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Abstract

We propose a simple test for moment inequalities that has exact size in normal mod-

els with known variance and has uniformly asymptotically exact size under asymptotic

normality. The test compares the quasi-likelihood ratio statistic to a chi-squared criti-

cal value, where the degree of freedom is the rank of the inequalities that are active in

finite samples. The test requires no simulation and thus is computationally fast and

especially suitable for constructing confidence sets for parameters by test inversion. It

uses no tuning parameter for moment selection and yet still adapts to the slackness of

the moment inequalities. Furthermore, we show how the test can be easily adapted

to inference on subvectors in the common empirical setting of conditional moment in-

equalities with nuisance parameters entering linearly. User-friendly Matlab code to

implement the test is provided.
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1 Introduction

In the past decade or so, inequality testing has become a mainstream inference method used

for models where standard maximum likelihood or method of moments are difficult to use,

for reasons including multiple equilibria, incomplete data, or complicated dynamic patterns.

In such models, inequalities can often be derived from equilibrium conditions and rational

decision making. Inference can then be conducted by inverting tests for these inequalities

at each given parameter value. That is, by testing the inequalities at each parameter value

and collecting the values at which the test does not reject to form a confidence set.1

Although conceptually simple, conducting inference via test inversion poses considerable

computational challenges to practitioners. This is because, in order to get an accurate

calculation of the confidence set, one needs to test the inequalities at a set of parameter

values that is dense enough in the parameter space. Depending on the application, the

number of values that need to be tested can be astronomical and increases exponentially

with the dimension of the parameter space. Moreover, existing tests often require simulated

critical values that are nontrivial to compute even for a single value of the parameter, let

alone repeated for a large number of parameter values.2

Besides computational challenges, most existing methods for moment inequality models

involve tuning parameter sequences that are required to diverge at a certain rate as the sam-

ple size increases. The threshold in the generalized moment selection procedures (e.g. Rosen

(2008) and Andrews and Soares (2010)) and the subsample size in subsampling-based meth-

ods (e.g. Chernozhukov et al. (2007) and Romano and Shaikh (2012)) are notable examples.3

Appropriate choices often depend on data in complicated ways, and an inappropriate choice

can threaten the validity of the test.

Clearly, there are two ways to ease the computational burden: one is to make the in-

equality test easier for each parameter value, and the other is to reduce the number of

parameter values that need to be tested. We contribute to the literature in both. First, we

1An incomplete list of applications that use inequalities as estimation restrictions includes Tamer (2003),
Uhlig (2005), Bajari et al. (2007), Blundell et al. (2007), Ciliberto and Tamer (2009), Beresteanu et al.
(2011), Holmes (2011), Baccara et al. (2012), Chetty (2012), Nevo and Rosen (2012), Kawai and Watanabe
(2013), Eizenberg (2014), Huber and Mellace (2015), Pakes et al. (2015), Magnolfi and Roncoroni (2016),
Sheng (2016), Sullivan (2017), He (2017), Iaryczower et al. (2018), Wollman (2018), Fack et al. (2019), and
Morales et al. (2019). For a recent overview of the literature, see for example Ho and Rosen (2017), Canay
and Shaikh (2017), and Molinari (2020).

2Existing tests for general moment inequalities with simulated critical values include Chernozhukov et al.
(2007), Romano and Shaikh (2008), Andrews and Guggenberger (2009), Andrews and Soares (2010), Bugni
(2010), Canay (2010), Romano and Shaikh (2012), and Romano et al. (2014). See Canay and Shaikh (2017)
and Molinari (2020) for more references.

3Arguably, the size of a first stage confidence set or the number of simulation/bootstrap draws are also
tuning parameters commonly used to test moment inequalities.
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propose a simple test for general moment inequalities that requires no simulation. It simply

uses the (quasi-) likelihood ratio statistic (Tn) and a chi-squared critical value, where the

data-dependent degrees of freedom come as a by-product of computing Tn. We call it a

conditional chi-squared test. By not requiring simulation, the test saves computation time

hundreds-fold compared to tests involving simulated critical values, where a statistic needs

to be computed for each simulated sample. For example, in the simulation experiment re-

ported in Section 5.1, our test is about 200-400 times faster than the recommended testing

procedures in Andrews and Barwick (2012) (AB, hereafter) and Romano et al. (2014) (RSW,

hereafter).

Second, we then consider a conditional moment inequality model where the parameter

vector can be partitioned into two subvectors: (θ′, δ′)′. The subvector θ is the parameter of

interest, while δ is the subvector that the researcher is not interested in, commonly referred

to as the nuisance parameter. We specialize to the setting where δ enters the moment

inequalities linearly and propose a version of the conditional chi-squared test for θ. The

subvector test is based on eliminating the nuisance parameters from a system of inequalities.

By eliminating the nuisance parameters, one only needs to consider a grid on the space

of θ, which can be much lower dimensional than the space of (θ′, δ′)′. Thus, the number of

parameter values that need to be tested is drastically reduced. For example, in the simulation

experiment reported in Section 5.2 below, our subvector test uses only 10 seconds to compute

a confidence interval in a specification with a 4-dimensional δ and 32 moment inequalities.

In both contexts, the conditional chi-squared test is simulation and tuning parameter

free. Its critical value is simply the chi-squared critical value with degrees of freedom equal

to the rank of the active moment inequalities, where we call a moment inequality active if

it holds with equality at the restricted estimator of the moments.4 In a normal model with

known variance, the test is shown to have exact size in finite sample. That is, its worst case

rejection probability under the null hypothesis is equal to its nominal significance level. In

an asymptotically normal model, it is shown to be uniformly asymptotically valid. Moreover,

it automatically adapts to the slackness of the moment inequalities despite the absence of

a deliberate moment selection step. Combining uniform asymptotic validity and adaptation

to slackness is challenging, especially without using a tuning parameter. The conditional

chi-squared test is able to achieve the combination thanks to a tractable and adaptive bound

on the conditional distribution of the test statistic. Specifically, the intuition for the uniform

asymptotic validity is that the conditional upper quantiles of the likelihood ratio statistic

4Active inequalities are the sample counterpart of binding inequalities, which hold with equality at the
population expectation of the moments. An inequality that is not active is referred to as inactive. An
inequality that is not binding is referred to as slack.
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are asymptotically bounded by the quantiles of the chi-squared distribution with k degrees

of freedom, given the event that k inequalities are active. The intuition for the adaptiveness

is that very slack inequalities tend not to become active and hence not to count toward the

degree of freedom used in the critical value calculation.

The idea of simple chi-squared critical values for testing inequalities appeared as early

as in Bartholomew (1961) and Rogers (1986) for testing one-sided alternatives against a

simple null, but was only recently proved to be valid for a composite null in Mohamad et al.

(2020) in a normal model. We extend Mohamad et al. (2020) in four ways: (a) we allow

an intercept in the inequalities defining the null hypothesis and thus generalize the null

hypothesis from a cone to a polyhedron. This is important for moment inequality models

as, in the limit, the null hypothesis may not be a cone when some inequalities are close to

binding; (b) we design a simple but novel refinement to make the test size-exact; (c) we

prove the test is uniformly asymptotically valid in moment inequality models; and (d) we

show how to feasibly extend the test to the subvector inference context in the presence of

nuisance parameters that enter the moments linearly. Extensions (a)-(c) rely on technical

contributions described in the appendix. We highlight them briefly here, as they may be

useful in other contexts. The finite sample validity of the refinement relies on a careful

partition of the state space (see Lemmas 3 and 4) combined with an inequality on the tail

of the truncated normal distribution (see Lemma 6). The uniform asymptotic validity relies

on a lemma guaranteeing convergence of an arbitrary sequence of polyhedra to a limiting

polyhedron along a subsequence (see Lemma 9).

The idea of eliminating nuisance parameters from linear moment inequalities is first sug-

gested in Guggenberger et al. (2008), where they introduce Fourier-Motzkin elimination, a

classical algorithm for eliminating nuisance parameters from linear inequalities, to the liter-

ature and propose a Wald-type test on the resulting inequalities. Yet two main difficulties

hinder the application of this idea: (a) numerical calculation of the Fourier-Motzkin elimi-

nation in general is an NP-hard computational problem, and (b) the estimated coefficients

in front of the nuisance parameters enter the resulting inequalities via a non-differentiable

function, and could undermine the validity of testing procedures applied directly to them.

The first difficulty is circumvented because the conditional chi-squared test only relies on

the rank of the active inequalities, and results from the convex analysis literature (see Lem-

mas 1 and 2) allow us to compute the rank of the active inequalities without carrying out

Fourier-Motzkin elimination. The second difficulty is circumvented by considering models

where the moment inequalities hold conditional on a vector of instrumental variables, a class

of models first proposed by Andrews et al. (2019).

Andrews et al. (2019) (hereafter ARP) has the closest setting with our paper. They
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propose a test based on the largest standardized sample moment. In the most basic version,

their test uses a conditional critical value from a truncated normal distribution. This basic

version involves no simulation or tuning parameter and as a result is easy to compute.

However, the basic version has poor power properties that prompt them to recommend a

hybrid test. The hybrid test uses a simulated critical value as well as a tuning parameter

that determines the size of a first-stage least favorable test.

There are a few papers in the literature that propose methods to mitigate the compu-

tational challenges described above. Kaido et al. (2019) cast the problem of finding the

bounds of the projection confidence interval of each parameter into a nonlinear nonconvex

constrained optimization problem, and provide a novel algorithm to solve this optimiza-

tion problem more efficiently. Our simple inequality test is complementary to Kaido et al.

(2019)’s algorithm in that we make testing for each value hundreds-fold easier while their

algorithm reduces the number of values that need to be tested. Bugni et al. (2017) propose

a profiling method that simplifies computation in the same way as the subvector confidence

set proposed in this paper, by reducing the search from the space of the whole parameter

vector to that of a low dimensional subvector. The difference is that our subvector test, by

taking advantage of the linearity of the model, is much easier to compute than Bugni et al.

(2017)’s test, which applies more generally. Chen et al. (2018) propose a quasi-Bayesian

method that can also be applied to subvector inference in moment inequality models, as well

as a simple method that applies to scalar parameters of interest. Gafarov (2019) and Cho

and Russell (2020) propose confidence intervals for affine functionals of parameters defined

by affine moment inequalities, both by approximating the null distributions of regularized

support functions of the identified set.

A couple of other papers aim to reduce the sensitivity of testing to tuning parameters. AB

refines the procedure of Andrews and Soares (2010) (AS, hereafter) by computing an optimal

moment selection threshold that maximizes a weighted average power and a size correction.

Using the optimal threshold and the size correction provided in that paper, one no longer

needs to choose a tuning parameter. Computationally, it is the same as AS if one has 10

or fewer moment inequalities and can use the tables of optimal tuning and size correction

values in the paper. It is much more computationally demanding otherwise. RSW replace

the moment selection step of the previous literature with a confidence set for the slackness

parameter and employ a Bonferroni correction to take into account the error rate of this

confidence set. There is still a tuning parameter, the confidence level of the first step, but

this tuning parameter no longer affects the asymptotic size of the test. Computationally,

using the same number of bootstrap draws, it is slightly more costly than AS due to the first-

step confidence set construction. The recommended tests in AB and RSW are our points
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of comparison in the simulation experiments in Section 5.1, where we show that our simple

test saves computational cost hundreds-fold, while having competitive size and power.

The remainder of this paper proceeds as follows. Section 2 describes our setup and several

examples. Section 3 describes how to implement the full-vector and subvector conditional

chi-squared tests. Section 4 states theoretical properties that the tests have. Section 5

reports the simulation results. Section 6 concludes. A supplemental appendix contains the

proofs and additional results.

2 Setup and Examples

This section describes the setup for full-vector and subvector moment inequality testing,

together with several examples.

2.1 Moment Inequality Model: Full-Vector Inference

Consider a dm-dimensional moment function, m(Wi, θ), that depends on a vector parameter

of interest, θ. Let Θ denote the parameter space for θ, and denote the data by {Wi}ni=1 with

joint distribution F . We assume the moments satisfy a vector of linear inequalities given by

AEFmn(θ) ≤ b, (1)

where A is a dA × dm matrix, b is a dA × 1 vector, and mn(θ) = n−1
∑n

i=1m(Wi, θ). The

moment inequalities identify the true parameter value up to the identified set,5

Θ0(F ) = {θ ∈ Θ : AEFmn(θ) ≤ b}. (2)

The specification of a moment inequality model given by (1) is very general. Other papers

in the moment inequality literature, such as AS, specify moment inequalities of the form

EFm1(Wi, θ) ≤ 0 and EFm2(Wi, θ) = 0, (3)

where m1(Wi, θ) denotes a dm1-vector of moments that satisfy inequalities and m2(Wi, θ)

denotes a dm2-vector of moments that satisfy equalities. By including a coefficient matrix A

5The quantities A and b may depend on θ and the sample size n, a dependence that we keep implicit
for simplicity unless otherwise needed. If the dependence is made explicit, the formula for Θ0(F ) becomes
{θ ∈ Θ : A(θ)EFmn(θ) ≤ b(θ)}.
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and an intercept b, (1) covers the specification in (3) with b = 0 and

A =

 Idm1
0dm1×dm2

0dm2×dm1
−Idm2

0dm2×dm1
Idm2

 , (4)

where dA = dm1 + 2dm2 . Introducing A and b is convenient because it allows us to succinctly

cover both equalities and inequalities. It also readily accommodates models with upper and

lower bounds with a deterministic gap in between.6 Below we assume the variance-covariance

matrix of the moments is invertible. Introducing A and b is useful because it specifies the

inequalities as a linear combination of a “core” set of moments, and only the core set of

moments needs to have an invertible variance-covariance matrix.

Moment inequalities have become widely used in practice as the reference list given in

the first paragraph of the introduction shows. We mention two recent examples here.

Example 1. He (2017) uses a moment inequality model to estimate preferences of applicants

in a school admission problem under a matching mechanism called the Boston mechanism.

To fix ideas, consider a simple case with 3 schools, a, b, and c. Each applicant i submits

a rank-ordered list (r1
i , r

2
i , r

3
i ) to the mechanism. The Boston mechanism first assigns as

many applicants as possible to the top-ranked school in their list while respecting the capacity

constraints of the schools. The unassigned applicants are considered by their second-ranked

school for the remaining school seats, if any. The process continues until all seats are filled or

all students assigned. The Boston mechanism is not strategy-proof in that applicants, instead

of submitting their true preference ranking, can benefit from an untruthful rank-ordered list.

He (2017) aims to answer an important policy question: does switching to a strategy-

proof mechanism make the less sophisticated applicants better off? The question necessitates

He to allow in his model less sophisticated applicants who do not form correct beliefs about

admission probabilities. He allows them to form individualized beliefs which become incidental

parameters that preclude full identification. However, He shows that the model can uniquely

predict the probability of some rank-ordered lists and bound that of other rank-ordered lists

using functions that do not involve beliefs. For example,

Pr((r1
i , r

2
i , r

3
i ) = (0, 0, 0)) = Pr(uia < ui0, uib < ui0, uic < ui0) or equivalently (5)

E[1{(r1
i , r

2
i , r

3
i ) = (0, 0, 0)}] = g000(θ) :=

∫
1{ua < u0, ub < u0, uc < u0}dF (u0, ua, ub, uc|θ),

6For example, E[W̄n] − 1 ≤ θ ≤ E[W̄n] can be written in our notation with m(w, θ) = θ − w, A =
(

1
−1

)
and b = ( 0

1 ).
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where uis is the utility of being admitted to school s, ui0 is the utility of the outside option, and

F (·|θ) is the joint distribution of (ui0, uia, uib, uic) assumed to be known up to the parameter

θ. Also,

Pr((r1
i , r

2
i , r

3
i ) = (a, b, c)) ≤ Pr(uia ≥ ui0, uia ≥ min{uib, uic}), or equivalently (6)

E[1{(r1
i , r

2
i , r

3
i ) = (a, b, c)}] ≤ gabc(θ) :=

∫
1{ua > u0, ua > min{ub, uc}}dF (u0, ua, ub, uc|θ),

where the preference restriction on the right-hand side of the first line means that school a

cannot be unacceptable (i.e., worse than the outside option) or be the least favorite. While

everyone who submits (a,b,c) must have those preferences, not everyone who has such pref-

erences will submit (a,b,c). For example, if an applicant expects the admission probability

at school a is too low even when it is top-ranked, she may rank it bottom. Thus we have

an inequality instead of an equality in (6). Observing a data set of {r1
i , r

2
i , r

3
i }, one can use

moment equalities and inequalities like (5) and (6) to conduct inference on θ. In this exam-

ple, our formulation (1) using the A matrix and the b intercept is particularly useful because

there are equalities and inequalities, the probabilities on the left-hand side sum up to one,

and the probabilities may have both upper and lower bounds.

Example 2. Morales et al. (2019) use moment inequalities to estimate a model of interna-

tional trade to quantify the importance of extended gravity, which is the dependence of an

exporting firm’s entry cost to a new market on its previous exporting to similar markets.

Due to extended gravity, the set of markets the firm exports to has important dynamic im-

plications for future entry costs. Thus, it becomes necessary to consider a dynamic discrete

choice model with the choice set of each firm being the power set of potential markets. The

sheer size of this choice set makes it difficult, if not impossible, to estimate the model using

traditional maximum likelihood methods.

Morales et al. (2019) form moment inequalities by comparing the equilibrium profit with

the profit after a single-period perturbation from the optimal strategy. More specifically, they

obtain moment inequalities of the form

E[(πijj′t + δπijj′t+1)I(Zit)1{dijt(1− dij′t) = 1}] ≥ 0, (7)

where i is the firm index, j and j′ are indices for destination markets, t is time, dijt = 1

indicates that firm i exports to market j at time t and dijt = 0 indicates otherwise, πijj′t

is the loss of static profit at time t due to switching the time t export from country j to j′,

πijj′t+1 is the loss of static profit at time t+1 due to the same switch, δ is the discount factor,

Zit is a vector of instrumental variables, and I(Zit) is a vector of nonnegative functions of
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Zit. Profit is parameterized to reflect revenue and costs with the extended gravity parameters

as part of the cost function. Morales et al. (2019) use the AS test on a grid of parameter

values to compute a joint confidence set for a 5-dimensional parameter.

2.2 Conditional Moment Inequality Model: Subvector Inference

We next consider a conditional moment inequality model with nuisance parameters entering

linearly. The model has three differences from the full-vector setup: (a) there are nuisance

parameters, denoted by δ, that enter the moments linearly, (b) the inequalities hold condi-

tionally on exogenous variables, {Zi}ni=1, and (c) the coefficients on δ depend only on the

exogenous variables, {Zi}ni=1. In mathematical terms, the model is given by

EFZ [BZmn(θ)− CZδ|Z] ≤ dZ , a.s. (8)

where Z = {Zi}ni=1 is a sample of instrumental variables (each Zi is taken to be a subvector

of Wi without loss of generality), BZ , CZ , and dZ are k× dm, k× p, and k× 1 matrix-valued

measurable functions of Z, δ is a vector of unknown nuisance parameters, θ is a vector of

unknown parameters of interest, and FZ denotes the conditional distribution of {Wi}ni=1

given {Zi}ni=1. The subscript Z is used to denote dependence on Z1, ..., Zn. The quantities

BZ , CZ , and dZ are also allowed to depend on θ and the sample size n (while k and p are

fixed), but we keep that implicit for notational simplicity. Similar to the full-vector case,

this model can succinctly cover both equalities and inequalities by an appropriate choice of

BZ , CZ , and dZ , as well as accommodating upper and lower bounds with a gap between the

bounds that depends on {Zi}ni=1.

The model (8) was first spotted as an interesting class of models by ARP. It is a special

case of the conditional moment inequality models considered in Andrews and Shi (2013). We

note two special features of this setup: (i) the nuisance parameter δ enters linearly, and (ii)

the coefficients on δ depend only on the exogenous variables {Zi}ni=1. ARP recognized that,

while these features significantly restrict the generality of the full-vector model, they are

common in many empirical models: exogenous covariates are frequently used to incorporate

heterogeneity and/or to control for confounders. We use these features to develop a con-

ditional subvector inference procedure, which, like our full-vector test, is tuning parameter

and simulation free. Here we describe three examples of models that fit this setup.

Example 3. Manski and Tamer (2002) consider an interval regression model:

Y ∗i = X ′iθ + Z ′ciδ + εi, (9)
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where Y ∗i is a dependent variable, Xi is a vector of possibly endogenous variables, Zci is a

vector of exogenous covariates including the constant. There is a vector of excluded instru-

mental variables Zei that satisfies E[εi|Zi] = 0, where Zi = (Z ′ci, Z
′
ei)
′. The outcome Y ∗i is

not observed. Instead, YLi and YUi are observed such that Y ∗i ∈ [YLi, YUi]. The imperfect

observation of Y ∗i may be caused by missing data or survey design where respondents are

given a few brackets to select from instead of asked to give a precise answer.

Let I(Zi) be a finite non-negative vector of instrumental functions. Then we have

E

[(
(YLi −X ′iθ0)I(Zi)

−(YUi −X ′iθ0)I(Zi)

)
−

(
I(Zi)Z

′
ci

−I(Zi)Z
′
ci

)
δ0

∣∣∣∣∣Zi
]
≤ 0, (10)

which yields a model of the form (8) with BZ = I, Wi = (YLi, YUi, X
′
i, Z

′
i)
′, m(Wi, θ) =(

(YLi−X′iθ)I(Zi)

−(YUi−X′iθ)I(Zi)

)
, CZ = n−1

∑n
i=1

(
I(Zi)Z

′
ci

−I(Zi)Z
′
ci

)
, and dZ = 0.

Example 4. Gandhi et al. (2019) consider a generalized interval regression model to conduct

inference for an aggregate demand function when observed market shares of differentiated

products have many zero values. Mathematically, the latent inverse demand model is of the

form

ψ(Y ∗i , Xi, θ0) = Z ′ciδ0 + εi, E[εi|Zi] = 0, (11)

where ψ is a known function, but Y ∗i , the expectation of the market share in market i, is

unobserved. Under an assumption on the source of the zeroes, Gandhi et al. (2019) construct

bounds, ψUi (θ0) and ψLi (θ0), such that

E[ψLi (θ0)|Zi] ≤ E[ψ(Y ∗i , Xi, θ0)|Zi] ≤ E[ψUi (θ0)|Zi]. (12)

Then, analogously to the previous example, we have

E

[(
ψLi (θ0)I(Zi)

−ψUi (θ0)I(Zi)

)
−

(
I(Zi)Z

′
ci

−I(Zi)Z
′
ci

)
δ0

∣∣∣∣∣Zi
]
≤ 0, (13)

where I(Zi) is a finite non-negative vector of instrumental functions of Zi = (Z ′ci, Z
′
ei)
′. This

yields a model of the form (8), where BZ = I, Wi contains Zi as well as the variables used to

construct ψLi and ψUi , m(Wi, θ) =
(

ψLi (θ)I(Zi)

−ψUi (θ)I(Zi)

)
, CZ = n−1

∑n
i=1

(
I(Zi)Z

′
ci

−I(Zi)Z
′
ci

)
, and dZ = 0.

In Section 5.2, we consider a Monte Carlo example of a special case of this model where

we also provide more details on the bound construction. In the application of Gandhi et al.

(2019), control variables (Zci) are essential for the validity of the instruments.

Example 5. Eizenberg (2014) studies the portable PC market to quantify the welfare effect

of eliminating a product. Central to the question is the fixed cost of providing the product.
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Eizenberg uses the revealed preference approach to construct bounds, Li and Ui, for the fixed

cost of product i. Let Zi be a vector of product characteristics (including the constant). One

can consider the following conditional moment inequality model:

E [(Li − P (Zi)
′γ0)I(Zi)|Zi] ≤ 0 (14)

E [(−Ui + P (Zi)
′γ0)I(Zi)|Zi] ≤ 0,

where P (Zi) is a vector of known functions of Zi and I(Zi) is a vector of nonnegative

instrumental functions. The function P (Zi)
′γ0 captures the (observed) heterogeneity of fixed

costs across products. Using our method, one can construct confidence intervals for each

element of γ0 and any linear combinations of γ0 such as the average derivative.

Suppose the parameter of interest is the average derivative with respect to the first element

of Zi: θ0 = γ′0P̄1,n, where P̄1,n = n−1
∑n

i=1 ∂P (Zi)/∂z1. One can rewrite (14) as

E
[
(Li − θ0)I(Zi)− I(Zi)(P (Zi)− P̄1,n)′γ0|Zi

]
≤ 0

E
[
(−Ui + θ0)I(Zi) + I(Zi)(P (Zi)− P̄1,n)′γ0|Zi

]
≤ 0, (15)

which falls into the framework of (8) where BZ = I, Wi contains Zi as well as the variables

used to construct Li and Ui, m(Wi, θ) =
(

(Li−θ)I(Zi)
−(Ui−θ)I(Zi)

)
, CZ = n−1

∑n
i=1

(
I(Zi)(P (Zi)−P̄1,n)

−I(Zi)(P (Zi)−P̄1,n)

)
,

and dZ = 0.

Two additional examples that fit into our subvector framework are Katz (2007) and

Wollman (2018) as reviewed in ARP.

3 Conditional Chi-Squared Test: Implementation

In this section we define a new test, called the conditional chi-squared test, for the inequalities

specified in (1) and (8). It is called a conditional chi-squared test because it uses a critical

value that is a quantile of the chi-squared distribution, where the degree of freedom depends

on the active inequalities. We give instructions for implementing the test, which shows that

it is easy to implement and has low computational cost.

3.1 Full-Vector Test

We use the inequalities specified in (1) to test hypotheses on θ. Like most papers in the

literature, including AS, AB, and RSW, we conduct inference for the true parameter θ0 by

test inversion. That is, for a given significance level α ∈ (0, 1), one constructs a test φn(θ, α)

11



for H0 : θ = θ0, where φn(θ, α) = 1 indicates rejection and φn(θ, α) = 0 indicates a failure to

reject. One then obtains the confidence set for θ0 by calculating

CSn(1− α) = {θ ∈ Θ : φn(θ, α) = 0}. (16)

In practice, CSn(1− α) is calculated by testing H0 : θ = θ0 on a grid of values of θ ∈ Θ.

We introduce a new test that is easy to compute, requiring no tuning parameters or

simulations. It uses the (quasi-) likelihood ratio statistic,

Tn(θ) = min
µ:Aµ≤b

n(mn(θ)− µ)′Σ̂n(θ)−1(mn(θ)− µ), (17)

where Σ̂n(θ) denotes an estimator of VarF (
√
nmn(θ)), the variance-covariance matrix of the

standardized moments. When {Wi}ni=1 is i.i.d., we can take

Σ̂n(θ) =
1

n

n∑
i=1

(m(Wi, θ)−mn(θ))(m(Wi, θ)−mn(θ))′. (18)

When {Wi}ni=1 is not i.i.d., we can define Σ̂n(θ) to account for the clustering or autocorrela-

tion in {Wi}ni=1.

The test uses a data-dependent critical value that is based on the rank of the rows of A

corresponding to the inequalities that are active in finite sample. To define it rigorously, let

µ̂ be the solution to the minimization problem in (17). This is the restricted estimator for

the moments. It can be calculated using a quadratic programming algorithm. Let a′j denote

the jth row of A and let bj denote the jth element of b for j = 1, 2, . . . , dA. Let

Ĵ = {j ∈ {1, 2, . . . , dA} : a′jµ̂ = bj}, (19)

which is the set of indices for the active inequalities. For a set J ⊆ {1, 2, . . . , dA}, let AJ be

the submatrix of A formed by the rows of A corresponding to the elements in J . Let rk(AJ)

denote the rank of AJ , and let r̂ = rk(AĴ). Note that for test inversion, µ̂, Ĵ , and r̂ need to

be recalculated for every value of θ.

The critical value of the conditional chi-squared test is the 100(1 − α)% quantile of χ2
r̂,

the chi-squared distribution with r̂ degrees of freedom, denoted by χ2
r̂,1−α. We denote the

conditional chi-squared test by

φCC
n (θ, α) = 1

{
Tn(θ) > χ2

r̂,1−α
}
, (20)

where CC stands for “conditional chi-squared” indicating that the test uses the chi-squared

12
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Figure 1: Geometric representation of the CC test (shaded) and the RCC test (dashed) in
Illustration 1.

critical value conditional on the active inequalities.7 We show the validity of the CC test

below. The intuition is that Tn(θ) (asymptotically) follows the χ2
r̂ distribution conditional on

r̂ when all inequalities are binding (that is, AEFmn(θ) = b), and is stochastically dominated

by the χ2
r̂ distribution when some of the inequalities are slack.

The CC test does not reject when r̂ = 0, and rejects with probability at most α when r̂ >

0. Thus, an upper bound on its (asymptotic) null rejection probability is (1− Pr(r̂ = 0))α.

This shows that the CC test can be somewhat conservative unless the moment inequality

model contains an equality.8

We also propose a second simple test that eliminates the conservativeness. We call this

the RCC (refined CC) test. We define the RCC test by adjusting the critical value when

r̂ = 1 from the 100(1 − α)% quantile to the 100(1 − β̂)% quantile of the χ2
1 distribution,

where β̂ varies between α and 2α depending on how far from being active the additional

inequalities are. We construct β̂ geometrically to make the refinement exactly restore the

size of the test. To save space, we provide the details for implementing the refinement in

Supplemental Appendix A.1.

7The conditional aspect of our critical value gives it an apparent resemblance with the critical value of
the conditional test in ARP. However, the resemblance is only superficial. Like any conditional test, what is
important is the statistic that is conditioned on. That statistic is the set of active inequalities in our case,
while it is the second largest standardized sample moment in ARP’s case.

8When the model contains an equality, the two inequalities representing the equality are always active,
and thus Pr(r̂ = 0) = 0.
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Algorithm 1: Pseudo-code for implementing the CC test.

1: %Compute the CC Test
2: Tn(θ), µ̂ ← minµ:Aµ≤b n(mn(θ)− µ)′Σ̂n(θ)−1(mn(θ)− µ)

3: Ĵ := {j = 1, . . . , dA : a′jµ̂ = bj}
4: AĴ ← Ĵ , A
5: r̂ := rk(AĴ)
6: φCC

n (θ, α) := 1{Tn(θ) > max{χ2
r̂,1−α, tol}}.

It helps to illustrate the CC and RCC tests in a simple two-inequality example.

Illustration 1. Consider an example where dm = 2, A = I, b = 0, and Σn(θ) = I. We

omit θ from the notation for ease of exposition. Thus, we are testing H0 : EFmn ≤ 0 using

the statistic
√
nmn, which asymptotically follows a bivariate standard normal distribution.

On the space of
√
nmn, the rejection region for the CC test is illustrated by the shaded

region in Figure 1. In this example, the likelihood ratio statistic is the squared distance

between
√
nmn and the third quadrant of the plane. If

√
nmn lies in the second or fourth

quadrants of the plane, one inequality is active and the χ2
1 quantile is used. If

√
nmn lies

in the first quadrant of the plane, two inequalities are active and the χ2
2 quantile is used.9

The critical values for the RCC test are illustrated using a dashed line where they deviate

from the CC test. From the figure, we can see that the RCC test deviates from the CC test

only when the number of active inequalities is one (in the second and fourth quadrants of the

plane).

To end this subsection, Algorithm 1 presents pseudo-code that can be used to compute

the CC test. The pseudo-code is implemented in user-friendly Matlab code provided in

the replication files. The implementation requires a tolerance (tol) to account for numerical

imprecision in the quadratic programming used to compute Tn(θ). We use 10−8 in the Monte

Carlo simulations.

Remark. Algorithm 1 makes clear some of the convenient features of the implementation

of the CC test. We list them here for emphasis. (a) The CC test does not require any tuning

parameters or simulations to implement. (b) The CC test is simple to code. (c) There is

also a third convenient feature of the implementation that is less clear from Algorithm 1,

which is that the inequalities do not need to be “reduced” before implementing the test.

Often in practice a collection of inequalities contains redundant inequalities, or inequalities

that are implied by the other inequalities. The CC test is invariant to the inclusion of

9The discontinuity in the critical value illustrated in Figure 1 is similar to the discontinuity in the rec-
ommended generalized moment selection function (their ϕ(1)) in AB that occurs whenever a moment is at
the threshold of being selected.
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redundant inequalities. In contrast, other tests for moment inequalities, including AS, AB,

and RSW, are not invariant, and thus are improved by reducing the collection of inequalities

by removing the redundant ones before implementing the tests.

3.2 Subvector Test

Next we use the inequalities in (8) to test hypotheses on θ. For a given value, θ0, testing

H0 : θ = θ0 amounts to testing the following hypothesis:

H0 : ∃δ such that BZEFZ [mn(θ0)|Z]− CZδ ≤ dZ , a.s. (21)

In this subsection, we define a subvector version of the conditional chi-squared test for (21).

Directly testing (21) is difficult because it requires checking the validity of the inequality

for all values of δ. We construct our test using an equivalent form of (21) that eliminates δ:

H0 : AZEFZ [mn(θ0)|Z] ≤ bZ , (22)

for some matrix AZ and vector bZ that are deterministic functions of CZ , BZ , and dZ .

The existence of such a transformation is well-known in the theory of linear inequalities,

dating back to Fourier (1826). It has been noted in the moment inequality literature by

Guggenberger et al. (2008), but has not been used in practice to the best of our knowledge.

