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Abstract

We propose a Vuong (1989)-type model selection test for models defined by conditional moment
restrictions. The moment restrictions can be standard equality restrictions that point identify the
model parameters, or moment equality or inequality restrictions that partially identify the model
parameters. The test uses a new average generalized empirical likelihood criterion function designed
to incorporate full restriction of the conditional model. We also introduce a new adjustment to the
test statistic making it asymptotically pivotal whether the candidate models are nested or nonnested.
The test uses simple standard normal critical value and is shown to be asymptotically similar, to be
consistent against all fixed alternatives and to have nontrivial power against n~!/2-local alternatives.
Monte Carlo simulations demonstrate that the finite sample performance of the test is in accordance

with the theoretical prediction.

JEL classification: C12, C52

Keywords: Asymptotic size, Model selection test, Conditional moment inequalities, Partial identi-

fication, Generalized empirical likelihood



1 Introduction

Conditional moment equality models is a standard econometrics tool while conditional moment in-
equality models have been increasingly recognized as a convenient and useful statistical formulation of
many nonstandard economic programs (e.g. Manski and Pepper (2000), Ciliberto and Tamer (2009),
Pakes, Porter, Ho and Ishii (2014) etc.). Methods for parameter inference for both the equality and
the inequality models are abundant nowE however, there has been no general method available to
assist practitioners to choose between different conditional moment restriction specifications. This
paper fills in this gap by proposing a Vuong (1989)-type model selection test that allows one to
choose between two conditional moment restriction models according to their distance to the true
data distribution. We show that the test has correct asymptotic size no matter the candidate mod-
els are nested, overlapping or strictly nonnested, is consistent against all fixed alternatives and has
nontrivial n=1/2-local power.

We set up our test allowing the conditional moments to be equalities or inequalities or a combina-
tion of both types. We also allow, thought do not require, partial identification of model parameters.
In the case of point identification, we also permit nonstandard identification, by which we mean that
the identified true value of the parameter needs not have an asymptotically normal estimator. Our
test has general applicability to the problem of model selection among partially identified conditional
moment inequality models, point identified conditional moment inequality models, partially identi-
fied conditional moment equality models and point identified conditional moment equality models,
as well as selection across these four types of models. To the best of our knowledge, Kitamura (2003)
is the only other paper that provides a model selection procedure for any of these testing scenario.
Kitamura (2003)’s test —based on the local empirical likelihood criterion — applies to moment equality
models with standard point identification and is based on pointwise asymptotic theory.

From a technical point of view, this paper builds upon the empirical process arguments in Shi
(2015). However, the conditional models are substantially different from the unconditional models
studied in Shi (2015). In particular, we face two new challenges. First of all, the exponential
tilting criterion function used in Shi (2015) allows only finite number of moment restrictions and
thus does not apply to the conditional moment restriction models, where the conditional moment
restrictions’ imply infinite number of unconditional moment ones. Instead, we propose a new criterion
function, namely the average generalized empirical likelihood (AGEL) criterion function. To form
the AGEL function, we first transform the conditional moment restrictions into equivalent infinite

number of unconditional moment ones following Andrews and Shi (2013a; AS hereafter), and then

'For conditional moment equality models, see e.g., Donald, Imbeds and Newey (2003), Kitamura, Tripathi and Ahn
(2004), and Dominguez and Lobato (2004). For conditional moment inequality models, see e.g. Andrews and Shi
(2013a), Chernozhukov, Lee and Rosen (2013), Lee, Song and Whang (2013).



take a weighted average of the generalized empirical likelihood of the models defined by each (set
of) unconditional moment inequality (-ies). The weighted average defines the AGEL function and
preserves the full model restriction of the conditional moment restriction model.

Secondly, an essential feature of the unconditional moment inequalities transformed from the
conditional moment restrictions is that many of the moment functions have variances arbitrarily
close to zero. This creates new challenges in proving the convergence rate of the GEL nuisance
parameters (which is a necessary step in deriving the asymptotic distribution of our test statistic)
that is not faced in Shi (2015). We deal with this by introducing a careful truncation of the weighted
average.

One challenge that we share with Shi (2015) is the possible degeneracy of the asymptotic dis-
tribution of the pseudo-likelihood ratio statistic. We propose a different solution than Shi (2015).
Specifically, we introduce a new adjustment to the pseudo-likelihood ratio statistic, making it asymp-
totically pivotal (in fact, standard normal) under the null regardless of the true data distribution
or the relationship between the candidate models. As a result, our test simply uses the standard
normal critical value and achieves asymptotic similarity. The adjustment simplifies the split sample
idea of Yachew (1992) and Schennach and Wilhelm (2011), and achieves the same purpose as the
latter. The difference and advantage of our method over theirs are discussed after introducing our
test statistic in Section 4.

Besides Shi (2015), this paper is related to a large literature on model selection test following
Vuong (1989). A literature review can be found in the introduction of Shi (2015). We only note here
that none of those papers deal with conditional moment (either equality or inequality) models. This
paper is also related to the empirical likelihood approaches for parameter inference in conditional
moment equality models proposed in Donald, Imbens and Newey (2003) and Kitamura, Tripathi and
Ahn (2004). Our AGEL criterion function differs from both. We choose the AGEL criterion func-
tion primarily for tractability in the context of (potentially) partially identified conditional moment
inequality models.

The rest of the paper is organized as follows. Section 2 presents the model selection problem of
our interest and gives several motivating examples. Section 3 establishes the AGEL criterion function
to measure the distance between the conditional moment restriction models and the true distribution.
The model selection test is proposed in Section 4. Section 5 summarizes the uniform asymptotic size
property of our test and and Section 6 summarizes the power properties against fixed alternative
and local alternatives. Section 7 discusses possible extensions in three different directions. Section
8 presents Monte-Carlo simulation results for a missing data example and Section 9 concludes. We
have included a step by step algorithm to implement our test in Appendix[A] All mathematical proofs

are contained in the rest of the Appendix.



2 Model Selection Problems

We consider two conditional moment inequality/equality models P; = Ugle@ L P1p, and Py =
U92€@2 Ps6,, where Py g, and Pa g, are the set of distributions that are consistent with the moment

conditions for parameters #; and 6, respectivelyﬂ

P P :Eplmy;(W,01)|X] =0 as. [Py] for j =1,...,p1,
79 = .
b Ep[my;(W,01)|X] >0 as. [Py] for j =p1 + 1, ..., k1.
P : Ep[may;(W,02)|X] =0 as. [P] for j =1,...,pa,
7)2,92 = . (21)
Ep[mzj W, 92)’X} >0 a.s. [Pm] for J=p2+1, .. ko

In the above equation, {W; = (Y/, X!) € W} | is a random sample generated from Py, a generic
true distribution on W. Also, Y; € Y C R%_ X; € X C R%, W =) x X. The notation Ep denotes
the expectation under the distribution P and P, the marginal distribution of X implied by P. The
true distribution Py may or may not belong to either model. For s =1 and 2, ms = (mg1, ..., Mg p,,
Mg pytls ey My ks, ) are RFs -valued moment functions known up to the finite-dimensional parameters
0, € ©, C R%s. Model P, is called correctly specified if Py € P, and is called misspecified
otherwise. The parameters 65 may or may not be point-identified.

The goal of this paper is to compare models P; and Py and select the one that is closer to the
true distribution Py in terms of a pseudo-distance measure. Let dz(Ps, Py) be the pseudo-distance

measure that will be defined later. We want to construct model selection tests for the null hypothesis

Ho : de(Pr, Po) = de(Pe, Po). (2.2)

Now, we give a few illustrative examples of model selection problems in the context of conditional

moment inequalities/equalities.

Example 1 (Conditional Moment Equalities). Consider the case where p; = k1 and p2 = k»
and the parameters are point identified in both models. Then the models P; and Ps reduce to
conditional moment equality models dealt with in Donald, Imbens and Newey (2003), Kitamura,
Tripathi and Ahn (2004), Dominguez and Lobato (2004), etc. These kind of models have become
standard tools in empirical research.

Below we give a few examples of involving conditional moment inequality models, which may be
less familiar to the reader than conditional moment equality models.
Example 2 (Interval Outcome in Regression Models). Consider the regression models with

interval outcomes from Manski (2005). It is of interest to select different regressors or functional

2We start with models with the same conditioning variables and later extend our theory to allow the conditioning

variables to differ.



forms for the regression functions. To be more specific, let Y be a latent random variable (e.g.
wealth or income) that is not perfectly observed. Instead, we observe an upper bound and a lower
bound on Y, say Y and Y, respectively. For a vector of covariates X and a function r1(X, ;) that
is known up to a finite-dimensional parameter 6, let Y = r1(X,60;) + . Suppose Z is a vector of

instrument variables such that E(¢|Z) = 0 a.s. [P;]. Then, the model P; is

Pl = {P :EP[Y—’I”l(X, 91)|Z] >0 a.s. [PZ] and
Ep[’r'l(X, 91) —X|Z] >0 a.s. [PZ], 0, € @1} (2.3)

The distribution P are defined on the space of the observed random variables (Y, Y, X, Z). For
model Py, the r1(X,01), 61 and O in (2.3) are replaced with ro(X,62), 62 and Oy, respectively. A

model selection test is to determine whether P or Py is closer to the true distribution.

Example 3 (Interval Regressor in Regression Models). Consider the regression models with
interval regressors from Manski (2005). Let Y be a dependent variable and X be a set of covariates.
Also, let v be a regressor that is not observed perfectly but we observe an upper bound and a lower
bound on v, say ¥ and v. Assume that E(Y|X,v) = f(z,v,60), where f is a function known up to the
finite-dimensional parameter . Manski (2005) assumes that f is weakly increasing in v, and obtains

the following moment inequality model:

Py ={P :EplY — f(z,v,601)|X] >0 as. [P,], and
Ep[f(z,7,01) —Y|X] >0 as. [P], 61 €01} (2.4)

The distribution P are defined on the space of the observed random variables (Y,v,v, X).
On the other hand, if we assume that f is weakly decreasing in v, we have a different moment

inequality model:
Py ={P :EplY — f(z,v,62)|X] <0 and
Ep[f(x,7,602) —Y|X] <0 as. [P, 62 €09} (2.5)

By comparing models P; and Ps, one can determine which model is closer to the true data distribu-

tion. If one has the prior information that one of the model is true, the test then helps one determine
the sign of df/0v.

Example 4 (Entry Game — Cross-firm Effect). Consider the entry game model from Andrews,
Berry and Jia (2004) and Ciliberto and Tamer (2009). Consider a 2 x 2 entry game with the following



payoff matrix:

Firm 2
0 1
Firm1l 00,0 0, X)B2 — e
1| X{B1—e1,0| X101 +a; —e1, Xoby +as — &2

The observable random variables are the market characteristics X = (X1, X2)" and the game outcome
Y. The variable Y may take four values: (0,0), (0,1), (1,0) and (1,1), where the first number in the
parenthesis is the equilibrium action of firm 1 and the second number, the equilibrium action of firm
2. The coefficients 81 and (2 are the marginal effects of the characteristics X on profits, and £; and
g9 are the unobserved components of the firms’ profits. The parameters a1 and ao are the cross-firm
effects, which are the effects of the firms on their opponents’ profit when they are on the market at
the same time.

Let F;, ¢ (-, +;0-) denote the joint c.d.f. of e; and e9, F;, (+;5;) the marginal c.d.f. of ¢, and
F.,(-;6-) the marginal c.d.f. of 2. The c.d.f.s are known to the econometrician up to the finite-
dimensional parameter S.. Assume that the firms have full information about their own and their
opponents’ payoffs and play a simultaneous-move Nash game.

Andrews, Berry and Jia (2004) assume a; < 0 and as < 0 and obtain the following moment

inequality model:

P1={P :Eplp;(X,0:) — 1(Y = 5)|X] =0, for j = (0,0) or (1,1),
Eplp;(X,0:) —1(Y =5)|X] >0, for j =(0,1), or (1,0) a.s. [P,],
91 = (ﬁi?ﬂévalaa%ﬂ;) € @1} (26)

where

(X,01) = 1 — F, (X813 0:) — Fey (X582; Be) + Fry 2, (X101, X552; 02),
P,1)(X,01) = Foy (Xpf0; Be) — Fry 0y (X151 + a1, X585 Bc),
P,0)(X,01) = Fo, (X1515 B:) — Fry ey (X151, X582 + az; Bc),
pa)(X,01) = Fey (X181 + a1, X502 + ag; Bc). (2.7)

P(0,0) X, 601

If we assume the cross-firm effects have different signs as in Andrews, Berry and Jia (2004), we

obtain a different moment inequality model:
Py = {P :Eplp;(X,02) — 1(Y = j)|X] = 0, for j = (0,0) or (1,1),
Eplp;(X,02) — 1(Y = )| X] =0, for j = (0, 1), or (1,0) as. [Py]
0> = (81, By, a1, a2, L) € O2.} (2.8)



where p;, j = (0,0), (1,1), (0,1) and (1,0) are defined in (2.7).

A model selection test comparing the two models can determine which sign of the cross-firm
effects is more consistent with the data. Such test is useful especially when there are reasons to be
unsure about the signs of a; and ag in some markets. For example, in a shopping center, one retail
stores may worry about the other store stealing its business, but on the other hand may benefit from
the casual shoppers that the other store attracts to the shopping center. Which overall sign of the

cross-firm effect is more plausible becomes an empirical question.

3 Preliminaries

3.1 Pseudo-distance Measure

To define our pseudo-distance measure, we first use AS’s method to transform the conditional mo-
ment equality /inequality to infinitely many number of unconditional moment equalities/inequalities
without loss of information. That is, we choose a collection of instrument functions G = {gy : X —

[0,1] : £ € L} for an index set £ to make sure, for s = 1,2, and every 05 € O,

D . P: EP[msJ(W? Hs)gf(X)] =0as. forj=1,---,ps (3.1)
0 Ep[ms ;(W,05)ge(X)] > 0 as. for j =ps+1,--- ks, forall ¢ € L. '

AS give a list of G sets that can ensure that the above equation hold. Here, we impose an assumption

on X and focus on two types of G for simplicity.

Assumption 3.1 X is a Cartesian product of compact intervals, X = H?il[xgj,xuj] and without

loss of generality, we assume X = H;l;l[O, 1].

