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Abstract

This paper proposes a new model selection test for the statistical comparison of semi/non-

parametric models based on a general quasi-likelihood ratio criterion. An important feature

of the new test is its uniformly exact asymptotic size in the overlapping nonnested case,

as well as in the easier nested and strictly nonnested cases. The uniform size control is

achieved without using pre-testing, sample-splitting, or simulated critical values. We also

show that the test has nontrivial power against all
√
n-local alternatives and against some

local alternatives that converge to the null faster than
√
n. Finally, we provide a framework

for conducting uniformly valid post model selection inference for model parameters. The

finite sample performance of the nondegenerate test and that of the post model selection

inference procedure are illustrated in a mean-regression example by Monte Carlo.
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1 Introduction

Model selection is an important issue in many empirical work. For example, in economic studies,

there are often competing theories for one phenomenon. Even when there is only one theory, it

can rarely pin down an empirical model to take to the data. Model selection tests are tools to

determine the best model out of multiple competing models with a pre-specified statistical confi-

dence level. One such test was proposed in Vuong (1989) to select from two parametric likelihood

models according to their Kullback-Leibler information criterion (KLIC). The test determines the

statistical significance of KLIC difference and, when the difference is significant, draws the direc-

tional conclusion that one model is closer to the truth than the other. This test has been widely

used in empirical work due to its straightforward interpretation and implementation,1 and it has

been extended to many settings besides the likelihood one.

The studentized quasi-likelihood ratio (QLR) test statistic used in Vuong (1989) may have

different asymptotic distributions under the null hypothesis, depending on whether the asymptotic

variance of the QLR is degenerate. The degeneracy is unknown when the models compared are

overlapping nonnested. In this case, a test based on such a test statistic and a standard critical

value may not be uniformly valid and adding a pretest of the degeneracy does not provide a

satisfactory solution, as shown in Shi (2015b). What is especially troubling is that the QLR-based

test has a bias term that favors complex models. As a result, a user could manipulate the model

selection result by unnecessarily increasing or decreasing the complexity of certain models. Shi

(2015b) develops a solution in the context of parametric models, but Shi’s test does not apply to

semi/nonparametric models where the problem is in fact exacerbated.

The first contribution of this paper is to extend the conceptual idea of Shi (2015b) to semi/non-

parametric models. Like Shi’s test, our test corrects for bias caused by difference in model com-

plexity and achieves uniform asymptotic validity regardless of model relationship. Unlike Shi’s

test, our revised QLR statistic is uniformly asymptotically normal, leading to a very simple test-

ing procedure. The nonparametric component in one or both of the models, while making the

asymptotic theory much more complicated, remarkably simplifies the testing procedure relative

to Shi (2015b). We use linear sieve approximation for the nonparametric components (ref, e.g.,

Chen (2007)). As such, the asymptotic theory also provides a good approximation for parametric

models with a large number of parameters.

The second contribution of this paper is a valid inference for the model parameters after

the model selection test. Post model selection inference on one hand is unavoidable in most

1See, e.g., Cameron and Heckman (1998),Coate and Conlin (2004),Paulson et al. (2006), Gowrisankaran and
Rysman (2012), Moines and Pouget (2013), Barseghyan et al. (2013), Karaivanov and Townsend (2014), Kendall
et al. (2015), Gandhi and Serrano-Padial (2015), to name only a few.
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applications, and on the other hand is difficult to do correctly. For example, if post-model selection

confidence intervals are constructed as if no model selection had been conducted, Leeb and Pötscher

(2005) show that the resulting confidence intervals may have coverage probabilities very different

from the nominal level. In this paper, we provide two types of uniformly asymptotically valid

confidence intervals for parameters post model selection.

The rest of the introduction is devoted to the discussion of related literature.

The literature on the QLR model selection test. Although the QLR test proposed in

Vuong (1989) has been widely used in the empirical studies and extended to many non-likelihood

settings,2 its property on the size control draws researchers’ attention only recently. As men-

tioned above, the model selection part of this paper extends the conceptual idea of Shi (2015b) to

semi/non-parametric models and propose a test with uniform size control for semi/non-parametric

models. A few other papers in the literature of the Vuong test also achieve uniform asymptotic

size control. These include Li (2009), Schennach and Wilhelm (2017), Hsu and Shi (2017) and Shi

(2015a). These papers do not deal with semi/non-parametric models and each achieves uniform

size control by a different technique. Li (2009) achieves uniformity thanks to the simulation noise

brought about by numerical integration. Schennach and Wilhelm (2017) employ a sophisticated

split-sample technique. Hsu and Shi (2017) introduce artificial noise to their test statistic. Shi

(2015a) uses a pretest with a diverging threshold.

The consistent model specification testing literature. Although the main advantage of

our revised QLR test is in the overlapping nonnested cases, it can be applied to and has uniform

asymptotic similarity in the nested cases as well. In such cases, our test is a model specification

test of the nested model against the alternative of the nesting model. As such, it is related to

Hong and White (1995), Fan and Li (1996), Lavergne and Vuong (2000), and Aı̈t-Sahalia et al.

(2001) among others (see e.g. Aı̈t-Sahalia et al. (2001) for a comprehensive literature review). Our

test reduces to the heteroskedasticity-robust version of Hong and White (1995) based on series

regression when a parametric conditional mean model is compared to a nonparametric one, and

reduces to a series regression-based version of Aı̈t-Sahalia et al.’s (2001) test when two nested

nonparametric regressions are compared based on a weighted mean-squared error criterion. Our

test applies to the testing problems in Fan and Li (1996) and Lavergne and Vuong (2000) but

differs from the tests therein.

Post model selection inference. Our post model selection (PMS) inference has two parts.

The first part regards conditional inference on model-specific parameters. This part is inspired by

Tibshirani et al. (2016), who provide valid p-values and confidence intervals for post Lasso inference

in a linear regression context with Gaussian noise. Their result is extended in Tibshirani et al.

(2015) and Tian and Taylor (2015) to other linear regressions settings. We generalize Tibshirani

2Extensions include Lavergne and Vuong (1996), Rivers and Vuong (2002), Kitamura (2000), among others.
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et al. (2016) to post model test inference for general semi-nonparametric models, and provide

asymptotically exact confidence intervals without imposing special structures on the models or

requiring knowledge of a variance-covariance matrix. The second part of our PMS inference

analysis regards inference on common parameters of the two models. This part shares the objective

of the methods surveyed in Belloni et al. (2014). However, this type of post selection inference

is highly context specific, and the surveyed methods do not apply to post selection inference in

general models.

The nonnested hypotheses literature. Since Vuong’s (1989) test is most commonly used

to select between nonnested models, it is often linked to the literature of nonnested hypotheses

featuring Cox (1961, 1962), Atkinson (1970), Pesaran (1974), Pesaran and Deaton (1978), Mizon

and Richard (1986), Gourieroux and Monfort (1995), Ramalho and Smith (2002), and Bontemps

et al. (2008) among others. This literature does not share the objective of Vuong’s test. Rather

than focusing on the relative fit of the models, earlier part of this literature focuses on testing the

correct specification of one model with power directed toward the other model. Later part of this

literature focuses on the ability of one model to encompass empirical features of the other model.

To our knowledge, the uniform validity of these tests when the models under consideration are

overlapping nonnested has not been studied, and may be an interesting topic for future research.3

The rest of the paper is organized as follows. Section 2 sets up our testing framework and

gives three examples. Section 3 describes our test in detail. Section 4 establishes the asymptotic

size and the local power of our test. Section 5 illustrates the construction of our test in the

mean-regression context. Section 6 provides the uniformly valid post model selection inference

procedures. Section 7 shows Monte Carlo results of a mean-regression example. Section 8 applies

the proposed nondegenerate test and conditional confidence interval to a schooling choice example,

and Section 9 concludes. Proofs and other supplemental materials are included in the Supplemental

Appendix.

Notation. Let C, C1 and C2 be generic positive constants whose values do not change with

the sample size. For any column vector a, let a′ denote its transpose and ‖a‖ its `2-norm. For any

square matrix A, A(i, j) denotes the element in the ith row and jth column of A, ‖A‖ denotes

the operator norm, and A+ denotes its Moore-Penrose inverse. Let ρmin(A) and ρmax(A) be the

smallest and largest eigenvalues of A in terms of absolute value, respectively. Let tr(A) denote the

trace of matrix A. For any square matrices A1 and A2, diag(A1, A2) denotes the block diagonal

matrix with A1 being the leading submatrix. Let N(µ,Σ) stand for a normal random vector with

mean µ and variance-covariance matrix Σ. For any (possibly random) positive sequences {an}∞n=1

3The lack of uniform size control of the Cox test when the DGP space is not restricted is illustrated in Loh
(1985). However, uniform size control under reasonable restrictions on the DGP space for the Cox test and other
nonnested hypotheses tests is still an interesting problem yet to be explored.
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and {bn}∞n=1, an = OP (bn) means that limc→∞ lim supn Pr (an/bn > c) = 0; and an = oP (bn) means

that for all ε > 0, limn→∞ Pr (an/bn > ε) = 0. For any p ∈ (0, 1), let zp denote the p quantile of

the standard normal distribution.

2 General Setup

2.1 Setup

Let Z ∈ Z ⊆ Rdz be an observable random vector with distribution F0. Let M1 and M2 be two

models about F0; that is, M1 andM2 are two sets of probability distributions on Rdz defined by

modeling assumptions. We are interested in testing the null hypothesis of equal fit:

H0 : f(M1, F0) = f(M2, F0), (2.1)

where f(·, ·) is a generic measure of fit. The alternative hypothesis can be either

H2-sided
1 : f(M1, F0) 6= f(M2, F0) or H1-sided

1 : f(M1, F0) > f(M2, F0). (2.2)

The two-sided test indicates that the two models have (statistically) significantly different fit for

the observed data when it rejects H0, and the one-sided test indicates that model M1 fits the

observed data significantly better when it rejects H0. It is the goal of this paper to develop a

simple test of equal fitting with uniform asymptotic validity and good power properties.

The fit measure f(·, ·) is context-specific and should be chosen to best suit the empirical model

comparison need. We focus on a given fit measure of the following form:

f(Mj, F0) = max
αj∈Aj

EF0 [mj(Z;αj)] = EF0

[
mj(Z;α∗F0,j

)
]
, for j = 1, 2, (2.3)

where EF0 [·] denotes the expectation taken under F0, mj(·; ·) is a user-chosen link function that

is the central component of the fit measure, αj is the parameter in model Mj, Aj is the possibly

infinite-dimensional parameter space, and α∗F0,j
is the pseudo-true parameter value of model j

defined as α∗F0,j
= arg maxαj∈Aj EF0 [mj(Z;αj)].

4

To fix ideas, consider the most common examples of Mj and f(Mj, F0), j = 1, 2:

4Following the literature (see, e.g., Stone (1985) and Ai and Chen (2007)), we assume that the pseudo true
parameter α∗F0,j

exists, is unique, and lies in the interior of Aj for j = 1, 2 throughout the paper. The sufficient
conditions to ensure the existence of the pseudo true parameter α∗F0

in general semi/nonparametric models are:
(i) the population function QF0

(α) = EF0
[m(Z,α)] is continuous at any α ∈ A under certain metric d (e.g., the

L2-metric or the uniform metric); and (ii) the parameter space A is compact with respect to d. Low level sufficient
conditions for the existence and uniqueness of α∗F0,j

in specific models can be found in Stone (1985) and Ai and
Chen (2007). See Section 5 for more discussion in the regression models.
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Example 1 (Likelihood Ratio) Consider Z = (W ′, X ′)′. Many structural models used in em-

pirical economics can be written as a conditional likelihood model of Z given X, i.e. (ignoring the

model index j)

M =
{
F : dFZ|X(z|x)/dµz = φ(z|x;α), ∀z, for some α ∈ A

}
, (2.4)

where FZ|X is the conditional distribution of Z given X implied by F , dFZ|X(z|x)/dµz is the

Radon-Nykodym density of FZ|X with respect to a basic measure (µz) on the space of Z, φ is a

known function, α is a possibly infinite-dimensional unknown parameter, and A is its parameter

space. For such a model, a natural fit measure is the population conditional log-likelihood, which

is the f(M, F0) defined in equation (2.3) with

m(Z;α) = log φ(Z|X;α). (2.5)

Note that with f(M, F0) defined this way, {f(M, F0)−f({F0}, F0)} is the Kullback-Leibler pseudo-

distance from model M to the true distribution F0. Vuong’s (1989) original test is designed for

such a likelihood context with α for both models being finite-dimensional, although Shi (2015b)

shows that it may have size distortion. Shi (2015b) proposes a uniformly valid procedure for the

parametric likelihood case.

Example 2 (Squared Error) Consider Z = (Y,X ′)′, where Y is a dependent variable, X is a

vector of regressors. A mean-regression model may be written as

M = {F : EF [Y |X = x] = g(x;α), ∀x, for some α ∈ A} , (2.6)

where g(·; ·) is a known regression function, α is a possibly infinite-dimensional unknown parameter

and A is its parameter space.5 For such a model, a commonly used fit measure is the population

regression mean-squared error, which is f(M, F0) defined in equation (2.3) with

m(Z;α) = − |Y − g(X;α)|2 /2. (2.7)

Example 3 (Check Function) Consider Z = (Y,X ′)′, where Y is a dependent variable, X is a

vector of regressors. A quantile-regression model may be written as

M = {P : Qτ,F (Y |X = x) = g(x;α), ∀x, for some α ∈ A} , (2.8)

5Sometimes, regression models are used without explicitly or implicitly assuming the best fitting regression
function to be E(Y |X = x). Nonetheless, the regression mean-squared error criterion often still is used to compare
the models. In those cases, the test developed in this paper still applies.
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where Qτ,F (Y |X) is the conditional τ -th quantile of Y given X under F with τ ∈ (0, 1), g(·; ·) is

a known regression function, α is a possibly infinite-dimensional unknown parameter, and A is

its parameter space. Similar to the example above, a reasonable fit measure is the expected check

function of Y from the best conditional τ -th quantile function in the model, which is f(M, F0)

defined in equation (2.3) with

m(Z;α) = (I {Y ≤ g(X;α)} − τ) [Y − g(X;α)] (2.9)

where I {·} denotes the indicator function.

2.2 Model Relationships

The following terms for model relationships are mentioned in the introduction, and will be used

in later sections when we discuss the uniform validity of our test in detail.

Definition 1 (Strictly Nonnested) Models M1 and M2 are strictly nonnested if there does

not exist a pair (α1, α2) ∈ A1 ×A2 such that m1(z;α1) = m2(z;α2) ∀ z ∈ Z.

Definition 2 (Overlapping) ModelsM1 andM2 are overlapping if they are not strictly nonnested.

Definition 3 (Nested) ModelM1 nests modelM2 if, for each α2 ∈ A2, there exists an α1 ∈ A1

such that m1(z;α1) = m2(z;α2) for any z ∈ Z.

Clearly, the overlapping case include the nested case. If the models are overlapping but not

nested, we say that the models are overlapping nonnested. If the models are mutually nested

(i.e. M1 nests M2, and M2 nests M1), then the models are observationally equivalent.6 We

exclude the case where the models are observationally equivalent from our discussion, since

in this trivial case, H0 always holds regardless of the true data distribution and no statistical

method can distinguish the two. The model relationship determines whether the random variable

m1(Z;α∗F0,1
) − m2(Z;α∗F0,2

) is always, never, or sometimes degenerate (i.e., almost surely zero)

under H0.7 8 Since whether m1(Z;α∗F0,1
)−m2(Z;α∗F0,2

) is degenerate or not affects the asymptotic

distribution of standard quasi-likelihood ratio statistic, uniformity issue arises when its status is

unknown.
6This definition of model equivalence is consistent with that in Pesaran and Ulloa (2008).
7This variable is clearly not almost surely zero under H1, because its mean is different from zero.
8Some readers may confuse the degeneracy of m1(Z;α∗1)−m2(Z;α∗2) under H0 with the observational equivalence

of the models M1 and M2. The former does not imply the latter, as one can easily see in the following simplistic
example. Let M1 be a mean-regression model E[Y |X] = α1(X) with the space A1 of α1 including the zero
function, and let M2 be another mean-regression model E[Y |X] = 0. Then our H0 is the same as the hypothesis
that E[Y |X] = 0 a.s.. Under H0, the difference in squared residuals is degenerate to zero. But the modelsM1 and
M2 are clearly not observationally equivalent.
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As we will see, the test statistic that we construct is asymptotically standard normal under

H0 regardless of whether m1(Z;α∗F0,1
) − m2(Z;α∗F0,2

) is degenerate. This leads to a test that is

uniformly asymptotically valid across all cases and all types of model relationship. Such uniformity

is of practice importance for a number of reasons. First, in many nonnested model selection

scenarios, the competing models are not completely incompatible to each other, in which case they

are overlapping. Second, establishing strict nonnestedness is difficult for structural models used in

empirical analysis. Using our test obviates the need for doing this. Third, even when the models

are strictly nonnested, tests ignoring the uniformity issue may still have severe size distortion

(over-rejection) in finite samples when both models can closely describe the data distribution,

while our test does not suffer from this kind of distortion.

2.3 Illustration of the Uniformity Issue

To further illustrate the uniformity issue, we presents a simple simulation study in Figure 1

compares two parametric linear regression models based on their mean-squared error. We show

both the distribution of the standardized QLR statistic (as used in Vuong (1989), T Vn ) and our

test statistic (Tn) in the figure. Here, model 1 has two regressors and model 2 has 17 regressors.

The red dashed line represents the finite sample density of T Vn defined in (3.5) below. In the

pointwise asymptotic framework, under H0, T Vn has asymptotic standard normal distribution when

the latent parameters (a, b) 6= 0 and asymptotic weighted chi-square distribution when (a, b) = 0.

Suppose that one conducts model selection test using the critical value from the standard normal

distribution. Although such a test is justified by the asymptotic distribution of T Vn when (a, b)

are not zero, we see that it over-rejects under the null even in this case, as illustrated in the first

three scenarios considered in Figure 1. When the latent parameters (a, b) are close to zero, this

test is severely over-sized and strongly in favor of the large model, i.e., model 2. As the figure

also shows, the standard normal distribution is a poor approximation to the finite sample density

of T Vn when (a, b) are not far enough away from zero, this also suggests that it is tricky to use

pre-testing of the latent model structure construct a valid model selection test.

The green dash-dotted line represents the finite sample density of our revised QLR statistic

Tn defined in (3.16) below. It is clear that the distribution of Tn is robust against small values of

(a, b), and its finite sample density is very close to the standard normal. Thus, the test using Tn

and critical value from the standard normal has better size control than the test based on T Vn and

it is also not biased by the relative complexities of the two models.
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Figure 1: Finite Sample Densities of T Vn and Tn under the Null Hypothesis
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Notes: (i). The simulated data is generated from the equation Yi = 0.5X1,i+aX2,i+b
∑16
k=1X2+k,i+ui, where (a, b)

is set to different values in the four subgraphs and the values guarantee equal fitting of the candidate models, and

(X1,i, ..., X18,i, ui)
′ is a standard normal random vector; (ii) model 1: Yi = X1,iθ1,1 + aX2,iθ1,2 + u1,i is compared

with model 2: Yi = X2,iθ2,2 + b
∑16
k=1X2+k,iθ2,2+k + u2,i in their expected squared errors; (iii) the finite sample

densities of the existing QLR statistic TVn and our statistic Tn are approximated using 1,000,000 simulated samples.

3 Description of Our Model Selection Test

Suppose that there is an i.i.d. sample {Zi}ni=1 of Z. In this section we describe our test for (2.1)

based on this sample. The construction of the test is grounded on the asymptotic expansion

established in the next section. We focus on the steps of the construction in this section for easy

reference for potential users of the test.

We use linear sieve approximation for the unknown functions, and use sieve M-estimator for

estimation.9 The specific procedure is explained now. For j = 1, 2, let Aj,kj denote a finite

9Many properties of the sieve M-estimator, including consistency, rate of convergence and asymptotic normality
are established in the literature. See, e.g., Chen (2007) for a recent survey on this topic.
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dimensional approximation of the parameter space Aj, which satisfies

Aj,kj = {αj,kj (·) : αj,kj (·) = αj(βj,kj) ≡ Pj,kj (·)′ βj,kj : βj,kj ∈ Bj,kj ⊆ Rkj}, (3.1)

where Pj,kj (·) =
[
pj,1 (·) , . . . , pj,kj (·)

]′
is a kj-dimensional vector of user-chosen approximating

functions such as polynomials and splines, kj is a positive integer which may diverge with the

sample size n. In the rest of the paper, we write αkj (·) = αj,kj (·), Pkj (·) = Pj,kj (·) and βkj = βj,kj
for j = 1, 2 for ease of notation.

To construct the test, we first estimate the fit of each model with the sample analogue estimator.

For j = 1, 2, define

f̂(Mj, F0) = n−1

n∑
i=1

mj(Zi; α̂kj) (3.2)

where α̂kj = αj(β̂kj) is an M-estimator defined with

β̂kj = arg max
βkj∈Bj,kj

n−1

n∑
i=1

mj

[
Zi;αj(βkj)

]
. (3.3)

For notation simplicity, we define the pseudo-density ratio:

`(Z;α) = m1 (Z;α1)−m2 (Z;α2) (3.4)

where α = (α1, α2) ∈ A1 × A2. We also define α∗F0
= (α∗F0,1

, α∗F0,2
), A = A1 × A2, k = (k1, k2),

βk = (β′k1 , β
′
k2

)′, Ak = A1,k1 ×A2,k2 , αk = α(βk) = (α1(βk1), α2(βk2)), and α̂k = (α̂k1 , α̂k2).

Since the null hypothesis H0 is equivalent to EF0 [`(Z;α∗F0
)] = 0, one may be tempted to suggest

treating EF0 [`(Z;α∗F0
)] as a parameter and constructing a Student t-like test for this hypothesis.

In other words, the suggestion would be to construct the test statistic

T Vn ≡ ¯̀
n(α̂k)(n−1/2ω̂n(α̂k))−1, (3.5)

where ¯̀
n(α̂k) is the sample analogue estimator of EF0 [`(Z;α∗F0

)] and n−1/2ω̂n(α̂k) is the sample

analogue of its standard deviation:

¯̀
n(α̂k) = n−1

n∑
i=1

`(Zi; α̂k) and ω̂2
n(α̂k) = n−1

n∑
i=1

[`(Zi; α̂k)− ¯̀
n(α̂k)]2. (3.6)

Then one would construct tests of the form: ϕV,2-sided
n (p) = 1{|T Vn | > z1−p/2} or ϕV,1-sided

n (p) =

1{T Vn > z1−p}. In fact, such tests are analogous extensions of Vuong’s (1989) (one-step) test to

the semi/non-parametric context. Thus, we refer to them as the “naive extension” tests hereafter.
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The rationale behind the naive extension test is that n1/2 ¯̀
n(α̂k) = n1/2 ¯̀

n(α∗F0
) + op(1) →d

N(0, ω2
F0,∗) and ω̂2

n = ω2
F0,∗ + op(1), where ω2

F0,∗ = V arF0(`(Z;α∗F0
)). However, this asymptotic

approximation can be very poor when ω2
F0,∗ is close to or equal to zero. When the models are

overlapping nonnested, both small positive values and the zero value are possible for ω2
F0,∗ under

H0, depending on the unknown data distribution F0. Thus, the naive extension test often fails to

have the correct level in a finite sample.10

The intuition of the failure of the naive extension test can be seen from the following heuristic

second order expansion of the QLR statistic.11 Let

β∗kj = arg max
βkj∈Bj,kj

EF0

[
mj(Z;αj(βkj))

]
, (3.7)

where we suppress the dependence of β∗kj on F0 for notational convenience. We assume that the sieve

coefficients β∗kj are in the interior of their spaces Bj,kj for any kj. Let α∗kj (·) = Pkj (·)′ β∗kj . Then

α∗kj is the sieve approximator of the pseudo true parameter α∗F0,j
on the finite dimensional space

Aj,kj . Let `α,k(Z;α) be the “score” function of `(Z;α) evaluated at α ∈ Ak. When `(Z;α(βk)) is

differentiable in βk, we can let

`α,k(Z;αk) = ∂` (Z;αk) /∂βk and ¯̀
α,k,n(α∗k) = n−1

n∑
i=1

`α,k(Zi;α
∗
k) (3.8)

where α∗k = (α∗k1 , α
∗
k2

). Then a second order Taylor expansion of ¯̀
n(α∗k) around α̂k gives:

¯̀
n(α̂k)− EF0 [`(Z;α∗F0

)] ≈ ¯̀
n(α∗k)− EF0 [`(Z;α∗F0

)]− 2−1 ¯̀
α,k,n(α∗k)′H−1

F0,k
¯̀
α,k,n(α∗k), (3.9)

where

HF0,k = diag

(
∂2EF0 [m1(Z;αk1)]

∂βk1∂β
′
k1

,−∂
2EF0 [m2(Z;αk2)]

∂βk2∂β
′
k2

)
= diag (HF0,k1 ,−HF0,k2) . (3.10)

Appropriate conditions and the central limit theorem imply that n1/2
{

¯̀
n(α∗k)− EF0 [`(Z;α∗F0

)]
}
→d

N(0, ω2
F0,∗) and n1/2 ¯̀

α,k,n(α∗F0
)→d N(0, DF0,k), where

DF0,k = EF0 [`α,k(Z;α∗k)`α,k(Z;α∗k)′]. (3.11)

10A pretest for whether `(·;α∗F0
) = 0 could be performed. But the two-step procedure may (a) not be uniformly

asymptotically valid if the pretest does not use a conservative critical value, and (b) not be powerful because the
pretest makes rejection difficult.

11The use of higher order expansion to develop more robust asymptotic theory is not new. It has been used in
many contexts including, for example, Jun and Pinkse (2012).
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The latter implies that n¯̀
α,n(α∗k)′H−1

F0,k
¯̀
α,n(α∗k) is approximately

∑|k|
j=1 λjχ

2
j(1), where |k| = k1+k2,

{χ2
j(1)}|k|j=1 are independent chi-squares with one degree of freedom and {λj}|k|j=1 are the eigenvalues

of DF0,kH
−1
F0,k

. Thus,

n
{

¯̀
n(α̂k)− EF0 [`(Z;α∗F0

)]
}
≈ n1/2N(0, ω2

F0,∗)− 2−1

|k|∑
j=1

λjχ
2
j(1). (3.12)

Note that since E[χ2
j(1)] = 1, we have E[

∑|k|
j=1 λjχ

2
j(1)] =

∑|k|
j=1 λj, which is typically nonzero

and can be of comparable scale as n1/2ωF0,∗, the standard deviation of n¯̀
n(α∗F0

). This means

that, even when the null hypothesis H0 holds (EF0 [`(Z;α∗F0
)] = 0), the numerator of the statistic

T Vn may not be centered around zero, causing the naive extension test to be biased. A similar

expansion of the denominator unveils that nω̂n(α̂k)2 is a biased estimator of ω2
F0,∗ as well, and the

dominating term of the bias is coincidentally 2−1
∑|k|

j=1 λ
2
j . Thus, the naive extension test not only

has a numerator bias that leads it to favor one model over the other when both have equal fit, but

also has a denominator bias that tends to make it conservative. The two biases could cancel each

other in certain context, but in general do not, and can exacerbate each other when the power

against one-sided alternatives is considered.

Our nondegenerate test corrects the two biases by estimating and removing them. Specifically,

we construct estimators λ̂j : j = 1, . . . , |k| and propose the bias removed statistics:

˜̀
n = ¯̀

n(α̂k) + (2n)−1

|k|∑
j=1

λ̂j and ω̃2
n = ω̂2

n(α̂k)− (2n)−1

|k|∑
j=1

λ̂
2

j . (3.13)

Then the approximation in (3.12) implies that under H0,

n˜̀
n ≈ n1/2N(0, ω2

F0,∗)− 2−1

|k|∑
j=1

λj(χ
2
j − 1). (3.14)

Recall that |k| → ∞ as n → ∞ in semi/non-parametric models, and apply the central limit

theorem on the sum of independent mean-zero variables χ2
j − 1 : j = 1, . . . , |k| to find that the

second term is approximately normal as well. We also show that the two terms are asymptotically

independent, suggesting that n˜̀
n is asymptotically mean-zero normal under H0. Moreover, nω̃2

n

also consistently estimate the variance of this mean-zero normal limit. As a result, we have

T 0
n =

n˜̀
n

n1/2ω̃n
→d N(0, 1), as n→∞. (3.15)

12



There is a minor issue with using T 0
n as our test statistic because ω̃2

n is defined as the difference of

two non-negative terms. In finite sample, this difference can be zero or negative even though the

probability of that happening approaches zero as n→∞. To avoid this finite sample irregularity,

we recommend a slightly regularized version:

Tn =
n˜̀

n

n1/2σ̂n
, where σ̂2

n = max

{
ω̃2
n, (2n)−1

∑|k|

i=1
λ̂

2

j

}
. (3.16)

The regularization has no effect on the asymptotic distribution as we show that (2n)−1
∑|k|

i=1 λ̂
2

j is

less than or equal to ω̃2
n asymptotically. Thus, we still have Tn →d N(0, 1) as n→∞.

Estimating λj : j = 1, . . . , |k| is straightforward as they are eigenvalues of DF0,kH
−1
F0,k

. It is

in fact unnecessary to estimate these eigenvalues individually since it is clear from the discussion

above that all we need are the two sums:
∑k

j=1 λj and
∑k

j=1 λ
2
j , which are equal to tr(DF0,kH

−1
F0,k

)

and tr((DF0,kH
−1
F0,k

)2), respectively, by matrix algebra identities. These can be constructed in a

plug-in manner once we have estimates D̂n and Ĥn for DF0,k and HF0,k. When `(Z; ·) is differen-

tiable, we let

D̂n = n−1

n∑
i=1

`α,k(Zi; α̂k)`α,k(Zi; α̂k)′ and Ĥn = n−1

n∑
i=1

∂2`(Zi; α̂k)

∂βk∂β′k
. (3.17)

The score functions `α,k(Zi; α̂k) and estimators of the Hessian matrix are available case by case in

the literature when differentiability does not hold. For example, suitable choices for the nonpara-

metric quantile regression example are given in Belloni et al. (2011).

The two-sided test and the one-sided test of H0 in (2.1) of nominal size p (∈ (0, 1)) are,

therefore,

ϕ2-sided
n (p) = 1{|Tn| > z1−p/2} and ϕ1-sided

n (p) = 1{Tn > z1−p} (3.18)

respectively. The test does not select a better fitting model when it does not reject the null

hypothesis. Such indeterminacy reflects the data fact that the fit of the two models are not

statistically significantly different. In practice, if a model must be selected, one needs to analyze

other, perhaps nonstatistical, features of the models. Often times the researcher has a preferred

model based on features such as dimensionality and interpretability, and can set that one as the

benchmark model. The benchmark model is selected when the null of equal fit is not rejected.

We show the uniform asymptotic validity of the above tests in the next section. Specifically,

we show that:

lim
n→∞

inf
F0∈F0

EF0 [ϕn(p)] = lim
n→∞

sup
F0∈F0

EF0 [ϕn(p)] = p, (3.19)

where ϕn = ϕ2-sided
n or ϕn = ϕ1-sided

n , and F0 is the set of data generating processes (DGPs) that
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the null hypothesis and the assumptions (given below) allow, which shows that the tests that we

propose are asymptotically size-exact and similar.

4 Uniform Asymptotic Validity

In this section, we establish the uniform asymptotic validity and the local power of our test

under high-level assumptions. These assumptions are verified in a nonparametric mean-regression

example and in a quantile-regression example in Supplemental Appendices C and D respectively.

