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11. OUTLINE

THIS SUPPLEMENT INCLUDES six appendices.

Supplemental Appendix A gives proofs of Theorems 1 and 2(a).

Supplemental Appendix B provides a number of supplemental results to the
main paper. These include:

(i) results for Kolmogorov—Smirnov (KS) and approximate Cramér—von
Mises (A-CvM) tests and CS’s in Section 13.1,

(ii) three additional examples of collections G and probability measures Q
that satisfy Assumptions CI, M, FA(e), and Q in Section 13.2,

(iii) the verification of Assumption GMS2(a) under some conditions on S,
0, and « in Section 13.3,

(iv) an illustration of the verification of Assumptions LAI1-LA3 in Sec-
tion 13.4,

(v) an illustration of some uniformity issues that arise with infinite-
dimensional nuisance parameters in Section 13.5,

(vi) an illustration of problems with pointwise asymptotics in Section 13.6,
and

(vii) coverage probability results for subsampling tests and CS’s under drift-
ing sequences of distributions in Section 13.7.

Supplemental Appendix C provides proofs of the results that are stated in
the main paper but are not proved in Supplemental Appendix A. These in-
clude:

(i) the proofs of Lemmas 2 and 3 and Theorem 2(b) in Section 14.1,

(ii) the proofs of Lemma 4 and Theorem 3 concerning fixed alternatives in
Section 14.2,

(iii) the proof of Theorem 4 concerning local power in Section 14.3, and

(iv) the proof of Lemma 1 concerning the verification of Assumptions S1-S4
in Section 14.4.

Supplemental Appendix D provides proofs of the results stated in Supple-
mental Appendix B. These include:

(i) the proofs of Kolmogorov—Smirnov and approximate Cramér-von
Mises results in Section 15.1,
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(ii) the proof of Lemma B2 in Section 15.2,

(iii) the proofs of Theorems B4 and BS regarding uniformity issues in Sec-
tion 15.3, and

(iv) the proofs of the subsampling results in Section 15.4.

Supplemental Appendix E proves Lemma A1, which is stated in Supplemen-
tal Appendix A.

Supplemental Appendix F provides the simulation results for the mean se-
lection and interval-outcome regression models and additional material (and
results) concerning the simulations in the quantile selection and entry game
models.

12. SUPPLEMENTAL APPENDIX A

This appendix provides proofs of the uniform asymptotic coverage proba-
bility results for GMS and PA CS’s. In particular, it proves Theorems 1 and
2(a). Proofs of the other results stated in the paper are given in Supplemental
Appendix C.

12.1. Proof of Theorem 1

The following lemma is used in the proofs of Theorems 1, 2, 3, and 4. It
establishes a functional CLT and uniform LLN for certain independent non-
identically distributed empirical processes.

Let h, denote a k x k-matrix-valued covariance kernel on G x G (such as an
element of H,).

DEFINITION SubSeq(4,): SubSeq(4,) is the set of subsequences {(0,,, F,,):
n > 1}, where {a, :n > 1} is some subsequence of {n}, for which

(1) lim sup ||h2,Fa,, (Hﬂn’ 8> g*) - hz(g, g*) ” =0,

=0 g,g%eg

(ii) 0,, € O, (iii) {W;:i > 1} are i.i.d. under F,,, (iv) Varg, (m;(W;,6,,)) >0
for j=1,...,k, for n>1, (v) sup,., Er, |m;(W, 0,,)/0F,, ;(04,)*° < oo for
j=1,..., k,for some 6 > 0, and (vi) Assumption M holds with F,, in place of
F and F, in Assumptions M(b) and M(c), respectively.

The sample paths of the Gaussian process vy, (), which is defined in (4.2) and
appears in the following lemma, are bounded and uniformly p-continuous a.s.
The pseudo-metric p on G is a pseudo-metric commonly used in the empirical
process literature:

(12.1)  p(g, &) =tr(ha(g, 8) — ha(g, &) — h2(g", &) + ha(g", &¥)).
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For h,(-,-) = hy ¢ (0, -, -), where (0, F) € F, this metric can be written equiva-
lently as

(122)  p*(s.g") = Er|D; X (O)[(Wi, 0, 8) — (W, 6,¢7)][",  where

’T/"(I/I/la 0’ g) = m(I/I/” 03 g) _EFm(W, 03 g)'

LEMMA A1l: For any subsequence {(8,,, F,,) :n > 1} € SubSeq(h,),
(@) va,.r,, (Oa,» -) = i, (+) as n — oo (as processes indexed by g € G), and

(b) Supg,g*eg ”hZ,an,Fa,,(Ha,,a 8 g*) - hZ(ga g*)” —>p 0as n— oo.

COMMENTS: (i) The proof of Lemma Al is given in Supplemental Ap-
pendix E. Part (a) is proved by establishing the manageability of {m(W,, 6,,, g) —
Eg, m(W,, 0,,,8):g € G} and by establishing a functional CLT for RF-valued
i.n.i.d. empirical processes with the pseudo-metric p by using the functional
CLT in Pollard (1990, Thm. 10.2) for real-valued empirical processes. Part (b)
is proved using a maximal inequality given in Pollard (1990, (7.10)).

(ii) To obtain uniform asymptotic coverage probability results for CS’s,
Lemma Al is applied with (6,,, F,,) € F for all n > 1 and h, € H,. In this
case, conditions (ii)—(vi) in the definition of SubSeq(#,) hold automatically by
the definition of F. To obtain power results under fixed and local alternatives,
Lemma Al is applied with (6,,, F,,) ¢ F for all n > 1 and A, may or may not
be in Hz.

PROOF OF THEOREM 1 : First, we prove part (a). Let {(6,, F,) € F:n> 1}
be a sequence for which 4, f,(6,) € H o for all n> 1 and the term in square
brackets in Theorem 1(a), evaluated at (6,, F,), differs from its supremum
over (0, F) € F with h, p(0) € H,,cp by 8, or less, where 0 < 8, — 0 as n — oo.
Such a sequence always exists. To prove part (a), it suffices to show that part
(a) holds with the supremum deleted and with (6, F) replaced by (6,, F,).

By the compactness of H, ., given any subsequence {u, :n > 1} of {n}, there
exists a subsubsequence {a, :n > 1} for which d(hyr,, (0,,), hao) — 0 as n —
oo for some 6, € @, where d is defined in (5.6), and some £,y € H, ¢. This and
(0,,, F,,) € Fforall n > 1 imply that {(6,,, F,,) :n > 1} € SubSeq(h,,).

Now, by Lemma Al, we have

Z“W’Fﬂn (aan’ ) vhz‘o(')
(12.3) <h2,ay,,F,m(0a,,5 ‘)> = (hz,o(') as n— oo

as stochastic processes on G, where ’ﬁz,an,pan(ean, g) = Ez,an, Fay (04, &> &) and

hy0(8) = hao(g, 8)-
Given this, by the almost sure representation theorem (e.g., see Pollard
(1990, Thm. 9.4)), there exists a probability space and random quantities v,, (-),
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hz a (s (+), and hz( ) deﬁned on it such that (i) (#,,(-), hz ,(+)) has the same

distribution as (v,,.r,, (64,5 ), hz ansFay (Oays ), (i) (P0(-), ,(-)) has the same
distribution as (v, (-), h,0(+)), and

j}an(g) V()(g)
<hz,an<g>> (hm))”éo as n—00 as.

Because 1, (+) is deterministic, condition (ii) implies that hy(-) = hyo(-) ass.
Define

(12.5)  hS, () =hye, () + & - Diag(ha, (10)),

(12.4) (i) sup

geg

7, = / S (P () + Hrm o (Burs ), 150 (2)) dO(E),
h§,0(~) = hyo(-) + €li,

T, o= f SF0(8) + Hrarrs, (B 85 12 0(8)) dO(g).

By construction, 7,, and 7, (6,,) have the same distribution, and T, , and
T (h,, F,, (04,)) have the same distribution for all n > 1.
Hence, to prove part (a), it suffices to show that

(12.6) A =limsup[Pz, (T,, > x,

n—o00

) = P(Tp 0+ 8> xn, 1 (8,))] <0.

ﬂn,Fan

Below we show that
127y T, —T,0o—0 as n—oo as.
Let

(12.8) A4, = T+ (To, = Topo) > Xhgy rar Bun) — (T, 048> X hay iy Pan))
=A"— A, where

A~; = max{Zn, 0} €[0,1] and
Z; = max{—ANn, 0} [0, 1].

~

By (12.7) and 6 > 0, lim,,,, A} = 0 a.s. Hence, by the bounded convergence
theorem,

(12.9)  lim Es, A* =0,

A =limsup Ep,, A,

n—oo
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=limsup Er,, A* —liminf E Far A,

n—0o0o

= —liminf E;, A; <0.

hn—00

Hence, (12.6) holds and the proof of part (a) is complete, except for (12.7).
To prove part (b), analogous results to (12.6), (12.8), and (12.9) hold by anal-
ogous arguments.
It remains to show (12.7). We do so by fixing a sample path « and using the

bounded convergence theorem (because 7,, and T,, o are both integrals over
g € G with respect to the measure Q). Let  be the collection of all € 2
such that (v,,(g), fzz,an (8))(w) converges to (¥y(g), h2,0(g))(w) uniformly over
ge€Gasn— ooand SUP,cg 170(g)(w)|| < oco. By (12.4) and fzz(~) =hyo(-) as.,
P(fl) = 1. Consider a fixed w € . By Assumption S2 and (12.4), forall g € G,

(12.10)  sup  |S(5a, () (@) + . 5, (8)(®))

rel0,00)P x {0}V
— S(P0(g) (@) + ., hSo(g))| = 0
as n — oo. Thus, forallge G and all w € ﬁ,

(12.11) 870, (8)(@) + Faay s, B )5BS, (8)(@))
— S(9(&) (@) + ha,.5,y (04, 8)5 B54(8)) > 0 as n— oo,

Next, we show that, for fixed w € !~2, the first summand on the left-hand
side of (12.11) is bounded by a constant. Let 0 < x < 1. By (12.4), there exists
N < oo such that, for all n > N,

(12.12) sup|#,,(8)(w) — By(g)(w)| < x and

geg

| Diag (7., (10)) (@) — I | < x,

using the fact that Diag(h,o(1x)) = I, by construction. Let B (w) =
SUp,.¢ [170(8) (@) + x. Then, for all n > N,

(12.13)  sup||7,, (g)(w)| < By(w) < oc.
geg

First, consider the case where no moment equalities are present, that is, v =
0 and k£ = p. In this case, for n > N, we have: for all g € G,

(12.14) 0 < S(70, (&) (@) + 1,0, 10, (Bans ) 15, (9)(@))
< 8(¥,(8)(@), 15, (8)(w))
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< S(~By(»)1,, & - Diag(hs,,,(1,)))
< S(=By(o)1,, (1 — x)1,),

where the first inequality holds by Assumption S1(c), the second inequality
holds by Assumption S1(b) and h,,,r,, (0,,,&) > 0, (which holds because
(0.,, F,,) € F), the third inequality holds by Assumption S1(b) and (12.13)
as well as by Assumption S1(e) and the definition of 45, (g)(w) in (12.5), and

the last inequality holds by Assumption S1(e) and (12.12). For fixed w € (2, the
constant S(—B, (w)1,, e(1 — x)I,) bounds the first summand on the left-hand
side of (12.11) for all n > N.