Assumption [3.1] is not restrictive in that we can always apply a transformation on X such that the
support of the transformed covariates is H?QI[O, 1]. For example, let ¢(-) denote the CDF function
of a standard normal distribution. Then ¢(X;) will be a random variable with support equal to [0,1].
Regarding this, please see Section for more details.

The first G we consider is the set of the indicator functions of countable hyper cubes:
gc—cube = {gﬁ(') = 1( € CZ) L= (SL’,T) € Ec—cube}a where
Cy = (x?il[xj,xj + r]) N A and
Le-cube = {(x, (207" : 2¢-2€{0,1,2,--- ,2¢— 1}, and ¢ = go,q0 + 1, -~ } , (3.2)

where ¢ is a natural number. Note that for each q, {Cy : £ € Lecupe and r = (2¢)"1} forms a

partition of X'. The set G..cube 18 an example given in AS and Lemma 1 of AS guarantees that it

satisfies equation (3.1))



The second G that we consider is the set of the indicator functions of a continuum of hypercubes:

Geube = {9¢(:) = 1(- € Cp) : £ € Lewpe ), where Leype = {(z,7) : z € [0,1 — r]dz,r € (0,7}, (3.3)

for some 7 > 0. The set Geybe is similar to AS’s Gox except that all edges of a hypercube in Geybe
are of the same length. Note that G. cupe is a subset of Geupe. Therefore, Geupe also guarantees

We will define the pseudo-distance from Ps to Py to be the infimum of the pseudo-distance from
P9, to Py over 05 € ©4. Thus, we need to define the latter distance first. To do so, we first define
the /-th supermodel of P, g, as

P: Eplms;(W,05)9:(X)] =0as. for j=1,---,ps
Pros= { Pl (W, 05)90(X)] } 5.4

Epims ;(W,05)9¢(X)] > 0 as. for j =ps+1,-- ks,
for each ¢ € £. The term “supermodel” is used to indicate the fact that Psg, C Psg, . Then, for
each 0, € O4 and each ¢ € L, Psp, ¢ is an unconditional moment inequality model covered in Shi
(2015).
Like in Shi (2015), we can define the GEL distance from P g, ¢ to Py

d(Ps,Gs,Za PO) =wv ( Sulze )EP() [’Q(ngs(Xv es)gé(X))]> ’ (3'5)
vs€ls(0s

where k() : K — R is a strictly concave function defined on a subset IC of R, U(-) : R — R is a strictly
increasing function and I's(0s) = {vs € RP* X R{f—ps cyims(x,05) € K for all x € X}. The functions
k(-) and ¥(-) are user chosen and determine which of the GEL distances one is using. The common
choices of the GEL distances include the empirical likelihood (EL), the exponential tilting (ET) and
the continuous updating GMM (CUE), which correspond to (k(y) = log(1—y), K = (—00,1), ¥(k) =
K), (k(y) = 1— ¥, K = R, (x) = —log(1 — x)), and (x(y) = (1 — (y+ 1)?)/2, K = R, ¥() = x),

respectivelyﬂ Other choices can be used as well, as long as the following assumption is satisfied:

Assumption 3.2 (i) k(-) is strictly concave, three times continuously differentiable with x(0) = 0,
and x'(0) = "(0) = —1.
(i) W(-) is strictly increasing and is twice continuously differentiable with ¥(0) =0 and ¥'(0) = 1.

We then define the pseudo-distance from Psg  to Py to be a weighted average of d(Psg, ¢, Fo)

across f € L:

de(Pyg., Py) = /ﬁ d(Py g0, Po)dF (), (3.6)

3In the CUE case, the distance measure is equivalent to the the GMM criterion function with the continuously

updating weighting matrix being the inverse of the non-recentered covariance matrix.



where F'(¢) is a probability measure whose support contains £. Because the new pseudo-distance
is an average of the GEL distances, we refer to it by the average generalized empirical likelihood
distance (AGEL). Finally, we define the distance from Ps to Py as

de(Pos Po) = 0k de(Pog,, Po) = inf /[, d(Pso. o Po)dF(0). (3.7)

Note that the integration-type metric is commonly used in testing problems that involves infinitely

many restrictions such as Stinchcombe and White (1998) and Lee, Song and Whang (2013).

Note that different choices of F(¢), k(+) or ¥(-) will produce different pseudo-distance measures. If
both P; and P, are misspecified, different choices of the pseudo-distance measures do not necessarily
agree on which model is closer to Fy. On the other hand, in Lemma in the appendix, we show
that dg(Ps, Py) > 0, and dz(Ps, Po) = 0 iff Py € Ps. This holds for general choices of F({), x(-) or
W(-). This implies that if Py € Py and Py ¢ Pa, then 0 = dp(P1, Po) < de(P2, Py), i.e. Py is closer
to Py than P2 no matter what F'(¢), x(-) or ¥(-) to use. This is an important property because it
means that the model selection test can determine (up to statistical error) which model is correctly

specified when one has the prior information that one of them is.

3.2 A Uniqueness Assumption

Next we introduce a uniqueness assumption that extends the unique pseudo-true distribution as-
sumption in Shi (2015). This assumption allows the model selection test to be of a simple form.
Let the optimal value of Lagrange multiplier v for each ¢ and each 6, be
oepy(0s) =arg max | Ep, (1 (vems (W, 05)ge(X)]. (3-8)
Assumptions that we impose later for our main results will guarantee that v}, 5 (6s) exists (that is,

is finite) and is unique, for every £ € £ and 65 € ©,. With 7;,4(98, Py) defined, we can write

Ae(Puo ) = [ 9 (w33l (0m(W.0.)0()) ) 4P (). (39)

Our assumptions will also guarantee that dz(Psyg,, Po) is continuous in 6, € O, and that © is

compact. Given those, the following set is well defined:
@:(PO) = arg Gmin dg('Ps’gs, Po). (310)

Se S

We call this set the Pseudo-true Set as an analogue to the “pseudo-true value” in potentially mis-
specified point identified models. If the model is correctly specified, that is, if Py € Ps, then O%(F)
is the identified set. One of the important features of conditional moment inequality model is that
their identified set can contain more than one point. We respect this feature and allow (but do not

require) O%(P) to contain more than one value.

10



While we allow the pseudo-true set to be multi-valued, one uniqueness condition is needed to
give the model selection test that we propose in the next section a simple form. This uniqueness

condition is stated below:

Assumption 3.3 7}, p (05)'ms(W,05)90(X) = 75, p, (05)ms(W,07)ge(X) a.s. [Po] for all € L and
0s,0% € OL(F).

Assumption is similar to and serves the same purpose as the unique pseudo-true distribution
assumption in Shi (2015), although it is difficult to give it a pseudo-true distribution interpretation
in the conditional models here. Like the unique pseudo-true distribution assumption, Assumption

B3] is automatically satisfied in the following scenarios:

e the model is correctly specified (possibly still partially identified) because v}, PO(HS) =0 for all
0s € O%(Py) and for all £ € £ in that case;

e O%(P) is not a singleton, but we can reparametrize the model so that the new parameter has

a unique pseudo-true value; and

e the model is misspecified and O%(Fp) is a singleton.

Because Assumption is automatically satisfied in the above cases, it is innocuous to assume

it under our null hypothesis in the following important model selection testing scenarios:

e conventional nested testing for point or partially identified models in which the correct speci-

fication of the bigger (less restrictive) model is maintained,

e nonnested testing for point or partially identified models in which one has the prior knowledge

that one of the models is correctly specified,
e nested or nonnested testing for standard point identified conditional moment equality models,

e nested or nonnested testing for point identified conditional moment inequality models. Point
identified conditional moment inequality models are important special cases of conditional
moment inequality models, and their use has been studied in Khan and Tamer (2009) and
Moon and Schorfheide (2009), among others, and

e nested or nonnested testing for partially identified models where the partial identification can

be eliminated by reparameterization.

Therefore, for our asymptotic size results presented below, Assumption is not restrictive for any
of the above five testing scenarios. For our asymptotic power results, it is not restrictive for the last
three testing scenarios. In other cases, Assumption could be restrictive, and we discuss a way to

relax this assumption in Section [7]

11



4 Model Selection Test

In this section, we introduce our model selection test. The test is based on the pseudo-likelihood
ratio statistic and uses a standard normal critical value. We introduce both a 2-sided version and a
1-sided version of the test.

The pseudo-likelihood ratio statistic is the sample analogue estimator of LRp, := dz(P1, Py) —
d(Pa, Po){]

LRy = dc(Py, Po) — de (P, o) (4.1)
where

5 — oo —1 N / : ‘

ePer ) = iy [ |7t S (00 me Wi o) (X)) | (1) (4.2

with £, ={¢ € L:r >r,} for r, being a positive sequence that converges to zero as n — 0, and

Asen(0s) =arg  min 07ty w(yims(Wi, 05)ge(Xi))- (4.3)

veeRps xR

Notice that in dz(Ps, Py), the integrations is over £,, instead of £. We use the trimming argument

to control the estimation accuracy of 45/, (-) when the last element of ¢ is small. We pick r, to

balance the estimation accuracy of 4, and the approximation quality of dz, (Ps, Fy) for dz(Ps, Fo).
The pseudo-likelihood ratio statistic LR,, can be shown to satisfy n'/ 2(ﬁn—LR p,) —a N (0, WIQDO)

under regularity conditions for
wl%o = Ep, (A}M)Q, where
o = [ (WO ) [5O3 0 OV, 00)90(X)) = M )
= (M3, p,) [5(75.0,p, (03) M2 (W, 03)90(X)) — M3 4 ] }dF(ﬂ), for

My p, = Eny [5(7: 0,5, (02) ms(W, 07)g0(X))], and
0% € ©(PRy), for s=1 and 2. (4.4)

This weak convergence result can be used to build a hypothesis test when two additional problems

are solved.

The first problem is standard — the asymptotic variance w%o needs to be estimated and used to

studentize LR,,. To estimate wl%o, we use W2 = SUDy 8. s—19 @2 (01,09), where
s s,ny S=1,

~

O, = arg min / \Il[]/\/[\57g7n(95)]dF(€), and
Lo,

0s€05

4Notice that here the population “pseudo”-likelihood ratio has the opposite interpretation as the likelihood ratio in

a parametric model in that here LRp, > 0 means Model 2 is better (closer to Py) than Model 1.

12



n

W2(01,02) = 1 Z [/ﬁ \1’/(1\//-711,71(91))[R(’?1,e,n(91)/m1(Wi,91)9@(Xi)) - ]\//-71,4,71(91)]

n -
=1 Tn

2
— V(Mg (62)) (5 (F2,0n (02) ma (Wi, 02)g0(X5)) — J\//T2,1z,n(92)] }dF(ﬁ)} , for

—

Mipn(0s) =071 K(3s,0m(05) ms (Wi, 05)g0(X3)), for s = 1,2. (4.5)
=1

The set és,n is not necessarily singleton, which is why we define &2 to be a supremum over points in
@l,n X égm. However, we note that in theory, we can use d)i(él,n, élm) as (2)721 for any ésm S C:)S’n. In
practice, different points (0],65) € él,n X @g,n typically produce the same &2 (61, 65).
The second and trickier problem is the possibility that w1230 = (. This possibility happens when
o = 0 a.s., in particular, when both models are correctly specified. When it happens, the noise
in the estimation of ©%(Fy) will dominate and cause the studentized LR, not to have a simple
asymptotic distribution. This problem is the same as that studied in Shi (2014) in regular point-
identified models, but unfortunately does not have a neat solution as that in Shi (2014) due to the
partial identification and the inequality constraints.
Our solution to this problem is to introduce some extra randomness to Eﬁn so that the noise in
the estimation of ©%(FPy) will be dominated by this extra randomness when ""1230 = 0. Specifically, we
introduce an auxiliary random variable, U ~ N (0, 1), which is independent from the original sample,

and let our test statistic be
T = (@2 +62) " Y2(VnLR, + 6,U), (4.6)

where &, is a data-dependent scalar that is asymptotically independent of \/ﬁ(ﬁn — LRp,), wy, and
U. The scalar 6, should be bounded away from zero in probability when w%o = 0 and converges to
zero when wl%o > OE| A suitable choice is given in at the end of Section [5| below.

In the next section, we show that under Hy and regularity conditions, and with suitable choices
of 6, T, =4 N (0,1). Thus, our model selection test uses the N(0,1) quantile as critical value.

Specifically, our two-sided model selection test of level « is defined as

@1 (0) = LIT| > 2012}, o

5The use of extra randomness works in a very similar fashion as the sample-splitting techniques used in Yachew
(1992) and Schennach and Wilhelm (2011), but instead of implicitly add noise to the test statistic by sample-splitting,
we add the noise explicitly. One advantage of our approach is that the amount of noise added can be easily controlled
and in particular can be made to vanish with sample size when it is not needed, that is when wfao > 0. Another
advantage is that our test statistic is still asymptotically standard normal if both candidate models are correctly
specified (75, p, = 0 for s = 1,2 and £ € £), while in that case test statistics constructed following their methods in

the moment (in)equality context do not have standard asymptotic distribution.
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where 2, /5 is the 1 — a/2 quantile of N(0,1). We select Model 1 if @Zsided () = 1 and T, > 0 and

select Model 2 if 25194 () = 1 and T, < 0. Our one-sided model selection test of level o (for Hy
vs. Hy :dp(P1, Po) —de (P2, Po) > 0) is defined as

plsided () — 10T} > z,). (4.8)

The one-sided test should be used when one has prior knowledge that LRp, > 0. One notable

example where such prior knowledge is available is when it is known that Model Ps nests Model P;.

5 Asymptotic Size

In this section, we show that the model selection test we proposed above has correct asymptotic size,

that is

AsySZ(a) := limsupSZ,(a) := limsup sup Eppp(a) = a, (5.1)
n—oo n—oo  PEFy
where o, (a) = p2®9¢d(q) or pl-*ided() and Fy is the set of true data distributions under which Hy
and regularity conditions hold, and is defined in Assumption below. In fact, we will show that
our test is asymptotically similar, that is, not only AsySZ(a) = a but also

liminf inf Epgn(a) = a. 2
iminf inf Epgn(a) =a (5.2)

To begin, we need additional assumptions. The first assumption is on the parameter space and

the moment functions:

Assumption 5.1 For s = 1,2, assume that:
(i) Oy is compact, and

(ii) for allw € W, mg(w,05) is three times continuously differentiable in 0.