We begin by stating the regularity conditions on the DGP space F and null DGP space F0. In

the assumptions below, {ξk}k is an array of non-decreasing positive numbers which may diverge

with |k| = k1 + k2, and may not depend on F0.

Assumption 4.1 The set F is the set of F0’s such that

(a) {Zi}i≥1 are i.i.d. draws from F0;

(b) for every k, EF0 [`(Z;α(βk))] is twice-differentiable in βk;

(c) the sieve approximator α∗k satisfies EF0 [`α,k(Z;α∗k)] = 0|k| for every k;

(d) EF0

[
`(Z;α∗F0

)2
]
< C, and for every k, EF0

[
‖`α,k(Z;α∗k)‖4] ≤ Cξk |k|;

(e) EF0

[∣∣(`(Z;α∗F0
)− EF0(`(Z;α∗F0

)))/ωF0,∗
∣∣4] < C whenever ω2

F0,∗ ≡ V arF0 [`(Z;α∗F0
)] > 0;

(f) for j = 1, 2, −C ≤ ρmin(HF0,kj) ≤ ρmax(HF0,kj) ≤ −C−1 and ρmax(DF0,k) ≤ C for all k.

Assumption 4.2 F0 =
{
F0 ∈ F : EF0

[
`(Z;α∗F0

)
]

= 0
}

.

Assumption 4.1(b) ensures that the matrix HF0,k in (3.10) is well defined. Assumption 4.1(c)

generally follows from the first order optimality condition of α∗k. Let λF0,1, . . . , λF0,|k| denote the

|k| eigenvalues of D
1/2
F0,k

H−1
F0,k

D
1/2
F0,k

, and let

σ2
F0,n
≡ ω2

F0,∗ + (2n2)−1(n− 1)ω2
F0,U,k

(4.1)

where ω2
F0,U,k

≡
∑|k|

j=1 λ
2
F0,j
≡ tr((DF0,kH

−1
F0,k

)2). Assumptions 4.1(d) and (f) together ensure that

ω2
F0,∗, DF0,k, ω2

F0,U,k
, and σ2

F0,n
are well defined. The array ξk depends on the approximating

function used. For example, it is the order of k2
j on the jth direction if power series is used for

model j, and it is the order of kj if Fourier or spline series is used. Assumption 4.1(e) implies the

Linderberg condition on the pseudo-density ratio.

The definition of the supremum (infimum) operator implies that, to show the uniformity results

(3.19), it is sufficient to consider all sequences of DGPs {Fn}n≥1 in F0. Moreover, to study the

local power properties, we need to consider sequences of DGPs {Fn}n≥1 in F\F0. In general,

we consider sequences {Fn}n≥1 in F . For any Fn ∈ F , we let α∗j,n abbreviate α∗Fn,j, and let α∗n

abbreviate (α∗1,n, α
∗
2,n). Let `α,n(α) = n−1

∑n
i=1 `α,k(Zi;α) for any α ∈ A.
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Assumption 4.3 Under any sequence of DGP’s {Fn}n≥1 such that Fn ∈ F for all n, we have

(a) ¯̀
n(α̂k) = ¯̀

n(α∗n)− 2−1`α,n(α∗k)′H−1
Fn,k

`α,n(α∗k) + op(n
−1/2σFn,n);

(b) (nσ2
Fn,n

)−1 = o(1) and |k|ξk(n2σ2
Fn,n

)−1 = o(1).

Assumption 4.3(a) is a second order expansion of ¯̀
n(α̂k) around α∗n. We verify this assumption

in the nonparametric mean regression example (Supplemental Appendix C) and the nonparametric

quantile regression example (Supplemental Appendix D). With the formula of this expansion, we

can add more details to the heuristic discussion in Section 3. The variance of the leading term,

n−1ω2
Fn,∗, in the expansion comes from estimating the expectation, and the variance of the second

term, approximately 2−1n−2ω2
Fn,U,k

, comes from estimating α∗n. The quantity ω2
Fn,∗ can be either

zero or positive in the overlapping nonnested case. Indeed, it can converge to zero at any rate in

that case. On the other hand, the quantity ω2
Fn,U,k

typically is nonzero.12 The relative magnitude

of the two terms is proportional to
nω2

Fn,∗
ω2
Fn,U,k

, which can be zero or positive. It is such ambiguity of

the relative asymptotic order of the two expansion terms that makes a uniformly valid test difficult

to construct.13

Assumption 4.3(b) is an important condition for the uniform asymptotic validity of our test.

The first part of it ensures that the approximation residual in Assumption 4.3 (a) diminishes at a

fast enough rate as the sample size grows. The second part of the assumption allows us to apply a

U-statistic central limit theorem to the quadratic term 2−1`α,n(α∗k)′H−1
Fn,k

`α,n(α∗k). To understand

this assumption, note that σ2
Fn,n

= ω2
Fn,∗ + (2n2)−1(n − 1)ω2

Fn,U,k
. If ω2

Fn,∗ is bounded below by a

positive constant (as is typical for strictly nonnested models), Assumption 4.3(b) is satisfied as

long as |k|ξkn−2 = o(1) as n → ∞, which simply requires that the number of sieve terms not

to grow too fast. Otherwise, Assumption 4.3(b) imposes restriction on the U-statistic variance

ω2
Fn,U,k

≡ tr
(
(H−1

Fn,k
DFn,k)2

)
. Specifically, it requires, as n→∞, that

ω2
Fn,U,k →∞ and |k|ξk(nω2

Fn,U,k)−1 = o(1). (4.2)

This is satisfied if |k| grows with n and there are not too many near zero eigenvalues for the

matrix H−1
Fn,k

DFn,k. Both can be assessed in practice because k is user-chosen and H−1
Fn,k

DFn,k

can be consistently estimated. Moreover, the requirement that |k| grows with n is natural and

12For example, consider M1: Y = X ′1β1 + X ′2β2 + u and M2: Y = X ′1β1 + u. Suppose that X = (X ′1, X
′
2)′ is

uncorrelated with u and EF0 [XX ′] = I|k| for simplicity. The null hypothesis H0 is equivalent to β2 = 0 and there

is `(Z;α∗n) = 0 under H0 as a result. Yet, 2−1`α,n(α∗n)′H−1Fn,k
`α,n(α∗n) = 2−1n−2

∑n
i=1

∑n
j=1 uiujX

′
2,iX2,j which is

clearly not degenerate. See Hong and White (1995) for more sophisticated examples.
13Ambiguity of this type also arises in the analysis of weak instruments and weak identification, where the

common techniques include pretesting with conservative critical value, Anderson-Rubin type robust procedures,
and conditional likelihood inference. The first two in general do not yield asymptotically similar tests, indicating
power loss under some data generating processes, while the last one is not a general technique that can be applied
here.

15



necessary in the literature of series estimation of semi/nonparametric models.14

Under the above assumptions, the following intermediate result holds.

Theorem 4.1 Suppose that Assumptions 4.1 and 4.3 hold. Then under any sequence {Fn}n≥1

such that Fn ∈ F for all n, we have

n(¯̀
n(α̂k)− EFn [`(Z;α∗n)]) + (1/2)tr(D̂n(α∗k)H−1

Fn,k
)

n1/2σFn,n
→d N(0, 1), (4.3)

where D̂n(α∗k) = n−1
∑n

i=1 `α,k(Zi;α
∗
k)`α,k(Zi;α

∗
k)′.

Remark 1 Note that Theorem 4.1 applies whether or not Fn ∈ F0. In the case that Fn ∈ F0 for

all n, it again covers two special sub-cases: (i) The statistic n1/2 ¯̀
n(α̂k) is non-degenerate (Fn = F

for some F and for all n, and ω2
F,∗ > 0); (ii) the statistic n1/2 ¯̀

n(α̂k) is degenerate (Fn = F for

some F and for all n, and ω2
F,∗ = 0). More importantly, it allows ω2

Fn,∗ to converge to zero at all

rates, and thus covers all types of DGP sequences in the overlapping nonnested case.

When ω2
Fn,∗ converges to zero at an equal or faster rate than n−1 or is exactly zero, the asymp-

totic normality in (4.3) is achieved by the central limit theorem of U-statistic which requires that |k|
grows with n. The normal approximation of the U-statistic is widely used in the literature of model

specification test. See e.g., Hall (1984), Hong and White (1995), Horowitz and Härdle (1994),

Fan and Li (1996), Aı̈t-Sahalia et al. (2001) and Donald et al. (2003). Theorem 4.1 shares similar

features with the results in these papers, in that they also require the number of approximating

functions to diverge with n or the bandwidth of kernel functions to go to zero with n.

In order to use the intermediate result in Theorem 4.1, we need to construct consistent estima-

tors of D̂n(α∗k), HFn,k, and σ2
Fn,n

. The estimators that we consider are respectively the D̂n, the Ĥn,

and the σ̂2
n defined in the previous section. Assumption 4.4 below ensures their consistency. In

this assumption, δn = min
{
n1/2σFn,n|k|−1, 1

}
, and `F (α) = EF [`(Z;α)] for all F ∈ F and α ∈ A.

Assumption 4.4 Under any sequence of DGP’s {Fn}n≥1 with Fn ∈ F for all n, we have:

(a) ‖Ĥn −HFn,k‖ = op(δn), ‖D̂n − D̂n(α∗k)‖ = op(δn) and ‖D̂n(α∗k)−DFn,k‖ = op(δn);

(b) n−1
∑n

i=1 |`(Zi, α̂k)− `(Zi, α∗n)|2 = `α,n(α∗k)′(H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,n(α∗k) + op(σ
2
Fn,n

);

(c) n−1
∑n

i=1(`(Zi, α
∗
n)− `Fn(α∗n)) [`(Zi, α̂k)− `(Zi, α∗n)] = op(σ

2
Fn,n

);

(d) |k|n−1 = o(1).

14The asymptotic theory established in this paper also provides a good approximation for the comparison of
parametric models with fixed but large |k|. Simulation results in Supplemental Appendix F show that our test
works well even when |k| is only 7.
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Conditions in Assumption 4.4 are verified in the nonparametric mean-regression example in

Supplemental Appendix C. Under this assumption, we can easily show that the large sample bias

of n¯̀
n(α̂k,n) can be estimated up to the appropriate rate:

Lemma 4.1 Suppose that Assumptions 4.1(c) and (e)-(g), and 4.4(a) hold. Then under any

sequence {Fn}n≥1 such that Fn ∈ F for all n, we have

tr(D̂nĤ
−1
n )− tr(D̂n(α∗k)H−1

Fn,k
) = op(n

1/2σFn,n).

Next, we derive the convergence of σ̂2
n. First, we show the convergence of ω̂2

n(α̂k) in the

following lemma.

Lemma 4.2 Suppose that Assumptions 4.1, 4.3 and 4.4 hold. Then under any sequence {Fn}n≥1

such that Fn ∈ F for all n, we have

∣∣ω̂2
n(α̂k)−

(
ω2
Fn,∗ + n−1ω2

Fn,U,k

)∣∣ = op(σ
2
Fn,n).

Remark 2 Note that ω̂2
n(α̂k) may be viewed as a sample-analogue estimator of ω2

Fn,∗. Lemma 4.2

shows that, in general, ω̂2
n(α̂k) over-estimates ω2

Fn,∗. In fact, it even over-estimates the overall

asymptotic variance of the size-corrected quasi-likelihood ratio statistic: σ2
Fn,n

, by (2n2)−1(n +

1)ω2
Fn,U,k

. The upward bias is due to the estimation error in α̂k.

Lemma 4.2 suggests that σ2
Fn,n

can be consistently estimated by estimating and then removing

the large-sample bias (2n2)−1(n+ 1)ω2
Fn,U,k

from ω̂2
n(α̂k). This motivates the estimator σ̂2

n defined

in the previous section. In the definition of σ̂2
n, tr((D̂nĤ

−1
n )2) is used to estimate ω2

Fn,U,k
. The

lemma below shows that this estimator of ω2
Fn,U,k

is consistent in an appropriate sense, and so is

the resulting bias-removed estimator of σ2
Fn,n

.

Lemma 4.3 Suppose that Assumptions 4.1, 4.3 and 4.4 hold. Then under any sequence {Fn}n≥1

such that Fn ∈ F for all n, we have

(a) tr((D̂nĤ
−1
n )2)− ω2

Fn,U,k
= op(nσ

2
Fn,n

), and

(b) ω̃2
n − σ2

Fn,n
= op(σ

2
Fn,n

), where ω̃2
n = ω̂2

n(α̂k)− (2n)−1tr((D̂nĤ
−1
n )2) as defined in ( 3.13).

Lemma 4.3 is used to show the consistency of σ̂2
n: σ̂2

n − σ2
Fn,n

= op(σ
2
Fn,n

). This along with

Theorem 4.1 and Lemmas 4.1–4.2 immediately leads to the uniform asymptotic size control and

the asymptotic similarity results in (3.19). These results also immediately lead to a local power

formula because the assumptions used for them do not require Fn ∈ F0. These are summarized

in the theorem below.
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Theorem 4.2 Suppose that Assumptions 4.1-4.4 hold. Then:

(a) (3.19) holds for ϕn = ϕ2-sided
n and ϕn = ϕ1-sided

n .

(b) Under any sequence Fn ∈ F such that Fn → F0 for some F0 ∈ F0 in the Kolmogorov-Smirnov

distance, and that n1/2EFn [`(Z;α∗n)] /σFn,n → c for some constant c ∈ R, we have

lim
n→∞

EFn
[
ϕ2-sided
n (p)

]
= 2− Φ(z1−p/2 − c)− Φ(z1−p/2 + c), and

lim
n→∞

EFn
[
ϕ1-sided
n (p)

]
= 1− Φ(z1−p − c),

where Φ(·) is the CDF of the standard normal distribution.

Remark 3 Note that σFn,n = O(1), and it can be o(1) when ω2
Fn,∗ → 0. Thus, part (b) of the

theorem implies that the test has nontrivial power against all local alternatives with EFn [`(Z;α∗n)]

converging to 0 at the rate n1/2, and against alternatives with EFn [`(Z;α∗n)] converging to 0 at a

rate faster than n1/2 if ω2
Fn,∗ → 0. Such power property is not shared by a pre-test based model

selection test like that in Shi (2015a), or a model selection test that uses added noise to augment

the variance either through sample splitting or other means.

Remark 4 As we have discussed, Shi (2015b) proposes a nondegenerate test for the parametric

case. Her test statistic, if directly applied to the sieve approximation of the semi/nonparametric

models, takes the following form

T paran (c) =
n¯̀

n(α̂k) + 2−1tr(D̂nĤ
−1
n )

n1/2
(
ω̂2
n(α̂k) + cn−1tr((D̂nĤ−1

n )2)
)1/2

, (4.4)

where c ≥ 0 is a tuning parameter. Compared with T paran (c), our test statistic Tn has the same

numerator but a different denominator. By Lemma 4.3(b), ω̂2
n(α̂k)

σ2
Fn,n
− (2n)−1tr((D̂nĤ

−1
n )2)

σ2
Fn,n

→p 1, which

implies that ω̂2
n(α̂k) > (2n)−1tr((D̂nĤ

−1
n )2) with probability approaching one. This and the def-

inition of σ̂2
n together imply that ω̂2

n(α̂k) ≥ σ̂2
n with probability approaching one, which in turn

implies that |T paran (c)| ≤ |Tn| with probability approaching one for any c ≥ 0. On the other hand,

the critical value of the test proposed in Shi (2015b) by construction is not smaller than the crit-

ical value of our test. Therefore the asymptotic theory established in this section automatically

justifies the test proposed in Shi (2015b) in terms of asymptotic size control when applied to the

semi/nonparametric models. However, when |k| is large, there are a large number of nuisance

parameters (which are not consistently estimable) for Shi’s (2015b) approach to consider, which

makes it difficult to use. In contrast, our test is much easier to use, also has asymptotic size

control, and has better power in the semi/nonparametric setting, where the better power is implied

by its bigger test statistic and smaller critical value. Moreover, the asymptotic standard normal
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distribution of our test statistic Tn also makes the post model selection inference easy in practice

as we discuss in later sections.

5 Example: Semi/Nonparametric Mean-Regression

In this section we illustrate the construction of our test using the nonparametric mean-regression

example. We verify the high-level assumptions in this example in Supplemental Appendix C.

Another illustrating example—quantile-regression—is given in Supplemental Appendix D, where

we also verify the high level assumptions.

For j = 1, 2, model j is to maximize EF0 [−2−1 |Y − αj(Xj)|2] over αj ∈ Aj, where αj(x) is

a possibly infinite dimensional parameter, Aj is its parameter space, and F0 denotes the joint

distribution of Z ≡ (Y,X1, X2). The regressors X1 and X2 of the two models may be nested, over-

lapping, or strictly non-nested sets of variables. Even when the regressors are strictly nonnested

sets of variables (i.e., there are no common regressors across the two regressions), the two regres-

sion models are still overlapping according to the definitions in Section 2.2 because it is possible

that α1(X1) = α2(X2) = Constant.

The model studied in this section covers a richer class of models than it looks. Depending on

what one sets Aj to be, it can represent a fully nonparametric mean-regression model, a partial

linear model, a separable model, or a parametric linear model. See below for an example. We do

not require that there exists an αj ∈ Aj such that αj(Xj) = EF0 [Y |Xj] a.s.

The sieve approximating functions for this case have to do with the structure of Aj. For

example, suppose that we have a partial linear model αj(Xj) = β1Xj,1 + g(Xj,2). Then, we should

let Pkj(Xj) =
[
pj,1(Xj), . . . , pj,kj(Xj)

]′
such that pj,1(Xj) = Xj,1 and the rest of the sequence of

pj,`(Xj)’s be an appropriate sieve approximation of g(Xj,2), such as splines or polynomials on Xj,2.

The sieve M-estimator is simply the sieve least squares estimator:

α̂kj (·) = Pkj(·)′β̂kj with β̂kj = (P′kj ,nPkj ,n)−1P′kj ,nYn, (5.1)

where Pkj ,n =
[
Pkj (Xj,1) , . . . , Pkj (Xj,n)

]′
for j = 1, 2, and Yn = (Y1, . . . , Yn)′. The link function

is

`(Z;α) = 2−1|Y − α2(X2)|2 − 2−1|Y − α1(X1)|2. (5.2)

Using the above two displays, the pseudo-likelihood ratio and the standard error statistics can be

constructed easily following (3.6).

The pseudo true parameter α∗j (·) is defined as α∗j = arg maxαj∈Aj EF0 [−2−1 |Y − αj(Xj)|2],

which depends on the functional form restrictions imposed on the parameter space Aj. If there

is no functional form restriction, then α∗j (Xj) = EF0 [Y |Xj]. If an additive form is imposed,
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i.e., αj(Xj) = g(Xj,1) + . . . + g(Xj,q) for some finite q, the pseudo true parameter exists and

is unique under general conditions (see Condition 1 and Lemma 1 in Stone (1985)). When a

partially linear form is imposed, i.e., αj(Xj) = X ′j,1β1 + g(Xj,2), then the pseudo true parameter

α∗j (Xj) = X ′j,1β
∗
1 + g∗(Xj,2) where

β∗1 =
(
EF0

[
X∗j,1X

∗′
j,1

])−1
EF0

[
X∗j,1Y

∗] and g∗(Xj,2) = EF0

[
Y −X ′j,1β∗1 |Xj,2

]
(5.3)

where X∗j,1 = Xj,1 − EF0 [Xj,1|Xj,2] and Y ∗ = Y − EF0 [Y |Xj,2].

Let ukj = Y − α∗kj(Xj), where α∗kj(·) = Pkj(·)′β∗kj ,F0
and

β∗kj ,F0
= arg min

βkj∈R
kj

EF0

[∣∣Y − Pkj(Xj)
′βkj
∣∣2] . (5.4)

By the first order optimality condition for ukj = Y − Pkj(Xj)
′β∗kj ,F0

, we have EF0 [ukjPkj(Xj)] =

0kj×1. With the sieve approximation in (3.1), `(Z;α(βk)) is differentiable in βk. Thus, the score

function can be obtained by the chain rule:

`α,k(Z;α) = ((Y − α1(X1))Pk1(X1)′,−(Y − α2(X2))Pk2(X2)′)
′
. (5.5)

Then, the expectation of the outer product of the score function evaluated at α∗k is

DF0,k =

(
EF0 [u

2
k1
Pk1(X1)Pk1(X1)′] −EF0 [uk1uk2Pk1(X1)Pk2(X2)′]

−EF0 [uk1uk2Pk2(X2)Pk1(X1)′] EF0 [u
2
k2
Pk2(X2)Pk2(X2)′]

)
, (5.6)

and the population Hessian matrix is:

HF0,k = diag (−EF0 [Pk1(X1)Pk1(X1)′], EF0 [Pk2(X2)Pk2(X2)′]) . (5.7)

It is natural to use the plug-in estimators of DF0,k and HF0,k:

D̂n,k =

(
n−1

∑n
i=1 û

2
1,iPk1 (X1,i)Pk1(X1,i)

′ −n−1
∑n

i=1 û1,iû2,iPk1 (X1,i)Pk2(X2,i)
′

−n−1
∑n

i=1 û1,iû2,iPk2 (X2,i)Pk1(X1,i)
′ n−1

∑n
i=1 û

2
2,iPk2 (X2,i)Pk2 (X2,i)

′

)
,

(5.8)

where the residual ûj,i = Yi − α̂kj(Xj,i); and

Ĥn,k = diag

(
−n−1

n∑
i=1

Pk1 (X1,i)Pk1(X1,i)
′, n−1

n∑
i=1

Pk2 (X2,i)Pk2 (X2,i)
′

)
. (5.9)

Finally, the test statistic may be constructed easily using the above quantities following (3.16).
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6 Uniformly Valid Post Selection Test Inference

Up to this point, we have focused on how to properly conduct model selection that takes into

account sample noise. Sometimes, model selection is the sole purpose of a research project (e.g.,

Coate and Conlin (2004) and Gandhi and Serrano-Padial (2015)). But, sometimes, one is also

interested in the model parameters that are estimated using the same data set on which the model

selection test is conducted. Leeb and Pötscher (2005) show the size-distortion of naive post-model-

selection (PMS) inference that does not account for the randomness of model selection. Uniformly

valid post model selection test inference procedures for possibly misspecified semi/nonparametric

models have not been developed in the literature.

The QLR model selection test framework treats the parameters in the two models as separate

parameters in the sense that there is no across-model restrictions. In practice, while some pa-

rameters of a model may only have meaningful interpretation in its own model environment, it is

also possible that a parameter from one model and a parameter from the other model represent

the same economic parameter of interest. Thus, we treat these two different scenarios separately

when considering post model selection test inference.

In the first scenario, the parameter of interest is only well-defined in model Mj (j = 1 or 2),

and the researcher is interested in it only whenMj is selected by the model selection test. In this

scenario, we would like to make the inference conditional on the event that M1 is selected. Leeb

and Pötscher (2006) pointed out that in general it is impossible to approximate the conditional

distribution of the parameter estimator given that the model is selected. Instead of studying

the conditional distribution, we take a different route, and construct confidence interval for the

parameter using a conditionally asymptotically pivotal statistic. We devote subsection 6.2 to this

approach.

In the second scenario, the parameter of interest, θ, is well-defined in both models: it equals

ψ1(α1) in modelM1 and equals ψ2(α2) in modelM2 for two known functionals ψ1 : A1 → R and

ψ2 : A2 → R. Its (pseudo)-true value is determined by the better fitting model:

θ∗ = ψ1(α∗1)1(f(M1, F0) ≥ f(M2, F0)) + ψ2(α∗2)1(f(M1, F0) < f(M2, F0)). (6.1)

For example, if the competing models are two regression models, θ∗ could be the expected point

prediction from the better fitting model. We devote subsection 6.3 below to this problem.

To prepare for subsections 6.2 and 6.3, we let ψ1(α∗1) and ψ2(α∗2) be estimated by the plug-in

estimators ψ1(α̂k1) and ψ2(α̂k2) respectively. Both subsections 6.2 and 6.3 rely on the joint normal

limiting distribution of (ψ1(α̂k1), ψ2(α̂k2),
¯̀
n(α̂k))′ (after proper re-centering and rescaling), which

we derive in the next subsection.
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6.1 Preliminaries

We first introduce some notation. Let `α,k1(Z;α1) denote the sub-vector of the first k1 coordi-

nates of `α,k(Z;α), and let `α,k2(Z;α2) denote minus the sub-vector of the last k2 coordinates of

`α,k(Z;α). Let DF0,kj = EF0 [`α,kj(Z;α∗F0,j
)`α,kj(Z;α∗F0,j

)′] for j = 1, 2. Also define

ψα,kj(αj) =
∂ψj(αj(βkj))

∂βkj
and v∗ψ,kj =

(
ψα,kj(α

∗
kj

)′H−1
F0,kj

DF0,kjH
−1
F0,kj

ψα,kj(α
∗
kj

)
)1/2

, (6.2)

where v∗ψ,kj is the well-established formula for the asymptotic standard deviation of functionals of

sieve-M estimator.

Let v̂∗ψ,kj denote the estimator of v∗ψ,kj which is defined as

v̂∗2ψ,kj = ψα,kj(α̂kj)
′Ĥ−1

kj ,n
D̂kj ,nĤ

−1
kj ,n

ψα,kj(α̂kj)

where Ĥkj ,n and D̂kj ,n are the leading kj × kj submatrices of Ĥn and D̂n respectively for j = 1,

and the last kj × kj submatrices of −Ĥn and D̂n respectively for j = 2.

We shall derive the asymptotic distribution of

Ĝn,Fn ≡


n[¯̀

n(α̂k)−EFn (`(Z;α∗n))]+(1/2)tr(D̂nĤ
−1
n )

n1/2σ̂n

n1/2
[
ψ1(α̂k1)− ψ1(α∗1,n)

]
(v̂∗ψ,k1)

−1

n1/2
[
ψ2(α̂k2)− ψ2(α∗2,n)

]
(v̂∗ψ,k2)

−1

 . (6.3)

For this purpose, define the correlation coefficients

ρ0j,F0 = ψα,kj(α
∗
kj

)′H−1
F0,kj

EF0

[
`α,kj(Z;α∗kj)`(Z;α∗n)

]
(v∗ψ,kjσF0,n)−1 for j = 1, 2,

ρ12,F0 = ψα,k1(α
∗
k1

)′H−1
F0,k1

DF0,k1,k2H
−1
Fn,k2

ψα,k2(α
∗
k2

)(v∗ψ,k1v
∗
ψ,k2

)−1, (6.4)

where DF0,k1,k2 = EF0

[
`α,k1(Z;α∗k1)`α,k2(Z;α∗k2)

′].
For any sequence {Fn}n≥1, we write ρ0j,n = ρ0j,Fn and ρ12,n = ρ12,Fn for ease of notation.

The following lemma gives the limiting distribution of Ĝn,Fn under an arbitrary sequence Fn ∈ F ,

which extends the asymptotic distribution result in Section 4 to joint convergence.

Lemma 6.1 Suppose that Assumptions 4.1, 4.3, and B.1-B.2 in Supplemental Appendix B hold.

Then under any sequence {Fn}n≥1 and any subsequence {un} of {n} such that with Fn ∈ F for all

n, ρ0j,un → ρ0j and ρ12,un → ρ12 for some ρ0j and ρ12 ∈ [−1, 1], we have

Ĝn,Fn →d N(03,ΣG)
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where ΣG is symmetric with ΣG(i, i) = 1 for i = 1, 2, 3, ΣG(i, i + 1) = ρij for i = 0, 1 and

ΣG(1, 3) = ρ02.

Lemma 6.1 follows immediately from Lemmas 4.2 and 4.3 in Section 4, and Lemmas B.1, and

B.2 in Supplemental Appendix B and hence is omitted.

6.2 Conditional Inference for Model-Specific Parameters

In this subsection, we consider the conditional inference of a functional – denoted ψ1(α∗1) – of

the parameter in model M1 given that M1 is selected.15 Specifically, we construct a level 1 − p
conditional confidence interval, CIψ1(1− p) such that

lim inf
n→∞

inf
F0∈Fn

Pr F0(ψ1(α∗1) ∈ CIψ1(1− p)|Tn ≥ t) = 1− p, (6.5)

where Fn is a sequence of subsets of F defined below. Note that we allow c to be an arbitrary

number, which the user can choose according to her interpretation of the event thatM1 is selected.

To describe our conditional confidence interval, first define a function Ψ : R × (−∞,∞] ×
[−1, 1]→ R:

Ψ(c, h, ρ) =


[Φ(c)− Φ (c− h/ρ)] / [1− Φ (c− h/ρ)] if ρ > 0 and h ∈ R
Φ(c) if ρ = 0 or h =∞
Φ(c)/Φ(c− h/ρ) if ρ < 0 and h ∈ R.

(6.6)

For any t ∈ R and p ∈ (0, 1), let c1,p be the solution to the equation:

Ψ(c1,p, Tn − t, ρ̂01,n) = p, (6.7)

where ρ̂0j,n = ψα,kj(α̂kj)
′Ĥ−1

kj ,n
(v̂∗ψ,kj σ̂n)−1n−1

∑n
i=1 `α,kj(Zi; α̂kj)`(Zi; α̂k), for j = 1, 2. This equa-

tion only needs to be solved when Tn ≥ t because the confidence interval is only needed then.

The equation always has a unique solution when Tn ≥ t because Ψ(c, h, ρ) is a strictly increasing

function in θ with range (0, 1), for any h ≥ 0 and any ρ ∈ [−1, 1]. Our conditional confidence

interval is of the form:

CIψ1(1− p) =
[
ψ1(α̂k1)− n−1/2c1,1−p/2v̂

∗
ψ,k1

, ψ1(α̂k1)− n−1/2c1,p/2v̂
∗
ψ,k1

]
. (6.8)

These critical values depend on Tn and hence are not approximations of the conditional quan-

tiles of
√
n(ψ1(α̂k1) − ψ1(α∗1))/v̂∗ψ,k1 given Tn > t. Therefore, the validity of our construction is

15Conditional inference for a functional of the parameter in model M2 given that M2 is selected is analogous
and thus omitted.
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not contradictory to the impossibility results in Leeb and Pötscher (2006). The construction of

the critical values is inspired by the construction in Tibshirani et al. (2016) of valid p-values and

confidence intervals for post Lasso inference in a linear regression context with known Gaussian

noise.16 We generalize Tibshirani et al. (2016) to post model selection test inference for general

semi-nonparametric models, and provide asymptotically exact confidence intervals without impos-

ing special structure on the models compared or requiring knowledge about the variance-covariance

ΣG of the statistics Ĝn,Fn .

The formal justification of the above construction requires us to rule out the case where

n1/2EFn [`(Z;α∗n)] /σ̂n → −∞ because in that case the conditioning event occurs with diminishing

probability, and the conditional distribution of our test statistic becomes difficult to characterize.

We rule out this troublesome case by considering

Fn = {F0 ∈ F : n1/2EF0 [`(Z;α∗n)]σ−1
n − t ≥ −C}, (6.9)

for some large C > 0. The formal validity result is stated as Theorem 6.1 below. The proof of

this theorem is given in Appendix B.

Theorem 6.1 Suppose that Assumptions 4.1, 4.3 and B.1–B.2 in Supplemental Appendix B hold.

Then equation (6.5) holds with Fn defined in (6.9).

6.3 Inference for Common Parameters

In this subsection, we consider the inference for the parameter θ that equals ψ1(α1) in modelM1

and ψ2(α2) in model M2. Let `0 = f(M1, F0)− f(M2, F0). Then the pseudo-true value of θ is

θ∗ = ψ1(α∗1)1(`0 ≥ 0) + ψ2(α∗2)1(`0 < 0). (6.10)

Note that θ∗ is a function of (ψ1(α∗1), ψ2(α∗2), `0). Because this function is discontinuous, we

cannot obtain uniformly asymptotically valid inference via the Delta method even though the

vector (ψ1(α∗1), ψ2(α∗2), `0) has an asymptotically jointly normal estimator by Lemma 6.1. Instead,

we construct a confidence interval for θ∗ by projecting a joint confidence set for (ψ1(α∗1), ψ2(α∗2), `∗0).