For the case where v > 0, the third inequality in (12.14) needs to be al-
tered because S(m,3) is not assumed to be non-increasing in my;, where
m = (mj, my). In this case, for the bound with respect to the last v ele-
ments of 7,,(g)(w), denoted by v,, 1(g)(w), we use the continuity condition
on S(m, %), that is, Assumption S1(d), which yields uniform continuity of
S(—B,(w)1,, my, (1 — x)I) over the compact set {my : [|my|| < B,(w) < oo}
and delivers a finite bound because sup,.g .- 174, n1(8) ()| < B, (w).

By an analogous but simpler argument, for fixed w € (2, the second summand
on the left-hand side of (12.11) is bounded by a constant.

Hence, the conditions of the bounded convergence theorem hold, and for
fixed w € (2, Tan(w) — Tan,()(w) — 0 as n — oo. Thus, (12.7) holds and the
proof is complete. Q.E.D.

12.2. Proof of Theorem 2(a)

For GMS CS’s, Theorem 2(a) follows immediately from the following three
lemmas. The PA critical value is a GMS critical value with ¢,(x) = 0 for all
x € R and this function ¢,(x) satisfies Assumption GMS1 (though not As-
sumption GMS2(b)). Hence, Theorem 2(a) for GMS CS’s covers PA CS’s.

LEMMA A2: Suppose Assumptions M, S1, and S2 hold. Then, for every com-
pact subset H, .,y of H, and all 6 > 0,

limsup sup  Pr(T,(0) > co(hnr(60),1—a)+8) <a
n—o00 (0,F)eF:
hZ,F(e)EHZ,Cpt

LEMMA A3: Suppose Assumptions M, S1, and GMS1 hold. Then, for every
compact subset H, . of Ha,

im  sup  Pr(c(ea(6), hru(6),1—a)
n—00  (9,F)eF:
hZ,F(G)EHZ,cpt

< c(hl,n,F(e)’ ;I\Z,n(e)7 1- 0()) =0.
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LEMMA A4: Suppose Assumptions M, S1, and S2 hold. Then, for every com-
pact subset H, .y of H, and for all 0 < 6 < m (Where n is as in the definition of
c(h,1—a)),

lim  sup  Pp(c(hinr(8), h2n(6),1— )
n—=00  (9,F)eF:
hZ,F(e)EHZ,cpt

< co(h1,ur(0), horp(0),1—a)+6) =0.
The following lemma is used in the proof of Lemma A4.

LEMMA AS: Suppose Assumptions M, S1, and S2 hold. Let {h,,:n > 1} and
{h3 ,:n > 1} be any two sequences of k x k-valued covariance kernels on G x G
such that d(hyn, b3 ,) — 0and d(hy,,, hyo) — 0 for some k x k-valued covari-
ance kernel hyoon G x G. Then, for all n, > 0 and all 6 > 0,

liminf inf [C()(h], h27n, l—a+ 7]1) +6— Co(l’ll, h;,rﬂ 1-— Cl()] > 0.

n—oo hieH;
PROOF OF LEMMA A2: For all 6 > 0, we have

(12.15) limsup sup  Pp(T,(0) > co(har(6),1 —a) + )
n—o00 (0,F)eF:
hZ,F(O)EHZ,cpt

<limsup sup [Pp(T.(6) > co(h,r(6),1—a)+3)
n—00 (0,F)eF:
hZ,F(g)EHZ,cpt

- P(T(hn,F(G)) > Co(hn,F(e), 1- 01))]
+limsup  sup  P(T(h,r(6)) > co(hnr(6),1—a))

n—o00 (0,F)eF:
h2,F(9)6H2,cpt

<0+a,

where the second inequality holds by Theorem 1(a) with x,, s = co(h,,r(0),
1— @)+ 6 and by the definition of the quantile ¢y(4,, ¢(0), 1 —a) of T (h, ¢(6)).
O.E.D.

PROOF OF LEMMA A3: Let {(6,, F,) € F:n > 1} be a sequence for which
hy r,(6,) € Hy o and the probability in the statement of the lemma evaluated
at (6,, F,) differs from its supremum over (6, F) € F (with hy z(60) € Ha )
by 8, or less, where 0 < 6, — 0 as n — oo. Such a sequence always exists. It
suffices to show that

(12.16)  lim Py, (c(@n(62); 2,n(6,), 1 — @)

< (R, (6), Fo,n(8,),1 = @) =0,
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By the compactness of H, «y, given any subsequence {u,:n > 1} of {n},
there exists a subsubsequence {a, :n > 1} for which d(h f,, (0,,), h2o) — 0 as
n — oo, for some h, € H, . This and (6,,, F,,) € F for all n > 1 imply that
{(0,,, F,,):n>1} € SubSeq(h,,). Hence, it suffices to show that

(1217)  1im Pr,, (¢(¢a,(00,)s B0, (00,), 1 — @)

< c(Panpa (Ba)s By (04), 1 — @) =0

for {(0,,, F,,):n> 1} € SubSeq(/,,).
By Lemma Al(a), for {(6,,, F,,) :n > 1} € SubSeq(4,), we have

(1218) Vay,Fay, (Oan, )= th,ﬂ(') as n— oQ.

We now show that, for all sequences 7, — oo as n — oo, we have
(1219) lim PFan( sup ‘Va,,,Fan,j(oa,,a g)‘ > Tan) = 07
e geG.j<p
where v,, r, j(0.,, g) denotes the jth element of v,, ¢, (0,,,8). We show this
by noting that (12.18) and the continuous mapping theorem give: V7 > 0,
(12.20) ,}LH;PF“"( sup |van,Fan,]~(0an, g)| > T> =P< sup |vh2,0,j(g)| > 7),

8€G,j=p 8€g,j=p

where v, ;(g) denotes the jth element of v, (g). In addition, the sample
paths of v,  ;(-) are bounded a.s., which yields 1(supg6g - [Vhy 0. (&) >T7) =0
as 7 — oo a.s. Hence, by the bounded convergence theorem,

(12.21) lim P( sup |vn,, ;(8)| > T) —0.

8€g,j<p

Equations (12.20) and (12.21) imply ( 12.19).
Next, we have

(12.22)  &,,(0,,,8) =K, (D,"*(84,, 8)D’ (6.,))
x @)Dy (84,)714, (04, €)
=, Diag™"*(ha.4, r,, (04, 8))
X (Vay. iy Bans 8) + M1,y (Bans 8)),

where the second equality holds by the definitions of l_zz,an,pan(()an,g),
VarFa, (0ans 8), and Ay 4, £, (0,,,8) in (5.2) and D,(6, g) = Diag(3,(0, 8)).
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Consider constants {7, :n > 1} such that 7, - oo and 7,/k, — 0 as n — oc.
We have

(1223) P, (¢(@ur(8ar)s Hray(Ba)s 1 — )
< c(hl,a,,,Fan (Ba,,)a il\Z,an(Ban)a 1 - a))
=< PFan (@an,j(ean’ 8) > hl,an,Fan»/(ean’ g)

for some j < p, some g € G)
S PFan (gan,j(eana g) > 1 & hl,an,Fun,j(ea,,: g) < Ban

for some j < p, some g € G)

= Pri, (127, (Bois )V (80 8)

=12
+ hz,a,,,F,,,, ,j(ean ) g)hl,an,Fan’j(oan’ g)] > Kq,

& hya,r,,.i(0a,» &) < By, for some j < p, some g € g)
<Pr, ([7a, + 135 1 Buss O 1,11 (00, 8)] > K,y &
Mi,a.Fa,,i(0ar> 8) < Ba, for some j < p, some g € G)

+PFan< Sup \l_lZ_il{XZ,Fan,j(eﬂn’ g)V“naFunaj(Gan’ g)| > T“n)

8€g,j<p

<P, (h. e (Burs P10y iy (Oans 8) > Kay — Tay &

2,an,Fay,Jj

]:l_l/zpan ’j(ean7 g)hl,tln,Fan’j(aan7 g) < 871/2(1 + 01,(1))Ba,,

2,ap,
for some j < p, some g € G) + o(1)
=o(D),

where the first inequality holds because ¢y(4,1 — @ + n) and c(h, 1 — «) are
non-increasing in the first p elements of /#; by Assumption S1(b), the sec-
ond inequality holds because (6,,, F,,) € F implies that hy,,r,, j(04,,8) >
0 Vj < p,V¥g € G and Assumption GMSI1(a) implies that (i) ¢,, ;(0.,,8) =
0 < hia,.r,,i(04,, &) whenever &, ;(0,,,8) <1 and (ii) ¢, ;(0,,,8) < B,, as.
Vj < p,Vg € G, the third inequality holds by (12.22), the fourth inequal-
ity holds because P(A) < P(A N B) + P(B°), the last inequality holds be-
cause (i) hy, p, (04,5 8) < & 2hyy[ (1, 1)1+ 0,(1) = £72(1 + 0,(1))
by Lemma A1(b) and (5.2) and (ii) the second summand on the left-hand
side of the last inequality is o(1) by (12.19) with 7, replaced by &'/*7, /2
using (i), and the equality holds because (k,, — 7,,) — & /*(1 + 0,(1))B,, =
Kay(1 — 74, /Ka, — € 2(1 + 0,(1))By,/Ka,) = Ka,(1 + 0,(1)) using Assump-
tion GMS1(b) and «,, — oo as n — oo.
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Hence, (12.17) holds and the lemma is proved. Q.E.D.

PROOF OF LEMMA A4: The result of the lemma is equivalent to

(12.24) lim  sup  Pp(co(hynr(6), hyn(6),1—a+n)
n—=>00  (9,F)eF:
hy, p(0)€H cpt
< CO(hl,n,F(9)5 hZ,F(e)’l - (X) - 8*) = O’

where ¢* =1 — 6 > 0. By considering a sequence {(6,, F,,) € F:n > 1} that is
within 6, — 0 of the supremum in (12.24) for all n > 1, it suffices to show that

(12.25)  lim Py, (co(R1n,(02), han(6,), 1 = a+ )

< Co(M1n.5,(6), hap, (6,),1 — @) — &%) =0.

Given any subsequence {u,} of {n}, there exists a subsubsequence {a,}
such that d(hyf,, (04,), h2o) — 0 as n — oo for some h, € H, o, because
hy r,(0,) € H, . Hence, it suffices to show that (12.25) holds with a, in place
of n.

The condition d(hyr, (04,), h20) — 0 and (6,,F,) € F for all n > 1
imply that {(6,,,F,,):n > 1} € SubSeq(h,). Hence, by Lemma Al(b),
d(i’l\z’an’pan (04,), h29) =, 0 as n— oo. Furthermore,

(12.26) T2 (0uns 85 &7)
5;;11/2(0“ )gdn (O“n s g g*)ﬁ_l/z(ea")
= Diag(il\z an,Fay, (Gan’ lk)) 124>

X Dlag(hz ansFay (B> 1))~

h2 ,an, Ffln ( an» g’ g*)

1/2

Hence, d(iz\z an(04,), h29) =, 0 as n — oo. Given this, using the almost sure
representatlon theorem as above we can construct {hz ay (g,8):8,8 € G}

such that d(hz ans M20) = 0 as n — oo a.s. and hz a, and hz «,(04,) have the
same distribution under (0,,, F,,) forall n > 1.