Next, we impose regularity conditions on the data generating process. These conditions will
specify the set Fp on which the asymptotic size is defined. To introduce the regularity conditions,

some additional notations are needed. Let

M&@,Po ('757 ‘95) = EPo’i(PYém(Wh 05)92(Xi)>- (5.3)

Let €igmax(A) denote the biggest eigenvalue of a matrix A. For a positive number M, let '}, denote
Nr(0g, )N (RPs x Rirps), where Njs(0p,) is a closed ball in R¥s centered at the origin with radius M.
Let ¢s = (72,0%). Let “A” and “V” denote the minimum and the maximum operator, respectively.
Let Ne(O©%(F0)) = Ug,cor(py) Ne(0s). Let ppy e = Ep,(g¢(X)) for all £ € L, which is the probability
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of X in Cy under Py. Finally, let the left Hausdorff distance from a subset A; of a FEuclidean space
to another, As, be defined as

pin(Ar, Ag) = sup inf |ja —d'||. (5.4)
a€A; a'€A2

We call it the left Hausdorff distance because the symmetrized version of pyj, is the Hausdorff distance:
pn(A1, A2) = max{pin (A1, Az2), pin(Az2, A1)}

Assumption summarizes the regularity conditions that we hold as the maintained hypothesis,

and Assumption defines the null hypothesis.

Assumption 5.2 For positive constants M and 0, the set F is the set of Py such that for s = 1,2,
Assumption [3.3] holds, and

(i) {Wi}1, is an i.i.d. sample drawn from Py,
(ii) dg(Ps, Po) — de(Psg,, Po) < =0 (pjy, (05, ©5(Po)) A D),
(iii) vims(w,0s) € K for allw € W and for all ¢ € T, x O,
(iv) supg,co, rec 1750,m, (0s) < M =0,
(v) info,ers, <o, cigmx (B |20 | X]) < =6, a.s. [Pyl

(vi) almost surely in [Py 4],

EPO[ o {|’<~'(%ms(W,03))2+‘5+Ha“(%ms(Waes))HH

s €T, X O 995
2 / 3
[P CEOD 3 | PR ] <

(vil) Ep(wp IA*PM)2+6 <M, ifwp, >0, and

(viil) Py is absolutely continuous on X w.r.t the Lebesque measure with density f(x) such that
§< f(x) <M forallz e X.

Assumption 5.3 The set Fo ={Py € F : dp(P1,Py) = dp (P2, Po)}.

Assumption [5.2[(ii) is a global identification condition, which can be weakened at the expense
of more stringent condition on the adjustment factor &,,. Assumption (iv) basically requires the

models to be not too misspeciﬁedﬁ Assumption (V) is a full-rank condition, which is needed for

5This does not mean that we do not allow for global misspecification, but rather means that the global misspecifi-

cation cannot be unbounded.
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’y;& P (05) to be uniquely defined. This assumption is standard in the GEL literature, although it is
not standard in the moment inequality literature. Assumption [5.2f(vi) is a moment condition that
we need to derive our theory. Assumption (Viii) will make sure that p, p, is proportional to the
volume of Cy, which is useful for us to characterize the effect of the truncation. Assumption (viii)
requires that all covariates be continuous. However, at the expense of additional notation, we can
deal with the case where X has both continuous and discrete components. We present two ways to
do so in Section [7

The next assumption is on the measure on £ used in the integral, and on the truncation of £. In

the assumption, L¢ for a subset L of £ denote the complement of L relative to L.
Assumption 5.4 (i) /nr&*tt — 0, \/nrd — oo asn — oo, and
(ii) The support of F(£) is L and [,. dF({) = O(ry).

For Liupe, any F(£) with bounded density satisfies Assumption (ii). For L. cube, one F(¢) that
satisfies Assumption (ii) has a probability mass function: f(x,r) oc 72, where  stands for “is
proportional to” E]

Under the assumptions above, we can characterize the asymptotic behavior of fl\%n and @,. The
result is summarized in the following lemma. In the lemma, t, = (n!/2r%+1) v (n=1/2p~d=) By the

assumption above, t, — 0 as n — oo.

Lemma 5.1 Suppose Assumptions and hold. Then for any subsequence {a,}

of {n} and any sequences {P,, € F} such that t_?w%a — Vo € [0, 0],

an

(a) if voo € [0,00), then tgnl\/an(f]\%an — LRp, ) = 0y(1), t;202 —, Voo, and

an

(b) if voo = 00, v/an(LRa, — LRp,,)/wp,, —+a N(0,1) and &2, jw} D 1.

From Lemma we see that the asymptotic behavior of ﬁn and &2 depend on the speed

at which w]%a converges to zero. These different behaviors suggest the conditions that extra noise
2

introduced in fn should satisfy. In particular, when w?pa converges to zero faster than t; , we can
only derive rate at which \/a,, (fﬁan — LRp, ) and @,, converge to zero. In this case, we would like
04, to dominate these terms so that we will still have Tan converging to the N(0,1) distribution.

The assumption below summarizes the requirement on &,:

Assumption 5.5 (i) ¢, € [0,1] for all n.

And there exists a deterministic sequence o, € [0, 1], such that for any subsequence {a,} of n

and any sequence {P,, € Fln>1 s.t. t;°wh = Voo € [0,00] and 04, /wp,, — wee € [0,00],

"With such an F(£), one can show that Jpe dF(£) <1~ % o 7y, where the first o follows from Cauchy’s

™n

proof for the Basel problem based on partial sums.
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(ii) if veo € [0,00), we have G4, —p 1,
(ili) if voo = 00 and wes € [0,00), we have g, /Wa, —p Weo, and
(iv) if Voo = 00 and we = 00, we have W, /G4, —p 0.

Now, we are ready to show that the model selection test we propose in the previous section is
asymptotically similar: that is, for any sequences {P, € Fo}, lim, o Ep,on(a) = a for ¢,(a) =

gD%—sided (Oé) or S07ll-sided (Oé) .

Theorem 5.1 Suppose Assumptions and hold. Then for ¢n(a) =
Zsided(q) or plsided (o) (a) equation (5.1)) holds, and (b) equation (5.2) holds.

We conclude this section by giving a data-dependent choice of &,, that satisfies Assumption [5.5

For a positive integer b,. We define
bn = (14 C¥t,262) 7, (5.5)

for a user-chosen constant C' > 0. In the Monte Carlo, we find that C' = 5 works well. The following
lemma shows that &, defined this way satisfies Assumption if tgnl grows with n but at a slower

rate than ¢, 1.

Lemma 5.2 Suppose Assumptions and hold. Also suppose t,/ty,, — 0. Then
0n defined in equation (5.5)) satisfies Assumption .

6 Power Properties

In this section, we show that our model selection test is consistent against all fixed alternatives and

1/2 1pcal alternatives.

it has nontrivial power against all n~
First, we show the fixed alternative result. Theorem below shows that our model selection
test rejects Hy with probability approaching one under a fixed data distribution such that Hy is

violated.

Theorem 6.1 Suppose Assumptions B.1], B2, B.1], 5.2, 5.3} (.4 and [5.5| hold. Then for any P, €

F\Fo, we have limy,_, Ep, on(a) =1 for op(a) = @%‘Sided(a) or gp}L'Sided(a).

~1/2_]ocal alterna-

Next, we show the local power result. The following assumption specifies the n
tives we consider. Without loss of generality, we assume that the model P; is closer to the sequence

of true distribution than the model Ps.

17



Assumption 6.1 The sequence of true data distribution {Py «}n>1 satisfies P, . € F\Fo for all
n>1, (i) wp,, >0 foralln>1, wp,, = we >0, and (ii) vnLRp,, — h1 > 0.

Theorem below shows that our test has non-trivial power against n~/2-local alternatives
satisfying Assumption It is also straightforward to see from the theorem that when the local

alternatives approach the global alternatives in that h; — oo, the asymptotic power increases to one.

Theorem 6.2 Suppose Assumptions and hold. Then,
(a) liminf, o0 Ep, 0259 () > 1 — ®(24/2 — h1//wi + 1) + ®(—24/2 — h1/v/w2, + 1) and
(b) liminf,, 0 Epn’*gpgl'Sided(a) >1—®(zq — hi/Jwik +1).

7 Extensions

In this section, we extend our method in three different directions: (i) to allow for discrete variables
in the conditioning sets, (ii) to allow the conditioning sets in competing models to be different, and
(iii) to relax Assumption

7.1 Discrete Variable in Conditioning Set

Here we discuss two methods to deal with discrete conditioning variables. For both methods, we
discuss the case where there is only one discrete conditioning variable and it is a binary variable
taking values in {0,1}. More general discrete variables can be incorporated similarly.

Let W = (Y, X, Z) where Z is a binary variable and X are continuous variables. Let the condi-

tional moment inequality/equality models be Ps = (Jy_co, P, for s =1 and 2

b, _ {P . Ep[m;(W,0,)|X, Z) = 0 a.s. [Py.] for j =1, ..., ps, } 1)

Eplms;(W,05)|X,Z] >0 as. [Py.] for j =ps+1,.... ks

where P, is the marginal distribution of (X, Z) implied by P.
The first method we consider is as follows. Define the instrument functions as g, .(X,7) =

90(X)-1(Z = z) where z € {0,1}, and g¢(X) and ¢ are the same as before. Then P;y, can be written

as ﬂeec,ze{m} Ps.6,.0,2, Where

P:Epms;j(W,05)g9,.(X,Z)] =0for j =1,...,ps,
Pros. :{ Plms i (W, 02)9¢(X, 2)] 72)

Eplms;(W,05)g0.(X,2Z)] >0 for j =ps+1,.... ks.

and £ can be L. _cube OF Leube- Then all the results discussed above can be extended to this case with

suitable modification of the regularity conditions.
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In the second method, we treat the two values of Z as argumenting the number of conditional

moment restrictions, that is, we write

)

P P : Ep[ms;.(W,05)|X] =0 as. [P for j =1,...,ps, and z = 1,2, (73)
5,05 — .
Epims ;. (W,0,)|X] >0 as. [P for j =ps+1,..., ks, and z = 1,2,

where my j .(W,0s) = mg j(W,0s) - 1(Z = z) . Transform the conditional moment restriction into

unconditional ones, and we can again write P, g, = [),c, Ps.0.,0, where

P: E L (W,0.)g0(X)] =0for j=1,...,ps, and 2z = 1,2,
Pros :{ Pl j=(W. 6)9¢(X)] = 0 for j ps, and z } 74

Epimg (W, 05)g0(X)] >0 for j =ps+1,.... ks, and z = 1,2,

and £ can be L. cube OF Leube- Then all the results discussed above can be extended to this case

easily with suitable modification of the regularity conditions.

7.2 Competing Models with Different Conditioning Sets

In the sections above, we require that the competing models have the same conditioning set. Here we
show that with suitable modification, our method can easily allow for the cases where the conditioning
sets for competing models are different.

For s = 1 and 2, consider Ps = [Jy_cq, Ps,0, Where

P : Eplms;(W,0,)|Xs] =0 a.s. [Py,] for j = 1,..., ps,
%2{ P, (W, 0) | X, = 0 aus. [Py, ] for j p } 75

Eplmg j(W,05)|Xs] > 0 as. [Py,] for j =ps+1,..., k.

In the above equation, W = (Y, X1, X3) is generated from Py where X, € X, C R%. The conditioning
variables X7 and X5 can be the same, nest each other, overlap but be nonnested, or be disjoint.

Let £y = (z4,7) € [0,1]% x R and define G5 = {gs,(X) : s € Ls}. Define distance from Py to Py
as

de. (P, Py) = inf / d(Pyg. s, Po)dFs(L,). (7.6)
Ls

0s€05

where Fi(/,) is a probability measure whose support contains £y and d(Ps., ¢, Fo) is defined as in
35 Deﬁne MS,ES,PO (78798% MS,ZS,P(] (787 68)7 7:7Z57P07 ’Ays,fs,’na ES,’I‘an and M:,E&PO accordingly.
Define ¢, ,, = 7”L1/27“‘$i;‘b+1\/7”L_1/27“gl;1 and t, = t1,Vta . Assume that ry, satisfies Assumption for

s = 1,2. With suitable modification on the regularity conditions, under all sequences {P, € F}5° ,
we have
— 1 &
Vn(LR, — LRp,) = NG z; A, i+ Op(tn), (7.7)

*Pn,i = / ‘I’/<Mf,zl,Pn)[H(’Yik,el,Pn(efaPn)/ml(Wiaef)gél(Xi)) - Mik,el,Pn]dFl(el)

Ly
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_/5 V' (M54, p,) [15(75 05, P, (03) M2 (Wi, 03) 90, (X)) — M3, p,]dF2(£2), for
2

0 € ©%(P,), for s=1and 2.
Define @2 = SUD (g1 01118y x B3 @2 (01,02), where

@3 (61, 62) (7.8)
50| [ 60 [0 B0 Wi 00), (X)) = s 0] ()
1=1

n j— I,T‘ln
- - 2
—/L W' (M2 y00(02)) [K(52,00,m (02) ma(Wi, 02) 9o, (Xi)) — Ma g, n(02)|dFa(l2) |
27T2n

Then all the results discussed in the previous sections can be extended to this case easily.

7.3 Relaxing the Uniqueness Assumption

First, we explain why the uniqueness assumption, Assumption is useful. From Lemma we

see that when Assumption [3.3|is satisfied, we can establish that

n
n'2(LR, — LRp,) =n~ 3" Ap ; + 0p(1). (7.9)
i=1
If Assumptionis not satisfied, A, ; will not be well-defined. Instead, we can only define a function
A%, ;(07,03), which takes different values for different 07 € ©3(F). Consequently, Lemma will
establish

n2(LR, — LRp,) = n~2 3" Ap, 105, 05,,) + 0p(1), (7.10)
=1

where 0:’,1 is the closest point in ©%(FP) to 9S7n, for the és,n used in constructing f}\%n The ran-
dom sequence 9’57,1 may not converge, and is correlated with the data that forms A}}O,i(', -), causing
n=1/2 > A}o,i( 1n:03,) not to have a normal asymptotic distribution. Losing the asymptotic
normality destroys the simple structure of our test.