We let the joint confidence set of (ψ1(α∗1), ψ2(α∗2), `0) of confidence level 1−p to be all (x1, x2, x0)

such that

Ĝn(x1, x2, x0)′Σ̂−1
G Ĝn(x1, x2, x0) ≤ χ2

1−p(3), (6.11)

16Asymptotically conservative one-sided inference is also available in Tibshirani et al. (2016) when the variance
of the noise is unknown.
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where χ2
1−p(3) is the 1− p quantile of the chi-squared distribution with three degrees of freedom,

Σ̂G =

 1 ρ̂01,n ρ̂02,n

ρ̂01,n 1 ρ̂12,n

ρ̂02,n ρ̂12,n 1

 , and Ĝn(x1, x2, x0) =

 Tn − n1/2x0/σ̂n

n1/2(ψ1(α̂1,n)− x1)/v̂∗ψ,k1
n1/2(ψ2(α̂2,n)− x2)/v̂∗ψ,k2


where ρ̂0j,n is defined in the previous subsection for j = 1, 2 and

ρ̂12,n = ψα,k1(α̂k1)
′Ĥ−1

k1,n
D̂k1,k2,nĤ

−1
k2,n

ψα,k2(α̂k2)(v̂
∗
ψ,k1

v̂∗ψ,k2)
−1

where D̂k1,k2,n = n−1
∑n

i=1 `α,k1(Zi; α̂k1)`α,k2(Zi; α̂k2)
′. Then the projected confidence set of confi-

dence level 1− p for θ∗ is

CIθ(1−p) = {θ = x11(x0 ≥ 0)+x21(x0 < 0) : Ĝn(x1, x2, x0)′Σ̂−1
G Ĝn(x1, x2, x0) ≤ χ2

1−p(3)}. (6.12)

Theorem 6.2 below shows the uniform asymptotic validity of this confidence interval. The proof

of this theorem is given in Appendix B.

Theorem 6.2 Suppose that Assumptions 4.1, 4.3 and B.1–B.2 in Supplemental Appendix B hold.

In addition, suppose that there is a constant C > 0 such that under all F0 ∈ F , we have ρmin(ΣG) >

C−1. Then lim inf
n→∞

infF0∈F Pr F0(θ
∗ ∈ CIθ(1− p)) ≥ 1− p.

7 Simulation Studies

In this section, we report Monte Carlo simulation results on the finite sample performance of the

nondegenerate test and the conditional confidence interval CIψ(1− p).
Consider the following two models,

M1 : E[Y |X1] = β10 +X1β11 and M2 : E[Y |X2, X3] = X2β21 + g(X3), (7.1)

where (β10, β11)′ ∈ R2, β21 ∈ R and g(·) ∈ C∞([0, 1]). This example readily fits into the framework

of regression model studied in Section 5 with α1(x1) = β10+β11x1, A1 = {b0+x1b1 : (b0, b1)′ ∈ R2},
α2(x2, x3) = x2β21 + g(x3), and A2 = {x2b2 + g(x3) : b2 ∈ R, g(·) ∈ C∞([0, 1])}.
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Figure 2: Null Rejection Rates of the Tests
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To generate the data, let X1, X2 be independent standard normal random variables, and let

X3 be a uniform random variable independent of X1 and X2. Let ε be standard normal and

independent of X1, X2 and X3. Let

Y = 1 +X1a+X2b+ c
√

2 sin(10πX3) + ε. (7.2)

7.1 Uniform Model Selection Test

Independence between the regressors and the additive structure in the generation process of Y are

not important for the performance of our test, but they allow us to derive an analytical form of
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the fit measures and hence to conveniently characterize the null hypothesis. By exploiting them,

we see that u1 = X2b+ c
√

2 sin(10πX3) + ε, and u2 = X1a+ ε. Thus,

− 2f(M1, F0) = EF0 [u
2
1] = b2 + 1 + c2 and − 2f(M2, F0) = EF0 [u

2
2] = a2 + 1. (7.3)

Therefore, the null hypothesis holds if and only if a2 = b2 +c2, and when a2 > b2 +c2, f(M1, F0) >

f(M2, F0). When a2 = b2 + c2 = 0, u1 = u2, in which case, ω2
F0,∗ = 0. Otherwise, ω2

F0,∗ > 0.

Figure 3: Null and Alternative Rejection Rates of the Tests
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To evaluate the performance of the nondegenerate test, we consider two collections of DGPs.

One collection sets a2 = b2 + c2, b = c, and b (and c) to grid points in [0, 0.4] with the spacing of

0.02 between adjacent points. This is the null collection in which, as b runs from 0 to 0.4, ω2
F0,∗

grows from zero up. The other collection sets b = c = 0.2, a2 = b2 + c2 + η, and η to grid points in

[0, 0.2] with the spacing of 0.01 between adjacent points. This is the alternative collection in which,

as η runs from 0 to 0.2, modelM2 gets worse and worse relative to modelM1. We implement the

nondegenerate test as well as the naive extension test as they are defined in Section 3. We use

cubic spline to approximate g(·) in model 2.17

Selection of the number of series terms on approximating g(·) is important for the implemen-

tation of our nondegenerate test and conditional confidence intervals. For regression examples like

17Fourier series yields similar results.
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the one considered in this section, we recommend using cross-validation with a slowly diverging

lower bound imposed on the number of sieve terms. Cross-validation is a commonly used method

in the semi/nonparametric regression literature for selecting smoothing parameters and has been

shown to yield optimal rate of convergence in nonparametric series regression (ref. Li (1987) and

Andrews (1991a)) as well as in nonparametric series quantile regression (ref. Chetverikov and Liao

(2019)). The slowly diverging lower bound – we use 2 log(log(n)) – ensures that the dimension of

at least one model to diverge to infinity which is needed for our Assumption 4.3(b).18 19

The finite sample rejection rates of the tests are calculated using 50,000 simulated samples.

Figure 2 presents the rejection rates of the two-sided and one-sided tests under the first collection

of DGPs—the collection of null DGPs. Graphs (a) and (b) show the tests for H0 against H1 :

f(M1, F0) 6= f(M2, F0) with sample size n = 500 and n = 1000 respectively. In graph (a),

the naive extension test (dotted line) over-rejects noticeably when ω2
F0,∗ is zero or close to zero.

On the other hand, the rejection rate of the nondegenerate test (solid line) never exceeds the

nominal level by much, although there is some under-rejection at very small b’s and slight over-

rejection at bigger b’s. When the sample size is increased from 500 to 1000, the rejection rate of

the nondegenerate test gets closer to the nominal level while the naive extension test maintains

overall over-rejection and under-rejection respectively. Graphs (c) and (d) show the one-sided tests

for H0 against H1 : f(M1, F0) > f(M2, F0) with sample sizes n = 500 and n = 1000 respectively,

and graphs (e) and (f) show the one-sided tests for H0 against H1 : f(M1, F0) < f(M2, F0) with

sample size n = 500 and n = 1000 respectively. Recall that model M1 is the more parsimonious

one. As we can see, our robust test has a rejection rate of approximately 5% against both one-

sided alternative hypotheses. The naive extension test has severe under-rejection when M1 is

better under the alternative (graphs (c) and (d)) and severe over-rejection when M2 is better

under the alternative (graphs (e) and (f)). This behavior is in line with our theoretical derivation.

The rejection rates of the two-sided and one-sided tests under the second collection of DGPs—

the collection of null and alternative DGPs are included in Figure 3. In this set of DGPs, the null

hypothesis H0 holds when η = 0 and the alternative hypothesis H1 : f(M1, F0) > f(M2, F0) holds

when η 6= 0. The modelM2 becomes worse when the magnitude of η becomes large. Moreover, in

this set of DGPs, ω2
F0,∗ > 0 since b = c = 0.2 for all different values of η. In Figure 3, we see that

the nondegenerate test has rejection rates close to the nominal level 5% under the null H0 (when

η = 0), while the naive extension test over-rejects for the two-sided alternative (graphs (a) and

(b)) and under-rejects for the one-sided alternative (graphs (c) and (d)). This is again in line with

18In our simulations, we also impose an upper bound of 15 on the cross-validation search range.
19Strictly speaking, the theory presented in earlier sections applies only to non-data-dependent choices of se-

ries terms. However, in practice, cross-validation is often employed, which is why we suggest it for empirical
implementation of our tests and why we use it in this simulation example. The performance of our test with the
cross-validated series terms is encouraging.
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our theoretical results that the naive extension test favors large models. For the power properties,

the nondegenerate test has the best power across most of the range of η in the two-sided test. It

also has better power than the naive extension test in the one-sided test.

Figure 4: Performance of Conditional Confidence Interval for β11.
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7.2 Conditional Confidence Interval

In this subsection, we evaluate the performance of the conditional confidence interval CIψ1(1− p)
with p = 0.1. Consider the parameters of interest β11 and β21. Let model M1 be selected if

Tn > z0.95 and model M2 be selected otherwise. Consider the DGPs with b = 0, c = 0 and

a running from 0 to 0.32. We report the probability of the model being selected, as well as

the coverage probability, the median length, and other quantiles of the length of the conditional

confidence interval. For comparison, we also report the performance of the naive confidence interval

that ignores the model selection step, that is, for j = 1, 2,

CInaive
j (1− p) = [ψj(α̂kj)− n−1/2z1−p/2v̂

∗
ψ,kj

, ψj(α̂kj)− n−1/2zp/2v̂
∗
ψ,kj

], (7.4)

where zp stands for the p quantile of the standard normal distribution. Note that the conditional

CI is only different from the naive CI in that it uses the critical value cj,p instead of zp.

Figure 4 shows the results for β11, and Figure 5 shows those for β21. In graphs (b) and (c)
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of both figures, the blue dotted lines are for the naive CIs and the red solid lines are for our

conditional CIs; in graph (d), the five lines are respectively the 25%, 40%, 50%, 60%, and 75%

quantile of the length of the conditional CI. As we can see, the naive CI may severely under-

cover when the probability that the model is selected is small. On the other hand, the coverage

probability of our conditional CI is always very close to the nominal level. In terms of length, our

conditional CI is longer than the naive CI when the naive CI under-covers, and is about the same

as the naive CI when the latter has good coverage properties.

Figure 5: Performance of Conditional Confidence Interval for β21
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By definition, the critical values of the conditional CI depends on Tn, and thus is random. As

a result, the length of the conditional CI is also random. Part (d) of Figure 4 shows the variability

of the length of the conditional CI. As we can see, the variability is small when the probability

that the model under consideration is selected is large, and can be big otherwise. In light of the

difficulties of post model selection inference pointed out by Leeb and Pötscher (2005), we view

the variability and the extra length of the conditional CI as an inevitable price to pay for its good

coverage property. It is encouraging to see that the conditional CI has similar length as the naive

CI when the latter does not under-cover.
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8 An Empirical Example

In this section we illustrate the use of our robust model selection test and the conditional confidence

interval in the study of life-cycle schooling choices. We compare two models considered in Cameron

and Heckman (1998) using our model selection test, and also report the conditional confidence

intervals of some of the model specific parameters. The two models considered are parametric

likelihood models. We consider our theory presented for the semi/non-parametric environment as

reasonable approximation to this context since the number of parameters in each model is large.

8.1 Model Description

We apply our test on the comparison of two life cycle schooling models taken from Cameron and

Heckman (1998). The paper is a classic piece of structural modeling, which is why we use it to

illustrate our model selection and post model selection inference tools.

Consider an individual deciding how much schooling (S, number of years of schooling) to

complete, and consider a vector of individual characteristics X that may be relevant for this

decision. The first model (Model M1) is the logit transition model that Cameron and Heckman

(1998) set up to formalize the statistical model prevalent in the political science literature at the

time. To describe this model, define the binary variable Ds = 1{S ≥ s}. This variable indicates

whether or not the individual completed grade s or not. The model imposes a logit form on the

transition probability from completing grade s to completing grade s+ 1:

Pr(Ds+1 = 1|Ds = 1, X) =
exp(X ′βs)

1 + exp(X ′βs)
,

where βs is the grade-specific effect of X on the transition probability. This implies that the

probability of s being the highest grade completed is given by

P1(s|X, θ1) =
1

1 + exp(X ′βs)
× exp(X ′βs−1)

1 + exp(X ′βs−1)
× · · · × exp(X ′β1)

1 + exp(X ′β1)
(8.1)

where θ1 = (β′1, β
′
2, . . . , β

′
s̄)
′ with s̄ being the highest grade available. Note that this model contains

many parameters since βs is allowed to be different across s. However, it allows no individual

heterogeneity other than the logit error, and thus effectively assumes that the population making

the transition decision at different grade levels are the same. In technical terms, it rules out

dynamic selection as the population move up grades. This is an important drawback of the model

as discussed in Cameron and Heckman (1998).

The second model (Model M2) is an ordered logit model. Cameron and Heckman (1998) set
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up this model as an economically well-grounded yet parsimonious contestant to the first model.

In this model, the probability of s being the highest grade completed is given by

P2(s|X, θ2) =

∫
Ω

F (αs−1 + y +X ′β)− F (αs + y +X ′β)dFω(y), (8.2)

where θ2 = (α1, . . . , αs̄−1, β
′)′, F (t) = exp(t)(1 + exp(t))−1, α0 = +∞ for the highest possible

grade s̄, and ω is an unobservable individual type that has support Ω and distribution Fω(·).
From the statistical point of view, the ordered logit aspect is not fundamentally different from the

logit transition model since an ordered logit model can be written as a transition model with some

(albeit non-logit) shocks in the transition decisions. However, this model adds the unobservable

type ω, which makes sure that the dynamic selection effect is accounted for. The model further

specifies that Ω = {0, ω2}, and Fω(y) = p11(y ≥ 0) + (1 − p1)1(y ≥ ω2) for unknown parameters

ω2 > 0 and p1 ∈ (0, 1). The model uses a parsimonious specification for the effect of X on the

ordered logit cutoffs — the β is not indexed by s.

8.2 Implementation Details

We compare the models in terms of their population log-likelihood. We implement the two-sided

version of both our robust test and the Vuong (1989) test. The detailed implementation steps are

as follows:

1. Given the data set (Si, Xi)
n
i=1, define the log-density functions for the two models respectively

as mj(Si, Xi, θj) = logPj(Si|Xi, θj) for j = 1, 2.

2. Define the log-likelihoods of the two models as f̂(Mj, θj) = n−1
∑n

i=1mj(Si, Xi, θj) for j =

1, 2.

3. Respectively for j = 1, 2, compute θ̂n,j = arg maxθj f̂(Mj, θj) using a suitable maximization

algorithm, like the fminunc function in Matlab, or the ml package in Stata.

4. Compute ¯̀
n(θ̂n) = f̂(M1, θ̂n,1)− f̂(M2, θ̂n,2) and ω̂2

n(θ̂n) = 1
n

∑n
i=1(`i(θ̂n)− ¯̀

n(θ̂n))2, where

`i(θ) = m1(Si, Xi, θ1)−m2(Si, Xi, θ2) and θ̂n = (θ̂
′
n,1, θ̂

′
n,2)′.

5. Compute the score ∂mj(Si, Xi, θ̂n,j)/∂θj for each i and j = 1, 2 either by deriving and using

the analytical formula for the first derivative function, or by numerical differentiation of the

log-density function. Let ̂̀θ,i = ∂m1(Si, Xi, θ̂n,1)/∂θ1 − ∂m2(Si, Xi, θ̂n,2)/∂θ2.

6. Compute D̂n = n−1
∑n

i=1
̂̀
θ,i
̂̀′
θ,i.
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7. Compute Ĥn,j = ∂2f(Mj, θ̂n,j)/∂θj∂θ
′
j for j = 1, 2 either numerically or using analytical

formula of the second derivative. Let Ĥn = diag(Ĥn,1,−Ĥn,2).

8. Let T Vn = n1/2 ¯̀
n(θ̂n)(ω̂2

n(θ̂n))−1/2 and let Tn = n¯̀
n(θ̂n)+2−1tr(D̂nĤ

−1
n )√

max{nω̂2
n(θ̂n)− 1

2
tr((D̂nĤ

−1
n )2), 2−1tr((D̂nĤ

−1
n )2)}

.

9. Compute the p-value of our robust test as p-value = 2(1− Φ(Tn)) and of the Vuong (1989)

test as p-valueV = 2(1− Φ(T Vn )).

8.3 Data and Results

We compare these models using data from the 1997 wave of the National Longitudinal Survey

(NLSY 97). This is a newer wave of the NLSY 79 used in Cameron and Heckman (1998) that

covers a sample of young men and women born between 1980 and 1984. Following Cameron and

Heckman (1998), we use the male sample only and drop observations with missing values on the

relevant variables. Our final sample contains 1938 individuals.20

The X variables for modelsM1 contain a constant and 15 nonconstant variables including the

number of siblings, highest grade completed by father, that by mother, broken family dummy,

log family income, urban/rural residence dummy, etc. and interaction terms. The X variable

for model M2 contains all those 15 nonconstant variables, but does not contain a constant term.

We aggregate the grades (S) into four, following Cameron and Heckman (1998): completed high

school (s = 1), attended college (s = 2), graduated college (s = 3) and attended 17 or more years

of school (s = 4). As a result, ModelM1 contains 4×16 = 64 parameters and ModelM2 contains

4 + 15 + 2 = 21 parameters. Clearly, Model M2 is much more parsimonious than Model M1.21

Table 1: Model Selection Tests Based on NLSY 97

Test Statistic p-value

Robust Test 1.856 .063
Vuong (1989) Test 3.924 .000

Table 1 shows the value of the test statistics as well as p-values of both tests. The Vuong

(1989) test strongly rejects the null in favor of the less parsimonious models M1. However, we

believe that the strong rejection is partly due to the bias in favor of large models. Indeed, the

robust test that corrects the bias presents much weaker evidence against the parsimonious Model

M2. In particular, according to the robust test, we cannot reject the null that M2 is as good as

20Results using reconstructed sample from the NLSY 79 are reported in Supplemental Appendix G.
21Parameter estimates are irrelevant for our analysis and thus are omitted. They are available upon request.
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M1 at significance level 5%. Cameron and Heckman (1998) advocate for M2 for its simplicity

and interpretability. Our robust test shows that it achieves the simplicity without sacrificing too

much of its fit to the data. In contrast, the Vuong (1989) test tells a different story and can be

misleading.22

To illustrate our conditional confidence interval, we computed these intervals for the parameters

in Model M2 conditional on the event that Tn < z0.975 ≈ 1.96. It turns out that the conditional

confidence intervals are the same as the naive CI’s computed using the sandwich standard error

formula. Upon further inspection, we find that the correlation coefficients of Tn and the parameter

estimates of Model M2 are nearly zero, which causes c2,p to be the same as zp up to at least the

sixth digit. We believe that this is a special feature of this application and does not have general

implication.

9 Conclusion

This paper studies the statistical comparison of semi/nonparametric models when the compet-

ing models are overlapping nonnested, strictly nonnested, or nested. We provide a new model

selection test that achieves uniform asymptotic size control. The new test uses a critical value

from standard normal distribution and employs a bias-corrected quasi-likelihood ratio statistic

that is easy to compute in practice. This makes our test convenient for empirical implementation.

Moreover, uniformly valid post model selection test inference procedures of model parameters are

also provided. Simulation results show that our test and our post model selection test confidence

interval perform well in finite samples.

At least two future research directions arise from the findings of this paper. First, the theory

of this paper is established under the i.i.d. assumption of the data. It is important to extend

it for the comparison of time series models with dependent data. Second, when there are many

competing models to be compared, it shall be interesting to construct a model confidence set that

covers the best model with valid asymptotic size. These directions of research form part of our

ongoing work, during the course of which some preliminary results have been obtained.

22Cameron and Heckman (1998) implemented the Vuong (1989) test with the Bayesian information criterion
(BIC) penalty, and thus were effectively testing the null hypothesis that

H0 : f(M1, F0)− k1 log(n)

2n
−
tr(DF0,k1H

−1
F0,k1

)

2n
= f(M2, F0)− k2 log(n)

2n
−
tr(DF0,k2H

−1
F0,k2

)

2n
,

where f(Mj , F0) ≡ maxθj EF0 logP (S|X; θj) is the Kullback-Leibler distance from model Mj to the data. Their
test result strongly rejects the null in favor of the ordered logit model. The penalty would not matter asymptotically
in the asymptotic framework assuming strict nonnestedness, as argued in Vuong (1989). Yet it clearly leads to a
different testing conclusion here.
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Supplemental Appendix of
“A Nondegenerate Vuong Test and A Post

Selection Confidence Interval for
Semi/Nonparametric Models”

In this supplemental appendix, we present supporting materials for the main paper:

• Section A presents the proofs for the results in Section 4 of the main paper.

• Section B proves the results in Section 6 of the main paper.

• Section C verifies the high-level assumptions in the main paper in a nonparametric mean-

regression example.

• Section D includes the illustration of the high-level theory and verification of the high-level

assumptions in the main paper in a nonparametric quantile-regression example.

• Section E includes some auxiliary results and their proofs.

• Section F conducts simulation studies to compare the finite sample properties of our non-

parametric nondegenerate test with the test proposed in Shi (2015b).

• Section G includes additional results from our empirical studies in Section 8 of the main

paper.

A Proofs for Results in Section 4

Proof of Theorem 4.1. First note that

tr(D̂n(α∗k)H−1
Fn,k

) = tr

(
n−1

n∑
i=1

`α,k(Zi;α
∗
k)`α,k(Zi;α

∗
k)′H−1

Fn,k

)

= n−1

n∑
i=1

tr
(
`α,k(Zi;α

∗
k)`α,k(Zi;α

∗
k)′H−1

Fn,k

)
= n−1

n∑
i=1

`α,k(Zi;α
∗
k)′H−1

Fn,k
`α,k(Zi;α

∗
k), (A.1)

where the steps follow from properties of the trace operator. This and Assumption 4.3(a) together

implies that

n¯̀
n(α̂k) + (1/2)tr(D̂n(α∗k)H−1

Fn,k
)

1



=
n∑
i=1

`(Zi;α
∗
n)− n−1

n∑
i=2

`α,k(Zi;α
∗
k)′H−1

Fn,k

(
i−1∑
i′=1

`α,k(Zi′ ;α
∗
k)

)
+ op(n

1/2σFn,n). (A.2)

For the ease of notation, let

Vi,n = n−1/2σ−1
Fn,n

[`(Zi;α
∗
n)− EFn(`(Zi;α

∗
n))] for i = 1, . . . , n, and

Ui,n =

{
n−3/2σ−1

Fn,n

[
`α,k(Zi;α

∗
k)′H−1

Fn,k

∑i−1
i′=1 `α,k(Zi′ ;α

∗
k)
]

i ≥ 2

0 i = 1.
(A.3)

Let Wi,n = Vi,n − Ui,n. Then we have

n[¯̀n(α̂k,n)− EFn(`(Zi;α
∗
n))] + (1/2)tr(D̂n(α∗k)H−1

Fn,k
)

n1/2σFn,n
=

n∑
i=1

Wi,n + op(1). (A.4)

Let Z0 = 0 and Fi,n be the natural filtration generated by {Z0, Z1, . . . , Zi} under Fn for i =

0, . . . , n. Under Assumptions 4.1(a) and (c),

EFn [Wi,n| Fi−1,n] = EFn [Vi,n| Fi−1,n]− EFn [Ui,n| Fi−1,n] = 0, (A.5)

for all i = 1, . . . , n. This implies that Wi,n is a triangle array Martingale difference sequence

(m.d.s.). Next, we use Hall and Heyde’s (1980) Corollary 3.1—a Martingale central limit theorem—

to show the desired convergence.

To use Hall and Heyde’s (1980) Corollary 3.1, it suffices to verify two sufficient conditions:

(a)
n∑
i=1

EFn
[
W 2
i,n|Fi−1,n

]
→p 1, and

(b)
n∑
i=1

EFn
[
W 2
i,n1 {|Wi,n| > ε}

]
→ 0, ∀ε > 0. (A.6)

First, we verify condition (a). By Assumption 4.1(a),

n∑
i=1

EFn
[
V 2
i,n

∣∣Fi−1,n

]
= σ−2

Fn,n
EFn [(`(Zi;α

∗
n)− EFn (`(Zi;α

∗
n)))2] = σ−2

Fn,n
ω2
Fn,∗. (A.7)

Also, when ω2
Fn,∗ = 0, we have Vi,n = 0 a.s. for all i, and hence EFn [Vi,nUi,n| Fi−1,n] = 0 for

all i and all n. When ω2
Fn,∗ > 0 and i = 1, we have Ui,n = 0 by definition, which implies

2



EFn [Vi,nUi,n|Fi−1,n] = 0. When ω2
Fn,∗ > 0, and i ≥ 2,

EFn [Vi,nUi,n| Fi−1,n] =
ωFn,∗
n2

∑i−1
i′=1 ρ

′
Fn,k

D
1/2
Fn,k

H−1
Fn,k

`α,k(Zi′ ;α
∗
k)

σ2
Fn,n

, (A.8)

where ρFn,k = ω−1
Fn,∗(D

1/2
Fn,k

)+Cov [`(Z;α), `α,k(Z;α∗k)] and (D
1/2
Fn,k

)+ denotes the Moore-Penrose

inverse of D
1/2
Fn,k

. Note that in (A.8), we use

((D
1/2
Fn,k

)+Cov [`(Z;α∗n), `α,k(Z;α∗k)])′D
1/2
Fn,k

= Cov [`(Z;α∗n), `α,k(Z;α∗k)]′ ,

which follows by Lemma E.1(c). Thus,

n∑
i=1

EFn [Vi,nUi,n| Fi−1,n] =
ωFn,∗
n

∑n−1
i=1 (1− i/n)ρ′Fn,kD

1/2
Fn,k

H−1
Fn,k

`α,k(Zi;α
∗
k)

σ2
Fn,n

. (A.9)

Then,
∑n

i=1 EFn [Vi,nUi,n| Fi−1,n] = op(1) follows from the derivation below:

EFn

[
n∑
i=1

EFn [Vi,nUi,n| Fi−1,n]

]2

=
ω2
Fn,∗

n2

∑n−1
i=1 (1− i/n)2ρ′Fn,kD

1/2
Fn,k

H−1
Fn,k

DFn,kH
−1
Fn,k

D
1/2
Fn,k

ρFn,k

σ4
Fn,n

≤
ω2
Fn,∗

σ2
Fn,n

ρ′Fn,kn(D
1/2
Fn,k

H−1
Fn,k

D
1/2
Fn,k

)2ρFn,kn

nσ2
Fn,n

≤
maxj=1,...,|k| λ

2
Fn,j

nσ2
Fn,n

= o(1), (A.10)

where the first equality holds by (A.9) and Assumptions 4.1(a) and (c), the first inequality holds

by (1− i/n)2 ≤ 1, the second inequality holds by Lemma E.1(b) in Supplemental Appendix E and

the definition of σ2
Fn,n

, and the last equality holds by Assumptions 4.1(f) and 4.3(b). Moreover,

observe that, for i ≥ 2,

n3σ2
Fn,nEFn [U2

i,n|Fi−1,n] = EFn

(`α,k(Zi;α
∗
k)′H−1

Fn,k

i−1∑
i′=1

`α,k(Zi′ ;α
∗
k)

)2
∣∣∣∣∣∣Fi−1,n


=

i−1∑
i′=1

i−1∑
i′′=1

`α,k(Zi′ ;α
∗
k)′H−1

Fn,k
DFn,kH

−1
Fn,k

`α,k(Zi′′ ;α
∗
k). (A.11)

3



Let Ri,i′,n = `α,k(Zi;α
∗
k)′H−1

Fn,k
DFn,kH

−1
Fn,k

`α,k(Zi′ ;α
∗
k). Then,

n∑
i=1

EFn [U2
i,n|Fi−1,n] =

∑n
i=2

∑i−1
i′=1

∑i−1
i′′=1Ri′,i′′,n

n3σ2
Fn,n

=

∑n
i=2

∑i−1
i′=1 Ri′,i′,n

n3σ2
Fn,n

+ 2

∑n
i=3

∑i−1
i′=2

∑i′−1
i′′=1Ri′,i′′,n

n3σ2
Fn,n

=

∑n−1
i=1 (n− i)Ri,i,n

n3σ2
Fn,n

+ 2

∑n−1
i′=2

∑i′−1
i′′=1(n− i′)Ri′,i′′,n

n3σ2
Fn,n

. (A.12)

Consider the derivation:

EFn

[∑n−1
i=1 (n− i)Ri,i,n

n3σ2
Fn,n

]
=

∑n−1
i=1 (n− i)tr((DFn,kH

−1
Fn,k

)2)

n3σ2
Fn,n

=

∑n−1
i=1 (n− i)

∑|k|
j=1 λ

2
Fn,j

n3σ2
Fn,n

=
(n− 1)ω2

Fn,U,k

2n2σ2
Fn,n

. (A.13)

Also consider

EFn

[∑n−1
i=1 (n− i)(Ri,i,n − EFn(Ri,i,n))

n3σ2
Fn,n

]2

=

∑n−1
i=1 (n− i)2

(
EFn [R2

i,i,n]− [EFn(Ri,i,n)]2
)

n6σ4
Fn,n

≤
EFn

[∣∣`α,k(Zi;α
∗
k)′H−1

Fn,k
DFn,kH

−1
Fn,k

`α,k(Zi;α
∗
k)
∣∣2]

n3σ4
Fn,n

≤ C
EFn

[
|`α,k(Zi;α

∗
k)′`α,k(Zi;α

∗
k)|2
]

n3σ4
Fn,n

≤ C
|k| ξk
n3σ4

Fn,n

= o(1), (A.14)

where the first equality holds by expanding the square of the sum over i and by applying the i.i.d.

assumption (Assumption 4.1(a)); the first inequality holds by the definition ofRi,i,n, [EFn(Ri,i,n)]2 ≥
0, and

∑n−1
i=1 (n − i)2 ≤ n3; the second inequality holds by the property of eigenvalues and As-

sumption 4.1(f); the last inequality holds by Assumption 4.1(d); and the last equality holds by

Assumption 4.3(b). Further consider

EFn

(∑n−1
i′=2

∑i′−1
i′′=1(n− i′)Ri′,i′′,n

n3σ2
Fn,n

)2
 =

∑n−1
i′=2

∑i′−1
i′′=1(n− i′)2EFn [R2

i′,i′′,n]

n6σ4
Fn,n

≤
EFn [R2

i′,i′′,n]

n2σ4
Fn,n

≤
maxj=1,...,|k| λ

2
Fn,j

nσ2
Fn,n

tr((DFn,kH
−1
Fn,k

)2)

nσ2
Fn,n

= o(1), (A.15)
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where the first equality holds by Assumptions 4.1(a) and 4.1(c), the first inequality holds by

Assumption 4.1(a) and
∑n−1

i′=2

∑i′−1
i′′=1(n− i′)2 ≤ n4, the second inequality holds by the definition of

Ri′,i′′,n, and the last equality holds by the definition of σ2
Fn,n

, and Assumptions 4.1(f) and 4.3(b).