One significant obstacle is that calculating AZ and bZ is computationally difficult except

in small dimensions. The key innovation in our approach is to conduct the conditional

chi-squared test on (22) without calculating AZ and bZ .

The subvector CC (sCC) test for (21) is the full-vector CC test based on (22). It uses

the test statistic

Tn(θ) = min
µ:AZµ≤bZ

n(mn(θ)− µ)′Σ̂n(θ)−1(mn(θ)− µ), (23)

where Σ̂n(θ) is an estimator of the conditional variance: Σn(θ) = Var(
√
nmn(θ)|Z), discussed

in more detail below. The critical value of the sCC test is χ2
r̂,1−α, where r̂ is the rank of the

active inequalities, defined as in the full-vector CC test applied to the problem in (23).

The key to computing Tn(θ) without computing AZ and bZ is to recognize that

Tn(θ) = min
δ,µ:BZµ−CZδ≤dZ

n(mn(θ)− µ)′Σ̂n(θ)−1(mn(θ)− µ). (24)

One can calculate Tn(θ) by quadratic programming, where (δ′, µ′)′ is the decision variable.
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Let (δ̂′, µ̂′)′ be the solution to the minimization problem.

There are multiple ways to define AZ and bZ for (22) to be equivalent to (21). The

Fourier-Motzkin algorithm noted in Guggenberger et al. (2008) is one of them. Another that

is particularly convenient for our purpose is to take convex combinations of the inequalities.

If we let h ∈ Rk denote a vector of nonnegative weights that sum to one, then the convex

combination of the inequalities in (21) is given by

h′BZEFZ [mn(θ0)|Z]− h′CZδ ≤ h′dZ . (25)

When h′CZ = 0, the δ parameter is eliminated from the inequalities. It follows from Gale’s

Theorem10 that it is sufficient to consider the set of all inequalities (25) indexed by

h ∈ H := {h ∈ Rk : h ≥ 0, C ′Zh = 0, 1′h = 1}. (26)

To connect this result to (22), note that H defines a convex polyhedron in Rk. Every element

of a convex polyhedron is a convex combination of its extreme points, or vertices. Thus, it

is sufficient to consider the vertices of H. That is, a particular value θ0 satisfies (21) if and

only if θ0 satisfies (25) for all h that are vertices of H. Equivalently, if we take H(CZ) to

denote a matrix where each row is a vertex of H, then defining

AZ = H(CZ)BZ and bZ = H(CZ)dZ (27)

renders (22) equivalent to (21). This result is formally stated in Lemma 1 in Appendix A.2.

Thus, to calculate AZ and bZ , we could enumerate the vertices of H. While vertex

enumeration seems simple, it can be computationally challenging when k and/or p are large.

(Experience suggests even moderate values of k and p can lead to computational challenges.)

As noted in various textbooks, including Sierksma and Zwols (2015), there is no polynomial

time algorithm for vertex enumeration available in general. However, in our context there is

a computationally simpler way to compute r̂ without AZ or bZ . The key is to note that the

active inequalities correspond to a face of H—the one that takes convex combinations of the

active inequalities. This can be computed numerically using linear programs using BZ , CZ ,

and dZ . Then, the rank of the vectors in the face of H is equal to r̂. We provide the details

of this calculation in Supplemental Appendix A.3.

Next, we discuss the conditional variance estimator Σ̂n(θ). The conditional variance is

the appropriate variance matrix to be estimated because the inequalities hold conditionally

10See Theorem 2.7 in Gale (1960). Gale’s Theorem is considered by some authors (e.g. Bachem and Kern
(1992), Theorem 4.1) to be a variant of Farkas’ Lemma, a result that may be familiar to readers who have
worked on nonnegative solutions to linear systems of equations.
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Algorithm 2: Pseudo-code for the sCC test using vertex enumeration of H.

1: %Compute the sCC Test
2: Tn(θ), µ̂ ← minδ,µ:BZµ−CZδ≤dZ n(m̂n(θ)− µ)′Σ̂n(θ)−1(mn(θ)− µ)
3: H(CZ) ← H using a vertex enumeration algorithm, e.g. con2vert.m in Matlab

(ref. Kleder (2020))
4: AZ , bZ ← H(CZ)BZ , H(CZ)dZ
5: Ĵ := {j = 1, ..., dA : e′jAZ µ̂ = e′jbZ}
6: r̂ := rk(IĴAZ)
7: φsCC

n (θ, α) := 1{Tn(θ) > max{χ2
r̂,1−α, tol}}.

on Z and the theoretical properties of the tests are derived using the conditional distribution

of mn(θ0) given Z. Here we describe a conditional variance matrix estimator for discrete Zi

in the context of i.i.d. data. In the appendix, we define another conditional variance matrix

estimator for continuous Zi.

Suppose Zi takes on a finite number of values in a set, Z. A straightforward estimator

of Var(
√
nmn(θ)|Z) is the weighted average of the sample variances of m(Wi, θ) within each

category of Zi:

Σ̂n(θ) =
∑
`∈Z

n`
n

1

n` − 1

n∑
i=1

(m(Wi, θ)−m`
n(θ))(m(Wi, θ)−m`

n(θ))′1{Zi = `}, (28)

where n` =
∑n

i=1 1{Zi = `} and m`
n(θ) = 1

n`

∑n
i=1m(Wi, θ)1{Zi = `}. As we show in

Appendix B.4, sufficient conditions for the consistency of this estimator involve boundedness

of the fourth moment of m(Wi, θ) and the assumption that every Zi value occurs twice or

more in the sample {Zi}ni=1 eventually. This is the estimator used in our Monte Carlo

simulations in Section 5.2.

To end this subsection, Algorithm 2 presents pseudo-code that can be used to compute

the sCC test using vertex enumeration of H. An algorithm that avoids vertex enumeration

of H is available in the appendix. In the algorithm, ej denotes the jth unit basis vector

in RdA , and IJ denotes the submatrix of the dA × dA identity matrix containing the rows

with indices in J . The pseudo-code is implemented in user-friendly Matlab code provided

in the replication files. The implementation requires a tolerance to account for numerical

imprecision in the quadratic programming used to compute Tn(θ). We use 10−8 in the Monte

Carlo simulations. Note that the sCC test has the same convenient implementation features

listed in the remark on Algorithm 1. The third feature, that the inequalities do not need to

be “reduced” before implementing the tests, is especially convenient for the sCC test because

algorithms for the vertex enumeration used to calculate AZ and bZ often deliver redundant
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inequalities, and these do not have to be removed before implementing the sCC test.

4 Theoretical Properties

Next we consider the theoretical properties of the CC and sCC tests. We show that both the

full-vector and subvector CC tests are uniformly asymptotically valid when the moments are

asymptotically normal. Moreover, we make precise the adaptiveness of the tests to slackness

of the moment inequalities. In Supplemental Appendix B we state the theoretical properties

of the RCC and sRCC tests.

4.1 Full-Vector

Now we state the asymptotic properties of the CC test when the moments are asymptoti-

cally normal and the variance-covariance matrix is estimated. For expositional purposes, we

focus on the independent and identically distributed (i.i.d.) data case here, while results in

Supplemental Appendix B cover more general cases. With i.i.d. data, we can estimate the

variance matrix with Σ̂n(θ) defined in (18). We show that the CC test has correct asymptotic

size uniformly over a large class of data generating processes.

The following assumption defines the class of data generating processes allowed. Here

|·| denotes the matrix determinant, and ε and M are fixed positive constants that do not

depend on F or θ.

Assumption 1. For all F ∈ F and θ ∈ Θ0(F ), the following hold.

(a) {Wi}ni=1 are i.i.d. under F .

(b) σ2
F,j(θ) := VarF (mj(Wi, θ)) > 0 for j = 1, . . . , dm.

(c) |CorrF (m(Wi, θ))|> ε, where CorrF (m(Wi, θ)) is the correlation matrix of the random

vector m(Wi, θ) under F .

(d) EF |mj(Wi, θ)/σF,j(θ)|2+ε≤M for j = 1, . . . , dm.

Remarks. (1) This set of assumptions is commonly made in the moment inequality lit-

erature (see e.g. Andrews and Guggenberger (2009), AS, or Kaido et al. (2019)). Part (a)

assumes i.i.d. for simplicity, but is not essential for the results. One can use our method

on data with cluster, spatial, or temporal dependence, after changing Σ̂n(θ) to a variance

estimator that appropriately accommodates the dependence. In that case, the validity of

our procedure follows from Theorem 5 in Appendix B. Part (b) is innocuous as it simply
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requires the moment functions be nonconstant in Wi. Parts (a), (b), and (d) together imply

asymptotic normality of the sample moments via a Lyapunov central limit theorem.

(2) Part (c) requires uniform invertibility of the correlation matrix, which is imposed be-

cause we use the inverse of Σ̂n(θ) in the test statistic. While this rules out perfectly correlated

moments and near-perfectly correlated moments, perfectly correlated moments can be han-

dled in specification (1) by an appropriate choice of A and b provided the perfect correlation

is known. For example, in Example 1, suppose one reaches the moment inequalities:

E[1{(r1
i , r

2
i , r

3
i ) = (0, 0, 0)} − g000(θ)] ≤ 0

E[−1{(r1
i , r

2
i , r

3
i ) = (0, 0, 0)}+ g000(θ)] ≤ 0

E[1{(r1
i , r

2
i , r

3
i ) = (a, b, c)} − gabc(θ)] ≤ 0

...

E[1{(r1
i , r

2
i , r

3
i ) = (b, 0, 0)} − gb00(θ)] ≤ 0

E[1{(r1
i , r

2
i , r

3
i ) = (c, 0, 0)} − gc00(θ)] ≤ 0. (29)

These moment inequalities are collinear both because the first is the negative of the second

and because the probabilities of all rank-order lists add up to 1. The invertibility requirement

can still be satisfied by defining

m(Wi, θ) =


1{(r1

i , r
2
i , r

3
i ) = (0, 0, 0)}

1{(r1
i , r

2
i , r

3
i ) = (a, b, c)}
...

1{(r1
i , r

2
i , r

3
i ) = (b, 0, 0)}

 , A =


1 0 ... 0
−1 0 ... 0
0 1 ... 0
...

...
...

0 0 ... 1
−1 −1 ... −1

 , and b =



g000(θ)

−g000(θ)

gabc(θ)
...

gb00(θ)

gc00(θ)− 1


.

Note that m(Wi, θ) is the core set of moments, one for each possible rank-order list, omitting

the last one. This is similar to dealing with perfect multicollinearity in a linear regression

with binary variables.

Let DF (θ) denote the diagonal matrix formed by σ2
F,j(θ) : j = 1, . . . , dm. For J ⊆

{1, . . . , dA}, let IJ denote the rows of the identity matrix corresponding to the indices in J .11

We define a reduced test that only uses a subset of the inequalities. For J ⊆ {1, ..., dA}, let

φCC
n,J(θ, α) denote the CC test defined with AJ and bJ instead of A and b, where bJ denotes

the subvector of b formed by the elements of b corresponding to the indices in J . This test

is a useful point of comparison when the inequalities not in J are very slack.

11Note that IJA is an alternate notation for AJ .
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The following theorem states the asymptotic properties of the CC test.

Theorem 1. Suppose Assumption 1 holds.

(a) limsup
n→∞

supF∈F supθ∈Θ0(F ) EFφCC
n (θ, α) ≤ α.

(b) For a sequence {(Fn, θn) : Fn ∈ F , θn ∈ Θ0(Fn)}∞n=1 such that A(θn)DFn(θn)→ A∞, for

some matrix A∞ and for all J ⊆ {1, . . . , dA}, rk(IJA(θn)DFn(θn)) = rk(IJA∞) for all

n, if there is a J ⊆ {1, . . . , dA} such that for all j /∈ J ,
√
n(a′jEFnmn(θn)− bj)→ −∞

as n→∞, then

lim
n→∞

PrFn
(
φCC
n (θn, α) 6= φCC

n,J(θn, α)
)

= 0.

Proof. The Theorem follows from the proofs of Theorems 4 and 5 in Supplemental Appendix

B, where the only modification needed is to change β̂ to α. Theorem 5 states the analogous

results for the RCC test, and the proof of Theorem 4 verifies the assumptions of Theorem 5

under Assumption 1.

Remarks. (1) Part (a) shows that the CC test is asymptotically uniformly valid. Part (b)

shows that when the slack inequalities get very slack, the CC test reduces to a version of it

that does not use those inequalities. Put another way, the CC test adapts to the slackness

of the inequalities. We call this property “irrelevance of distant inequalities” or IDI. AS

introduced a generalized moment selection procedure that achieves the IDI property via a

sequence of tuning parameters. Note that if θ and F are fixed and A and b do not depend on

n, then the condition in part (b) holds, where J equals the set of all binding inequalities.12

(2) Theorem 1 and the other results in this paper are stated in terms of hypothesis tests.

However, they can be extended to results on the coverage probability of confidence sets

defined by test inversion in a standard way. Specifically, under the conditions of Theorem

1(a), we have

lim inf
n→∞

inf
F∈F

inf
θ0∈Θ0(F )

PrF
(
θ0 ∈ CSCC

n (1− α)
)
≥ 1− α, (30)

where CSCC
n (1− α) = {θ ∈ Θ : φCC

n (θ, α) = 0} is the confidence set formed by inverting the

CC test.

(3) Theorems 3-5 in Appendix B state the theoretical properties of the RCC test. The-

orem 3 shows that the RCC test has finite sample exact size and posseses a finite-sample

version of the IDI property when the moments are normally distributed and the variance

matrix is known. Theorems 4-5 state the asymptotic validity and the IDI property of the

RCC test. In addition, these two theorems also show that the RCC test is asymptotically

12Technically, since F is the joint distribution of {Wi}ni=1, we need the marginal distribution of each Wi

to be fixed.
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size-exact under appropriate conditions, which means that the limit of the worst case re-

jection probability is equal to α. It follows from this and a relationship between the CC

and the RCC test given in equation (40) in Supplemental Appendix A that, under the same

conditions, the asymptotic size of the CC test is between α/2 and α.

4.2 Subvector

Now we state the asymptotic properties of the sCC test when the moments are asymptoti-

cally normal and the conditional variance-covariance matrix is estimated. For expositional

purposes, we focus on the independent and identically distributed (i.i.d.) data case here

with discrete Zi. Results in the appendix cover more general cases. With discrete Zi, we can

estimate the conditional variance-covariance matrix with Σ̂n(θ) defined in (28). We show

that the sCC test has correct asymptotic size uniformly over a large class of data generating

processes.

The following assumption defines the class of data generating processes allowed. Fix a

realization of {Zi}ni=1 and denote it by z. Let Fz be a collection of conditional distributions

Fz for {Wi}ni=1 given {Zi}ni=1 = z. Let σ2
j|z(θ) := n−1

∑n
i=1 VarFz(mj(Wi, θ)|z) and

D|z(θ) = diag(σ2
1|z(θ), . . . , σ

2
dm|z(θ)). (31)

Here eigmin(V ) denotes the minimum eigenvalue of a matrix V , and ε0 and M0 are fixed

positive constants that do not depend on Fz or θ.

Assumption 2. For all Fz ∈ Fz and θ ∈ Θ, the following hold.

(a) Under Fz, {Wi}ni=1 are independent across i, and for all i1, i2 ∈ {1, ..., n}, the distri-

butions of Wi1 and Wi2 are identical if zi1 = zi2.

(b) σ2
j|z(θ) > 0 for all j = 1, . . . , dm and for all n.

(c) eigmin(n−1
∑n

i=1[VarFz(D
−1/2
|z (θ)m(Wi, θ)|z)]) > ε0 for all n.

(d) n−1
∑n

i=1 EFz((mj(Wi, θ)/σj|z(θ))
4|z) < M0 for all j = 1, . . . , dm and for all n.

(e) {zi}ni=1 contains at least two instances of each value eventually as n→∞.

Remark. Part (a) is the i.i.d. assumption for conditional distributions. Part (b) simply

requires the moment functions be nonconstant in Wi after conditioning on Zi. Part (c)

requires that the average conditional variance of m(Wi, θ) be invertible uniformly over θ and

Fz ∈ Fz. This is required since we use the quasi-likelihood ratio statistic which involves
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inverting Σ̂n(θ). Part (d) requires m(Wi, θ) to have bounded 4th moment conditional on Zi.

This is used both to derive the asymptotic normality of mn(θ) using the Lindeberg-Feller

central limit theorem under a sequence of values of Fz, and to show the consistency of Σ̂n(θ).

Part (e) can be established for a probability-one set of z values by the strong law of large

numbers.

The following theorem states the asymptotic properties of the sCC test. In the theorem,

Az and bz are from the nuisance-parameter-eliminated inequalities, defined in (27). As before,

let φsCC
n,J (θ, α) denote the CC test defined with IJAz and IJbz instead of Az and bz, for any

J ⊆ {1, ..., dA}. Also let Θ0(Fz) := {θ ∈ Θ : Az(θ)EFzmn(θ) ≤ bz(θ)} denote the identified

set for the given z values.

Theorem 2. Suppose Assumption 2 holds.

(a) limsup
n→∞

supFz∈Fz supθ∈Θ0(Fz) EFz(φsCC
n (θ, α)|z) ≤ α.

(b) Consider a sequence {(Fz,n, θn) : Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)}∞n=1. Suppose there exists

a sequence of positive definite dm × dm matrices, {Dn}, such that ΛnAz(θn)Dn → Ā0

for some dA × dm matrix Ā0, where Λn is the diagonal dA × dA matrix whose jth

diagonal entry is one if e′jAz(θn) = 0 and ‖e′jAz(θn)Dn‖−1 otherwise. Also suppose

for every J ⊆ {1, ..., dA}, rk(IJAz(θn)Dn) = rk(IJĀ0). If, for some J ⊆ {1, ..., dA},√
ne′jΛn(Az(θn)EFz,nmn(θn)− bz(θn))→ −∞ as n→∞ for all j /∈ J , then

lim
n→∞

PrFz,n(φsCC
n (θn, α) 6= φsCC

n,J (θn, α)) = 0.

Proof. In Supplemental Appendix B, Theorem 6(a,b) verifies the assumptions of Corollary

2 under Assumption 2. Given the assumptions of Corollary 2, the conclusions of Theorem 2

follow from the proof of Theorem 5(a,c) with β̂ replaced by α in the same way that Corollary

2 follows from Theorem 5.

Remarks. (1) Part (a) shows that the sCC test is asymptotically uniformly valid. Part (b)

shows an IDI property of the sCC test: when the slack inequalities get very slack, the sCC

test reduces to a version of it that does not use those inequalities. In the special case that

Az and bz do not depend on n, and if Fz and θ are fixed, then the condition in part (b) is

satisfied with J equal to the set of all binding inequalities.13

(2) The condition in part (b) depends on Az = H(Cz)Bz and bz = H(Cz)dz, which are

the inequalities after eliminating the nuisance parameters. It is unclear whether an alter-

native sufficient condition can be formulated that depends only on the original inequalities.

13Technically, since Fz is the joint conditional distribution of {Wi}ni=1, we need the marginal conditional
distributions of Wi given Zi = zi to be fixed for all possible values of zi.
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In a model with a scalar parameter of interest, Rambachan and Roth (2020) use a linear

independence constraint qualification to show that the test in ARP reduces to the one-sided

t-test at an endpoint of the identified set. A similar constraint qualification may be helpful in

formulating a sufficient condition for part (b) that depends only on the original inequalities.

(3) The invertibility requirement on Σn(θ) guides the choice of instrumental functions,

I(Zi), in Examples 3-5. In those examples, the instrumental functions are used to increase

the number of moment inequalities in order to sharpen identification. The instrumental

functions in Andrews and Shi (2013) serve the same purpose. Like in Andrews and Shi

(2013), appropriate functions are indicators of cells defined by Zi. However, unlike Andrews

and Shi (2013), we do not recommend using cells of multiple levels of fineness. For example,

when Zi ∈ {0, 1}2, we do not recommend using both 1{Zi = (0, 1)′}, 1{Zi = (0, 0)′}, 1{Zi =

(1, 1)′}, 1{Zi = (1, 0)′} and 1{Zi ∈ {(0, 1), (0, 0)}}, 1{Zi ∈ {(1, 0), (1, 1)}}. This is because

the subsequent moments are linearly dependent, causing Σn(θ) to be singular. We thus rec-

ommend choosing a partition of the space of Zi and using the indicator of all cells in that par-

tition. For example, when Zi ∈ {0, 1}2, use I(Zi) = (1{Zi = (0, 1)′}, 1{Zi = (0, 0)′}, 1{Zi =

(1, 1)′}, 1{Zi = (1, 0)′})′. Our simulations suggest this choice of the instruments leads to no

loss in terms of the power of the test or the size of the confidence set.

The need to choose instrumental functions is common in conditional moment inequality

models. A complete cost and benefit analysis is beyond the scope of this paper, but we

can make some general observations. (a) A finer partition yields sharper identification,

meaning that Θ0(Fz) is smaller. (b) A finer partition also means fewer observations per cell,

potentially implying a worse normal approximation. A crude rule of thumb is to ensure that

the smallest cell in the partition contains 15 or more observations.

(4) Corollaries 1 and 2 in Appendix B state the theoretical properties of the sRCC test. In

addition to being asymptotically valid and possessing the IDI property, the sRCC test is size-

exact under appropriate conditions, which means that the limit of the rejection probability

is equal to α. Also, Corollary 1 states finite sample properties of the sRCC test when the

moments are normally distributed. It states that the sRCC test has finite sample exact size

and a finite-sample version of the IDI property.

5 Monte Carlo Simulations

We have shown that the CC and RCC tests have a variety of desirable properties, including

convenient implementation and theoretical properties such as validity and adaptativeness to

slackness. In this section, we use Monte Carlo simulations to compare the CC and RCC

tests to alternative moment inequality tests in terms of size, power, and computational cost.
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We consider two sets of Monte Carlo simulations, one to evaluate the performance of the

CC and RCC tests in a general moment inequality model without nuisance parameters, and

the second to evaluate the performance of the sCC and sRCC tests in Example 4. In these

simulations, no test should be expected to dominate any other in terms of power. Still, we

find that the CC and RCC tests are at least competitive in terms of size and power and

dominate in terms of computational cost.

5.1 Full-Vector Simulations

Our first set of simulations takes the generic moment inequality design from AB. This design

allows a variety of correlation structures across moments and thus can approximate a wide

range of applications.

We briefly describe the Monte Carlo design here and refer readers to Section 6 of AB for

further details. Consider the moment inequality model

E[θ −Wi] ≤ 0, (32)

and the null hypothesis H0 : θ = 0, where Wi is a k-dimensional random vector. Let the

data {Wi}ni=1 be i.i.d. with sample size n. Let Wi be distributed with mean µ and variance-

covariance matrix Ω. Three choices of Ω are considered: ΩNeg, ΩZero, and ΩPos. For ΩZero,

the moments are uncorrelated. For ΩPos, the moments are positively correlated. For ΩNeg,

some pairs of moments are strongly negatively correlated while other pairs of moments are

positively correlated. The exact numerical specifications of these matrices for different k’s

are in Section 4 of AB and Section S7.1 of the Supplemental Material of AB.

We consider separately cases with k ≤ 10 and cases with k ≥ 10. With k ≤ 10, we

compare the CC and the RCC tests to the recommended tests in AB and RSW. More

specifically, we compare to the bootstrap-based AQLR (adjusted quasi-likelihood ratio) test

in AB and two two-step procedures in RSW, one using their T qlr
n statistic and the other using

their Tmax
n statistic.14 With k ≥ 10, we only compare the CC and RCC tests to the RSW

tests as the AB test is no longer computationally feasible. The RSW tests are implemented

using 499 bootstrap draws and with a first-step significance level of 0.005. The AB test is

implemented using 1000 bootstrap draws. These are the recommended values in RSW and

AB, respectively.

14We use the AB test for comparison because it is tuning parameter free (in the sense that AB propose
and use an optimal choice of the AS tuning parameter), and we use RSW’s two-step tests for comparison
because they should be insensitive to reasonable choices of their tuning parameters.
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5.1.1 k ≤ 10

We approximate the size of the tests using the maximum null rejection probability (MNRP)

over a set of µ values that satisfies µ ≥ 0 for each combination of Ω and k. These µ values are

taken from AB, whose calculations suggest that these points are capable of approximating

the size of the tests. We also compute a weighted average power (WAP) for easy comparison.

The WAP is the simple average of a set of carefully chosen points in the alternative space.

We take these points also from AB, who design them to reflect cases with various degrees of

violation or slackness for each of the inequalities. These µ values are given in Section 4 of

AB and Section S7.1 of the Supplemental Material of AB. Besides WAP, we also report size-

corrected WAP, which is obtained by adding a (positive or negative) number to the critical

value where the number is set to make the size-corrected MNRP equal to the nominal level.

Table 1 shows the MNRP and WAP results when Wi is normally distributed with known

Ω. In this case, only the RCC test should have exact size. The CC test should be somewhat

under-sized especially with small k. The results are consistent with these theoretical predic-

tions. The MNRP of the RCC test is within simulation error of 5%, and the MNRP of the

CC test is somewhat below the MNRP of the RCC test. The MNRP’s of the AB and the

RSW1 tests appear to be more different from 5% than the RCC test, while the MNRP of

the RSW2 test is close to 5%.

Table 2 shows the results when Wi is normally distributed with estimated Ω. In this

case, none of the tests have exact size. The RCC test still has very good MNRP at k = 2,

but has noticeably larger MNRP (up to 7.4% from 5%) when k = 10 with Ω = ΩNeg. This

may reflect the difficulty in estimating Ω with a small sample size (n = 100). The AB test

and the RSW1 test continue to have good size, while the RSW2 test now exhibits some

over-rejection when k = 10 and Ω = Ωzero.

In terms of weighted average power, the RCC test has weakly higher ScWAP than both

RSW tests in all but one case in Table 2 (estimated Ω), and in all but two cases in Table 1

(known Ω). The RCC test has higher ScWAP than the AB test in 4 out of 9 cases in both

Table 1 and Table 2. The ScWAP of all the tests, except RSW2, are quite close to each other,

with differences between them no greater than 6 percentage points. The ScWAP of RSW2

is close to the other tests in all cases except when the moments have negative correlations

(Ω = ΩNeg), when they are much lower, especially for k = 10.

On the computational side, the AB test and the RSW1 test are 200-400 times as costly

as the RCC test, and the RSW2 test is 4-9 times as costly as the RCC test, as shown in the

Time columns in the tables. Also note that the AB test is computed using 1000 bootstrap

draws while the RSW tests using 499 bootstrap draws. Increasing the number of bootstrap

draws would increase their computational costs proportionally.
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Table 1: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests (normal distribution, known Ω, n = 100)

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .051 .61 .61 .003 .052 .62 .62 .003 .051 .62 .62 .003
CC .051 .61 .60 .003 .049 .60 .61 .003 .046 .58 .60 .003
AB .046 .53 .55 1.11 .051 .59 .59 1.07 .059 .65 .64 1.40

RSW1 .054 .58 .56 .551 .056 .60 .59 .538 .052 .64 .63 .701
RSW2 .050 .23 .23 .014 .052 .34 .34 .013 .052 .50 .49 .014

Ω = ΩZero

RCC .052 .63 .63 .003 .052 .65 .65 .003 .051 .68 .68 .003
CC .050 .62 .62 .003 .045 .62 .64 .003 .038 .61 .66 .004
AB .043 .65 .66 1.08 .050 .67 .67 1.07 .056 .69 .67 1.39

RSW1 .053 .61 .60 .545 .056 .63 .62 .539 .052 .65 .65 .699
RSW2 .053 .54 .52 .014 .052 .62 .62 .014 .049 .66 .66 .014

Ω = ΩPos

RCC .051 .76 .75 .003 .053 .75 .74 .003 .051 .72 .71 .003
CC .038 .72 .76 .003 .033 .68 .74 .003 .032 .62 .69 .003
AB .042 .78 .80 1.05 .051 .75 .75 1.03 .059 .72 .70 1.34

RSW1 .053 .77 .77 .547 .056 .73 .71 .534 .052 .67 .66 .700
RSW2 .052 .77 .77 .014 .052 .74 .74 .013 .049 .68 .69 .014

Note: CC, RCC, AB, RSW1 and RSW2 denote the conditional chi-squared test, the refined CC test, the adjusted quasi-likelihood
ratio test with bootstrap critical value in AB, the two-step test in RSW based on the QLR statistic and that based on the Max
statistic, respectively. MNRP, WAP, ScWAP and Time denote maximum null rejection probability, weighted average power, size-
corrected WAP, and average computation time used in seconds in each Monte Carlo simulation. Cases with different k and knowledge
status of Ω may have been assigned to different machines and their computation times are not comparable. But times across tests
are comparable. The AB test and the RSW tests use 1000 and 499 bootstrap draws respectively. The results for the CC, RCC, and
RSW2 tests are based on 5000 simulations, while those for the AB and RSW1 tests are based on 2000 simulations for feasibility.

Table 2: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests (normal distribution, estimated Ω, n = 100)

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .074 .63 .54 .003 .058 .63 .61 .004 .053 .62 .61 .003
CC .074 .63 .54 .003 .058 .61 .59 .004 .048 .59 .60 .003
AB .046 .51 .53 1.23 .049 .58 .58 1.56 .056 .64 .63 1.13

RSW1 .054 .55 .53 .569 .053 .58 .58 .736 .050 .62 .62 .533
RSW2 .053 .24 .23 .026 .051 .34 .33 .026 .051 .49 .48 .023

Ω = ΩZero

RCC .069 .65 .59 .003 .053 .66 .65 .004 .051 .68 .68 .003
CC .069 .64 .57 .003 .049 .63 .63 .004 .039 .61 .66 .003
AB .043 .62 .64 1.23 .048 .66 .67 1.55 .053 .68 .67 1.14

RSW1 .052 .58 .58 .570 .053 .62 .61 .732 .050 .64 .64 .541
RSW2 .062 .54 .50 .026 .053 .61 .60 .026 .050 .64 .64 .024

Ω = ΩPos

RCC .056 .77 .75 .003 .054 .75 .74 .004 .051 .71 .71 .003
CC .043 .73 .74 .003 .034 .68 .73 .004 .035 .63 .69 .003
AB .044 .78 .79 1.19 .049 .74 .75 1.50 .055 .71 .70 1.07

RSW1 .053 .76 .75 .566 .053 .71 .71 .731 .052 .66 .66 .528
RSW2 .056 .76 .74 .026 .052 .73 .72 .027 .050 .67 .67 .023

Note: Same as Table 1.
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The theoretical properties of the CC tests rely in an essential way on the normality or

asymptotic normality of the moments. In Supplemental Appendix F, we report results when

Wi is not normal to investigate the sensitivity of these simulations to the data distribution.

Tables 5 and 7 report results when Wi has a student t distribution with 3 degrees of freedom,

denoted by t(3). This distribution is chosen to investigate the consequences of thick tails

on the tests. Tables 6 and 8 report results when Wi has a mixed normal distribution, taken

to be the equal probability mix of N(−2, 1) and N(2, 4) scaled to have unit variance. This

distribution is chosen to investigate the consequences of a skewed and bimodal distribution

on the tests. Neither non-normal distribution leads to significant changes in the qualitative

findings of Tables 1 and 2.

It is worth noting that, in this context, different tests direct power to different alterna-

tives, and there is not a test that is uniformly most powerful. The ScWAP comparison hides

important power variations across different directions. To investigate these power variations,

Figure 2 reports simulated power curves for the tests in the k = 2 case with normally dis-

tributed moments, estimated Ω, and Ω = ΩZero. The power curves are functions of the true

mean vector, µ = (µ1, µ2). When either µ1 or µ2 is negative, the corresponding inequality is

violated, and we expect higher power. As the figure shows, the RCC test has better power

when only one inequality is violated, while the AB and the RSW1 tests have better power

when both inequalities are violated. We expect this pattern extends to cases with more in-

equalities and more general variance-covariance matrices: the AB or RSW1 tests have better

power when all or most of the inequalities are violated, while the RCC test has better power

when few inequalities are violated. If a researcher has a preference for tests that direct power

in a particular direction, they can choose a test based on this pattern. Otherwise, when such

a preference is not present, the RCC test is at least competitive with the other tests in terms

of size and power.

5.1.2 k ≥ 10

One advantage of the CC and RCC tests is that they remain feasible when the number of

inequalities (k) and the sample size (n) are both large. In this subsection, we investigate the

size and computational time of the RCC, CC, RSW1, and RSW2 tests when both k and n are

large. Table 3 reports the results for four pairs of (k, n): (10, 100), (50, 700), (100, 1600), and

(150, 2550), where the pairs are chosen so that k is approximately proportional to n/log(n).

The message from Table 3 is quite encouraging. The MNRP’s of all the tests appear to

be stable as we move across columns. The computational time of the RCC and CC tests

increases the slowest with k, while that for RSW2 increases the fastest.