For fixed w in the underlying probability space such that d(fzz,an(-, Iw),
hyo) — 0 as n — oo, Lemma AS with hy, = hy ., (@) (= ha, (-, ) (@), b, =
ha,r,, (8a,), hao = hayp, and m; = 7 gives: for all & > 0,

(12.27)  liminf[co(h1,a, £, (8a,)s Hran (@), 1 — -+ 1) + 6

- CO(hl,an,Fan (eay,); hZ,Fa,, (ea,z)al - a)] > O
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Equation (12.27) holds a.s. This implies that (12.25) holds with a,, in place of

n because (i) h,,, and 71\2,%(0,,”) have the same distribution for all n > 1 and
(ii) for any sequence of sets {A4,:n > 1}, P(A4, ev.) (=P(U,_, N, Ar) =1
(where ev. abbreviates eventually) implies that P(A,) - 1 as n — oco. Q.E.D.

PROOF OF LEMMA AS5: Below we show that, for {£,,} and {h},} as in the
statement of the lemma, for all constants Xnny, € R that may depend on #; €

H, and A3 ,, and all 6 > 0,

(12.28) limsup sup [P(T (hy, ho) < Xpyn; )

=00 pien,

— P(T(hl, h;n) < Xhl‘h;’” + 8)] <0.

Note that this result is similar to the results of Theorem 1.
We use (12.28) to obtain: for all 6 > 0 and 1; > 0,

(12.29) limsup sup P(T(hi, hyy) < co(hy, B, 1 — @) — 6)

n=00  hyeHy

<limsup sup [P(T(hi, hyn) < co(h1, B3, 1 — @) — 5)

n—00  piem,
— P(T(h1, h;,n) < Co(h], h;,n’ 1- C() — 5/2)]
+limsup sup P(T (hy, h3,) < co(hy, b5, 1 — o) — 8/2)

=00 pieHy
<0+1—-«
<l—a+mn,

where the second inequality holds by (12.28) with §/2 in place of § and
Xy n3, = Co(hy, B3, 1 — @) — & and by the definition of the 1 — a quantile of
T(hy, h3,).

We now use (12.29) to show by contradiction that the result of the lemma
holds. Suppose the result of the lemma does not hold. Then, there exist con-
stants 6 > 0 and &* > 0, a subsequence {a,:n > 1}, and a sequence {h,,, €
‘H;:n > 1} such that

(1230) lim [CO(hl,a,,a I’lz,a", 1—a+ 7]1) +6— CO(hl,a,,, h;,a,,’ 1- a)] <—-&" <.

Using this and (12.29), we have
(12.31) limsup P(T(h1,a,, h2a,) <Co(h1ap5 Moayy 1 — 0+ 1) + 8)

n— 00

<limsup P(T (hya,, ho0,) <Co(P1a,s 15, 1 — ) — £°/2)

n—oo
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<limsup sup P(T(hy, hy,,) < co(hi, b3, , 1 —a) —&°/2)

n—oo  hjeH,

<l—a+mny,

where the first inequality holds by (12.30) and the last inequality holds by
(12.29) with &¢*/2 in place of 6.

Equation (12.31) is a contradiction to (12.30) because the left-hand-side
quantity in (12.31) (without the limsup,_, ) is greater than or equalto 1 — o+
1, for all n > 1 by the definition of the 1 — « + n; quantile ¢y(k,.4,, h24,, 1 —
a + my) of T(hy,,, ha,,). This completes the proof of the lemma except for
establishing (12.28).

To establish (12.28), we write

(12.32) limsup sup [P(T(hy, ho) < X3, 05,) — P(T(h1, B3 ) < X, 05, + 8)]

n—>00  piem,

<limsup sup [P(T(hi, ha,y) < xh]’h’z‘vn) — P(T(hy, hay)

=00 hieHy
<Xz, +8/2)]
+ lim Sup sup [P(T(hl, ]’lz’()) < xh]!h’zﬂvn + 6/2) — P(T(l’ll, hz’n)

n—oo hl€H1

= Xnhs, + 3)]

The first summand on the right-hand side of (12.32) is less than or equal to 0 by
the same argument as used to prove Theorem 1(a) with v,, r, (6,,,-) replaced
by v, () in (12.3), where v, , (-) is defined in (4.2), because d(hy,q4,, h20) —
0 as n — oo implies that the Gaussian processes vy, , (-) = vy, (+) as n — oo.
This argument uses Assumption S2.

Similarly, the second summand on the right-hand side of (12.32) is less than
or equal to 0 by an argument analogous to that for Theorem 1(b). Hence,
(12.28) is established, which completes the proof. Q.E.D.

13. SUPPLEMENTAL APPENDIX B
13.1. Kolmogorov-Smirnov and Approximate CvM Tests and CS’s

In this appendix, we provide results for Kolmogorov—Smirnov (KS) and ap-
proximate CvM (A-CvM) tests and CS’s defined in Sections 3.1, 3.5, and 4.2,
respectively. A-CvM tests are Cramér—von Mises-type tests in which the test
statistic is an infinite sum that is truncated to include only the first s, func-
tions {g1, ..., g5, ], Or the test statistic is an integral with respect to the measure
QO and the integral is approximated by a (possibly weighted) average over the
functions {g, ..., g}, which are obtained by simulation or by a quasi-Monte
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Carlo method. The same functions {g, ..., g} are used for the test statis-
tic and the critical value. In the case of simulated functions, the probabilis-
tic results given here are for fixed (i.e., nonrandom) functions {gi, ..., g;,}. If
{g1,.-., &} are obtained via i.i.d. draws from Q, then the probability results
are made conditional on the observed functions {gy, ..., g} forn> 1.

We show that (i) KS and A-CvM CS’s have uniform asymptotic coverage
probabilities that are greater than or equal to their nominal level 1 — «;, (ii) KS
and A-CvM tests have asymptotic power equal to 1 for all fixed alternatives,
and (iii) KS and A-CvM tests have asymptotic power that is arbitrarily close to
1 for a broad array of n~/?-local alternatives whose localization parameter is
arbitrarily large.

We consider a slightly more general KS statistic than that defined in (3.7):

(13.1)  T,(6) = sup S(n'm,(6, 8), 3.(6, 2)),

8€n

where G, C G.
For KS tests and CS’s, we make use of the following assumptions.

ASSUMPTION KS: G, 1 G as n — oo.

Let Wiy denote a subset of W (the set of k x k positive-definite matrices)
containing matrices whose eigenvalues are bounded away from zero and infin-

1ty.

ASSUMPTION S2': S(m, 3) is uniformly continuous in the sense that, for all
bounded sets M in R* and all sets Wi,

sup sup sup |S(m+p, ) — S(my+ ., 3)|
nel0,00)P x {0}V m,moeM: 3, 3)eWpq:
Im—mgl<é |3-3,) <8

—-0 as 6—0.
The following lemma shows that Assumption S2' is not restrictive.
LEMMA B1: The functions Sy, S, and S; satisfy Assumption S2'.

The following assumption is a strengthening of Assumptions LA1(b) and
LA2.

ASSUMPTION LA2": (a) For all B < 00,SUp,gy o<p 111,05, (0, 8) —
hi(g)|l = 0 as n — oo, where 0,, F,, and h((g) are as in Assumption LA1,
and
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(b) the k x d matrix II;(0, g) = (3/30)[D;"*(0)Erm(W,, 0, g)] exists and
satisfies: for all sequences {6,:n > 1} such that §, — 0 as n — oo,

sup sup|II,(60,8) — (60, 8)| >0 as n— oo and

16—6l<5, g€g

SUPHHFO(OO: g)” < 00,
geg

where 6y, Fy, and F, are as in Assumption LA1.

Assumption LA2'(a) only requires uniform convergence of 4, , r,(6,, g) to
hi(g) over {g € G:h{(g) < B} because uniform convergence over g € G typi-
cally does not hold. Assumption LA2' is not restrictive.

For A-CvM tests and CS’s, we use Assumptions S2';, LA2’, and the follow-
ing assumptions, which hold automatically in the case of an approximate test
statistic that is a truncated sum with s, — oo.

ASSUMPTION Al: The functions {g, ..., g} for n > 1 are fixed (i.e., nonran-
dom) and s, — oo as n — oo.

ASSUMPTION A2: The functions {g, g, - ..} satisfy

> won(O)S(m*(80), ho.ry (0., 80) + €l

=1
—>/S(m*(g),hzyFo(G*,g)—|—elk)dQ(g) as n— oo,

where m*(g) = (mi(g), ..., mg(8)), mj(g) = Exm;(W,, 0,)8;(X:)/0r, ;(0.),
0. and F, are defined as in Assumption FA, wp ,(£) = Q({g,}) in the case of
an approximate test statistic that is a truncated sum, wy ,(£) = n™" in the case of
an approximate test statistic that is a simulated integral, and wy ,(€) is a suitable
weight when a test statistic is approximated by a quasi-Monte Carlo method.

ASSUMPTION A3: The functions {g1, g, . . .} satisfy: for some sequence of con-
stants {B* <oco:c=1,2,...} such that B — 0o as ¢ — oo,

> woa(O1(hi(ge) < Br)S(ITo(ge) Ao, ha(ge) + &li)

=1
- / 1(h(g) < B2)S(Io(g) Ao, ha(g) + £1,) dO(g) as n— oo,

where 11,(g) = 1, (00, &), h2(g) = hy 5, (60, 8), and 6, and F, are defined as in
Assumption LAL.
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Assumptions A1-A3 are not restrictive because (i) they hold automatically
if the approximate test statistic is a truncated sum and (ii) if the approximate
test statistic is a simulated integral and {g1, g, ...} are i.i.d. with distribution Q
and s, — 0o as n — oo, then they hold conditional on {gy, g, ...} with proba-
bility 1.

The following result establishes that nominal 1 — « KS and A-CvM CS’s have
uniform asymptotic coverage probability greater than or equal to 1 — a.

THEOREM B1: Suppose Assumptions M, S1, and S2' hold and Assump-
tion GMS1 holds when considering GMS CS’s. Then, for every compact subset
Ho,epe Of Hay KS-GMS, KS-PA, A-CvM-GMS, and A-CvM-PA confidence sets
CS, satisfy

liminf inf  Pr(0€CS,)>1-a.

n—00 (0,F)eF:
hZ,F(G)EHLCpL

COMMENTS: (i) None of Assumptions KS, A1, A2, or A3 are needed in The-
orem B1.

(ii) Theorem B1 is an analogue of Theorem 2(a) for CS’s based on KS and
A-CvM statistics. It is proved by making adjustments to the proof of Theo-
rem 2(a). An analogue of Theorem 2(b) is not given here because the proof
of Theorem 2(b) does not go through with KS or A-CvM test statistics. The
proof of Theorem 2(b) utilizes the bounded convergence theorem, which ap-
plies only if the test statistic is an integral with respect to some measure Q.
The continuous mapping theorem cannot be applied because the convergence
of ., (04, ) 10 hy o £, (69, &) is not uniform over g € G for many sequences
{(6,, F,) € F:n>1},where (6,, F,) — (6, Fy).