The results of (A.12)-(A.15) imply that

n∑
i=1

EFn [U2
i,n|Fi−1,n] =

(n− 1)ω2
Fn,U,k

2n2σ2
Fn,n

+ op(1). (A.16)

Combining (A.7), (A.10) and (A.16), we get

n∑
i=1

EFn [W 2
i,n|Fi−1,n] =

n∑
i=1

EFn [V 2
i,n|Fi−1,n]− 2

n∑
i=1

EFn [Vi,nUi,n|Fi−1,n] +
n∑
i=1

EFn [U2
i,n|Fi−1,n]

=
ω2
Fn,∗ + (2n2)−1(n− 1)ω2

Fn,U,k

σ2
Fn,n

+ op(1) = 1 + op(1). (A.17)

This verifies condition (a) in (A.6).

Now we verify condition (b) in (A.6). First, W 2
i,n1{|Wi,n| > ε} ≤ ε−2W 4

i,n. Hence by the

monotonicity of expectation, we have

n∑
i=1

EFn
[
W 2
i,n1{|Wi,n| > ε}

]
≤

n∑
i=1

EFn
[
ε−2|Wi,n|4

]
≤ 8ε−2

n∑
i=1

EFn
[
|Vi,n|4 + |Ui,n|4

]
, (A.18)

where the last inequality holds by the convexity of the function f(x) = |x|4. Consider that

EFn
[
|Vi,n|4

]
= n−2EFn [(`(Zi;α

∗
n)− EFn(`(Zi;α

∗
n)))4]

σ4
Fn,n ≤ n−2EFn

[∣∣∣ `(Zi;α∗n)−EFn (`(Zi;α
∗
n))

ωFn,∗

∣∣∣4] ≤ n−2C if ωFn,∗ > 0

= 0 if ωFn,∗ = 0

≤ Cn−2, (A.19)

where the first inequality holds because ω2
Fn,U,k

≥ 0, and the second inequality holds by Assumption

4.1(e). Now consider that

EFn
[
|Ui,n|4

]
≤ EFn [U4

i,n] = n−6σ−4
Fn,n

EFn

(`α,k(Zi;α
∗
k)′H−1

Fn,k

i−1∑
i′=1

`α,k(Zi′ ;α
∗
k)

)4
 , (A.20)
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for i > 2. Define Mi,i′,n = `α,k(Zi;α
∗
k)′H−1

Fn,k
`α,k(Zi′ ;α

∗
k). Then the above display leads to:

EFn [|Ui,n|4]

≤ n−6σ−4
Fn,n

EFn

[
i−1∑
i′=1

Mi,i′,n

]4

= n−6σ−4
Fn,n

EFn

[
i−1∑
i′=1

M4
i,i′,n + c

i−1∑
i=2

i′−1∑
i′′=1

M2
i,i′,nM

2
i,i′′,n

]
, (A.21)

where c is some appropriate positive integers whose exact value is not important for the purpose.

The equality holds because E[Mi,i′,nM
3
i,i′′,n] = 0 for any i′ 6= i′′ by Assumptions 4.1(a) and 4.1(c).

Observe that, for i 6= i′,

EFn
[
M4

i,i′,n

]
= EFn

[∣∣`α,k(Zi;α
∗
k)′H−1

Fn,k
`α,k(Zi′ ;α

∗
k)
∣∣4]

= EFn

[∣∣`α,k(Zi;α
∗
k)′
[
H−1
Fn,k

`α,k(Zi′ ;α
∗
k)`α,k(Zi′ ;α

∗
k)′H−1

Fn,k

]
`α,k(Zi;α

∗
k)
∣∣2]

≤ EFn

[
|`α,k(Zi;α

∗
k)′`α,k(Zi;α

∗
k)|2

∣∣`α,k(Zi′ ;α
∗
k)′H−2

Fn,k
`α,k(Zi′ ;α

∗
k)
∣∣2]

≤ C
∣∣∣EFn [|`α,k(Zi;α

∗
k)′`α,k(Zi;α

∗
k)|2
]∣∣∣2 ≤ C |k|2 ξ2

k, (A.22)

where the first inequality holds by the inequality a′Aa ≤ (a′a)tr(A) for any semi-positive defi-

nite matrix A with a = `α,k(Zi;α
∗
k) and A = H−1

Fn,k
`α,k(Zi′ ;α

∗
k)`α,k(Zi′ ;α

∗
k)′H−1

Fn,k
, and tr(A) =

`α,k(Zi′ ;α
∗
k)′H−2

Fn,k
`α,k(Zi′ ;α

∗
k); the second inequality holds by properties of eigenvalues and As-

sumptions 4.1(a) and 4.1(f); and the last inequality holds by Assumption 4.1(d). Moreover,

EFn
[
M2

i,i′,nM
2
i,i′′,n

]
= EFn

[
`α,k(Zi;α

∗
k)′H−1

Fn,k
`α,k(Zi′ ;α

∗
k)`α,k(Zi′ ;α

∗
k)′H−1

Fn,k
`α,k(Zi;α

∗
k)

×`α,k(Zi;α
∗
k)′H−1

Fn,k
`α,k(Zi′′ ;α

∗
k)`α,k(Zi′′ ;α

∗
k)′H−1

Fn,k
`α,k(Zi;α

∗
k)
]

= EFn
[
`α,k(Zi;α

∗
k)′H−1

Fn,k
DFn,kH

−1
Fn,k

`α,k(Zi;α
∗
k)

×`α,k(Zi;α
∗
k)′H−1

Fn,k
DFn,kH

−1
Fn,k

`α,k(Zi;α
∗
k)
]

= EFn

[∣∣`α,k(Zi;α
∗
k)′(H−1

Fn,k
DFn,kH

−1
Fn,k

)`α,k(Zi;α
∗
k)
∣∣2]

≤ CEFn

[
|`α,k(Zi;α

∗
k)′`α,k(Zi;α

∗
k)|2
]
≤ C|k|ξk. (A.23)

Therefore, from the results in (A.18)-(A.23), we deduce that

n∑
i=1

E
[
W 2
i,n1{|Wi,n| > ε}

]
≤ 8Cε−2

(
n−1 +

|k|2ξ2
k + n|k|ξk
n4σ4

Fn,n

)
= o(1), (A.24)

6



where the equality holds by Assumption 4.3(b). Thus, condition (b) in (A.6) is verified.

Proof of Lemma 4.1. First note that for any real symmetric matrices A and B with B ≥ 0,

Lemma 1 in Wang et al. (1986) implies that

|tr(AB)| ≤ ‖A‖ tr(B). (A.25)

By the linearity of the trace operation,

tr(D̂nĤ
−1
n )− tr(D̂n(α∗k)H−1

Fn,k
) = tr

(
(D̂n − D̂n(α∗k))Ĥ−1

n

)
+ tr

(
(Ĥ−1

n −H−1
Fn,k

)D̂n(α∗k)
)
. (A.26)

Let D̂n,k1 , D̂n,k1(α
∗
k), and Ĥn,k1 be the leading k1 × k1 submatrices of D̂n, D̂n(α∗k), and Ĥn,

respectively. Let D̂n,k2 , D̂n,k2(α
∗
k), and Ĥn,k2 be the last k2 × k2 submatrices of D̂n, D̂n(α∗k), and

Ĥn, respectively. Then by the definitions of D̂n, D̂n(α∗k), and Ĥn, the triangle inequality, (A.25),

and Assumption 4.1(f),

n−1/2
∣∣∣tr ((D̂n − D̂n(α∗k))Ĥ−1

n

)∣∣∣ ≤ n−1/2
∑
j=1,2

∣∣∣tr ((D̂n,kj − D̂n,kj(α
∗
k))Ĥ−1

n,kj

)∣∣∣
≤ n−1/2

∑
j=1,2

∥∥∥D̂n,kj − D̂n,kj(α
∗
k)
∥∥∥ |tr((−Ĥn,kj)

−1)|

= n−1/2op(n
1/2σFn,n |k|

−1)Op(kj) = op(σFn,n), (A.27)

where the first equality holds by Assumption 4.4(a) and by |tr((−Ĥn,kj)
−1)| = Op(kj) which holds

by Assumptions 4.1(f) and 4.4(a).

Similarly, for the second term in the right-hand side of (A.26),

n−1/2
∣∣∣tr ((Ĥ−1

n −H−1
Fn,k

)D̂n(α∗k)
)∣∣∣ ≤ n−1/2

∥∥∥Ĥ−1
n −H−1

Fn,k

∥∥∥ tr(D̂n(α∗k))

≤ n−1/2||Ĥ−1
n ||

∥∥∥Ĥn −HFn,k

∥∥∥ ||H−1
Fn,k
||tr(D̂n(α∗k))

= n−1/2op(n
1/2σFn,n |k|

−1)Op(|k|) = op(σFn,n). (A.28)

Therefore, the lemma is proved.

Proof of Lemma 4.2. First note that

ω̂2
n(α̂k) = n−1

n∑
i=1

`(Zi, α̂k)2 − ¯̀
n(α̂k)2

= n−1

n∑
i=1

(`(Zi, α
∗
n)− `Fn(α∗n))2 − (¯̀

n(α̂k)− `Fn(α∗n))2

7



+ n−1

n∑
i=1

[
(`(Zi, α̂k)− `Fn(α∗n))2 − (`(Zi, α

∗
n)− `Fn(α∗n))2

]
. (A.29)

Next we show the convergence of each of the three terms on the right-hand side of (A.29).

For the first term, consider the derivation:

n−1
∑n

i=1(`(Zi, α
∗
n)− `Fn(α∗n))2 − ω2

Fn,∗

σ2
Fn,n

= n−1

n∑
i=1

(`(Zi, α
∗
n)− `Fn(α∗n))2 − ω2

Fn,∗

σ2
Fn,n

= op(1), (A.30)

where the last equality holds by the weak law of large numbers for row-wise i.i.d. triangular

arrays. The law of large numbers applies because (i) EFn

[
(`(Zi,α

∗
n)−`Fn (α∗n))2−ω2

Fn,∗
σ2
Fn,n

]
= 0, and

(ii) EFn

[∣∣∣ (`(Zi,α∗n)−`Fn (α∗n))2−ω2
Fn,∗

σ2
Fn,n

∣∣∣]1+δ/2

≤

 0 if ωFn,∗ = 0

EFn

[∣∣∣ `(Zi,α∗n)−`Fn (α∗n)

ωFn,∗

∣∣∣2+δ
]

if ωFn,∗ > 0
< C by As-

sumption 4.1(e) with δ = 2 and the constant C in that assumption.

Next we consider the second summand on the right-hand side of (A.29): (¯̀
n(α̂k)− `Fn(α∗n))2.

Theorem 4.1 implies that

¯̀
n(α̂k)− `Fn(α∗n) = −

tr(D̂n(α∗k)H−1
Fn,k

)

2n
+Op(n

−1/2σFn,n)

= −
tr((D̂n(α∗k)−DFn,k)H−1

Fn,k
)

2n
−
tr(DFn,kH

−1
Fn,k

)

2n
+Op(n

−1/2σFn,n). (A.31)

The first summand in the last line of (A.31) can be bounded by similar arguments as (A.27):∣∣∣tr((D̂n(α∗k)−DFn,k)H−1
Fn,k

)
∣∣∣

2n
≤
‖D̂n(α∗k)−DFn,k‖

[∣∣tr(H−1
Fn,k1

)
∣∣+
∣∣tr(H−1

Fn,k2
)
∣∣]

2n

= (2n)−1[op(nσ
2
Fn,kn |k|

−1)O(|k|)] = op(σFn,n), (A.32)

where the inequality is by (A.25), the equality holds by Assumptions 4.1(f) and 4.4(a). The second

summand in the last line of (A.31) can be bounded as follows:

∣∣tr(DFn,kH
−1
Fn,k

)
∣∣

2n
≤
∑|k|

j=1 |λFn,j|
2n

≤
|k| 12

√∑|k|
j=1 λ

2
Fn,j

n

=
√
|k|n−1

√
ω2
Fn,U,k

n
= O(

√
|k|n−1σFn,n) = o(σFn,n), (A.33)
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where the first inequality is by the definition of λFn,j (j = 1, . . . , |k|) and the triangle inequality,

the second inequality holds by the Cauchy-Schwarz inequality, the first equality is by the definition

of ω2
Fn,U,k

, the second equality is by ω2
Fn,U,k

n−1 ≤ 4 σ2
Fn,n

, and the last equality is by Assumption

4.4(d). Therefore, from (A.31), (A.32) and (A.33), we have

¯̀
n(α̂k)− `Fn(α∗n) = op(σFn,n). (A.34)

For the third term, consider the derivation:

n−1

n∑
i=1

[
(`(Zi, α̂k)− `Fn(α∗n))2 − (`(Zi, α

∗
n)− `Fn(α∗n))2

]
= n−1

n∑
i=1

[
|`(Zi, α̂k)− `(Zi, α∗n)|2

]
+ 2n−1

n∑
i=1

(`(Zi, α
∗
n)− `Fn(α∗n)) [`(Zi, α̂k)− `(Zi, α∗n)]

= `α,n(α∗k)′(H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,n(α∗k) + op(σ
2
Fn,n), (A.35)

where the second equality holds by Assumptions 4.4(b)-(c). Also consider:

`α,n(α∗k)′(H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,n(α∗k)− n−1ω2
Fn,U,n

= n−2

n∑
i=1

[
`α,k(Zi, α

∗
k)′(H−1

Fn,k
DFn,kH

−1
Fn,k

)`α,k(Zi, α
∗
k)− tr((H−1

Fn,kn
DFn,kn)2)

]
+ 2n−2

n∑
i=2

[
`α,k(Zi, α

∗
k)′(H−1

Fn,kn
DFn,knH

−1
Fn,kn

)
i−1∑
i′=1

`α,k(Zi′ , α
∗
k)

]
. (A.36)

By algebra, we see that the first summand on the right-hand side of (A.36) equals

n−1
∣∣∣tr(H−1

Fn,k
DFn,kH

−1
Fn,k

D̂n(α∗k))− tr(H−1
Fn,k

DFn,kH
−1
Fn,k

DFn,k)
∣∣∣

= n−1
∣∣∣tr (H−1

Fn,k
DFn,kH

−1
Fn,k

(D̂n(α∗k)−DFn,k)
)∣∣∣

≤ n−1tr(H−1
Fn,k

DFn,kH
−1
Fn,k

)
∥∥∥D̂n(α∗k)−DFn,k

∥∥∥
= n−1Op(|k|)op(nσ2

Fn,n|k|
−1) = op(σ

2
Fn,n), (A.37)

where the inequality holds by (A.25), and the second equality holds by Assumptions 4.4(a) and

4.3(b) and by

tr(H−1
Fn,k

DFn,kH
−1
Fn,k

) ≤ |k| ρmax(H−1
Fn,k

DFn,kH
−1
Fn,k

) ≤ C |k| , (A.38)
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where the last inequality is by Assumption 4.1(f). Consider the second moment of the second

summand on the right-hand-side of (A.36). By the Martingale property discussed in detail in the

proof of Theorem 4.1, its second moment equals

4

n4

n∑
i=1

EFn

[
`α,k(Zi, α

∗
k)′(H−1

Fn,k
DFn,kH

−1
Fn,k

)
i−1∑
i′=1

`α,k(Zi′ , α
∗
k)

]2

=
2(n− 1)EFn

[
`α,k(Zi, α

∗
k)′(H−1

Fn,k
DFn,kH

−1
Fn,k

)DFn,k(H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,k(Zi, α
∗
k)
]

n3

≤ 2C
EFn

[
`α,k(Zi, α

∗
k)′H−1

Fn,k
DFn,kH

−1
Fn,k

`α,k(Zi, α
∗
k)
]

n2

= 2C
tr(
(
DFn,kH

−1
Fn,k

)2
)

n2
=

2Cω2
F0,U,k

n2
= o(σ4

Fn,n), (A.39)

where the first equality holds due to the i.i.d. structure of the data, the first inequality holds

by the property of eigenvalues and Assumption 4.1(f), the second and third equality hold by the

definitions of DFn,k and ω2
F0,U,k

respectively, and the last equality is by n−1ω2
F0,U,k

≤ 4σ2
Fn,n

and

Assumption 4.3(b). The result (A.39) implies that the second summand on the right-hand side of

(A.36) is op(σ
2
Fn,n

). Combining this with (A.35), (A.36), and (A.37), we get

n−1

n∑
i=1

[
(`(Zi, α̂k)− `Fn(α∗n))2 − (`(Zi, α

∗
n)− `Fn(α∗n))2

]
= n−1ω2

Fn,U,k + op(σ
2
Fn,n). (A.40)

The lemma immediately follows from (A.29), (A.30), (A.34), and (A.40).

Proof of Lemma 4.3. The proof of part (a) is similar to that for Lemma 4.1 and is omitted

for brevity. Part (b) follows from the derivation:

ω̂2
n(α̂k)− 2−1n−1tr((D̂nĤ

−1
n )2)− σ2

Fn,n

= ω̂2
n(α̂k)− (ω2

Fn,∗ + n−1ω2
Fn,U,k) +

(n+ 1)ω2
Fn,U,k

2n2
− tr((D̂nĤ

−1
n )2)

2n

= op(σ
2
Fn,n) +

ω2
Fn,U,k

2n2
−
tr((D̂nĤ

−1
n )2)− ω2

Fn,U,k

2n
= op(σ

2
Fn,n), (A.41)

where the first equality holds by the definition of σ2
Fn,n

(= ω2
Fn,∗+2−1n−2(n−1)ω2

Fn,U,k
), the second

by Lemma 4.2, and the last by part (a) and by 2−1n−2(n− 1)ω2
Fn,U,k

≤ σ2
Fn,n

by definition.

Proof of Theorem 4.2. Using Lemma 4.3, we deduce that, for any ε > 0,

Pr Fn((2n)−1tr((D̂nĤ
−1
n )2)− σ2

Fn,n > ε) = Pr Fn(−ω2
Fn,∗ + op(σ

2
Fn,n) > ε)→ 0, (A.42)
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where the equality holds by the definition of σ2
Fn,n

, and the convergence holds by Assumption

4.3(b). Next observe that

Tn =
n−1/2σ−1

Fn,n

[
n¯̀

n(α̂k) + (1/2)tr(D̂n(α∗k)H−1
Fn,k

)
]

σ−1
Fn,n

σ̂n
−
σ−1
Fn,n

2−1n−1/2(tr(D̂n(α∗k)H−1
Fn,k
− D̂nĤ

−1
n )

σ−1
Fn,n

σ̂n
,

which together with Theorem 4.1, Lemma 4.1, and equation (A.42) imply that Tn →d N(0, 1)

under any sequence {Fn} such that Fn ∈ F0 for all n. This implies part (a) of the theorem

immediately. Part (b) follows similarly.

B Proofs for Results in Section 6

B.1 Proof of Lemma 6.1

As we mentioned in the main paper, Lemma 6.1 follows immediately from Lemmas 4.2 and 4.3 in

the main paper and Lemmas B.1, and B.2 below.

The extra assumptions referenced in Lemma 6.1 are as follows. Assumption B.1 is regarding

the plug-in estimator ψj(α̂kj) for j = 1, 2. Sufficient Conditions can be found in Chen et al. (2014)

and Chen and Liao (2015). Assumption B.2 is regarding the consistency of v̂∗2ψ,kj , ρ̂0j,n, and ρ̂12,n.

Assumption B.2 calls for some new notation: Let `αα,kj(Z;αj) = ∂`α,kj(Z;αj(βkj))
/
∂β′kj . Define

D`,kj ,n = EFn

[
`2(Z;α∗n)`α,kj(Z;α∗kj)`α,kj(Z;α∗kj)

′
]

and H`,kj ,n = EFn

[
`(Z;α∗n)`αα,kj(Z;α∗kj)

]
.

(B.1)

Assumption B.1 Under any sequence {Fn}n≥1 such that Fn ∈ F for all n, we have for j = 1, 2,

n1/2
[
ψj(α̂kj)− ψj(α∗j,n)

]
(v∗ψ,kj)

−1 = n−1/2

n∑
i=1

ψα,kj(α
∗
kj

)′H−1
Fn,kj

`α,kj(Zi;α
∗
kj

)(v∗ψ,kj)
−1+op(1) (B.2)

and EFn [|ψα,kj(α∗kj)
′H−1

Fn,kj
`α,kj(Zi;α

∗
kj

)(v∗ψ,kj)
−1|4] = o(n).

Assumption B.2 For any {Fn}n≥1 such that Fn ∈ F for all n, we have for j = 1, 2:

(a) 1
v∗ψ,kj

∥∥∥ψα,kj(α̂kj)− ψα,kj(α∗kj)∥∥∥ = op(|k|−1/2);

(b) ρmax(D`,kj ,n) ≤ C and ρmax(H`,kj ,n) ≤ C;

(c) the following expansion holds

n−1

n∑
i=1

[
`α,kj(Zi; α̂kj)`(Zi; α̂k)− `α,kj(Zi;α∗kj)`(Zi;α

∗
n)
]

11



= n−1

n∑
i=1

`α,kj(Zi;α
∗
kj

)`α,k(Zi;α
∗
n)′H−1

Fn,k
`α,n(α∗k)

+ n−1

n∑
i=1

`(Zi;α
∗
n)`αα,kj(Zi;α

∗
kj

)H−1
Fn,kj

`αj ,n(α∗kj) + op(σFn,n);

(d)
∥∥∥n−1

∑n
i=1 `(Zi;α

∗
n)`αα,kj(Zi;α

∗
kj

)−H`,kj ,n

∥∥∥ = op(|k|−1/2);

(e)
∥∥∥ψα,kj(α∗kj)/v∗ψ,kj∥∥∥ ≤ C;

(f) ‖Ĥn −HFn,k‖ = op(|k|−1/2) and ‖D̂n −DFn,k‖ = op(|k|−1/2).

Lemma B.1 shows the joint convergence in distribution of the normalized log-likelihood ratio and

the normalized parameter estimators.

Lemma B.1 Suppose that Assumptions 4.1, 4.3and B.1 hold. For any sequence {Fn}n≥1 with

Fn ∈ F for all n and any subsequence {un} of {n} such that ρ0j,un → ρ0j and ρ12,un → ρ12 for

some ρ0j and ρ12 ∈ [−1, 1], we have

Gun,Fun =


n
[
¯̀
n(α̂k)−EFun [`(Z;α∗Fun

)]
]
+(1/2)tr(D̂n(α∗k)H−1

F0,k
)

n1/2σFun,n

n1/2
[
ψ1(α̂k1)− ψ1(α∗Fun ,1)

]
(v∗ψ,k1)

−1

n1/2
[
ψ2(α̂k2)− ψ2(α∗Fun ,2)

]
(v∗ψ,k2)

−1

→d N (03,ΣG) .

Proof of Lemma B.1. Let κ = (κ1, κ2, κ3)′ ∈ R3 be any vector with κ′κ = 1. For ease of

notations, let Wi,n = (Wi,n,W1,i,n,W2,i,n)′ where

Wi,n = Vi,n − Ui,n, and Wj,i,n =
ψα,kj(α

∗
kj

)′H−1
Fn,kj

n1/2v∗ψ,kj
`α,kj(Zi;α

∗
kj

) for j = 1, 2, (B.3)

where Vi,n and Ui,n are defined in (A.3). By the definition of κ, and Assumptions 4.3(a) and B.1,

κ′Gn,Fn =
n∑
i=1

κ′Wi,n + op(1). (B.4)

Let Z0 = 0 and Fi,n be the natural filtration generated by {Z0, Z1, . . . , Zi} under Fn for i =

0, . . . , n. Under Assumptions 4.1(b) and 4.1(d),

EFn [κ′Wi,n| Fi−1,n] = 0,

for all i = 1, . . . , n, which implies that {κ′Wi,n}i≤n is a martingale difference array. We shall use

the martingale central limit theorem (ref. Corollary 3.1 in Hall and Heyde (1980)) to show the
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desired convergence. It suffices to verify the following two sufficient conditions:

n∑
i=1

EFun

[
|κ′Wi,un|

2
∣∣∣Fi−1,un

]
→p κ

′ΣGκ, and (B.5)

un∑
i=1

EFun

[
|κ′Wi,un|

2
1 {|κ′Wi,un| > ε}

]
→p 0, ∀ε > 0. (B.6)

In order to show (B.5), it suffices to show that

n∑
i=1

EFn
[
Wi,nW

′
i,n

∣∣Fi−1,n

]
− ΣG = op(1). (B.7)

Note that in part (a) of equation (A.6) in the proof of Theorem 4.1, we have shown that

n∑
i=1

EFn
[
W 2
i,n

∣∣Fi−1,n

]
→p 1. (B.8)

Also, we have, for j = 1, 2,

n∑
i=1

EFn
[
W 2
j,i,n

∣∣Fi−1,n

]
= n−1

n∑
i=1

ψα,kj(α
∗
kj

)′H−1
Fn,kj

v∗ψ,kj
EFn

[
`α,kj(Zi;α

∗
kj

)`α,kj(Zi;α
∗
kj

)′
∣∣∣Fi−1,n

] H−1
Fn,kj

ψα,kj(α
∗
kj

)

v∗ψ,kj

= n−1

n∑
i=1

ψα,kj(α
∗
kj

)′H−1
Fn,kj

DFn,kjH
−1
Fn,kj

ψα,kj(α
∗
kj

)

v∗2ψ,kj
= 1, (B.9)

where the second equality is by Assumption 4.1(b) and the definition of DFn,kj , the last equality

is by the definition of v∗ψ,kj . Next, note that, for j = 1, 2,

n∑
i=1

EFn [Wi,nWj,i,n| Fi−1,n] =
n∑
i=1

EFn [Vi,nWj,i,n| Fi−1,n]−
n∑
i=2

EFn [Ui,nWj,i,n| Fi−1,n]

= n−1

n∑
i=1

EFn

[
`(Zi;α

∗
n)

σFn,n

`α,kj(Zi;α
∗
kj

)′H−1
Fn,kj

ψα,kj(α
∗
kj

)

v∗ψ,kj

∣∣∣∣∣Fi−1,n

]

= n−1

n∑
i=1

ρ0j,n = ρ0j,n, (B.10)

where the second equality is by the definitions of Vi,n, Ui,n and Wj,i,n and EFn [Ui,nWj,i,n| Fi−1,n] = 0

which follows by the i.i.d. assumption and Assumption 4.1(c), the third equality is by the definition
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of ρ0j,n and the i.i.d. assumption. Similarly

n∑
i=1

EFn [W1,i,nW2,i,n| Fi−1,n]

=
n∑
i=1

EFn

[
ψα,k1(α

∗
k1

)′H−1
Fn,k1

`α,k1(Zi;α
∗
k1

)

n
1
2v∗ψ,k1

`′α,k2(Zi;α
∗
k2

)H−1
Fn,k2

ψα,k2(α
∗
k2

)

n
1
2v∗ψ,k2

∣∣∣∣∣Fi−1,n

]

=
1

n

n∑
i=1

ψα,k1(α
∗
k1

)′H−1
Fn,k1

v∗ψ,k1
EFn

[
`α,k1(Z;α∗k1)`α,k2(Z;α∗k2)

] H−1
Fn,k2

ψα,k2(α
∗
k2

)

v∗ψ,k2

=
1

n

n∑
i=1

ρ12,n = ρ12,n. (B.11)

Collecting the results in (B.8), (B.9), (B.10) and (B.11), we get

n∑
i=1

EFn
[
Wi,nW

′
i,n

∣∣Fi−1,n

]
− ΣG =

( ∑n
i=1EFn

[
W 2
i,n

∣∣Fi−1,n

]
− 1 01×2

02×1 02×2

)
= op(1)

which proves (B.7) and hence (B.5).

We next verify (B.6). First, by the monotonicity of expectation and the Cr inequality,

n∑
i=1

EFn

[
|κ′Wi,n|2 1 {|κ′Wi,n| > ε}

]
≤

n∑
i=1

EFn

[
|κ′Wi,n|4 ε−2

]
≤ C

ε2

n∑
i=1

EFn
[
|κ1Wi,n|4 + |κ2W1,i,n|4 + |κ3W2,i,n|4

]
. (B.12)

In equation (A.24) in the proof of Theorem 4.1, we have shown that

1

ε2

n∑
i=1

EFn
[
|Wi,n|4

]
= o(1). (B.13)

Under Assumptions 4.1(a)-(b) and B.1, we have

1

ε2

n∑
i=1

EFn
[
|κ2W1,i,n|4 + |κ3W2,i,n|4

]
≤ 1

ε2n2

n∑
i=1

2∑
j=1

EFn

∣∣∣∣∣ψα,kj(α∗kj)′v∗ψ,kj
H−1
Fn,kj

`α,kj(Zi;α
∗
kj

)

∣∣∣∣∣
4


=
1

ε2n

2∑
j=1

EFn

∣∣∣∣∣ψα,kj(α∗kj)′v∗ψ,kj
H−1
Fn,kj

`α,kj(Zi;α
∗
kj

)

∣∣∣∣∣
4
 = o(1) (B.14)
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which combined with (B.12) and (B.13) proves (B.6).

Lemma B.2 shows the consistency of the estimated variances and correlations.

Lemma B.2 Suppose that Assumptions 4.1(b)-(g), 4.3(b), and B.2 hold. Then under all se-

quences {Fn}n≥1 such that Fn ∈ F for all n, we have

(a) maxj=1,2

[
v̂∗2ψ,kj

/
v∗2ψ,kj − 1

]
= op(1);

(b) ρ̂12,n − ρ12,n = op(1);

(c) maxj=1,2

∣∣ρ̂0j,n − ρ0j,n

∣∣ = op(1).