The CC and RCC tests have not been proven to control size asymptotically when k grows
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Figure 2: Power Curves for 5 Tests (k = 2, normal distribution, Ω = ΩZero, Estimated Ω,
n = 100, α = 5%)
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(d) µ1 = 0.15

Note: CC denotes the conditional chi-squared test, RCC denotes the refined CC test, AB denotes the adjusted quasi-likelihood
ratio (AQLR) test with bootstrap critical value in AB, and RSW1 and RSW2 denote the two-step test in RSW based on the QLR
statistic and the Max statistic, respectively. The AB test uses 1000 bootstrap draws and the RSW tests uses 499 bootstrap draws.
The results for the CC, RCC, and RSW2 tests are based on 5000 simulations, while the results for the AB and RSW1 tests are
based on 2000 simulations for computational reasons.
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with n at this rate, but these simulations suggest such a result could be formulated, under

the correct assumptions.15 Intuitively, if the moments are approximately normal, in some

sense, then one can appeal to Theorem 3 as a good approximation. We do not pursue this

type of result here, but note two challenges to keep in mind. On the theoretical side, a theory

of Gaussian approximations for quadratic forms, such as the likelihood ratio statistic, that

covers this high-dimensional case is an open question, to the best of our knowledge. On the

practical side, a consistent covariance matrix estimator can be difficult to find. A potential

way to improve covariance matrix estimation is to assume sparsity or use shrinkage as in

Ledoit and Wolf (2012). It would be interesting to study the theoretical properties of the

CC and RCC tests in settings with many inequalities, but we leave that to future research.

5.2 Subvector Inference in Interval Regression

To investigate the finite sample performance of the subvector CC and RCC tests, we consider

a special case of Example 4, where Y ∗i = s∗i is the probability of an event of interest. For

example, the event can be death by homicide for a random person in county i, or a product

being purchased by a random consumer in market i. For simplicity, a simple logit model is

assumed for the probability: s∗i =
exp(X′iθ0+Z′ciδ0+εi)

1+exp(X′iθ0+Z′ciδ0+εi)
, where εi is the country or market level

unobservable that satisfies E[εi|Zi] = 0. Then (11) holds with

ψ(Y ∗i , Xi, θ) = log(s∗i /(1− s∗i ))−X ′iθ. (33)

The variable s∗i is unobserved, but we observe sN,i, an empirical estimate of s∗i based

on N independent chances for the event of interest to happen. NsN,i follows a binomial

distribution with parameters (N, s∗i ). For example, N could be the population of a county

while sN,i is the homicide rate of the county. We use the method introduced in Gandhi et al.

(2019) to construct ψLi (θ) and ψUi (θ) based on sN,i. By Gandhi et al. (2019), for N ≥ 100,

the following construction satisfies (12):

ψUi (θ) = log(sN,i + 2/N)− log(1− sN,i + s)−X ′iθ (34)

ψLi (θ) = log(sN,i + s)− log(1− sN,i + 2/N)−X ′iθ,

where s is the smaller of 0.05 and half of the minimum possible value of min(s∗i , 1 − s∗i ).16

We assume that s is known and refer the reader to Gandhi et al. (2019) for practical recom-

15Bai et al. (2021) have shown that RSW2 controls size asymptotically when k grows with n at this rate.
16These bounds are not necessarily sharp, but that is not important for our purpose, which is to investigate

the statistical performance of the sCC and sRCC tests.
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Table 3: Finite Sample Maximum Null Rejection Probabilities of Nominal 5% Tests,
the Large k and n Cases (Estimated Ω, Ω = Ωzero)

k = 10, n = 100 k = 50, n = 700 k = 100, n = 1600 k = 150, n = 2550

Test MNRP Time MNRP Time MNRP Time MNRP Time

normal

RCC .069 .003 .074 .004 .076 .011 .081 .024
CC .069 .003 .074 .005 .076 .011 .081 .024

RSW1 .052 .582 .062 1.07 .047 3.25 .051 7.96
RSW2 .062 .027 .056 .211 .048 1.15 .045 4.04

t(3)

RCC .063 .003 .069 .004 .071 .010 .079 .024
CC .063 .003 .069 .005 .071 .011 .079 .024

RSW1 .057 .568 .054 1.07 .050 3.23 .054 7.97
RSW2 .093 .026 .069 .210 .061 1.24 .063 4.05

mixed normal

RCC .096 .003 .090 .004 .089 .010 .089 .024
CC .096 .003 .090 .005 .089 .010 .089 .024

RSW1 .045 .567 .051 1.06 .059 3.20 .054 7.92
RSW2 .086 .026 .069 .210 .065 1.24 .058 4.04

Note: CC denotes the conditional chi-squared test, RCC denotes the refined CC test, and RSW1 and
RSW2 denote the two-step test in RSW based on the QLR statistic and the Max statistic, respectively.
MNRP denotes maximum null rejection probability, and Time denotes average computation time in
seconds for the test in each Monte Carlo repetition. The RSW tests use 499 critical value simulations.
The results for the CC, RCC and RSW2 tests are based on 5000 simulations, while the results for the
RSW1 tests are based on 2000 simulations for computational reasons.

Table 4: Average Value, Length, and Computation Time (in seconds) of Confidence Intervals

n = 500 n = 1000

CI Excess Length Time CI Excess Length Time

dc = 2, 8 moment inequalities

sRCC [-1.774, -.339] .989 2.5 [-1.609 ,-.440] .723 2.4
sCC [-1.780, -.332] 1.00 2.5 [-1.615, -.433] .736 2.4

ARP Hybrid [-1.998, -.264] 1.29 111 [-1.736, -.395] .895 109

dc = 3, 16 moment inequalities

sRCC [-1.852, -.293] 1.11 7.1 [-1.659, -.404] .809 4.7
sCC [-1.852, -.293] 1.11 7.1 [-1.659, -.404] .809 4.7

ARP Hybrid [-2.219, -.123] 1.65 199 [-1.883, -.287] 1.15 120

dc = 4, 32 moment inequalities

sRCC [-1.921, -.254] 1.22 6.5 [-1.718, -.366] .906 10
sCC [-1.921, -.254] 1.22 6.5 [-1.718, -.366] .906 10

ARP Hybrid [-2.596, -.011] 2.14 97 [-2.104, -.180] 1.48 145

Note: The identified set for θ0 is [−1.203,−.757]. The computation times across different (n, dc) cases are
not comparable because they may have been performed by different computers on the computer cluster. The
computation of different tests within each (n, dc) case is always completed on the same computer. Thus the
computation times across tests are comparable.
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mendations regarding s.

Let the endogenous variable Xi be a scalar, and let Zei be a scalar excluded instrument.

Let there be a dc-dimensional exogenous covariate Zci = (1, Zc,2,i, . . . , Zc,dc,i)
′. To generate

the data, we let N = 100, εi ∼ min{max{−4, N(0, 1)}, 4}, and let the non-constant elements

of Zi be mutually independent Bernoulli variables with success probability 0.5. Let Xi =

1{Zei + εi/2 > 0}. Also let θ0 = −1, δ0 = (0,−1,0′dc−2)′, parameters chosen so that the

identified set for θ0 does not change when dc is varied from 2 to 4. The value −1 is chosen

to match the typical sign of a price coefficient and to normalize the scale for presentation

purposes. Here since δ0 is the nuisance parameter, dc is the number of nuisance parameters.

Given this data generating process, the lowest and the highest possible values for s∗i are

respectively
exp(−6)

1 + exp(−6)
= 0.0025 and

exp(4)

1 + exp(4)
= 0.982.

Thus s = 0.00125. Given s and N , we calculate numerically that the identified set of θ0 is

approximately [−1.203,−0.757]. Details of the calculation are given in Appendix G.1.

For instrumental functions, we use

I(Zi) = (1{(Zei, Zc,2,i, . . . , Zc,dc,i) = z})z∈{0,1}dc . (35)

Thus, when dc = 2 (or 3, 4), there are 4 (or 8, 16) instrumental functions, which give us 8

(or 16, 32) moment inequalities.

We consider 5000 Monte Carlo repetitions. In each repetition, we generate an i.i.d. data

set, {sN,i, Xi, Zi}ni=1, for two sample sizes, n = 500 and n = 1000. For each repetition, we

compute an implied confidence interval for the sRCC test and the sCC test. We also include

the hybrid test of ARP (with their recommended tuning parameter and number of simulation

draws) for comparison. For all tests, the CI endpoints are computed with an accuracy to

the third digit using an algorithm that always yields an interval. The details for computing

the confidence intervals are given in Appendix G.2.

Table 4 reports the average confidence interval (CI), average excess length (= length of

CI - length of identified set), as well as average computation time for the CI. As the table

shows, the average computation time of the sCC and the sRCC tests are identical to each

other up to 1/10 of a second in all cases. This is mainly because the vertex enumeration

required to compute the refinement is easy to do for dc = 2, and the refinement is rarely

needed for dc = 3 and dc = 4. The sRCC and sCC tests are faster than the ARP hybrid

test in all cases. The relative computational cost of the ARP hybrid test seems to improve

as the model gets bigger, but it remains more than 14 times as costly as the subvector CC

and RCC tests when dc = 4.
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Figure 3: Rejection Rates of the sCC, sRCC, and ARP hybrid tests for dc ∈ {2, 3, 4} and
for Sample Size n ∈ {500, 1000} with Nominal Size 5%.
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(d) dc = 3, n = 1000
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(f) dc = 4, n = 1000
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In terms of length, the sRCC and sCC confidence intervals are similar to each other, and

are shorter on average than the ARP hybrid test for all cases. As we move from dc = 2

to dc = 4, the model contains more and more non-informative moment inequalities since

the added control variables do not contribute in the data generating process. All tests are

negatively affected by these non-informative inequalities to various degrees.

Figure 3 reports the rejection rates of the tests for H0 : θ0 = θ plotted against θ values in

[−2.5, 0.5].17 The shaded area indicates the identified set for θ0. As we can see, the rejection

rates for the points in the identified set are less than or equal to 5% in all cases. For dc = 3

and dc = 4, all tests shows some under-rejection at the boundary of the identified set, while

the under-rejection of the ARP hybrid test appears to be less. It is encouraging to see that

the under-rejection does not translate to poor power. The power of the sCC and sRCC tests

are nearly identical to each other and are higher than the power of the ARP hybrid test

except in the area of θ immediately next to the identified set, consistent with the excess

length results in Table 4. However, we note that this comparison is specific to this example,

and the power comparison may change with other examples or data generating processes.

6 Conclusion

This paper proposes the conditional chi-squared (CC) test for moment inequality models.

This test compares a quasi-likelihood ratio statistic to a chi-squared critical value, where the

number of degrees of freedom is the rank of the active inequalities. This test has many desir-

able properties, including being tuning parameter and simulation free, adaptive to slackness,

easy to code, and invariant to redundant inequalities. We show that, with an easy refinement,

it has exact size in normal models and has uniformly asymptotically exact size in asymp-

totically normal models. We also propose a version of the test for subvector inference with

conditional moment inequalities and when the nuisance parameters enter linearly. Simula-

tions show the CC and subvector CC tests have a computational advantage over alternatives

while being competitive in terms of size and power.
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Supplemental Appendix for “Simple Adaptive Size-Exact Testing
for Full-Vector and Subvector Inference in Moment Inequality

Models”

Gregory Cox and Xiaoxia Shi

December 6, 2021

This supplemental appendix contains proofs and other supporting materials for “Simple

Adaptive Size-Exact Testing for Full-Vector and Subvector Inference in Moment Inequality

Models” (henceforth referred to as the main text) by Gregory Cox and Xiaoxia Shi. The

following sections are included:

• Section A includes additional implementation details for the CC tests. It includes

details for implementing the refinement of the CC test, Lemmas 1 and 2 and their

proofs, details for implementing the subvector tests without vertex enumeration, and

a conditional variance estimator for continuous Zi.

• Section B includes finite-sample and asymptotic properties of the RCC and sRCC tests,

including the statement of Theorems 3-6.

• Section C contains the proof of Theorem 3.

• Section D contains the proof of Theorems 4 and 5. Theorem 5 is used to prove Theorem

4. Theorem 1 in the main text follows from the proof of Theorems 4 and 5 with the

small modification of changing β̂ to α.

• Section E proves Theorem 6. Theorem 2 in the main text follows from the proof of

Theorems 5 and 6 with the small modification of changing β̂ to α.

• Section F provides additional simulation results.

• Section G provides details for the identified set calculation and the confidence interval

calculation in Section 5.2 in the main text.

A Additional Implementation Details

A.1 Full-Vector Refinement

In this section, we provide implementation details for the RCC (refined CC) test. We define

the RCC test by adjusting the quantile of the χ2
1 distribution when r̂ = 1. Instead of the
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100(1 − α)% quantile, the RCC test uses a 100(1 − β̂)% quantile, where β̂ varies between

α and 2α depending on how far from active the inequalities other than the first nontrivial

active inequality are. We construct β̂ geometrically so that the refinement exactly restores

the size of the test.

When r̂ = 1, suppose without loss of generality that the first inequality is active and

nontrivial (that is, a1 6= 0). Next, for each j = 2, ..., dA, let

τ̂j =


√
n‖a1‖Σ̂n(θ)(bj−a′j µ̂)

‖a1‖Σ̂n(θ)
‖aj‖Σ̂n(θ)

−a′1Σ̂n(θ)aj
if ‖a1‖Σ̂n(θ)‖aj‖Σ̂n(θ) 6= a′1Σ̂n(θ)aj

∞ otherwise
, (36)

where ‖a‖Σ= (a′Σa)1/2. This τ̂j is a normalized measure of the inactivity of the jth inequality.

It is essentially bj − a′jµ̂ normalized using the ratio of the Euclidean norms of Σ̂
1/2
n (θ)a1 and

Σ̂
1/2
n (θ)aj and the angle between the two.18 Then let

τ̂ = inf
j∈{2,...,dA}

τ̂j. (37)

This is a measure of the minimum inactivity of the inactive inequalities. This quantity is

easy to compute and has a nice geometric interpretation as we explain in Illustration 2 below.

It is worth noting that, when r̂ = 1 and the first inequality is a nontrivial active inequality,

other inequalities can be active as well. That can happen in two cases: (1) the model

may contain an equality and thus there is an inequality that is the exact opposite of the

1st inequality (aj = −a1 and bj = −b1), and (2) A may contain redundant or zero rows

(aj = ca1 for a c ≥ 0), which is a case not ruled out by our assumptions. In either case,

the calculation for τ̂ can still proceed as prescribed above. In case (1), the exact opposite

of the first inequality will have τ̂j = 0, leading to τ̂ = 0. In case (2), the inequalities with

redundant or zero rows will have τ̂j = ∞ and thus τ̂ will be determined by other inactive

inequalities.

Now we can define

β̂ =

{
2αΦ(τ̂) if r̂ = 1

α otherwise,
(38)

where Φ(·) is the standard normal cumulative distribution function (cdf). When a second

inequality is close to being active, τ̂ is close to 0 and then β̂ is close to α. When all the other

inequalities are far from active, then τ̂ is very large and β̂ is close to 2α. We define the RCC

18Note that a′1Σ̂n(θ)aj = ‖a1‖Σ̂n(θ)‖aj‖Σ̂n(θ)cos γ, where γ stands for the angle.
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test for H0 : θ = θ0 to be

φRCC
n (θ, α) = 1{Tn(θ) > χ2

r̂,1−β̂}. (39)

Note that for test inversion, both r̂ and β̂ need to be recalculated for every value of θ since

they may depend on θ via A, b, and Σ̂n(θ).

Since τ̂ ∈ [0,∞], β̂ ∈ [α, 2α]. Thus we have the following comparison of the CC and the

RCC tests:

φRCC
n (θ, α/2) ≤ φCC

n (θ, α) ≤ φRCC
n (θ, α). (40)

Moreover, when an equality is being tested, the discussion in the paragraph above (38) tells

us that τ̂ = 0 and hence β̂ = α, and the RCC test reduces to the CC test.

Illustration 2. The RCC test is illustrated by the dashed line in Figure 1 in the main text.

From the figure, we can see that the RCC test deviates from the CC test only when the number

of active inequalities is one (in the second and fourth quadrants of the plane). In that case,

a smaller critical value is used that depends on how far from active the other inequality is,

measured using τ̂ . The quantity τ̂ has the following geometric interpretation: the point
√
nµ̂

is the projection of
√
nmn onto a face of the polyhedron defined by the inequalities. Continue

that line into the interior of the polyhedron until you reach a point, y, that is equidistant

between two inequalities. In the figure, the set of points that are equidistant between two

inequalities is represented by the dotted line, which is the 45-degree line. Then τ̂ is the

distance between
√
nµ̂ and y. This geometric interpretation extends to more complicated

examples with more inequalities or non-orthogonal inequalities.

The reason the refinement leads to exact size is that we condition on the event that
√
nmn

belongs to the ray that starts at y and emanates through
√
nµ̂ and

√
nmn. It is sufficient to

control the conditional rejection probability for every such ray. By conditioning on the ray,

the denominator of the conditional rejection probability is Φ(τ̂), which allows us to adjust α

up to β̂.

It may also be helpful to illustrate the CC tests in a simple model with a scalar parameter

of interest, one upper bound, and one lower bound: E[Y L] ≤ θ ≤ E[Y U ].

Illustration 3. This is the same setup considered, for example, in Stoye (2009). For

simplicity, suppose Y L and Y U are independent and have unit variance. Let Ȳ L
n and Ȳ U

n

be the sample average of Y L and Y U , respectively. Then it is not difficult to find that

(when ∆̂n :=
√
n(Ȳ U

n − Ȳ L
n ) > −z1−α/2) the 100(1 − α)% CC confidence interval is [Ȳ L

n −

41



Algorithm 3: Pseudo-code for implementing the RCC test.

1: %Compute the RCC Test
2: Implement Algorithm 1, and then
3: if r̂ = 1 and χ2

1,1−2α ≤ Tn(θ) ≤ χ2
1,1−α then

4: (suppose a′1µ̂ = b1 and ‖a1‖6= 0)
5: for j = 2, . . . , dA do

6: τ̂j :=


√
n‖a1‖Σ̂n(θ)(bj−a′j µ̂)

‖a1‖Σ̂n(θ)
‖aj‖Σ̂n(θ)

−a′1Σ̂n(θ)aj
if ‖a1‖Σ̂n(θ)‖aj‖Σ̂n(θ) 6= a′1Σ̂n(θ)aj

∞ otherwise
7: end for
8: τ̂ := inf2,...,dA τ̂j
9: β̂ := 2αΦ(τ̂)

10: φRCC
n (θ, α) := 1{Tn(θ) > max{χ2

1,1−β̂, tol}}
11: else
12: φRCC

n (θ, α) := 1{Tn(θ) > max{χ2
r̂,1−α, tol}}.

13: end if

z1−α/2/
√
n, Ȳ U

n + z1−α/2/
√
n], and also that the RCC confidence interval is the set of θ val-

ues that satisfy Ȳ L
n − z1−αΦ(

√
n(Ȳ Un −θ)∨0)/

√
n ≤ θ ≤ Ȳ U

n + z1−αΦ(
√
n(θ−Ȳ Ln )∨0)/

√
n, where ∨

is the maximum operator. Solving numerically, we find that the RCC confidence interval

is [Ȳ L
n − cα/

√
n, Ȳ U

n + cα/
√
n] where cα depends on ∆̂n. For example, when α = 0.05, cα

declines smoothly from 1.96 to 1.67 and then to 1.65 as ∆̂n varies from −1.96 to 0 and then

to 1. Thus, the refinement brings about a big improvement in this simple setup.

To end this subsection, Algorithm 3 presents pseudo-code that can be used to compute

the RCC test. The pseudo-code is implemented in user-friendly Matlab code provided in

the replication files. The implementation requires a tolerance (tol) to account for numerical

imprecision in the quadratic programming used to compute Tn(θ). We use 10−8 in the Monte

Carlo simulations. Note that the convenient features of the implementation of the CC test

mentioned in Remark 1 following Algorithm 1 also apply to the RCC test.

A.2 Lemma 1 and Proof

Lemma 1. Let B and C be conformable matrices and d be a conformable vector. There

exists a matrix A = A(B,C) and a vector b = b(C, d) such that

{δ : Cδ ≥ Bµ− d} 6= ∅ ⇔ Aµ ≤ b.

Furthermore, A(B,C) = H(C)B and b(C, d) = H(C)d, where H(C) is the matrix with rows

formed by the vertices of the polyhedron {h ∈ Rk : h ≥ 0, C ′h = 0,1′h = 1}.
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Proof of Lemma 1. By Theorem 2.7 in Gale (1960), {δ : Cδ ≥ Bµ− d} 6= ∅ is equivalent to

h′(Bµ− d) ≤ 0 for all h ≥ 0, C ′h = 0. (41)

The equivalence is not affected by adding the scale normalization: 1′h = 1 to (41). Thus,

{δ : Cδ ≥ Bµ− d} 6= ∅ is equivalent to

h′(Bµ− d) ≤ 0 for all h ∈ H := {h ≥ 0 : C ′h = 0,1′h = 1}. (42)

Since the rows of H(C) are vertices, and thus elements of H, we have

{δ : Cδ ≥ Bµ− d} 6= ∅ ⇒ H(C)(Bµ− d) ≤ 0.

Then by the definition of A and b, we have

{δ : Cδ ≥ Bµ− d} 6= ∅ ⇒ Aµ ≤ b.

Conversely, since the rows of H(C) are vertices ofH, for any h ∈ H, there exists Rk-vector

c ≥ 0 such that H(C)′c = h. Thus, if Aµ ≤ b, we must have h′(Bµ−d) = c′H(C)(Bµ−d) =

c′(Aµ− b) ≤ 0. That this holds for all h ∈ H implies that {δ : Cδ ≥ Bµ− d} 6= ∅. Thus the

lemma is proved.

A.3 Subvector Implementation Without Vertex Enumeration

To compute r̂ without AZ or bZ , we first define the active inequalities. For any h ∈ H, we

say that the inequality in (25) is active if h′BZ µ̂ = h′dZ , where µ̂ is calculated from (24).

Accordingly, let

H0 = {h ∈ H : (BZ µ̂− dZ)′h = 0} (43)

denote the subset of H that characterizes the active inequalities. In fact, H0 is always a

face of H due to the definition of µ̂. By the definition of r̂ and AZ , r̂ is the maximum

number of linearly independent vectors of the form B′Zh, where h is a vertex of H0. The

key is to recognize that we do not need to enumerate the vertices of H0 to calculate r̂.

Instead, we only have to calculate the maximum number of linearly independent vectors

in B′ZH0 = {B′Zh : h ∈ H0}. Notationally, we call the maximum number of linearly

independent vectors in B′ZH0 the “rank of B′ZH0” and denote it by rk(B′ZH0).19 The fact

that r̂ = rk(B′ZH0) is stated formally in Lemma 2 in Appendix A.4.

19Usually, rk(·) is defined for matrices. Here we extend the definition to arbitrary sets of vectors.
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Therefore, to compute r̂ one only needs to find rk(B′ZH0). It turns out that calculating

the rank of a polyhedron is much faster computationally than enumerating the vertices.

Here, we present an algorithm based on solving k + 1 linear programming (LP) problems.

For exposition, we consider two cases based on the rank of BZ . First, we assume rk(BZ) = k,

which is true in Examples 3-5, so that the rank of BZH0 is equal to the rank of H0. After,

in Section A.3.2, we present an algorithm for the case that rk(BZ) ≤ k.

A.3.1 rk(BZ) = k

Calculating the rank of H0 is equivalent to finding the dimension of the smallest linear

subspace containing H0, denoted by span(H0). Note that H0 is defined by linear equalities

and inequalities, where the inequalities are given by h ≥ 0. Some of these inequalities may

have to hold with equality due to the other equations in the definition of H0. That is, for

some j = 1, ..., k, h ∈ H0 may imply that hj = 0. If we can figure out which of the inequalities

have to hold with equality, we can find a system of equations that defines span(H0), and

from there figure out the dimension of span(H0).

Thus, the imminent question becomes: for which j does h ∈ H0 imply hj = 0? For each

j = 1, ..., k, we can answer this question with a LP problem.20 For each j = 1, ..., k, calculate

ζj = min
h
−hj s.t. h ≥ 0, C ′Zh = 0, (BZ µ̂− dZ)′h = 0, 1′h = 1. (44)

If ζj = 0, then there does not exist an h ∈ H0 with hj > 0, which means that the jth

inequality has to hold with equality. Let J0 be the collection of all j’s such that ζj = 0. Also

let IJ0 denote the rows of the k-dimensional identity matrix corresponding to indices in J0.

It follows that

span(H0) = {h ∈ Rk : IJ0h = 0, C ′Zh = 0, (BZ µ̂− dZ)′h = 0}. (45)

Correspondingly, the rank ofH0 is k minus the rank of the coefficients on the linear equations

defining span(H0):

rk(H0) = k − rk

(
IJ0

C′Z
(BZ µ̂−dZ)′

)
. (46)

This is how we compute r̂, and hence the sCC test, without computing AZ or bZ .

While implementing the sCC test does not require computing AZ or bZ , this is not the case

20Before implementing these LP problems, one should first determine if H0 is empty. This can be done
by solving the LP problem: f := minh−(BZ µ̂− dZ)′h s.t. h ≥ 0, C ′Zh = 0, 1′h = 1. If f > 0, that indicates
that all elements of AZ µ̂ − bZ are negative and there is no active inequality. In this case, set H0 = ∅ and
r̂ = 0.
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for the subvector RCC (sRCC) test. The refinement requires knowing AZ and bZ . However,

note that the refinement makes a difference only when r̂ = 1 and Tn(θ) ∈ [χ2
1,1−2α, χ

2
1,1−α]

(because β̂ ∈ [α, 2α]). Thus, to implement the sRCC test, we recommend computing r̂ and

Tn(θ) first using the method outlined above, and only computing AZ , bZ , and the refinement

when r̂ = 1 and Tn(θ) ∈ [χ2
1,1−2α, χ

2
1,1−α]. Our experience is that this event is rare when

k and p are large enough to make computing AZ and bZ challenging.21 When k and p are

small, computing AZ and bZ via vertex enumeration is feasible.

To end this subsection, Algorithm 4 presents pseudo-code that can be used to compute

the sCC and sRCC test without enumerating the vertices in H in the case where BZ has rank

k. The pseudo-code is implemented in user-friendly Matlab code provided in the replication

files. The implementation requires a tolerance to account for numerical imprecision in the

quadratic programming used to compute Tn(θ). We use 10−8 in the Monte Carlo simulations.

A.3.2 rk(B′Z) ≤ k

We suppress the subscript Z in BZ , CZ , and dZ for notational ease. As discussed above, the

rank of the polyhedron B′H0 is the dimension of the smallest linear subspace containing it.

That is, its linear span, denoted by span(B′H0). Let G :=
(
I ′J0

C Bµ̂− d
)

, where J0 is

defined in Section A.3.1. From the discussions in Section A.3.1, we know that

span(B′H0) = {B′h : h ∈ Rk, G′h = 0}. (47)

The number of restrictions in G′h = 0 is given by the number of columns of G. However,

some of those restrictions may be redundant or contained in the null space of B′. We do

some linear algebra to calculate span(B′H0).

Let G = (g1, g2, ..., gk)
′, where each g′j is the jth row of G. Suppose the first rk(G) rows of

G have rank rk(G). This can be achieved by rearranging the rows of G together with the rows

of B and the elements of h accordingly. Partition G as [G′1, G
′
2]′, where G1 = (g1, ..., grk(G))

′

and G2 = (grk(G)+1, ..., gk)
′. We can then solve the equations, G′h = 0, for the first rk(G)

elements of h as a function of the other elements. Specifically, let h = (h′1, h
′
2)′ be partitioned

conformably with G. Then, we can solve for h1 = Γh2, where Γ = −(G1G
′
1)−1G1G

′
2.

Then span(H0) can be written as

span(H0) = {(h′1, h′2)′ ∈ Rk : h1 = Γh2}. (48)

21Theoretically, if the moment inequalities are uncorrelated and k of them are binding, then the probability
r̂ = 1 is asymptotically k2−k. This is an upper bound for Pr(r̂ = 1, Tn(θ) ∈ [χ2

1,1−2α, χ
2
1,1−α]). In finite

sample, the number of near-binding moment inequalities also reduces this probability.
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Algorithm 4: Pseudo-code for the sCC and sRCC tests when rk(BZ) = k.

1: %Compute the sCC Test
2: Tn(θ), µ̂← minδ,µ:BZµ−CZδ≤dZ n(m̂n(θ)− µ)′Σ̂n(θ)−1(mn(θ)− µ)
3: f := minh∈H−(BZ µ̂− dZ)′h
4: if f > tol then
5: r̂ := 0
6: else
7: for j = 1, . . . , k do
8: hmj ← CZ , BZ , dZ , µ̂ by (44).
9: end for

10: J0 := {j = 1, . . . , k : hmj = 0}
11: IJ0 ← J0

12: r̂ := k − rk

(
IJ0

C′Z
(BZ µ̂−dZ)′

)
13: end if
14: φsCC

n (θ, α) := 1{Tn(θ) > max{χ2
r̂,1−α, tol}}.

15:

16: %Compute the sRCC Test
17: Implement lines 2-13, and then
18: if r̂ = 1 and Tn(θ) ∈ [χ2

1,1−2α, χ
2
1,1−α] then

19: H(CZ)← H using a vertex enumeration algorithm, e.g. con2vert.m in Matlab
(ref. Kleder (2020))

20: AZ , bZ ← H(CZ)BZ , H(CZ)dZ
21: Suppose a′1µ̂ = b1 and ‖a1‖6= 0. %Ignore the subscript Z for notational ease.
22: for j = 2, . . . , dA do

23: τ̂j :=


√
n‖a1‖Σ̂n(θ)(bj−a′j µ̂)

‖a1‖Σ̂n(θ)
‖aj‖Σ̂n(θ)

−a′1Σ̂n(θ)aj
if ‖a1‖Σ̂n(θ)‖aj‖Σ̂n(θ) 6= a′1Σ̂n(θ)aj

∞ otherwise
24: end for
25: τ̂ := inf2,...,dA τ̂j
26: β̂ := 2αΦ(τ̂)
27: φsRCC

n (θ, α) := 1{Tn(θ) > max{χ2
1,1−β̂, tol}}

28: else
29: φsRCC

n (θ, α) := 1{Tn(θ) > max{χ2
r̂,1−α, tol}}.

30: end if

Accordingly,

span(B′H0) = B′span(H0) = {(B′1Γ +B′2)h2 : h2 ∈ Rk−rk(G)}, (49)

where B = [B′1, B
′
2]′ is partitioned conformably with h. This implies that

rk(B′H0) = rk(Γ′B1 +B2).
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To end this section, we provide the pseudo-code to calculate rk(B′H0) in Algorithm 5.

This can be plugged in Algorithm 4 in Section A.3.1, replacing line 12, to compute the sCC

and the sRCC tests.

Algorithm 5: Pseudo-code for calculating r̂ = rk(B′H0) when rk(B) < k.

1: %H0 = {h ∈ Rk : G′h = 0}, where G = (g1, . . . , gk)
′ and g′j is the jth row of G.

2:

3: if rk(G) = k then
4: r̂ := 0
5: else
6: if rk(g1, . . . , grk(G)) < rk(G) then
7: Rearrange rows of G so that rk(g1, . . . , grk(G)) = rk(G) holds. Rearrange the

elements of h and the rows of B accordingly.
8: end if
9: G1 := (g1, . . . , grk(G))

′

10: G2 := (grk(G)+1, . . . , gk)
′

11: Γ := −(G1G
′
1)−1G1G

′
2

12: r̂ := rk((Γ′, Ik−rk(G))B).
13: end if

A.4 Lemma 2 and Proof

Lemma 2. r̂ = rk(B′ZH0).

Proof of Lemma 2. Denote BZ , CZ , and dZ by B, C, and d. Let h′1, . . . , h
′
m1

be all the

rows of H(C) orthogonal to Bµ̂− d. Then by definition, AĴ = [B′h1, . . . , B
′hm1 ]′, and thus

rk(AĴ) = rk(B′h1, . . . , B
′hm1). Since h1, . . . , hm1 ∈ {h ≥ 0 : h′C = 0, h′(Bµ̂ − d) = 0},

we have B′h1, . . . , B
′hm1 ∈ {B′h : h ≥ 0, h′C = 0, h′(Bµ̂ − d) = 0}. This implies that

rk(AĴ) ≤ rk({B′h : h ≥ 0, h′C = 0, h′(Bµ̂− d) = 0}) = rk(B′H0).

Next, suppose that h̃1, . . . , h̃m2 ∈ {h ≥ 0 : h′C = 0, h′(Bµ̂ − d) = 0} such that

rk(B′H0) = rk(B′h̃1, . . . , Bh̃m2). By the definition of H(C), h̃1, . . . , h̃m2 must all be con-

vex combinations of the rows of H(C). In fact, they must all be convex combinations of

h1, . . . , hm1 defined in the first part of the proof because any other row (say, h∗) of H(C)

must satisfy the strict inequality h′∗(Bµ̂− d) > 0 (since they correspond to the inactive in-

equalities). Consequently, B′h̃1, . . . , B
′h̃m2 must be convex combinations of B′h1, . . . , B

′hm1 .

This implies that rk(B′H0) ≤ rk(AĴ). Therefore, the lemma is proved.
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A.5 A Conditional Variance Estimator for Continuous Zi

Suppose Zi contains continuous random variables. One can use a nearest neighbor matching

estimator similar to that used for the standard error of a regression discontinuity estimator

in Abadie et al. (2014).22 Let ΣZ,n = n−1
∑n

i=1(Zi−Zn)(Zi−Zn)′ where Zn = n−1
∑n

i=1 Zi.

