Im(Z; a;)]
By,

= Ep, [ (D.100)

Moreover, dg;(x;, a;)/0pk, is continuously differentiable at 3, for any z; with

g (x5, o)

Dg, 0, (Al XD P ()P (X))

By Assumptions [C.1[iv) and [D.1fi), we have uniformly over z; and S,

02%q: (. Py (x:) By
H g](%? kj(x])ﬁkj) §C§Ej<00- (D.101)

9Bk, 00y,

Hence we can use the dominated convergence theorem again to show that the

O*Er,[m(Z; a)]
861,05,

= Ep, (D.102)

9g;(X;, a;)
851, 00,

is well defined. This verifies Assumption [4.1(b). By (D.98) and (D.100), and the first order

condition of 5y ,

99;(Xj. ay))

E
o 0By,

= EFo [(7— — ]{U] < A(O!;;J)})Pk] (:L‘])] = ijxl' (D103)

95



By the definitions of £, x(Z; af) and (D.103]),

( (Ifur < Aaf)} —7) Py, (X)) )] o (D.104)

EFO gmk Zvoélt = EFO
[Cai(Z; 7)) (7 — Hus < A(af,)}) Py (Xe)

which verifies Assumption [4.1j(c). By Assumption [D.1j(vi),
Eg, [0(Z;05,)%] = Er, [(p-(w1) — pr(w2))?] < 2Ep, [ui] 4+ 2ER, [u3] < C. (D.105)
Moreover, by Assumptions [C.1f(ii) and [C.1](iii),

Er, [1as(Z: ai)lI'] < 2B, || P, (X1) P, (X0)|* + | P, (X2) Py, (X2)[°]

<ol Gntr (Er, [Pr (X1) Py, (X1)])
N +£k2tr (EFO [Pk2 (XQ), sz (X2)})
< CO(&ry + &) (k1 + ko) = Céx |k, (D.106)

where & = &, +&,. Hence Assumption [4.1]d) is also satisfied. Assumptions[4.1fe) is Assumption
D.1f(v). Also the bounds on the eigenvalues of Hp,x in Assumption [.1[f) can be easily verified

using Assumptions [C.1|(iv), [D.1(i) and [D.1iii). By definition,

( W, P (X)) P (X)) —ugy g, Py (X1) Py (Xa)' )]

Dp,x = LR,
’ ’ — U, Uy Pry (X2) Py (X1) i, Py (X2) Py (X))

(D.107)

Under Assumption [C.1[iv), we see that
s (B [, Pey (X)) Pry (X,)] ) < Comas (Bry [Pay (X)) Pr(X,)]) < Cfor j=1,2 (D.108)

which together with the form of Dpg x in (D.107) and the Aronszajn’s Inequality implies that
Prmax(Dryx) < 2C. This verifies Assumption [4.1[f).
In Lemma , we have derived the second order expansion of /,(Qy), where the remainder

term is of the order

Onx = Max {50,j,n51,j,n5;/j2n + kj_grj + n_1/2/€j_rj} : (D.109)
j=1,2 b
By , we have
—2r; — —Tj
n1/25n,k - n'/? (60717"51’1:"5;,/3371 +kj “tn I/ij ]>
OF,n B OF,,n
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1/2 1/2 =T, 1/2
_ n / 50717n51,j,”62,j,n kj ]n / 1

= + + = o(1) (D.110)

T3 T35
OF,n k:j OF,n kj OF,n

for j =1,2. As &, k;log(n)n~! = o(1) by assumption Assumption (iv)7 we have

1126172 1/2
i Sk O Fnyn _ k;
NOF, n n1/250,j’n51’j’n5;7/j?n N1 jn (02,5, log(n))/?
1/4
kj
= o(1) (D.111)
0t/ (log ()

which together with implies that k;&, (n*07, )" = o(1). Assumption (b) is implied by
. So Assumption is also satisfied. =

By the Cauchy-Schwarz inequality,

~ —/ _ *
C'n, - Cn S gaj,n(a;;j)HFnl,kjeayTL(ak:J)

1 n
D U2 o, (23 0,) = Hygy
i=1

1

= 0,(n"2), (D.112)
where the equality is by and Assumption [B.2(d). Under the i.i.d. assumption,
Ep, [ICalI?] = tr (0" HypynHp « DryxcHp  Heyn) = O(JK| 07", (D.113)
where the last equality is by Assumptions [4.1f) and [B.2(b). Thus,
C, = O,(|kIn™1). (D.114)