Proof of Lemma B.2. (a) Note that under Assumption B.2(f), we have

‖Ĥkj ,n −HFn,kj‖ = op(|k|−1/2) and ‖D̂kj ,n −DFn,kj‖ = op(|k|−1/2), (B.15)

which together with Assumption 4.1(f) imply that

0 ≤ ρmax(D̂kj ,n) ≤ 2C and (2C)−1 ≤ |ρmin(Ĥkj ,n)| ≤ |ρmax(Ĥkj ,n)| ≤ 2C (B.16)

with probability approaching 1. By definition, we can write

v̂∗2ψ,kj − v
∗2
ψ,kj

v∗2ψ,kj
=
[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]′ Ĥ−1
kj ,n

D̂kj ,nĤ
−1
kj ,n

v∗2ψ,kj

[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]
+ 2

[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]′ Ĥ−1
kj ,n

D̂kj ,nĤ
−1
kj ,n

v∗2ψ,kj
ψα,kj(α

∗
kj

)

+ ψ′α,kj(α
∗
kj

)H−1
Fn,kj

Ĥkj ,n −HFn,kj

v∗2ψ,kj
Ĥ−1
kj ,n

D̂kj ,nĤ
−1
kj ,n

ψα,kj(α
∗
kj

)

+ ψα,kj(α
∗
kj

)′H−1
Fn,kj

D̂kj ,n −DFn,kj

v∗2ψ,kj
Ĥ−1
kj ,n

ψα,kj(α
∗
kj

)

+ ψα,kj(α
∗
kj

)′H−1
Fn,kj

DFn,kjH
−1
Fn,kj

Ĥkj ,n −HFn,kj

v∗2ψ,kj
Ĥ−1
kj ,n

ψα,kj(α
∗
kj

). (B.17)

By (B.16) and Assumption B.2(a),

[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]′ Ĥ−1
kj ,n

D̂kj ,nĤ
−1
kj ,n

v∗2ψ,kj

[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]
≤
ρmax(D̂kj ,n)

ρ2
min(Ĥkj ,n)

1

v∗2ψ,kj

∥∥∥ψα,kj(α̂kj)− ψα,kj(α∗kj)∥∥∥2

= op(1). (B.18)
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By the Cauchy-Schwarz inequality, (B.16), Assumptions B.2(a) and B.2(e),∣∣∣∣∣[ψα,kj(α̂kj)− ψα,kj(α∗kj)]′ Ĥ
−1
kj ,n

D̂kj ,nĤ
−1
kj ,n

v∗2ψ,kj
ψα,kj(α

∗
kj

)

∣∣∣∣∣
2

≤

∥∥∥ψα,kj(α̂kj)− ψα,kj(α∗kj)∥∥∥2

v∗2ψ,kj
ψ′α,kj(α

∗
kj

)
Ĥ−1
kj ,n

D̂kj ,nĤ
−2
kj ,n

D̂kj ,nĤ
−1
kj ,n

v∗2ψ,kj
ψα,kj(α

∗
kj

)

≤
ρ2

max(D̂kj ,n)

ρ4
min(Ĥkj ,n)

ψ′α,kj(α
∗
kj

)ψα,kj(α
∗
kj

)

v∗2ψ,kj

∥∥∥ψα,kj(α̂kj)− ψα,kj(α∗kj)∥∥∥2

v∗2ψ,kj
= op(1). (B.19)

By the Cauchy-Schwarz inequality, (B.15), (B.16), Assumptions B.2(a) and B.2(e),∣∣∣∣∣ψα,kj(α∗kj)′H−1
Fn,kj

Ĥkj ,n −HFn,kj

v∗2ψ,kj
Ĥ−1
kj ,n

D̂kj ,nĤ
−1
kj ,n

ψα,kj(α
∗
kj

)

∣∣∣∣∣
2

≤
∥∥∥Ĥkj ,n −HFn,kj

∥∥∥2 ψα,kj(α
∗
kj

)′H−2
Fn,kj

ψα,kj(α
∗
kj

)

v∗2ψ,kj

×
ψ′α,kj(α

∗
kj

)Ĥ−1
kj ,n

D̂kj ,nĤ
−2
kj ,n

D̂kj ,nĤ
−1
kj ,n

ψα,kj(α
∗
kj

)

v∗2ψ,kj

≤
ρ2

max(D̂kj ,n)
∥∥∥Ĥkj ,n −HFn,kj

∥∥∥2

(ρmin((Ĥkj ,n)2))2ρmin(H2
F0,kj

)

∣∣∣∣∣ψα,kj(α∗kj)′ψα,kj(α∗kj)v∗2ψ,kj

∣∣∣∣∣
2

= op(1). (B.20)

Using the same arguments for showing (B.20), we can prove that∣∣∣∣∣ψα,kj(α∗kj)′H−1
F0,kj

D̂kj ,n −DFn,kj

v∗2ψ,kj
Ĥ−1
kj ,n

ψα,kj(α
∗
kj

)

∣∣∣∣∣ = op(1) and∣∣∣∣∣ψα,kj(α∗kj)′H−1
F0,kj

DF0,kjH
−1
F0,kj

Ĥkj ,n −HFn,kj

v∗2ψ,kj
Ĥ−1
kj ,n

ψα,kj(α
∗
kj

)

∣∣∣∣∣ = op(1). (B.21)

Collecting the results in (B.17)-(B.21), we immediately get the claimed result.

(b) By the consistency of v̂∗2ψ,kj and the fact that |ρ12,n| ≤ 1, it is sufficient to show that

ρ̂∗12,n ≡
ψα,k1(α̂k1)

′Ĥ−1
k1,n

v∗ψ,k1
D̂k1,k2,n

Ĥ−1
k2,n

ψα,k2(α̂k2)

v∗ψ,k2
= ρ12,n + op(1). (B.22)
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By Assumption B.2(f), we have∥∥∥D̂k1,k2,n −DFn,k1,k2

∥∥∥ = op(|k|−1/2). (B.23)

Note that

ρ̂∗12,n − ρ12,n =

[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]′
v∗ψ,k1

Ĥ−1
k1,n

D̂k1,k2,nĤ
−1
k2,n

[
ψα,k2(α̂k2)− ψα,k2(α∗k2)

]
v∗ψ,k2

+ 2

[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]′
v∗ψ,k1

Ĥ−1
k1,n

D̂k1,k2,nĤ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

+
ψα,k1(α

∗
k1

)′

v∗ψ,k1
H−1
Fn,k1

(Ĥk1,n −HFn,k1)Ĥ
−1
k1,n

D̂k1,k2,nĤ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

+
ψα,k1(α

∗
k1

)′

v∗ψ,k1
H−1
Fn,k1

(D̂k1,k2,n −DFn,k1,k2)Ĥ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

+
ψα,k1(α

∗
k1

)′

v∗ψ,k1
H−1
Fn,k1

DFn,k1,k2H
−1
Fn,k1

(Ĥk1,n −HFn,k1)Ĥ
−1
k1,n

ψα,k2(α
∗
k2

)

v∗ψ,k2
. (B.24)

Lemma E.2 together with Assumption 4.1(f) implies that

ρmax(D′Fn,k1,k2DFn,k1,k2) ≤ C. (B.25)

Similarly, Lemma E.2 together with Assumptions 4.1(f) and (B.23) implies that

ρmax(D̂′k1,k2,nD̂k1,k2,n) ≤ C (B.26)

with probability approaching 1. Using the Cauchy-Schwarz inequality, we get∣∣∣∣∣
[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]
v∗ψ,k1

Ĥ−1
k1,n

D̂k1,k2,nĤ
−1
k2,n

[
ψα,k2(α̂k2)− ψα,k2(α∗k2)

]
v∗ψ,k2

∣∣∣∣∣
2

≤
[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]′
v∗ψ,k1

Ĥ−2
k1,n

[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]
v∗ψ,k1

×
[
ψα,k2(α̂k2)− ψα,k2(α∗k2)

]′
v∗ψ,k2

Ĥ−1
k2,n

D̂′k1,k2,nD̂k1,k2,nĤ
−1
k2,n

[
ψα,k2(α̂k2)− ψα,k2(α∗k2)

]
v∗ψ,k2

≤
ρmax(D̂′k1,k2,nD̂k1,k2,n)

ρmin((Ĥk1,n)2)ρ2
min((Ĥk2,n)2)

∥∥ψα,k1(α̂k1)− ψα,k1(α∗k1)∥∥2

v∗2ψ,k1

∥∥ψα,k2(α̂k2)− ψα,k2(α∗k2)∥∥2

v∗2ψ,k2
= op(1),

(B.27)

17



where the last equality is by Assumption B.2(a), (B.16) and (B.26). Similarly,∣∣∣∣∣
[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]′
v∗ψ,k1

Ĥ−1
k1,n

D̂k1,k2,nĤ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

∣∣∣∣∣
2

≤
[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]′
v∗ψ,k1

Ĥ−2
k1,n

[
ψα,k1(α̂k1)− ψα,k1(α∗k1)

]
v∗ψ,k1

×
ψα,k2(α

∗
k2

)′

v∗ψ,k2
Ĥ−1
k2,n

D̂′k1,k2,nD̂k1,k2,nĤ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

≤
ρmax(D̂′k1,k2,nD̂k1,k2,n)

ρmin((Ĥk1,n)2)ρ2
min((Ĥk2,n)2)

∥∥ψα,k1(α̂k1)− ψα,k1(α∗k1)∥∥2

v∗2ψ,k1

ψ′α,k2(α
∗
k2

)ψα,k2(α
∗
k2

)

v∗2ψ,k2
= op(1) (B.28)

where the last equality is by Assumptions B.2(a), B.2(e), (B.16) and (B.26). Moreover,∣∣∣∣∣ψα,k1(α∗k1)′v∗ψ,k1
H−1
Fn,k1

(Ĥk1,n −HFn,k1)Ĥ
−1
k1,n

D̂k1,k2,nĤ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

∣∣∣∣∣
2

≤
∥∥∥Ĥk1,n −HFn,k1

∥∥∥2 ψα,k1(α
∗
k1

)′

v∗ψ,k1
H−2
Fn,k1

ψα,k1(α
∗
k1

)

v∗ψ,k1

×
ψα,k2(α

∗
k2

)′

v∗ψ,k2
Ĥ−1
k2,n

D̂′k1,k2,nĤ
−2
k1,n

D̂k1,k2,nĤ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

≤

∥∥∥Ĥk1,n −HFn,k1

∥∥∥2

ρmax(D̂′k1,k2,nD̂k1,k2,n)

ρ2
min(HFn,k1)ρ

2
min(Ĥk1,n)ρ2

min(Ĥk2,n)

×
ψα,k1(α

∗
k1

)′ψα,k1(α
∗
k1

)

v∗2ψ,k1

ψ′α,k2(α
∗
k2

)ψα,k2(α
∗
k2

)

v∗2ψ,k2
= op(1) (B.29)

where the last equality is by Assumptions B.2(a), B.2(e), (B.15), (B.16) and (B.26). Using the

same arguments in showing (B.29), but replacing (B.26) with (B.25), we have∣∣∣∣∣ψα,k1(α∗k1)′v∗ψ,k1
H−1
Fn,k1

DFn,k1,k2H
−1
Fn,k1

(Ĥk1,n −HFn,k1)Ĥ
−1
k1,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

∣∣∣∣∣
2

= op(1). (B.30)

By the Cauchy-Schwarz inequality,∣∣∣∣∣ψα,k1(α∗k1)′v∗ψ,k1
H−1
Fn,k1

(D̂k1,k2,n −DFn,k1,k2)Ĥ
−1
k2,n

ψα,k2(α
∗
k2

)

v∗ψ,k2

∣∣∣∣∣
2

≤

∥∥∥D̂k1,k2,n −DFn,k1,k2

∥∥∥2

ρmin((HFn,k1)
2)ρmin((Ĥk2,n)2)

ψα,k1(α
∗
k1

)′ψα,k1(α
∗
k1

)

v∗2ψ,k1

ψα,k2(α
∗
k2

)′ψα,k2(α
∗
k2

)

v∗2ψ,k2
= op(1), (B.31)
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where the last equality is by Assumptions 4.1(f), B.2(a), B.2(e), (B.16) and (B.23). Collecting the

results in (B.24), (B.27)-(B.31), we immediately prove (B.22).

(c) By the consistency of v̂∗2ψ,kj and σ̂n, and the fact that |ρ0j,n| ≤ 1, it is sufficient to show that

ρ̂∗0j,n ≡
ψ′α,kj(α̂kj)Ĥ

−1
kj ,n

nv∗ψ,kjσFn,n

n∑
i=1

`α,kj(Zi; α̂kj)`(Zi; α̂n) = ρ0j,n + op(1). (B.32)

By definition, we can write

ρ̂∗0j,n − ρ0j,n =
ψα,kj(α

∗
kj

)′H−1
Fn,kj

nv∗ψ,kjσFn,n

n∑
i=1

[
`α,kj(Zi;α

∗
kj

)`(Zi;α
∗
n)− EFn

[
`α,kj(Z;α∗kj)`(Z;α∗n)

]]
+
ψα,kj(α̂kj)

′Ĥ−1
kj ,n
− ψα,kj(α∗kj)

′H−1
Fn,kj

nv∗ψ,kjσFn,n

n∑
i=1

`α,kj(Zi;α
∗
kj

)`(Zi;α
∗
n)

+
ψα,kj(α̂kj)

′Ĥ−1
kj ,n

nv∗ψ,kjσFn,n

n∑
i=1

[
`α,kj(Zi; α̂kj)`(Zi; α̂n)− `α,kj(Zi;α∗kj)`(Zi;α

∗
n)
]
. (B.33)

Under the i.i.d assumption, Assumptions 4.1(f), 4.3(b) and B.2(e),

V ar

[
ψα,kj(α

∗
kj

)′H−1
Fn,kj

nv∗ψ,kjσFn,n

n∑
i=1

[
`α,kj(Zi;α

∗
kj

)`(Zi;α
∗
n)− EFn

[
`α,kj(Z;α∗kj)`(Z;α∗n)

]]]

=
ψα,kj(α

∗
kj

)′H−1
Fn,kj

n
1
2v∗ψ,kjσFn,n

EFn

[
`2(Z;α∗n)`α,kj(Z;α∗kj)`

′
α,kj

(Z;α∗kj)
] H−1

Fn,kj
ψα,kj(α

∗
kj

)

n
1
2v∗ψ,kjσFn,n

≤
ρmax(D`,kj ,n)

ρmin((HFn,kj)
2)

ψ′α,kj(α
∗
kj

)ψα,kj(α
∗
kj

)

v∗2ψ,kj

1

nσ2
Fn,n

= op(1), (B.34)

which together with the Markov inequality implies that the first summand in (B.33) is op(1). By

the triangle inequality∥∥∥ψα,kj(α̂kj)′Ĥ−1
kj ,n
− ψ′α,kj(α

∗
kj

)H−1
Fn,kj

∥∥∥2

v∗2ψ,kj

≤

[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]′
Ĥ−2
kj ,n

[
ψα,kj(α̂kj)− ψα,kj(α∗kj)

]
v∗2ψ,kj

+
ψα,kj(α

∗
kj

)′H−1
Fn,kj

[Ĥkj ,n −HFn,kj ]Ĥ
−2
kj ,n

[Ĥkj ,n −HFn,kj ]H
−1
Fn,kj

ψα,kj(α
∗
kj

)

v∗2ψ,kj
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≤

∥∥∥ψα,kj(α̂kj)− ψα,kj(α∗kj)∥∥∥2

ρmin((Ĥkj ,n)2)v∗2ψ,kj
+
ψα,kj(α

∗
kj

)′ψα,kj(α
∗
kj

)
∥∥∥Ĥkj ,n −HFn,kj

∥∥∥2

ρmin((Ĥkj ,n)2)ρmin((HFn,kj)
2)v∗2ψ,kj

= op(|k|−1), (B.35)

where the last equality is by (B.15), (B.16), Assumptions 4.1(f), B.2(a) and B.2(e). By the i.i.d.

assumption,

EFn

∥∥∥∥∥n−1

n∑
i=1

[
`(Zi;α

∗
n)`α,kj(Zi;α

∗
kj

)− EFn
[
`(Z;α∗n)`α,kj(Z;α∗kj)

]]∥∥∥∥∥
2


≤ 1

n
EFn

[
`2(Z;α∗n)

∥∥∥`α,kj(Z;α∗kj)
∥∥∥2
]

= O(kjn
−1). (B.36)

where the equality is by Assumption B.2(b). Also note that∥∥∥EFn [`α,kj(Z;α∗kj)`(Z;α∗n)
]∥∥∥2

≤ EFn
[
|`(Z;α∗n)|2

]
EFn

[
`α,kj(Z;α∗kj)

′`α,kj(Z;α∗kj)
]

= op(kjσ
2
Fn,n)

The above two displays together with the triangle inequality imply that∥∥∥∥∥n−1

n∑
i=1

`(Zi;α
∗
n)`α,kj(Zi;α

∗
kj

)

∥∥∥∥∥
2

≤ Op(kjn
−1) + op(kjσ

2
Fn,n). (B.37)

Equations (B.35) and (B.37) imply that the second summand in (B.33) is bounded from above by

op(|k|−1/2)(O(k
1/2
j n−1/2σ−1

Fn,n
) + op(k

1/2
j σFn,nσ

−1
Fn,n

)) = op(1),

where the equality is by Assumption 4.3(b). Thus, the second summand in (B.33) is also op(1).

To show that the last summand in (B.33) is op(1), let

Ân =
ψα,kj(α̂kj)

′Ĥ−1
kj ,n

v∗ψ,kjσFn,n
, An =

ψα,kj(α
∗
kj

)′H−1
Fn,kj

v∗ψ,kjσFn,n
,

B̂n = n−1

n∑
i=1

[`α,kj(Zi;α
∗
kj

)`′α,k(Zi;α
∗
k)]H−1

Fn,k
`α,n(α∗k)

Bn = EFn [`α,kj(Zi;α
∗
kj

)`′α,k(Zi;α
∗
k)]H−1

Fn,k
`α,n(α∗k)

Ĉn = n−1

n∑
i=1

`(Zi;α
∗
kj

)`αα,k(Zi;α
∗
kj

)H−1
Fn,kj

`αj ,n(α∗kj), and Cn = H`,kj ,nH
−1
Fn,kj

`αj ,n(α∗kj), (B.38)
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Using Assumption B.2(c), we can write the last summand in (B.33) as

Ân(B̂n + Ĉn + op(σFn,n)).

Next, note that (B.35) implies that

Ân = An + Ân − An =
ψα,kj(α

∗
kj

)′H−1
Fn,kj

v∗ψ,kjσFn,n
+ op(|k|−1/2 σ−1

Fn,n
) = Op(σ

−1
Fn,n

),

where the last equality is by Assumptions 4.1(f) and B.2(e). Under Assumptions 4.1(a) and (f)

EFn
[
`α,n(α∗k)′H−2

Fn,k
`α,n(α∗k)

]
=

1

n
tr
(
H−2
Fn,k

DFn,k

)
= O(|k|n−1), (B.39)

which together with the Markov inequality implies that

`α,n(α∗k)′H−2
Fn,k

`α,n(α∗k) = Op(|k|n−1). (B.40)

By the Cauchy-Schwarz inequality,

‖B̂n −Bn‖

≤

∥∥∥∥∥ 1

n

n∑
i=1

`α,kj(Zi;α
∗
kj

)`′α,k(Zi;α
∗
k)− EFn

[
`α,kj(Z;α∗kj)`

′
α,k(Z;α∗k)

]∥∥∥∥∥
√
`
′
α,n(α∗k)H−2

Fn,k
`α,n(α∗k)

= op(n
− 1

2 ), (B.41)

where the equality is by (B.40) and Assumption B.2(f). Note that Lemma E.2 combined with

Assumptions 4.1(f) implies that

ρmax

(
EFn

[
`α,kj(Z;α∗kj)`

′
α,k(Z;α∗k)

]
EFn

[
`α,k(Z;α∗k)`′α,kj(Z;α∗kj)

])
≤ C. (B.42)

Under the i.i.d. assumption,

EFn
[
‖Bn‖2] = tr

(
EFn

[
`α,kj(Z;α∗kj)`

′
α,k(Z;α∗k)

] H−1
Fn,k

DFn,kH
−1
Fn,k

n
EFn

[
`α,k(Z;α∗k)`′α,kj(Z;α∗kj)

])

≤ ρmax(DFn,k)

nρmin((HFn,k)2)
tr
(
EFn

[
`α,kj(Z;α∗kj)`

′
α,k(Z;α∗k)

]
EFn

[
`α,k(Z;α∗k)`′α,kj(Z;α∗kj)

])
= O(|k|n−1) (B.43)

where the last equality is by Assumptions 4.1(f) and (B.42). (B.43) combined with the Markov

21



inequality yields

Bn = Op(|k|
1
2 n−

1
2 ). (B.44)

B.2 Proof of Theorem 6.1

Proof of Theorem 6.1. First note that

lim inf
n→∞

inf
F0∈Fn

Pr F0(ψ1(α∗1) ∈ CIψ1(1− p, t)|Tn ≥ t) = lim inf
n→∞

Pr Fn(ψ1(α∗1) ∈ CIψ1(1− p, t)|Tn ≥ t)

(B.45)

for some sequence {Fn}n≥1 such that Fn ∈ Fn for all n. And by the definition of lim inf, there

exists a subsequence {an} of n such that

lim inf
n→∞

Pr Fn(ψ1(α∗1) ∈ CIψ1(1− p, t)|Tn ≥ t) = lim
n→∞

Pr Fan (ψ1(α∗1) ∈ CIψ1(1− p, t)|Tan ≥ t).

(B.46)

By the completeness of the Euclidean space, there exists a subsequence {un} of {an} such that

ρ01,un → ρ01 and n1/2EFun
[
`(Z;α∗un)

]
/σun → r (B.47)

for some ρ01 ∈ [−1, 1] and r ∈ [−C,∞]. Also since {un} is a subsequence of {an}, we have

lim
n→∞

Pr Fun (ψ1(α∗1) ∈ CIψ1(1− p, t)|Tun ≥ t) = lim
n→∞

Pr Fan (ψ1(α∗1) ∈ CIψ1(1− p, t)|Tan ≥ t).

(B.48)

Next, we show that

lim
n→∞

Pr Fun (ψ1(α∗1) ∈ CIψ1(1− p, t)|Tun ≥ t) = 1− p, (B.49)

which combined with the above displays shows the desired result.

Let X̃1,n = n1/2(ψ1(α̂1,n)− ψ1(α∗1))/v̂∗ψ,k1 . Then

ψ1(α∗1) ∈ CIψ1(1− p, t)

⇔ c1,p/2(t) ≤ X̃1,n ≤ c1,1−p/2(t)

⇔ p/2 ≤ Ψ(X̃1,n, Tn − t, ρ̂01,n) ≤ 1− p/2, (B.50)

where the last lines follows from the strict monotonicity (increasing) of Ψ(·, Tn − t, ρ̂01,n) and this

monotonicity can be shown by taking the first derivative and using the strict monotonicity of the

hazard ratio of the standard normal distribution. Therefore,

Pr Fun (ψ1(α∗1) ∈ CIψ1(1− p, t)|Tun ≥ t)
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=
PrFun (p/2 ≤ Ψ(X̃1,un , Tun − t, ρ̂01,un) ≤ 1− p/2, Tun − t > 0)

Pr Fun (Tun − t > 0)

=
Pr Fun (p/2 ≤ Ψ(X̃1,un , |Tun − t|, ρ̂01,un) ≤ 1− p/2, Tunt > 0)

Pr Fun (Tun − t > 0)
. (B.51)

Lemma 6.1 implies that (
X̃1,un

Tun − t

)
→d

(
X̃1

X̃0 + r − t

)
, (B.52)

where (X̃0, X̃1) ∼ N

(
02,

(
1 ρ01

ρ01 1

))
.

Elementary algebra show that Ψ(c, h, ρ) is continuous on R × (0,∞] × [−1, 1]. With this

continuity, we can conclude that the last line of (B.51) converges to

Pr(p/2 ≤ Ψ(X̃1, X̃0 + r − t, ρ01) ≤ 1− p/2|X̃0 + r − t > 0). (B.53)

Let X∗0 = ρ01X̃1 − X̃0 − r + t. Then X∗0 is independent of X̃1 and the above expression can be

written as

Pr(p/2 ≤ Ψ(X̃1, ρ01X̃1 −X∗0 , ρ01) ≤ 1− p/2|ρ01X̃1 > X∗0 ). (B.54)

Note that

Ψ(x1, ρ01x1 − x0, ρ01) =


[Φ(x1)− Φ(x0/ρ01)]/[1− Φ(x0/ρ01)] if ρ01 > 0 and x0 ∈ R
Φ(x1) if ρ01 = 0 or ρ01x1 − x0 =∞
Φ(x1)/Φ(x0/ρ01) if ρ01 < 0 and x0 ∈ R

.

(B.55)

If ρ01 6= 0, Ψ(x1, ρ01x1 − x0, ρ01) is the conditional CDF of X̃1 given ρ01X̃1 > x0 for any x0 ∈ R.

Thus, Ψ(X̃1, ρ01X̃1−x0, ρ01)|ρ01X̃1 > x0 ∼ Uniform[0, 1]. But since X∗0 is independent of X̃1, that

implies

Ψ(X̃1, ρ01X̃1 −X∗0 , ρ01)|ρ01X̃1 > X∗0 ∼ Uniform[0, 1]. (B.56)

On the other hand, if ρ01 = 0, by the independence between X∗0 and X̃1, Ψ(x1, ρ01x1 − x0, ρ01)

is the conditional CDF of X̃1 given X∗0 < 0, which means that (B.56) also holds for ρ01 = 0.

Therefore, the expression in (B.54) equals 1− p. This concludes the proof of (B.49).
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B.3 Proof of Theorem 6.2

Proof of Theorem 6.2. Consider an arbitrary sequence {Fn}n≥1 such that Fn ∈ F for all n. It

is sufficient to show that

lim inf
n→∞

Pr Fn(θ∗ ∈ CIθ∗(1− p)) ≥ 1− p. (B.57)

Consider the derivation

Pr Fn(θ∗ ∈ CIθ∗(1− p)) ≤ Pr Fn(Ĝn(ψ1(α∗1), ψ2(α∗2), `∗0)′Σ̂−1
G Ĝn(ψ1(α∗1), ψ2(α∗2), `∗0) ≤ χ2

3(1− p))

= Pr Fn(Ĝ′n,FnΣ̂−1
G Ĝn,Fn ≤ χ2

3(1− p))

→ Pr(χ2
3 ≤ χ2

3(1− p)) = 1− p, (B.58)

where the convergence holds by Lemmas 6.1 and B.2 and ρmin(ΣG) > C−1. This shows (B.57) and

in turn proves the theorem.

C Verification of the High-level Assumptions in the Mean-

Regression Example

The assumptions needed for verifying the high-level assumptions in Section 4 of the main paper

in the mean-regression example in Section 5 of the main paper are given below. Assumption

C.1 imposes conditions on the data structure and the finite-dimensional approximation. These

are commonly used conditions in the literature (see, e.g., Andrews (1991b), Newey (1997), Chen

(2007), and Belloni et al. (2015)).23

Assumption C.1 There exist positive constants C1, r1, r2 and nondecreasing sequences {ξk1}k1≥1

and {ξk2}k2≥1, such that, for any F0 ∈ F and for j = 1, 2:

(i) {Zi}i≥1 are i.i.d. draws from F0;

(ii) supxj∈Xj

∣∣∣α∗j (xj)− Pkj(xj)′β∗kj ,F0

∣∣∣ ≤ C1k
−rj
j where rj > 0 and β∗kj ,F0

is defined in equation

(5.4) in the main paper;

(iii) supxj∈Xj
∥∥Pkj(xj)∥∥2 ≤ ξkj ; and

(iv) the eigenvalues of EF0

[
Pkj(Xj)Pkj(Xj)

′] lie in the interval [C−1
1 , C1].

Assumption C.2 below imposes condition on the error terms. For j = 1, 2, define uj = Y −
α∗j (Xj). It is useful to note here that ω2

F0,∗ = V arF0 (u2
1 − u2

2) /4 and σ2
F0,n

= ω2
F0,∗ + (2n2)−1(n −

23For some approximating functions such as power series, Assumptions C.1(ii-iv) hold under certain nonsingular
transformation on the vector of approximating functions, i.e., BP (·), where B is some non-singular constant
matrix. Since the nonparametric series estimator is invariant to any nonsingular transformation of P (·), we do not
distinguish between BP (·) and P (·) throughout this paper for notational convenience.
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1)tr((H−1
F0,k

DF0,k)2) for this example.

Assumption C.2 There exist constants b ≥ 4 and C2 > 0 such that for any F0 ∈ F :

(i) EF0

[∣∣ω−1
F0,∗(u

2
1 − u2

2 − EF0(u
2
1 − u2

2))
∣∣4] < C2 whenever ω2

F0,∗ > 0; and

(ii) EF0

[
|uj|b

∣∣Xj = xj
]
≤ C2 for all xj ∈ Xj for j = 1, 2.

Assumption C.3 For any F0 ∈ F0, we have F0 ∈ F and EF0 [u2
1 − u2

2] = 0.

Let ξk = ξk1 + ξk2 . Assumption C.4 imposes conditions on the numbers of series terms in the

finite-dimensional approximation, and on the divergence of nσ2
Fn,n

.

Assumption C.4 For any sequence of DGP’s {Fn}n≥1 such that Fn ∈ F , we have, for the con-

stant b in Assumption C.2 and the constants r1, r2 in Assumption C.1,

(i) (n1/2σFn,n)−1
(
1 + |k| (ξk log(n))1/2n−(1/2−1/b)

)
= o(1);

(ii) maxj=1,2(nσ2
Fn,n

)−1kj(ξk log(n))1/2
(
k

1/2
j n−1/2 + n−(1/2−1/b)

)
= o(1);

(iii) ξk log(n)n−(1−2/b) = o(1);

(iv) maxj=1,2

(
nk
−2rj
j + ξkjkj log(n)n−1

)
= O(1).

The following theorem summarizes the main results in this section.

Theorem C.1 Assumptions C.1-C.4 together imply Assumptions 4.1-4.4 in the main paper.

This theorem is an immediate consequence of the following Lemmas C.1-C.3 below. Each

lemma is proved immediately after it is stated.

Lemma C.1 Under Assumptions C.1 and C.2, Assumption 4.1 in the main paper holds with

C = max{8C2, 2C1C2}.

Proof of Lemma C.1. Assumption 4.1(a) is implied by Assumption C.1(i). Assumption

4.1(b) holds because EF0 [`(Z;α(βk))] is a quadratic function of βk for any F0. Assumption 4.1(c)

holds by the first order condition of α∗k. For Assumption 4.1(d), first note that

EF0

[
`(Z;α∗F0

)2
]

= EF0

[
(u2

2 − u2
1)2
]
/4 ≤ EF0

[
u4

1

]
/2 + EF0

[
u4

2

]
/2 ≤ C2 (C.1)

where the second inequality is by Assumption C.2(ii) with C2 specified in that assumption. Since

ukj = uj + α∗j (xj)− α∗kj(xj), by Assumptions C.2(ii) and C.1(ii),

EF0

[
u4
kj

∣∣∣Xj = xj

]
≤ 8EF0

[
u4
j

∣∣Xj = xj
]

+ 8
∣∣∣α∗j (xj)− α∗kj(xj)∣∣∣4

≤ 8C2 + 8C4
1k
−4rj
j ≤ C (C.2)
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for j = 1, 2 and uniformly over xj ∈ Xj. Moreover,

EF0

[
‖`α,k(Z;α∗k)‖4] ≤ 2

∑
j=1,2

EF0

[
u4
kj

∣∣Pkj (Xj)
′ Pkj (Xj)

∣∣2]
≤ C

∑
j=1,2

ξkj tr(−HF0,kj) ≤ C
∑
j=1,2

ξkjkj = Cξk |k| , (C.3)

where the second inequality is by (C.2) and Assumption C.1(iii), and the third inequality is by

Assumption C.1(iv). Hence Assumption 4.1(d) is also satisfied. Assumption 4.1(e) holds by

Assumption C.2(i). For Assumption 4.1(f), the first part of it holds by Assumption C.1(iv) and

equation (5.7). To show the second part, first note that, under Assumptions C.1(iv) and (C.2),

ρmax

(
EF0

[
u2
kj
Pkj(Xj)P

′
kj

(Xj)
])
≤ Cρmax(−HF0,kj) ≤ CC1 for j = 1, 2, (C.4)

which together with the form of DF0,k in (5.6) and the Aronszajn’s Inequality (see, e.g., Theorem

III.2.9 in Bhatia (1997)) implies that ρmax(DF0,k) ≤ 2CC1 ≤ C. This verifies Assumption 4.1(f).

Lemma C.2 Under Assumptions C.1, C.2, C.4(i) and C.4(iv), Assumption 4.3 of the main paper

holds.

Lemma C.3 Under Assumptions C.1, C.2 and C.4, Assumption 4.4 of the main paper holds.

The proof of Lemmas C.2 and C.3 makes use of the following three lemmas. The first one of

which follows from Lemma 6.2 of Belloni et al. (2015), and the other two are proved at the end of

this section.

In the rest of this section, we use the new notation Uj,n = [uj,1, . . . , uj,n]′ for j = 1, 2. Let

β∗kj ,Fn be abbreviated as β∗kj . Let α∗kj(·) = Pkj(·)′β∗kj .

Lemma C.4 Suppose that Assumptions C.1(i), (iii) and (iv) holds. Then under any sequence

{Fn}n≥1 such that Fn ∈ F for all n∥∥∥n−1P′kj ,nPkj ,n − EFn [Pkj(Xj)Pkj(Xj)
′]
∥∥∥2

= Op(ξkj log(kj)n
−1). (C.5)

Using Lemma C.4, Assumptions C.1(iv) and C.4(iv), we have

C−1
1 /2 ≤ ρmin(n−1P′kj ,nPkj ,n) ≤ ρmax(n−1P′kj ,nPkj ,n) ≤ 2C1 (C.6)

for j = 1, 2 with probability approaching 1.
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Lemma C.5 Suppose that Assumptions C.1, C.2, C.4(ii) and C.4(iv) hold. Then under any

sequence {Fn}n≥1 such that Fn ∈ F for all n and for j = 1, 2, we have

(a) ‖β̂kj − β
∗
kj
‖2 = Op(kjn

−1), and

(b) γ′n(β̂kj − β
∗
kj

) = Op(n
−1/2‖γn‖) for any deterministic kj × 1 vector sequence {γn}n≥1

(c) (β̂k − β∗k)′DFn,k(β̂k − β∗k) = `α,n(α∗k)′(H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,n(α∗k) + op(σ
2
Fn,n

).