For each i, define the nearest neighbor to be

`Z(i) = argminj∈{1,...,n},j 6=i(Zi − Zj)′Σ−1
Z,n(Zi − Zj). (50)

When the argmin is not unique, picking one randomly does not affect the consistency of the

resulting estimator. The estimator of Σn(θ) is then given by

Σ̂n(θ) =
1

2n

n∑
i=1

(m(Wi, θ)−m(W`Z(i), θ))(m(Wi, θ)−m(W`Z(i), θ))
′. (51)

As we show in Appendix B.4.2, sufficient conditions for the consistency of this matching esti-

mator involves the boundedness of {Zi}∞i=1 and the Lipschitz continuity of Var(m(Wi, θ)|Zi =

zi) in zi.

B Additional Theoretical Properties

B.1 Finite Sample Properties of the RCC Test

When the moments are normally distributed with known variance-covariance matrix, the

following theorem states the finite sample properties of the RCC test. We define a reduced

test that only uses a subset of the inequalities. For J ⊆ {1, ..., dA}, let φRCC
n,J (θ, α) denote

the RCC test defined with AJ and bJ instead of A and b, where bJ denotes the subvector of

b formed by the elements of b corresponding to the indices in J . This test is a useful point

of comparison when the inequalities not in J are very slack.

Theorem 3. Suppose Σn(θ) is an invertible matrix such that
√
n(mn(θ) − EFmn(θ)) ∼

N(0,Σn(θ)) and Σ̂n(θ) = Σn(θ) a.s. for all θ ∈ Θ. Then the following hold.

(a) For any θ ∈ Θ0(F ), EFφRCC
n (θ, α) ≤ α.

(b) If AEFmn(θ) = b and A 6= 0, then EFφRCC
n (θ, α) = α.

(c) If J ⊆ {1, ..., dA} and {θs}∞s=1 ⊆ Θ is a sequence such that for all j /∈ J , aj 6= 0 and

(a′jEFmn(θs)− bj)/‖aj‖→ −∞ as s→∞, where the dependence of aj and bj on s via

22This is also the estimator used in Andrews et al. (2019).
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θs is implicit, then

lim
s→∞

PrF
(
φRCC
n (θs, α) 6= φRCC

n,J (θs, α)
)

= 0.

Remarks. (1) Part (a) shows the finite sample validity of the RCC test when the moments

are normally distributed with known variance. Part (b) shows that the RCC test is size-exact

when there is an F and θ ∈ Θ0(F ) under which all the inequalities bind.23 By size-exact,

we mean that the worst case null rejection probability is equal to α. This is compatible

with having other F and θ ∈ Θ0(F ) under which the rejection probability is less than α

(i.e. under-rejection). Indeed, the RCC test under-rejects when some inequalities do not

bind, which is a common feature of moment inequality tests. The under-rejection does not

increase monotonically with the slackness of the slack inequalities, however. Part (c) shows

a finite-sample version of the IDI property. When the slack inequalities get very slack, the

RCC test reduces to a version of it that does not use those inequalities. This is especially

useful if all but one inequality is very slack, because the reduced test is the one-sided t-test

for the sole binding inequality, which is uniformly most powerful.

(2) Several papers, including Kudo (1963) and Wolak (1987), propose a classical test for

inequalities that can be applied here. The classical test is based on the 1−α quantile of the

least favorable distribution of Tn(θ), which is a mixture of χ2
0, χ

2
1, . . . , χ

2
dA

distributions. This

test also has exact size, but lacks the finite-sample IDI property. When many inequalities

tested are slack, the power of this test can be very low. Besides, the critical value typically

requires simulation, which makes it computationally less attractive than the RCC test.

(3) Andrews and Barwick (2012) consider a test that simulates a critical value from

the asymptotic normal distribution. That test has finite sample exact size (due to size

correction), but it does not have the finite-sample IDI property. The size correction the test

uses causes it to respond to very slack inequalities, albeit to a lesser extent than the classical

test.

(4) The only other moment inequality test with exact size and the finite-sample IDI

property is the non-hybrid test in ARP. This test is based on the conditional distribution of

the maximum standardized element of
√
n(Amn(θ)− b) given the second-largest maximum.

The test also asymptotes to the one-sided t-test when all but one inequality get increasingly

slack. However, the test has undesirable power when multiple inequalities are not well

separated, which prompts them to recommend a hybrid test instead.

(5) The proof of Theorem 3 is challenging. It relies on a careful partition of the space

of realizations of the moments according to which inequalities are active (see Lemmas 3

23Using (40), part (b) also implies that the size of the CC test is between α/2 and α in this case.
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and 4). It then uses a bound on probabilities of translations of sets to bound the rejection

probability conditional on each set in the partition (see Lemmas 5 and 6). Mohamad et al.

(2020) prove a special case of part (a) for the CC test when the inequalities define a cone.

We extend the result to the RCC test and allow the inequalities to define an arbitrary

polyhedron, an important extension for moment inequality models. In particular, the design

of the refinement requires a careful study of the geometric properties of the test statistic,

which does not follow easily from Mohamad et al. (2020).

B.2 Asymptotic Properties of the RCC Test

Now we turn to the asymptotic properties of the RCC test when the moments are only

asymptotically normal and the variance-covariance matrix is estimated. For expositional

purposes, we start by stating results for the independent and identically distributed (i.i.d.)

data case here, followed by results that cover more general cases. With i.i.d. data, we can

estimate the variance matrix with Σ̂n(θ) defined in (18). The following theorem states the

asymptotic properties of the RCC test.

Theorem 4. Suppose Assumption 1 holds.

(a) limsup
n→∞

supF∈F supθ∈Θ0(F ) EFφRCC
n (θ, α) ≤ α.

For a sequence {(Fn, θn) : Fn ∈ F , θn ∈ Θ0(Fn)}∞n=1 such that A(θn)DFn(θn) → A∞, for

some matrix A∞ and for all J ⊆ {1, . . . , dA}, rk(IJA(θn)DFn(θn)) = rk(IJA∞) for all n,

(b) if A∞ 6= 0 and for all j ∈ {1, ..., dA},
√
n(a′jEFnmn(θn)− bj)→ 0, then

lim
n→∞

EFnφRCC
n (θn, α) = α, and

(c) if instead there is a J ⊆ {1, . . . , dA} such that for all j /∈ J ,
√
n(a′jEFnmn(θn)− bj)→

−∞ as n→∞, then

lim
n→∞

PrFn
(
φRCC
n (θn, α) 6= φRCC

n,J (θn, α)
)

= 0.

Remarks. (1) Part (a) shows that the RCC test is asymptotically uniformly valid. Part

(b) shows that when all the inequalities bind or are sufficiently close to binding, the RCC

test does not under-reject asymptotically, assuming the rank of combinations of rows of A

does not change in the limit. Part (c) shows an asymptotic IDI property of the RCC test: if

some inequalities are very slack, the test reduces to the one based only on the not-very-slack

inequalities.
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(2) Along sequences where θ and the marginal distribution of Wi are fixed (not changing

with n), the condition in part (c) is satisfied with J equal to the set of all binding inequalities.

If, in addition, AJ 6= 0, parts (b) and (c) can be combined to show that the RCC test has

exact asymptotic size (and hence is asymptotically non-conservative). By exact asymptotic

size, we mean that there exists a sequence of θn ∈ Θ0(Fn) such that the limiting rejection

probability is equal to α. This is compatible with the possibility that other sequences,

θn ∈ Θ0(Fn), have limiting rejection probability strictly less than α. Indeed, whenever some

moment inequalities are local to binding such that their slackness neither converges to zero

nor diverges to infinity, the limiting rejection probability will be less than α.

(3) Theorem 4 combines with (40) to imply that the CC test is asymptotically uniformly

valid, and, when the RCC test is asymptotically non-conservative, it can only be conservative

to a limited extent:

α/2 ≤ limsup
n→∞

sup
F∈F

sup
θ∈Θ0(F )

EFφCC
n (θ, α) ≤ α. (52)

We next state a general theorem for uniform asymptotic properties of the CC and RCC

tests without assuming i.i.d. sampling. We sometimes make explicit the dependence of A

and b on θ, denoting them by A(θ) and b(θ). The rows of A(θ) are denoted by aj(θ), and

submatrices composed of the rows of A(θ) are denoted by AJ(θ).

Assumption 3. The given sequence {(Fn, θn) : Fn ∈ F , θn ∈ Θ0(Fn)}∞n=1 satisfies, for every

subsequence, nm, there exists a further subsequence, nq, and there exists a sequence of positive

definite dm × dm matrices, {Dq} such that:

(a) Under the sequence {Fnq}∞q=1,

√
nqD

−1/2
q (mnq(θnq)− EFnqmnq(θnq))→d N(0,Ω), (53)

for some positive definite correlation matrix, Ω, and

‖D−1/2
q Σ̂nq(θnq)D

−1/2
q − Ω‖→p 0. (54)

(b) ΛqA(θnq)Dq → Ā0 for some dA × dm matrix Ā0, and for every J ⊆ {1, ..., dA},
rk(IJA(θnq)Dq) = rk(IJĀ0), where Λq is the diagonal dA × dA matrix whose jth diagonal

entry is one if e′jA(θnq) = 0 and ‖e′jA(θnq)Dq‖−1 otherwise.

Remark. The matrix Dq typically is the diagonal matrix of variances of the elements of
√
nqmnq(θnq). In part (a), we allow each diagonal element to go to zero (or infinity) at

different rates, to incorporate the cases where different moments are on different scales or
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where different moments involve time series processes that are integrated at different orders.

Andrews and Guggenberger (2009), Andrews and Soares (2010), and Andrews et al. (2020)

also use a diagonal normalizing matrix for this purpose. Moreover, the matrix Dq can

be non-diagonal, which is useful when the asymptotic variance matrix of
√
nq(mnq(θnq) −

EFnmnq(θnq)) is singular but a certain rotation of the vector with proper scaling has a non-

singular asymptotic variance matrix.

Part (b) is not required to show the uniform asymptotic validity of the RCC test. It is

only used to show asymptotic size-exact and the asymptotic IDI property. The existence

of Ā0 follows by the choice of the subsequence, while the rank condition is used to verify

Lemma 8, below.

The following theorem is a general asymptotic theorem used to show the uniform asymp-

totic properties of the RCC test.

Theorem 5. (a) Suppose Assumption 3(a) holds for all sequences {(Fn, θn) : Fn ∈ F , θn ∈
Θ0(Fn)}∞n=1. Then,

limsup
n→∞

sup
F∈F

sup
θ∈Θ0(F )

EF (φRCC
n (θ, α)) ≤ α.

Next consider a sequence {(Fn, θn) : Fn ∈ F , θn ∈ Θ0(Fn)}∞n=1 satisfying Assumption 3(a,b).

(b) If, along any further subsequence, for all j = 1, ..., dA,
√
nqe

′
jΛq(A(θnq)EFnqmnq(θnq)−

b(θnq))→ 0, and if Ā0 6= 0dA×dm, then,

lim
n→∞

EFnφRCC
n (θn, α) = α.

(c) If, for J ⊆ {1, ..., dA}, along any further subsequence,
√
nqe

′
jΛq(A(θnq)EFnqmnq(θnq)−

b(θnq))→ −∞ as q →∞, for all j /∈ J , then

lim
n→∞

PrFn
(
φRCC
n (θn, α) 6= φRCC

n,J (θn, α)
)

= 0.

Remarks. (1) Notice that no assumptions are placed on A(θ) for Theorem 5(a). It can be

low-rank or any submatrix of A(θ) can be local to singular as θ varies. This is achieved by

an extra step in the proof that adds inequalities that are redundant in the finite sample but

are relevant in the limit (see Lemma 9 below).

(2) If θn and Fn are such that EFnmn(θn) does not depend on n (for example, if {Wi}ni=1

is stationary under Fn with a fixed marginal distribution and θ ∈ Θn(Fn) is fixed), and if

A(θn) and b(θn) are fixed, then the condition in part (c) is automatically satisfied with J

equal to the set of all binding inequalities. If, in addition, AJ(θn) 6= 0, parts (b) and (c) can
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be combined to show that the RCC test has exact asymptotic size.

(3) The outline of the proof of Theorem 5(a) is conceptually simple. The almost sure

representation theorem is invoked on the convergence of the moments, and then Theorem 3 is

invoked on the limiting experiment. However, the details are quite complicated. A technical

complication that arises is that the rank of the inequalities can be lower in the limit than

in the finite sample. This is handled by adding additional inequalities so the sequence of

polyhedra defined by the inequalities converges to a limiting polyhedron along a subsequence

(see Lemma 9 in Section D).

(4) The proof of Theorem 5 parts (a) and (c) can be modified to hold for the CC test

by simply replacing the β̂ in the proof with α. This, combined with the proof of Theorem 4

implies Theorem 1 in the main text.

B.3 Finite Sample Properties of the sRCC Test

The following result states the finite sample properties of the sRCC test assuming normally

distributed moments and a known conditional variance matrix. The result is a corollary of

Theorem 3. Let z be a realization of Z, and let Θ0(Fz) = {θ ∈ Θ : ∃δ s.t. BzEFz [mn(θ)|z]−
Czδ ≤ dz}.24 Let ej denote the RdA-vector with jth element one and all other elements zero.

For any J ⊆ {1, . . . , dA}, let φsRCC
n,J (θ, α) denote the sRCC test defined using IJAz and IJbz

in place of Az and bz.

Corollary 1. Suppose Σn(θ) is an invertible matrix such that the conditional distribution of
√
n(mn(θ)− EFZmn(θ)) given Z = z is distributed N(0,Σn(θ)) and Σ̂n(θ) = Σn(θ) a.s. for

all θ ∈ Θ. Then the following hold.

(a) For any θ ∈ Θ0(Fz), EFz [φsRCC
n (θ, α)|z] ≤ α.

(b) If AzEFz [mn(θ)|z] = bz and Az 6= 0, then EFz [φsRCC
n (θ, α)|z] = α.

(c) If J ⊆ {1, ..., dA} and {θs}∞s=1 ⊆ Θ is a sequence such that for all j /∈ J , e′jAz 6= 0 and

e′j(AzEFzmn(θs)− bz)/‖e′jAz‖→ −∞ as s→∞, where the dependence of Az and bz on

s via θs is implicit, then

lim
s→∞

PrFz
(
φsRCC
n (θs, α) 6= φsRCC

n,J (θs, α)|z
)

= 0.

Remark. Part (a) shows the finite sample validity of the sRCC test under normality.

Part (b) shows that the sRCC test is size-exact when there is an Fz under which all the

24Technically, z and the objects that are defined given z, including Θ0(Fz), depend on n as well. We keep
this dependence implicit for simplicity.
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inequalities bind. Part (c) states the finite-sample IDI property of the sRCC test. Since the

sRCC test rejects whenever the sCC test does, the corollary implies the validity of the sCC

test: EFz [φsCC
n (θ, α)|z] ≤ α.

B.4 Asymptotic Properties of the sRCC Test

We start by stating general conditions for asymptotic properties of the sRCC test, before

specializing to the i.i.d. case.

B.4.1 General Conditions

We fix a realization of {Zi}ni=1 and denote it by z. Let Fz be a collection of distributions Fz.

The following high-level assumption is sufficient for the uniform asymptotic validity of the

sCC and the sRCC tests. This assumption is the conditional version of Assumption 3.

Assumption 4. The given sequence {(Fz,n, θn) : Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)}∞n=1 satisfies, for

every subsequence, nm, there exists a further subsequence, nq, and there exists a sequence of

positive definite dm × dm matrices, {Dq}, such that:

(a) Under the sequence {Fz,nq}∞q=1,

√
nqD

−1/2
q (mnq(θnq)− EFz,nqmnq(θnq))→d N(0,Ω), (55)

for a positive definite correlation matrix Ω, and

‖D−1/2
q Σ̂nq(θnq)D

−1/2
q − Ω‖→p 0. (56)

(b) Let A(θ) and b(θ) be defined in Lemma 1. ΛqA(θnq)Dq → Ā0 for some dA × dm

matrix Ā0, and for every J ⊆ {1, ..., dA}, rk(IJA(θnq)Dq) = rk(IJĀ0), where Λq is the

diagonal dA×dA matrix whose jth diagonal entry is one if e′jA(θnj) = 0 and ‖e′jA(θnq)Dq‖−1

otherwise.

The following corollary of Theorem 5 shows the asymptotic properties of the sRCC test.

Corollary 2. (a) Suppose Assumption 4(a) holds for all sequences {(Fz,n, θn) : Fz,n ∈
Fz, θn ∈ Θ0(Fz,n)}∞n=1. Then,

limsup
n→∞

sup
Fz∈Fz

sup
θ∈Θ0(Fz)

EFz(φsRCC
n (θ, α)|z) ≤ α.

Next consider a sequence {(Fz,n, θn) : Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)}∞n=1 satisfying Assumption

4(a,b).
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(b) If, along any further subsequence, for all j = 1, ..., dA,
√
nqe

′
jΛq(A(θnq)EFz,nqmnq(θnq)−

b(θnq))→ 0, and if Ā0 6= 0dA×dm, then

lim
n→∞

EFz,nφsRCC
n (θn, α) = α.

(c) If, for J ⊆ {1, ..., dA}, along any further subsequence,
√
nqe

′
jΛq(A(θnq)EFz,nqmnq(θnq)−

b(θnq))→ −∞ as q →∞, for all j /∈ J , then

lim
n→∞

PrFz,n(φsRCC
n (θn, α) 6= φsRCC

n,J (θn, α)) = 0.

Remarks. (1) Corollary 2 follows from Theorem 5 because Θ0(Fz,n) has the equivalent

representation

Θ0(Fz,n) = {θ ∈ Θ : A(θ)EFz,n [mn(θ)|z] ≤ b(θ)}, (57)

by Lemma 1. There is one subtle point: A(θ) = H(Cz(θ))Bz(θ) might change dimension

because H(Cz) might change dimension with Cz, and Cz might change with the sample size.

But this does not cause a problem because the dimension of H(Cz) and thus that of A(θ) is

bounded by a function of k and p which does not change with the sample size.25 Due to this

boundedness, for any subsequence of {n} we can always find a further subsequence along

which the dimension of A(θ) does not change. Then the problem falls into the framework of

Theorem 5.

(2) A version of Corollary 2, parts (a) and (c), can be stated for the sCC test by replacing

“RCC” with “CC” in the statement of Theorem 5 and by replacing β̂ with α in the proof of

Theorem 5. This, combined with Theorem 6, parts (a) and (b), below, implies Theorem 2

in the main text.

B.4.2 Primitive Conditions under i.i.d. Sampling

Now we assume that {Wi}ni=1 is an i.i.d. sample unconditionally and derive primitive con-

ditions for Assumption 4(a). We have already derived conditions in Section 4.2 for when

Zi is discrete. When Zi is continuously distributed, we use the following additional nota-

tion. Let the conditional distribution of Wi given Zi = zi be represented by the mapping:

F| : zi 7→ F|zi . Let F| denote a collection of F| and let Fz = {×ni=1F|zi : F| ∈ F|}, where

×ni=1F|zi denotes the joint distribution whose marginal distributions are independent F|zi .

When the nearest neighbor matching variance estimator in (51) is used, the following

additional assumption is used for consistency.

25This fact is know as the McMullen’s upper bound theorem. See e.g. Section 8.4 of Ziegler (1995).
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Assumption 5. (a) {zi}∞i=1 is a bounded sequence of distinct values.

(b) ΣZ,n → ΣZ where ΣZ is finite positive definite matrix.

(c) There exist Mg > 0 and MV > 0 such that for all θ ∈ Θ and F| ∈ F| the conditional

mean and variance, EF|zi [D|z(θ)
−1/2m(Wi, θ)|zi] and V arF|zi (D|z(θ)

−1/2m(Wi, θ)|zi), are

Lipschitz continuous in zi with Lipschitz constants Mg and MV , respectively.

Remark. The boundedness in part (a) is used to show that zi and its nearest neighbor get

close to each other on average as n → ∞. This can be guaranteed by pre-normalizing Zi

before applying the matching estimator. For example, if the raw conditioning variable Z̃i is

supported in (0,∞), one can let Zi = Φ(Z̃i) where Φ(·) is the standard normal cumulative

distribution function. This and the Lipschitz continuity in part (c) together ensure that the

nearest neighbor provides the correct information about the conditional variance in the limit.

The distinct values required by part (a) ensures that each point can be the nearest neighbor

to at most a uniformly bounded number of other points. This holds with probability one if

Zi has no probability mass on any single point. It can be made to hold by adding a tiny

continuous noise to Zi when Zi has repeated values. The noise should be set small enough to

be a tie breaker only in the nearest neighbor calculation. Part (b) of the assumption can be

established for a probability-one set of {Zi} values by the strong law of large numbers.

The following theorem verifies Assumption 4(a).

Theorem 6. (a) Assumption 2(a-d) implies (55) in Assumption 4 for all sequences {(Fz,n, θn) :

Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)}∞n=1.

(b) Assumption 2 implies (56) holds for Σ̂n(θ) defined in (28), for all sequences {(Fz,n, θn) :

Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)}∞n=1.

(c) If Assumptions 2(a-d) and 5 hold, then (56) holds for Σ̂n(θ) defined in (51), for all

sequences {(Fz,n, θn) : Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)}∞n=1.

Remark. Theorem 6 verifies the conditions of Assumption 4(a) so that Theorem 2 follows

from the sCC version of Corollary 2.

C Proof of Theorem 3

For this proof, we assume Σn(θ) = nIdm . If this is not the case, then the following proof can be

applied after premultiplying mn(θ) by n1/2Σn(θ)−1/2 and postmultiplying A by n−1/2Σn(θ)1/2.
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Fix θ and let X = mn(θ) ∼ N(µ, Idm), where µ = EFmn(θ). Let C = {µ ∈ Rdm|Aµ ≤ b}.
The fact that θ ∈ Θ0(F ) implies µ ∈ C. These simplifications imply that Tn(θ) = ‖X − µ̂‖2

and

τ̂j =


‖a1‖(bj−a′j µ̂)

‖a1‖‖aj‖−a′1aj
if ‖a1‖‖aj‖6= a′1aj

∞ otherwise
. (58)

The definitions of µ̂, Ĵ , r̂, τ̂ , and β̂ are unchanged. µ̂ is the projection of X onto C. We also

denote it by PCX. We also denote Ĵ by J(X), r̂ by r(X), τ̂ by τ(X), and β̂ by β(X).

C.1 Lemmas for Theorem 3

The proof of Theorem 3 relies on four lemmas.

The first lemma partitions Rdm according to which inequalities are active. We define

some notation for the partition. For any J ⊆ {1, ..., dA}, let J c = {1, ..., dA}/J , and let

CJ = {x ∈ C : ∀j ∈ J, a′jx = bj, and ∀j ∈ J c, a′jx < bj}. Then CJ forms a partition of C.

Also let VJ = {
∑

j∈J vjaj : vj ∈ R, vj ≥ 0}, and let KJ = CJ + VJ .26 The following lemma

shows that KJ forms a partition that characterizes which inequalities are active.

Lemma 3. (a) If X ∈ KJ , then X − PCX ∈ VJ and PCX ∈ CJ .

(b) The set of all KJ for J ⊆ {1, ..., dA} is a partition of Rdm.

(c) For every J ⊆ {1, ..., dA}, X ∈ KJ iff J = J(X).

The next lemma considers the event r̂ = 0 and partitions that event according to which

face of C is closest to the realization of X. Let J0 = {j ∈ {1, ..., dA}|aj = 0} and let

J00 = {j ∈ {1, ..., dA}|aj = 0 and bj = 0}. Also let

J1 ={J ⊆ {1, ..., dA}|rk(AJ) = 1, J ∩ J0 = J00, (59)

and if j ∈ J, ` ∈ J c, s.t. ‖aj‖> 0, ‖a`‖> 0,

then
aj
‖aj‖

6= a`
‖a`‖

or
bj
‖aj‖

6= b`
‖a`‖
}.

Further subdivide

J os
1 ={J ∈ J1| if j, ` ∈ J s.t. ‖aj‖> 0, ‖a`‖> 0, then

aj
‖aj‖

=
a`
‖a`‖
} (60)

J ts
1 ={J ∈ J1|∃j, ` ∈ J s.t. ‖aj‖> 0, ‖a`‖> 0,

aj
‖aj‖

= − a`
‖a`‖

and
bj
‖aj‖

= − b`
‖a`‖
}.

26When J = ∅, then VJ = {0dm}.
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The next lemma provides a partition of C0 := ∪J⊆{1,...,dA}:rk(AJ )=0CJ . (Note that for these

sets, CJ = KJ .) Let J6=0 = {j = 1, . . . , dA : ‖aj‖6= 0}. For each J ∈ J os
1 , let

C∆
J = {x ∈ C0|argminj∈J 6=0

‖aj‖−1(bj − a′jx) = J ∩ J6=0}. (61)

The set C∆
J is the set of points in C that are closer to CJ than to any other CJ̃ for J̃ ∈ J1.

It is helpful to picture CJ for J ∈ J1 as the faces of a polyhedron, C, and C∆
J as a partition

of C into triangularly shaped sets. Also let

C | = C0/
(
∪J∈J os1

C∆
J

)
. (62)

Lemma 4. (a) C0 = CJ00.

(b) The sets C | and C∆
J for J ∈ J os

1 form a partition of C0.

(c) If A 6= 0dA×dm, then C | has Lebesgue measure zero.

(d) ∪J⊆{1,...,dA}|rk(AJ )=1KJ = ∪J∈J os1 ∪J ts1
KJ .

The next lemma bounds the probabilities of translations of sets in the multivariate normal

distribution. Let V denote an arbitrary cone in Rr for a positive integer r.27 Let V ∗ denote

the polar cone. That is, V ∗ = {γ ∈ Rr|〈y, γ〉 ≤ 0 for all y ∈ V }. For any γ ∈ V ∗, let

Y ∼ N(γ, Ir). The following lemma provides a property of probabilities of cones under a

translation.

Lemma 5. For every γ ∈ V ∗, Prγ(‖Y ‖2> χ2
r,1−α|Y ∈ V ) ≤ α, with equality if γ = 0.

Lemma 5 states that the probability that a random vector, Y , belongs to the tail of its

distribution, conditional on belonging to the cone, V , is less than or equal to α, where the

tail is any point outside a sphere of radius
√
χ2
r,1−α. The key assumption is that the mean of

Y must belong to the polar cone, V ∗, which translates the distribution away from the cone,

V . When γ = 0, this lemma holds with equality because unconditionally ‖Y ‖2∼ χ2
r, the tail

of which has mass exactly α, and because ‖Y ‖2 has exactly the same distribution whether

or not we condition on Y ∈ V . Lemma 5 follows from Lemma 1 in Mohamad et al. (2020),

and thus the proof is omitted.

The following lemma is the key to validity of the refinement to the CC test. It is a bound

on translations of sets in the univariate normal distribution.

27A cone is a set, V , such that for all v ∈ V and for all λ ≥ 0, λv ∈ V .
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Lemma 6. For every µ ≤ 0, for every τ ≥ 0, and for every α ∈ [0, 1],

Prµ
(
Z > z1−β/2|Z > −τ

)
≤ α,

where Z ∼ N(µ, 1) and β = 2αΦ(τ), with equality if µ = 0.

C.2 Proof of Theorem 3

First, we show part (a). Notice that

Pr(‖X − PCX‖2> χ2
rk(AJ(X)),1−β(X))

=
∑

J⊆{1,...,dA}

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
rk(AJ ),1−β(X))

=
∑

J⊆{1,...,dA}|rk(AJ )≥2

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
rk(AJ ),1−α) (63)

+
∑
J∈J ts1

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
1,1−α) (64)

+
∑
J∈J os1

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
1,1−β(X)) (65)

+
∑

J⊆{1,...,dA}|rk(AJ )=0

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
0,1−α), (66)

where the first equality follows from Lemma 3(b,c), and the second equality uses Lemma

4(d) and the fact that β(X) = α whenever rk(AJ(X)) 6= 1 or J ∈ J ts
1 . That latter fact follows

because for J ∈ J ts
1 with X ∈ KJ , there exists j, ` ∈ J such that ‖a`‖−1a` = −‖aj‖−1aj

and ‖a`‖−1b` = −‖aj‖−1bj, which implies that b`− a′`PCX = bj − a′jPCX = 0 (and therefore

τ(X) = 0).

For each J , we consider the span of VJ as a subspace of Rdm . Let PJ denote the projection

onto span(VJ), and MJ denote the projection onto its orthogonal complement. We note that,

given J , there exists a κJ ∈ span(VJ) such that for every z ∈ CJ , PJz = κJ . This follows

because for two z1, z2 ∈ CJ , and for any v ∈ span(VJ), 〈z1 − z2, v〉 = 0, which implies

z1 − z2 ⊥ span(VJ), so that PJ(z1 − z2) = 0dm . Thus, for any X ∈ KJ , we can write

PJX = PJ(X − PCX) + PJPCX = X − PCX + κJ , where the second equality follows by

Lemma 3(a) and the above discussion. We also write MJX = X − PJX = PCX − κJ .

First, let’s consider the terms in (66). For J such that rk(AJ) = 0, we have span(VJ) =

{0dm}. Thus, PJX = κJ = 0dm . This implies that ‖X − PCX‖= 0. Therefore,

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
0,1−α) = 0. (67)
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For J such that rk(AJ) > 0, we define a linear isometry from span(VJ) to Rrk(AJ ). Let

BJ be a dm × rk(AJ) matrix whose columns form a basis for span(VJ). Then PJX =

BJ(B′JBJ)−1B′JX. The projection matrix BJ(B′JBJ)−1B′J is idempotent with rank rk(AJ),

and thus there exists a dm×rk(AJ) matrix with orthonormal columns, QJ , such that QJQ
′
J =

BJ(B′JBJ)−1B′J . The linear isometry from span(VJ) to Rrk(AJ ) is QJ(X) = Q′JX. This is an

isometry because for any v1, v2 ∈ span(VJ),

‖v1 − v2‖2 = (v1 − v2)′(v1 − v2)

= (v1 − v2)′(PJ(v1 − v2))

= (v1 − v2)′QJQ
′
J(v1 − v2)

= ‖QJ(v1)−QJ(v2)‖2, (68)

where the second equality holds because v1, v2 ∈ span(VJ). Now let Q′JVJ = {Q′Jv : v ∈ VJ}.
Then PJX−κJ ∈ VJ if and only if Q′J(PJX−κJ) ∈ Q′JVJ because this isometry is bijective.

Next, we consider the terms in (63) and (64). Notice that

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
rk(AJ ),1−α)

= Pr(MJX + κJ ∈ CJ , PJX − κJ ∈ VJ , and ‖PJX − κJ‖2> χ2
rk(AJ ),1−α)

= Pr(MJX + κJ ∈ CJ)× Pr(PJX − κJ ∈ VJ and ‖PJX − κJ‖2> χ2
rk(AJ ),1−α), (69)

where the first equality uses Lemma 3(a) and the facts that MJX + κJ = PCX and X =

PJX + MJX, and the second equality follows from the fact that PJX is independent of

MJX. Applying the isometry, we have

Pr(PJX − κJ ∈ VJ and ‖PJX − κJ‖2> χ2
rk(AJ ),1−α)

= Pr(Q′J(PJX − κJ) ∈ Q′JVJ and ‖Q′J(PJX − κJ)‖2> χ2
rk(AJ ),1−α). (70)

We would like to apply Lemma 5 to this probability. Since X ∼ N (µ, I), we have

Q′J(PJX − κJ) ∼ N(Q′J(PJµ− κJ), Q′JIQJ) = N(Q′J(PJµ− κJ), I). (71)

Also note that Q′JVJ is a cone in Rrk(AJ ). The random vector Q′J(PJX−κJ) ∼ N(γ, I) where

γ = Q′J(PJµ− κJ). The vector γ is in the polar cone because, for all ỹ ∈ Q′JVJ , there exists

a y =
∑

j∈J vjaj ∈ VJ such that ỹ = Q′Jy, and thus

〈γ, ỹ〉 = 〈Q′J(PJµ− κJ), Q′Jy〉
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= 〈PJµ− κJ , y〉

= 〈(µ−MJµ− PJz), y〉

= 〈(µ−MJµ− z +MJz), y〉

= 〈(µ− z), y〉

=
∑
j∈J

vj(〈µ, aj〉 − 〈z, aj〉) ≤ 0, (72)

where z is any element28 of CJ so that κJ = PJz, the second equality holds because 〈Q′J(PJµ−
κJ), Q′Jy〉 = y′QJQ

′
J(PJµ − κJ) = y′PJ(PJµ − κJ) = y′(PJµ − κJ), the fifth equality holds

because MJy = 0, and the inequality follows because 〈z, aj〉 = bj ≥ 〈µ, aj〉, using the facts

that z ∈ CJ and µ ∈ C.