One way to preserve the simplicity of the test without the unique assumption is to estimate és,n
from a separate sample, and then use a random point és,n from that set estimator to construct ﬁn,
wy, and 6,. Because the és,n is from a separate sample, its closest point in ©3(F), 05, will be
independent with the data that forms A}SM}(~7 -). Then all our derivations in the previous section can
be done conditional on és,n.

The natural way to come up with a separate sample is to split the original sample into two equal

halves. One half is used to estimate the parameters and the other to construct the statistics.
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8 Monte Carlo Simulation

To implement our test, one needs to pick several user-chosen parameters in advance. In this section,

we first make suggestions on how to pick these parameters. We then report Monte Carlo results for

a missing data example.

8.1

Implementation

We make the following suggestions.

1.

8.2

Support of the covariates: Transform the covariates, X, to unit intervals by applying the
following transformation: X} = ®(%, 12, (X; — fin)), where 3, is the sample covariace matrix
of X;’s, fi, is the sample mean of X;’s, and ®(-) is the standard normal cdf function applied

element by element.

Instrumental functions: Use the countable hypercube instrumental functions on the new

conditioning variables:

Ge-cube = {gﬁ() = 1( € CZ) = (5[;*77“) € ‘CC-Cube}a where
Cy= (x?il[x;,x’; + r]) and (8.1)
ﬁc—cube:{(m*7(2q)il) : qu* 6{071727"' 72q_1}dz7a'ndq:q07qo+17'” 7611}7

where q; is picked such that the expected sample size of the smallest cude is around 25@

F(£): The probability measure, F(£), on Gecupe gives equal probability to the (z*, (2¢)~%)’s
given each ¢ and gives each q a probability proportional to 1/¢%.

. k(y) and ¥(k): Use ET distance, i.e., k(y) =1 —¢e¥ and ¥(k) = —log(1 — k).

b, t, and C: For G,, use b, = n/log(n), t, = n(~1/2=(d=41)/2de41)) and ¢ = 5.

User-Chosen Parameters

We then report Monte Carlo results for a missing data example. Let Y; be a binary variable that is

observable only if a selection variable D; = 1 and is missing if D; = 0. Let Y; = Y;D; + (1 — D;)

and Y, = Y;D;. Then by definition Y; € [Y;,Y,]. Let X1; and Xo; be two covariates. Suppose two

candidates models are both Probit models but disagree on which of the two covariates is relevant.

That is, for j = 1,2:

Pj = {P : Ep[@(gl + GQXJ‘Z‘) — Xi‘Xli,XQi] > 0, and

8Note that (1/2¢1) here is the truncation parameter r,.
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Ep[Y; — ®(61 + 02X,i)| X1, Xoi] > 0}, (8.2)
where ®(-) is the standard normal cumulative distribution function (cdf).

Consider the following data generating process:

Y; = 1{1 + 1.5"2(021 X1; + 022 X2;) + u; > 0},
D; = 1{1.5 4+ 0.5(X1; + Xo2i) + vi }, (ui,v;) ~ N(O, [1, 0.5; 0.5, 1]), (8.3)

where X1; and Xy; are generated as follows: Xy; = Z1;9(Z%), Xoi = Zoy®(Z1;) with (Z14, Zo;) ~
N(0,1I3). The parameter (021, 622) determines which covariate(s) is (are) relevant for Y in the data
generating process. When 031 = 092, the two candidate models are equally good. In particular when
f21 = 029 = 0, the two candidate models are both correctly specified. When 031 > 695 > 0, model P;
is better than model Py and when 0 < 91 < 699, model Ps is better than model P;. We consider four
configurations to investigate the size and the power properties of our test. The four configurations
are: (6a1,022) = (0,0),(1,1),(0,1),(1,1.5).

To implement our method, we follow the suggestions in Section [8.1} For ¢, we have ¢ = 2 when
n = 250, ¢ = 2 when n = 500 and ¢; = 3 when n = IOOOH For &,, we have b, = n/log(n) and
t, = n(1/2=(de+1)/(2dat1)) — ,=1/10,

The results are reported in Table The two numbers in the parentheses are respectively the
probability of rejecting the null and selecting model P, and that of rejecting the null and selecting
model P,. Each probability is approximated by 1,000 Monte-Carlo replications. As we can see, the
selection probabilities (first two rows) for either model is close to 5% when the two models are equally
good (the first two rows). It is worth noting that this is the case even when both models are correctly
specified (the first row), in which case w? = 0. The selection probability of the better model is bigger
than 5% and grows with the sample size when there is a better model among the two (the last two

rows), suggesting that the test is consistent.

9 Conclusion

To sum up, we propose a model selection test for conditional moment equality and inequality models.
The test can be applied when the competing models are nested or nonnested. In all cases, the test is
asymptotically similar, consistent against fixed alternatives and has non-trivial power against n~!/2

local alternatives. This is the first such test for models defined by conditional moment restrictions.

9The expected sample size for the smallest cube is 250/16 ~ 16 when n = 250, is 500/16 ~ 31 when n = 500, and
is 1,000/36 ~ 28 when n = 1,000.
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Table 1: Null and Alternative Selection Probabilities (o = 10%)

(21,025) n=250  n=>500 n=1000
(0,0) (.063,.050) (.052,.049) (.039,.054)
(1,1) (.084,.071) (.058,.061) (.061,.071)
(0,1) (.014,.275)  (.004,.285) (.005,.331)
(1,1.5)  (.012,.336) (.000,.435) (.001,.490)
APPENDIX

A Implementation Algorithm

In this section, we provides an algorithm for implementing our AGEL-based model selection test. The algorithm
follows the implementation suggestions in Section and incorporate different conditioning sets in the two

competing models.

Algorithm 1 Algorithm to Implement the AGEL Test
1. Inputs: {W;}! > Data, that contain the instrument variables {X;;}!" ; and {Xa;}"

2: by, thy Q1,15 Q2,1 > Tuning parameters: we set b, = n/log(n), t, = n(~0-5=(det1)/(2dz+1))
3: k(+), ¥(+) > Pseudo-distance choice: we use k(y) =1 —e¥, U(k) = —log(1l — k)
4: for s € {1,2} do > For each of the two competing models,
5 procedure GFUN({X;}7" 1,951) > generate the instrumental functions
6 fism 07t Y X

v ) =T (X — fisn) (Xsi — fisn)

8 (X5 < {2(2 _1/2(X i — fsn)) Hiey > Generate normalized X
9 return {{{gac*,(Qq)*l( 82)}1‘ *{0,1,....2q— 1}ds}q Ve

10: {{{1(Xs € xe 75,25+ (29) ]}x*e{o,l,...,Qq—l}ds}Zs:’ll}zn:l

11: end procedure

12: procedure MINMAX({W;}7 ;.k(-),¥(-)) > Compute the AGEL distance for model s
13: for x* € {0,1,...,2¢ —1}%, ¢g=1,--- ,gs1 do

14: Qs,zv,q(Vs,05) <= 71 3001 w(vems (Wi, 05) g (2g)—1 (X))

15: @savq(0s) <~ min__p,, < s s Qs (s, 0s)

16: ’?s,r*,(Qq)*l,n(98> —arg minveRpS x RYsPs Qs,2%,g(7s: 0s)

17: end for
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18: Qs(0;) + =10 Zgilq,Q — > Compute weighted average

19: return dp(Ps, Py) < ming,co, Qs(0s) > AGEL distance from model s to P

20: return (:)s,n «— argming co, Qs(0s) > Estimated identified set

21: return  {{¥, .+ 2¢) 1,0 (") }orefo,1,...2g—1}ds }gsz’ll > Optimal Lagrange multiplier

22: end procedure

23: end for

24: function TESTAGEL({W;}7 ;) > Main procedure to compute our test

25: Z}\En — c/i\L(Pl, Py) — CZE(PQ, Py) > Pseudo-likelihihood ratio statistic

26: @2 + Equation , with || ¢, AF () calculated as that in Qs(6s) above. > Variance
estimator

27: On — (1+ 5d1+d2t;?d)721)_1 > Standard deviation of auxiliary random variable

28: U < a random draw from N(0,1)

29: return o159 (o) = 1((/nLR, + 6n) /D2 + 62 > 24) > One-sided Test

30: return @%sided(q) = 1(]\/71@” + G| /\/02 + 62 > Za/2) > Two-sided Test

31: end function

B Auxiliary Lemmas

In this section, we collect all the auxiliary lemmas used to prove the main results in the text. The proofs of
these auxiliary lemmas are deferred to Appendix

To begin, we first introduce some new notation. Let ¢s denote the combined parameter vector (v.,6%) .
Let &5 =T, x O, for s = 1 and 2. For any two sets A and B, let AAB={z:x€ A,z € B, but x ¢ ANB}.

Define a pseudo metric on L as
pe(1,€2) = N(Co, ACy,) Y2, (B.1)

where Cy is defined in the second line of (3.2) and A(:) is the Lebesgue measure. Define a pseudo-metric on
b, x L as

ps((Ds1,41), (bs2,€2)) = P51 = bsall + pe(la, £2), (B.2)

for (¢sla£1)v (¢SZ>£2) € q)s X C
For s =1, 2, let

M 0.p, ('78; s) EPOK(PY;m(WUG )gf( i)), and

ﬂsén 'Ym a - 1ZH Wue g@( )) (B3)

Lemma below shows some basic properties of stochastically equicontinuous empirical processes. This

result is not new in the literature, but we state and prove it here for easy reference.
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Lemma B.1 Consider the triangular array of empirical processes {v,(t) : t € T} . If (i) (T, p) is a totally

bounded pseudo-metric space, (ii) v,(t) is stochastically equicontinuous w.r.t. p and (iil) for every t € T,
[ ()] = Op(1), then supyer v ()] = Op(1).

Lemma [B.2] below shows the stochastic equicontinuity of several empirical processes that form different

parts of T,.

Lemma B.2 Suppose Assumptions and hold. Then, under any sequence {P, € F} 4, for
s=1 and 2,

(a) the triangular arrays of empirical process:

{Vg,n(¢87£) 1/2( ENG n((bs) - s Z,Pn((bs)) : ¢s € ®57 le E}

18 stochastically equicontinuous w.r.t. the pseudo-metric ps defined in (B.2),
(b) Sup¢be¢b’ge£ |n1/2 5,0 n(¢s) - S 2, Py, (¢5))| = OP(1)7

(¢) the triangular arrays of empirical processes

{(V2,(65,0) = 02 (OM i 4.0 (65) /05 — aMs 0P, (85)/005) : b5 € By, L€ L} and

{12 1(64,0) 1= 1" ?(0* M 0.1(95) /06,08, — * M5, (95)/06,00,) : &5 € By, L € L}
are stochastically equicontinuous w.r.t. the pseudo-metric ps,

(d) SUDg. o, teL Hnl/Q(aM\s L,P, (d)S)/a(bs - 8/\48 £ P,L(¢S)/a¢8|| = Op<1)> and

sup(ﬁsE‘b Lel ||7L1/2(62 s, n(¢b)/8¢éa¢/ 5 0, P, (¢a)/6¢56¢/)“ = ( )
(e) for any random mappings {gbs ns f)l £L— P, }n 1 such that sup,c ||¢(1)( l) — g?%(ﬂ)” = 0,(1), we have

33yﬂ2&@x¢§%w»~—ﬂAsep<¢@><>n~%po

SUp 10° M (84,0.(0))/09:09, = 0" Mae.p, (931(0))/06.08, | =+, 0.

Lemma below shows the consistency of s, (0s) for 77, p (0,) under drifting sequences of data
distributions P,,.

Lemma B.3 Suppose Assumptions and hold. Under any sequence {P, € F}5,, we

have for s =1 and 2,

(a) SUPy,co,, teL,, 19s,6,n(05) —Vs0.P, (@)l —>p

(b) SUPg eco, teL,, pPMH%,é,n(es ’YSeP || = 1/2 ), and SUPg, eco, teL,, H%,é,n( s “YseP H =
Op(n=1 21, de),

(c) for any two random sequences {ler)L} and {997)1}20:1 such that ||9§12L — OEZ%H = 0,(1), we have that
SUPgec |‘7:,€,Pn (egl,{) = Yaur.P, (93{)“ = H9 o - 9(2 ), and

(d) for the two random sequences in part (c), we have supycp, H%,g,n(ﬁg,l%) - yjﬁz’Pn(efﬁ)H —5 0

Lemma [B-4] below shows that under our assumptions the effect of the truncation of £ is small.
Lemma B.4 Suppose Assumptions B2 and hold. Uniformly over Py € F and 0, € ©4 for
s=1,2,

T;dm71 /c \I’[Ms,e,Po (7:,6,P0(93)a9s)]dF(€) = Op(l) (B4)

n
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Lemma below shows a full-rank condition for each super model Ps ¢ 9, of Ps g,. This full-rank condition

guarantees that v, p (05) is uniquely defined for every 6 and every £.

Lemma B.5 Suppose Assumptions B2 and hold. Under any Py € F, for all £ € L and for
all ps € Py,

eigmax (B[ (Voms(W, 05))ms (W, 05)ms(W,05) ge(X)]) < —ppye -8 for s=1 and 2. (B.5)
Lemma below shows an important property of our pseudo-distance measure: the pseudo-distance is

zero when and only when intuitively it should be zero, that is when Py belongs to the model, or in other words,

the model is correctly specified.

Lemma B.6 Suppose Assumptions and hold. For any Py € F, then Py € Py iff
dre(Ps, Py) =0 for s =1,2.

Lemma below establishes the convergence rate of (:)ML and @27n w.r.t. the left Hausdorff distance.

Lemma B.7 Suppose Assumptions and hold. Then, under all sequences {P,, € F}22,,
we have maxs—12 pm(@s,n, O:(P)) = Op(n—l/%;dm/?)'

Lemma below shows a linear representation of \/ﬁ(fﬁn — LRp,) under a sequence of data distributions
{P,}. This lemma is a crucial step for establishing Lemma

Lemma B.8 Suppose Assumptions and hold. Then, under all sequences {P,, € F}5,
— I &,
VA(LR, — LRp,) = —= ; Ap,i + Opltn), (B.6)

where Ay is defined in (4.4) and t,, is defined above Lemma .