Under the i.i.d. Assumption,

Yok, (0, ) Hg 'y H:' Dp H7!
Er, [|AuB.l"] = clad = B, [éa,kj(Z;aZj)ﬁa,k(Z;ail)'] Fuke X Bl

*
Ul/},kj OFnn

X EF, |:€oc,k(Z; g )la g, (Z; OéZj):|

Cpmax (D, ) Vaks () Vo (af,) 1
pu Dro) Vet Fos ) 1 _ (D.115)
pmin(‘HFn,k) Uw,k:j nUFn,n

where the inequality is by (B.42)), the last equality is by Assumptions [4.1{f), [1.3(b) and [B.2(e).
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Similarly,

wak Hil H_l D n H_l Hil -wa,kj CY*_
EFTL |:|A C | :| ( ) J HZk nHFlk Fn.k Fn .k Fn.k H;lk_HZ’kj’n Fn,]:J ( /CJ)
'Uw k O_Fn n nyhvy /Uwykj O’Fn’n
< pmax((H&kjﬂy)Pmax(DFn,k) T/Ja,kj(Oé* ) Va, kJ‘(aZj) L 1 D
- 2 2 %2 2 - 0( )) ( 116)
pmin((HFn,k) ) U’d) k; nUFn,n

where the last equality is by Assumptions {.1{(f), £.3|(b), [B-2(b) and [B.2|(e). Therefore

An(By + Cp + 0p(08, )

= 4,(B, + C,) + 0,(1)

— Ay(By — B+ Cp — Cp) + AnBy + ApC + (A — A (B + C) + 0,(1)

= Op(05 )op(n %) + 0, (1) + 0, (K| 720351 )op([k[/*n™2) + 0,(1)

- op(1). (D.117)

Thus, the last summand in (B.33)) is 0,(1). This completes the proof of (B.32) and hence claim

(c) of the lemma. m

E Auxiliary Lemmas

Lemma E.1 Let X be a scalar random variable with variance 0% and Y = (Y1,...,Yy) be a
d-dimensional random vector with variance-covariance matrix Dy . Let p be the vector correlation
coefficient of X and Y. That is, p = o5 (D 1/2)+COU(X Y), where AY? is the unique symmetric
matriz square Toot of the positive semi-definite matriz A and A" is the Moore-Penrose inverse of
A. Then (a) p'p < 1; (b) for any positive semi-definite matriz A, p'Ap < Apaz(A), where Aoz (A)
is the mazimum eigenvalue of A; and (c) ((D;/2)+COU(X, Y))’Dll//2 =Cov(X,Y).

Proof of Lemma First we show part (a). If ox = 0, then p = 0 by definition and
part (a) holds. Thus below, we consider the nontrivial case of ox > 0. Without loss of generality,
normalize ox = 1.

Consider the simple case that Dy is invertible first. Then,

1y 1 0 1 0
_ S x vy , E.1
<p Id> (o D;”Q) o (o D?”) .

where X(x y+y is the variance covariance matrix of the random vector (X,Y”)’". Due to the positive
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1 /
(semi-)definiteness of Dy and X(xy+y, we have ( ;) is positive semi-definite. That implies
P 1d
that
1 /
7 > o. (E.2)
p la

Direct calculation shows that =1—p'p. Thus, p'p < 1.

1 p
p L

Now consider the simple noninvertible case: Dy is a singular diagonal matrix. Without loss

of generality, suppose that the first J elements of Dy are zeros for a positive integer J < d and
the rest are strictly positive. If J = d, then p = 0 and part (a) holds trivially. If J < d, we have
pj=0forj=1,...,J, and

PJ+1):d = D;7t§il):dCOU<X, }/V(JJrl)Zd)? (EB)

where p(ri1y:a = (Pa415 -5 pd)s Yut1)yd = (Y1, ..., Yg) and Dy j41).a is Dy with the first J rows
and columns removed. By the arguments for the invertible Dy case, we have p’( J+1)aPI+1)a < 1.
Thus p'p = {4 1).aP(1+1)a < 1.

Finally, consider the case where Dy is singular but not diagonal. Because Dy is a variance-
covariance matrix and thus is positive semi-definite, Dy have the following eigenvalue decomposi-
tion:

Dy = QvAyQy, (E.4)

where (Jy is an orthonormal matrix and Ay is a diagonal matrix whose diagonal elements are

eigenvalues of Dy. Using this decomposition, we have
p = Qy(AY*)TQ}Cov(X,Y). (E.5)

Thus,
Qyp = (A2 Cou(X,QyY). (E-6)

Then by the arguments for the singular diagonal Dy, we have p'QyQyp < 1. But because
Qy QY = I, we have p'p = p'Qy Q% p < 1. This concludes the proof of part (a).