Therefore, we can apply Lemma 5 to get that, for every J ⊆ {1, ..., dA} such that rk(AJ) ≥
1, we have

Pr(PJX − κJ ∈ VJ and ‖PJX − κJ‖2> χ2
rk(AJ ),1−α)

= Pr
(
Q′J(PJX − κJ) ∈ Q′JVJ and ‖Q′J(PJX − κJ)‖2> χ2

rk(AJ ),1−α
)

≤ αPr(Q′J(PJX − κJ) ∈ Q′JVJ)

= αPr(PJX − κJ ∈ VJ), (73)

where the inequality holds as equality if γ = Q′J(PJµ− κJ) = 0.

Next, consider the terms in (65). For each J ∈ J os
1 , let j̄ ∈ J such that ‖aj̄‖6= 0. Notice

that we can take BJ = aj̄, so that PJ = ‖aj̄‖−2aj̄a
′
j̄, QJ = ‖aj̄‖−1aj̄, and κJ = ‖aj̄‖−2aj̄bj̄.

Notice that

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
1,1−β(X))

= Pr(MJX + κJ ∈ CJ , PJX − κJ ∈ VJ , and ‖PJX − κJ‖2> χ2
1,1−β(X)) (74)

= Pr(MJX + κJ ∈ CJ , Q′J(PJX − κJ) ∈ Q′JVJ , and ‖Q′J(PJX − κJ)‖2> χ2
1,1−β(MJX+κJ )),

where the first equality uses the definitions of MJ , PJ , and κJ , and the second equality uses

the isometry QJ , together with the fact that β(X) depends on X only through MJX + κJ

(because the formula for τ(X) only depends on PCX = MJX + κJ).

We next note that Q′JVJ = [0,∞). This follows because for any c ≥ 0, c = Q′Jcaj̄‖aj̄‖,
where caj̄‖aj̄‖∈ VJ . Conversely, for any v =

∑
`∈J c`a` ∈ VJ for some constants c` ≥ 0, we

have Q′Jv =
∑

`∈J c`‖aj̄‖−1a′j̄a`, where a′j̄a` ≥ 0 because a` is either zero or a positive scalar

multiple of aj̄ by the definition of J os
1 .

28If CJ is empty, so that no such z exists, then (69) is zero, and so (73) below is not needed.
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Also, the fact that X ∼ N(µ, I) implies that Z := Q′J(PJX − κJ) ∼ N(γ, 1), where

γ = Q′J(PJµ− κJ) = ‖aj̄‖−1(a′j̄µ− bj̄) ≤ 0. Note that Z is independent of MJX.

Let z1−α denote the 1− α quantile of the standard normal distribution. We have

Pr(MJX + κJ ∈ CJ , Q′J(PJX − κJ) ∈ Q′JVJ , and ‖Q′J(PJX − κJ)‖2> χ2
1,1−β(MJX+κJ ))

= Pr(MJX + κJ ∈ CJ , Z > z1−β(MJX+κJ )/2)

=E1(MJX + κJ ∈ CJ) Pr(Z > z1−β(MJX+κJ )/2|MJX + κJ)

≤αE1(MJX + κJ ∈ CJ) Pr(Z > −τ(MJX + κJ)|MJX + κJ) (75)

=αPr(MJX + κJ ∈ CJ , Z > −τ(MJX + κJ))

=αPr(MJX + κJ ∈ CJ , Q′J(PJX − κJ) ∈ Q′JVJ)

+ αPr(MJX + κJ ∈ CJ , Q′J(PJX − κJ) ∈ (−τ(MJX + κJ), 0))

=α(Pr(X ∈ KJ) + Pr(X ∈ C∆
J )), (76)

where the first equality follows from the events Z ≥ 0 and Z2 > χ2
1,1−β(MJX+κJ ) being equiv-

alent to the event Z > z1−β(MJX+κJ )/2, the second and third equalities uses the conditional

distribution of Z given MJX + κJ , the inequality follows by Lemma 6, the fourth equal-

ity follows from splitting the event Z > −τ into Z ≥ 0 (equivalent to Z ∈ Q′JVJ) and

Z ∈ (−τ, 0), and the final equality follows from the fact that Q′J(PJX − κJ) ∈ Q′JVJ if and

only if PJX − κJ ∈ VJ , the characterization of KJ using Lemma 3(a), together with the

argument that follows.

To show (76), we show that for all J ∈ J os
1 ,

C∆
J = {x ∈ Rdm|MJx+ κJ ∈ CJ and Q′J(PJx− κJ) ∈ (−τ(MJx+ κJ), 0)}. (77)

Denote the set on the right hand side of (77) by Υ. We show (1) x ∈ C∆
J implies x ∈ Υ

and (2) x ∈ Υ implies x ∈ C∆
J . It is useful to point out that for any x, we can write

Q′J(PJx−κJ) = ‖aj̄‖−1(a′j̄x− bj̄) and MJx+κJ = x−‖aj̄‖−2aj̄(a
′
j̄x− bj̄) using the formulas

for PJ , QJ , and κJ .

(1) Let x ∈ C∆
J . We calculate that MJx + κJ ∈ CJ by showing that equality holds for

every ` ∈ J and strict inequality holds for every ` /∈ J . For any ` ∈ J either ` ∈ J00 or

` ∈ J ∩ J 6=0. If ` ∈ J00, a′`(MJx+ κJ) = 0 = b`, so equality holds. If ` ∈ J ∩ J 6=0,

a′`(x− ‖aj̄‖−2aj̄(a
′
j̄x− bj̄)) = a′`(x− ‖aj̄‖−1‖a`‖−1aj̄(a

′
`x− b`)) = b`, (78)

where the first equality uses the fact that ‖a`‖−1(b`−a′`x) = ‖aj̄‖−1(bj̄−a′j̄x) by the definition

of C∆
J , and the second equality uses the fact that a′`aj̄ = ‖aj̄‖‖a`‖ by the definition of J os

1 .
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Therefore, equality holds for every ` ∈ J . For any ` ∈ J c, we show that strict inequality

holds. Either ` ∈ J0/J00 or ` ∈ J6=0/J . If ` ∈ J0/J00, a′`(MJx+ κJ) = 0 < b`.
29 If ` ∈ J6=0,

a′`(x− ‖aj̄‖−2aj̄(a
′
j̄x− bj̄)) =a′`x− ‖aj̄‖−2a′`aj̄(a

′
j̄x− bj̄)

=a′`x− b` − ‖aj̄‖−2a′`aj̄(a
′
j̄x− bj̄) + b`

<
‖a`‖
‖aj̄‖

(a′j̄x− bj̄)− ‖aj̄‖
−2a′`aj̄(a

′
j̄x− bj̄) + b`

=
(‖a`‖‖aj̄‖−a′`aj̄)(a′j̄x− bj̄)

‖aj̄‖2
+ b` ≤ b`, (79)

where the first inequality uses the fact that ‖aj̄‖−1(bj̄ − a′j̄x) < ‖a`‖−1(b` − a′`x) by the

definition of x ∈ C∆
J (because ` is not in the argmin), and the second inequality uses the

fact that a′j̄x < bj̄ and ‖aj̄‖‖a`‖≥ a′`a
′
j̄. This shows that for every ` ∈ J c the inequality is

strict. Therefore, MJx+ κJ ∈ CJ .

We also calculate that Q′J(PJx− κJ) ∈ (−τ(MJx+ κJ), 0). The fact that x ∈ C0 implies

that a′j̄x − bj̄ < 0, and so Q′J(PJx − κJ) = ‖aj̄‖−1(a′j̄x − bj̄) < 0. Let ` ∈ {1, ..., dA}/{j̄}.30

We show that

‖aj̄‖−1(a′j̄x− bj̄) > −τj(MJx+ κJ). (80)

If ‖a`‖‖aj̄‖−a′`aj̄ = 0, then by definition the right hand side of (80) is −∞. Otherwise, we

can plug in MJx+ κJ = x− ‖aj̄‖−2aj̄a
′
j̄x+ ‖aj̄‖−2aj̄bj̄ and rewrite (80) as

(a′j̄x− bj̄)(‖a`‖‖aj̄‖−a
′
`aj̄) > −‖aj̄‖2(b` − a′`(x− ‖aj̄‖−2aj̄a

′
j̄x+ ‖aj̄‖−2aj̄bj̄)). (81)

We can simplify this to show that it holds if and only if

‖aj̄‖−1(bj̄ − a′j̄x) < ‖a`‖−1(b` − a′`x). (82)

The fact that ‖a`‖‖aj̄‖6= a′`aj̄ implies that ` /∈ J (by the definition of J os
1 ) and therefore, by

the definition of C∆
J , (82) holds (because ` is not in the argmin). Therefore, (80) holds for

every ` ∈ {1, ..., dA}/{j̄}, which implies that

Q′J(PJx− κJ) = ‖aj̄‖−1(a′j̄x− bj̄) > −τ(MJx+ κJ). (83)

This shows that x ∈ Υ.

(2) Let x ∈ Υ. Consider the set argminj∈J 6=0
‖aj‖−1(bj − a′jx). We first show that the

29b` cannot be negative because, by assumption, θ ∈ Θ0(F ), so µ ∈ C, and therefore C is non-empty.
30We note here that τ(x) is defined for an arbitrary active inequality j̄ ∈ J ∩ J 6=0. One can verify that the

definition of τ(x) does not depend on which j̄ ∈ J ∩ J 6=0 is selected.
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argmin is equal to J ∩ J6=0. If ` ∈ J6=0/J , an algebraic manipulation similar to above shows

that

Q′J(PJx− κJ) > −τ(MJx+ κJ)

⇒ ‖aj̄‖−1(a′j̄x− bj̄) > −
‖aj̄‖(b` − a′`(x− ‖aj̄‖−2aj̄(a

′
j̄x− bj̄)))

‖aj̄‖‖a`‖−a′`aj̄
⇐⇒ ‖a`‖−1(b` − a′`x) > ‖aj̄‖−1(bj̄ − a′j̄x), (84)

where the first implication uses the definition of τ(x) and the “iff” follows from multiplying

by ‖aj̄‖‖a`‖−a′`aj̄ and cancelling the a′`aj̄ term. This shows that ` ∈ J 6=0/J cannot be in the

argmin. Also consider ` ∈ J ∩ J6=0. The definition of J os
1 implies that ‖a`‖−1a` = ‖aj̄‖−1aj̄.

Notice that

0 = bj̄ − a′j̄(MJx+ κJ) = b` − a′`(MJx+ κJ)

⇐⇒ 0 = bj̄ − a′j̄(x− ‖aj̄‖
−2aj̄(a

′
j̄x− bj̄)) = b` − a′`(x− ‖aj̄‖−2aj̄(a

′
j̄x− bj̄))

⇒ b` = a′`(x− ‖aj̄‖−2aj̄(a
′
j̄x− bj̄))

⇐⇒ ‖a`‖−1(b` − a′`x) = ‖a`‖−1a′`‖aj̄‖−2aj̄(bj̄ − a′j̄x) = ‖aj̄‖−1(bj̄ − a′j̄x), (85)

where the first line holds because MJx + κJ ∈ CJ , the first “iff” holds by plugging in the

formula for MJx+κJ , the implication holds by solving for b` and canceling out bj̄, the second

“iff” holds by rearranging and the fact that a′`aj̄ = ‖a`‖‖aj̄‖. We have shown that ` should

be in the argmin. Therefore, the argmin is equal to J ∩ J6=0.

We also show that x ∈ C0. Note that a′j̄x < bj̄ because Q′J(PJx− κJ) < 0 and plugging

in the formulas for QJ , PJ , and κJ . For any other ` ∈ J 6=0, we have

‖a`‖−1(b` − a′`x) ≥ ‖aj̄‖−1(bj̄ − a′j̄x) > 0, (86)

because j̄ belongs to the argmin. Thus, x ∈ C0 because all the inequalities for ` ∈ J6=0 are

inactive. Therefore, x ∈ C∆
J .

Therefore, we have shown (77), which implies (76).

To finish the proof of part (a), we plug in (67), (69), (70), (73), (74), and (76) into (63),

(64), (65), and (66) to get that∑
J⊆{1,...,dA}

Pr(X ∈ KJ and ‖X − PCX‖2> χ2
rk(AJ ),1−α)

≤
∑

J⊆{1,...,dA}:rk(AJ )≥2

αPr(MJX + κJ ∈ CJ)× Pr(PJX − κJ ∈ VJ)
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+
∑
J∈J ts1

αPr(MJX + κJ ∈ CJ)× Pr(PJX − κJ ∈ VJ)

+
∑
J∈J os1

α(Pr(X ∈ KJ) + Pr(X ∈ C∆
J ))

=α×

 ∑
J⊆{1,...,dA}:rk(AJ(X))>0

Pr(X ∈ KJ) +
∑
J∈J os1

Pr(X ∈ C∆
J )


=α(1− Pr(X ∈ C |)) ≤ α, (87)

where the first equality uses Lemma 3(a) and the fact that PJX is independent of MJX,

together with Lemma 4(d), and the second equality uses Lemma 3(b) and Lemma 4(b).

We next prove part (b). Fix J ⊆ {1, . . . , dA}. We first note that when CJ is empty, the

inequality in (73) holds with equality because both sides are zero. When CJ 6= ∅, we show

that κJ = PJµ. Let z ∈ CJ and for every λ ∈ [0, 1] let µλ = λz + (1 − λ)µ. Recall that

Aµ = b. Thus, for each λ ∈ (0, 1]

a′jµλ = λa′jz + (1− λ)a′jµ = λbj + (1− λ)bj = bj for j ∈ J, and (88)

a′jµλ = λa′jz + (1− λ)a′jµ < λbj + (1− λ)bj = bj for j ∈ J c.

This implies that µλ ∈ CJ , and hence, for every λ ∈ (0, 1], PJµλ = κJ . Take λ → 0 and by

the continuity of the projection, κJ = PJµ. Thus, γ = Q′J(PJµ− κJ) = 0, implying that the

inequality in (73) holds with equality. The fact that γ = 0 also implies that the inequality

in (75) holds with equality by Lemma 6. The inequality in the last line of (87) holds with

equality by Lemma 4(c). This proves part (b).

Part (c). Let C̃ = {µ ∈ Rdm|AJµ ≤ bJ}. Let T̃n(θ), PC̃X, J̃(X), r̃(X), τ̃(X), and β̃(X)

be defined with AJ and bJ in place of A and b. For each L ⊆ J , also define C̃L and K̃L

similarly. Note that all these objects also depend on s because A and b may depend on θ.

Notice that

Pr
(
φRCC
n (θs, α) 6= φRCC

n,J (θs, α)
)

=
∑

L⊆{1,...,dA}

Pr(X ∈ KL and φRCC
n (θs, α) 6= φRCC

n,J (θs, α))

=
∑
L⊆J

Pr(X ∈ KL and φRCC
n (θs, α) 6= φRCC

n,J (θs, α)) + o(1) (89)

=
∑
L⊆J

Pr
(
X ∈ KL and χ2

rk(AL),1−β(X) ≥ ‖X − PCX‖2> χ2
rk(AL),1−β̃(X)

)
+ o(1) (90)
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=
∑

L⊆J :rk(AL)=1

Pr
(
X ∈ KL and χ2

1,1−β(X) ≥ ‖X − PCX‖2> χ2
1,1−β̃(X)

)
+ o(1) (91)

→ 0, (92)

where the first equality follows from Lemma 3(b) and the subsequent equalities and conver-

gence are justified below.

For (89), let X̃ = X − µ ∼ N(0, I). Fix the value of X̃. We show that for any

L 6⊆ J , either (i) X̃ + µ /∈ KL or (ii) 1{‖X̃ + µ − PC(X̃ + µ)‖2> χ2
r(X̃+µ),1−β(X̃+µ)

} =

1{‖X̃+µ−PC̃(X̃+µ)‖2> χ2
r̃(X̃+µ),1−β̃(X̃+µ)

} eventually as s→∞. Note that the expression

in (ii) is equivalent to φRCC
n (θs, α) = φRCC

n,J (θs, α) when evaluated at X = X̃ + µ. Suppose,

to reach a contradiction, there exists a subsequence in s such that (i) and (ii) are both false

for all s.31 Let ` ∈ L/J . Then by Lemma 3(a), we have a′`PC(X̃ + µ) = b`. It follows that

‖X̃ + µ− PC(X̃ + µ)‖ ≥
−a′`

(
X̃ + µ− PC(X̃ + µ)

)
‖a`‖

(93)

=
−a′`X̃
‖a`‖

− a′`µ− b`
‖a`‖

→ +∞, (94)

where the inequality follows from Cauchy-Schwarz, and the convergence follows by assump-

tion for ` /∈ J , using the fact that X̃ is fixed so ‖a`‖−1a′`X̃ is bounded. This implies that

‖X̃ + µ− PC(X̃ + µ)‖2> χ2
dA,1−α ≥ χ2

r(X̃+µ),1−β(X̃+µ)
eventually as s→∞.

We next claim that there exists a further subsequence in s and an ˜̀ /∈ J such that

a′˜̀PC̃(X̃ + µ) ≥ b˜̀ along the further subsequence. Such an ˜̀ and subsequence must exist

because otherwise, PC̃(X̃ + µ) ∈ C, which implies that PC̃(X̃ + µ) = PC(X̃ + µ) (because

C ⊆ C̃), and which further implies by Lemma 3(a) that a′˜̀PC̃(X̃ + µ) = a′˜̀PC(X̃ + µ) = b˜̀

for every ˜̀∈ L. In that case, we can take ˜̀∈ L/J . It follows that

‖X̃ + µ− PC̃(X̃ + µ)‖ ≥
−a′˜̀

(
X̃ + µ− PC̃(X̃ + µ)

)
‖a˜̀‖

(95)

≥
−a′˜̀X̃
‖a˜̀‖

−
a′˜̀µ− b˜̀

‖a˜̀‖
→ +∞, (96)

where the inequality follows from Cauchy-Schwarz, and the convergence follows by assump-

tion for ˜̀ /∈ J , using the fact that X̃ is fixed so ‖a˜̀‖−1a′˜̀X̃ is bounded. This implies that

‖X̃ + µ− PC̃(X̃ + µ)‖2> χ2
dA,1−α ≥ χ2

r̃(X̃+µ),1−β̃(X̃+µ)
eventually as s→∞. Therefore, along

this subsequence, condition (ii) holds eventually. This contradiction implies that for every

31For notational simplicity, we do not introduce notation for this subsequence or any further subsequence.
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L 6⊆ J and for every fixed X̃ either (i) or (ii) holds eventually. Therefore,

Pr(X ∈ KL and φRCC
n (θs, α) 6= φRCC

n,J (θs, α)

= Pr(X̃ + µ ∈ KL and

1{‖X̃+µ−PC(X̃+µ)‖2>χ2
r(X̃+µ),1−β(X̃+µ)

} 6= 1{‖X̃+µ−PC̃(X̃+µ)‖2>χ2
r̃(X̃+µ),1−β̃(X̃+µ)

})

→0,

where the equality follows from the fact that X has the same distribution as X̃ +µ, and the

convergence follows from the bounded convergence theorem.

For (90), note that for any L ⊆ J , if X ∈ KL, then PCX ∈ CL by Lemma 3(a). We argue

that PCX = PC̃X. By a property of projection onto convex sets, it is sufficient to show that

for all y ∈ C̃, we have 〈X − PCX, y− PCX〉 ≤ 0.32 This follows because by the definition of

KL, we can write X − PCX =
∑

j∈L vjaj with vj ≥ 0, so

〈X − PCX, y − PCX〉 =
∑
j∈L

vj(〈aj, y〉 − 〈aj, PCX) ≤ 0,

where the inequality uses the fact that y ∈ C̃, so a′jy ≤ bj and PCX ∈ CL, so a′jPCX =

bj. Therefore, PCX = PC̃X. The fact that PC̃X ∈ CL implies that PC̃X ∈ C̃L because

CL ⊆ C̃L. By Lemma 3(b), this implies that X ∈ K̃L. Thus, r(X) = r̃(X) = rk(AL), and

Tn(θ) = ‖X −PCX‖2= ‖X −PC̃X‖2= T̃n(θ). Also, the fact that β̃(X) ≥ β(X) implies that

the only way φRCC
n (θs, α) 6= φRCC

n,J (θs, α) is if χ2
rk(AL),1−β(X) ≥ ‖X − PCX‖2> χ2

rk(AL),1−β̃(X)
.

For (91), we use the fact that β(X) = β̃(X) = α whenever rk(AL) 6= 1.

Finally we show (92). For each L ⊆ J , note that rk(AL) may depend on s. Fix any

subsequence in s such that rk(AL) = 1 along the subsequence.33 Write PL = QP
LQ

P
L
′

and

ML = QM
L Q

M
L
′
, where QP

L is a dm× 1 vector with unit length, QM
L is a dm× (dm− 1) matrix

with orthonormal columns, and QP
L
′
QM
L = 0. Let X̃ = (x̃1, x̃2) ∼ N(0, I), where x̃1 ∈ Rdm−1

and x̃2 ∈ R. We can then write

X = QM
L x̃1 +QP

L x̃2 + µ. (97)

Note that X̃ does not depend on s, while µ, QM
L , and QP

L may.

For each L, we can rewrite the term in (91) as∫
x̃1

∫
x̃2

1{X ∈ KL}1{χ2
1,1−β(X) ≥ ‖X − PCX‖2> χ2

1,1−β̃(X)
}φ(x̃1)φ(x̃2)dx̃2dx̃1

32See section 3.12 in Luenberger (1969).
33For notational simplicity, we do not introduce notation for this subsequence or any further subsequence.
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=

∫
x̃1

1{MLX + κL ∈ CL}
∫
x̃2

gs(x̃1, x̃2)φ(x̃2)dx̃2φ(x̃1)dx̃1, (98)

where X is viewed as a function of (x̃1, x̃2) using (97), φ(·) is the probability density function

of the standard normal distribution of the dimension determined by the dimension of its

argument, and

gs(x̃1, x̃2) = 1{PLX − κL ∈ VL}1{χ2
1,1−β(MLX+κL) ≥ ‖PLX − κL‖2> χ2

1,1−β̃(MLX+κL)
}, (99)

which uses the same decomposition of X ∈ KL as in (69), and the fact that MLX only

depends on x̃1 (and that β(X) and β̃(X) only depend on X through PCX = MLX + κL).

Fix x̃1. We show that the inner integral goes to zero as s→∞.

Fix an arbitrary subsequence in s. We show that there exists a further subsequence such

that the inner integral goes to zero. Since β(MLX + κL) and β̃(MLX + κL) do not depend

on x̃2 and both lie in [α, 2α] for all s, there exists a further subsequence along which both

converge. Denote the limits by β∞ and β̃∞. Also note that PLX − κL = QP
L x̃2 + PLµ− κL.

Take a further subsequence such that PLµ − κL diverges or converges and such that QP
L

converges to QP
L,∞ (since QP

L has unit length, it must converge along a subsequence). We

consider two cases.

(i) If PLµ−κL diverges, then for every x̃2, ‖QP
L x̃2+PLµ−κL‖2≥ (‖PLµ−κL‖−‖QP

L x̃2‖)2 →
∞, so gs(x̃1, x̃2) = 0 eventually as s → ∞ along this subsequence. Therefore by the domi-

nated convergence theorem, the inner integral in (98) goes to zero.

(ii) If PLµ−κL converges to some κ∞, then fix x̃2 such that ‖QP
L,∞x̃2+κ∞‖2 6= χ2

1,1−β∞ and

‖QP
L,∞x̃2+κ∞‖2 6= χ2

1,1−β̃∞
. Note that the set of such x̃2 is a set of probability one with respect

to x̃2 ∼ N(0, 1). We show that gs(x̃1, x̃2) = 0 eventually. Consider ‖a`‖−1a′`(µ − PCX) for

` /∈ J . If there exists an ` /∈ J and a subsequence of s such that ‖a`‖−1a′`(µ−PCX)→ ±∞,

then

‖X − PCX‖ = ‖[QP
L , Q

M
L ]′X̃ + µ− PCX‖ (100)

≥
±a′`

(
[QP

L , Q
M
L ]′X̃ + µ− PCX

)
‖a`‖

(101)

=
±a′`[QP

L , Q
M
L ]′X̃

‖a`‖
± a′` (µ− PCX)

‖a`‖
→ +∞, (102)

where the inequality follows by Cauchy-Schwarz and the convergence follows from the fact

that ‖a`‖−1a′`[Q
P
L , Q

M
L ]′X̃ is bounded. This shows that ‖PLX − κL‖2= ‖X − PCX‖2>

χ2
1,1−α ≥ χ2

1,1−β(MLX+κL) eventually, and therefore gs(x̃1, x̃2) = 0 eventually along this sub-
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sequence. Otherwise, suppose ‖a`‖−1a′`(µ − PCX) is bounded along a subsequence for all

` /∈ J . We show that β∞ = β̃∞. Let j̄ ∈ L such that aj̄ 6= 0. Then note that for each ` /∈ J ,

τ`(X) =
‖aj̄‖(b` − a′`PCX)

‖aj̄‖‖a`‖−a′j̄a`
=

(b` − a′`PCX)/‖a`‖
1− a′

j̄
a`/(‖aj̄‖‖a`‖)

≥ 1

2

b` − a′`PCX
‖a`‖

→ ∞, (103)

where the convergence follows because ‖a`‖−1(b` − a′`µ) → ∞ and ‖a`‖−1(a′`µ − a′`PCX) is

bounded (and if the denominator is zero, then τ`(X) =∞). Therefore,

τ(X) = inf
6̀=j̄
τ`(X) = min

(
inf

`∈J ; 6̀=j̄
τ̂`(X), inf

`/∈J
τ̂`(X)

)
= min

(
τ̃(X), inf

`/∈J
τ̂`(X)

)
. (104)

If τ̃(X)→∞, then τ(X)→∞ too, and if τ̃(X) converges to a finite value, τ(X) converges

to the same value. This shows that β∞ = β̃∞. Therefore gs(x̃1, x̃2) = 0 eventually along this

subsequence. Since every subsequence has a further subsequence such that gs(x̃1, x̃2) = 0

eventually, it follows that gs(x̃1, x̃2) = 0 eventually along the original sequence. Therefore

by the dominated convergence theorem, the inner integral in (98) goes to zero.

Since the inner integral in (98) converges to zero in either case (i) or (ii) for every fixed x̃1,

by the dominated convergence theorem, the outer integral converges to zero too along this

subsequence. Since every subsequence has a further subsequence such that (98) converges

to zero, this shows (92).

C.3 Proof of Lemmas 3, 4, and 6

Proof of Lemma 3. (a) By assumption, X ∈ KJ = CJ + VJ . So, we write X = X1 + X2,

where X1 ∈ CJ and X2 ∈ VJ . Then, PCX1 = X1 because X1 ∈ C already. We show that

PCX = X1. By a property of projection onto convex sets, it is necessary and sufficient that

for all y ∈ C, we have 〈X −X1, y −X1〉 ≤ 0.34 This follows because X2 =
∑

j∈J vjaj with

vj ≥ 0, so

〈X2, y −X1〉 =
∑
j∈J

vj(〈aj, y〉 − 〈aj, X1〉) ≤ 0, (105)

where the inequality uses the fact that y ∈ C, so a′jy ≤ bj and X1 ∈ CJ , so a′jX1 = bj.

Combining these, we get that PCX = X1 ∈ CJ and X − PCX = X −X1 = X2 ∈ VJ .

(b) We first show that every X belongs to some KJ . For every X, PCX ∈ C, so there

exists a J such that PCX ∈ CJ .

By the inner-product property of projection, we know that for all y ∈ C, 〈y−PCX,X −
34See Section 3.12 in Luenberger (1969). Hereafter, call this property of projection onto a convex set the

“inner-product property.”
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PCX〉 ≤ 0. Using this fact, let z ⊥ span(VJ). Then, there exists a ε > 0 such that PCX + εz

and PCX − εz both belong to C.35 Then, 〈εz,X − PCX〉 ≤ 0 and 〈−εz,X − PCX〉 ≤ 0.

These two inequalities imply that 〈z,X − PCX〉 = 0. Thus, X − PCX is orthogonal to all

vectors, z, which are orthogonal to span(VJ). This implies that X − PCX ∈ span(VJ).

If X −PCX /∈ VJ , then by the separating hyperplane theorem,36 there exists a direction,

c ∈ span(VJ) such that 〈c,X−PCX〉 > 0 and 〈c, aj〉 < 0 for all j ∈ J . We consider PCX+εc.

We show that for ε sufficiently small, (1) PCX + εc ∈ C, and (2) 〈X − PCX, εc〉 > 0.

(1) For j ∈ J , 〈PCX + εc, aj〉 = bj + ε〈c, aj〉 < bj, where the equality follows because

PCX ∈ CJ and the inequality follows from the definition of c. For j ∈ J c, 〈PCX +

εc, aj〉 = 〈PCX, aj〉 + ε〈c, aj〉, which is less than bj for ε sufficiently small because

〈PCX, aj〉 < bj.

(2) 〈X − PCX, εc〉 = ε〈X − PCX, c〉 > 0 by the definition of c.

This contradicts the inner-product property of projection onto a convex set, and therefore

X − PCX ∈ VJ , and X ∈ KJ .

We next show that no X belongs to two distinct KJ . If X ∈ KJ and KJ ′ , then, by part

(a), PCX ∈ CJ and PCX ∈ CJ ′ . But this is a contradiction because the projection onto a

convex set is unique, and the CJ form a partition of C.

(c) If X ∈ KJ , then PCX ∈ CJ , so all the inequalities in J are active. If X /∈ KJ , then

X is in a different KJ ′ , for some J ′ 6= J , by part (b). Thus, J 6= J(X) = J ′.

Proof of Lemma 4. (a) Note that J00 satisfies rk(AJ00) = 0. Thus, it is sufficient to show

that CJ = ∅ for all J ⊆ J0 that are not J00. If J 6= J00, then either (i) there exists j ∈ J00/J

or (ii) there exists j ∈ J/J00. In the first case, any x ∈ CJ would have to satisfy 0′x < 0, a

contradiction. In the second case, any x ∈ CJ would have to satisfy 0′x = bj, where bj 6= 0,

another contradiction.

(b) We first show that the C∆
J are disjoint for different J ∈ J os

1 . If x ∈ C∆
J1
∩ C∆

J2
for

J1, J2 ∈ J os
1 , then both

J6=0 ∩ J1 = J6=0 ∩ J2 = argminj∈J6=0
‖aj‖−1(bj − a′jx) (106)

and

J0 ∩ J1 = J0 ∩ J2 = J00. (107)

This implies that J1 = J2. Part (b) then follows from the definition of C |.

35This uses the slackness of the inequalities in the definition of CJ .
36See Section 11 of Rockafellar (1970) or Section 5.12 in Luenberger (1969).
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(c) For any x ∈ C |, let J̃6=0(x) = argminj∈J 6=0
‖aj‖−1(bj − a′jx). We show below that

∃j, ` ∈ J̃ 6=0(x) s.t. ‖aj‖−1aj 6= ‖a`‖−1a`. (108)

That implies that for any x ∈ C |, there exists j, ` ∈ J6=0 such that ‖aj‖−1aj 6= ‖a`‖−1a` and

‖aj‖−1(bj − a′jx) = ‖a`‖−1(b` − a′`x). Or equivalently,

C | ⊆ ∪ j,`∈J 6=0
‖aj‖a` 6=‖a`‖aj

{x ∈ Rdm|‖aj‖b` − ‖a`‖bj = (‖aj‖a` − ‖a`‖aj)′x}. (109)

Since the right hand-side is a finite union of measure-zero subspaces of Rdm , it must be that

C | has Lebesgue measure zero, establishing part (c).

Now we show (108). Let J̃(x) = J00 ∪ J̃6=0(x). We note that J̃6=0(x) is not empty because

A 6= 0dA×dX . This implies that rk(AJ̃(x)) ≥ 1. Then there are two possibilities: rk(AJ̃(x)) ≥ 2

and rk(AJ̃(x)) = 1. In the first case, (108) holds trivially.

In the latter case, we first show that J̃(x) ∈ J1. Suppose there exists j ∈ J̃(x) and

` ∈ {1, ..., dA}/J̃(x) such that ‖aj‖> 0, ‖a`‖> 0,
aj
‖aj‖ = a`

‖a`‖
, and

bj
‖aj‖ = b`

‖a`‖
. This implies

‖a`‖−1(b` − a′`x) = ‖aj‖−1(bj − a′jx), (110)

so ` should also belong to J̃(x). Since such a j and ` cannot exist, it must be the case that

J̃(x) ∈ J1. The fact that x ∈ C | means that J̃(x) /∈ J os
1 . Thus, it must be that J̃(x) ∈ J ts

1 ,

which also implies (108). Therefore (108) holds in all cases. This proves part (c).

(d) First note that for every J ∈ J os
1 ∪ J ts

1 we have rk(AJ) = 1. Thus, it is sufficient to

show that for every J ⊆ {1, ..., dA} with rk(AJ) = 1 and J /∈ J os
1 ∪ J ts

1 , we have KJ = ∅.
Note that if J ∩ J0 6= J00, then either (i) there exists j ∈ J00/(J0 ∩ J) or (ii) there exists

j ∈ (J ∩J0)/J00. In the first case, any x ∈ CJ would have to satisfy 0′x < 0, a contradiction.

In the second case, any x ∈ CJ would have to satisfy 0′x = bj, where bj 6= 0, another

contradiction. This implies that CJ , and therefore KJ , is empty.