The following three lemmas prove a Kuhn-Tucker condition that is used repeatedly in the proof of our
main results. These lemmas are taken from Chong and Zak (2001) with minor modification. Consider the

following problem:
maximizef(x) subject to g(x) >0, (B.7)

where f: R4 — Rand g: R — Rm Let o* satisfy g(z*) > 0 and define J(z*) = {j : g;(«*)} which is the
set of the index of active inequality. We say that «* is a regular point if the vectors dg;(z*)/0x for j € J(«*)
are linear independent. We say that z* is a feasible point if g(z*) > 0. Define

* * % a g]
L, w7 = 8x8m Zﬂj 6x8x ’ (B.8)

ONote that here, f(x), g(z) and x here refer to some generic functions and their argument and do not refer to the
same things as similar or the same symbols defined in the main sections of this paper. Since these new definitions only

apply locally from here to the end of this section, there should be no confusion caused by this abuse of notations.
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T(a*, 1) = {y: g;(2*)/dz -y = 0, € J (", ")}, (B.9)
J(a*, %) = {5 g; (%) = 0, p7 > 0}, (B.10)
It is obvious that J(z*, u*) C J(z*).
Lemma B.9 Karush-Kuhn-Tucker Theorem. Let f(z) and g(x) are once continuously differentiable on

x. Let x* be a reqular point and a local maximum for the problem defined in . Then there exists u* € R™
such that

1. p* >0,
2. Of(a*)/0x + 3771,y - Og;(a*)/dx = 0, and

3. gz*) - p*=0.

Lemma B.10 Second-Order Sufficient Conditions. Suppose f and g are twice continuously differentiable

in x and there erists a feasible point x* € R% and p* € R™ such that

Lop* >0, 0f(x*)/0x + 3751, pi; - 9g;(x*) /0x = 0, g(z*)" - u* =0, and
2. For ally € T(z*,u*) with y # 0, we have y'L(x*, u*)y < 0.

Then, x* is a strict local mazimizer of problem defined in (B.7).

Lemma B.11 Suppose in problem (B.7)), f and g are once continuously differentiable in x. Suppose g; for
j = 1,....,m are concave in x. If there exists a feasible point x* € R* and p* € R™ such that p* > 0,
Of(x*)/0x + 377 i - gj(x*)/0x = 0, and g(x*)" - p* = 0, then Of (v*)/0x - (x —a*) < 0 for any x such that
g(z) > 0.

C Proof of Main Results

Proof of Lemma Lemma is stated in terms of subsequences {a,}52 ;. For notational simplicity, we
prove it for the sequence {n}. All the arguments go through with {a,} in place of {n}.
For (a), t;'/n(LR, — LRp,) = O,(1) follows simply from Lemma and the CLT.

For t,,2&2, observe that

1 y

=0y ()4 230 | [ V) < s (92,61, X0) — R ]

n n <
=1 Tn

= V(R O) [ B 12 B )0 (X)) = R ] JaF (0)

1 1 " "
o (1) + 230 (A= [ (M) [0, B (75,0000 (X0) ~ M,

i=1 ™

o \I’ (M27€7Pn)[ (72 0,P, (02 n) mQ(le 02 n)gf( )) Mg 0,P, ] }dF(g)

[ {00 [5G B 1 (W3 B1,) 30 (X)) = R 16,0

n
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= U'(M] o p ) [ e p, (07) 10 (Wi, 07 ) ge(X3)) — *{,e,pn]}dF(f)

_/£ {\I/I(M\Q,E,’I’L(éQ,n))[ (72£n(92 n) mZ(ngQ n)gz( )) MQ[P ( )]

Tn

V(M) [0, G5 25 5,)00060) = M o, 0]

- Z[A?’mi — Cyi+ Cai — Cs,)%, (C.1)

n-
=1

Il
Q
kS
7N
S|
~_
+
—_
3

for some ésm € (:)s,n and some 07 ,, € O%(P,), for s =1,2. By (C , we have

. 1<
o = tfﬁ Z[AEM — Cri+ O = Ca3]* + 0y (t,*n77)

1 — 1 — 1 — 1 —
< 4(1&;2; Z SRR e BN R el S & PR Zcii) Vo (t2n7Y),  (C.2)
=1 =1 i=1 =1

because [Zz 1 al] <k- Zz L a? for any finite k. Therefore, to show (a), it is sufficient to show that all the
four terms in the parenthesis in the last line of are Op(1). Note that ¢,°n~' 337" | (A} ;)* =) Voo by
Assumption [5.2(vii) and Ep, [t,?n~ " Y1 (A}, ;) ] =t 2w} — Voo < 00. Next, note that

Cl<c | { sw O WL o))+ sup  |r(yima(Wi, 02))] fdF(0)
¢1€TL, X0, ¢$2€T2, xO2
SC'Tn( sup  [k(yyma (Wi, 01))[ +  sup |’f(7§m2(Wi792))|>7 (C.3)
¢1€F}M><®1 ¢2€F?VI><@2

where C' is a generic positive number not dependent on P,,. The first inequality holds because for all /¢,
[k(vima (Wi, 05)g0(X5))| < |w(yima(Wy, 65))| and \I/'(./(/l\s’gyn(él,n)) < C by assumptions. The second inequality
holds by Assumption ii). Therefore,

1
Ep, [t 2 ZC“}
sc-rit;Q-Epn[ sup  [k(yma (Wi, 0) 2+ sup  |n(v3ma(Wi, 02))?]
¢1€T], x01 ¢$2€T2, X0,

-0, (C.4)

where the first line follows and (a + b)? < 2a? + 2b2. The last line follows from the definition of ¢,, and
Assumption [5.4{1). Equatlon 4) implies that ¢,,°n~' 3" | CF; = 0,(1). Also, for all £ € L,

V(M (01.0) [5 (31,60 (01,0) 1 (Wi, 01,0)96(X0)) = M e.n]
- \I//(Ml,ﬁ,Pn) [’45(71,4 P, (07 n) ml(Wi791)gé(X‘)) - Te P, ]
= V(M) = O (M5 4 p) [6(51.00(01,0) M1 (Wi, 01,0) 96 (X3)) = M)
+ U (M5 o) [ (31,0m (B10) 1 (Wi, 010)90(X0)) = (37 4., (01 ) ma (W5, 67)ge( X))
— V(M p, ) (Mign — M3, p)
= Co1,40 + Co240 — Co3,4,0- (C.5)
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For any { € L, ,
[Mien = Miyp,|

T,Z,P,,|

< |/\71,e,n —Miep, ("A}/I,Z,n(él,n)aél,n” + |[Muigp, (’A}/l,l,n(él,n)aél,n) -
= X N, OMip, (31,010

< ‘Mll,n _Ml,f’Pn(’yl,f,n(el,n)vel’n)‘ + H 1,4,2 (,71 1, ) ‘
of}

% (1R800 (81.0) =21 0.0, Or)l 17, Br.) =i 0, 67D+ 61,0 = 07 ]

= 0y(n -1/2>+o< TU2) 4 O P e 02) 4+ Oy (2 )

Op(n1/ 2 da/2), (C.6)
because
|M\1,Z,n - Miep, (’71,2,n(é1,n)7 é1n)\ = Op(n_l/2),
OMip, (31,010 ) . . A
|2 OB sy ) =, (B
1
| M, G B1,0) e . .
BEC 0n) =i, B1.0)]| = O() - Opfn™12) = O,n ™11,
1
OMi 0P, (1, 01.n) . 5 . .
|5 i, Brn) =i, B0
1
= 0p(1) - Opllf1.0. — 03 1) = Op(n= /21 0/2),
8/\/1 L, 7L777§,n A * _ _
== g;,l Ll 0y - 07 ) = Oy /2012, ()
1
Similarly,
' (M) = W' (M5 g p, )| = [0 (Mign) - (Mien = Mi g p, )| = Op(n™ 2 %/2). (C8)

Next,

1
—2 2
tn E E CQ,i
=1

1
:‘ / / {t’?n Z(Cm itr +Co2i00 —C23i0,) - (Ca1iey +Co24 05 — C23,¢,z2)}dF(f1)dF(€2)‘
[’Tn ‘Crn

=1

n 3 3
< /L /E ) {t;Q%Z Z]Cm@l -02k7i752|}dF(€1)dF(€2).

i=1 j=1k=1

To show t,>n~' Y1 | O3 ; = 0,(1), it is sufficient to show that ¢ ?n~" 77" |Cajiiey - Coni 42‘ = 0p(1) for all
J,k =1,2, and 3 uniformly over ¢1,¢5 € L, . We have ¢,;2n=* 3" | ‘02171‘)@1021 i (2’ = 0,(1) by

1 n
tﬁzﬁ ; |Ca1,i,0, Co1,i,0 |
-2 i / * 1<
= (\Ij (M17é17n) -v (Ml,él, {n Z ’71 L ) ml(Wuel n)gh( )) Ml L1,n }
i=1
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[ (’71 L2, n(91 n) my (Wi, 91 )G, (X )) Ml L2, n]}(qj/(ﬂl,fg,n) - ‘I’I( T,EQ,PH))’
= 1,2 Op(n ™12 422) - 0y (1) - Op (™21, 4/2) = Oy (n™ 1y o1,%) = 0,(1), (C.9)

where \IJ’(/\//Yl,gl,n) (Ml p) = Op(nfl/zr;d’”ﬂ) by 1} and the sample average is Op(1), and the
last equality follows from Assumption and the definition of ¢,,. Similar arguments as above show that
b2 300 | Coniey Cas ey | = 0p(1), 8,207 300 |Caz e, Conig, | = 0p(1), and £, 201 307 |Cogi0, Cas iy | =
op(1). Also, note that

1 n
T Z ‘021,1‘,@1022,2',@’
ni=
_ 1 & -
= t;g (\I//(Ml,él,n) - \I’/(Ml*,fl,Pn)){ﬁ [’%('Ayl,él,n(a ) ml(Wwal n)g&( )) Ml L1,m ]
=1

X (O (M5, o) [0 (01,0) ma (Wi, 01,0) 90, (X0)) — 85V, (05.0) 0 (Wi, 05 ) g2 (Xi))]}’

n

— 1 &
e (\Ij/(Ml,él,n) - \I',(Mf,el,Pn)){E ["('AYL&, (91 n) my (Wi, 91 n)gh( )) Ml fl,n]

1
Ok (34 ma (Wi, 01)ge, (X1))

x [w'( ;,gl,p»[ ]}(él,ez,n@l,n) ~ 000, (05.0)

)
=2 Op(n ™2 /) (0p(n™12) + Op (=12 %21%)) = 0,(1), (C.10)
where ¢, p (05) = (vi,p,(0s)',05), the second equality holds by a mean-value expansion and the last

line holds by similar arguments in the proof of Lemma E 7| and in . By similar arguments, we have

ty2n Y |C22,i,£1021,i,Z2| =op(1), t,;2n 1300, ‘022 i0,C23.i z2| =op(1),and t,;>n 13" | 1023 i01C22.5 62‘
op(1). Last, we have

1 n
—2
t, -~ E ‘0227i,21022,i762’
i=1

=t

1 - * ~ A A * * *
{g S VM 4y e )E L m (010) 10 (Wi, 01.0)ge, (X3)) = £V 4y, (07,,) ma (W5, 07)ge, (X)) ]

i=1

X [W'(M] 0, ) [5(310.0 (B1,0) ma (Wi, 01.0) 90, (X)) = K (V7 4y, (65 ) 'ma (Wi, 607 ) g, (Xi))]}‘
8/43( 1m1(W1,91)ge1 (X ))

= W M ) (B Or.0) — G0, ) {2 i )
« [65(5’17711([{;;191)942 (XZ)) ] } (((Zsl,ég,n(él,n) _ ¢)>{,£2,Pn (ein))l)
=t;? 'Op(nilr;dw) = 0p(1), (C.11)

where the second equality holds by a mean-value expansion and the last line holds by similar arguments in the
proof of Lemma These results hold uniformly over ¢1,¢ € £, and they imply that ¢, 2% S C22)i =
op(1). Similarly, ;2L 57" | C3, = 0,(1). Part (a) follows.

For part (b), note that under Assumption [5.2(vii) and by Lyapounov central limit theorem, we have
w;jnlm(f}\%n —LRp,) =n"'23 0 wplAp |+ op( ) —a N(0,1). Next, by similar argument for part (a)
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with w,, 2 in place of ¢, 2, we have w;fcbi = w;fn_l S (Mg, )% +0p(1). And by the fact that %W} — oc.

Also, w;fn_l it (A, ;)* — 1 by the law of large number. Therefore, (b) follows.l

Proof of Theorem To show both part (a) and part (b), it suffices to show that for any subsequence
{un} of {n}, and any {P,, € F},>1, there exists a further subsequence {a,} of {u,} such that
lim Ep, ¢, (0) = a, (C.12)
n—00 "

for ¢, (a) = p2s19d(q) or plsided(q). By the completeness of the real line, there is always a subsequence {a,, }

of {uy} such that t;%w} — vee for some vy € [0,00] and 04, /wp,, — Wee for some wo, € [, 00]. Here oy,

is the deterministicnstic sequence defined in Assumption We discuss three cases below.

Case 1: v € [0,00). In this case, we have

5o VanLRa, + 0, U . /LR, +U

an /72 52 [~ _o
Wa, t05, Ga, d)gn +1

—4 U ~ N(0,1), (C.13)

where the convergence holds by Assumption ii) and Lemma [5.1(a). Thus, in this case, (C.12) holds.

Case 2: vo = 00 and we, € [0,00). In this case, we have

s V@nLRa, Jwp, + (6a,/wp, )U L ZtuwsU

an d
~2 2 ~2 1 2
\/wan /(.uPan + aan/wpan v 1+ws

where Z ~ N(0,1) and Z is independent of U, the convergence holds by Lemma [5.1[b), Assumption [5.5[iii)
and the independence of U with the data.