Lemma C.6 Suppose that Assumptions C.1, C.2 and C.4(iv) hold. Then under any sequence

{Fn}n≥1 such that Fn ∈ F for all n, we have

(a) for j = 1, 2, n−1
∑n

i=1

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣2 = Op(kjn

−1), and

(b) for δn,k = (k1

√
ξk1 + k2

√
ξk2)
√

log(n)n−2/3 + (k−r11 + k−r22 )n−1/2 + k−2r1
1 + k−2r2

2 ,

¯̀
n(α̂k) = (2n)−1

n∑
i=1

(
u2

1,i − u2
2,i

)
−

¯̀
α,n(α∗k)′H−1

Fn,k
¯̀
α,n(α∗k)

2
+Op(δn,k).

Now we present the proofs of the lemmas above.

Proof of Lemma C.2. First we verify Assumption 4.3(a), which is a quadratic expansion of
¯̀
n(α̂k). In Lemma C.6(b), we have derived the second order expansion where the remainder term

is of the order

δn,k = (k1

√
ξk1 + k2

√
ξk2)(log(n))1/2n−3/2 + (k−r11 + k−r22 )n−1/2 + k−2r1

1 + k−2r2
2 . (C.7)

Observe that

n
1
2 δn,k
σFn,n

≤ 2 max
j=1,2

[
kj(ξkj log(n))1/2

nσFn,n
+

1

k
rj
j σFn,n

(1 + k
−rj
j n1/2)

]

=
1

n1/2σFn,n
max
j=1,2

[
kj(ξkj log(n))1/2

n1/2
+ (n1/2k

−rj
j + nk

−2rj
j )

]
= o(1), (C.8)

where the last equality holds by Assumptions C.4(i) and (iv). This combined with Lemma C.6(b)

implies Assumption 4.3(a).

Assumption 4.3(b) is directly implied by Assumptions C.4(i).

Proof of Lemma C.3. We start with Assumption 4.4(a). First, Lemma C.4 implies that

‖Ĥn −HFn,k‖2 = Op(ξk log(n)n−1), where ξk = ξk1 + ξk2 . Then for δn in Assumption 4.4(a), the

first part of Assumption 4.4(a) follows the derivation: for j = 1, 2

ξkj ln(n)n−1

δ2
n

= max

{
ξkj log(n)|k|2

n2σ2
Fn,n

,
ξkj log(n)

n

}
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= max

{
1

nσ2
Fn,n

ξkj |k|2 log(n)

n
,
ξkj log(n)

n

}
= o(1), (C.9)

where the last equality holds by Assumptions C.4(i) and (iii).

For the second and the third parts of Assumption 4.4(a), note that by arguments similar to

those in the proof of Theorem 4.6 in Belloni et al. (2015), we have

‖D̂n − D̂n(α∗k)‖2 = Op

(
ξk log(n)

n1−2/b

)
and ‖D̂n(α∗k)−DFn,k‖2 = Op

(
ξk log(n)

n1−2/b

)
. (C.10)

The second and the third parts of Assumption 4.4(a) follows from the derivation:

ξk log(n)

n1−2/bδ2
n

= max

{
1

nσ2
Fn,n

ξk|k|2 log(n)

n1−2/b
,
ξk log(n)

n1−2/b

}
= o(1),

where the last equality holds by Assumption C.4(i) and (iii). Thus Assumption 4.4(a) is verified.

Next, we verify Assumption 4.4(b). By Lemma C.5(a) and Assumption C.1(iii), we have

sup
xj∈Xj

∣∣∣α̂kj(xj)− α∗kj(xj)∣∣∣2 = Op(ξkjkjn
−1). (C.11)

Using Assumption C.1(ii) and Lemma C.6(a) and (C.11), we get

n−1

n∑
i=1

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣4

≤
supxj∈Xj

∣∣∣α̂kj(xj)− α∗kj(xj)∣∣∣2∑n
i=1

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣2

n

= Op(ξkjkjn
−1)Op(kjn

−1)

= σ2
Fn,nOp

(
1

nσ2
Fn,n

ξkjk
2
j

n

)
= op(σ

2
Fn,n), (C.12)

where the last equality holds by Assumption C.4(i). Using Assumptions 4.1(f), C.4(iii) and (C.10),

we have

0 ≤ ρmax(D̂n(α∗k)) ≤ 2C and 0 ≤ ρmax(D̂n(α∗n)) ≤ 2C (C.13)

with probability approaching 1. By Lemma C.5(a) and (C.13), we have

n−1

n∑
i=1

u2
kj ,i

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣2 = Op(kjn

−1). (C.14)
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Using the Cauchy-Schwarz inequality, we get∣∣∣∣∣n−1

n∑
i=1

ukj ,i

[
α̂kj(Xj,i)− α∗kj(Xj,i)

]3

∣∣∣∣∣
2

≤ n−1

n∑
i=1

[
u2
kj ,i

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣2]

× n−1

n∑
i=1

[∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣4]

= Op(kjn
−1)Op(ξkjk

2
jn
−2) = Op(ξkjk

3
jn
−3) = op(σ

4
Fn,n) (C.15)

where the first equality is by the third line of (C.12) and by (C.14), the second equality is by the

last line of (C.12), and the last equality holds by Assumptions C.4(ii). Similarly, we can show that∣∣∣∣∣n−1

n∑
i=1

ukj ,i

[
α̂kj(Xj,i)− α∗kj(Xj,i)

] ∣∣∣α̂k−j(X−j,i)− α∗k−j(X−j,i)∣∣∣2
∣∣∣∣∣
2

= op(σ
4
Fn,n) (C.16)

for (j,−j) = (1, 2) or (2, 1). Also, by definition,

`(Z, α̂k)− `(Z, α∗k) =
∣∣α̂k2(X2)− α∗k2(X2)

∣∣2 /2− ∣∣α̂k1(X1)− α∗k1(X1)
∣∣2 /2

+ uk1
[
α̂k1(X1)− α∗k1(X1)

]
− uk2

[
α̂k2(X2)− α∗k2(X2)

]
. (C.17)

which together with (C.12), (C.15) and (C.16) implies that

n−1

n∑
i=1

|`(Z, α̂k)− `(Z, α∗k)|2

= n−1

n∑
i=1

∣∣uk1 [α̂k1(X1)− α∗k1(X1)
]
− uk2

[
α̂k2(X2)− α∗k2(X2)

]∣∣2 + op(σ
2
Fn,n). (C.18)

By (C.14),

n−1

n∑
i=1

∣∣uk1 [α̂k1(X1)− α∗k1(X1)
]
− uk2

[
α̂k2(X2)− α∗k2(X2)

]∣∣2 = Op((k1 + k2)n−1). (C.19)

Next note that

`(Z, α∗k)− `(Z, α∗n) =
u2

1 − u2
k1

2
−
u2

2 − u2
k2

2

=
(u1 − uk1)2

2
+ (u1 − uk1)uk1
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−(u2 − uk2)2

2
− (u2 − uk2)uk2 . (C.20)

By Assumption C.1(ii),

n−1

n∑
i=1

(uj,i − ukj ,i)4 = n−1

n∑
i=1

∣∣∣α∗kj(Xj,i)− α∗j,n(Xj,i)
∣∣∣4 = Op(k

−4rj
j ). (C.21)

By Assumption C.1(ii), (C.2) and the Markov inequality,

n−1

n∑
i=1

(uj,i − ukj ,i)2u2
kj ,i

= n−1

n∑
i=1

u2
kj ,i

∣∣∣α∗kj(Xj,i)− α∗j,n(Xj,i)
∣∣∣2 = Op(k

−2rj
j ). (C.22)

Combining the results in (C.20), (C.21) and (C.22), we get

n−1

n∑
i=1

|`(Z, α∗k)− `(Z, α∗n)|2 = Op(k
−2r1
1 + k−2r2

2 ). (C.23)

By Assumptions C.1(i), C.1(ii) and C.1(iv), (C.2) and (C.20)

EFn

∥∥∥∥∥n−1

n∑
i=1

[
(`(Z, α∗k)− `(Z, α∗n))Pkj(Xj)− EFn((`(Z, α∗k)− `(Z, α∗n))Pkj(Xj))

]∥∥∥∥∥
2


≤ n−2

n∑
i=1

EFn
[
(`(Z, α∗k)− `(Z, α∗n))2Pkj(Xj)

′Pkj(Xj)
]

≤ Cn−1(k−2r1
1 + k−2r2

2 )EFn
[
Pkj(Xj)

′Pkj(Xj)
]

= O((k−2r1
1 + k−2r2

2 )kjn
−1). (C.24)

By Assumptions C.1(ii) and C.1(iv), (C.2) and (C.20)

∥∥EFn [(`(Z, α∗k)− `(Z, α∗n))Pkj(Xj)
]∥∥2

= ρmax(EFn
[
Pkj(Xj)Pkj(Xj)

′])EFn [(`(Z, α∗k)− `(Z, α∗n))2
]
≤ C(k−2r1

1 + k−2r2
2 ). (C.25)

Using Lemma C.5(a)-(b), (C.24), (C.25), the Markov inequality, the Cauchy-Schwarz inequality

and the triangle inequality, we get∣∣∣∣∣n−1

n∑
i=1

(`(Z, α̂k)− `(Z, α∗k))(`(Z, α∗k)− `(Z, α∗n))

∣∣∣∣∣
=

∣∣∣∣∣n−1

n∑
i=1

(`(Z, α∗k)− `(Z, α∗n))Pkj(Xj)
′(β̂k − β∗k)

∣∣∣∣∣
30



≤
∣∣∣EFn [(`(Z, α∗k)− `(Z, α∗n))Pkj(Xj)

′] (β̂k − β∗k)
∣∣∣+O((k−r11 + k−r22 )|k|n−1)

= Op(
∥∥EFn [(`(Z, α∗k)− `(Z, α∗n))Pkj(Xj)

]∥∥n−1/2) +O((k−r11 + k−r22 )|k|n−1)

= Op((k
−r1
1 + k−r22 )(n−1/2 + |k|n−1)) = op(σ

2
Fn,n) (C.26)

where the last equality is by Assumptions C.4(i) and C.4(iv). By Assumption C.4, (C.18), (C.23)

and (C.24),

n−1

n∑
i=1

|`(Z, α̂k)− `(Z, α∗n)|2

= n−1

n∑
i=1

∣∣uk1 [α̂k1(X1)− α∗k1(X1)
]
− uk2

[
α̂k2(X2)− α∗k2(X2)

]∣∣2 + op(σ
2
Fn,n)

= (β̂k − β∗k)′D̂n(α∗k)(β̂k − β∗k) + op(σ
2
Fn,n). (C.27)

By the Cauchy-Schwarz inequality,∣∣∣(β̂k − β∗k)′(D̂n(α∗k)−DFn,k)(β̂k − β∗k)
∣∣∣

≤
∥∥∥β̂k,n − β∗k,n

∥∥∥2 ∥∥∥D̂n(α∗k)−DFn,k

∥∥∥
= Op

(
(ξk log(n))

1
2

n1/2−1/b

)
Op((k1 + k2)n−1) = op(σ

2
Fn,n) (C.28)

where the first equality holds by (C.10) and Lemma C.5(a), and the second equality holds by

Assumptions C.4(ii). Combining (C.27) with (C.28), we have

1

n

n∑
i=1

|`(Zi, α̂n)− `(Zi, α∗n)|2 = (β̂k − β∗k)′DFn,k(β̂k − β∗k) + op(σ
2
Fn,n), (C.29)

which together with Lemma C.5(c) implies that

1

n

n∑
i=1

|`(Zi, α̂k)− `(Zi, α∗n)|2 = ¯̀
α,n(α∗k)′H−1

Fn,k
DFn,kH

−1
Fn,k

¯̀
α,n(α∗k) + op(σ

2
Fn,n). (C.30)

This verifies Assumption 4.4(b).

We next verify Assumption 4.4(c). First, notice that by the Cauchy-Schwarz inequality,∣∣∣∣∣
∑n

i=1(`(Zi, α
∗
n)− `Fn(α∗n))(α̂kj(Xj,i)− α∗kj(Xj,i))

2

nσ2
Fn,n

∣∣∣∣∣
2
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≤
∑n

i=1(`(Zi, α
∗
n)− `Fn(α∗n))2

nσ2
Fn,n

∑n
i=1

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣4

nσ2
Fn,n

= op(1) (C.31)

where the equality holds by the Markov inequality, Assumption C.1(i), EFn [(`(Zi, α
∗
n)−`Fn(α∗n))2] ≤

σ2
Fn,n

, and (C.12). That together with (C.17) implies that∑n
i=1(`(Zi, α

∗
n)− `Fn(α∗n))(`(Zi, α̂k)− `(Zi, α∗k))

nσ2
Fn,n

=

∑n
i=1(`(Zi, α

∗
n)− `Fn(α∗n))`α,k(Zi, α

∗
k)′(β̂k − β∗k)

nσ2
Fn,n

+ op(1)

=
EFn [(`(Zi;α

∗
n)− `Fn(α∗n))`α,k(Zi;α

∗
k)′](β̂k − β∗k)

σ2
Fn,n

+∑n
i=1[(`(Zi;α

∗
n)− `Fn(α∗n))`α,k(Zi;α

∗
k)′ − EFn`(Zi;α∗n)`α,k(Zi;α

∗
k)′](β̂k − βk)

nσ2
Fn,n

+

op(1). (C.32)

Let γn = EFn [`(Z;α∗n)`α,k(Z;α∗k)]/σFn,n. Then

γ′nγn =
ω2
Fn,n

σ2
Fn,n

EFn

[
`(Z;α∗n)

ωFn,n
`α,k(Z;α∗k)′(D

1/2
Fn,k

)+

]
DFn,kEFn

[
(D

1/2
Fn,k

)+`α,k(Z;α∗k)
`(Z;α∗n)

ωFn,n

]
≤ CEFn

[
`(Z;α∗n)

ωFn,n
`α,k(Z;α∗k)′(D

1/2
Fn,k

)+

]
EFn

[
`(Z;α∗n)

ωFn,n
`α,k(Z;α∗k)(D

1/2
Fn,k

)+

]
≤ C, (C.33)

where the first inequality holds by Assumption 4.1(f) which has been verified in Lemma C.1, and

the second inequality holds by Lemma E.1. Equation (C.33) together with Lemma C.5(b) implies

that

EFn [`(Z;α∗n)`α,k(Z;α∗k)′](β̂k − βk)/σ2
Fn,n = Op(n

−1/2σ−1
Fn,n

)) = o(1). (C.34)

where the second equality holds by Assumption C.4(i). Now consider,

EFn
[
‖(`(Z, α∗n)− `Fn(α∗n))`α,k(Z, α∗k)‖2]

σ2
Fn,n

= EFn

[
(`(Z, α∗n)− `Fn(α∗n))2

σ2
Fn,n

∑
j=1,2

u2
kj
Pkj(Xj)

′Pkj(Xj)

]
. (C.35)
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Using the Hölder inequality, Assumptions C.1(iii)-(iv) and (C.2), we get

EFn

[
(`(Z, α∗n)− `Fn(α∗n))2

σ2
Fn,n

u2
kj
Pkj(Xj)

′Pkj(Xj)

]

≤
∣∣EFn [|(`(Z, α∗n)− `Fn(α∗n))/σFn,n|

4]∣∣ 12 ∣∣∣∣EFn [∣∣∣u2
kj
Pkj(Xj)

′Pkj(Xj)
∣∣∣2]∣∣∣∣ 12

≤ C
1
2
2

∣∣∣∣EFn [∣∣∣u2
kj
Pkj(Xj)

′Pkj(Xj)
∣∣∣2]∣∣∣∣ 12

≤ C2

∣∣ξkjEFn [Pkj(Xj)
′Pkj(Xj)

]∣∣ 12 = O(ξ
1
2
kj
k

1
2
j ), (C.36)

which together with the Markov inequality implies that

‖
∑n

i=1 [(`(Zi, α
∗
n)− `Fn(α∗n))`α,k(Zi, α

∗
k)− EFn [`(Zi, α

∗
n)`α,k(Zi, α

∗
k)]] ‖

n1/2σFn,n
= Op

(∑
j=1,2

ξ
1
4
kj
k

1
4
j

)
.

(C.37)

Then we have∣∣∣∑n
i=1[(`(Zi;α

∗
n)− `Fn(α∗n))`α,k(Zi;α

∗
k)− EFn [`(Zi;α

∗
n)`α,k(Zi;α

∗
k)]]′(β̂k − βk)

∣∣∣
nσ2

Fn,n

≤ Op

(∑
j=1,2

ξ
1
4
kj
k

1
4
j

)
‖β̂k − βk‖
n1/2σFn,n

= Op

(∑
j=1,2

ξ
1
4
kj
k

1
4
j

)
Op(|k|1/2σ−1

Fn,n
n−1)

= Op

(
1

n1/2σFn,n

)
Op

∑j=1,2 ξ
1
4
kj
|k| 34

n1/2

 = op(1), (C.38)

where the first inequality holds by the Cauchy-Schwarz inequality and (C.37), the first equality

holds by Lemma C.5(a), the second equality holds by arranging terms and the last equality holds

by Assumptions C.4(i). By (C.32), (C.34) and (C.38),∑n
i=1(`(Zi, α

∗
n)− `Fn(α∗n))(`(Zi, α̂k)− `(Zi, α∗k))

nσ2
Fn,n

= op(1). (C.39)

By the Cauchy-Schwarz inequality,

|
∑n

i=1(`(Zi, α
∗
n)− `Fn(α∗n))(`(Zi, α

∗
k)− `(Zi, α∗n))|2

n2σ4
Fn,n
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≤ n−1

n∑
i=1

(`(Zi, α
∗
n)− `Fn(α∗n))2

σ2
Fn,n

× n−1

n∑
i=1

(`(Zi, α
∗
k)− `(Zi, α∗n))2

σ2
Fn,n

= Op((k
−2r1
1 + k−2r2

2 )σ−2
Fn,n

) = op(1) (C.40)

where the equality is by (C.23), Assumptions C.2(i) and C.4(iv), and the Markov inequality.

Assumption 4.4(c) is implied by (C.39) and (C.40).

Assumption 4.4(d) is implied by Assumption C.4(iv).

Proof of Lemma C.5. Proof of the result in part (a) is standard and follows the similar

arguments in Newey (1997). We include it for completeness. By the definition of β̂kj

β̂kj − β
∗
kj

= (P′kj ,nPkj ,n)−1P′kj ,nUkj ,n (C.41)

where Ukj ,n =
[
ukj ,1, . . . , ukj ,n

]′
. Therefore

‖β̂kj − β
∗
kj
‖2 = U′kj ,nPkj ,n(P′kj ,nPkj ,n)−2P′kj ,nUkj ,n

≤ (ρmin(n−1P′kj ,nPkj ,n))−2n−2U′kj ,nPkj ,nP
′
kj ,n

Ukj ,n (C.42)

By Assumptions C.1(i) and (C.2),

EFn

 kj∑
l=1

(
n∑
i=1

pj,l(Xj,i)ukj ,i

)2
 =

kj∑
l=1

n∑
i=1

EFn [(pj,l(Xj,i)ukj ,i)
2] ≤ nCtr(−HF0,kj), (C.43)

which together with the Markov inequality and Assumptions C.1(iv) implies that

n−2U′kj ,nPkj ,nP
′
kj ,n

Ukj ,n = Op(kjn
−1). (C.44)

The result in part (a) follows by (C.6), (C.42) and (C.44).

For part (b), first observe that

γ′n(β̂kj − β
∗
kj

) = γ′n(P′kj ,nPkj ,n)−1P′kj ,nUkj ,n

= n−1γ′n(−HFn,kj)
−1P′kj ,nUkj ,n

+n−1γ′n((n−1P′kj ,nPkj ,n)−1 − (−HFn,kj)
−1)P′kj ,nUkj ,n. (C.45)

By the first order condition of α∗kj ,

EFn
[
ukjPkj(Xj)

]
= 0kj×1. (C.46)
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By the definition of HFn,kj , (C.46), Assumptions C.1(i) and C.1(iv), and (C.2)

EFn

[∣∣∣γ′n(−HFn,kj)
−1P′kj ,nUkj ,n

∣∣∣2] = EFn

∣∣∣∣∣
n∑
i=1

γ′n(−HFn,kj)
−1Pkj(Xj,i)ukj ,i

∣∣∣∣∣
2


=
n∑
i=1

EFn

[∣∣γ′n(−HFn,kj)
−1Pkj(Xj,i)ukj ,i

∣∣2]
≤ nCEFn

[∣∣γ′n(−HFn,kj)
−1Pkj(Xj,i)

∣∣2]
= nCγ′n(−HFn,kj)

−1γn = O(n‖γn‖2), (C.47)

which together with the Markov inequality implies that

n−1γ′n(−HFn,kj)
−1P′kj ,nUkj ,n = Op(n

−1/2‖γn‖). (C.48)

By the Cauchy-Schwarz inequality,∣∣∣n−1γ′n((n−1P′kj ,nPkj ,n)−1 − (−HFn,kj)
−1)P′kj ,nUkj ,n

∣∣∣
≤

‖γn‖
∥∥∥n−1P′kj ,nPkj ,n +HFn,kj

∥∥∥
(ρmin(n−1P′kj ,nPkj ,n))1/2ρmin(−HFn,kj)

(U′kj ,nPkj ,n(P′kj ,nPkj ,n)−1P′kj ,nUkj ,n)1/2

n1/2

= Op((ξkjkj log(kj))
1/2n−1‖γn‖) = Op(n

−1/2‖γn‖), (C.49)

where the first equality is by Assumption C.1(iv), (C.5), (C.6) and (C.44), the last equality is by

Assumption C.4(iv). Combining the results in (C.45), (C.48) and (C.49), we prove the result in

part (b).

For part (c), by the definitions of β̂k and β∗k, we have

β̂k − β∗k = −(Ĥn)−1`α,n(α∗k). (C.50)

Hence, we can write

(β̂k − β∗k)′DFn,k(β̂k − β∗k) = `α,n(α∗n)′((Ĥn)−1DFn,k(Ĥn)−1)`α,n(α∗n) (C.51)

Using (C.44) and the Markov inequality, we get

`α,n(α∗k)′`α,n(α∗k) =
∑
j=1,2

n−2U′kj ,nPkj ,nP
′
kj ,n

Ukj ,n = Op((k1 + k2)n−1). (C.52)
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Note that

`α,n(α∗k)′((Ĥn)−1DFn,k(Ĥn)−1 −H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,n(α∗k)

= `α,n(α∗k)′(Ĥn)−1(HFn,k − Ĥn)H−1
Fn,k

DFn,k(Ĥn)−1`α,n(α∗k)

+ `α,n(α∗k)′H−1
Fn,k

DFn,k(Ĥn)−1(HFn,k − Ĥn)H−1
Fn,k

`α,n(α∗k). (C.53)

By the Cauchy-Schwarz inequality,∣∣∣`α,n(α∗k)′(Ĥn)−1(HFn,k − Ĥn,k)H−1
Fn,k

DFn,k(Ĥn)−1`α,n(α∗k)
∣∣∣

≤ |`α,n(α∗k)′(Ĥn)−2`α,n(α∗k)|1/2 × ||HFn,k − Ĥn||×

|`α,n(α∗k)′(Ĥn)−1DFn,kH
−2
Fn,k

DFn,k(Ĥn)−1`α,n(α∗k)|1/2

≤ ρmax(DFn,k)ρ1/2
max(H−2

Fn,k
)ρmax((Ĥn)−2)

∣∣`α,n(α∗n)′`α,n(α∗n)
∣∣× ||HFn,k − Ĥn||

= Op((k1 + k2)n−1)Op((ξk log(n)n−1)1/2) = op(σ
2
Fn,n) (C.54)

where the first equality is by Assumption 4.1(f) (which has been verified in Lemma C.1), Lemma

C.4, (C.6) and (C.52), the last equality is by Assumptions C.4(i). Similarly, we can show that∣∣∣`α,n(α∗k)′H−1
Fn,k

DFn,k(Ĥn)−1(HFn,k − Ĥn)H−1
Fn,k

`α,n(α∗k)
∣∣∣ = op(σ

2
Fn,n) (C.55)

which together with (C.53) and (C.55) implies that

`α,n(α∗k)′((Ĥn)−1DFn,k(Ĥn)−1 −H−1
Fn,k

DFn,kH
−1
Fn,k

)`α,n(α∗k) = op(σ
2
Fn,n). (C.56)

Then part(c) is proved by collecting the results in (C.51) and (C.56).

Proof of Lemma C.6. Proof of the results in part (a) and part (b) is standard and follows the

similar arguments in Newey (1997). We include it for completeness. Let Ukj ,n = [ukj ,1, . . . , ukj ,n]′.

By the definition of α̂kj and α∗kj ,

α̂kj(Xj,i)− α∗kj(Xj,i) = Pkj(Xj,i)
′(β̂kj − β

∗
kj

) (C.57)

which implies that

n−1

n∑
i=1

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣2

= (β̂kj − β
∗
kj

)′(n−1P′kj ,nPkj ,n)(β̂kj − β
∗
kj

)

≤ ρmax(n−1P′kj ,nPkj ,n)
∥∥∥β̂kj − β∗kj∥∥∥2

= Op(kjn
−1) (C.58)
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where the second equality is by Assumption C.1(iv), (C.6) and Lemma C.5(a). This shows part

(a).

Now we show part (b). By (C.41) and (C.57),

n−1

n∑
i=1

[∣∣Yi − α̂kj(Xj,i)
∣∣2] = n−1

n∑
i=1

[∣∣∣ukj ,i − (α̂kj(Xj,i)− α∗kj(Xj,i))
∣∣∣2]

= n−1

n∑
i=1

u2
kj ,i

+ n−1

n∑
i=1

∣∣∣α̂kj(Xj,i)− α∗kj(Xj,i)
∣∣∣2

−2n−1

n∑
i=1

(α̂kj(Xj,i)− α∗kj(Xj,i))ukj ,i

= n−1

n∑
i=1

u2
kj ,i
− n−1U′kj ,nPkj ,n(P′kj ,nPkj ,n)−1P′kj ,nUkj ,n.(C.59)

Since ukj ,i − ui = α∗j (Xj,i)− α∗kj(Xj,i),

n−1

n∑
i=1

u2
kj ,i
− n−1

n∑
i=1

u2
i

= n−1

n∑
i=1

(ukj ,i − ui)2 − 2n−1

n∑
i=1

(ukj ,i − ui)ui

= n−1

n∑
i=1

(α∗kj(Xj,i)− α∗j (Xj,i))
2 + 2n−1

n∑
i=1

(α∗kj(Xj,i)− α∗j (Xj,i))ui. (C.60)

The pseudo-true value of the parameter can be written as the limit of a sequence of sieve approxi-

mation: α∗j (xj) =
∑∞

l=1 pj,l(xj)β
∗
j,l, where (β∗j,l)

∞
`=1 = arg min

βj,l∈R,∀l
EFn

[
|Y −

∑∞
l=1 pj,l(Xj)βj,l|2

]
. By the

definition of uj and the first order optimality condition of (β∗j,l)
∞
`=1,

EFn [ujpj,l(Xj)] = 0 (C.61)

for j = 1, 2 and for any ` = 1, 2, . . ., which implies that EFn [ujα
∗
j (Xj)] = 0 and EFn [ujα

∗
kj

(Xj)] = 0

for j = 1, 2. Therefore

EFn

∣∣∣∣∣n−1

n∑
i=1

(α∗kj(Xj,i)− α∗j (Xj,i))ui

∣∣∣∣∣
2


= n−2

n∑
i=1

EFn

[
(α∗kj(Xj,i)− α∗j (Xj,i))

2u2
i

]
= O(n−1k

−2rj
j ), (C.62)
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where the first equality is by Assumption C.1(i), the second equality is by Assumptions C.1(ii)

and C.2(ii). Combining the results in (C.59), (C.60), (C.62) and applying Assumption C.1(ii) and

the Markov inequality, we deduce that

1

2

n∑
i=1

[∣∣Yi − α̂kj(Xj,i)
∣∣2 − ∣∣Yi − α∗j (Xj,i)

∣∣2]
= −1

2
U′kj ,nPkj ,n(P′kj ,nPkj ,n)−1P′kj ,nUkj ,n +Op(k

−rj
j n1/2) +O(nk

−2rj
j ). (C.63)

By (C.6) and (C.44).

U′kj ,nPkj ,n(P′kj ,nPkj ,n)−2P′kj ,nUkj ,n

≤ ρmax((n−1P′kj ,nPkj ,n)−2)n−2U′kj ,nPkj ,nP
′
kj ,n

Ukj ,n = Op(kjn
−1) (C.64)

and similarly

n−1U′kj ,nPkj ,nH
−2
Fn,kj

P′kj ,nUkj ,n = Op(kj). (C.65)

Using the Cauchy-Schwarz inequality, Lemma C.4, (C.64) and (C.65), we have∣∣∣∣∣U′kj ,nPkj ,n(P′kj ,nPkj ,n)−1P′kj ,nUkj ,n

n
−

U′kj ,nPkj ,n(−HFn,kj)
−1P′kj ,nUkj ,n

n2

∣∣∣∣∣
2

=

∣∣∣∣∣U′kj ,nPkj ,n(P′kj ,nPkj ,n)−1(n−1P′kj ,nPkj ,n +HFn,kj)(−HFn,kj)
−1P′kj ,nUkj ,n

n

∣∣∣∣∣
2

≤
∥∥∥n−1P′kj ,nPkj ,n +HFn,kj

∥∥∥2

× (U′kj ,nPkj ,n(P′kj ,nPkj ,n)−2P′kj ,nUkj ,n)×

U′kj ,nPkj ,nH
−2
Fn,kj

P′kj ,nUkj ,n

n2
= Op(log(kj)ξkjk

2
jn
−3). (C.66)

That together with (C.63) implies that

1

2n

n∑
i=1

[∣∣Yi − α̂kj(Xj,i)
∣∣2 − ∣∣Yi − α∗j (Xj,i)

∣∣2]
= −

U′kj ,nPkj ,n(−HFn,kj)
−1P′kj ,nUkj ,n

2n2
+Op((log(kj)ξkj)

1/2kjn
−3/2 + k

−rj
j n−1/2 + k

−2rj
j ). (C.67)

Now observe that ¯̀
n(α̂k,n) can be decomposed as

¯̀
n(α̂k,n) =

1

2n

n∑
i=1

[
|Yi − α∗1(X1,i)|2 − |Yi − α∗2(X2,i)|2

]
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+
1

2n

n∑
i=1

[
|Yi − α̂k1(X1,i)|2 − |Yi − α∗1(X1,i)|2

]
− 1

2n

n∑
i=1

[
|Yi − α̂k2(X2,i)|2 − |Yi − α∗2(X2,i)|2

]
(C.68)

which combined with (C.67) proves the lemma.

D Example II: Nonparametric Quantile-Regression

In this section, we illustrate the use of our test for comparing two nonparametric quantile regression

models based on the expected check function criterion.