We next note that if j ∈ J while ` ∈ {1, ..., dA}/J with ‖aj‖> 0, ‖a`‖> 0,
aj
‖aj‖ = a`

‖a`‖
,

and
bj
‖aj‖ = b`

‖a`‖
, then any x ∈ CJ should satisfy

‖a`‖−1(b` − a′`x) = ‖aj‖−1(bj − a′jx) = 0, (111)

so ` should also belong to J . This contradiction implies that CJ , and therefore KJ , must be

empty.

This implies that the only nonempty KJ with rk(AJ) = 1 must belong to J1. If we

suppose that J /∈ J os
1 , then there must exist j, ` ∈ J s.t. ‖aj‖> 0, ‖a`‖> 0, and

aj
‖aj‖ 6=

a`
‖a`‖

.
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However, since rk(AJ) = 1, a` and aj must be collinear. This implies that
aj
‖aj‖ = − a`

‖a`‖
.

Then, any x ∈ CJ must satisfy

0 = ‖a`‖−1(b` − a′`x) = ‖aj‖−1(bj − a′jx). (112)

This implies ‖a`‖−1b` = −‖aj‖−1bj, which implies that J ∈ J ts.

Therefore, the only J ⊆ {1, ..., dA} with rk(AJ) = 1 and KJ 6= ∅ belong to J os
1 ∪J ts

1 .

Proof of Lemma 6. For every λ ≥ 0, let

f(λ) =

∫ ∞
−τ

(α− 1{Z > z1−β/2})e−
1
2

(Z+λ)2

dZ. (113)

Note that α ≤ 1 implies that β ≤ 2Φ(τ), which in turn implies that z1−β/2 ≥ −τ . We show

that f(λ) ≥ 0 for all λ ≥ 0. This is sufficient because

αPr µ(Z ≥ −τ)− Prµ({Z ≥ z1−β/2})

=

∫ ∞
−τ

(α− 1{Z > z1−β/2})
1√
2π
e−

1
2

(Z−µ)2

dZ

=
f(−µ)√

2π
≥ 0 (114)

for all µ ≤ 0.

Let f ′(λ) denote the derivative of f . We show that (1) f(0) ≥ 0 and (2) for all λ ≥ 0,

f ′(λ) ≥ −
(
z1−β/2 + λ

)
f(λ). Together, these two properties imply that f(λ) ≥ 0 because, if

not, then there exists a λ > 0 such that f(λ) < 0. Then, by the mean value theorem, there

exists a λ̃ ∈ (0, λ) such that f(λ̃) < 0 and f ′(λ̃) < 0, which contradicts property (2).

Property (1) holds because

f(0)√
2π

=

∫ ∞
−τ

(α− 1{Z > z1−β/2})
1√
2π
e−

1
2
Z2

dZ

= αΦ(τ)− (1− Φ(z1−β/2)) = αΦ(τ)− β/2 = 0. (115)

This also shows that equality holds when µ = 0.

To show that property (2) holds, we evaluate

f ′(λ) =
d

dλ

∫ ∞
−τ

(α− 1{Z > z1−β/2})e−
1
2

(Z+λ)2

dZ

= −
∫ ∞
−τ

(Z + λ)(α− 1{Z > z1−β/2})e−
1
2

(Z+λ)2

dZ
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= −
∫ z1−β/2

−τ
α(Z + λ)e−

1
2

(Z+λ)2

dZ +

∫ ∞
z1−β/2

(1− α)(Z + λ)e−
1
2

(Z+λ)2

dZ

≥ −
∫ z1−β/2

−τ
α(z1−β/2 + λ)e−

1
2

(Z+λ)2

dZ +

∫ ∞
z1−β/2

(1− α)(z1−β/2 + λ)e−
1
2

(Z+λ)2

dZ

= −(z1−β/2 + λ)

∫ ∞
−τ

(α− 1{Z > z1−β/2})e−
1
2

(Z+λ)2

dZ

= −(z1−β/2 + λ)f(λ), (116)

where the second equality follows by dominated convergence and the inequality follows from

the events {Z > z1−β/2} and {Z ≤ z1−β/2}.

D Proofs for Theorems 4 and 5

We prove Theorem 4 first, by referencing Theorem 5 and verifying its conditions. Then we

prove Theorem 5 using a number of lemmas, and lastly, we prove those lemmas.

D.1 Proof of Theorem 4

We verify the conditions of Theorem 5. We first show that Assumption 1 implies that

Assumption 3(a) holds for any sequence {(θn, Fn) : Fn ∈ F , θn ∈ Θ0(Fn)}. Fix an arbitrary

sequence {(θn, Fn) : Fn ∈ F , θn ∈ Θ0(Fn)}. Let Σn = VarFn(m(Wi, θn)), which does not

depend on i due to Assumption 1(a). Let Dn be the diagonal matrix formed by the diagonal

elements of Σn. By Assumption 1(b), Dn is invertible and thus we can define

Ωn = D−1/2
n ΣnD

−1/2
n = CorrFn(m(Wi, θn)). (117)

The elements of Ωn ∈ [−1, 1] which is a compact set. Thus, for any subsequence of {n},
there is a further subsequence {nq} such that

Ωnq → Ω, (118)

for some matrix Ω. By Assumption 1(c), Ω is positive definite.

Now consider an arbitrary vector a ∈ Rdm such that a′a = 1, and consider the sequence

of random variables:

n1/2a′D−1/2
q (mnq(θnq)− EFnqmnq(θnq))

= n−1/2

n∑
i=1

a′D−1/2
q (m(Wi, θnq)− EFnqm(Wi, θnq))
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→d N(0, a′Ωa), (119)

by the Lindeberg-Feller central limit theorem, where the Lindeberg condition holds because

EFnq |a
′D−1/2

q m(Wi, θnq)|2+ε≤ EFnq [
dm∑
j=1

aj|mj(Wi, θnq)/σFnq ,j(θnq)|
2+ε] ≤M <∞, (120)

where the first inequality holds by the convexity of g(x) = |x|2+ε and the second and the

third inequalities hold by Assumption 1(d).

The Cramér-Wold device combined with (119) proves (53) in Assumption 3.

To show (54), consider that

D−1/2
q Σ̂nq(θnq)D

−1/2
q

= n−1

n∑
i=1

D−1/2
q (m(Wi, θnq)− EFnqm(Wi, θnq))(m(Wi, θnq)− EFnqm(Wi, θnq))

′D−1/2
q

−D−1/2
q (mnq(θnq)− EFnqm(Wi, θnq))(mnq(θnq)− EFnqm(Wi, θnq))

′D−1/2
q . (121)

By Assumptions 1(a) and (d), the law of large numbers for rowwise i.i.d. triangular arrays

applies and gives us

n−1

n∑
i=1

D−1/2
q (m(Wi, θnq)− EFnqm(Wi, θnq))(m(Wi, θnq)− EFnqm(Wi, θnq))

′D−1/2
q

→p Ω, (122)

and similarly

D−1/2
q (mnq(θnq)− EFnqm(Wi, θnq))→p 0. (123)

Thus, (54) is also verified.

Next, we show that Assumption 1, combined with the additional assumptions in The-

orem 4(b), implies Assumption 3(b). First note that each element of Λq is either one or

‖e′jA(θnq)Dq‖−1. By the common additional condition for Theorem 4(b,c), ‖e′jA(θnq)Dq‖−1→
‖e′jA∞‖−1. Note that e′jA(θnq)Dq cannot go to zero if e′jA(θnq) 6= 0 because that would vi-

olate the common additional condition for Theorem 4(b,c) for J = {j}. Therefore, there

exists a further subsequence along which Λq → Λ∞ for a positive definite diagonal matrix

Λ∞. Therefore, ΛqA(θnq)Dq → Ā0 = Λ∞A∞. Also note that for each J ⊆ {1, ..., dA},
rk(AJ(θnq)Dq) = rk(IJA∞) = rk(IJĀ0), where the first equality follows from the common
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additional condition for Theorem 4(b,c) and the second equality follows because each row

of Ā0 is a positive scalar multiple of the corresponding row of A∞. This verifies Assumption

3(b).

We also note that along every further subsequence, each diagonal element of Λq converges

to a positive value. This implies that, for part (b), we have for every j = 1, ..., dA,

√
nqe

′
jΛq(Aj(θnq)EFnqmnq(θnq)− b(θnq))→ 0. (124)

Also, for part (c), we have for every j /∈ J ,

√
nqe

′
jΛq(Aj(θnq)EFnqmnq(θnq)− b(θnq))→ −∞. (125)

Also, for part (b), Ā0 6= 0 is implied by A∞ 6= 0 because Λ∞ is positive definite.

Therefore, Theorem 4 follows from Theorem 5.

D.2 Lemmas for Theorem 5

The proof of Theorem 5 uses four important lemmas. Lemma 7 establishes a condition under

which the projection onto a sequence of polyhedra converges when the coefficient matrix

defining the polyhedra converges. The condition is verified in a special context in Lemma

8, which is used to prove part (b) of Theorem 5. The conditions for part (a) are not strong

enough for us to apply Lemma 7 because we do not restrict the rank of A(θ). Nonetheless,

Lemma 9 shows that inequalities that are redundant in finite sample but relevant in the

limit can be added to guarantee the condition of Lemma 7, and help us to prove part (a) of

Theorem 5. Lemma 10 shows that the additional inequalities from Lemma 9 do not change

the definition of β̂.

First we define some notation. For any dA × dm real-valued matrix A and vector h ∈
RdA

+,∞ := [0,∞]dA , let poly(A, h) = {µ ∈ Rdm : Aµ ≤ h} denote the polyhedron defined by

inequalities with coefficients given by A and constants given by h. Also define

µ∗(x;A, h) = argmin
µ∈poly(A,h)

‖x− µ‖2. (126)

The lemma considers a sequence of dA × dm real-valued matrices {An}∞n=1 and a sequence

of dA × 1 vectors hn ∈ RdA
+ := [0,∞)dA such that, as n → ∞, An → A0 and hn → h0 for a

dA × dm real-valued matrix A0 and a vector h0 ∈ RdA
+,∞. Also, let xn ∈ Rdm be a sequence of

vectors such that xn → x0 ∈ Rdm as n → ∞. We say that a sequence of sets, poly(An, hn),
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Kuratowski converges to a limit set, poly(A0, h0), denoted by

poly(An, hn)
K→ poly(A0, h0), (127)

if (i) for every x0 ∈ poly(A0, h0) there exists a sequence xn ∈ poly(An, hn) such that xn → x0,

and (ii) for every subsequence nq and for every converging sequence xnq ∈ poly(Anq , hnq) that

converges to a point x0, we have x0 ∈ poly(A0, h0).

Lemma 7. If poly(An, hn)
K→ poly(A0, h0), then µ∗(xn;An, hn)→ µ∗(x0;A0, h0).

We denote submatrices of An and A0 formed by the rows with indices in J ⊆ {1, ..., dA}
by AJ,n and AJ,0. Important for the following lemma is the fact that every element of hn is

nonnegative for all n.

Lemma 8. If for all J ⊆ {1, . . . , dA}, rk(AJ,n) = rk(AJ,0) for all n, then poly(An, hn)
K→

poly(A0, h0).

For any dA × dm matrix, A, and for any vector, g, let J(x;A, g) = {j ∈ {1, . . . , dA} :

a′jµ
∗(x;A, g) = gj}. This generalizes the previous notation for active inequalities to make

explicit the dependence on A and g. Also let [A;B] denotes the vertical concatenation of

two matrices, A and B.

Lemma 9. Let An be a sequence of dA × dm matrices such that each row is either zero

or belongs to the unit circle. Let gn be a sequence of nonnegative dA-vectors. Then, there

exists a subsequence, nq, a sequence of dB × dm matrices, Bq, and a sequence of nonnegative

dB-vectors hq such that the following hold.

(a) Anq → A0, Bq → B0, gnq → g0, and hq → h0 (some of the elements of g0 and h0 may

be +∞, in which case the convergence/divergence occurs elementwise).

(b) poly(Anq , gnq) ⊆ poly(Bq, hq) for all q.

(c) For all q and for all x ∈ poly(Anq , gnq),

rk(IJ(x;Anq ,gnq )Anq) = rk([IJ(x;Anq ,gnq )Anq ; IJ(x;Bq ,hq)Bq]).

(d) poly([Anq ;Bq], [gnq ;hq])
K→ poly([A0;B0], [g0;h0]) as q →∞.

Suppose that j̄ ∈ J(x;A, g) and aj̄ 6= 0. If such a j̄ does not exist, let τj(x;A, g) = 0 for

all j ∈ {1, ..., dA}. Otherwise, let

τj(x;A, g) =


‖aj̄‖(gj−a′jµ∗(x;A,g))

‖aj̄‖‖aj‖−a′j̄aj
if ‖aj̄‖‖aj‖6= a′j̄aj

∞ otherwise.
(128)
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Let τ(x;A, g) = infj∈{1,...,dA} τj(x;A, g). One can verify that the definition of τ(x;A, g) does

not depend on which j̄ ∈ J(x;A, g) is used to define it, when more than one is available.

This definition coincides with the definition of τ̂ or τ(X), as used in the proof of Theorem

3, making explicit the dependence on A and g.

Lemma 10. If poly(A, g) ⊆ poly(B, h), then τ(x;A, g) = τ(x; [A;B], [g;h]) for all x ∈ Rdm.

D.3 Proof of Theorem 5

We first prove part (a). Let {θn, Fn}∞n=1 be an arbitrary sequence satisfying Fn ∈ F and

θn ∈ Θ0(Fn) for all n. Let {nm} be an arbitrary subsequence of {n}. It is sufficient to show

that there exists a further subsequence, {nq}, such that as q →∞,

liminf
q→∞

Pr Fnq

(
Tnq(θnq) ≤ χ2

r̂,1−β̂

)
≥ 1− α. (129)

Fix an arbitrary subsequence, {nm}. By Assumption 3(a), there exists a further subse-

quence, {nq}, a sequence of positive definite matrices, Dq, and a positive definite correlation

matrix, Ω0, such that37

√
nqD

−1/2
q (mnq(θnq)− EFnqmnq(θnq))→d Y ∼ N(0,Ω0), and (130)

D−1/2
q Σ̂nq(θnq)D

−1/2
q →p Ω0. (131)

We introduce some simplified notation. Let Ω̂q = D
−1/2
q Σ̂nq(θnq)D

−1/2
q , X = Ω

−1/2
0 Y ∼

N(0, I), Yq =
√
nqD

−1/2
q (mnq(θnq)−EFnqmnq(θnq)), and Xq = Ω̂

−1/2
q Yq. Equations (130) and

(131) imply that

Xq →d X ∼ N(0, I), and (132)

Ω̂q →p Ω0. (133)

The remainder of the proof proceeds in four steps. (A) In the first step, the problem

defined in (17) is transformed to include additional inequalities. (B) In the second step,

notation is defined for partitioning Rdm according to Lemma 3, for both finite q and the

limit. (C) In the third step, the almost sure representation theorem is invoked on the

convergence in (132) and (133). (D) In the final step, we show that (almost surely) the event

Tnq(θnq) ≤ χ2
r̂,1−β̂ eventually implies a limiting event based on X and Ω0. This limiting event

has probability at least 1− α from Theorem 3.

37For notational simplicity, we denote all further subsequences by {nq}
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(A) Consider the sequence of matrices A(θnq)D
1/2
q . For each q, let Λq denote a dA × dA

diagonal matrix with positive entries on the diagonal such that each row of ΛqA(θnq)D
1/2
q

is either zero or belongs to the unit circle. Such a Λq always exists by taking the diagonal

element to be the inverse of the magnitude of the corresponding row of A(θnq)Dq, if it

is nonzero, and one otherwise. Let gq =
√
nqΛq(b(θnq) − A(θnq)EFnqmnq(θnq)). With this

notation, we can write

Tnq(θnq) = inf
y:ΛqA(θnq )D

1/2
q y≤gq

(Yq − y)′Ω̂−1
q (Yq − y), (134)

which adds and subtracts EFnqmnq(θnq) in the objective and applies the change of variables,

y =
√
nqD

−1/2
q (µ− EFnqmnq(θnq)).

We can apply Lemma 9 to ΛqA(θnq)D
1/2
q and gq to get a further subsequence, nq, a

sequence of matrices, Bq, a sequence of vectors, hq, matrices A0 and B0, and vectors g0 and

h0, satisfying Lemma 9(a-d). Let

Āq =

[
ΛqA(θnq)D

1/2
q

Bq

]
and h̄q =

[
gq

hq

]
, (135)

and similarly for Ā0 and h̄0. Let dĀ = dA + dB. We have that

Tnq(θnq) = inf
y:Āqy≤h̄q

(Yq − y)′Ω̂−1
q (Yq − y) (136)

= inf
t:ĀqΩ̂

1/2
q t≤h̄q

(Xq − t)′(Xq − t), (137)

where the first equation follows from Lemma 9(b) and the second equation follows from the

change of variables t = Ω̂
−1/2
q y.

Equation (137) has changed the problem by adding additional inequalities. We verify

that the rank of the active inequalities is unchanged. For any positive definite matrix, Ω, let

J̄q(x,Ω) be the set of indices for the active inequalities in the problem:

inf
y:ΛqA(θnq )D

1/2
q y≤gq

(x− y)′Ω−1(x− y). (138)

Recall that Ĵ is the set of active inequalities for the problem defined in (17), which is equal

to J̄q(Yq, Ω̂q) by a change of variables. Similarly, let Jq(x,Ω) be the set of active inequalities

in the problem:

inf
t:ĀqΩ1/2t≤h̄q

(x− t)′(x− t). (139)

78



Also let t∗q(x,Ω) denote the unique minimizer. We have that for any y ∈ Rdm and for any

positive definite Ω,

rk(AJ̄q(y,Ω)(θnq)) = rk(IJ̄q(y,Ω)ΛqA(θnq)D
1/2
q )

= rk(IJq(Ω−1/2y,Ω)Āq) = rk(IJq(Ω−1/2y,Ω)ĀqΩ
1/2), (140)

where the first equality follows because Λq is diagonal with positive entries on the diagonal

and Dq is positive definite, the second equality follows by Lemma 9(c), and the final equality

follows from the fact that Ω is positive definite.

Before proceeding to the next step, we simplify the rank calculation by taking a further

subsequence. Notice that for each J ⊆ {1, ..., dĀ}, rk(IJĀq) ∈ {1, ..., dm}. We can denote it

by rqJ , and then take a subsequence, nq, so that for all J , rqJ does not depend on q. Similarly,

we define r∞J = rk(IJĀ0). Note that by the convergence of Āq to Ā0, rqJ ≥ r∞J for all J .

(B) For any positive definite dm × dm matrix, Ω, and for every J ⊆ {0, 1, ..., dĀ}, let

Aq(Ω) = ĀqΩ
1/2

aq`
′(Ω) = `th row of Aq(Ω)

Cq(Ω) = {x ∈ Rdm : aq`
′(Ω)x ≤ h̄`,q for all ` = 1, ..., dĀ}

Cq
J(Ω) = {x ∈ Cq(Ω) : aq`

′(Ω)x = h̄`,q for all ` ∈ J and aq`
′(Ω)x < h̄`,q for all ` ∈ J c}

V q
J (Ω) =

{∑
`∈J

v`a
q
`(Ω) : v` ∈ R, v` ≥ 0

}
, and

Kq
J(Ω) = Cq

J(Ω) + V q
J (Ω). (141)

Furthermore, for every J ⊆ {1, ..., dĀ}, let P q
J (Ω) denote the projection onto span(V q

J (Ω)),

and let M q
J(Ω) denote its orthogonal projection. There exists a κqJ(Ω) ∈ span(V q

J (Ω)) such

that for every x ∈ Cq
J(Ω), P q

J (Ω)x = κqJ(Ω). This follows because for two x1, x2 ∈ Cq
J(Ω),

and for any v ∈ span(V q
J (Ω)), v′(x1 − x2) = 0, which implies that P q

J (Ω)(x1 − x2) = 0.

For every given Ω, we can apply Lemma 3 to the objects defined in (141). This implies

(a) if x ∈ Kq
J(Ω) then x− t∗q(x,Ω) ∈ V q

J (Ω) and t∗q(x,Ω) ∈ Cq
J(Ω),

(b) the sets Kq
J(Ω) for all J ⊆ {1, . . . , dĀ} form a partition of Rdm , and

(c) for each J ⊆ {1, . . . , dĀ}, we have x ∈ Kq
J(Ω) iff J = Jq(x,Ω).

These properties imply that, for all x ∈ Kq
J(Ω), we can write

P q
J (Ω)x = P q

J (Ω)(x− t∗q(x,Ω)) + P q
J (Ω)t∗q(x,Ω) = x− t∗q(x,Ω) + κqJ(Ω), (142)
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where the second equality follows by (a) and the definition of κqJ(Ω). Then, we can also write

M q
J(Ω)x = x− P q

J (Ω)x = t∗q(x,Ω)− κqJ(Ω).

Let rq(x,Ω) = rk(ĀJq(x,Ω),q). When rq(x,Ω) = 1, we can define

τ qj (x,Ω) =


‖aq
j̄
(Ω)‖(h̄j,q−aqj (Ω)′t∗q(x,Ω))

‖aqj (Ω)‖‖aq
j̄
(Ω)‖−aqj (Ω)′aq

j̄
(Ω)

if ‖aqj(Ω)‖‖aq
j̄
(Ω)‖6= aqj(Ω)′aq

j̄
(Ω)

∞ else
, (143)

where j̄ ∈ Jq(x,Ω) such that aq
j̄
(Ω) 6= 0. We also let τ q(x,Ω) = infj=1,...,dĀ

τ qj (x,Ω), and

βq(x,Ω) = 2αΦ(τ q(x,Ω)). When rq(x,Ω) 6= 1, let τ qj (x,Ω) = 0, so that βq(x,Ω) = α. Note

that β̂ = βq(Xq, Ω̂q), where the addition of extra inequalities via Lemma 9 has no effect on

β̂ or τ̂ because of Lemma 10, where the condition is satisfied by Lemma 9(b).

We define similar notation for the limiting objects. Let J∞ = {` ∈ {1, ..., dĀ} : h̄`,0 <∞}.
These are the indices for the inequalities that are “close-to-binding.” For any positive definite

matrix, Ω, let A∞(Ω) denote the matrix formed by the rows of Ā0Ω1/2 associated with the

indices in J∞. For notational simplicity, we refer to the rows of A∞(Ω) using ` ∈ J∞ even

though the matrix A∞(Ω) has been compressed.

For every J ⊆ J∞, let

a∞`
′(Ω) = `th row of A∞(Ω) for ` ∈ J∞

C∞(Ω) = {x ∈ Rdm : a∞` (Ω)′x ≤ h̄`,0 for all ` ∈ J∞}

C∞J (Ω) = {x ∈ C∞(Ω) : a∞` (Ω)′x = h̄`,0 ∀` ∈ J and a∞` (Ω)′x < h̄`,0 ∀` ∈ J∞/J}

V ∞J (Ω) =

{∑
`∈J

v`a
∞
` (Ω) : v` ∈ R, v` ≥ 0

}
, and

K∞J (Ω) = C∞J (Ω) + V ∞J (Ω). (144)

Furthermore, for every J ⊆ J∞, let P∞J (Ω) denote the projection onto span(V ∞J (Ω)). There

exists a κ∞J (Ω) ∈ span(V ∞J (Ω)) such that for every x ∈ C∞J (Ω), P∞J (Ω)x = κ∞J (Ω). This

follows because for two x1, x2 ∈ C∞J (Ω), and for any v ∈ span(V ∞J (Ω)), v′(x1 − x2) = 0,

which implies that P∞J (Ω)(x1 − x2) = 0.

Let h∞ denote the vector formed from the elements of h̄0 that are finite. Let J∞(x,Ω)

be the indices for the binding inequalities in the problem:

inf
t:A∞(Ω)t≤h∞

(x− t)′(x− t). (145)

Also let t∗∞(x,Ω) denote the unique minimizer. We can apply Lemma 3 to the objects defined

in (144). This implies that
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(a∞) if x ∈ K∞J (Ω) then x− t∗∞(x,Ω) ∈ V ∞J (Ω) and t∗∞(x,Ω) ∈ C∞J (Ω),

(b∞) the set of all K∞J (Ω) form a partition of Rdm , and

(c∞) for each J ⊆ J∞, we have x ∈ K∞J (Ω) iff J = J∞(x,Ω).

Let r∞(x,Ω) = rk(A∞J∞(x,Ω)). When r∞(x,Ω) = 1, we can define

τ∞j (x,Ω) =


‖a∞
j̄

(Ω)‖(h̄j,0−a∞j (Ω)′t∗∞(x,Ω))

‖a∞j (Ω)‖‖a∞
j̄

(Ω)‖−a∞j (Ω)′a∞
j̄

(Ω)
if ‖a∞j (Ω)‖‖a∞j̄ (Ω)‖6= a∞j (Ω)′a∞j̄ (Ω)

∞ else
, (146)

where j̄ ∈ J∞(x,Ω) such that a∞j̄ (Ω) 6= 0. We also let τ∞(x,Ω) = infj=J∞ τ
∞
j (x,Ω), and

β∞(x,Ω) = 2αΦ(τ∞(x,Ω)). When r∞(x,Ω) 6= 1, let τ∞j (x,Ω) = 0, so that β∞(x,Ω) = α.

Before proceeding to the next step, consider M q
J(Ω0), which is a sequence of projection

matrices in Rdm onto a space of dimension dm − rqJ . Since the space of such matrices is

compact, we can find a subsequence, nq, such that for all J ⊆ {1, ..., dĀ}, M q
J(Ω0) → MN

J ,

where MN
J is a projection matrix onto a subspace, NJ , of dimension dm−rqJ .38 Furthermore,

for any sequence of positive definite matrices such that Ωq → Ω0, we have M q
J(Ωq) → MN

J .

This follows because, if we let Eq denote a dm×rqJ matrix whose columns form an orthonormal

basis for span(V q
J (Ω0)) (which is the range of P q

J (Ω0)) then for any positive definite matrix,

Ω, the columns of Ω1/2Ω
−1/2
0 Eq form a basis for span(V q

J (Ω)), which implies that

M q
J(Ωq) = Idm − Ω1/2

q Ω
−1/2
0 Eq(E

′
qΩ
−1/2
0 ΩqΩ

−1/2
0 Eq)

−1E ′qΩ
−1/2
0 Ω1/2

q

= Idm − Eq(E ′qEq)−1E ′q + o(1) = M q
J(Ω0) + o(1). (147)

(C) Next, we invoke the almost sure representation theorem on the convergence in (132)

and (133).39 Then, we can treat the convergence in (132) and (133) as holding almost

surely.40 For the rest of the proof of part (a), consider A∞(Ω), P∞J (Ω), κ∞J (Ω), and the

objects defined in (144) and let the objects without the argument (Ω) denote the objects

evaluated at Ω0. For example, A∞ = A∞(Ω0).

We now construct an event, Ξ ⊆ Rdm , such that Pr(X ∈ Ξ) = 1. For every L ⊆ J∞, let

V ∞L+ = {x ∈ V ∞L |∀L′ ⊆ L, if rqL′ < r∞L then MN
L′x 6= 0}. (148)

38Recall that rqJ does not depend on q due to the construction of the subsequence {nq}.
39See van der Vaart and Wellner (1996), Theorem 1.10.3, for the a.s. representation theorem.
40This can be formalized by defining random variables, Ẍq, Ẍ, and Ω̈q, satisfying Ẍq =d Xq, Ẍ =d X,

Ω̈q =d Ω̂q, Ẍq →a.s. Ẍ, and Ω̈q →a.s. Ω0.
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For each L ⊆ J∞ such that r∞L > 0, let

ΞL = {x ∈ K∞L : P∞L x− κ∞L ∈ V ∞L+ and (P∞L x− κ∞L )′(P∞L x− κ∞L ) 6= χ2
r∞L ,1−β∞(x)}. (149)

Since r∞L > 0, P∞L X ∼ N(0, P∞L ), which is absolutely continuous on span(V ∞L ), and

therefore the probability that P∞L X − κ∞L lies in any one of the finitely many subspaces,

null(MN
L′ ) = {x ∈ Rdm : MN

L′x = 0}, each with dimension rqL′ < r∞L , is zero. Also,

(P∞L X − κ∞L )′(P∞L X − κ∞L ) is absolutely continuous because it can be written as the sum

of rk(A∞L ) squared normal random variables. Also, χ2
r∞L ,1−β∞(X) depends on X only through

M∞
L X, which is independent of P∞L X. Therefore, for each fixed M∞

L X, the conditional

probability that (P∞L X − κ∞L )′(P∞L X − κ∞L ) = χ2
r∞L ,1−β∞(M∞L X+κ∞L ) is zero. This implies that

the unconditional probability is also zero. Therefore,

Pr(P∞L X − κ∞L ∈ V ∞L /V ∞L+ or (P∞L X − κ∞L )′(P∞L X − κ∞L ) = χ2
r∞L ,1−β∞(X)) = 0. (150)

For L ⊆ J∞ such that rk(A∞L ) = 0, let ΞL = K∞L . Then, let Ξ = ∪L⊆J∞ΞL. Therefore,

by property (b∞) and equation (150), Pr(X ∈ Ξ) = 1.

(D) We consider the set of all sequences such that xq → x∞ ∈ Ξ and Ωq → Ω0. By

the definition of Ξ and the almost sure convergence of (Xq, Ω̂q), these sequences occur with

probability one. Fix such a sequence for the remainder of the proof of part (a). For this

step, consider Aq(Ω), P q
J (Ω), and the objects defined in (141), and let the objects without

the argument (Ω) denote the objects evaluated at Ωq.

Below we show that for each sequence,

1{‖xq − t∗q(xq)‖2≤ χ2
rq(xq),1−βq(xq)} ≥ 1{‖x∞ − t∗∞(x∞)‖2≤ χ2

r∞(x∞),1−β∞(x∞)} (151)

eventually. Notice that by (137) and (139), the left hand side is equal to 1{Tnq(θnq) ≤ χ2
r̂,1−β̂}

with (Xq, Ω̂q) replaced by (xq,Ωq). If (151) holds, then by the bounded convergence theorem,

liminf
q→∞

Pr Fnq (Tnq(θnq) ≤ χ2
r̂,1−β̂) ≥ Pr (‖X − t∗∞(X,Ω0)‖2≤ χ2

r∞(X,Ω0),1−β∞(X,Ω0)). (152)

Also,

Pr (‖X − t∗∞(X,Ω0)‖2≤ χ2
r∞(X,Ω0),1−β∞(X,Ω0)) ≥ 1− α (153)

by Theorem 3(a), which applies with n = 1 and mn(θ) = X because t∗∞(X,Ω0) = PC∞X,

where PC∞ is the projection of X onto C∞ = {µ ∈ Rdm : A∞(Ω0)µ ≤ h∞}. Together, (152)

and (153) imply (129) for the given subsequence, nq.

To finish the proof of part (a), we prove (151). Let L∞ be the subset of J∞ for which
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x∞ ∈ K∞L∞ . We show that

1 =
∑

L⊆{1,...,dĀ}

1{xq ∈ Kq
L} =

∑
L⊆L∞:rqL≥r

∞
L∞

1{xq ∈ Kq
L} (154)

eventually. Property (b) above implies that the first equality holds at every q. Thus it

is sufficient to show the second equality. Note that t∗q(xq) → t∗∞(x∞) by Lemma 7, using

Lemma 9(d) to verify the condition. For the second equality, it is sufficient to show that, for

all L /∈ {L ⊆ L∞ : rqL ≥ r∞L∞}, xq /∈ K
q
L eventually. Specifically, we consider three cases: (I)

L 6⊆ J∞, (II) L ⊆ J∞ but L 6⊆ L∞, (III) L ⊆ L∞ but rqL < r∞L∞ .

(I) Let L 6⊆ J∞. Then, there exists a ` ∈ L such that h̄`,q → ∞. Then aq`
′t∗q(xq) < h̄`,q

eventually because t∗q(xq) → t∗∞(x∞). This implies that t∗q(xq) /∈ C
q
L, and therefore by (a),

xq /∈ Kq
L eventually.

(II) Let L ⊆ J∞ but L 6⊆ L∞. Then, there exists a ` ∈ L such that a∞`
′t∗∞(x∞) < h̄`,0. By

the fact that aq`
′t∗q(xq)→ a∞`

′t∗∞(x∞) and h̄`,q → h̄`,0, we have that aq`
′t∗q(xq) < h̄`,q eventually.

This implies that z∗q (xq) /∈ C
q
L, and therefore by property (a) above, xq /∈ Kq

L eventually.

(III) Let L ⊆ L∞ such that rqL < r∞L∞ . This case is impossible if r∞L∞ = 0. Thus we only

need to consider r∞L∞ > 0. Note that x∞− t∗∞(x∞) = P∞L∞x∞−κ∞L∞ by property (a∞) above.

Also, by the definition of Ξ we have x∞ ∈ ΞL∞ , which implies that x∞ − t∗∞(x∞) ∈ V ∞L∞+,

which in turn means that MN
L (x∞ − t∗∞(x∞)) 6= 0. By the convergence, M q

L(xq − t∗q(xq))→
MN

L (x∞ − t∗∞(x∞)), we have that M q
L(xq − t∗q(xq)) 6= 0 eventually. However, if xq ∈ Kq

L,

then by property (a) above, xq − t∗q(xq) ∈ V
q
L , which implies that M q

L(xq − t∗q(xq)) = 0. This

means that xq /∈ Kq
L eventually. Therefore, (154) holds eventually.