Case 3: Voo = 00 and ws, = 00. In this case, we have

~ N(Ov 1)v (C.14)

f _ (O‘)Pan /&an) V a’nﬁan /wan + U N O + U

" =U~ N0, (C.15)
J@2, /3, )R, /62) SV T

where the convergence holds by Lemma [5.1{b) and Assumption [5.5]iv).
Therefore, in all cases, (C.12) holds, which shows the Theorem. B

Proof of Lemma Assumption [5.5{i) is obvious from the definition of 6.
To check Assumption ii), note that if t;fw%an — Voo € [0,00), then tb?n w%ﬂn — 0 and by Lemma
(a), we have tb_fn (@i )* = 0 and this implies that &,, — 1. Therefore, 6,, satisfies Assumption i).
To check Assumption (iii)—(iv), let oy, = (14 C?=t, %w}, )7L

If t;fwl%a — o0 and 0q, /wp, — 0, we have t;Z w%ﬂ — 00. Then we must have

t;ﬂi o.)pandjgn = t;ai w?jpan . (of)gn /wl%an) —p 00, (C.16)

where the convergence holds because &7 /w} ~—, 1 by Lemma (b) Thus,

Gan /WP, = (Wp,, +C* 8,2 wp, &2 )" =, 0. (C.17)
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If t72w2 — oo and 0, /wp — Wee € (0,00), similar arguments as above shows that 2wt -
a, YP, n an g ba, WP, P

wx!C~2%  and consequently, ¢, > wp, W2 —p wilC7%¥= and hence

Ga, /WP, —p Woo- (C.18)
This combined with (C.17) above shows part (iii).
If t, 2w},  — oo and 04, /wp, — 00, we have t;f w}  — 0. Then

t;ai wp, @2 = tb’fn wh, (@2 Jwh, ) =0, (C.19)

by Lemma ). Thus, wp, /6yn —p 0. This shows part (iv). B

Proof of Theorem Let w, and p, denote wp, and LRp, respectively. We need to consider two cases:
w, > 0 and w, = 0. We first consider w, > 0. When w, > 0, we have ¢, 2w? — oo and by Lemma [5.1(b), we

have fﬁn —p s, and d)fl —p Wx. Thus

- LR, +n'26,U - LR, +n~'26,U
! V2 ez T Va2

This implies that 7}, —p 00 and consequently implies that Ep_ ¢, (a) — 1.

5y o Jws > 0. (C.20)

Second, we consider w, = 0. When w, = 0, t,,%w? = tb_fwf = 0 for all n, then by Lemma/5.1f(a), ©2 = 0,(1)
and LR, —p s« Also, by Assumption (ii), we have 62 —,, 1. Therefore, we have

] f\n An
T, = M —, 00. (C.21)
w2+ 62

This implies that Ep, ¢, (a) — 1, which completes the proof. B

Proof of Theorem Since part (b) follows from similar arguments as part (a), for brevity, we only show
part (a).
Let {un}n>1 be a subsequence of {n} such that

lim  Pr (|Ty,| > 2aj2) = lim inf Pr (|T,] > 24/2). (C.22)

n—00 Py, « n—oo Py,

Note that such {u,} always exists by the definition of liminf. By the completeness of the Euclidean space,
there is always a subsequence {a,} of {u,} such that t,?w} — vs for some vy € [0, 00] and 0, /wp = Woo

for some wy € [0, 00]. We discuss three cases below.

Case 1: v € [0,00). In this case, we have

7 V@n(LRa, — LRp, )+ \/anLRp, . +063,,U

 6,M/@nLRa, — LRp, )+ 6, \JasLRp, _+U

Gald? +1
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where the second equality holds by Assumption ii) and Lemma a). Thus,

lim Prp, . (Tu,| > 2as2) = Pr(|U + hi| > 24)2)
=1—®(zq2 — h1/VWi +1) + P(—24/2 — M1/ + 1), (C.24)

where the second equality holds because w2, = 0 by t; 2w} — Vs < 00.

Case 2: V5 = 00 and weo € [0,00). In this case, we follow similar arguments as those in Case 2 of the proof
of Theorem [5.1] and show that

= _ Vn(LRa, — LRp,, )/P, . + fanLRp,, [P, . + Gu,/op,, U
’ NCHNEREE N
Z 4+ woU h1
—p + :

VIt w?d  weey/1+wi
where the convergence holds by Lemma [5.1{b), Assumption iii) and Assumption [6.1fi).
Tol > 20/2) = 1.
Now consider the case that ws € (0,00). Note that o, € [0,1]. Thus, thus o, /wp, , < 1/wp, , for all n.

(C.25)

If wee = 0, then the result of the theorem follows trivially because lim,, ., Pr pam*(

Therefore, weowso < 1. Therefore

lim Prp, _(|T.,|> Zas2) = 1= ®(2q/2 — i/ VW2 + Wi ws) + ®(—2z4/2 — b1/ W2 +wiw?)
n— o0 "

>1—®(zq/2 — hi/wi +1) + &(—2z4/2 — h1//wWZ +1). (C.26)

Case 3: Voo = 00, Woo = 00. In this case, we must have wy, = 0 by fact that o, /wp, , < 1/wp, , for all n.

because o, € [0,1] and thus o, /wp,

n,*

< 1/wp,, = 1/ws < 0o. Similar to Case 3 of the proof of Theorem

5.1, we can show that

7 _ ©Po/00)Van(LRa, — LRp,, ) /%P0 +U  JanlRp,,
’ N NN VJwrs, (@2, /w3 )+ o2,
hy + o(1
= 0,(1) + U + —— 0 (C.27)

Vop,(1) + 02
For any subsequence of a,, there is a further subsequence y, such that o,, — 0o € [0, 1] because [0, 1] is

compact. For such a further subsequence, we have fyn —a U+ h1/0s. And
A Py, (Ty,| > zaj2) = Pr(U + i fow] > za/2) > Pr(U + | > Za)0)
=1—-®(20/2 = h1/Vw2 +1) = ®(—24/2 — h1 /W2 +1). (C.28)

Because for any subsequence of lim,, o Prp, . (|fan| > Zq/2), there is a subsequence that has a limit greater

than or equal to the right-hand-side of the above display, we can conclude that

lminf, oo Pre, . (1Tan| > 2zaj2) = 1= ®(20/2 — b //wk + 1) = B(—24/9 — hi/v/w2 +1).  (C.29)

Thus, we have exhausted all cases and the theorem is proved. B
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D Proof of Auxiliary Lemmas
Proof of Lemma Lemma [B.1]is the same as the Lemma A1 in Shi (2009).H

Proof of Lemma Let E,, abbreviate Ep, . For s =1 and 2, define new pseudo-metrics gy and gs1 on
d, x L as:
050((Ps1,01), (Ps2,£2))
2
= Slilf[E” (Vo (W, 051) g, (X)) = (Yigms, (W, 02) g6, (X))] /2, (D.1)

0s1((ds1,41), (D52, £2))
= Sgg[En‘|aﬁ(7;lmS(m 051)92, (X)) /075 — Ok (vigmis (W, Bs2) e (X)) /05 1°]/2, (D.2)

where (stl,el), (¢82,€2) € d, x L.

For (a), it is sufficient to show that the empirical process is stochastically equicontinuous w.r.t. o059 because
ps dominates ps9. Note that

050((¢s1,41), (ds2,l2))
= sup[En (5(yiams (W, 851)g0, (X)) = K2 igms (W, 6,2)ge, (X)))°H/2

< sup {2En [’i(7;1m8(m 0s1)g9e, (X)) — ”('Y:I;QmS(Wa Os2)9e, (X))]2

n>1

£ 28, [1( s (W, B.2)g, (X)) — K3 s (W 2)ge (X))

< VBsup {Buln(ofam (7, 0,0)00, (X)) = (Lo (7, 0, GO}
+VEsup { Bulis(3am (W, 0.2)96, (X)) = 2 fam, (W, 0z)ges O} (D.3)

The first inequality holds because (a + b)? < 2(a? + b?). The second inequality follows because (a + b) <

(v/a + v/b)? when a,b > 0, and sup,,>1(an + by) < sup,,>1 apn + sup,,>1 by, for any two sequences. Note that

sup { B (3 ma (W, B.1)g0, (X)) — sl gma (W ), ()}

= o { g, (OO, (1, 0.2) — (ol (W 0,207}
< sup { B 0 Lyma (W, 001)) — (ol (W, 0.7}

n>1

oA {Ea((001 = 002)(@r(Fims (W, 9s>>/3¢s>>2}1/2

= ~ 2 /2 1/2
< ||¢sl - ¢52|| : Slili {E”Ha”(’ysmsa/vv 05))/a¢8|| } <M H¢51 - ¢S2”’ (D~4)

where (&;ég) lies on the line segment joining ¢4 and ¢s2. Note that go(X) is an indicator function and

k(0) = 0, so k(vims(W,05)ge(X)) = ge(X)r(vims(W, 05)) and the first equality holds. The second equality
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holds by a mean-value expansion. The second inequality holds by the Cauchy-Schwartz inequality and the last
inequality holds by Assumption vi). Note that (D.4) holds uniformly over ¢; € L. Also,

sup { B (ot (W, 0.2)an, () = (oL, (W, D)o ()]}

= sup { B (g6 (X) = 922 (X)) *K(3}ams (W, 0.2) b

< {Eafl00 00~ 007 sup w07}

RS {Bu[(96(X) = 90, (X))2En | Sup w(ms (W, 0.))% x| }1/2

< M2 sup { B, ()~ 00 (X))7)

— M2 f’f;‘i {Ealge, () = gu, (X)|}1/2 < Mpy(ty, 62). (D-5)

The first inequality follows by taking supremum over ¢, € ®,. The third equality holds by law of iterated
expectations. The second inequality holds by Assumption (Vi). The last equality holds by the fact that gy,

and gy, are indicator functions. The last inequality holds because

Eullge (X) — g6,(X)[] = /X 1901 (&) — 963 (@) | fon ()
_ / Fu(@)dz < MA(Co, ACs,) = Mpa(fr, £2)?, (D.6)
Ce, ACy,

where the first equality follows from the fact that P, has density f,(z), the second equality holds by the fact
that |ge, () — ge, (z)| = 1(Cy, ACYy,), the first inequality holds by Assumption viii), and the last equality

holds by the definition of py. Also, (D.5) holds uniformly over ¢s € ®,. Therefore, (D.3)), (D.4) and (D.5))
together imply that

050((9s51,01), (hs2,02)) < KMY2|pg1 — dsall + K Mpy(£1,£s)
< C(|gs1 — ds2ll + pe(l1,€2)) = C - ps((Ds1,41), (Ps2,42)), (D.7)

for some C' > 0.

To show the stochastic equicontinuity w.r.t. gs0, we apply the results in Andrews (1994). Recall that
K(vims(W,05)g0(X)) = go(X)k(vims(W,05)). Because G = {ge(-) : £ € L} is a class of functions of Vapnik-
Cervonenkis sets, then G is a type I classes of functions with envelope function 1. {x(y.ms(-,0)) : ¢s € D4}

is a type II class because @4 is a bounded subset of the Euclidean space and x(y,ms(+,0s)) is Lipschitz in ¢s:

[E(Yaams (-, 0:1)) = K(vamis (-, 0s2))] < B()[[ b1 = dazll; (D.8)

where B(-) = supy_cq, |0k(vem(-,05))/0¢s|. Hence, by Theorem 2 of Andrews (1994), {s(vems(-,05)) : ¢s €
k(vims(,05))| vV B(+). Hence,
by Theorem 3 of Andrews (1994), {k(vims(W,05)90(X)) = ge(Xi) - k(ms(W, 05)) : ¢s € Py, ¢ € L} satisfies
Pollard’s entropy conditional with envelope function F(-). Note that

@} satisfies Pollard’s entropy condition with envelope F(-) = 1V sup,_cq,

lim sup E,[1V sup |s(vims(W,0,))| Vv B(X))*T°

n—00 PsEPs
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<lim sup E,[1+ sup |k(v.ms(W,60,))| + B(X))**,

n—o00 P €D
<C-En[l+ sup [s(yims(W,60,))[**°] + By [ sup [[0r(vsm(W,65))/0¢s|*+°] < oo (D.9)
Ps€EPs Ps€EPs
for some C' > 0. The second inequality holds by the convexity of the function f(z) = 2?*° and the last in-
equality holds by Assumption vi). Therefore, by Theorem 1 in Andrews (1994), z/g,n(gbs, ?) is stochastically

equicontinuous w.r.t. ggg.

For (b), it is sufficient to show that the metric space (®, x £, ps) is totally bounded and 12, (¢, ) is Op(1)
for all (¢s,¢) € @4 x L. To show that (P4 x L, ps) is totally bounded, it suffices to show that both (P, ||-||) and
(L, pe) are totally bounded. (®g, || -]|) is totally bounded because @ is compact set with Euclidean metric. To
see that (£, pe) is totally bounded, let {X; : ¢ =1,...} be a sequence of i.i.d. uniform random variables over
X. Then the triangular array {f.:;(w,¢) = g/(X;)/+/n} satisfies the conditions of Functional Central Limit
Theorem of Pollard (1990, Theorem 10.6) and pseudo-metric on L is

(Cfl ACZQ )

1/2
Bl () = g, (0712 = | MG 2| T ) (D.10)

for K = A(X)/2. That is, [E(ge, (X) — ge,(X))?]"/? is equivalent to p¢(¢1,¢2). By Theorem 10.6 (a) of Pollard
(1990), (£, [E(ge, (X) — ge,(X))?]1/?) is totally bounded and this implies that (£, p¢) is totally bounded.

2 (¢s,€) = Op(1) for each (¢, () € @, x L because
Enygn((bs’é)z =E, [{L )
: Noxa

n

(R (Wi, 0,)90(X0)) = Bus(yma (W, 02)e(X))]} ]

i=1
=En(k(vms(W, 05)ge(X)) — Enk(yems(W, 05)ge(X))?
<Enr(yims(W,05)) < oo, (D.11)
where the second equality holds by the i.i.d. assumption and the last inequality holds by Assumption vi).
The proofs for (c) and (d) are similar to (a) and (b) respectively, and we omit them for brevity.