For j = 1, 2, consider the model

Y = α∗j (Xj) + uj, EF0 [I{uj ≤ 0}|Xj] = τ, (D.1)

where τ ∈ (0, 1), uj is a unobservable error term, α∗j (x) is a unknown function and F0 denotes the

joint distribution of Z ≡ (Y,X1, X2). The regressors X1 and X2 in two equations may be nested,

over-lapped or strictly non-nested. Note that even when the regressors are strictly non-nested in

the intuitive sense (i.e., X1 and X2 do not contain any common variable), models represented by

the two equations in general are still overlapping according to the definitions in Section 2.2 of the

main paper because it may be possible that α∗1(X1) = α∗2(X2) = Constant.

Suppose that the unknown function α∗j (·) of model j belongs to the set Aj. We use the

finite-dimensional approximations:

Aj,kj = {αkj (·) : αkj (·) = αj(βkj) = Pkj (·)′ βkj : βkj ∈ Rkj} (D.2)

where Pkj (·) =
[
pj,1 (·) , . . . , pj,kj (·)

]′
is a (kj-dimensional) vector of basis functions. Let ρτ (u) =

(I{u ≤ 0} − τ)u. Define

β∗kj ,F0
= arg min

βkj∈R
kj

EF0

[
ρτ (Y − Pkj(Xj)

′βkj)
]

for j = 1, 2. (D.3)

We use β∗kj to denote the counterpart of β∗kj ,F0
, when the expectation in (D.3) is taken with respect

to any DGP F ∈ F . We suppress the dependence of β∗kj on F for notational convenience. The

approximate M-estimator in this example is defined as

β̂kj = arg max
βkj∈R

kj

n−1

n∑
i=1

ρτ (Yi − Pkj(Xj,i)
′βkj) for j = 1, 2. (D.4)
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In this example, the pseudo-density ratio function is

`(Z;α) = ρτ (Y − α1(X1))− ρτ (Y − α2(X2)). (D.5)

The score function `α,k(Z;α) in this example is

`α,k(Z;α) =

(
(τ − I{Y ≤ α1(X1)})Pk1 (X1)

(I{Y ≤ α2(X2)} − τ)Pk2 (X2)

)
, (D.6)

which combined with the formula in (3.11) defines

DF0,k = EF0

[
u2
k1
Pk1(X1)Pk1(X1)′ −uk1uk2Pk1(X1)Pk2(X2)′

−uk1uk2Pk2(X2)Pk1(X1)′ u2
k2
Pk2(X2)Pk2(X2)′

]
, (D.7)

where ukj = I{Y ≤ α∗kj(Xj)} − τ . The Hessian matrix HF0,kj is

HF0,kj = −EF0

[
fuj(∆(α∗kj)|Xj)Pkj (Xj)Pkj (Xj)

′
]

for j = 1, 2 (D.8)

where ∆(αj) = αj(Xj)− α∗j (Xj) and fuj( ·|Xj) denotes the conditional density of uj given Xj. In

this example, HF0,k can be constructed using (3.10) and (D.8).

We next provide the sufficient conditions for Theorem 4.1 in this example.

Assumption D.1 For any F0 ∈ F and for j = 1, 2: (i) fuj (uj|xj) < C uniformly in uj and

xj; (ii) ∂fuj (uj|xj) /∂uj < C uniformly in uj and xj; (iii) fuj(0|xj) > C−1 uniformly in xj;

(iv) ξkjkj(log(n))2n−1 + k
−rj
j log(n) = o(1); (v) EF0 [ρτ (u1)− ρτ (u2)] = 0 when F0 ∈ F0; (vi)

EF0 [u
2
j ] < C for j = 1, 2; (vii) there exists a δ > 0 such that E

[∣∣ω−1
F0,∗(ρτ (u1)− ρτ (u2))

∣∣2+δ
]
< C

whenever ω2
F0,∗ > 0.

Let δ0,j,n = (kj log(n)n−1)1/2, δ1,j,n = δ0,j,n + k
−rj
j and δ2,j,n = δ0,j,nξ

1/2
kj

+ k
−rj
j .

Theorem D.1 Suppose that Assumptions C.1 and D.1 hold, where β∗kj ,F0
in Assumption C.1(ii)

is defined in (D.3). If for any sequence of DGP’s {Fn}n≥1 such that Fn ∈ F0, we also have

1

nσ2
Fn,n

+ max
j=1,2

{
δ1,j,n(kjδ2,j,n log(n))1/2

σFn,n
+

1 + k
−rj
j n1/2

k
rj
j σFn,n

}
= o(1), (D.9)

then under Fn for all n,

n¯̀
n(α̂k) + (1/2)tr(D̂n(α∗k)H−1

Fn,k
)√

nω2
F0,∗ + n−1

2n
ω2
Fn,U,k

→d N(0, 1), (D.10)
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where D̂n(α∗k) = n−1
∑n

i=1 Pu,k(Xi)Pu,k(Xi)
′ and Pu,k(Xi)

′ = [uk1Pk1(X1,i)
′, uk2Pk2(X2,i)

′].

To prove Theorem D.1, we need to derive some useful lemmas. For this purpose, we introduce

some notations and preliminary results in the literature.

Under Assumptions C.1 and D.1, we can invoke Theorem 1 in Belloni et al. (2011) to get∥∥∥β̂kj − β∗kj∥∥∥ = Op

(
k

1/2
j n−1/2

)
for j = 1, 2. (D.11)

Let Nj,n =
{
βkj ∈ Rkj :

∥∥∥βkj − β∗kj∥∥∥ ≤ Cδ0,j,n

}
where C is some fixed and large constant. Then

we have β̂kj ∈ Nj,n with probability approaching 1. Using (D.11), Assumptions C.1(ii) and (iv),

we have

sup
βkj∈Nj,n

EF0

[∣∣∣P ′kj(Xj)βkj − α∗j (Xj)
∣∣∣2] ≤ C

[
sup

βkj∈Nj,n

∥∥∥βkj − β∗kj∥∥∥2

+ k
−2rj
j

]
= O(δ2

1,j,n) (D.12)

for any F0 ∈ F . Moreover, using (D.11), Assumptions C.1(ii), (iii) and (iv), we get

sup
βkj∈Nj,n

∣∣∣P ′kj(xj)βkj − α∗j (xj)∣∣∣ ≤ sup
βkj∈Nj,n

[∥∥∥βkj − β∗kj∥∥∥ ξ1/2
kj

]
+ Ck

−rj
j = O(δ2,j,n) (D.13)

uniformly over xj.

For ease of notations, we define ∆i(αj) = αj(Xj,i)−α∗j (Xj,i) and ∆(αj) = αj(Xj)−α∗j (Xj) for

j = 1, 2. Then by definition,

ρτ (Y − αj(Xj)) = (I{uj ≤ ∆(αj)} − τ) (uj −∆(αj))

= (I{uj ≤ 0} − τ)uj − (I{uj ≤ 0} − τ) ∆(αj)

− (I{uj ≤ 0} − I{uj ≤ ∆(αj)}) (uj −∆(αj)), (D.14)

which together with ρτ (Y − α∗j (Xj)) = (I{uj ≤ 0} − τ)u implies that

ρτ (Y − α∗j (Xj))− ρτ (Y − αj(Xj))− (I{uj ≤ 0} − τ) ∆(αj)

= (I{uj ≤ 0} − I{uj ≤ ∆(αj)}) (uj −∆(αj)). (D.15)

The above expression is useful to derive the expansion of the QLR statistic.

Let µn [g(Z)] = n−1
∑n

i=1 [g(Zi)− EF0 [g(Zi)]] denote the empirical process indexed by function

g.

41



Lemma D.1 Under Assumptions C.1 and D.1, we have

µn
[(
I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

)
uj
]

= Op

(
δ0,j,nδ1,j,nδ

1/2
2,j,n

)
. (D.16)

Proof of Lemma D.1. Define F1,j,n =
{(
I{uj ≤ ∆(Pkj(Xj)

′βkj)} − I{uj ≤ 0}
)
uj : βkj ∈ Nj,n

}
for j = 1, 2. It is clear that the VC-dimension of F1,j,n is O(kj). By (D.13), we have

sup
βkj∈Nj,n

∣∣(I{uj ≤ ∆(Pkj(Xj)
′βkj)} − I{uj ≤ 0})uj

∣∣ ≤ sup
βkj∈Nj,n

∣∣∆(Pkj(Xj)
′βkj)

∣∣ ≤ Cδ2,j,n. (D.17)

By definition,

EFn

[∣∣(I{uj ≤ ∆(Pkj(Xj)
′βkj)} − I{uj ≤ 0})uj

∣∣2]
= EFn

[
I{0 ≤ uj ≤ ∆(Pkj(Xj)

′βkj)}u2
j

]
+ EFn

[
I{∆(Pkj(Xj)

′βkj) ≤ uj ≤ 0}u2
j

]
. (D.18)

Using Assumption D.1(i), we get

EFn
[
I{0 ≤ uj ≤ ∆(αj)}u2

j

∣∣Xj

]
≤

∣∣∣∣∣
∫ ∆(α)

0

u2fuj(u|Xj)du

∣∣∣∣∣ ≤ C |∆(αj)|3 (D.19)

which together with (D.12) and (D.13) implies that for any βkj ∈ Nj,n,

EFn
[
I{0 ≤ uj ≤ ∆(Pkj(Xj)

′βkj)}u2
j

]
≤ CEFn

[∣∣∆(Pkj(Xj)
′βkj)

∣∣3] ≤ CEFn
[
∆(Pkj(Xj)

′βkj)
2
]
δ2,j,n ≤ Cδ2

1,j,nδ2,j,n. (D.20)

Similarly, we have

EFn
[
I{∆(Pkj(Xj)

′βkj) ≤ uj ≤ 0}u2
j

]
≤ Cδ2

1,j,nδ2,j,n (D.21)

which together with (D.18) and (D.20) implies that

EFn

[∣∣(I{uj ≤ 0} − I{uj ≤ ∆(Pkj(Xj)
′βkj)})uj

∣∣2] ≤ Cδ2
1,j,nδ2,j,n. (D.22)

Combining the results in (D.17), (D.22) and the VC-dimension of F1,j,n is O(kj), we can invoke

Lemma 22.3 and Lemma 23 in Belloni et al. (2011) to show that

µn
[[
I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

]
uj
]

= Op(δ0,j,nδ1,j,nδ
1/2
2,j,n + δ2

0,j,nδ2,j,n). (D.23)

That together with δ2
0,j,nδ2,j,n ≤ δ0,j,nδ1,j,nδ

1/2
2,j,n = o(1) (which is implied by Assumption D.1(iv))

implies (D.16).
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Lemma D.2 Under Assumptions C.1 and D.1, we have

µn

[(
I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

)
∆(α∗kj)

]
= Op

(
δ0,j,nδ

1/2
1,j,nk

−rj
j

)
. (D.24)

Proof of Lemma D.2. For j = 1, 2, we define

F2,j,n =
{(
I{uj ≤ ∆(Pkj(Xj)

′βkj)} − I{uj ≤ 0}
)

∆(α∗kj) : βkj ∈ Nj,n
}
.

It is clear that the VC-dimension of F2,j,n is O(kj). By Assumption C.1(ii), we have

sup
βkj∈Nj,n

∣∣∣(I{uj ≤ ∆(Pkj(Xj)
′βkj)} − I{uj ≤ 0}

)
∆(α∗kj)

∣∣∣ ≤ Ck
−rj
j . (D.25)

Under Assumption D.1(i),

EFn
[
|I{uj ≤ ∆(αj)} − I{uj ≤ 0}|2

∣∣Xj

]
= EFn [I{0 ≤ uj ≤ ∆(αj)}|Xj] + EFn [I{∆(αj) ≤ uj ≤ 0}|Xj]

≤ 2

∣∣∣∣∣
∫ ∆(αj)

0

fuj(u|Xj)du

∣∣∣∣∣ ≤ C |∆(αj)| , (D.26)

which together with Assumption C.1(ii) and (D.12) implies that for any βkj ∈ Nj,n

EFn

[∣∣I{uj ≤ ∆(Pkj(Xj)
′βkj)} − I{uj ≤ 0}

∣∣2 ∆2(α∗kj ,n)
]
≤ Ck

−2rj
j δ1,j,n. (D.27)

Combining the results in (D.25), (D.27) and the VC-dimension of F2,j,n is O(kj), we can invoke

Lemma 22.3 and Lemma 23 in Belloni et al. (2011) to get

µn

[(
I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

)
∆(α∗kj)

]
= Op

(
δ0,j,nδ

1/2
1,j,nk

−rj
j + δ2

0,j,nk
−rj
j

)
. (D.28)

That together with δ0,j,n = o(1) (which is implied by Assumption D.1(iv)) implies (D.24).

Lemma D.3 Under Assumptions C.1 and D.1, we have

sup
λj∈Skj

µn
[(
I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

)
λ′jPkj(Xj)

]
= Op(δ0,j,nδ

1/2
2,j,n), (D.29)

where Skj = {λj ∈ Rkj : ‖λj‖ = 1}.

Proof of Lemma D.3. Using the same arguments in the proof of Lemma 33 in Belloni et al.
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(2011), we have

sup
λj∈Skj

µn

[
(I{uj ≤ ∆(α̂kj)} − I{uj ≤ ∆(α∗kj)})λ

′
jPkj(Xj)

]
= Op(δ

3/2
0,j,nξ

1/4
kj

+ δ2
0,j,nξ

1/2
kj

). (D.30)

As δ2
0,j,nξkj = o(1) by Assumption D.1(iv), we get

δ2
0,j,nξ

1/2
kj

/
(δ

3/2
0,j,nξ

1/4
kj

) = δ
1/2
0,j,nξ

1/4
kj

= o(1) (D.31)

which together with (D.30) implies that

sup
λj∈Skj

µn

[(
I{uj ≤ ∆(α̂kj)} − I{uj ≤ ∆(α∗kj)}

)
λ′jPkj(Xj)

]
= Op(δ

3/2
0,j,nξ

1/4
kj

). (D.32)

For j = 1, 2, we define

F3,j,n =
{

(I{uj ≤ ∆(α∗kj)} − I{uj ≤ 0})λ′jPkj(Xj) : λj ∈ Skj
}
.

It is clear that the VC-dimension of F3,j,n is O(kj). By Assumption C.1(iii), we have

sup
λj∈Skj

∣∣∣(I{uj ≤ ∆(α∗kj)} − I{uj ≤ 0})λ′jPkj(Xj)
∣∣∣ ≤ ξ

1/2
kj
. (D.33)

Under Assumptions C.1(ii), C.1(iv) and D.1(i),

EFn

[∣∣∣(I{uj ≤ ∆(α∗kj)} − I{uj ≤ 0})λ′jPkj(Xj)
∣∣∣2]

≤ EFn

[∣∣∣∣∣(λ′jPkj(Xj))
2

∫ ∆(α∗kj
)

0

fuj(u|Xj)du

∣∣∣∣∣
]
≤ Ck

−rj
j . (D.34)

Combining the results in (D.33), (D.34) and the VC-dimension of F3,j,n is O(kj), we can invoke

Lemma 22.3 and Lemma 23 in Belloni et al. (2011) to get

sup
λj∈Skj

µn

[
(I{uj ≤ ∆(α∗kj)} − I{uj ≤ 0})λ′jPkj(Xj)

]
= Op(δ0,j,nk

−rj/2
j + δ2

0,j,nξ
1/2
kj

), (D.35)

which together with (D.32) and δ2
0,j,nξ

1/2
kj

(δ
3/2
0,j,nξ

1/4
kj

)−1 = (δ0,j,nξ
1/2
kj

)1/2 = o(1) (which is implied by

Assumption D.1(iv) implies that

sup
λj∈Skj

µn
[(
I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

)
λ′jPkj(Xj)

]
= Op(δ

3/2
0,j,nξ

1/4
kj

+ δ0,j,nk
−rj/2
j ). (D.36)
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Since δ
3/2
0,j,nξ

1/4
kj

+ δ0,j,nk
−rj/2
j = O(δ0,j,nδ

1/2
2,j,n), (D.29) follows by (D.36).

Lemma D.4 Under Assumptions C.1 and D.1, we have

EZ,Fn

[
(I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0})[uj − (α̂kj − α∗kj)]

]
=

(β̂kj − β
∗
kj

)′HFn,kj(β̂kj − β
∗
kj

)

2

+Op(δ
2
1,j,nδ2,j,n + δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + k

−2rj
j + n−1/2k

−rj
j ), (D.37)

where EZ,Fn [·] denotes expectation taken on Z under the joint distribution Fn.

Proof of Lemma D.4. Let H∗Fn,kj = −EFn
[
fuj(0|Xj)Pkj(Xj)Pkj(Xj)

′]. By Assumptions

C.1(iv), D.1(i) and D.1(iii),

− C ≤ ρmin(H∗Fn,kj) ≤ ρmax(H∗Fn,kj) ≤ −C
−1 (D.38)

uniformly in n for j = 1, 2. By Assumptions C.1(ii), C.1(iv) and D.1(ii),∥∥∥EFn [(fuj(0|Xj)− fuj(∆(α∗kj)|Xj)
)
λ′Pkj(Xj)Pkj(Xj)

′
]∥∥∥2

≤ CEFn

[(
fuj(0|Xj)− fuj(∆(α∗kj)|Xj)

)2 ∣∣λ′Pkj(Xj)
∣∣2]

≤ CEFn

[
∆2(α∗kj)

∣∣λ′Pkj(Xj)
∣∣2] ≤ C ‖λ‖2 k

−2rj
j (D.39)

which together with Assumption D.1(iv) implies that∥∥∥HFn,kj −H∗Fn,kj
∥∥∥ = O(k

−rj
j ) = o(1). (D.40)

Combining the results in (D.38) and (D.40), we get

− C ≤ ρmin(HFn,kj) ≤ ρmax(HFn,kj) ≤ −C−1. (D.41)

Let Ukj ,n = (ukj ,1, . . . , ukj ,n)′ where ukj ,i = I{Y ≤ α∗kj(Xj)} − τ . Under Assumptions C.1 and

D.1, we can invoke Lemma 4 in Belloni et al. (2011) to deduce that

λ′kj(β̂kj − β
∗
kj

) =
λ′kjH

∗−1
Fn,kj

P′kj ,nUkj ,n

n
+Op(ε1,j,n + ε2,j,n + ε3,j,n) (D.42)
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uniformly over λkj ∈ Skj = {λj ∈ Rkj : ‖λj‖ = 1}, where

ε1,j,n = δ
3/2
0,j,nξ

1/4
kj

+ δ2
0,j,nξ

1/2
kj

, ε2,j,n = δ2
0,j,nξ

1/2
kj

+ δ0,j,nk
−rj
j and ε3,j,n = kjξ

1/2
kj
n−1. (D.43)

As kjn
−1 = O(δ2

0,j,n) and δ
1/2
0,j,nξ

1/4
kj

= o(1) by Assumption D.1(iv), we have

(kjξ
1/2
kj
n−1)(δ

3/2
0,j,nξ

1/4
kj

)−1 = δ
1/2
0,j,nξ

1/4
kj
O(1) = o(1), (D.44)

which together with (D.31), (D.42) and (D.43) implies that

λ′kj(β̂kj − β
∗
kj

) = n−1λ′kjH
∗−1
Fn,kj

P′kj ,nUkj ,n +Op

(
δ

3/2
0,j,nξ

1/4
kj

+ δ0,j,nk
−rj
j

)
. (D.45)

By the first order optimality condition of β∗kj ,

EFn
[
Pkj(Xj)ukj

]
= 0kj×1. (D.46)

By Assumptions C.1(i) and C.1(iv), (D.38), (D.40) and (D.41),

EFn

[∣∣∣λ′kj(H∗−1
Fn,kj

−H−1
Fn,kj

)P′kj ,nUkj ,n

∣∣∣2]

= EFn

∣∣∣∣∣
n∑
i=1

λ′kj(H
∗−1
Fn,kj

−H−1
Fn,kj

)Pkj(Xj,i)ukj ,i

∣∣∣∣∣
2


=
n∑
i=1

EFn

[∣∣∣λ′kjH∗−1
Fn,kj

(H∗Fn,kj −HFn,kj)H
−1
Fn,kj

Pkj(Xj,i)
∣∣∣2 u2

kj ,i

]
≤ Cn

∥∥∥λ′kjH∗−1
Fn,kj

(H∗Fn,kj −HFn,kj)H
−1
Fn,kj

∥∥∥2

= O(nk
−2rj
j ) (D.47)

which together with the Markov inequality implies that

n−1λ′kj(H
∗−1
Fn,kj

−H−1
Fn,kj

)P′kj ,nUkj ,n = O(n−1/2k
−rj
j ). (D.48)

Combining the results in (D.45) and (D.48), and then applying Assumption D.1(iv), we deduce

that

λ′kj(β̂kj − β
∗
kj

) = n−1λ′kjH
−1
Fn,kj

P′kj ,nUkj ,n +Op

(
δ

3/2
0,j,nξ

1/4
kj

+ δ0,j,nk
−rj
j

)
. (D.49)

By Assumptions C.1(ii) and D.1(i),

fuj(∆(α∗kj)|Xj)(αkj − α∗j )2 − fuj(∆(α∗kj)|Xj)(αkj − α∗kj)
2

= 2fuj(∆(α∗kj)|Xj)(αkj − α∗kj)∆(α∗kj) + fuj(∆(α∗kj)|Xj)∆(α∗kj)
2
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= 2(βkj − β∗kj)
′
[
fuj(∆(α∗kj)|Xj)Pkj(Xj)∆(α∗kj)

]
+O(k

−2rj
j ). (D.50)

Let λ∗,j,n = EFn

[
fuj(∆(α∗kj)|Xj)Pkj(Xj)∆(α∗kj)

]
. Under Assumptions C.1(iv)

λ′∗,j,nλ∗,j,n ≤ Cλ′∗,j,n

(
EFn [Pkj(Xj)P

′
kj

(Xj)]
)−1

λ∗,j,n, (D.51)

which together with the same arguments in the proof of Lemma E.1, Assumptions C.1(ii) and

D.1(i) implies that

λ′∗,j,nλ∗,j,n ≤ EFn

[
f 2
uj

(∆(α∗kj)|Xj)∆(α∗kj)
2
]

= O(k
−2rj
j ). (D.52)

Using (D.49) and (D.52), we get

(β̂kj − β
∗
kj

)′EFn

[
fuj(∆(α∗kj)|Xj)Pkj(Xj)∆(α∗kj)

]
=
λ′∗,j,nH

−1
Fn,kj

P′kj ,nUkj ,n

n
+Op

(
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + δ0,j,nk

−2rj
j

)
. (D.53)

Under the i.i.d. assumption,

EFn

[
P′kj ,nUkj ,nU

′
kj ,n

Pkj ,n

]
= EFn

[
n∑

i1=1

n∑
i2=1

Pkj(Xj,i1)Pkj(Xj,i2)
′ukj ,i1ukj ,i2

]

= EFn

[
n∑
i=1

Pkj(Xj,i)Pkj(Xj,i)
′u2
kj ,i

]
(D.54)

which together with (D.41), Assumption C.1(iv) and (D.52) implies that

EFn

[
λ′∗,j,nH

−1
Fn,kj

P′kj ,nUkj ,nU
′
kj ,n

Pkj ,nH
−1
Fn,kj

λ∗,j,n

]
n2

≤ C
λ′∗,j,nλ∗,j,n

n
= O(k

−2rj
j n−1), (D.55)

which together with the Markov inequality and (D.53) implies that

(β̂kj ,n − β
∗
kj ,n

)′λ∗,j,n = Op

(
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j

)
. (D.56)

Combining the results in (D.50) and (D.56), we get∣∣∣fuj(∆(α∗kj)|Xj)(α̂kj − α∗j )2 − fuj(∆(α∗kj)|Xj)(α̂kj − α∗kj)
2
∣∣∣

= Op

(
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + k

−2rj
j + n−1/2k

−rj
j

)
, (D.57)
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where we note that δ0,j,nk
−2rj
j = o(k

−2rj
j ) as δ0,j,n = o(1). Let EXj ,Fn [·] denote the expectation

taken with respect to Xj. Note that using (D.56), we also have

EXj ,Fn

[
fuj(∆(α∗kj)|Xj)∆(α̂kj)(α̂kj − α∗kj)− fuj(∆(α∗kj)|Xj)(α̂kj − α∗kj)

2
]

= EXj ,Fn

[
fuj(∆(α∗kj)|Xj)∆(α∗kj)(α̂kj − α

∗
kj

)
]

= (β̂kj − β
∗
kj

)′λ∗,j,n = Op

(
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j

)
. (D.58)

Using integration by parts, we can write∫ ∆(αj)

0

ufuj(u|xj)du =
1

2

∫ ∆(αj)

0

fuj(u|xj)du2

=
fuj(∆(αj)|xj)∆2(αj)

2
−
∫ ∆(αj)

0
u2 ∂fuj (u|xj)

∂u
du

2
, (D.59)

which together with the triangle inequality and Assumption D.1(ii) implies that∣∣∣∣∣EFn [ (I{uj ≤ ∆(αj)} − I{uj ≤ 0})uj|Xj]−
fuj(∆(α∗kj)|Xj)∆

2(αj)

2

∣∣∣∣∣
≤

∣∣∣fuj(∆(αj)|Xj)− fuj(∆(α∗kj)|Xj)
∣∣∣∆2(αj)

2
+

∣∣∣∫ ∆(αj)

0
u2 ∂fuj (u|xj)

∂u
duj

∣∣∣
2

≤ C
(
|∆(αj)|2 |αj − α∗kj |+ |∆(αj)|3

)
(D.60)

uniformly over βkj ∈ Nj,n. Using (D.12), (D.13), (D.57), (D.60) and the triangle inequality, we

immediately get∣∣∣∣∣EZ,Fn
[

(I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0})uj −
fuj(∆(α∗kj)|Xj)(α̂kj − α∗kj)

2

2

]∣∣∣∣∣
≤ CEXj ,Fn

[∣∣∆(α̂kj)
∣∣2 |α̂kj − α∗kj |+ ∣∣∆(α̂kj)

∣∣3]+Op

(
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + k

−2rj
j + n−1/2k

−rj
j

)
= Op(δ

2
1,j,nδ2,j,n + δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + k

−2rj
j + n−1/2k

−rj
j ) (D.61)

Similarly, we have∫ ∆(αj)

0

fuj(u|Xj)du = ∆(αj)fuj(∆(αj)|Xj)−
∫ ∆(αj)

0

∂fuj (u|xj)
∂u

udu (D.62)
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which together with the triangle inequality and Assumption D.1(ii) implies that for any αj,∣∣∣EFn [ (I{uj ≤ ∆(αj)} − I{uj ≤ 0})|Xj]− fuj(∆(α∗kj)|Xj)∆(αj)
∣∣∣

≤
∣∣∣fuj(∆(α∗kj)|Xj)− fuj(0|Xj)

∣∣∣ |∆(αj)|+ C |∆(αj)|2

≤ C
(
|∆(αj)|2 + |∆(αj)| |∆(α∗kj)|

)
. (D.63)

Using (D.12), (D.13), (D.58), (D.63) and the triangle inequality, we immediately get∣∣∣EZ,Fn [(I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}
)

(α̂kj − α∗kj)− fuj(∆(α∗kj)|Xj)(α̂kj − α∗kj)
2
]∣∣∣

≤
∣∣∣EZ,Fn [((I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0}

)
− fuj(∆(α∗kj)|Xj)∆(α̂kj)

)
(α̂kj − α∗kj)

]∣∣∣
+
∣∣∣EXj ,Fn [fuj(∆(α∗kj)|Xj)∆(α̂kj)(α̂kj − α∗kj)− fuj(∆(α∗kj)|Xj)(α̂kj − α∗kj)

2
]∣∣∣

≤ CEXj ,Fn

[∣∣∆(α̂kj)
∣∣2 +

∣∣∆(α̂kj)
∣∣ |∆(α∗kj)|

]
+Op

(
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j

)
= Op(δ

2
1,j,nδ2,j,n + δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j ). (D.64)

Combining the results in (D.61) and (D.64) and applying the triangle inequality, we immediately

get the claimed result.

Lemma D.5 Under Assumptions C.1 and D.1, we have

(β̂kj − β
∗
kj

)′HFn,kj(β̂kj − β
∗
kj

) =
U′kj ,nP

′
kj ,n

H−1
Fn,kj

Pkj ,nUkj ,n

n2
+Op(δ

5/2
0,j,nξ

1/4
kj

+ δ2
0,j,nk

−rj
j ). (D.65)

Proof of Lemma D.5. From (D.11) and (D.49), we get

(β̂kj − β
∗
kj

)′HFn,kj(β̂kj − β
∗
kj

) =
(β̂kj − β

∗
kj

)′Pkj ,nUkj ,n

n
+Op

(
δ

5/2
0,j,nξ

1/4
kj

+ δ2
0,j,nk

−rj
j

)
. (D.66)

Under the i.i.d. assumption, (D.46) and Assumptions C.1(iv), we have

EFn

[
U′kj ,nP

′
kj ,n

Pkj ,nUkj ,n

n2

]
= EFn

n−2

∥∥∥∥∥
n∑
i=1

Pkj(Xj)ukj

∥∥∥∥∥
2


= EFn

n−2

kj∑
l=1

∥∥∥∥∥
n∑
i=1

pl,j(Xj)ukj

∥∥∥∥∥
2


≤ n−2

kj∑
l=1

n∑
i=1

EFn
[
pl,j(Xj)

2
]

= O(kjn
−1) (D.67)
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which together with (D.45) and (D.66) immediately implies (D.65).

Lemma D.6 Under Assumptions C.1 and D.1, we have

n−1

n∑
i=1

ukj ,i∆i(α̂kj) =
U′kj ,nP

′
kj ,n

H−1
Fn,kj

Pkj ,nUkj ,n

n2

+Op(δ
5/2
0,j,nξ

1/4
kj

+ δ2
0,j,nk

−rj
j + k

−rj
j n−

1
2 + k

−2rj
j ). (D.68)

Proof of Lemma D.6. First, we note that

n−1

n∑
i=1

ukj ,i∆i(α̂kj) = n−1

n∑
i=1

ukj ,i(α̂kj − α∗kj) + n−1

n∑
i=1

u∗j,i∆i(α
∗
kj

)

+n−1

n∑
i=1

(ukj ,i − u∗j,i)∆i(α
∗
kj

) (D.69)

where u∗j,i = I{uj,i ≤ 0} − τ . We can write

n−1

n∑
i=1

ukj ,i(α̂kj − α∗kj) =
U′kj ,nP

′
kj ,n

n
(β̂kj − β

∗
kj

), (D.70)

which together with (D.49) and (D.67) implies that

n−1

n∑
i=1

ukj ,i(α̂kj − α∗kj) =
U′kj ,nP

′
kj ,n

H−1
Fn,kj

Pkj ,nUkj ,n

n2
+Op(δ

5/2
0,j,nξ

1/4
kj

+ δ2
0,j,nk

−rj
j ). (D.71)

By the definition of uj,i

EFn
[
u∗j |Xj

]
= 0. (D.72)

By the i.i.d. assumption, (D.72) and Assumption C.1(ii), we get

EFn

∣∣∣∣∣n−1

n∑
i=1

u∗j,i(α
∗
kj
− α∗j )

∣∣∣∣∣
2
 = n−1EFn

[
(u∗j,i)

2(α∗kj − α
∗
j )

2
]
≤ Ck

−2rj
j n−1 (D.73)

which together with the Markov inequality implies

n−1

n∑
i=1

u∗j,i(α
∗
kj
− α∗j ) = Op(k

−rj
j n−

1
2 ). (D.74)
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By the i.i.d. assumption, the triangle inequality and Assumption C.1(ii),

EFn

[∣∣∣∣∣n−1

n∑
i=1

(ukj ,i − u∗j,i)∆i(α
∗
kj

)

∣∣∣∣∣
]

≤ EFn

[∣∣∣(I{uj ≤ 0} − I{uj ≤ ∆(α∗kj)})∆(α∗kj)
∣∣∣]

≤ EFn

[∣∣∣∣∣∆(α∗kj)

∫ ∆(α∗kj
)

0

fuj(u|Xj)du

∣∣∣∣∣
]
≤ CEFn

[
∆(α∗kj)

2
]

= Ck
−2rj
j (D.75)

which together with the Markov inequality implies

n−1

n∑
i=1

(ukj ,i − u∗j,i)∆i(α
∗
kj

) = Op(k
−2rj
j ). (D.76)

Collecting the results in (D.69), (D.71), (D.74) and (D.76), we immediately get (D.68).