We next show that

lim sup
q→∞

βq(xq) ≤ β∞(x∞). (155)

It is sufficient to show that for every subsequence, there exists a further subsequence such

that (155) holds. Thus, it is without loss of generality to suppose that βq := βq(xq) converges.

If βq → α, then (155) holds simply because β∞(x∞) ≥ α. If limq→∞ β
q > α, then for every

q large enough, there exists a j̄q such that aq
j̄q
6= 0 and aq

j̄q

′xq = h̄j̄q ,q. We can take a further

subsequence so that j̄q does not vary with q (and denote it by j̄). Then limq→∞ a
q
j̄

= a∞j̄ 6= 0

because each row of Āq is either zero or belongs to the unit circle. Also, the fact that

h̄j̄,q = aq
j̄

′xq → a∞j̄
′x∞ = h̄j̄,0 implies that j̄ ∈ J∞. Thus, j̄ can be used to define τ∞j (x∞).

Take j ∈ J∞, and consider two cases. (i) For j such that ‖a∞j̄ ‖‖a
∞
j ‖= a∞j

′a∞j̄ , we have
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τ∞j (t∗∞(x∞); Ā0Ω1/2, h̄0) =∞. (ii) For j such that ‖a∞j̄ ‖‖a
∞
j ‖6= a∞j

′a∞j̄ , we have

τ qj (xq) =
‖aq

j̄
‖(h̄j,q − aqj

′t∗q(xq))

‖aqj‖‖a
q
j̄
‖−aqj

′aq
j̄

→
‖a∞j̄ ‖(h̄j,0 − a

∞
j
′t∗∞(x∞)

‖a∞j ‖‖a∞j̄ ‖−a
∞
j
′a∞
j̄

= τ∞j (x∞), (156)

which uses aq
j̄
→ a∞j̄ , aqj → a∞j , h̄j,q → h̄j,0, and t∗q(xq) → t∗∞(x∞) by Lemma 7 and Lemma

9(d). Therefore,

lim
q→∞

τ q(xq) = lim
q→∞

inf
j∈{1,...,dĀ}

τ qj (xq)

≤ lim
q→∞

inf
{j∈J∞:‖a∞

j̄
‖‖a∞j ‖6=a∞j

′a∞
j̄
}
τ qj (xq) (157)

= inf
{j∈J∞:‖a∞

j̄
‖‖a∞j ‖6=a∞j

′a∞
j̄
}
τ∞j (x∞)

= inf
j∈J∞

τ∞j (x∞) = τ∞(x∞).

This shows that (155) holds.

We now verify (151). Notice that

1{‖xq − t∗q(xq)‖2≤ χ2
rq(xq),1−βq(xq)}

=
∑

J⊆{1,...,dĀ}

1{‖xq − t∗q(xq)‖2≤ χ2
rq(xq),1−βq(xq)}1{xq ∈ K

q
J}

=
∑

L⊆L∞:rqL≥r
∞
L∞

1{‖xq − t∗q(xq)‖2≤ χ2
rq(xq),1−βq(xq)}1{xq ∈ K

q
L}

=
∑

L⊆L∞:rqL≥r
∞
L∞

1{‖xq − t∗q(xq)‖2≤ χ2
rqL,1−βq(xq)

}1{xq ∈ Kq
L}

≥
∑

L⊆L∞:rqL≥r
∞
L∞

1{‖xq − t∗q(xq)‖2≤ χ2
r∞L∞ ,1−βq(xq)

}1{xq ∈ Kq
L} (158)

≥1{‖x∞ − t∗∞(x∞)‖2≤ χ2
r∞L∞ ,1−β∞(x∞)}

∑
L⊆L∞:rqL≥r

∞
L∞

1{xq ∈ Kq
L} (159)

=1{‖x∞ − t∗∞(x∞)‖2≤ χ2
r∞L∞ ,1−β∞(x∞)}1{x∞ ∈ K∞L∞}

=
∑
J⊆J∞

1{‖x∞ − t∗∞(x∞)‖2≤ χ2
r∞J ,1−β∞(x∞)}1{x∞ ∈ K∞J }

=
∑
J⊆J∞

1{‖x∞ − t∗∞(x∞)‖2≤ χ2
r∞(x∞),1−β∞(x∞)}1{x∞ ∈ K∞J }

=1{‖x∞ − t∗∞(x∞)‖2≤ χ2
r∞(x∞),1−β∞(x∞)}, (160)
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where: the first equality follows from property (b); the second equality follows from (154);

the third equality follows from property (c); the first inequality follows because rqL ≥ r∞L∞ ;

the second inequality must hold eventually because, when r∞L∞ > 0,

‖xq − t∗q(xq)‖2→ ‖x∞ − t∗∞(x∞)‖2= ‖P∞L∞x∞ − κ∞L∞‖2 6= χ2
r∞L∞ ,1−β∞(x∞) (161)

and

lim inf
q→∞

χ2
r∞L∞ ,1−βq(xq)

≥ χ2
r∞L∞ ,1−β∞(x∞) (162)

(the equality follows from property (a∞) above because x∞ ∈ K∞L∞ , the 6= follows because

x ∈ ΞL∞ , and the ≥ follows from (155)), and when r∞L∞ = 0, A∞L∞ = 0, we have AqL∞ = 0

eventually (because each row of A∞ either belongs to the unit circle or is zero), and therefore,

xq ∈ Kq
L for L ⊆ K∞ implies xq − t∗q(xq) = 0 eventually; the fourth equality follows from

(154) and x∞ ∈ K∞L∞ ; the fifth equality follows because all the terms with J 6= L∞ are zero;

the sixth equality follows from (c∞); and the final equality follows from (a∞). This verifies

(151), proving part (a).

Next, we prove part (b). Consider the sequence {Fn, θn}∞n=1. It is sufficient to show that for

every subsequence, nm, there exists a further subsequence, nq, such that

lim
q→∞

Pr Fnq (Tnq(θnq) ≤ χ2
r̂,1−β̂) = 1− α. (163)

The proof follows that of part (a) with the following changes.

(i) The augmentation of the inequalities with additional inequalities defined by Bq and

hq in (135) is no longer needed. We can take Āq = ΛqA(θnq)D
1/2
q and h̄q = gnq .

(ii) Note that for each j ∈ {1, ..., dA}, gj,q (which is equal to h̄j,q) is either zero or

√
nq
bj(θnq)− aj(θnq)′EFnqmn(θnq)

‖aj(θnq)′Dq‖
→ 0, (164)

by assumption. Thus, h̄0 = 0dA .

(iii) Without Bq, (140) still holds without appealing to Lemma 9 by Assumption 3(b).

(iv) By Assumption 3(b), for all J ⊆ {1, ..., dA}, rqJ = r∞J for all q.

(v) The appeal to Lemma 9 below (154) is replaced by Lemma 8 to get t∗q(xq)→ t∗∞(x∞).

(vi) The expression in (155) becomes

lim
q→∞

βq(xq) = β∞(x∞). (165)

To show this, we consider two cases. In the first case, we have rk(A∞L∞) = 0. Then by (154),
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xq ∈ Kq
L for some L such that rk(AqL) = 0 eventually. This implies that βq(xq) = α = β∞(x∞)

eventually. In the second case, we have rk(A∞L∞) ≥ 1. Then by (154), xq ∈ Kq
L for some

L such that rk(AqL) ≥ 1 eventually. That is, for large enough q, there exists a j̄q such that

aq
j̄q

′t∗q(xq) = h̄j̄q ,q. By a subsequencing argument, we can suppose j̄q does not depend on

q, and denote it by j̄. If ‖a∞j̄ ‖‖a
∞
j ‖= a∞j

′a∞j̄ , then τ∞j (x∞) = ∞ and τ qj (xq) = ∞, using

the fact that ‖aqj‖‖a
q
j̄
‖= aqj

′aq
j̄
, which follows from the fact that rk(Aq{j,j̄}) = rk(A∞{j,j̄}). If

‖a∞j̄ ‖‖a
∞
j ‖6= a∞j

′a∞j̄ , then the convergence in (156) continues to hold by appealing to Lemma

8 instead of Lemma 9(d) to get t∗q(xq)→ t∗∞(x∞). This implies that the inequality in (157)

holds with equality because J∞ = {1, ..., dĀ}, and for all j such that ‖a∞j̄ ‖‖a
∞
j ‖= a∞j̄

′a∞j ,

τ qj (xq) =∞. Therefore, (165) holds.

(vii) Now (151) is satisfied with equality for the following reasons: (1) the inequality in

(158) holds with equality because rqL = r∞L , and thus r∞L = r∞L∞ for all L ⊆ L∞ : rqL ≥ r∞L∞ ,

and (2) the inequality in (159) holds with equality eventually using (165).

(viii) An appeal to Theorem 3(b) implies that equality holds in (153). The conditions

for Theorem 3(b) are satisfied because A∞ 6= 0 and h∞ = 0.

Combining these changes with the proof of part (a) proves (163), and therefore, part (b).

Finally, we prove part (c). We can apply the proof of part (b) twice. We can define t̃∗q(x),

r̃q(x) and β̃q(x) in the same way as t∗q(x), rq(x) and βq(x) except with AJ and bJ replacing

A and b. Consider any sequence Ωq → Ω0 and xq → x∞ ∈ Ξ. The proof of part (b) applied

to the original inequalities (A and b) implies (151) holds with equality eventually. We note

that the limiting objects are the same when applied to AJ and bJ because J∞ ⊆ J . This

is because the assumption for part (c) implies that the jth element of gq =
√
nqΛq(b(θnq)−

A(θnq)EFnqmnq(θnq)) diverges to +∞ for all j /∈ J . Therefore, when we apply the proof of

part (b) to the reduced inequalities (AJ and bJ), we get that

1{‖xq − t̃∗q(xq)‖2≤ χ2
r̃q(xq),1−β̃q(xq)} = 1{‖x∞ − t∗∞(x∞)‖2≤ χ2

r∞(x∞),1−β∞(x∞)} (166)

eventually as q →∞. Therefore,

1{1{‖xq − t̃∗q(xq)‖2≤ χ2
r̃q(xq),1−β̃q(xq)} 6= 1{‖xq − t∗q(xq)‖2≤ χ2

rq(xq),1−βq(xq)}} = 0 (167)

eventually. Therefore, by the bounded convergence theorem,

PrFnq

(
φRCC
nq (θnq , α) 6= φRCC

nq ,J (θnq , α)
)
→ 0. (168)

Since, for every subsequence, nm, there exists a further subsequence, nq, such that (168)
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holds, part (c) of Theorem 5 follows.

D.4 Proof of Lemmas 7 - 10

Proof of Lemma 7. The assumption implies that there exists a sequence, z∗n, such that

Anz
∗
n ≤ hn and z∗n → µ∗(x0, A0, h0) as n→∞. (169)

This implies that

‖xn − µ∗(xn, An, hn)‖2≤ ‖xn − z∗n‖2→ ‖x0 − µ∗(x0, A0, h0)‖2. (170)

Taking lim sup on both sides, we get

lim sup n→∞‖xn − µ∗(xn, An, hn)‖2≤ ‖x0 − µ∗(x0, A0, h0)‖2. (171)

Now note that µ∗(xn, An, hn) = arg minz:Anz≤hn‖xn− z‖2. This sequence of minimizers is

necessarily bounded because otherwise (171) cannot hold. Thus for any subsequence {nm}
there is a further subsequence {nq} such that µ∗(xnq , Anq , hnq) → z∞ for some z∞ ∈ Rdm .

Since Anqµ
∗(xnq , Anq , hnq) ≤ hnq , we have A0z∞ ≤ h0. Thus,

lim
q→∞
‖xnq − µ∗(xnq , Anq , hnq)‖2= ‖x0 − z∞‖2≥ ‖x0 − µ∗(x0, A0, h0)‖2. (172)

Since the subsequence is arbitrary, this implies that

liminfn→∞‖xn − µ∗(xn, An, hn)‖2≥ ‖x0 − µ∗(x0, A0, h0)‖2. (173)

Combining (171) and (173), we have limn→∞‖xn − µ∗(xn, An, hn)‖2= ‖x0 − µ∗(x0, A0, h0)‖2.

This, (172), and the uniqueness of arg minz:A0z≤h0‖x0 − z‖2 together imply that

µ∗(xn, An, hn)→ z∞ = µ∗(x0, A0, h0) as n→∞, (174)

proving the lemma.

Proof of Lemma 8. Let a′j,0 denote the jth row of A0 and let a′j,n denote the jth row of An.

For part (ii) of the definition of convergence, let nq be a subsequence and zq be a sequence

such that zq ∈ poly(Anq , hnq) for all q and zq → z0 as q →∞. Then,

a′j,0z0 = lim
q→∞

a′j,nqzq ≤ lim sup
q→∞

hj,nq = hj,0, (175)
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showing that z0 ∈ poly(A0, h0).

For part (i) of the definition of the convergence, let z0 ∈ poly(A0, h0), and let J0 = {j =

1, . . . , dA : a′j,0z0 = hj,0}. If J0 = ∅, then z∗n = z0 satisfies the requirement by An → A0 and

hn → h0. If J0 6= ∅ but rk(AJ0,0) = 0, then aj,0 = 0 for all j ∈ J0, which implies that aj,n = 0

for all j ∈ J0 by the rank condition stated in the lemma. Then, we can again let z∗n = z0

and a′j,nz
∗
n = 0 ≤ hj,n for all j ∈ J0. Again, {z∗n} satisfies the requirement due to An → A0

and hn → h0.

Now suppose that rk(AJ0,0) > 0. The key for the next step is to partition J0 into two

subsets J∗0 and Jo0 . We require the partition to satisfy the following conditions:

(i) J∗0 contains rk(AJ0,0) elements such that {aj∗,0 : j∗ ∈ J∗0} has full rank, and for any

element in jo ∈ Jo0 , there exists a unique linear representation ajo,0 =
∑

j∗∈J∗0
wjo,j∗aj∗,0,

where wjo,j∗ : j∗ ∈ J∗0 are real-valued weights.

(ii) The linear representation satisfies: for any j∗ ∈ J∗0 and jo ∈ Jo0 such that wjo,j∗ 6= 0,

we have hj∗,0 ≤ hjo,0.

Such a partition always exists. To see why, note that the existence of a partition satisfying

(i) is guaranteed by linear algebra. The number of partitions satisfying (i) is finite because

J0 is a finite set. If we choose the partition to be one that minimizes
∑

j∗∈J∗0
hj∗,0 among

those satisfying (i), then the chosen partition also satisfies (ii).

We note that for all n, rk(AJ∗0 ,n) = rk(AJ0) implies that for every jo ∈ Jo0 and j∗ ∈ J∗0 ,

there exist weights, wjo,j∗,n, such that

ajo,n =
∑
j∗∈J∗0

wjo,j∗,naj∗,n. (176)

Furthermore, we know that if wjo,j∗,n 6= 0, then wjo,j∗ 6= 0. This follows because, otherwise,

we would have

rk(I{jo}∪(J∗0 /{j∗})An) > rk(I(J∗0 /{j∗})An) = rk(I(J∗0 /{j∗})A0) = rk(I{jo}∪(J∗0 /{j∗})A0), (177)

contradicting the assumed rank condition.

Let AJ∗0 ,0 denote the submatrix of A0 formed by the rows selected by J∗0 , and let AJ∗0 ,n,

hJ∗0 ,0, and hJ∗0 ,n be defined analogously. Now let D be a (dm − |J0|) × dm matrix, the rows

of which form an orthonormal basis for the orthogonal complement to the space spanned

by {aj,0 : j ∈ J∗0}. Then the matrix
(
AJ∗0 ,0
D

)
is invertible, which implies that the matrix(

AJ∗0 ,n
D

)
is invertible for large enough n. Let h∧J∗0 ,n = min(hJ∗0 ,n, hJ∗0 ,0), where the minimum
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is taken element by element. Let

z†n =
(
AJ∗0 ,n
D

)−1 ( h∧
J∗0 ,n
Dz0

)
. (178)

It is easy to verify that

z†n →
(
AJ∗0 ,0
D

)−1 ( hJ∗0 ,0
Dz0

)
= z0, and (179)

AJ∗0 ,nz
†
n = h∧J∗0 ,n ≤ hJ∗0 ,n. (180)

If a′j,nz
†
n ≤ hj,n for all j ∈ Jo0 for large enough n, then (169) holds with z∗n = z†n and we

are done. Otherwise, let

λn =

 min

{
1,minj∈Jo0 :hj,0>0

hj,n

a′j,nz
†
n

}
if {j ∈ Jo0 : hj,0 > 0} 6= ∅

1 otherwise
. (181)

This is well-defined for large enough n since a′j,nz
†
n → a′j,0z0 = hj,0 and thus a′j,nz

†
n 6= 0 for

large enough n. Also, by definition λn ≤ 1, and

λn → min
j∈Jo0 :hj,0>0

hj,0
a′j,0z0

= 1. (182)

Now let

z∗n = λnz
†
n. (183)

Then for any j ∈ Jo0 such that hj,0 > 0, we have

a′j,nz
∗
n ≤ hj,n (184)

by the definition of λn. For any j ∈ Jo0 such that hj,0 = 0, we have

a′j,nz
∗
n = λn

∑
j∗∈J∗0

wj,j∗,na
′
j∗,nz

†
n

= λn
∑
j∗∈J∗0

wj,j∗,n min(hj∗,n, hj∗,0)

= 0 ≤ hj,n, (185)

where the first equality follows by the definition of the weights, wj,j∗,n, the second equality
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follows from the definition of z†n, the third equality follows because, if wj,j∗,n 6= 0, then

wj,j∗ 6= 0, and therefore 0 ≤ min(hj∗,n, hj∗,0) ≤ hj∗,0 ≤ hj,0 = 0 by property (ii) of the

partition.

Equations (179), (182), and (183) together imply that z∗n → z0. This also implies that,

for all j /∈ J0, a′j,nz
∗
n − hj,n → a′j,0z0 − hj,0 < 0 and thus, for large enough n,

A{1,...,dA}/J0,nz
∗
n < h{1,...,dA}/J0,n. (186)

This combined with equations (180), λn ≤ 1, and (183)-(185) implies that Anz
∗
n ≤ hn.

Therefore, {z∗n} satisfies the requirement and the lemma is proved.

Proof of Lemma 9. The proof of Lemma 9 makes use of three additional lemmas which are

stated and proved at the end of this subsection. We use bj,q to denote the transpose of the

jth row of Bq, and similarly for aj,nq , aj,0, and bj,0. An equivalent way to state condition (d)

is:

(i) for any further subsequence, nq, and for every sequence xq ∈ poly(Anq , gnq)∩poly(Bq, hq)

such that xq → x0, x0 ∈ poly(A0, g0) ∩ poly(B0, h0), and

(ii) for every x0 ∈ poly(A0, g0)∩poly(B0, h0), there exists xq ∈ poly(Anq , gnq)∩poly(Bq, hq)

such that xq → x0.

Before proving the lemma, we note that for any subsequence, nq such that Anq → A0

and gnq → g0, and for any Bq → B0 and hq → h0, condition (d)(i) is satisfied. Specifically,

let xq denote a sequence that belongs to poly(Anq , gnq)∩poly(Bq, hq) for all q, and such that

xq → x0. Then

a′j,0x0 = lim
q→∞

a′j,nqxq ≤ lim
q→∞

gj,nq = gj,0. (187)

Also, by the convergence of hq, we have that

b′j,0x0 = lim
q→∞

b′j,qxq ≤ lim
q→∞

hj,q = hj,0. (188)

Therefore, x0 ∈ poly(A0, g0) ∩ poly(B0, h0).

We also note that for any q, Bq, and hq satisfying (b), condition (c) must also be satisfied.

If not, then there exists a q, an x ∈ poly(Anq , gnq) and a j′ ∈ J(x;Bq, hq) such that bj′,q

cannot be written as a linear combination of aj,nq for j ∈ J(x;Anq , gnq). This implies that

there exists a v such that b′j′,qv > 0 and v ⊥ aj,nq for all j ∈ J(x;Anq , gnq). But then,

x + αv ∈ poly(Anq , gnq) for sufficiently small α, at the same time that b′j′,q(x + αv) > hq.

This contradicts the fact that poly(Anq , gnq) ⊆ poly(Bq, hq). Therefore, (c) holds.
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We now prove the lemma by finding a subsequence, nq, and sequences {Bq} and {hq}
that satisfy conditions (a), (b), and (d)(ii). We first consider An and gn. By the compactness

of the unit circle, let nq be a subsequence so that Anq converges to some A0. Also suppose

gnq converges along the subsequence to some vector g0 ∈ RdA
+,∞.

Let J+
A denote the subset of {1, ..., dA} for which gj,0 > 0, and let J0

A denote the subset

for which gj,0 = 0. Consider AJ0
A,0

, which defines a cone in Rdm : poly(AJ0
A,0
,0) = {x ∈ Rdm :

AJ0
A,0
x ≤ 0}. Let S denote the smallest linear subspace of Rdm that contains this cone. Let

the dimension of S be dS. Let JSA be the subset of J0
A for which aj,0 ⊥ S for all j ∈ JSA. Let

JNA = {1, ..., dA}/JSA.

Next, we define sequences Bq and hq that satisfy conditions (a), (b), and (d)(ii) by

induction on the dimension of S. If dS = 0, then no Bq or hq is required. Condition

(a) is satisfied by the above choice of the subsequence. Condition (b) is satisfied because

poly(Bq, hq) = Rdm for all q. Condition (d)(ii) is satisfied because poly(A0, g0) = {0},
and then we can take xq = 0 for all q, which belongs to poly(Anq , gnq) and converges to

x0 = 0 ∈ poly(A0, g0).

If dS > 0, then suppose the conclusion of Lemma 9 holds for all values of the dimension

of S less than dS.

Let Cq = poly(AJSA,nq , gJSA,nq). Let CS
q be the projection of Cq onto S. That is, CS

q =

{PSx : x ∈ Cq}, where PS denotes the projection onto S and MS = I − PS. The fact that

Cq is a polyhedral set (defined by finitely many affine inequalities) implies by Theorem 19.3

in Rockafellar (1970) that CS
q is also a polyhedral set. Therefore, there exists a dB1 × dm

matrix of unit vectors in S, B1
q and a vector h1

q such that CS
q = {y ∈ S : B1

qy ≤ h1
q}. We

note that CS
q contains zero, so h1

q ≥ 0. In the special case of dS = dm, CS
q = Cq and we let

B1
q be the matrix composed of all the non-zero rows of Anq and let h1

q be the corresponding

elements of gnq .

Let nq be a further subsequence so that B1
q → B1

0 and h1
q → h1

0, where some of the

elements of h1
0 may be +∞, in which case the convergence holds elementwise. We note that

this construction satisfies conditions (a) and (b) because poly(Anq , gnq) ⊆ Cq ⊆ poly(B1
q , h

1
q)

for all q, where the second subset holds because B1
qx = B1

qMSx+B1
qPSx = B1

qPSx ≤ h1
q for

all x ∈ Cq because the rows of B1
q belong to S and PSx ∈ CS

q .

Let J+
B denote the set of j ∈ {1, ..., dB1} for which h1

j,0 > 0, and let J0
B denote the set for

which h1
j,0 = 0, where h1

j,0 is the jth element of h1
0. Consider B1

J0
B ,0

and AJ0
A,0

, which together

define a cone in S: {x ∈ S : B1
J0
B ,0
x ≤ 0 and AJ0

A,0
x ≤ 0}. As before, let S† denote the

smallest linear subspace of S that contains this cone. Let JS
†

B denote the set of all j ∈ J0
B

for which b1
j,0 ⊥ S†. Also let JS

†
A denote the set of all j ∈ J0

A for which aj,0 ⊥ S†. Let the

dimension of S† be dS† .
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If dS† < dS, then the result follows by the induction assumption. In particular, if we let

Ãq =

[
Anq

B1
q

]
and g̃q =

[
gnq

h1
q

]
,

then the subspace, S̃, defined to be the smallest linear subspace containing poly(Ã0, g̃0),

is equal to S†. Therefore, there exists a further subsequence, nq, and another matrix of

inequalities, B2
q and h2

q such that: (a) B2
q → B2

0 and h2
q → h2

0, (b) poly(Ãq, g̃q) ⊆ poly(B2
q , h

2
q)

for all q along the subsequence, and (d)(ii) poly(Ãq, g̃q) ∩ poly(B2
q , h

2
q) → poly(Ã0, g̃0) ∩

poly(B2
0 , h

2
0) pointwise. It is easy to see that these conditions imply conditions (a), (b), and

(d)(ii) for the original An and gn along this subsequence, with

Bq =

[
B1
q

B2
q

]
and hq =

[
h1
q

h2
q

]
,

using the fact that poly(Ãq, g̃q) = poly(Anq , gnq) ∩ poly(B1
q , h

1
q).

Therefore, we only need to show condition (d)(ii) in the case that dS† = dS. In this

case, S = S†, and so JS
†

B = ∅ and JS
†

A = JSA. Fix x0 ∈ poly(A0, g0) ∩ poly(B1
0 , h

1
0). We

show that for every ε > 0 there exists a Q such that for all q ≥ Q there exists a yq ∈
poly(Anq , gnq) ∩ poly(B1

q , h
1
q) such that ‖yq − x0‖≤ 2ε. If true, then this can be used to

construct a sequence satisfying yq → x0, establishing condition (d)(ii).

Fix ε > 0. By Lemma 11, there exists a point, x̃, in S that satisfies b1
j,0
′
x̃ < h1

j,0 for all

j ∈ {1, ..., dB1}, and a′j,0x̃ < gj,0 for all j ∈ JNA . There exists a λ ∈ (0, 1) small enough that

x† = λx̃ + (1 − λ)x0 ∈ B̄(x0, ε), where B̄(x0, ε) denotes the closed ball of radius ε around

x0. Note that x† satisfies a′j,0x
† < gj,0 for all j ∈ JNA and b1

j,0
′
x† < hj,0 for all j ∈ {1, ..., dB1}.

Therefore, there exists a δ ∈ (0, ε) and a Q such that for all q ≥ Q, and for all x ∈ B̄(x†, δ),

b1
j,q
′
x < h1

j,q for all j ∈ {1, ..., dB1}, and a′j,nqx < gj,nq for all j ∈ JNA . Notice that, for all

q ≥ Q, x† ∈ CS
q = {y ∈ S : B1

qy ≤ h1
q}, which means that there exists a yq ∈ Cq such that

x† = PSyq. By Lemma 12 applied to K = {x†} (where the condition is satisfied because, by

Lemma 13, S = {x ∈ Rdm : AJS ,0x ≤ 0}), there exists a larger Q such that for all q ≥ Q,

yq ∈ B̄(x†, δ). Therefore, ‖yq − x0‖≤ 2ε.

Proof of Lemma 10. Fix x ∈ Rdm . The fact that poly(A, g) ⊆ poly(B, h) implies that

µ∗(x;A, g) = µ∗(x; [A;B], [g, h]). Denote the common value by µ∗.

If there does not exist a j̄ ∈ J(x;A, g) such that aj̄ 6= 0, then x = µ∗ and a′jx <

gj for all j /∈ J(x;A, g). Suppose, to reach a contradiction, that there does exist a j̄ ∈
J(x; [A;B], [g;h]) such that bj̄−dA 6= 0. Then, there would exist a point, y, very close to x

(say, y = x + εbj̄−dA for some ε > 0) such that y /∈ poly(B, h) but y ∈ poly(A, g). This
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contradicts the assumption that poly(A, g) ⊆ poly(B, h). Therefore, there does not exist a

j̄ ∈ J(x; [A;B], [g;h]) such that bj̄−dA 6= 0. This implies that, in this case, τj(x,A, g) = 0

for all j ∈ {1, ..., dA} and τj(x; [A;B], [g;h]) = 0 for all j ∈ {1, ..., dA + dB}. Therefore,

τ(x;A, g) = τ(x; [A;B], [g;h]).

Suppose there does exist a j̄ ∈ J(x;A, g) such that aj̄ 6= 0. Then, the same j̄ can be

used to define τj(x; [A;B], [g;h]) because J(x;A, g) ⊆ J(x; [A;B], [g;h]).

We show that for every j = 1, ..., dB, τj+dA(x; [A;B], [g;h]) ≥ τ(x;A, g). The result holds

trivially if ‖bj‖‖aj̄‖= b′jaj̄ because then τj+dA(x; [A;B], [g;h]) = ∞. Suppose, to reach a

contradiction, that τj+dA(x; [A;B], [g;h]) < τ(x;A, g). Let τ ∗ = τj+dA(x; [A;B], [g;h]), and

consider two cases.

(i) If τ ∗ = 0, then for some ε > 0, the point t∗ = µ∗ + ε(Idm − aj̄a′j̄‖aj̄‖
−2)bj belongs to

poly(A, g) but not poly(B, h). To see that t∗ ∈ poly(A, g), note that for all ` ∈ J(x;A, g),

the fact that τ(x;A, g) > 0 implies that a` is collinear with aj̄. Then, a′`t
∗ = a′`µ

∗ = g`.

For all ` /∈ J(x;A, g), a′`µ
∗ < g`, so ε can be chosen small enough that a′`t

∗ < g` for all

` /∈ J(x;A, g). To see that t∗ /∈ poly(B, h), note that

b′jt
∗ = b′jµ

∗ + ε‖bj‖2−ε(b′jaj̄)‖aj̄‖−2= hj + ε‖bj‖2−ε(b′jaj̄)2‖aj̄‖−2> hj, (189)

where the second equality follows because τ ∗ = 0 and bj is not collinear with aj̄ (so b′jµ
∗ = hj),

and the inequality follows because (b′jaj̄)
2 < ‖aj̄‖2‖bj‖2. This contradicts the assumption

that poly(A, g) ⊆ poly(B, h). Therefore, in this case, τ ∗ ≥ τ(x;A, g).

(ii) If τ ∗ > 0, then let t∗ = µ∗+ τ ∗
(

bj
‖bj‖ −

aj̄
‖aj̄‖

)
. We show that t∗ belongs to the interior

of poly(A, g) but is on the boundary of poly(B, h). Note that for every ` ∈ {1, ..., dA},

a′`t
∗ = a′`µ

∗ + τ ∗
(
a′`bj
‖bj‖

−
a′`aj̄
‖aj̄‖

)
= a′`µ

∗ +
‖aj̄‖(hj − b′jµ∗)
‖aj̄‖‖bj‖−b′jaj̄

(
a′`bj
‖bj‖

−
a′`aj̄
‖aj̄‖

)
. (190)

When a` is collinear with aj̄, the right hand side of (190) is less than g` because a′`µ
∗ ≤ g`,

hj > b′jµ
∗ (because τ ∗ > 0), and ‖aj̄‖‖bj‖> a′j̄bj (because bj is not collinear with aj̄). When

a` is not collinear with aj̄, the right hand side of (190) is less than g` because

‖aj̄‖(hj − b′jµ∗)
(
a′`bj
‖bj‖

−
a′`aj̄
‖aj̄‖

)
− (g` − a′`µ∗)(‖aj̄‖‖bj‖−b′jaj̄)

<(hj − b′jµ∗)
(
‖aj̄‖

(
a′`bj
‖bj‖

−
a′`aj̄
‖aj̄‖

)
− (‖aj̄‖‖a`‖−a′`aj̄)

)
≤0, (191)
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where the first inequality follows because

(g` − a′`µ∗)(‖aj̄‖‖bj‖−b′jaj̄) > (hj − b′jµ∗)(‖aj̄‖‖a`‖−a′`aj̄) (192)

(by the assumption that τ ∗ < τ(x;A, g) ≤ τ`(x,A, g)), and the second inequality follows

because b′jµ
∗ ≤ hj and ‖a`‖‖bj‖≥ a′`bj. This shows that t∗ is on the interior of poly(A, g).

We also show that t∗ is on the boundary of poly(B, h) by calculating that b′jt
∗ = hj. By a

similar calculation to above, we see that

(b′jt
∗ − hj)(‖bj‖‖aj̄‖−b′jaj̄)

=‖aj̄‖(hj − b′jµ∗)
(
‖bj‖−

b′jaj̄

‖aj̄‖

)
+ (b′jµ

∗ − hj)(‖bj‖‖aj̄‖−b′jaj̄) = 0. (193)

This implies that there exists a point, y, very close to t∗ (say y = t∗+εbj for some ε > 0) such

that y /∈ poly(B, h) but y ∈ poly(A, g). This contradicts the assumption that poly(A, g) ⊆
poly(B, h). Therefore, τj+dA(x; [A;B], [g;h]) ≥ τ(x;A, g) for all j = 1, ..., dB.

Lemma 11. Let A be a dA × dm matrix. Let g be nonnegative. Let J+ denote the subset of

{1, ..., dA} such that gj > 0, and let J0 denote the subset of {1, ..., dA} such that gj = 0. Let

S denote the smallest linear subspace containing poly(AJ0 , 0) = {x ∈ Rdm : AJ0x ≤ 0}. Let

JS be the subset of J0 for which AJS ⊥ S. Let JN = {1, ..., dA}/JS. There exists a x̃ ∈ S
such that a′jx̃ < gj for all j ∈ JN .