The next result shows that KS and A-CvM tests have asymptotic power equal
to 1 against all fixed alternatives. This implies that any parameter value outside
the identified set is included in a KS or A-CvM CS with probability that goes
to zero as n — o¢o; see the Comment to Theorem 3.

THEOREM B2: Suppose Assumptions FA, Cl, Q, S1, S3, and S4 hold, As-
sumption KS holds when considering the KS test, and Assumptions Al and A2
hold when considering A-CvM tests. Then, the KS-GMS and KS-PA tests satisfy
the results of Theorem 3 concerning power under fixed alternatives. In addition,
A-CvM-GMS and A-CvM-PA tests, respectively, satisfy

(a) limnﬂoc PFO(Tn,sn(e*) > CS”(QD,Z(Q*), hZ,n(e*), 1- Cl()) =1land

(b) limn»oo PFU(Tn,s,,(O*) > Cs,,(oga ;Z\Z,n(g*)a 1 - 0[)) = 1

The following result is for n~/?-local alternatives.
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THEOREM B3: Suppose Assumptions M, S1-S4, S2'; LA1, and LA2' hold,
Assumptions KS and 1LA3 hold when considering the KS test, and Assumptions
Al, A3, and LA3' hold when considering A-CvM tests. Let 6, = 0,.(B) =0, +
BAon~2(1+0(1)) be as in Assumption LA1(a) with A = BA, for some B > 0 and
Ao € R%. Then, under n="*- local alternatives, the A-CvM-GMS and A-CvM-PA
tests, respectively, satisfy R

(a) limﬁ—wo 1imn—>oo PF,,(Tn,s,,(On,*(B)) > Cs,,((Pn(On,*(B))’ h2,n(6n,*(B))7 -
«)) = 1 provided Assumption GMS] also holds, R

(b) 1imB—>oo limn—mo PFn(Tn,sn(en,*(B)) > Cy, (Oga h2,n(6n,*(3))7 1- a)) = 1a and

(c) KS-GMS and KS-PA tests satisfy parts (a) and (b), respectively, with
Tn,s,, (0,.+(B)) replaced by T,(0,.(B)) and with the subscript s, on c,(-,-,")
deleted.

COMMENT: Theorem B3 shows that KS and A-CvM tests have power ar-
bitrarily close to 1 for the same n~'/?-local alternatives as Cramér-von Mises
tests that are based on integrals with respect to a probability measure Q.

13.2. Instruments and Weight Functions

In this section, we provide three additional examples of instruments G and
weight functions Q that satisfy Assumptions CI, M, FA(e), and Q. We also spec-
ify non-data-dependent methods for transforming a regressor to lie in [0, 1].

If x € R is known to lie in an open, closed, or half-open interval denoted by
lc, d], where —oo < ¢ < d < oo, then one can transform x into [0, 1] via

(13.2) t(x)z% if ¢>—00&d < oo,
C

X

t(x)=1+ex if c=-00&d=o00,

t(x):lle:_c if ¢c>-oc0o&d=o00,
Zex—d .

t(X)=m if c=-0c0&d<oo.

Alternatively, a column vector X; can be transformed first to have sample
mean equal to zero and sample variance matrix equal to I, (by left multiplica-
tion by the inverse of the lower-triangular Cholesky decomposition of the sam-
ple covariance matrix of X;). Then, it can be transformed to lie in [0, 1]%* by
applying the standard normal distribution function ®(-) element by element.
This method is employed in Section 10.4.

EXAMPLE 3—B-splines: A collection of B-splines provides a set G that
satisfies Assumptions CI and M for those (6, F) for which Ex(m;(W,, 0)|X; =
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x) is a continuous function of x for all j < k. The regressors are transformed
to lie in [0, 1]%. We consider normalized cubic B-splines with equally spaced
knots on [0, 1]%. (B-splines of other orders also could be considered.) The
class of normalized cubic B-splines is a countable set defined by

(13.3)  Gpspine = {8(x):8(x) = Bc(x) - 15 for C € Cpypiine},  Where

Coaine = 1 €2, = X[((@ = D/ (@, + /2] 10, 1]

el0, 11" :a=(ay,...,aqs), a, €{-2,—1,...,2r}
foru=1,...,d,and r=ro,ry+1, ... and

By, (x)=1(x e C;,)

a,r

y/6, forx, € ((a,—1)/(2r),a,/(2r)],
(=3y2 +12y2 — 12y, + 4) /6,
ds for x, € (a./(2r), (a, +1)/(2r)],
<131 (=323 + 1222 — 12z, + 4) /6,
u=1 for x, € ((a, +1)/(2r), (a, +2)/(2r)],
22/6, forx, € ((a, +2)/(2r), (a, +3)/(2r)],
0, otherwise,

x=(Xy,...,%q), Yu=2rx,—(a,—1), and

z,=4—y, for u=1,...,d,

for some positive integer ry; see Schumaker (2007, p. 136). If d, = 1, a B-spline
in Gp piine has finite support given by the union of four consecutive subintervals
each of length (2r)~". If d, > 1, a cubic B-spline in G gine has support on a
d,-dimensional hypercube in [0, 1]% with edges of length 4 - (2r)~".

Note that a bounded continuous product kernel with bounded support could
be used in place of B-splines in Example 3.

Weight Function Q for Gg e

There is a one-to-one mapping Iy giine : Up-spine — AR*, where AR* is de-
fined as AR is defined in Section 3.4 but with {—2, —1,...,2r}% in place of
{1,...,2r}%. We take Q = Hg_lspnneQAR*, where Qagr+ is a probability measure
on AR*. For example, the uniform distribution on a € {-2, —1, ..., 2r}% con-
ditional on r and some discrete mass function {w(r):r =ry,ryp+1,...} onr
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gives the test statistic:

(134)  T(0) =) w(r)

r=ry

x> @3 ES(n (6, 8ur), 206, 8)),

ae{—2,—1,...,2r}dx

where g, ,(x) = Bc;,(x) -1 for C; € Ch-spline-

EXAMPLE 4—Data-Dependent Boxes: Next, we consider a class of functions
Grox,aa that is designed to be applied with a data-dependent weight function O
defined below. Because this Q only puts positive weight on center points x that
are in the support of X;, it turns out to be necessary to consider boxes with
different left and right edge lengths as measured from the “center” point. (See
footnote 52 on p. 20 for an explanation.)

We define

(13.5)  Gioxaa ={8:8(x) =1(x € C) - 14 for C € Cyoxaa}, Where

dx
Cbox,dd = Cx,rl,rz == X(xu —Vius Xy + r2,u] :
u=1

x € Suppy, (Xi), s T2 € (0,7) Yu < d,

for some r € (0, OO], X = (Xl, ey xdx)’, r = (rl,l, ey rl,dx)’, I, = (rz’l, ey
r24,)', and Supp, (X;) denotes the support of X; when Fy is the true dis-
tribution.

Data-Dependent Q for Gpox.da

There is a one-to-one mapping Ilyox ad : Gvox.aa = {(x, 71, 12) € Supp Fyo(Xi) X
(0, 7)**}. Thus, for any probability measure Q* on {(x, 1y, 7,) € Suppy., , (Xi) X
(0, F)**}, (ITyox,a0) ~' O* is a valid probability measure on Gy, 4. In this case, the
ianGESt: mapping (ITyox,aa) ™" i (Iox.aa) ™' [X, 71, 72] = 8riryrn () = 1(- € Cy 1) -

ke LE

2
dy
(13.6) Q}Xﬂ = Fx, X Unif((X(O, (rX,uf)) ), where
’ u=1

2
oy, = Varg, (X;,) for u=1,...,d,
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and Fy  denotes the true distribution of X;.%* The scale factors oy 1, ..., ox.q4,
are included here to make Q7 equivariant to location and scale changes in

X;. Of course, Fy4 and {0y ,: u<d .} are unknown, so they need to be re-
placed by estimators. The distribution F x,0 can be estimated by the empirical
distribution of X; based on a subsample of size b, of {X;:i < n}, denoted by
Fy,,(-). Here we use the empirical distribution based on a subsample, rather
than the whole sample, because the computational costs are large when b, = n
and n is large.”® The variances {0} ,:u < d,} can be estimated by the sample
variances based on {X;:i < n}, denoted by {8)2(,”,“ :u=1,...,d,}. In this case,
the test statistic is

(13.7)  T.(0)

— i S( 25 n(e gxrl rz) 2 (9 gx’l rz))
Rix JOXE 0,5 .07

dx
x ]'[(a‘x wu?) 2 dry dry dFy ,,, (x)

—b Z/ S( V2 n(e gX,,rl,rz)a

XL 100,5x 5,02

2 (0, gx,, 1, rz) d7’1 erl_[((TXnur)

u=1

where g, ,, ., is as above.

When an approximate test statistic Tn,sn(é)) that is a simulated integral is em-
ployed (see (3.16) in Section 3.5), it is defined as in (13.7) but with the integral

over (r, r,) replaced by an average over £ =1, ..., s,, the term ]_[if”: NG
deleted, and gy, , replaced by gx where {(r1,, )l =1,...,5,}

i»r',e72,00

20ne might think that a natural data-dependent measure Q is Q° = II, } (Fx o x Unif((0, 7)*),
defined on G} , where G;  is defined as Gy, is defined in (3.13) but with R replaced by Supp(X;).
However, such a Q does not necessarily have support that contains G; . and, hence, the resulting
test may not have power against all fixed alternatives. See the following paragraph for details. It
is for this reason that G 44 is defined to contain boxes that are asymmetric about their center
points.

The probability distribution Q° on G, does not necessarily satisfy Assumption Q. To see why,
consider a simple example with d, =1 and k£ = 1. Suppose X; takes only four values: 0, 1, 2, 3,
each with probability 1/4 and 7 > 1. Then, for g;1(x) = 1(x € (0, 2]) € G ,, we have B(g1,1,6) =
{g11}. This holds because if w > 0, g11+,(0) =1 but g,1(0) =0; if @ <0, g1,1+,(2) =0 but
g1,1(2) = 1; if > 0, g2’1+m(3) =1 but g1,1(3) = 0, andif w < 0, g2,1+m(1) =0 but 81,1(1) =1.The
set {g1,1} has zero Q° measure. So, Q° does not satisfy Assumption Q.

3 Also, it is easier to establish the asymptotic validity of this procedure when b, /n — 0 as
n— oo.
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are iid. with a Unif(X% (0, Gy.,.7))* distribution. Alternatively, in this
case, one can take b, = s,, delete the integral over (ry,r,), delete the

dx - “\— .7
term [[,2,(Ox nul) 2, and replace 8xiri.r OY 8xirir» Where {(ry,12) 10 =
1,...,s,} are as above.