For (e), we show that sup,c, ‘.K/l\s7g,n( 21%(6)) — Msep,( 227)1(6))\ —p 0 and the proofs for other three

convergence results are similar. The proof is done by showing that

sup  [Maen(6s) — Mie,p, (65)] = 0 (D.12)
¢s €D, LEL
sup (Mae,p, (6500(0) — My e.p, (62 (0)] = 0. (D.13)
lc

To show (D.12), we use the uniform weak law of large number in Andrews and Shi (2013b, Lemma E2).
Counsider the triangular array of processes {g¢(X)r(vims(-,05)) @ ¢s € @s,€ € L0 < n,n > 1}. From
part (a), it is manageable w.r.t. the envelope functions F'(-) = 1V supy_cq, #(7sms(:,05)) V B(-) such that
SUp,> Tt Yo, EnFéjé < 00. Therefore, by Lemma E2 of Andrews and Shi (2013b), holds.

To show (ID.13)), note that

|Ms,€7Pn (¢s1) — Mep, (ps2)| = |En [gE(X)H('YglmS(VVv 0s1)) — ge (X>“(7;2m8(vvv 0s2))]
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< Enlge(X)k(vaams(W, 051)) — ge(X)k(veams (W, 052))
= Enlge(X)[5(vaams (W, 051)) — £(viams(W, 0s2))]|

< En|6(Yaams (W, 051)) — £(viams (W, 052

= En|(0r(ims (W, 0,))/005)(ds1 — bs2))|

< |l9s1 — dszll - Bull (Ok(ims(W. 65)) /0 |

< llgs1 = sl - En sup [[(Ok(vems(W, 05))/0¢s)|

s€Ps

< C-lgs1 — ¢sall, (D.14)

for some 0 < C' < oo. The first equality holds by the definition of M, ¢ p,, the second equality holds by the
fact that |E,Y| < E,|Y| for any random variable Y, the second inequality holds because g, is an indicator
function, the third equality holds by a mean-value expansion, the third inequality holds by the Cauchy-Schwartz
inequality and the last inequality holds by Assumption vi). holds uniformly over £ € £, so (D.13)
follows.H

Proof of Lemma Let 'Ays%yn(t?s) = argmax., ers, /(4\574’”(75,95). For Lemma (a), it is sufficient

to show that supy ce_ rer,. ||*Ay£w’e’n(93) =Y 0.p,(0s)] = 0p(1) because by Assumption (v) s,en(Vs, 0s) 18
strictly concave in 74 and by Assumption iv) 175 e.p, (05)]l < M —6 . Also, define é%n( s) = ('ys 0.n(05),05)
First, for all £ € L,

Map, (0,(05) — My p, (0505, (05))

OMi1,p, (9%0,p, (05))Y :
= ( ereld VZ,PH( >)>(7§4€m(99) ~ Vs, p, (05))

s
_ N % / 82Ms ' ﬁna 05 A~ *
2 G0 22, 0) (BTN G 0~ 60)
1/~ * 4 82M3 " &nv 93 ~ *
< 233,000 = 75, 0) (FEE BNy 620 0) — 2, 0)
<2 iy 0 (40 (00) ~ Vi, (00) (D.15)

where 7, lies between ﬁsj‘ffevn(Gs) and v, p (05) and ¢ is in condition Assumption (v) The first inequality
holds by Lemmas[B.9|and which apply because 75, p (65) is the solution to max,, er,(9,) Ms.e,p, (Vs,0s)-
The second inequality holds by Lemma and the fact that

82Ms,l,Pn (ﬁna 05)
7507,

= Ep, [K (5 (W, 0,))ms (W, 0,)m (W, 6,) 90(X)] (D.16)

For any € > 0,

Po(( sup B2 (00) = viam, (09)] > €)

0,€0,,0€L,,
152, Oun) = Vi, (05)] > €)

Mt (B 0 Os) = Mo, (B, 5, 0s) < =27Piy 0, 0%)
Mt 2, (D3, 0 (0s0)) = Mt (D2, 1 (8s0))

IA

P,

IN

P,

N N N /

Py

37



+ Mty (O3, 0 (050)) = Mit, (@0, p, (0:0))
+ Mot (@t, p, Osin)) = M2, (80, p, (0un)) < 27Dy 0,0%)
<P (Vi Mo, (62, 0 (00)) = Moy (92h1(000)))
VA (Mt (0, 0, Osin)) = Mot 2 (6L, (Bsn))) < =27 Vi, -6+ 27)
—0. (D.17)

The first inequality holds after we pick a sequence {¢, € L, ,0s, € O5}52, such that MS%HW(QSW) —

Vi, P, Osn)|l > SUPy, co. reL,, H'AYQ/Ie,n(es) — 7;‘,@(93)” — 27", The second inequality holds by 1' and
the third inequality holds by the definition of 'Aysj"/[emn(esm).The convergence holds by the fact that the Lh.s.
term in the last P, () is Op(1) by Lemma b) and the r.h.s. term diverges to negative infinity by Assumption

and \/npp, . ¢, > /nCri.
For Lemma ), let {£, € L, ,05, € O}, be a random sequence such that pp, , ¢, [|¥s,,,n(0sn) —
7:,en,P,,, (Os,)|l > SUPg,eco,, teL [¥s,0,n(05) — 'Y;k,e,n,an)H — 27" Then,

PPy 0

Tn

0 S (ﬂs,ln,n(és,én,n (gs,n)) - M\s,in,n((ﬁ:)empn (es,n))>
< <6M57énan(¢:,fn,Pn (asm))

) Gt Osn) = V., Os.0)

0,
’ (:)2./{./1\54 n('?n 98 ’ﬂ)
¥s nesin -7 95” 5 l, ,
+ Fs,0,n(0s,n) = V5.0, P, (Os,n)) ( 0507,

o (Mot (D, Bsin))  OMot (B, 2, (Bon)
- 9 0

))’ (aQM\s,én,n(:yna 95,”)
0507,

) GistunBsin) = Vi, p, (s.n)

> ('AYS,én,n(GS,n) - 7:,€n,Pn (98,71))

+ (ot (Bon) = Vit ., (Bsm ) GistunOsin) = Vi, (Os.n)

Sop(”%ﬂ)||'AYs,€mn(es,n) - ’Y;en,Pn (es,n)” — PPyt g ii’is,én,n(es,n) - 'Y:,zn,Pn (Gs,n)Hz

+0p(PPy st O [Fs i (Os.n) = V30, (Osn) %) (D.18)

where the first inequality holds by the definition of %, ¢, »(0s,n) and the second inequality holds by a second
order Taylor expansion. The third inequality holds by applying Lemmas and to the problems
max., cr, (6,.,) Ms,t,.n(Vs; 0sn) and max,_cr, (a,) M\S,gn,n(vs7 0s.n). For the last inequality, the O,(n~1/?) term
follows from Lemma [B.2[d). Also, by Lemma e),
1 PMapyn(in0sn) 1 (M, (s Osn)
PPy b, 07507, PPy, ( 97507,
= By K505 (W, 000 (W, O, )ms (W, 0,0 | X € Co, | + 0, (1), (D.19)

+0p(n"11%))

where the o0,(1) follows from the fact that \/npp, s, diverges to infinity by the same argument for (D.17).
Finally, by Lemma and (D.27)), the last inequality follows. Then, pp, . ¢, [|9s,6,,n(0s,n) — Vs, p, (Osn)ll =
Op(n_l/ 2) and this completes the proof. For the second part, note that it is straightforward to see that

rde supye p}&n’ , < 67! where § is defined in Assumption viii). Therefore,

Tn

rgz sup H'AYSI,TL(GS) - 'V:,Z,Pn (@)l (D.20)
0s€0, L,
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< swp  ppyllisen(8s) = Vi p, (05)] = Op(n ™), (D.21)

0s€05,LeLy,

and this shows the second part.

For LemnmalB.3{c), let {¢,, € £}32, (080 0, OS] > supec, 750, 5, (050
Vie p (B22)] — 27" Then, similar to (A.19) of Shi (2015), we have
0<—ppye, 6 |[Vir. P, (eg}n) —Vit,.P, (Qﬁ?%)!lz
+1po,0 - Op (|75 P (050) = Vi, OCD| - (|65 = 62)]])- (D.22)

implies that sup,c . HW;M% (921%) —Yiep, (922%)H = (H9s n = egQT)LH)
Lemma [B.3{d) is implied by Lemma [B.3{a) and Lemma [B.3{(b).1

Proof of Lemma The following proof holds uniformly over P € F and we simplify the notation by
deleting the dependence on P. For example, we have M, , = M, p and V;J(es) = is, p(0s). Recall that
M 0(Vs,0s) = Epy[ge(X)k(vims(W,05))]. As a result,

M o(95.0(05)) = Pro e E[K(754(05) ms (W, 05))| X € C]. (D.23)
By a mean-value expansion, we have

0 < WU[My(070(05)] = W' (M) - Mio(85 4(65))
= U'(My0) - proe - Blr(7:,0(05) ms (W, 65))|X € Cf] < Crs, (D.24)

where M&g is a value between 0 and ./\/ls7e(¢; +(65)), and Ms,[ is bounded uniformly over £ € £ by Assumptions
5.2(iv) and (vi), and the second inequality holds due to this, the continuity of ¥’(:), and Assumptions (viii).
This implies that

0<rt [ Mo )] AR < C. (023

where C' is a positive number not dependent on 6 and Py. Note that the extra r, comes from the fact that
the total weight of F'(£) over L is of order r,,. B

Proof of Lemma [B.5t Note that

Ep,[K" (vsms (W, 05)ge(X))ms (W, 05 )ms (W, 05)']
=Ep,[ge(X)8" (vgms (W, 05))yms (W, 05 )ms (W, 05)']
=pry.c - By [K" (vims (W, 0,))ym (W, 8 )ms (W, 6,)' | X € Co], (D.26)

where the second equality holds by the law of iterated expectations and the last equality follows from the

definition of the conditional expectation. Hence, it suffices to show that
Cigmar (Ery [K(1ms (W, 0,))m (W, 0,)m (W, 0,) | X € €] ) < =6, (D.27)

because for all a > 0, eigmax(a - A) = a - €igmax(A).
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Suppose not, i.e., eigmax(Ep, [ (vims(W, 05))ms(W, 05)ms(W, 05)'| X € Cy¢]) > —d. Let A be the eigenvec-

tor associated with the maximum eigenvalue and ||A|| > 0, then
)\/EPO [F&H(’Y;ms(m es))ms(vvv os)ms(VVa as)/|X € Of] A > _5H>‘H2 (D'28)
However, this contradicts to the following:

)\IEPO [KVN(’Y;ms(VVa 95))ms(Wa Hs)mS(VVv 98)/‘X € Cg])\
’

:EPO P‘/K//(Py mS(VV, 95))ms(W7 95)ms(T/V, 95)/)\|X S Cg]
—Ep, {)\’E[H”(V;ms(ﬂf, 0,))ms(W, 0,)ms (W, 0,)| XA X € 04

<Bp, [SIAI2|X € ] < —aP. (D.29)

The second equality holds by law of iterated expectations and the inequity holds because of Assumption V).
Lemma follows.l

Proof of Lemma We first claim that Py € Ps g, ¢ iff d(Ps g, ¢, Po) defined in is equal to 0. Note that
Ep, [k(7ims(X,05)ge(X))] = 0 when ~, = 0. Therefore, it is straightforward to see that d(Ps.g, ¢, Py) > 0.
Also, by Lemma Ep, [k(vims(X, 0,)g¢(X))] is strictly concave on I'} and by definition, I'y(6,) is convex,
so the solution to is unique. As a result, to show that Py € Ps g, ¢ iff d(Pse, ¢, Po) =0, it is equivalent
to show that Py € Ps g, ¢ iff 75 = 0 is the solution to .

First, we show that if v5 = 0 is the solution to , then Py € Py, ¢. Note that for j =1...,k,,

OEp, [k (~ims(X,05)90(X))]
07s,

o~ ERolms (X 05)g0(X). (D.30)

It is obvious that v, = 0 is a regular point. By Lemma if v = 0 is the solution to (3.5)), then there exists
u e Ris_ps such that

OFp, [ (v,ms(X, 0)ge(X))]

99e o =0, forj=1,...,ps, (D.31)
OBp [n(ims(X,0)geXD] | e o i 1k (D.32)
s a0 Haeps
This implies that
Ep,[ms j(X,05)g¢(X)] =0, forj=1,... ps, (D.33)
Epy[ms;(X,00)g0(X)] = pi_, >0, for j=ps+1,....k, (D.34)

ie., Py € 'Ps’os)g.

We show the other direction. We apply Lemma to show that if Py € Psg, ¢, then v, = 0 is the
solution to (3.5). Let pj = Epy[msp,+;(W,05)] which is greater than or equal to 0 because Py € Ps g, ¢

Therefore, we have

~Bp,m.;(7,6,)) = 22 [K(%%ﬁ’ 05)9:(X))]

=0, forj=1,...,ps, (D.35)

40



. OFEp, |k(vims(X,05)g0(X
—Epy[ms 5 (W, 0,)] + i, = P [ ( 67( A )g9¢(X))]
S,7

o THp, =0, forj 2 ps. (D.36)

On the other hand, the L(Ag, ) for our case is
82“(7;ms (X, GS)QZ(X))
97507s'

Therefore, L(0, u*) = Ep,[—g¢(X)ms(X, 05)m (X, 05)")] and €igmax(L(0, u*)) < 0 by Lemma As a result,
the condition 2 of Lemma holds. This implies that v, = 0 is the solution to (3.5) and d(Ps.g, ¢, Po) = 0.

L(ys, 18) = Epy [ | = B[+ (vems (X, 05)g(X))ms (X, 05)ms (X, 65)'). (D.37)

Next we show Py € Ps iff dg(Ps, Py) = 0. First, if Py € P, then there exists 6% € O, such that
Py € Psp-. This is equivalent to that Py € Pgg-, for all £ € L and it follows that d(Ps g ¢, Po) = 0.
Therefore, dz(Ps g+, Po) = 0. This implies that dz(Ps, Py) = infg,co, de(Ps,o,, Po) = 0.