Now we show part (b). The matrix A has the following decomposition:

A=QahaQ)y, (E.7)

29



where ()4 is a orthonormal matrix, and A4 is a diagonal matrix of eigenvalues of A. Thus,

P Ap = p'QaANAQY P = P'QaNnaz(A) LaQup + ' Qa(Nmaz(A) g — Aa)Qup
S p/QA)\max(A)[dQ;lp = )\maxplp S )\maz(A) (ES)

This shows part (b).

Finally we show part (c). Without loss of generality, suppose that Dy has J many zero eigen-
values which corresponds to the first J diagonal elements in A. The claim of the lemma holds
trivially when J = 0 or d. Hence we only need to consider the case that 0 < J < d. By
, DY? = QyA2Q), and (Dy*)T = Qy(AV2)*Q), where (AY2)* is a symmetric matrix. Let
Y* = QyY, then the first J element of Y* is zero almost surely. Let Y ; denotes the last d — J

elements of Y*. Then
(DY) Cov(X,Y)) Dy?Qy = Cov(X,Y ) (Dy?)" Dy *Qy

— Con(X, Y Osxs Osx@—p
Ow—nxs  la-g

— (()M Cov(X, Yd*_J)’) . (E.9)

By definition Cov(X,Y))Qy = Cov(X,Y*) = (OlXJ Cov(X, Yjﬂ,)’) which together with the

above equation implies that
(Dy*)*Cov(X,Y)) Dy*Qy = Cou(X,Y))Qy. (E.10)

As Qy is a non-singular matrix, the claim of the lemma follows immediately by (E.10)). =

A A
Lemma E.2 Let A = oo , where Ajp = Ay, A and Ay are ky X ky and kg X ko
Az Agy
symmetric matrices respectively. Then pmax(A) < C implies that:
(a) pmax(AY + A124s1) < C? and puax(A3, + Az Arp) < C?;

(D) Pmax(A12421) < C? and puax(Aa1 Arz) < C2

Proof of Lemma [E.2| By definition,

42 A3+ ApAsr AnAis + ApAg
Ao Ayy + Agp Ay A%g + A1 Ao

Then it is clear that
pmaX(A% + A12A21) < pmaX(AQ) = prznax(A)7
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which proves the first claim in (a). The second claim in (a) can be proved by the same way.
Let vx, € R¥ be the eigenvector of the largest eigenvalue of Aj5A4s;. Then the above inequality
implies that
Vi ATV + Prmax(A12A421) < ph(A)

which immediately shows that puax(A124ds1) < p2..(A) < C?. The second result in (b) can be

proved similarly. m

F Extra Simulation Studies

In this section we report some simulation results on the finite sample performance of our model
seleciton test when applied on the comparison of two parametric models. We also compare the

performance of our test with that proposed in Shi (2015b).

F.1 Simulation design 1

Consider two linear regression models

My Y =B+ XiBi + Xof +uy,

K
My Y =Boo+ X821 + ZX3,k53,k + uo.
k=1
The latent DGP (denoted as S1) is
K
Y =05+0.5X, + Xpa+ Y Xsub+e (F.1)
k=1
where (X1, Xa, X31,...,X3k,¢€) is a standard normal random vector. Thus,

—2f(My, Fy) = Ep[ui] = Kb + 1;
—Qf(./\/lg, F()) = EFO [Ug] = &2 + 1. (FQ)
Therefore, the null hypothesis holds if and only if a®> = Kb?, and when a® > KV?, f(My, Fy) >

f(My, Fy). When a*> = Kb* = 0, u; = up and hence wy, , = 0. Otherwise, w3, , > 0. There are

31 DGPs considered in this design, which are determined by different combinations of a and b:

b j=1,...,31 bo s=1,...,15 bo bo + 55 s=1,...,15

...............




Figure 6: Finite Sample Rejection Rates of the Tests (K = 2)

(a) ap = 0.5 and n = 500 (b) ap = 0.5 and n = 1000
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where af = Kb3 and we consider two possible values for ag in this design: ag = 0 or 0.5. The null
hypothesis Hy holds when (a, b) = (ao, bp). Model M is better than model My under the first 15
DGPs in (F.3)), while model the model M, is better under the last 15 DGPs. The finite sample
rejection rates of the tests are calculated using 10000 simulated samples.