EXAMPLE 5—Continuous/Discrete Regressors: The collections G e and
Ghox (defined in the main paper) and Gg.gpiine and Gyoxaa (defined here) can be
used with continuous and/or discrete regressors. However, one can design G
to exploit the known support of discrete regressors. Suppose X; = (X| ;, X ),
where X ; € R%1 is a continuous random vector and X,; € R%2 is a discrete
random vector that takes values in a countable set D = {x, 1, x5, ...}, Wwhere
X2, € R%2 for all u > 1. Define the set G/, by

(13-8) gc/d={gig=g1gz,g1 Egl,gdegp},

where x = (x], x5)’, g1 is an R*-valued function of x,, g, is an R-valued function
Of X2, gl = gc-cube: gbox: gB-splinea or gbox,dd: Wlth X and dx replaced by X1 and dx,b
respectively, and Gp = {g4: 84(x2) = 1(4(x2)} for d € D}.

Weight Function Q for G.q

When G is of the form G, 4, it is natural to take Q to be of the form O, x Op,
where Q) is a probability measure on Gy, such as any of those considered above
with x; in place of x, and Q) is a probability measure on D. If D is a finite set,
then one may take Qp to be uniform. For example, when G, = G, and Qp is
uniform, the test statistic is

(13.9) T,(0) = % Z/

4ep /101"

/ d S(nl/zrhn(ey gxl,rgd)a 2_”(0, gxl,rgd))
,1 0,7) x,1

x 7% drdx,

where #D denotes the number of elements in D and x; € R%!. When G, =
Ge-cube OT Gp gpiine, 1,(0) is a combination of the formulae given above.

The following result establishes Assumptions CI, M, and FA(e) for Gg.giine;
Gpox,ad> and G/, and Assumption Q for the weight functions Q on these sets.

LEMMA B2: (a) For any moment function m(W;, ), Assumptions CI and M
hold with G = Gg.gpiine for all (6, F) for which Er(m;(W;, 0)|X; = x) is a continu-
ous function of x forall j <k.

(b) For any moment function m(W;, ), Assumptions CI and M hold with G =

box,dd -

(c) For any moment function m(W;, 0), Assumptions Cl and M hold with G =
Gesas where Gy = Ge.cube Gooxs G-splines OF Gpox,ad> With (x, d.) replaced by (xy,d, )
and in the case of G, = Gg.qpine Assumption CI and M only hold for (6, F) for
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which Ep(m;(W;, 0)| X1 = x1, X»,; = d) is a continuous function of x; € [0, 1]%1
Vd e D,Vj<k.

(d) Assumption FA(G) holds for gB_Sphne, gbox’dd, and gc/d.

(e) Assumption Q holds for the weight function Q. = 11, g_'spﬁne Oar* 0N Gg pline,
where Qag+ is uniformon a € {2, —1, ..., 2r}% conditional on r and r has some
probability mass function {w(r):r =ry,ro+ 1, ...} with w(r) > 0 forall r.

(f) Assumption Q holds for the weight function Q4 = (Hbox,dd)"Q}XO, where

Qi o = (Fxo x Unif (X%, (0, 0x,7))?) 01 G aa-

(g) Assumption Q holds for the weight function Q, = Q1 x Qp on G4, where
Q, is a probability measure on G, equal to any of the distributions Q on G consid-
ered in part (), part (), or in Lemuma 4 but with x, in place of x, D is a finite set,
and Qp = Unif(D).

COMMENT: The uniform distribution that appears in parts (e)—(g) of the
lemma could be replaced by another distribution and the results of the lemma
still hold provided the other distribution has the same support. For example,
in part (g), Assumption Q holds when D is a countably infinite set and Qp, is a
probability measure whose support is D.

13.3. Sufficient Conditions for Assumption GMS2(a)

The following lemma verifies Assumption GMS2(a) for the CvM statistic
under some conditions on S, O, and «.

LEMMA B3: Suppose Assumptions S1, S3, Q, and EP hold and S is the Sum
or Max function. Consider any (6., F.) € F. Then,

(a) the d.f.of T (hwo.r.(6,)) is continuous and strictly increasing at all x > 0 and

(b) if, in addition, Q(Gu) > 0, where G,y ={g € G: hy oo r,.j+(0c, 8) = 0} for
some j* <k and hy, +(g*) > 0 for some g* € Gy, then the 1 — a quantile of
T (heo r.(6.)) is positive for any o < 1/2.

COMMENTS: (i) In the case of i.i.d. observations and no preliminary esti-
mator 7,(6), Assumption EP is implied by Assumption M, so Assumption EP
holds under the conditions of Theorem 2(b).

(ii) The proof of Lemma B3 does not go through when § is the QLR function
because, in that case, T (/. . (6.)) is not a convex function of the Gaussian
process vy, . (-).

PROOF OF LEMMA B3: When S is the Sum or Max function, 7 (/. . (0.)) is
a convex function of the Gaussian process vy, . (-). By Theorem 11.1 of Davy-
dov, Lifshits, and Smorodina (1995), the d.f. of T (., r.(6.)) is continuous and
strictly increasing at every point in its support except the left endpoint. To prove
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part (a), it remains to show that the left endpoint of the support of T'(44 £, (6.))
is zero.

It suffices to show that zero is in the support of T (/. (6.)) because
T (hoo r.(6.)) = 0 with probability 1 by Assumption S1(c). For any ¢ > 0,

(13.10)  Pr(T (hoo,r.(60)) < £)

> Pr(supS(thv,,b (&), hor(8) + eli) < g“)

geg
> Pr( sup |(h2,pcyj(g) + 8)_1/2thypc,j(g)| <V g/k>
geg,j<k

>0,

where the second inequality holds for both the Sum and Max functions (where,
for the Max function, there is no need to divide ¢ by k) and the third inequality
holds because, by Problem 11.3 of Davydov, Lifshits, and Smorodina (1995,
p- 79), zero is the infimum of the support of the supremum of the absolute
value of a Gaussian process whose support is the set of bounded continuous
functions. Thus, part (a) holds.

Next, we prove part (b). Suppose that Q(Go) > 0. Then,

(13.11)  Pr(T (hoo £,(6.)) > 0)
> Pr([ S(Vhyr, (&) + Pk (0c5 8), hor (&) + 1) dO(g) > 0)
Sho

> Pr(S(va,p, (87) + Micor (0, 89, hor. (87) + 1) > 0)

= Pr(vhz,n»f* (g*) < 0)
—1,2,

where the first inequality holds by Assumption S1(c), the second inequality
holds by Assumption Q, Q(G) > 0, and the continuity of Vhy g ()5 hyr,(+),and
S (by Assumption S1(d)), the third inequality holds by Assumption S3 using
hi oo F. j(0c, &) = 0 (whether or not the j*th moment condition is an equality
or an inequality), and the equality holds because vy, . 1(g*) is a normal random
variable with mean zero and positive variance A, r, ;(g"). O.E.D.

13.4. Example: Verification of Assumptions LAI-LA3 and LA3'

Here we verify Assumptions LA1-LA3 and LA3' in a simple example for
purposes of illustration. These assumptions are the main assumptions em-
ployed with local alternatives.
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EXAMPLE: Suppose W; = (Y;, X;)' € R* and there is a single moment in-
equality function m(W,, 6) = Y; — 6 and no moment equalities, that is, p =1
and v = 0. Suppose the true parameters/distributions {(6,, F;,) € F :n > 1} and
the null values {6, . € ®:n > 1} satisty: (i) 0, — 6, and F, — F, (under the
Kolmogorov metric) for some (6, Fy) € F, (ii) 0,. = 6, + An~'/? for some
A >0, (iii) Y; = 0, + u(X)n * + U, (iv) u(x) > 0, Vx € R, and (v) under all
F such that (6, F) € F for some 6 € 0, (X;, U;) are i.i.d. with distribution that
does not depend on F, X; and U; are independent, ErU; = 0, Varg(U;) =1,
Varp(X;) € (0,00), and Ep|U;|**? + Ep|uw(X;)|**® < oo for some & > 0, and
sup,.¢ Er(1+ (X)) (14 g*(X))) < oo.

We show that, in this example, Assumptions LAl and LA2 hold, Assump-
tion LA3 holds if A is sufficiently large, and Assumption LA3' holds if G and Q
satisfy Assumptions CI and Q, respectively.

By (v), we can write Exg(X;) = Eg(X;) and Epu(X;)g(X;) = En(X;)g(X)).

Assumption LA1(a) holds by (i) and (ii). Assumption LA1(b) holds by the
following calculations:

(13.12) n'2Eg,m(W, 0,, g) = n'*Ey, (U, + p(X)n ) g(X,)
=hi(g), where
hi(g) = Emn(X)g(X,) €[0,00) and
o7, (6,) = Varg, (Y;) = Varg, (U; + p(X)n™'?)
=1+ n"" Vary, (w(X)) — 1.

To show Assumption LA1(c), we have

(13.13)  Ep, Y?8(X)g"(X:) = Eg, (0, +n(Xon > + U;) g(X)g"(X:)
— Er, (60 + U)*g(X)g (X))
= Ep Yg(X)g (X;) as n— oo,

uniformly over g, g* € G, using (i), (iii), and (v). Here we have used Y; = 6, +
U; under Fy. This holds because F, — F; by (ii), which implies that Pp, (Y; <
y) — Pg,(Y; <y) for all continuity points Y;, but direct calculations show that
Pr (Y <y)=P(0,+pn(X)n"?+ U; <y) — P(6, + U, < y) for all continuity
points y of U; + 6, and, hence, Y; = 6, + U; under Fj.

Next, we write

(13.14)  Ep,m(W;, 0,, 8Ym(W,, 0,,, ")
= Ep, Y7g(X)g (X)) — 0,E[Er, (Yi| X)) (8(X)) + g"(X)))]
+ 2Eg(X)g (X))
= Ep, Y7g(X)g (X)) — 0,E[(0, + n(X)n ") (g(X) + &"(X)))]
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+ 02Eg(X))g* (X))
=EF0Y,'28(X1')8*(Xi) - GSEg(X,-) - OSEg*(Xi)
+ 0;Eg(X)g (X)) + o(1)

= EFOm(I/I/i, 00: g)m(I/I/l, 00: g*) + 0(1)7

where o(1) holds uniformly over g, g* € G, using (13.13), (i), (iii), and (v). In
addition, Er,m(W,, 6,,g) = o(1) and Egm(W;, 6y, g) = o(1) uniformly over
g € G by (13.12) and (v). Hence, the first part of Assumption LA1(c) holds.
The second part of Assumption LA1(c) holds by the same argument with 6, ,
in place of 0,,.

Assumption LA1(d) holds because Varg, (m;(W,,6,.)) = Varg, (m;(W,,
0,)) > 0. Assumption LA1(e) holds using (v) and the above expression for
Uf,n (6,).

Assumption LA2 holds because IIr(6, g) does not depend on (6, F) by the
following calculations and (v): VF such that (0, F) € F and Vg € G,

(13.15)  I1x(0,8) = (9/30)[ D> (0)Erm(W,, 0, g)]
= 051(6)(5/076)EF(Y,- —0)g(X;) = —a-;](G)Eg(X,«),

where the second equality holds because Dr(60) = o7(8) = Varp(Y;) does not
depend on 6.