We show the other direction. Suppose dz(Ps, Py) = 0, then there exists a sequence {6s, € O5}52, such
that dz(Pse, ., Py) < 1/n. Since O, is a compact set, there exists a subsequence k,, of n such that 0, — 0% €
O, as n — oo. We first claim that dz(Ps e+, Po) = 0 and it is sufficient to show that d(Ps.g,, Po) is continuous
in 05. Note that M ¢ p, (7s,8s) = Ep,[k(7ims(W,05)ge(X))] is uniformly continuous on I'j; x ©,. By Lemma
C), 7;‘75(05) is uniformly continuous in 6, € ©,. These imply that for each ¢ € L, M, p, (7;‘)@(95),95)
and d(Ps.,.0,Po) = Y[Ms.e.p, (7:715(95),95)] is continuous in #;. Hence, for any sequence 0, , that converges
05, d(Ps.p, .0, Po) converges to d(Ps.g, ¢, Po) for each £ € L. By Assumptions iv) and (vi), d(Ps,g,.¢, Po) is
bounded above uniformly in ¢ and ;. Finally, by the dominated convergence theorem, it follows that for any
sequence 0, ., — 05, de(Ps.o, ., Po) — de(Ps,,, Fo). This shows the continuity of dz(Ps.e,, Fo) in 0s.

Next, we show that Py € P, g-. Suppose not, then there exists £* such that Py & Ps g ¢ and d(Ps o= ¢+, Po) >
0. Next, by the same argument for Theorem 3 of AS, there exists 7 > 0 such that for all £ € Nz(¢*), Py & Ps.ox 0+
and d(Ps g+ ¢+, Po) > 0. Finally, it follows that d(Ps -, Po) > fN;(e*) dF (£)(Ps,ox ¢, Po)dF'(¢) > 0. This com-
pletes Lemma [B.6| M

Proof of Lemma @ Let Pr,, abbreviate Prp,. For simplicity, ignore the subscript s.

We first show the consistency, that is for arbitrary sequence {én € @n}zozl and arbitrary € > 0, we have
Pr,, (pin (0, ©%(P,)) > &) — 0. Note that Assumption (ii) implies that for all € > 0, there exists J. > 0 not
dependent on P,, such that

inf de(Py, Py) > de(P, Py) + 6. D.38
OGG\NIEI(l(a*(Pn)) £(Po, Pn) > e )+ ( )

Let 07 be the point in ©*(P,) that is (approximately) closest to f,,, that is to say [|0, —07||2 < o3, (0, 0%)+27".
Then, the consistency is proved by the following derivation:
Pr,, (pin (0, ©%(P,)) > €)
<Prn(dc(Py . Pn) — dc(Poy, Pn) > 0c)
=Pr, ([de(Py,. Pu) = de,, (Pg, Pa)] + [de,, (Pg,, Pu) = de,, (Py, . Pa)]
+ [dz,, (P . Pn)) —de,, (Pos, Po))]
+ [de,, (Pog, Pa) = de,, (o Pa))] + [de,, (Pay,, P)) = de(Pay, Pu)] > 6. )
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=Pr, (0p(1) + 0p(1) + [dz,., (Py, . Pa)) = de,,, (Pa, Pa))] + 0,(1) + 0,(1) > 6. )
<Pr, (opu) +0,(1) + 0,(1) + 0p(1) > 55) -0, (D.39)

where the first inequality holds by (D.38)), the second equality holds by Lemma and Lemma b) and
the second inequality holds by the definition of @n

Next, we show the convergence rate. Let 6, and 0 be the same as above. And for any measurable subset

Aof L, et dA (P, Pa) = [, O(Mepn(3en(0),0))dF(£). Let Ma,(¢ = [y U(Men(7; p, (0),0))dF(¢) and
Mg n( = [, 9( ./\/lg n(en(0),0))dF (¢). Below, we show that
(a) [de,, (Py, . Pn > — M, n(6"(02)] = Me,, n(6(0n)) — d,, (Pos, Po)]
= Oy(n”" )+O ( ‘1/2)|| n—H*HJrop(l)-||9n—9;§||2
(1) [de,, (P@n,P) Me,, n(6°(07))] < (n“r;‘“) (D.40)

(1¢) [Me,, n(@(02)) = de,, (Poy, Pu)] = Op(n~try %) 46 (16 — 6,]° —27") A 6),
where § is the positive number in Assumption The three conditions in (D.40) imply that

Op(n 1) 20,(n™2) - |0 — 0311 + 0, (1) (16 — 05])
5+ (100 — 8,17 —27™) A ), (DA1)

and this further implies that |6, — 6% || = O, (n=1/2r,, /%),
We first show that (1a) holds. First, we have the L.h.s. of (1a) equals

[ {0 (R esrn0) = ¥ (W07, )]
~ [ (Men(drn(0:)) = (Mo, (9] p, (6:0))] }do

= [ { (et = 61, 00))

v OMen(9],p, (0 OMep, (67.p, (0
W'(Me,nwzpn(e:)))( : ﬁf;f"( ”)v(Me,pn(asz,pn(e:)))( éf;‘;’”( >>)]+

om0 [ PU(Mp, (ben)  OPU(Mip, (ben
(Bn(Bu) = 07, (67)) ( <a;§;f¢a ) (a;;’;;f“ )

) (Ben02) = 675, (03)) fdF(0)
(D.42)

by a second order Taylor expansion, where ¢, is some values lying on the line segment joining égn(é) and
¢7.,(07,). Together, the first summand of the expression inside the integral in the r.h.s. of (D.42) is

Op(n™ ") 6e.n(8n) — &7 p, (67 (D.43)

due to a combination of Lemma [B.2|b) and (d), twice-continuously differentiability of ¥(-) and Assumptions
5.2(vii)-(viii). Now note that

16¢.1(0n) = &% p, B <10 (Bn) = Vip, (G2) | + 116 — 6]
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<A (0n) = Vi, O + 197 p, (Bn) = 7i.p, (O3] + 165 — 65
:H%m(én) =%, 0| + Op (100 = 0511) + 110 — 63
o (10 = 03 11) + 110 — 65,

=0p(n~! %)+
=0p(n~ 21, %) + 0y (||6n — 6;]), (D.44)

(@)
(@)
where the first two inequalities hold by triangular inequalities, the first equality follows by Lemma c) and
the second equality follows by Lemma [B.3|(b).

Now we study the second summand of the expression inside the integral in the r.h.s. of . Using the
first three lines of 7 we have that the absolute value of this second summand is bounded by

U (Myn(pen)  0*U(Mep, (d0.0))

K - | éen(0n) = 675, (0701 - |

DO B D0
= (0p(n ™11 2%) + 0y (/10 — 0312))Op(n~1/2)
= Op(n_lT;dz) + Op(n_l/Q)Op(Hén - 0;”2)7 (D.45)

where K is a positive constant, the first equality holds by and Lemma d) and the twice continuous
differentiability of ¥(-), and the second equality holds by Assumption

The O, and o, terms in the above three displays are uniform over ¢ € L,,. Thus, together, they imply
that condition (1a) in [D.40] holds.

For (1b) in (D.40), we have that the Lh.s. of the condition equals

/ﬁ {@(ﬁe,n(ée,n(én))) — U (Myn(95 p, (9;)))}dF(e)

rn

< [ {0 indrnl0)) ~ U T (65 5, 0:) baF (0

Tn

= [ ) (e 02) = M0, (072)) Ja ) (D.16)

™n

where the first inequality holds because ésﬁn is a minimizer of the problem and the second equality holds by

mean-expansions. Note that

Mo (Den(05)) — Mon(05.p, (62))

_ [3M\z,n(¢zpn(9;))]
— =

e (07) =i p, (07)]

2~ * * *\1/ 82/\75 n b 2~ * * *
+ Benl07) = 7., O [ 5220 02 =, (607

{Wf OO 51 (07) — i, 03]+ O~ rs™)

M. %)) oM 0* L
<[ (gj,’%( ) oM. giﬁ”( D 5083~ 27 (03,0)] + Oyl 7 )
= Oy(n~"r ) + Oyn~ 1y %) = Oy(n ). (D.47)

Given that (M) = O,(1), (D.47) is sufficient for (1b).
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For (1c) in (D.40)), we first have that the Lh.s. of this condition equals

(M 1n,n(f/3(é ) —de,, Py Po)l = lde,, (P, Pn) = de,, (Poy, Pr)]
= [Me,, n(6(6n)) —dec,, (Py. . Pu)] = [dc(Py,  Pa) — de(Poy, Po)]
4 [d% (P, P) —des (Pos, Po)]
> (M, n((0n) —de,, (P, Pa)] + 8- (100 — O3] +27") A 6]
+ Mg n(07(0n)) — deg, (Poy, Po)]
= Op(n "1y %) 6 (100 — 05117 +27") A 6] + [Mee n(07(0n)) — deg, (Poy, Pa)), (D.48)

where the first inequality holds by Assumption iii) and the second equality holds by similar arguments as
those for condition (1b) in (D.40)). Also,

[dee (Pg,, Pn) —dee (Pox, Po) :/C {‘II(MI,PH(W,pn(@An))) — U (Myp, (9 p, (%)))}dF(f)

n

= [ Kte) Mo (6, 6,)) = Mo (6, (021 (0

I
S
2
3&

)0y (16 — 021)4F ()
=0(r&=*1) . 0, (|6, — 0% )
—o(n~1/2) - 018 — 03 ), (D-49)

where the second equality holds by a mean value expansion. The third equality in (D.49) holds because for
each ¢ € LS

(Mer, 6.7, 0n)) ~ Mo, 61,00 = [958  47 ) 63,000

= o [P 1075, 00) — 61, 02)

= 0,(1) - O(rsr) - Op([l6 — 63,1, (D-50)

where the first equality holds by a mean-value expansion, the O, (1) in the last equality holds by Assumption
5.2(viii), pe,, = O(rd=) for all £ € LS and

167, (0n) = &% b, (B3Il < 17 p, (Besn) =i p, (6:)] + 16 — 63
= O0p([10n = 0;11) + 110 — 611 = Oy (116 — 6;]) (D.51)

where the last line holds by Lemma [B.3|c). The fourth equality in (D.49) holds because the total weight of
F(£) over L5, is O(ry) by Assumption and the last equality in (D.49)) holds by Assumption Therefore,
(1c) holds.H

Proof of Lemma Rewrite \/ﬁ(fﬁn — LRp, ) as

Va(LR, — LRp,)
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— (/ [ (M1 e (G1,00 (01 n))) - \I/(M\z,e,n(qu,e,n(égm))}dF(g) _ LRP")

—

=V [w (M1757n<¢;z,pn<ein>)) ~ (M ep,) = U (Moen(630p,05.0)) + (M p,) | dF (0)
L

—Jn | (Mun((bup (07 ))) - \I!(ﬁ/l\z,z,n(qﬁgz,Pn(e;yn)))]dF(g)

+n | (Mun(aﬁlen(em))) —\If(/ﬂu,n(¢I,@,Pn(o;n)))}dp(@

Vi [ (Mo (G0, 050)) = ¥ (Mo Gaen(B20)) |7 O

= A, — A+ An 1+ Ay s Ds2)

Re-write A¢ as
AS = . [ (Mien (610, 05.)) = ¥ (Mo (630, (65,) ) |4F (0
= [ [ (P61, 05,0)) = (Mo 81, 01,0 a0
—/n . [\I/ (M\z,e,n (¢§,2,Pn(9§k,n))> - \II<M2»4’PH (@36, (0;*"))”(11?(6)

+vn . [\P (MLe,Pn (7.0, ( Tn))> - W(Mg,g,pn (650, (agn)))}dp(g)
A - A+ A, s

By Lemma Af 5= Op(n'/?rd=+1). For Aj, 1, by mean-value expansions,
45,0 =] / (M)W (M (610, 050) = Map, (8.0, (07,0)) ) dE(O)

<C | VM (60, 05,0)) = Mir (61.0p,61,0) | 40

=0, (ry) = 0,(n/?rdst1), (D.54)
where ./f\;liLg’n is between /\//\ll,g,n (qﬁ*l"eﬁpn (03 .,,)) and My 4 p, (qylﬁ,é,Pn (07 ,))- The first inequality holds by the fact
that W/(M, 4.,,) is uniformly bounded with probability approaching 1, the quantity \/ﬁ‘./(/l\l,g)n (9% 0.p, (07 ,)) —

Mae.p, (05 .5, (67,,))] is Op(1) uniformly over ¢ by [B.2(b), and the total weight of F() over L¢ is O(ry)
by Assumption The last equality holds because n'/?r% — oo. Similarly, A¢ , = op(nl/ 2pdz+1) - These

n n,2

together imply that
AS = O, (nt/?pdatl), (D.55)

For A, 1 and A, o, observe that they are n'/? times the Lh.s. of (1b) in equation (D.40) specialized to
model P; and model P, respectively. The three conditions in (D.40) combined with Lemma show that

Apr = Op(nfl/2r,:d””)7 and A, 2 = Op(nfl/Qr;dm). (D.56)
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It is left to discuss A,,. Recall that
By =i [ [9(M100 (61 0, (01,))) = ¥(Mi 0, PO
Vi [ (M50, 05.0) = ¥ (M3.,) | aF (0
= [ VM VA (V100 (61 ., (810)) = Mi g, AP () + O™ )
[ VM )V (W (500, 05.0) = M, JAF(0) + O™ 7)
er:/ ) 5O e (85,0 (W3, 67,)00(X0) — W (M5 5,)]
— WM p,) [5(05 £.0 (03,0) M2 (Wi, 05,)96(X0)) + W (M3 g p,)] }AF(0) 4+ Op(n™112)
:\}EZZ;AP L0, (). (D.57)

The second equality holds because Py, € Fg. The third equality holds by Taylor expansions and the last
equality holds by expressing M\Lgm (qﬁiejpn(ﬁin)) and /\//\lz,z’n ((;5;7@71% (9’2"71)) and by changing the order of
summation and integration.

The lemma is proved by combining (D.52), (D.55)), (D.56) and (D.57).

Proof of Lemma This is identical to Theorem 20.1 of Chong and Zak (2001).m
Proof of Lemma This is identical to Theorem 20.3 of Chong and Zak (2001).H

Proof of Lemma By assumption, p} = 0if g;(z*) > 0 for j = 1,...,m, we just need to consider those
Jj’s such that g;(z*) = 0. Note that g; is concave and g;(z*) =0, so

0 (@) < gi(a") + 2B g gy 2 OB (o) (D.58)
This implies that
of(x") i 3g .
5 (z —z* Z,u] j ~(x7:17 ) <0. (D.59)

This shows Lemma [B.111H
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