Lemma D.7 Under Assumptions C.1 and D.1, we have

Euj ,Fn

[
(I{uj ≤ ∆(α̂kj)} − I{uj ≤ 0})∆(α∗kj)

]
= Op(δ

3/2
0,j,nξ

1/4
kj
k
−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j + δ2

1,j,nk
−rj
j ). (D.77)

Proof of Lemma D.7. From (D.63), we see that∣∣∣EFn [I{uj ≤ ∆(αj)} − I{uj ≤ 0}|Xj]− fuj(∆(α∗kj)|Xj)∆(αj)
∣∣∣ ≤ C

(∣∣∆2(αj)
∣∣+ |∆(αj)| |∆(α∗kj)|

)
(D.78)

for any βkj ∈ Nj,n, which combined with the triangle inequality implies that

sup
βkj∈Nj,n

∣∣∣EFn [[I{uj ≤ ∆(αj)} − I{uj ≤ 0} − fuj(∆(α∗kj)|Xj)∆(αj)
]

∆(α∗kj)
]∣∣∣

≤ sup
βkj∈Nj,n

∣∣∣EFn [(∣∣∆2(αj)
∣∣+ |∆(αj)| |∆(α∗kj)|)∆(α∗kj)

]∣∣∣ = O(δ2
1,j,nk

−rj
j ). (D.79)

Invoking (D.56), we have

EXj ,Fn

[
fuj(∆(α∗kj)|Xj)∆(α̂kj)∆(α∗kj)

]
= (β̂kj − β

∗
kj

)′E
[
fuj(∆(α∗kj)|Xj)Pkj(Xj)(α

∗
kj
− α∗j )

]
= Op

(
δ

3/2
0,j,nξ

1/4
j k

−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j

)
. (D.80)

Collecting the results in (D.79) and (D.80), we immediately get (D.77).
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Lemma D.8 Under Assumptions C.1 and D.1, we have

n−1

n∑
i=1

[ρτ (Yi − α̂k1(X1,i))− ρτ (Yi − α̂k2(X2,i))]

=
1

n

∑
i=1

[ρτ (u1,i)− ρτ (u2,i)]−
¯̀
α,n(α∗k)′H−1

Fn,k
¯̀
α,n(α∗k)

2
+Op (δn,k) (D.81)

where δn,k = maxj=1,2

{
δ0,j,nδ1,j,nδ

1/2
2,j,n + k

−2rj
j + n−1/2k

−rj
j

}
.

Proof of Lemma D.8. Using (D.15), we can write

n−1

n∑
i=1

[
ρτ (uj,i)− ρτ (Y − α̂kj(Xj,i))

]
= n−1

n∑
i=1

(I{uj,i ≤ 0} − τ) ∆i(α̂kj)

+ n−1

n∑
i=1

(
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

)
(uj,i −∆i(α̂kj)). (D.82)

Using (D.16) in Lemma D.1, we have

n−1

n∑
i=1

(
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

)
uj,i

= EZ,Fn
[
(I{uj ≤ 0} − I{uj ≤ ∆(α̂kj)})uj

]
+Op(δ0,j,nδ1,j,nδ

1/2
2,j,n). (D.83)

Using (D.24) in Lemma D.2, and (D.77) in Lemma D.7, we have

n−1

n∑
i=1

(
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

)
∆i(α̂kj)

= n−1

n∑
i=1

(
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

)
(α̂kj(Xj,i)− α∗kj(Xj,i))

+ n−1

n∑
i=1

(
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

)
∆i(α

∗
kj

)

= EZ,Fn

[(
I{uj ≤ 0} − I{uj ≤ ∆(α̂kj)}

)
(α̂kj(Xj)− α∗kj(Xj))

]
+ (β̂kj − β

∗
kj

)′µn
[
(I{uj ≤ 0} − I{uj ≤ ∆(α̂kj)})Pkj(Xj)

]
+Op(δ0,j,nδ

1/2
1,j,nk

−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j ), (D.84)
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where in the last equality, we use

δ2
0,j,nk

−rj
j

δ0,j,nδ
1/2
1,j,nk

−rj
j

= o(1) and
δ

3/2
0,j,nξ

1/4
kj
k
−rj
j

δ0,j,nδ
1/2
1,j,nk

−rj
j

= O(1). (D.85)

Using (D.11), and (D.29) in Lemma D.3, we get

(β̂kj − β
∗
kj

)′µn
[
(I{uj ≤ 0} − I{uj ≤ ∆(α̂kj)})Pkj(Xj)

]
= Op(δ

2
0,j,nδ

1/2
2,j,n), (D.86)

which together with (D.84) implies that

n−1

n∑
i=1

(
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

)
∆i(α̂kj)

= EZ

[
(I{uj ≤ 0} − I{uj ≤ ∆(α̂kj ,n)})(α̂kj ,n − α∗kj ,n)

]
+Op(δ

2
0,j,nδ

1/2
2,j,n + δ0,j,nδ

1/2
1,j,nk

−rj
j + δ0,j,nk

−2rj
j + n−1/2k

−rj
j ). (D.87)

Combining the results in (D.83) and (D.87), we get

n−1

n∑
i=1

(I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)})(uj,i −∆i(α̂kj))

= EZ,Fn

[
(I{uj ≤ 0} − I{uj ≤ ∆(α̂kj)})(uj − (α̂kj(Xj)− α∗kj(Xj)))

]
+Op(δ0,j,nδ1,j,nδ

1/2
2,j,n + δ0,j,nk

−2rj
j + n−1/2k

−rj
j ), (D.88)

where we use

δ0,j,nδ1,j,nδ
1/2
2,j,n = δ2

0,j,nδ
1/2
2,j,n + δ0,j,nδ

1/2
2,j,nk

−rj
j and

δ0,j,nδ
1/2
1,j,nk

−rj
j

δ0,j,nδ
1/2
2,j,nk

−rj
j

=
δ

1/2
1,j,n

δ
1/2
2,j,n

< 1. (D.89)

Using (D.37) in Lemma D.4, and (D.88), we get

n−1

n∑
i=1

[
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

] [
uj,i −∆i(α̂kj)

]
= −

(β̂kj − β
∗
kj

)′HFn,kj(β̂kj − β
∗
kj

)

2
+Op(δ0,j,nδ1,j,nδ

1/2
2,j,n + k

−2rj
j + n−1/2k

−rj
j ), (D.90)
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where we use δ2
1,j,nδ2,j,n ≤ 2δ2

0,j,nδ2,j,n + 2δ2,j,nk
−2rj
j = O(δ0,j,nδ1,j,nδ

1/2
2,j,n) +O(k

−2rj
j ) and

δ
3/2
0,j,nξ

1/4
kj
k
−rj
j

δ0,j,nδ1,j,nδ
1/2
2,j,n

=
δ

1/2
0,j,nξ

1/4
kj

δ
1/2
2,j,n

k
−rj
j

δ0,j,n + k
−rj
j

< 1. (D.91)

Using (D.65) in Lemma D.5 and (D.90), we get

n−1

n∑
i=1

[
I{uj,i ≤ 0} − I{uj,i ≤ ∆i(α̂kj)}

] [
uj,i −∆i(α̂kj)

]
= −

U′kj ,nP
′
kj ,n

H−1
Fn,kj

Pkj ,nUkj ,n

2n2
+Op(δ0,j,nδ1,j,nδ

1/2
2,j,n + k

−2rj
j + n−1/2k

−rj
j ), (D.92)

where we use

δ
5/2
0,j,nξ

1/4
kj

< δ0,j,nδ1,j,nδ
1/2
2,j,n and δ2

0,j,nk
−rj
j < δ0,j,nδ1,j,nδ

1/2
2,j,n. (D.93)

Combining the results in (D.68) of Lemma D.6, (D.82) and (D.92), we get

n−1

n∑
i=1

[
ρτ (uj,i)− ρτ (Y − α̂kj(Xj,i))

]
=

U′kj ,nP
′
kj ,n

H−1
Fn,kj

Pkj ,nUkj ,n

2n2
+Op(δ0,j,nδ1,j,nδ

1/2
2,j,n + k

−2rj
j + n−1/2k

−rj
j ). (D.94)

Using (D.94), and the definitions of Ukj ,n, HFn,k and `α,k(Z;α), we immediately get the result in

(D.81).

Proof of Theorem D.1. We can use Theorem 4.1 to prove the claim. For this purpose, we

need to verify Assumptions 4.1 and 4.3. Assumptions 4.1(a) is implied by Assumption C.1(i).

Using (D.14), we can write

m(Z;αj) = (I{uj ≤ ∆(αj)} − τ) [uj −∆(αj)] (D.95)

which implies that

EF0 [m(Z;αj)|Xj]

= EF0 [I{uj ≤ ∆(αj)} [uj −∆(αj)]|Xj]− τEF0 [uj −∆(αj)|Xj]

=

∫ ∆(αj)

−∞
ufuj(u|Xj)du−∆(αj)

[
Fuj(∆(αj)|Xj)− τ

]
− τEF0 [uj|Xj] (D.96)

54



where Fuj( ·|Xj) denotes the conditional CDF of uj given Xj. Define

gj(Xj, αj) =

∫ ∆(αj)

−∞
ujfuj(uj|Xj)duj −∆(αj)

[
Fuj(∆(αj)|Xj)− τ

]
. (D.97)

Since αj(·) = Pkj(·)′βkj , it is clear that gj(xj, αj) is continuously differentiable at βkj for any xj

with
∂gj(xj, Pkj(xj)

′βkj)

∂βkj
=
[
τ − Fuj(∆(αj)|xj)

]
Pkj(xj) (D.98)

and uniformly over xj and βkj , ∥∥∥∥∂gj(xj, Pkj(xj)′βkj)∂βkj

∥∥∥∥ ≤ ξ
1/2
kj

<∞. (D.99)

We can use the dominated convergence theorem to show that the

∂EF0 [m(Z;αj)]

∂βkj
= EF0

[
∂gj(Xj, αj)

∂βkj

]
. (D.100)

Moreover, ∂gj(xj, αj)/∂βkj is continuously differentiable at βkj for any xj with

∂2gj(xj, αj)

∂βkj∂β
′
kj

= −fuj(∆(αj)|Xj)Pkj(Xj)Pkj(Xj)
′.

By Assumptions C.1(iv) and D.1(i), we have uniformly over xj and βkj ,∥∥∥∥∥∂2gj(xj, Pkj(xj)
′βkj)

∂βkj∂β
′
kj

∥∥∥∥∥ ≤ Cξ2
kj
<∞. (D.101)

Hence we can use the dominated convergence theorem again to show that the

∂2EF0 [m(Z;αj)]

∂βkj∂β
′
kj

= EF0

[
∂gj(Xj, αj)

∂βkj∂β
′
kj

]
(D.102)

is well defined. This verifies Assumption 4.1(b). By (D.98) and (D.100), and the first order

condition of β∗kj ,

EF0

[
∂gj(Xj, α

∗
kj

)

∂βkj

]
= EF0

[
(τ − I{uj ≤ ∆(α∗kj)})Pkj(xj)

]
= 0kj×1. (D.103)
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By the definitions of `α,k(Z;α∗k) and (D.103),

EF0 [`α,k(Z;α∗k)] = EF0

[( (
I{u1 ≤ ∆(α∗k1)} − τ

)
Pk1 (X1)(

τ − I{u2 ≤ ∆(α∗k2)}
)
Pk2 (X2)

)]
= 0|k| (D.104)

which verifies Assumption 4.1(c). By Assumption D.1(vi),

EF0

[
`(Z;α∗F0

)2
]

= EF0

[
(ρτ (u1)− ρτ (u2))2

]
≤ 2EF0

[
u2

1

]
+ 2EF0

[
u2

2

]
≤ C. (D.105)

Moreover, by Assumptions C.1(ii) and C.1(iii),

EF0

[
‖`α,k(Z;α∗k)‖4] ≤ 2EF0

[∣∣P ′k1 (X1)Pk1 (X1)
∣∣2 +

∣∣P ′k2 (X2)Pk2 (X2)
∣∣2]

≤ C

[
ξk1tr

(
EF0

[
Pk1 (X1)′ Pk1 (X1)

])
+ξk2tr

(
EF0

[
Pk2 (X2)′ Pk2 (X2)

]) ]
≤ C(ξk1 + ξk2)(k1 + k2) = Cξk |k| , (D.106)

where ξk = ξk1 +ξk2 . Hence Assumption 4.1(d) is also satisfied. Assumptions 4.1(e) is Assumption

D.1(v). Also the bounds on the eigenvalues of HF0,k in Assumption 4.1(f) can be easily verified

using Assumptions C.1(iv), D.1(i) and D.1(iii). By definition,

DF0,k = EF0

[(
u2
k1
Pk1(X1)Pk1(X1)′ −uk1uk2Pk1(X1)Pk2(X2)′

−uk1uk2Pk2(X2)Pk1(X1)′ u2
k2
Pk2(X2)Pk2(X2)′

)]
. (D.107)

Under Assumption C.1(iv), we see that

ρmax

(
EF0

[
u2
kj
Pkj(Xj)Pkj(Xj)

′
])
≤ Cρmax

(
EF0

[
Pkj(Xj)Pkj(Xj)

′]) ≤ C for j = 1, 2 (D.108)

which together with the form of DF0,k in (D.107) and the Aronszajn’s Inequality implies that

ρmax(DF0,k) ≤ 2C. This verifies Assumption 4.1(f).

In Lemma D.8, we have derived the second order expansion of ¯̀
n(α̂k), where the remainder

term is of the order

δn,k = max
j=1,2

{
δ0,j,nδ1,j,nδ

1/2
2,j,n + k

−2rj
j + n−1/2k

−rj
j

}
. (D.109)

By (D.9), we have

n1/2δn,k
σFn,n

=
n1/2

(
δ0,j,nδ1,j,nδ

1/2
2,j,n + k

−2rj
j + n−1/2k

−rj
j

)
σFn,n
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=
n1/2δ0,j,nδ1,j,nδ

1/2
2,j,n

σFn,n
+
k
−rj
j n1/2

k
rj
j σFn,n

+
1

k
rj
j σFn,n

= o(1) (D.110)

for j = 1, 2. As ξkjkj log(n)n−1 = o(1) by assumption Assumption D.1(iv), we have

k
1/2
j ξ

1/2
kj

nσFn,n

σFn,n

n1/2δ0,j,nδ1,j,nδ
1/2
2,j,n

=
ξ

1/2
kj

nδ1,j,n(δ2,j,n log(n))1/2

≤
ξ

1/4
kj

n1/4k
3/4
j (log(n))5/4

= o(1) (D.111)

which together with (D.9) implies that kjξkj(n
2σ2

Fn,n
)−1 = o(1). Assumption 4.3(b) is implied by

(D.9). So Assumption 4.3 is also satisfied.

By the Cauchy-Schwarz inequality,

∥∥∥Ĉn − Cn∥∥∥ ≤
∥∥∥∥∥ 1

n

n∑
i=1

`(Zi;α
∗
kj

)`αα,kj(Zi;α
∗
kj

)−H`,kj ,n

∥∥∥∥∥√`
′
αj ,n

(α∗kj)H
−1
Fn,kj

`αj ,n(α∗kj)

= op(n
− 1

2 ), (D.112)

where the equality is by (B.40) and Assumption B.2(d). Under the i.i.d. assumption,

EFn
[
‖Cn‖2] = tr

(
n−1H`,kj ,nH

−1
Fn,k

DFn,kH
−1
Fn,k

H`,kj ,n

)
= O(|k|n−1), (D.113)

where the last equality is by Assumptions 4.1(f) and B.2(b). Thus,

Cn = Op(|k|n−1). (D.114)

Under the i.i.d. Assumption,

EFn
[
|AnBn|2

]
=
ψα,kj(α

∗
kj

)′H−1
Fn,kj

v∗ψ,kjσFn,n
EFn

[
`α,kj(Z;α∗kj)`α,k(Z;α∗k)′

] H−1
Fn,k

DFn,kH
−1
Fn,k

n

× EFn
[
`α,k(Z;α∗k)`α,kj(Z;α∗kj)

] H−1
Fn,kj

ψα,kj(α
∗
kj

)

v∗ψ,kjσFn,n

≤ Cρmax(DFn,k)

ρ4
min(HFn,k)

ψα,kj(α
∗
kj

)′ψα,kj(α
∗
kj

)

v∗2ψ,kj

1

nσ2
Fn,n

= o(1) (D.115)

where the inequality is by (B.42), the last equality is by Assumptions 4.1(f), 4.3(b) and B.2(e).
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Similarly,

EFn
[
|AnCn|2

]
=
ψα,kj(α

∗
kj

)′H−1
Fn,kj

v∗ψ,kjσFn,n
H`,kj ,nH

−1
Fn,kj

H−1
Fn,k

DFn,kH
−1
Fn,k

n
H−1
Fn,kj

H`,kj ,n

H−1
Fn,kj

ψα,kj(α
∗
kj

)

v∗ψ,kjσFn,n

≤
ρmax((H`,kj ,n)2)ρmax(DFn,k)

ρ2
min((HFn,k)2)

ψα,kj(α
∗
kj

)′ψα,kj(α
∗
kj

)

v∗2ψ,kj

1

nσ2
Fn,n

= o(1), (D.116)

where the last equality is by Assumptions 4.1(f), 4.3(b), B.2(b) and B.2(e). Therefore

Ân(B̂n + Ĉn + op(σFn,n))

= Ân(B̂n + Ĉn) + op(1)

= Ân(B̂n −Bn + Ĉn − Cn) + AnBn + AnCn + (Ân − An)(Bn + Cn) + op(1)

= Op(σ
−1
Fn,n

)op(n
−1/2) + op(1) + op(|k|−1/2σ−1

Fn,n
)op(|k|1/2n−1/2) + op(1)

= op(1). (D.117)

Thus, the last summand in (B.33) is op(1). This completes the proof of (B.32) and hence claim

(c) of the lemma.

E Auxiliary Lemmas

Lemma E.1 Let X be a scalar random variable with variance σ2
X and Y = (Y1, . . . , Yd)

′ be a

d-dimensional random vector with variance-covariance matrix DY . Let ρ be the vector correlation

coefficient of X and Y . That is, ρ = σ+
X(D

1/2
Y )+Cov(X, Y ), where A1/2 is the unique symmetric

matrix square root of the positive semi-definite matrix A and A+ is the Moore-Penrose inverse of

A. Then (a) ρ′ρ ≤ 1; (b) for any positive semi-definite matrix A, ρ′Aρ ≤ λmax(A), where λmax(A)

is the maximum eigenvalue of A; and (c) ((D
1/2
Y )+Cov(X, Y ))′D

1/2
Y = Cov(X, Y )′.

Proof of Lemma E.1. First we show part (a). If σX = 0, then ρ = 0 by definition and

part (a) holds. Thus below, we consider the nontrivial case of σX > 0. Without loss of generality,

normalize σX = 1.

Consider the simple case that DY is invertible first. Then,(
1 ρ′

ρ Id

)
=

(
1 0

0 D
−1/2
Y

)
Σ(X,Y ′)′

(
1 0

0 D
−1/2
Y

)
, (E.1)

where Σ(X,Y ′)′ is the variance covariance matrix of the random vector (X, Y ′)′. Due to the positive
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(semi-)definiteness of DY and Σ(X,Y ′)′ , we have

(
1 ρ′

ρ Id

)
is positive semi-definite. That implies

that ∣∣∣∣∣
(

1 ρ′

ρ Id

)∣∣∣∣∣ ≥ 0. (E.2)

Direct calculation shows that

∣∣∣∣∣
(

1 ρ′

ρ Id

)∣∣∣∣∣ = 1− ρ′ρ. Thus, ρ′ρ ≤ 1.

Now consider the simple noninvertible case: DY is a singular diagonal matrix. Without loss

of generality, suppose that the first J elements of DY are zeros for a positive integer J ≤ d and

the rest are strictly positive. If J = d, then ρ = 0 and part (a) holds trivially. If J < d, we have

ρj = 0 for j = 1, . . . , J , and

ρ(J+1):d = D
−1/2
Y,(J+1):dCov(X, Y(J+1):d), (E.3)

where ρ(J+1):d = (ρJ+1, . . . , ρd), Y(J+1):d = (YJ+1, . . . , Yd) and DY,(J+1):d is DY with the first J rows

and columns removed. By the arguments for the invertible DY case, we have ρ′(J+1):dρ(J+1):d ≤ 1.

Thus ρ′ρ = ρ′(J+1):dρ(J+1):d ≤ 1.

Finally, consider the case where DY is singular but not diagonal. Because DY is a variance-

covariance matrix and thus is positive semi-definite, DY have the following eigenvalue decomposi-

tion:

DY = QY ΛYQ
′
Y , (E.4)

where QY is an orthonormal matrix and ΛY is a diagonal matrix whose diagonal elements are

eigenvalues of DY . Using this decomposition, we have

ρ = QY (Λ1/2)+Q′YCov(X, Y ). (E.5)

Thus,

Q′Y ρ = (Λ1/2)+Cov(X,Q′Y Y ). (E.6)

Then by the arguments for the singular diagonal DY , we have ρ′QYQ
′
Y ρ ≤ 1. But because

QYQ
′
Y = Id, we have ρ′ρ = ρ′QYQ

′
Y ρ ≤ 1. This concludes the proof of part (a).

Now we show part (b). The matrix A has the following decomposition:

A = QAΛAQ
′
A, (E.7)
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where QA is a orthonormal matrix, and ΛA is a diagonal matrix of eigenvalues of A. Thus,

ρ′Aρ = ρ′QAΛAQ
′
Aρ = ρ′QAλmax(A)IdQ

′
Aρ+ ρ′QA(λmax(A)Id − ΛA)Q′Aρ

≤ ρ′QAλmax(A)IdQ
′
Aρ = λmaxρ

′ρ ≤ λmax(A). (E.8)

This shows part (b).

Finally we show part (c). Without loss of generality, suppose that DY has J many zero eigen-

values which corresponds to the first J diagonal elements in Λ. The claim of the lemma holds

trivially when J = 0 or d. Hence we only need to consider the case that 0 < J < d. By

(E.4), D
1/2
Y = QY Λ

1/2
Y Q′Y and (D

1/2
Y )+ = QY (Λ1/2)+Q′Y where (Λ1/2)+ is a symmetric matrix. Let

Y ∗ = Q′Y Y , then the first J element of Y ∗ is zero almost surely. Let Y ∗d−J denotes the last d− J
elements of Y ∗. Then

((D
1/2
Y )+Cov(X, Y ))′D

1/2
Y QY = Cov(X, Y )′(D

1/2
Y )+D

1/2
Y QY

= Cov(X, Y ∗)′

(
0J×J 0J×(d−J)

0(d−J)×J Id−J

)
=
(

01×J Cov(X, Y ∗d−J)′
)
. (E.9)

By definition Cov(X, Y ))′QY = Cov(X, Y ∗)′ =
(

01×J Cov(X, Y ∗d−J)′
)

which together with the

above equation implies that

((D
1/2
Y )+Cov(X, Y ))′D

1/2
Y QY = Cov(X, Y ))′QY . (E.10)

As QY is a non-singular matrix, the claim of the lemma follows immediately by (E.10).

Lemma E.2 Let A =

(
A11 A12

A21 A22

)
, where A12 = A′21, A11 and A22 are k1 × k1 and k2 × k2

symmetric matrices respectively. Then ρmax(A) ≤ C implies that:

(a) ρmax(A2
11 + A12A21) ≤ C2 and ρmax(A2

22 + A21A12) ≤ C2;

(b) ρmax(A12A21) ≤ C2 and ρmax(A21A12) ≤ C2.

Proof of Lemma E.2. By definition,

A2 =

(
A2

11 + A12A21 A11A12 + A12A22

A21A11 + A22A21 A2
22 + A21A12

)
.

Then it is clear that

ρmax(A2
11 + A12A21) ≤ ρmax(A2) = ρ2

max(A),
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which proves the first claim in (a). The second claim in (a) can be proved by the same way.

Let γk1 ∈ Rk1 be the eigenvector of the largest eigenvalue of A12A21. Then the above inequality

implies that

γ′k1A
2
11γk1 + ρmax(A12A21) ≤ ρ2

max(A)

which immediately shows that ρmax(A12A21) ≤ ρ2
max(A) ≤ C2. The second result in (b) can be

proved similarly.

F Extra Simulation Studies

In this section we report some simulation results on the finite sample performance of our model

seleciton test when applied on the comparison of two parametric models. We also compare the

performance of our test with that proposed in Shi (2015b).

F.1 Simulation design 1

Consider two linear regression models

M1 : Y = β1,0 +X1β1,1 +X2β2 + u1,

M2 : Y = β2,0 +X1β2,1 +
K∑
k=1

X3,kβ3,k + u2.

The latent DGP (denoted as S1) is

Y = 0.5 + 0.5X1 +X2a+
K∑
k=1

X3,kb+ ε (F.1)

where (X1, X2, X3,1, . . . , X3,K , ε) is a standard normal random vector. Thus,

−2f(M1, F0) = EF0 [u
2
1] = Kb2 + 1;

−2f(M2, F0) = EF0 [u
2
2] = a2 + 1. (F.2)

Therefore, the null hypothesis holds if and only if a2 = Kb2, and when a2 > Kb2, f(M1, F0) >

f(M2, F0). When a2 = Kb2 = 0, u1 = u2 and hence ω2
F0,∗ = 0. Otherwise, ω2

F0,∗ > 0. There are

31 DGPs considered in this design, which are determined by different combinations of a and b:(
a

b

)
j=1,...,31

=


(
a0 + 16−s

50

b0

)
s=1,...,15

,

(
a0

b0

)
,

(
a0

b0 + s
50

)
s=1,...,15

 (F.3)
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Figure 6: Finite Sample Rejection Rates of the Tests (K = 2)
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where a2
0 = Kb2

0 and we consider two possible values for a0 in this design: a0 = 0 or 0.5. The null

hypothesis H0 holds when (a, b) = (a0, b0). ModelM1 is better than modelM2 under the first 15

DGPs in (F.3), while model the model M2 is better under the last 15 DGPs. The finite sample

rejection rates of the tests are calculated using 10000 simulated samples.

Figure 6 presents the finite sample rejection rates of the tests when K = 2. When a0 =

0.5, ω2
F0,∗ > 0 and our nondegenerate test statistic has asymptotic standard normal distribution

regardless the value of K. From graphs (a) and (b), we can see that the finite sample rejection

rates of our test (the red solid line) and the parametric test proposed in Shi (2015b) (the blue

dashed line) are very close to the nominal level 5% (H0 holds at j = 16). When the sample size

is 500, both tests have good power which is further improved with larger sample size 1000. When

a0 = 0, ω2
F0,∗ = 0 and the standard normal distribution may not be a good approximation of the

finite sample distribution of our test statistic since K is small here. In this case (graphs (c) and

(d)), both our test and the parametric test proposed in Shi (2015b) under-reject. The finite sample

rejection rates of both tests are close to zero under the null. The power of the tests becomes worse
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Figure 7: Finite Sample Rejection Rates of the Tests (K = 8)
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for both tests when a0 = 0, although our nonparametric test has better power. Increasing the

sample size from 500 to 1000 improves the power of both tests.

The finite sample rejection rates of the tests when K = 8 are included in Figure 7. In graphs

(a) and (b), we observe similar properties of both tests to the case with small K (K = 2), which

is expected since in both cases ω2
F0,∗ > 0 and our nondegenerate test statistic has asymptotic

standard normal distribution. When a0 = 0, ω2
F0,∗ = 0 and both tests are still under-rejection

under the null. However the null rejection rates of both tests are closer to the nominal level with

larger K. In graphs (c) and (d), we see that our nondegenerate test has larger power particularly

when modelM1 is better than modelM2 (i.e., j = 1, . . . , 15). The power of these tests are similar

when model M2 is better than model M1 (i.e., j = 17, . . . , 31). Increasing the sample size from

500 to 1000 improves the power of both tests.

F.2 Simulation design 2

In the second simulation design, the latent DGP is

Y = 0.5 + 0.25
K∑
k=1

X1,k +X2a+X3b+ ε, (F.4)

where (X1,1, . . . , X1,K , X2, X3, ε) is a standard normal random vector. There are two linear regres-

sion models

M1 : Y = β1,0 +
K∑
k=1

X1β1,1,k +X2β2 + u1,

M2 : Y = β2,0 +
K∑
k=1

X1β2,1,k +X3β3 + u2.

Thus

−2f(M1, F0) = EF0 [u
2
1] = b2 + 1;

−2f(M2, F0) = EF0 [u
2
2] = a2 + 1. (F.5)

Therefore, the null hypothesis holds if and only if a2 = b2, and when a2 > b2, f(M1, F0) >

f(M2, F0). When a2 = b2 = 0, u1 = u2 and hence ω2
F0,∗ = 0. Otherwise, ω2

F0,∗ > 0. There are 31
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Figure 8: Finite Sample Rejection Rates of the Tests
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DGPs considered in this design, which are determined by different combinations of a and b:(
a

b

)
j=1,...,31

=


(
a0 + 16−s

50

b0

)
s=1,...,15

,

(
a0

b0

)
,

(
a0

b0 + s
50

)
s=1,...,15

 (F.6)

where a2
0 = b2

0 and we consider two possible values for a0 in this design: a0 = 0 or 0.5. The null

hypothesis H0 holds when (a, b) = (a0, b0). The modelM1 is better than the modelM2 under the

first 15 DGPs in (F.6), while model the model M2 is better under the last 15 DGPs. The finite

sample rejection rates of the tests are calculated using 10000 simulated samples.

Figure 8 presents the finite sample rejection rates of the tests when K = 10. When a0 = 0.5,

ω2
F0,∗ > 0 and the null rejection rates of both tests are very close to the nominal level 5% (H0

holds at j = 16) and their rejection rates are almost the same under the alternative, which is

similar to what we have observed in the first simulation design. When a0 = 0, ω2
F0,∗ = 0 and we

see that both tests under-reject under the null. Since the two modelsM1 andM2 have the same
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dimensions, the rejections rates of both tests are symmetric around j = 16. Our nonparametric

test has better power than the parametric test proposed in Shi (2015b) in both sample sizes 500

and 1000 (graphs (c) and (d)).

G Additional Empirical Results

The test result based on NLSY 97 is reported in Section 8 of the main text. Here we report the

test result based on NLSY 79. The NLSY 79 sample is obtained in the same way as NLSY 97 and

contains 2554 observations. The sample may not be exactly the same as that used in Cameron

and Heckman (1998), since we are not able to obtain the exact sample used in their paper.

Table 2: Model Selection Tests Based on NLSY 79

Test Statistic p-value

Robust Test 4.684 .000
Vuong (1989) Test 5.472 .000

Table 2 reports the test results. As opposed to the result based on NLSY 97, here we see that

the null hypothesis that the logit transition model and the ordered logit model are equally close

to the data distribution is strongly rejected even when our robust test is used. This may indicate

that the schooling choice decision was made differently by the NLSY 97 cohort than the NLSY 79

cohort.
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