We have 11,(g) = I, (6, g§) = —Eg(X;) by (13.15) and (rﬁo(eo) = 1. Hence,
in Assumption LA3, /,(g) + I1)(g)A = En(X)g(X;) — Eg(X;)A, which is neg-
ative whenever A > Eu(X;)g(X;)/Eg(X;). Hence, if the null value 0, , de-
viates from the true value 60, by enough (i.e., if n'/?(0,, — 6,) = A is large
enough), then the null hypothesis is violated for all » and Assumption LA3
holds.

Next, we show that Assumption LA3’ holds provided Assumptions CI and Q
hold. We have: (a) II,(g) = —Eg(X}), (b) hi(g) < oo Vg € G by (13.12) using
(v), and (c) Ag = A/B > 0 because A > 0 by (ii) and 8 > 0 by definition. Hence,
the condition of Assumption LA3’ reduces to

(13.16) Q({g€G:Eg(X;) >0})>0.

Suppose Eg*(X;) > 0 for some g* € G. (This is a very weak requirement
on G and is implied by Assumption CI; see below.) Let §; = Eg*(X;) > 0.
Then, using the metric py defined in (6.3), for any g € G with px(g, g*) < 8,
we have Eg(X;) > 0 because otherwise g(X;) =0 a.s. and 8, > px(g, g*) =
(Eg*(X)»V? > Eg*(X;) = 8,, which is a contradiction. Thus, Eg(X;) > 0 for
all g € B,, (g*, 1), where B,, (g*, 8,) is the open py-ball in G centered at g*
with radius 6,. By Assumption Q, Q(B,,(g*, 1)) > 0. Hence, (13.16) holds
and Assumption LA3' is verified.

PX
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Lastly, we show that Assumption CI implies that Eg*(X;) > 0 for some
g* € G. For all 6 > 6y, we have

(13.17)  Xp(0) = {x € R: Ep,(m;(W, 6)|X; = x) < 0}
={xeR:0p—0<0}=R,

where the second equality holds because Y; = 6y + U; under F,, and so,
EFO(mj(I/Vi’ N Xi=x) = EFO(Yi — 01X, =x)=16,— 0.

By (13.17), Pr(X; € X, (0)) = Pr(X; € R) =1 > 0. Hence, by Assump-
tion CI, there exists g* € G such that E;, m(W;, 0)g*(X;) = E(6,— 6)g*(X;) <0
for 6 > 6,. That is, Eg*(X;) > 0.

13.5. Uniformity Issues With Infinite-Dimensional Nuisance Parameters

This section illustrates one of the subtleties that arises when considering
the uniform asymptotic behavior of a test or CS in a scenario in which a test
statistic exhibits a “discontinuity in its asymptotic distribution” and an infinite-
dimensional nuisance parameter affects the asymptotic behavior of the test
statistic.

In many testing problems, the asymptotic distribution of a KS-type statis-
tic is determined by establishing the weak convergence of some underlying
stochastic process and applying the continuous mapping theorem. This yields
the asymptotic distribution to be the supremum of the limit process. In the
context of conditional moment inequalities with drifting sequences of distri-
butions, this method does not work. The reason is that the normalized mean
function of the underlying stochastic process, that is, A, 5, (6,, g), often (in
fact, usually) does not converge uniformly over g € G to its pointwise limit,
that is, /;(g), and, hence, stochastic equicontinuity fails.>*

We show by counterexample that the asymptotic distribution under drifting
sequences of null distributions of a KS statistic, where the “sup” is over g € G,
does not necessarily equal the supremum of the limiting process indexed by
g € G that is determined by the finite-dimensional distributions. Hence, if the
critical value is based on this limiting process, a KS test does not necessarily
have correct asymptotic null rejection probability. In fact, we show that it can
over-reject the null hypothesis substantially.

The same phenomenon does not arise with CvM statistics, which are “av-
erage” statistics. This is because the averaging smooths out the nonuniform
convergence of the normalized mean function.

The results in the first section of this appendix show that the problem dis-
cussed above does not arise with the KS statistic when the critical value em-
ployed is a GMS critical value that satisfies Assumption GMS1 (see Section 4)

*Note that drifting sequences of distributions are of interest because correct asymptotic cov-
erage probabilities under all drifting sequences is necessary, though not sufficient, for correct
uniform asymptotic coverage probabilities.
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or a PA critical value. The validity of these critical values is established using a
uniform asymptotic approximation of the distribution of the KS statistic, rather
than using asymptotics under sequences of true distributions.

To start, we give a very simple deterministic example to illustrate a situation
in which a deterministic KS statistic does not converge to the supremum of the
pointwise limit, but an “average” CvM statistic does converge to the average of
the pointwise limit. Consider the piecewise linear functions f,:[0, 1] — [0, 1]
defined by

x/e,, for x € [0, ¢,],
(13.18) fu(x)=31—-(x—e¢,)/e,, forxele,,2s,l,
0, for x € [2¢,, 1],

where 0 < g, — 0 as n — oo. Then, for all x € [0, 1],
(13.19) f.(x) > f(x)=0 as n— oo.
The KS statistic does not converge to the supremum of the limit function:

(13.20) sup fu(x)=1-»0= sup f(x) as n— oo.

xel0,1] xe[0,1]

On the other hand, the CvM statistic does converge to the average of the limit
function:

1 1
(13.21) /fn(x)dxzen—>0=/f(x)dx as n— oo.
0 0

The convergence result for the KS statistic in (13.20) is potentially problem-
atic because, in a testing problem with a KS statistic, the critical value might be
obtained from the distribution of the supremum of the limit process. If conver-
gence in distribution of the KS statistic to the “sup” of the limit process does
not hold, then such a critical value is not necessarily appropriate.

Now we show that the phenomenon illustrated in (13.18)—(13.21) arises in
conditional moment inequality models. We consider a particular conditional
moment inequality model with a single linear moment inequality, a fixed true
value 6, and a particular drifting sequence of distributions. (Note that CX
stands for “counterexample.”)

ASSUMPTION CX: (a)m(W;,0)=Y;— 6 for Y, 0 € R,

(b) m(W;, 00) = Y; = U, + 1(X; € (&,, 11), where the true value 6, equals 0,
EU; =0, EU} = 1, the distribution of U; does not depend on n, U; and X, are
independent, and the constants {¢,:n > 1} satisfy ¢, — 0 as n — oo,

(c) X; = &, with probability 1/2 and X; is uniform on [0, 1] with probability
1/2,
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(d) {(W; = (Y:, X;) :i < n,n> 1} is a row-wise independent and identically dis-
tributed triangular array (with the dependence of W;, Y;, and X; on n suppressed
for notational simplicity),

(e) S(m, 3)=S(m) form e R,

(f) S satisfies Assumptions S1 and S2, and

(8) G =1{8up:8u»=1(x € (a,Db]) forsome 0 <a<b<1}.

The function S,(m) = [m]*> satisfies Assumptions CX(e)—(f). Assump-
tion CX(e) is made for simplicity. It could be removed and, with some changes
to the proofs, the results given below would hold for § = S, as well. The class
of functions G specified in Assumption CX(g) is the class of one-dimensional
boxes, as in Example 1 of Section 3.3.

We write

(1322) nl/zﬁln(OO, ga,b) = n7]/2 Z Yiga,b(Xi) = Vn(ga,b) + hl,n(ga,b): where
i=1

1/2

Vn(ga,b) =n (mn(eﬂy ga,b) _EFnrhn(OO; ga,b)) and

hl,n(ga,b) = nl/zEF,,ﬁ”ln(eo, ga,b)-
The KS statistic is

(13.23)  sup S(n'*m, (6o, &ap)) = sup S(va(gas) + M1.4(8a))-"

8a,b€Y 8a,p€Y

Let v(-) be a mean zero Gaussian process indexed by g, , € G with covariance
kernel K(-,-) and with sample paths that are uniformly p-continuous, where
K(-,-) and p(-, -) are specified in the proof of Theorem B4 given in the next
subsection.

The KS statistic satisfies the following result.

THEOREM B4: Suppose Assumption CX holds. Then,

(a) v,(-) = v(:) as n — oo,

(b) h1,0(8ap) = hi(8up) =00 as n— oo forall g,» € G,

(€) SUP,.. g 11.1(8us) — h1(gu)| = O as n — oo,

(d) S(Vn(ga,b) +h1,n(ga,b)) —>d S(V(ga,b) +h1(ga,b)) asn— ooforall ga,b € g7

() sup,, o SW(8ap) + h1(gas)) =0as.,

(f) sup,, ,cg SWn(8as) + h1n(8ap)) = SWa(g0s,) + h1n(80.,)) —a S(Z°) as
n — oo, where Z* ~ N (0, 1/2) and the inequality holds a.s., and

(8) sup, o SWn(8as) + h1n(8as)) +a SUP, , o SW(8ap) + Mi(8as)) as

n— oQ.

> Note that for simplicity we have not rescaled the moment functions 1, (6,, g..») that appear
in the definition of the “sup” standard deviation estimators.
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COMMENTS: (i) Theorem B4(g) shows that the KS statistic does not have an
asymptotic distribution that equals the supremum over g, € G of the point-
wise limit given in Theorem B4(d). This is due to the lack of uniform conver-
gence of Ay ,(g,,) shown in Theorem B4(c). (Note that the convergence in
part (d) of the theorem also holds jointly over any finite set of g,, € G.)

(ii) Let c,1_o denote the 1 — a quantile of Sup, <o S(w(gap) + hi(gas))- By
Theorem B4(e), ¢s.1_o = 0. Theorem B4(f) and some calculations (given in the
proof of Theorem B4 below) yield

(13.24) limian( SUp S(a(8ap) + h1n(8as)) > cw,l,ﬂ) >1/2.

n—00 20660

That is, if one uses ¢, 1_, as the critical value, the nominal level « test based
on the KS statistic has an asymptotic null rejection probability that is bounded
below by 1/2, which indicates substantial over-rejection.

Next, we provide results for a CvM statistic defined by

(1325) / S(nl/zmn(007 ga,b)) dQ(ga,h) = /S(Vn(ga,b) + hl,n(ga,b)) dQ(ga,b)7

where Q is a probability measure on G. In contrast to the KS statistic, the CvM
statistic is well-behaved asymptotically.

THEOREM BS: Suppose Assumption CX holds. Then,
/ S(Vn(ga,b) + hl,n(ga,b)) dQ(ga,b)
—>4 /S(V(ga,b) + 11(8ap)) dO(8ap) as n— .

COMMENT: Theorem BS5 is not proved using the continuous mapping the-
orem due to the nonuniform convergence of A, ,(g,,). Rather, it is proved
using an almost sure representation argument coupled with the bounded con-
vergence theorem.

13.6. Problems With Pointwise Asymptotics

In the case of unconditional moment inequalities, pointwise asymptotics
have been shown in Andrews and Guggenberger (2009) to be deficient in the
sense that they fail to capture the finite-sample properties of a typical test
statistic of interest. This is due to the discontinuity in the asymptotic distri-
bution of the test statistic. In the case of conditional moment inequalities, the
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deficiency of pointwise asymptotics is even greater. We show in a simple ex-
ample that the asymptotic distribution of a test statistic 7,,(6,) under a fixed
distribution F often is pointmass at zero even when the true parameter 6, is
on the boundary of the identified set. This does not reflect the statistic’s finite-
sample distribution.