Figure [0] presents the finite sample rejection rates of the tests when K = 2. When qy =
0.5, w%m* > ( and our nondegenerate test statistic has asymptotic standard normal distribution
regardless the value of K. From graphs (a) and (b), we can see that the finite sample rejection
rates of our test (the red solid line) and the parametric test proposed in (the blue
dashed line) are very close to the nominal level 5% (H, holds at j = 16). When the sample size
is 500, both tests have good power which is further improved with larger sample size 1000. When
apg = 0, w%w = 0 and the standard normal distribution may not be a good approximation of the
finite sample distribution of our test statistic since K is small here. In this case (graphs (c¢) and
(d)), both our test and the parametric test proposed in under-reject. The finite sample

rejection rates of both tests are close to zero under the null. The power of the tests becomes worse

62



081

0.6

0.4F

021

0

0.8F

06

04r

021

0

Figure 7: Finite Sample Rejection Rates of the Tests (K = 8)

(a) ap = 0.5 and n = 500
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for both tests when ay = 0, although our nonparametric test has better power. Increasing the
sample size from 500 to 1000 improves the power of both tests.

The finite sample rejection rates of the tests when K = 8 are included in Figure [7l In graphs
(a) and (b), we observe similar properties of both tests to the case with small K (K = 2), which
is expected since in both cases w%m* > (0 and our nondegenerate test statistic has asymptotic
standard normal distribution. When ag = 0, w%m* = 0 and both tests are still under-rejection
under the null. However the null rejection rates of both tests are closer to the nominal level with
larger K. In graphs (c) and (d), we see that our nondegenerate test has larger power particularly
when model M, is better than model My (i.e., j = 1,...,15). The power of these tests are similar
when model M is better than model M; (i.e., j = 17,...,31). Increasing the sample size from
500 to 1000 improves the power of both tests.

F.2 Simulation design 2

In the second simulation design, the latent DGP is

K
Y =05+025) Xy + Xoa+ Xsb+e, (F.4)
k=1
where (X1 1,..., X1k, Xa, X3,¢) is a standard normal random vector. There are two linear regres-
sion models
K
M; 0 Y =081+ ZXlﬁl,l,k + Xo By + uq,
k=1
K
My 1 Y =0+ Z X182,k + X303 + us.
k=1

Thus

—2f(M1, Fo) = EFO[U%] = b2 + 1;
—2f(My, Fy) = Eg[uj) = a® + 1. (F.5)

Therefore, the null hypothesis holds if and only if a®> = 0?, and when a?® > V?, f(My, Fy) >
f(My, Fy). When a®> = b* = 0, uy = uy and hence wj, , = 0. Otherwise, wg, , > 0. There are 31
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Figure 8: Finite Sample Rejection Rates of the Tests

(a) ap = 0.5 and n = 500 (b) ap = 0.5 and n = 1000
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DGPs considered in this design, which are determined by different combinations of a and b:

b j=1,...,31 bo s=1,..,15 bo bo + 55 s=1,..,15

where a2 = b2 and we consider two possible values for aq in this design: ag = 0 or 0.5. The null
hypothesis Hy holds when (a,b) = (ag, by). The model M, is better than the model My under the
first 15 DGPs in (F.6), while model the model M, is better under the last 15 DGPs. The finite

sample rejection rates of the tests are calculated using 10000 simulated samples.

Figure [§ presents the finite sample rejection rates of the tests when K = 10. When a¢ = 0.5,
w%ﬂﬂ* > 0 and the null rejection rates of both tests are very close to the nominal level 5% (H
holds at j = 16) and their rejection rates are almost the same under the alternative, which is
similar to what we have observed in the first simulation design. When ay = 0, w%m* = 0 and we

see that both tests under-reject under the null. Since the two models M; and M, have the same
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dimensions, the rejections rates of both tests are symmetric around j = 16. Our nonparametric
test has better power than the parametric test proposed in [Shi (2015b) in both sample sizes 500
and 1000 (graphs (c) and (d)).

G Additional Empirical Results

The test result based on NLSY 97 is reported in Section [8| of the main text. Here we report the
test result based on NLSY 79. The NLSY 79 sample is obtained in the same way as NLSY 97 and
contains 2554 observations. The sample may not be exactly the same as that used in Cameron

and Heckman (1998), since we are not able to obtain the exact sample used in their paper.

Table 2: Model Selection Tests Based on NLSY 79

Test Statistic \ p-value

Robust Test 4.684 .000
Vuong (1989) Test 5.472 | .000

Table [2| reports the test results. As opposed to the result based on NLSY 97, here we see that
the null hypothesis that the logit transition model and the ordered logit model are equally close
to the data distribution is strongly rejected even when our robust test is used. This may indicate
that the schooling choice decision was made differently by the NLSY 97 cohort than the NLSY 79

cohort.
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