Proof of Lemma 11. First, let M > maxj∈J+‖aj‖, and let ε ∈ (0,minj∈J+{gj}/M). Then,

for all x̃ ∈ B̄(0, ε), a′jx̃ < gj for all j ∈ J+, where B̄(x, ε) denotes the closed ball of radius

ε around x. Also, for every j ∈ JN ∩ J0, {x ∈ S : a′jx = 0} defines a subspace of S. We

note that for all j ∈ JN ∩ J0, {x ∈ S : a′jx = 0} is a proper subset of S, because otherwise j

would belong to JS. By the definition of S, S ∩ poly(AJN∩J0 , 0) is not contained within any

of these subspaces. In particular, for each j ∈ JN ∩J0, we can find a x̃j and a neighborhood,

Nj, (relatively open in S) that belongs to S ∩ poly(AJN∩J0,0, 0)/{x ∈ S : a′jx = 0}. Indeed,

we can consider j ∈ JN ∩ J0 sequentially, and define each neighborhood to be a subset of

the previous one. Therefore, the final x̃j must belong to S ∩ poly(AJN∩J0,0,0) and satisfy

a′jx̃ < 0 for all j ∈ JN ∩ J0. Take x̃ = λx̃j, where λ > 0 is small enough that x̃ ∈ B̄(0, ε).

Then, x̃ satisfies a′jx̃ < gj for all j ∈ JN .

Lemma 12. Let An → A0 and gn → 0, where gn ≥ 0 for all n. Suppose S = {x ∈ Rdm :

A0x ≤ 0} is a linear subspace of Rdm. Let S⊥ denote the orthogonal subspace to S in Rdm.

Let PSx denote the projection of x ∈ Rdm onto S and let MSx denote x − PSx. Then, for
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every K ⊆ S, compact, and for every ε > 0, we have

{x ∈ poly(An, gn) : PSx ∈ K, ‖MSx‖≥ ε} = ∅ (194)

eventually as n→∞.

Proof of Lemma 12. Suppose that the conclusion of the lemma is not true. Then there

exists a sequence {xn ∈ poly(An, gn)} and a subsequence nm such that PSxnm ∈ K and

‖MSxnm‖≥ ε for all m ≥ 1. Define the unit vector x⊥nm = MSxnm/‖MSxnm‖. Then, by

the compactness of K and the unit circle, there exists a further subsequence nq such that

PSxnq → xS and x⊥nq → x⊥ for some xS ∈ S and x⊥ ∈ S⊥ as q →∞.

Because x⊥ ∈ S⊥ and x⊥ 6= 0, we know that x⊥ /∈ S = {x ∈ Rdm : A0x ≤ 0}, and

therefore there exists a j such that

a′j,0x
⊥ > 0. (195)

Also, since xS ∈ S, a′j,0x
S ≤ 0. Since S is a linear subspace, we have a′j,0(−xS) ≤ 0 as well.

This shows that a′j,0x
S = 0 (and more generally, S = {x ∈ Rdm : A0x = 0}).

Now consider

a′j,nqxnq − gj,nq = a′j,nqPSxnq + a′j,nqMSxnq − gj,nq
= o(1) + a′j,0x

S + ‖MSxnq‖(o(1) + a′j,0x
⊥)− o(1)

= o(1) + ‖MSxnq‖(o(1) + a′j,0x
⊥). (196)

By (195), o(1) + a′j,0x
⊥ > 0 eventually. This, combined with ‖MSxnq‖≥ ε implies that

a′j,nqxnq − gj,nq > 0 (197)

eventually. This contradicts the definition of the sequence xn which requires that xn ∈
poly(An, gn) for all n.

Lemma 13. Let A be a matrix. Let S be the smallest linear subspace containing C =

poly(A,0). Let J = {j : aj ⊥ S}. Then, S = poly(AJ ,0).

Proof of Lemma 13. First, notice that if x ∈ S, then x ⊥ aj for all j ∈ J , and therefore,

AJx = 0, so x ∈ poly(AJ ,0).

To go the other way, let x ∈ poly(AJ ,0). Lemma 11 implies that there exists an x̃ ∈ S
such that a′jx̃ < 0 for all j ∈ J c, where J c = {1, ..., dA}/J . Consider y = x+Mx̃ for M large.

We note that AJy = AJx + MAJ x̃ ≤ 0 since x ∈ poly(AJ ,0) and x̃ ∈ S ⊆ poly(AJ ,0). We
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also note that for every j ∈ J c, a′jy = a′jx+Ma′jx̃→ −∞ as M diverges. Thus, there exists

an M large enough that y ∈ poly(A,0). This implies that y ∈ S because poly(A,0) ⊆ S.

This also implies that x = y −Mx̃ ∈ S because S is a linear subspace.

E Proof of Theorem 6

(a) Let {(Fz,n, θn) : Fz,n ∈ Fz, θn ∈ Θ0(Fz,n)} be an arbitrary sequence. Let F|zi,n denote the

conditional distribution of Wi given Zi = zi implied by Fz,n. Let σ2
j|z,n(θ) and D|z,n(θ) be

defined just like σ2
j|z(θ) and D|z(θ) except with F|zi replaced by F|zi,n. Let Dn = D|z,n(θn).

Then Dn is positive definite for every n by Assumption 2(b).

Let Ωn = D
−1/2
n n−1

∑n
i=1 VarF|zi,n(m(Wi, θn)|zi)D−1/2

n . Algebra shows that the square of

the (j, `)th element of Ωn is bounded by

2n−1

n∑
i=1

EF|zi,n

[(
mj(Wi, θn)

σj|z,n(θn)

)4

|zi

]
+ 2n−1

n∑
i=1

EF|zi,n

[(
m`(Wi, θn)

σj|z,n(θn)

)4

|zi

]
, (198)

which is bounded by 4M0 by Assumption 2(d). Thus vec(Ωn) ∈ [0, 4M0]d
2
m , which is a

compact set. This implies that a subsequence nq can be found for any subsequence of {n}
such that Ωnq → Ω∞. Furthermore, Assumption 2(c) implies that Ω∞ is positive definite.

It remains to verify the Lindeberg condition for the Lindeberg-Feller central limit theorem

(CLT) along the subsequence {nq}. Let a be an arbitrary real vector on the unit sphere in

Rdm . Let

m̂n,i(θ) = a′D−1/2
n (m(Wi, θ)− EF|zi,n [m(Wi, θ)|zi]). (199)

Let

s2
q = nq

−1

nq∑
i=1

EF|zi,nq
[
m̂nq ,i(θnq)

2|zi
]
. (200)

For an arbitrary ε > 0, consider the derivation,

nq∑
i=1

n−1
q s−2

q EF|zi,nq [m̂nq ,i(θnq)
21{n−1

q s−2
q m̂nq ,i(θnq)

2 > ε}|zi]

≤ n−2
q s−4

q ε−1

nq∑
i=1

EF|zi,nq [m̂nq ,i(θnq)
4|zi]

≤ 16n−2
q s−4

q ε−1

nq∑
i=1

EF|zi,nq [(a
′D−1/2

nq m(Wi, θnq))
4|zi]
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≤ 16n−2
q s−4

q ε−1

nq∑
i=1

EF|zi,nq [‖D
−1/2
nq m(Wi, θnq)‖4|zi]

= O(n−1
q s−4

q ε−1)

→ 0, as q →∞, (201)

where the first inequality holds because 1(x > ε) ≤ x
ε

for any x ≥ 0, the second inequality

holds because E[(X−E(X))4] ≤ 16E[X4], the third inequality holds by the Cauchy-Schwarz

inequality and ‖a‖= 1, the equality holds by Assumption 2(d), and the convergence holds

because s2
q → a′Ω∞a by the definition of the subsequence {nq}. Therefore, the Lindeberg

condition holds and the CLT applies, proving part (a).

(b) Note that Σ̂n(θ) is the weighted average of the standard sample variance estimator

within subsamples with same zi values. Thus, by standard argument, we have

EFz,n [Σ̂n(θn)|z] =
∑
`∈Z

n`
n

VarF|`,n(m(Wi, θn)|`) =
1

n

n∑
i=1

VarF|zi,n(m(Wi, θn)|zi), (202)

where the second equality holds by rearranging terms. Thus,

EFz,n [D−1/2
n Σ̂n(θn)D−1/2

n |z] = Ωn. (203)

Also by standard calculation, the (j, j′) element of D
−1/2
n Σ̂n(θn)D

−1/2
n has a conditional

variance given z:

1

n2

n∑
i=1

VarF|zi,n

(
mj(Wi, θn)mj′(Wi, θn)

σj|z,n(θn)σj′|z,n(θn)
|zi
)

+
1

n2

n∑
i=1

ω2
j|zi,n(θn)ω2

j′|zi,n(θ) + ωjj′|zi,n(θn)2

nzi − 1
,

(204)

where ωj|zi,n(θ) = VarF|zi,n

(
mj(Wi,θ)

σj|z,n(θ)
|zi
)

and ωjj′|zi,n(θ) = CovF|zi,n

(
mj(Wi,θ)

σj|z,n(θ)
,
mj′ (Wi,θ)

σj′|z,n(θ)
|zi
)

. By

standard algebraic manipulation, we have

VarF|zi,n

(
mj(Wi, θn)mj′(Wi, θn)

σj|z,n(θn)σj′|z,n(θn)
|zi
)
≤ 1

2
(Mji +Mj′i), and

ω2
j|zi,n(θn)ω2

j′|zi,n(θ) + ωjj′|zi,n(θn)2 ≤Mji +Mj′i (205)

where Mji = EF|zi,n

[(
mj(Wi,θn)

σj|z,n(θn)

)4

|zi
]
. Therefore, by Assumption 2, we have that the expres-

sion in (204) is bounded by 1
n
(M0 + 2M0), which converges to zero as n → ∞. This proves

part (b).
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(c) First, we prove that

n−1

n∑
i=1

‖zi − z`Z(i)‖2→ 0. (206)

To begin, define z̃i = Σ
−1/2
Z,n zi. By Assumption 5(b), Σ

−1/2
Z,n → Σ

−1/2
Z as n→∞ and this limit

is finite. Thus, Σ
−1/2
Z,n is uniformly bounded over all large enough n. This and Assumption

5(a) together imply that the elements of the array {z̃1, . . . , z̃n}n≥1 are chosen from a bounded

set. Then Lemma 1 of Abadie and Imbens (2008) applies directly and implies that

n−1

n∑
i=1

‖z̃i − z̃`Z(i)‖2→ 0. (207)

Consider the derivation

n−1

n∑
i=1

‖zi − z`Z(i)‖2 = n−1

n∑
i=1

(z̃i − z̃`Z(i))
′ΣZ,n(z̃i − z̃`Z(i))

≤ n−1

n∑
i=1

‖z̃i − z̃`Z(i)‖2eigmax(ΣZ,n)

→ 0, (208)

where eigmax(·) stands for maximum eigenvalue and the convergence holds by (207) and

Assumption 5(b). This proves (206).

Next consider an arbitrary unit vector a in Rdm , let

s2
n,i(θ) = a′D−1/2

n (m(Wi, θ)−m(W`Z(i), θ))(m(Wi, θ)−m(W`Z(i), θ))
′D−1/2

n a. (209)

Then a′D
−1/2
n Σ̂n(θ)D

−1/2
n a = 1

2n

∑n
i=1 s

2
n,i(θn). Since a is arbitrary, it suffices to show that

for any subsequence of {n} there exists a further subsequence {nq} such that

1

2nq

nq∑
i=1

s2
nq ,i(θnq)→p a

′Ω∞a. (210)

as q →∞.

Let m̂n,i(θ) be defined in the proof of part (a). Then

EFz,n [s2
n,i(θn)|z]

= EFz,n [a′(m̂n,i(θn)− m̂n,`Z(i)(θn) + ∆ni)(m̂n,i(θn)− m̂n,`Z(i)(θn) + ∆ni)
′a|z]
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= a′EF|zi,n [m̂n,i(θn)m̂n,i(θn)′|zi]a+ a′EF|z`Z (i),n
[m̂n,`Z(i)(θn)m̂n,`Z(i)(θn)′|z`Z(i)]a+ a′∆ni∆

′
nia

= 2a′D−1/2
n VarF|zi,n [m(Wi, θn)|zi]D−1/2

n a+ a′∆V
nia+ a′∆ni∆

′
nia, (211)

where ∆ni = EF|zi,n [D
−1/2
n m(Wi, θn)|zi]− EF|z`Z (i),n

[D
−1/2
n m(W`Z(i), θn)|z`Z(i)], and

∆V
ni = VarF|z`Z (i),n

[D−1/2
n m(W`Z(i), θn)|z`Z(i)]− VarF|zi,n [D−1/2

n m(Wi, θn)|zi].

By Assumption 5(c) we have,

‖∆ni‖≤Mg‖zi − z`Z(i)‖ and ‖∆V
ni‖≤MV ‖zi − z`Z(i)‖. (212)

Thus,

n−1

n∑
i=1

a′∆ni∆
′
nia ≤ n−1

n∑
i=1

‖∆ni‖2≤ n−1

n∑
i=1

M2
g ‖zi − z`Z(i)‖2→ 0, (213)

and

n−1

n∑
i=1

a′∆V
nia ≤ n−1

n∑
i=1

‖∆V
ni‖≤ n−1

n∑
i=1

MV ‖zi − z`Z(i)‖

≤MV

√√√√n−1

n∑
i=1

‖zi − z`Z(i)‖2 → 0. (214)

For an arbitrary subsequence of n, consider a further subsequence {nq} such that Ωn → Ω∞.

Such a further subsequence always exists by the proof of part (a). Then as q →∞,

n−1
q

nq∑
i=1

2a′VarF|zi,nq [D
−1/2
nq m(Wi, θnq)|zi]a→ 2a′Ω∞a. (215)

Combining (211), (213), (214), and (215), we have

EFz,nq [a
′D−1/2

nq Σ̂nq(θnq)D
−1/2
nq a|z] =

1

2nq

nq∑
i=1

EFz,nq [s
2
nq ,i(θn)|z]→ a′Ω∞a. (216)

Now it suffices to show that

EFz,n

(n−1

n∑
i=1

(
s2
n,i(θn)− EFz,n [s2

n,i(θn)|z]
))2

|z

→ 0. (217)
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Let εi(θ) = a′m̂n,i(θ) and σ2
i (θ) = a′VarF|zi,n(D

−1/2
n m(Wi, θ|zi))a = EF|zi,n [ε2

i (θ)|zi]. Consider

n−1

n∑
i=1

(
s2
n,i(θn)− EFz,n [s2

n,i(θn)|z]
)

= n−1

n∑
i=1

(ε2
i (θn)− σ2

i (θn))

+ n−1

n∑
i=1

(ε2
`Z(i)(θn)− σ2

`Z(i)(θn))

+ 2n−1

n∑
i=1

(a′∆ni)εi(θn)

− 2n−1

n∑
i=1

(a′∆ni)ε`Z(i)(θn)

+ 2n−1

n∑
i=1

εi(θn)ε`Z(i)(θn). (218)

Clearly, all the summands on the right-hand side have conditional expectation zero. Now we

show that the conditional variance (which then is the conditional second moment) of each

of them converges to zero.

For the first summand on the right-hand side of (218), we have

EFz,n

(n−1

n∑
i=1

(ε2
i (θn)− σ2

i (θn))

)2

|z

 =
1

n2

n∑
i=1

VarF|zi,n(ε2
i (θn)|zi)

≤ 1

n2

n∑
i=1

EF|zi,n [ε4
i (θn)|zi]

≤ 16

n2

n∑
i=1

EF|zi,n [(a′D−1/2
n m(Wi, θn))4|zi]

≤ 16

n2

n∑
i=1

EF|zi,n [‖D−1/2
n m(Wi, θn)‖4|zi]

→ 0, (219)

where the convergence holds by Assumption 2(d). For the second summand on the right-hand

side of (218), we have

EFz,n

(n−1

n∑
i=1

(ε2
`Z(i)(θn)− σ2

`Z(i)(θn))

)2

|z


=

1

n2

n∑
i=1

EFz,n [
(
ε2
`Z(i)(θn)− σ2

`Z(i)(θn))
)2 |z]
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+
2

n2

n∑
i=1

n∑
j=i+1

EFz,n [
(
ε2
`Z(i)(θn)− σ2

`Z(i)(θn)
) (
ε2
`Z(j)(θn)− σ2

`Z(j)(θn)
)
|z]

≤ L+ 2L
2

n2

n∑
i=1

EF|zi,n [
(
ε2
i (θn)− σ2

i (θn))
)2 |zi]→ 0, (220)

where L is the maximum number of times a j is `Z(i) for some i. This number is bounded

by 3dz−1, which does not depend on n (see e.g. Zeger and Gersho (1994)). The convergence

holds by (219).

For the third summand in (218), we have

EFz,n

(n−1

n∑
i=1

a′∆niεi(θn)

)2

|z

 =
1

n2

n∑
i=1

(a′∆ni)
2EF|zi,n [ε2

i (θn)|zi]

≤ MgB

n2

n∑
i=1

EF|zi,n [ε2
i (θn)|zi]

≤ MgB

n2

n∑
i=1

(1 + EF|zi,n [ε4
i (θn)|zi])

→ 0, (221)

where B is the maximum distance of two points in the sequence {zi}ni=1, which is bounded

by Assumption 5(a), the first inequality holds by Assumption 5(c), the second inequality

holds by x2 ≤ (max(1, |x|))2 ≤ max{1, x4} ≤ 1 + x4 and the convergence holds by (219).

For the fourth summand in (218), we have

EFz,n

(n−1

n∑
i=1

a′∆niε`Z(i)(θn)

)2

|z

 =
1

n2

n∑
i=1

(a′∆i(θn))2EF|z`Z (i),n
[ε2
`Z(i)(θn)|z`Z(i)]

≤ MgB

n2

n∑
i=1

EFz`Z (i),n
[ε2
`Z(i)(θn)|z`Z(i)]

≤ MgB

n2

n∑
i=1

(1 + EF|z`Z (i),n
[ε4
`Z(i)(θn)|z`Z(i)])

≤ MgLB

n2

n∑
i=1

(1 + EF|zi,n [ε4
i (θn)|zi])

→ 0, (222)

where L is number discussed below (220).
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For the fifth summand on the right-hand side of (218), we have

EFz,n

(n−1

n∑
i=1

εi(θn)ε`Z(i)(θn)

)2

|z


=

1

n2

n∑
i=1

EFz,n [ε2
i (θn)ε2

`Z(i)(θn)|z]

+
2

n2

n∑
i=1

n∑
j=i+1

EFz,n [εi(θn)ε`Z(i)(θn)εj(θn)ε`Z(j)(θn)|z]

≤ 1

n2

n∑
i=1

EFz,n [ε2
i (θn)ε2

`Z(i)(θn)|z] +
L

n2

n∑
i=1

EFz,n [ε2
i (θn)ε2

`Z(i)(θn)|z]

≤ 1 + L

2n2

n∑
i=1

EFz,n [ε4
i (θn) + ε4

`Z(i)(θn)|z]

→ 0, (223)

where the first inequality holds because EFz,n [εi(θn)ε`Z(i)(θn)εj(θn)ε`Z(j)(θn)|z] is nonzero only

when j = `Z(i) and `Z(j) = i and this occurs at most L times for each i, the second inequality

holds by 2xy ≤ x2 + y2, and the convergence holds by (219) and the last two lines of (222).

Combining (218)-(223), we have that (217) holds, which then proves part (c).

F Additional Simulations

The theoretical properties of the CC tests rely in an essential way on the normality or

asymptotic normality of the moments. Here we report results when Wi is not normal to

investigate the sensitivity of these simulations to the data distribution. Tables 5 and 7

report results when Wi has a student t distribution with 3 degrees of freedom, denoted by

t(3). This distribution is chosen to investigate the consequences of thick tails on the tests.

Tables 6 and 8 report results when Wi has a mixed normal distribution, taken to be the equal

probability mix of N(−2, 1) and N(2, 4) scaled to have unit variance. This distribution is

chosen to investigate the consequences of a skewed and bimodal distribution on the tests.

Tables 7 and 8 show the results for the tests when Ω is estimated. The size performance

of the RCC test varies somewhat with the data distribution. It has worse MNRPs under

the skewed mixed normal distribution (up to 9.6% for k = 10) than under normality (Table

8), while it has better MNRPs under the t(3) distribution than under normality (Table 7).

It is noteworthy that the bootstrap-based AB, RSW1, and RSW2 tests have lower worst

case MNRP’s across Tables 5-8 (6.9%, 6.4%, 9.3%, respectively, compared to 9.6% for the
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Table 5: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests (t(3) distribution, known Ω, n = 100)

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .057 .61 .58 .003 .054 .62 .60 .003 .046 .62 .64 .003
CC .057 .60 .57 .003 .053 .60 .58 .003 .043 .59 .62 .003
AB .036 .54 .58 1.08 .048 .64 .64 1.07 .047 .71 .71 1.40

RSW1 .046 .58 .60 .551 .047 .65 .66 .536 .044 .70 .71 .702
RSW2 .048 .24 .25 .014 .048 .36 .37 .013 .047 .54 .55 .014

Ω = ΩZero

RCC .059 .63 .59 .003 .050 .66 .66 .003 .047 .69 .70 .003
CC .059 .61 .57 .003 .047 .63 .64 .003 .036 .62 .68 .003
AB .037 .65 .70 1.07 .046 .72 .73 1.05 .052 .75 .74 1.39

RSW1 .045 .59 .60 .541 .047 .67 .68 .529 .046 .71 .72 .700
RSW2 .046 .49 .52 .014 .043 .63 .65 .013 .046 .69 .71 .014

Ω = ΩPos

RCC .054 .76 .75 .003 .051 .75 .75 .003 .047 .72 .74 .003
CC .045 .72 .73 .003 .033 .68 .74 .003 .032 .63 .71 .003
AB .040 .82 .85 1.05 .049 .81 .82 1.04 .052 .78 .78 1.34

RSW1 .050 .80 .80 .547 .047 .78 .79 .537 .047 .73 .74 .700
RSW2 .046 .79 .80 .014 .045 .78 .79 .013 .046 .72 .73 .014

Note: Same as Table 1

Table 6: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests (mixed normal distribution, known Ω, n = 100)

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .049 .61 .62 .003 .051 .63 .62 .003 .055 .63 .61 .003
CC .049 .60 .61 .003 .049 .61 .61 .003 .051 .59 .59 .003
AB .049 .53 .55 1.08 .062 .61 .57 1.07 .069 .65 .61 1.40

RSW1 .055 .58 .56 .550 .063 .62 .59 .539 .063 .64 .60 .701
RSW2 .058 .24 .22 .014 .057 .34 .32 .013 .062 .51 .47 .014

Ω = ΩZero

RCC .049 .64 .64 .003 .047 .66 .67 .003 .054 .70 .68 .003
CC .046 .62 .64 .003 .043 .63 .65 .003 .041 .62 .66 .003
AB .052 .66 .65 1.07 .064 .69 .65 1.05 .068 .70 .65 1.39

RSW1 .053 .61 .60 .540 .064 .65 .61 .529 .063 .67 .62 .699
RSW2 .058 .57 .53 .014 .057 .64 .62 .013 .064 .67 .64 .014

Ω = ΩPos

RCC .053 .77 .76 .003 .048 .75 .75 .003 .056 .73 .72 .003
CC .039 .73 .76 .003 .033 .68 .74 .003 .037 .64 .69 .003
AB .045 .78 .80 1.04 .060 .76 .74 1.03 .069 .73 .68 1.34

RSW1 .051 .77 .77 .547 .058 .74 .72 .533 .063 .69 .64 .700
RSW2 .058 .78 .75 .014 .057 .74 .73 .013 .062 .70 .66 .014

Note: Same as Table 1.
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Table 7: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests (t(3) distribution, estimated Ω, n = 100)

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .067 .70 .64 .003 .053 .69 .69 .004 .053 .69 .68 .003
CC .067 .69 .64 .003 .053 .68 .67 .004 .046 .66 .67 .003
AB .042 .56 .57 1.23 .058 .64 .63 1.56 .060 .70 .68 1.12

RSW1 .057 .60 .59 .569 .059 .66 .64 .732 .057 .69 .67 .529
RSW2 .079 .29 .24 .026 .078 .40 .35 .026 .078 .56 .50 .023

Ω = ΩZero

RCC .063 .72 .67 .003 .051 .73 .72 .004 .056 .74 .73 .002
CC .063 .70 .66 .003 .048 .70 .70 .004 .041 .68 .71 .003
AB .043 .67 .69 1.22 .056 .72 .71 1.55 .066 .74 .69 1.11

RSW1 .057 .64 .63 .566 .059 .69 .67 .730 .057 .71 .68 .528
RSW2 .093 .67 .57 .026 .085 .71 .63 .026 .085 .72 .65 .023

Ω = ΩPos

RCC .053 .80 .79 .003 .052 .79 .79 .004 .053 .77 .75 .002
CC .043 .77 .78 .003 .037 .73 .78 .004 .032 .69 .75 .003
AB .050 .80 .80 1.19 .058 .79 .77 1.50 .064 .77 .72 1.07

RSW1 .059 .79 .77 .565 .059 .77 .75 .728 .057 .73 .71 .528
RSW2 .082 .79 .73 .026 .078 .78 .71 .026 .082 .74 .67 .023

Note: Same as Table 1.

Table 8: Finite Sample Maximum Null Rejection Probabilities and Size-Corrected Average
Power of Nominal 5% Tests (mixed normal distribution, estimated Ω, n = 100)

k = 10 k = 4 k = 2

Test MNRP WAP ScWAP Time MNRP WAP ScWAP Time MNRP WAP ScWAP Time

Ω = ΩNeg

RCC .096 .64 .47 .003 .067 .63 .57 .004 .066 .63 .58 .003
CC .096 .63 .46 .003 .066 .61 .56 .004 .063 .60 .56 .003
AB .047 .49 .50 1.23 .053 .56 .53 1.56 .055 .62 .61 1.12

RSW1 .046 .52 .53 .568 .055 .56 .55 .732 .053 .60 .60 .529
RSW2 .060 .24 .22 .026 .055 .33 .31 .026 .060 .48 .46 .023

Ω = ΩZero

RCC .096 .67 .51 .003 .074 .67 .60 .004 .066 .69 .64 .003
CC .096 .65 .49 .003 .070 .64 .57 .004 .055 .62 .61 .003
AB .046 .58 .59 1.22 .056 .64 .61 1.54 .053 .66 .65 1.11

RSW1 .045 .54 .57 .565 .055 .60 .58 .728 .053 .62 .61 .528
RSW2 .086 .52 .41 .026 .072 .58 .51 .026 .067 .61 .56 .023

Ω = ΩPos

RCC .065 .77 .72 .003 .061 .75 .71 .004 .068 .72 .66 .002
CC .053 .73 .72 .003 .044 .68 .71 .004 .050 .63 .64 .003
AB .039 .75 .80 1.19 .046 .73 .75 1.50 .055 .70 .68 1.07

RSW1 .045 .73 .76 .565 .046 .70 .72 .728 .053 .65 .64 .527
RSW2 .066 .74 .68 .026 .059 .70 .67 .026 .063 .65 .60 .023

Note: Same as Table 1.
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RCC test). This may reflect a type of refinement property for the bootstrap, but more

investigation is needed. It also is interesting to note that the over-rejection either disappears

or is greatly reduced when the true Ω is used, as shown in Tables 5 and 6. This seems to

suggest that the non-normality of the sample moments is less of an issue than estimating

the variance matrix in a relatively small sample.

G Numerical Details for Section 5.2

G.1 Calculation of the Identified Set

Let YU denote log(sN,i + 2/N)− log(1− sN,i + s) and let YL denote log(sN,i + s)− log(1−
sN,i + 2/N). For every θ0 in the identified set, there exists a δ = (δ1, δ2)′ ∈ R2 such that for

all z = (zc, ze)
′ ∈ {0, 1}2,

E[YU |z]− E[X|z]θ0 ≥ δ1 + δ2zc ≥ E[YL|z]− E[X|z]θ0. (224)

The identified set for θ0 can be solved via two linear programming problems once E[YU |z],

E[YL|z], and E[X|z] are calculated. Note that

E[X|z] = E[1{2ze + ε ≥ 0}] = Φ(2ze). (225)

We also need to calculate E[YU |z] and E[YL|z]. Let

`(s,N, c) =
N∑
i=0

(Ni ) si(1− s)N−i log(i+ c). (226)

Then

E[YU |z] = E[`(s∗, N, 2)− `(1− s∗, N,Ns)|z]

E[YL|z] = E[`(s∗, N,Ns)− `(1− s∗, N, 2)|z], (227)

where s∗ = exp(−1{2ze+ε>0}−zc+ε)
1+exp(−1{2ze+ε>0}−zc+ε) . The conditional expectations can then be calculated by

simulating a large number of ε draws. After obtaining, E[YU |z] and E[YL|z], we use linear

programming based on (224) to calculate the upper and the lower bound for θ0. We find the

bounds to be [−1.203,−0.757].
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G.2 Bisection Algorithm for Calculating Confidence Sets

We compute the confidence sets for θ0 implied by the sRCC, sCC, and the ARP hybrid tests

by following the same steps:

1. Find a point in the confidence set. Let this point be denoted θ̂0. Methods to find such

a point are given below.

2. Find a point θ̂L < θ̂0 that is outside the identified set. This is done by checking whether

θ̂0 − j is rejected for j = 1, 2, ... iteratively until a rejected point is found.

3. Use bisection to find a point between θ̂0 and θ̂LB that is a boundary point of the

confidence set. Specifically, check whether θ̂M = (θ̂0 + θ̂LB)/2 is rejected or not. If yes,

check the midpoint between θ̂M and θ̂0, and if not, check the midpoint between θ̂M

and θ̂LB. Continue this way until the desired accuracy is reached. The accuracy that

we use is 0.00049, yielding CI endpoints that are accurate to the third digit.

4. Let the last rejected point from Step 2 be denoted θ̂L. This is the computed lower

endpoint of the confidence interval.

5. Follow analogous steps to find the upper endpoint θ̂U .

6. Finally, the confidence interval is [θ̂L, θ̂U ].

Remarks. (1) The bisection algorithm is much more efficient than grid search in finding

the endpoints accurately. However there is one caveat: the confidence set from inverting

either the sRCC, the sCC, or the ARP hybrid test is not guaranteed to be an interval.

The algorithm above always yields an interval. This interval sometimes is the confidence

set itself, sometimes is the convex hull, and sometimes is a sub-interval of the confidence

set. In our experience, however, the difference between the bisection confidence interval

and the test-inversion confidence set is rarely big. The coverage probability of the bisection

confidence interval is in fact slightly higher than the test-inversion confidence set (computed

via grid-search).

(2) The initial point in the confidence set for the sRCC and sCC tests are obtained using

iterated generalized method of moments (GMM). To describe the iterated GMM procedure,

first note that the moment inequality model of the subvector simulation example is of the

form:

YZ −XZθ0 − CZδ ≤ 0, (228)
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where

YZ =
(

E[−n−1
∑n
i=1 YU,iI(Zi)|{Zi}]

E[n−1
∑n
i=1 YL,iI(Zi)|{Zi}]

)
,

XZ =
(

E[−n−1
∑n
i=1 XiI(Zi)|{Zi}]

E[n−1
∑n
i=1 XiI(Zi)|{Zi}]

)
, and

CZ =
(
−n−1

∑n
i=1 I(Zi)Z

′
ci]

n−1
∑n
i=1 I(Zi)Z

′
ci]

)
.

Let ŶZ =
(
−n−1

∑n
i=1 YU,iI(Zi)

n−1
∑n
i=1 YL,iI(Zi)]

)
and X̂Z =

(
−n−1

∑n
i=1 XiI(Zi)

n−1
∑n
i=1XiI(Zi)

)
. Let Σ̂Z(θ) be an estimator of

the conditional variance of
√
n(YZ −XZθ) given {Zi}ni=1 as a function of θ.

Let Σ̂Z = Σ̂Z(0), and let

(θ̂1, δ̂
′, µ̂′)′ = arg min

θ,δ′,µ′:µ≤0
(YZ −XZθ − CZδ − µ)′Σ̂−1

Z (YZ −XZθ − CZδ − µ)′. (229)

If θ̂1 is not rejected by the sCC (sRCC) test, let θ̂0 = θ̂1. Otherwise, update Σ̂Z with Σ̂Z(θ̂1)

and repeat (229). Iterate until either (1) a point that is not rejected is found, or (2) the

update to the GMM estimator of θ is small, or (3) a maximum number of iteration is reached.

If the iteration ended in either (2) or (3), let the confidence interval be the singleton that is

the last point checked. In our simulations, (2) and (3) never occurred. In the majority of

the times, θ̂1 is already not rejected and no iteration is needed.

(3) The initial point in the confidence set for the ARP hybrid test is obtained in a similar

iterative approach, except that instead of using GMM, we minimize the maximum violation

of the inequalities. That is, (229) is replaced by

(θ̂1, δ̂
′, τ)′ = arg min

θ,δ′,τ :τ≥0
τ s.t.

D̂
−1/2
Z (YZ −XZθ0 + CZδ) ≤ τ1, (230)

where D̂Z is the diagonal matrix sharing diagonal elements with Σ̂Z .
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