Suppose (i) W; = (Y;, X;), (ii) there is one moment inequality function
m(W,, 6) = Y; — 6 and no moment equalities (i.e., p =1 and v = 0), (iii) the
true distribution is Fy, for all n > 1, (iv) Y; = 6y + n(X;) + U;, where X;, U; € R
and ,LL() = /-LFU(')’ (V) ,LL(X) >0Vxe R, chro = {x € SuppFO(Xi):/J’(x) = 0} 7é
@, and w(-) is continuous on R, and (vi) under Fy, (X;, U;) are i.i.d., X; and
U; are independent, Er, U; =0, Varg (U;) = 1, X; is absolutely continuous, and
Varg, (X;) € (0, 00). As defined, the conditional moment inequality is

(13.26) Er,(m(W, 60)|X;) = (X)) >0 as.

The inequality in (13.26) is strict except when X; € &,,. Often, the latter oc-
curs with probability zero. For example, this is true if X, is a singleton (or
a set with Lebesgue measure zero). In spite of the moment inequality being
strict with probability 1, the true value 6, is on the boundary of the identified
set @, that is, @, = (—o0, 6,].%

We consider a test statistic based on S(n'/?m, (0, g), I) with S = 8§, = S;:

(13.27) Tn(90)=/[n1/2rhn(00,g)]2_ dQo(g)

= / |:n1/2 (ﬂl Z(Ui + M(Xi))g(Xi) - A(g))

i=1
2

+ n”zA(g)} dQ(g), where

(60, &) =n"" Y (Yi—60)g(X;) and A(g) = Epu(X)g(X)).

i=1

The first summand in the integrand in (13.27) is O, (1) uniformly over g € G by
a functional central limit theorem (CLT) and is identically zero if P (g(X;) =
0) = 1. The second summand, n'/?A(g), diverges to infinity unless A(g) = 0. In
addition, [x,]> — 0 as x, — oo. Hence, if A(g) > 0, the integrand converges

This holds because, for any 6 > 6y, (a) Er,(m(W, 0)|X;) = u(X;) + 6 — 0, (b) V& > 0,
Pr,(X; € B(Xy0, 6)) > 0 by the absolute continuity of X;, where B(X,,, 6) denotes the closed
set of points that are within 8 of the set X, (c) for * > 0 sufficiently small, u(x) < 6 —
6o Vx € B(X,ero, 6%) by the continuity of w(-), and, hence, (d) 0 < Pp, (X; € B(Xyero, 6)) <
Pr,(Er,(m(W;, 6)|.X;) < 0), which implies that 6 ¢ Op,.
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in probability to zero. In the leading case in which &, is a singleton set (or
any set with Lebesgue measure zero), A(g) =0 only if Pr (g(X;) =0) =1 (us-
ing the absolute continuity of X;). In consequence, if A(g) =0, the integrand
in (13.27) equals zero a.s. Combining these results shows that the asymptotic
distribution of 7,,(6,) under the fixed distribution F; is pointmass at zero even
though the true parameter is on the boundary of the identified set.”’

The pointmass asymptotic distribution of 7,(6,) does not mimic its finite-
sample distribution well at all. In finite samples, the distribution of 7,(6,) is
nondegenerate because the quantity n'/2A(g) is finite and far from infinity for
all functions g for which w(x) is not large for x € Supp(g). Pointwise asymp-
totics fail to capture this.

The implication of the discussion above is that, to obtain asymptotic results
that mimic the finite-sample situation, it is useful to consider uniform asymp-
totics or, at least, asymptotics under drifting sequences of distributions.

13.7. Subsampling Critical Values
13.7.1. Definition

Here we define subsampling critical values and CS’s. Let b denote the sub-
sample size when the full sample size is n. We assume b — oo and b/n — 0
as n — oo. The number of different subsamples of size b is g,. There are
g, = n!/(b!(n — b)!) different subsamples of size b.

Let {T,,,(0):j=1,...,q,} be subsample statistics, where T, , ;(0) is de-
fined exactly the same as 7,,(0) is defined but based on the jth subsample rather
than the full sample. The empirical distribution function and the 1 — & quantile
of {T,.,;(0):j=1,...,q,} are

qn
(13.28) U,»(0,x)=q,' Y 1(T,s;(0) <x) for xeR and

j=1

(0,1 —a)=inf{x e R:U, (8, x) > 1—a},

respectively. The subsampling critical value is ¢, ,(6y, 1 — ). The nominal level
1 — a CSis given by (2.5) with ¢,.1 () = ¢, (0,1 — @).®

S7This argument is only heuristic. The result can be proved formally using a combination of an
almost sure representation result and the bounded convergence theorem, as in the proofs given
in Supplemental Appendix A.

33The subsampling critical value defined above is a non-recentered subsampling critical value.
One also could consider recentered subsampling critical values; see Andrews and Soares (2010)
for the definition. But, there is little reason to do so because tests based on recentered sub-
sampling critical values have the same first-order asymptotic power properties as PA tests and
recentered bootstrap tests and worse behavior than the latter two tests in terms of the magnitude
of errors in null rejection probabilities asymptotically.
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13.7.2. Asymptotic Coverage Probadbilities of Subsampling Confidence Sets

Next, we show that nominal 1 — « subsampling CS’s have asymptotic cov-
erage probabilities greater than or equal to 1 — « under drifting sequences
of parameters and distributions {(0,, F,,) € F :n > 1}. The sequences that we

consider are those in the set Seq’, which is defined as follows.
Let H,, H,, and H be defined as in (5.5). Let Hj(h1) = {h € H,:hi () >0
only if 4 ;(g) = oo for j < p, Vg € G}.

DEFINITION Seqb(h’l‘, h): For h € H and h} € H;(h;), define Seqb(hj‘, h) to
be the set of sequences {(6,, F,):n > 1} such that
(i) (6,, F,) e FV¥n=>1,
(ii) lim, o0 21,0, (0., 8) = M1 (8) Vg € G,
(iii) 1im,ooSUp, 4o 1D, > (0,) 25, (0., 8, §) D5 (6,) — ha(g, )| =0, and
(iv) lim, o b'2D;*(0,)Er,m(W, 6,, 8) = hi(g) Vg €G.

Let

(1329) Seq’= | J  Seq’(h},h).

I ere (h), het
We use the following assumptions.

ASSUMPTION SQ: For all functions hy:G — R{ ., x {0}", h,:G* — W, and
mean zero Gaussian processes {v,,(g):g € G} with finite-dimensional covari-
ance matrix hy(g,g*) for g, g* € G, the distribution function of [ S(vy,(g) +
hi(g), hy(g) +&l)dQ(g) at x e Ris

(a) continuous for x > 0 and

(b) strictly increasing for x > 0 unless v=0and h,(g) = oo’ a.s. [Q].

Lemma B4 below shows that Assumption SQ is satisfied by S; and ..
LEMMA B4: Assumption SQ holds when S = S; or S,.

The following Assumption C is needed only to show that subsampling CS’s
are not asymptotically conservative. For (6, F) € F, define h; ;r(6,g) = oo
if Epm;(W;,0,8) >0 and hy;r(0,8)=0if Erm;(W;,0,8)=0for geg,j=
1, cees P Let hl,p(e, g) = (hl,l,F(07 g), ey hl,p,F(Ba g), O;),

ASSUMPTION C: For some (0,F) € F, [ S, (0,8) + hir(6,8), hsr (6,
g) + el) dQ(g) is continuous at its 1 — « quantile, where {vn, .(0,8):g€G}isa
mean zero Gaussian process concentrated on the space of uniformly p-continuous
bounded R*-valued functionals on G, that is, U ,f(g ), with covariance kernel

h,r(0,8,8%) forg, g €g.
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Assumption C is not very restrictive.
The exact and asymptotic confidence sizes of a subsampling CS are

(13.30) ExCS,= inf Pp(T,(0) <c,»(6,1—a)) and
(0,F)eF

AsyCS = liminf ExCS,,.

The next assumption is used to establish AsyCS for subsampling CS’s. It is a
high-level condition that is difficult to verify and hence is not very satisfactory.

ASSUMPTION SUB: For some subsequence {v,:n > 1} of {n} for which
{(0,,, F,,) € F :n> 1} satisfies lim,,_, . Pr, (T,(0,,) < ¢,(0,,, 1 —a)) = AsyCS
(such a subsequence always exists), there is a subsequence {m,} of {v,} such that
{(Om, > Fin,) € F:n> 1} belongs to Seq’, where Seq” is defined with m,, in place
of n throughout.

Part (a) of the following theorem shows that subsampling CS’s have correct
asymptotic coverage probabilities under drifting sequences of parameters and
distributions.

THEOREM B6: Suppose Assumptions M, S1, S2, and SQ hold. Then, a nomi-
nal 1 — a subsampling confidence set based on T,(0) satisfies

(a) inf{(f),,,Fn):nzl)eSeqb liminf,_ o Pr, (T,(6,) < cup(0,, 1 —a)) > 1 —aq,

(b) if Assumption C also holds, then

inf liminf P, (7,(6,) < €up(6,,1 —)) =1—a,

{(Bn, Fy)in=1)eSeq? 1>

and
(c) if Assumptions Sub and C also hold, then AsyCS =1 — a.

COMMENT: Theorem B6(c) establishes that subsampling CS’s have correct
AsyCS provided Assumption Sub holds. The latter condition is difficult to ver-
ify. Hence, this result is not nearly as useful as the uniformity results given for
GMS and PA CS’s in Section 5.

14. SUPPLEMENTAL APPENDIX C

In this appendix, we prove all the results stated in the main paper except
for Theorems 1 and 2(a), which are proved in Supplemental Appendix A, and
Lemma A1, which is proved in Supplemental Appendix E. The proofs are given
in the following order: Lemma 2, Lemma 3, Theorem 2(b), Lemma 4, Theo-
rem 3, Theorem 4, and Lemma 1.
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14.1. Proofs of Lemmas 2 and 3 and Theorem 2(b)

PROOF OF LEMMA 2: We have 0 ¢ O(G) implies that Exm;(W;, 6)g;(X;) <
0 for some j < p or Erm;(W;, 6)g;(X;) # 0 for some j=p+1,..., k. By the
law of iterated expectations and g;(x) > 0 for all x € R% and j < p, this implies
that Pr(X; € Xz(0)) > 0 and, hence, 6 ¢ Op.

On the other hand, 6 ¢ @, implies that Pr(X; € Xz(0)) > 0 and the latter
implies that 6 ¢ @r(G) by Assumption CI. Q.E.D.

The proof of Lemma 3 uses the following lemma, which is an existence and
uniqueness result. The proof of the lemma utilizes an extended measure result
from Billingsley (1995, Thm. 11.3), which delivers the existence part of the
lemma. The proof is given after the proof of Lemma 3.

LEMMA C1: Let R be a semiring of subsets of R% . Let . be a bounded count-
ably additive set function on o(R) such that uw(®) =0 and w(C) > 0 for all
C € RU{R%}.If R% can be written as the union of a countable number of disjoint
sets in R, then w is a measure on o(R) (and hence u(C) > 0 forall C € o(R)).”’

PROOF OF LEMMA 3: First, we establish Assumption CI for G = Gy with
r = oo. It suffices to show that

(14.1)  Ep(m;(W;, 0)g;(X))) =0 VgegG
= Ep(m;(W,0)|X;)>0 as. for j=1,...,p and
Ep(m;(W;, 0)g;(X))) =0 VgegG
=  Ep(m;(W,0)|X;)=0 as. for j=p+1,... k.
We use the following set function:
(142)  wi(C) =0 (O Epm;(W;, 0)1(X; € C) for C € 0(Coo) = B(R™),

where o (Cyoy) denotes the o-field generated by Cox, B(R%) is the Borel o-field
on R%,and o (Cyox) = B(R%) is a well-known result. First we show u;(R%) > 0.
Let I; = (—L, L]%. Then, I} € Cyox and u;(I;) > 0. We have

(143) 0< Llirn wi(1L) :Llim o (O Epm;(W,, 0)1(X; €1,)
= 05 () Epm;(W;, 0)1(X; € R™) = w;(R™),
¥ A class of subsets, R, of a universal set is called a semiring if (a) the empty set § € R;

(b) A,B € R implies ANB e R; (c) if A,Be R and A C B, then there exist disjoint sets
Cy,...,CyCRsuchthat B— A = Ufil C;; see Billingsley (1995, p. 138).
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where the second equality holds by the dominated convergence theorem,
op (O)m;(w, )1(x € I) — o1 (0)m;(w, 0)1(x € R¥) as L — oo, |07 ;(0) x
my(w, 0)1(x € I)| < o7;(8)|m;(w, 0)] for all w, and oy ;(0)Er|m;(W;, 0)| <
00.

Next, we treat the cases j < p and j > p separately because different tech-
niques are employed. First, we consider j =1, ..., p. Suppose Erm;(W,, ) x
gi(X;) =0 Vg € G. Then, u;(C) > 0 VC € Cyx. We want to show that
Erm;(W;, 0)1(X; € C) > 0 VC € B(R%), because this implies that Ep(m;(W,,
0)|X;) > 0 a.s. since X; is Borel measurable.

By Lemma C1, we have w;(C) > 0 VC € 0(Coox) if (a) Coox is a semiring of
subsets of R%, (b) u, is bounded, (¢) u; is countably additive, (d) u;(¥) =0,
(e) wj(R%) >0, and (f) R% can be written as the union of a countable number
of disjoint sets in Cpo. It is a well-known result that (a) holds (provided @ is
added to Cy.x). By condition (vi) in (2.3), (b) holds. Condition (c) holds by the
dominated convergence theorem. Because 1(X; € #) = 0, condition (d) holds.
By (14.3), condition (e) holds. Condition (f) holds because

k
(144) R*= |J XG,i+1,

—1
{i1s2seoig JENK

where N is the set of all natural numbers. Therefore, u;(C) > 0VC € 0(Cpox) =
B(R%), that is,

(145)  Exm;(W, 0)1(X,€C) =0 VC e B(R™).

Next, we consider j = p +1,..., k. Suppose Erm;(W;, 6)g;(X;) =0 Vg €
Gbox- Then, u;(C) =0 YC € Cpox. We want to show that Epm;(W;, 0)1(X; €
C) =0 VC € B(R%), because this implies that Er(m;(W,;, 0)|X;) =0 a.s. be-
cause X is Borel measurable. To do so, we show that C, = B(R%), where C, =
{C € B(R%™):u;(C) = 0}. It suffices to show B(R%) C Cy. Because Cyox C Cy
and o (Cyox) = B(R®%), it suffices to show that C, is a o-field. The set C, is in-
deed a o-field because (a) R* € Cy by (14.3), (b) if C € Cy, then p;(C°) =
wi(R%) — u;(C) =0, that is, C € Cy, and (c) if Cy, C,, ... are disjoint sets in
Co, then w; (U=, Ci) = Y2, ;i (C:) = 0 because u; is an additive set function,
that is, [ J-, C; € Cy. This completes the proof of Assumption CI for G = Gy
with 7 = oo.

Assumption CI holds for G = G, with 7 = co implies that Assumption CI
holds for G = G« when 7 € (0, 00). The reason is that if some deviation is
captured by a big box, it also must be captured by some smaller box contained
in the big box (because a big box is a finite disjoint union of smaller boxes).

For G = G, cuve, Assumption CI holds by the same argument as for G, but
with Cecupe in place of Cyoy provided (i) Cecupe U {¢p} is a semiring of subsets of
[0, 1]%, (ii) [0, 1]% can be written as the union of a countable number of dis-
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joint sets in Ce.cype, and (iii) o (Ce.cune) = B([0, 1]%). Condition (i) is straightfor-
ward to verify. Condition (ii) is verified by using U?:l((ﬂ —1)/2r),¢/2r)] =
[0, 1] (since the interval (0, 1/(2r)] is defined specially to include 0) to con-
struct a finite number of d,-dimensional boxes whose union is [0, 1]%. Con-
dition (iii) holds because every element of C,. can be written as a countable
union of sets in Cecype and o (Cpox) = B([0, 1]1%).

Finally, we establish Assumption M. For G = G, Assumptions M(a) and
M(b) hold by taking G(x) =1 Vx and 6, = 4/8 + 3. Assumption M(c) holds
because Cnx forms a Vapnik—Cervonenkis class of sets. Assumption M holds
for G.cune because Ge.cupe C Grox. Q.E.D.

PROOF OF LEMMA Cl1: Because (i) p:0(R) — R is a bounded countably
additive set function, (ii) w(¥#) = 0, and (iii) u#(C) > 0 VC € R, Billingsley’s
(1995) Theorem 11.3 implies that there exists a measure, u*, on o(R) that
agrees with u on R. We want to show that u* agrees with u on o(R). That is,
we want to show that C.q = 0 (R), where

(14.6) Coq={Cea(R):pn*(C)=u(O)}.

It suffices to show that o(R) € C,q because, by definition, o(R) 2 Cq. We use
Dynkin’s -\ theorem; for example, see Billingsley (1995, p. 33), to establish
this.

Because R is a semiring, R is a 7-system. Now, we show that C., is a A-
system. By definition, the set Ceq is a A-system if (a) R% € Ceq, (b) VCy, C; € Ceq
such that C; C G, G, — C; € Cy, and (c) VCy, G, ... € Cq such that C; 1 C,
C € Cq. We show (a), (b), and (c) in turn.

(a) By assumption, R% can be written as the union of countable disjoint R-
sets, say Cj, Cs, ... € R, where R = J?_, C;. By countable additivity of both
n and p*, we have

(147)  w(R") Z,U«(C)—ZM(C)— (R*),

where the second equality holds because C;, C,, ... € R and u* agrees with u
on R. Thus condition (a) holds.
(b) Suppose Cy, C; € Cq and C; C Cy; then C, = (C, — Cy) U Cy. Thus,

(14.8) (G —C) =u(G) — w(C) =u"(C) — uw(C) =p" (G, - C)),

where the first and the third equalities hold by the countable additivity of
and p* and the second equality holds because Cy, C, € C.q. Thus, condition (b)
holds.

(¢) Suppose Cy, G, ... € Cqand C; 4 C; then C = C U (U, (C;—Ciy)) and
C,, G, —C,y, ... are mutually disjoint. By condition (b), C; — C;_; € Ceq fori > 2.
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Thus,

(14.9)  w(C)=pu(C)) + Z,U«(Ci —Ciy)

=2
=u (C)+ Y _ w(C—Ciy) = (C).
=2

That is, condition (c) holds.

Therefore, Ceq is a A-system. Because R C C.q by Dynkin’s 77-A theorem,
0(R) € Ceq. In consequence, o(R) = Ceq, that is, u* agrees with u on o (R).
Because w* is a measure on o (R), u must be a measure on o(R). O.E.D.

PROOF OF THEOREM 2(b): Consider the parameters (6., F,) that appear in
Assumption GMS?2. First, we determine the asymptotic behavior of the critical
value c(¢,(6,.), h,2(6.),1 — a) under (6., F,). We have

(14.10)  £,(6., &) = «,'n'*D; (6., )M, (6., g)
=D, (0, )D} (0K, [V r. (0c, §) + hinr (6, 8]
= Diag "*(honr.(0c, 8)) K, [Var. (0c, 8) + hir (B, )]

Note that A, . (6., g) is a function of iz\z,n,Ff(Hc, g,8) by (5.2). Let

(14.11) T,?MS(HC):/S(sz,,,w(g)+qon(9c,g),ﬁz,n(9c,g)+slk)dQ(g),

where {v,(g):g € G} is defined as in (4.2) on the same probability space as
the observations and is independent of the observations, and vy, (., (-) equals
vy, () evaluated at h, = ﬁz,,,(ec). Equations (4.10), (12.26), (14.10), and (14.11)
imply that the distribution of 7,”°(6,) is determined by the joint distribution
of V3, 0, (8):8 € G}, (M2, 5. (0., 8) 18 € G}, and (k' v, 1. (6., 8): g € G}

We have {(6,., F.):n > 1} € SubSeq(h,,r,(6.)) because (6., F,.) € F. Hence,
by Lemma Al(b), d(;l\z,n,pc(ec), hyr(6.)) =, 0 as n — oo. By the same ar-
gument as in (12.26), this yields d(ﬁz,n(ec), hyr (8.)) —, 0. The latter, the
independence of ﬁz,n,ﬂ(ec) and {v,,(-):h, € H,}, and an almost sure rep-
resentation argument imply that the Gaussian processes {vj, () :n = 1}
converge weakly to v, . ) (-) as n — oo. The sequence of random pro-
cesses {Zz,n(ec, -):n > 1} converges in probability uniformly (and hence in dis-
tribution) to A, £ (6., -), where EZ,H(QC, g) = E;,,(HC, g,8) and hy (6., 8) =
hy £, (6., g, g). The sequence {«,'v, r. (6., -) :n > 1} converges in probability to
zero uniformly over g € G because k, — oo and {v, 5, (6., ) :n > 1} converges
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to a Gaussian process with sample paths that are bounded a.s. Therefore, we
have

Vi (00 (+) iy g 00 (+)
(14.12) hon(6e,+) = | hor (6., ) as n— oo,
Ky_llvn,Ff(oc’ ) OQ

where Ezyn(ec) that appears in vgz’n(,,c)(-) is a function on G x G whereas
71\2’,,(0” -) is a function on G, likewise for vy, . (4, () and hy (6., ), and Og

denotes the R*-valued function on G that is identically (0, ..., 0)" € R¥.
By the almost sure representation theorem (see Pollard (1990 Thm. 9.4)),

there exist {(7,(8), hzn(g), en(g):g € G,n > 1} and {9(g), hx(g):g € G}
such that (i) i(v”(g) hz,n(g),v,(,,,(g)):g € G} has the same distribution as

{(Vh,000(8)s h2n(0c,8)s K,'Vur(0c,8)):8 € G} for all n > 1, (ii) {(#(g),
hy(8)): g € G} has the same distribution as {(v, , (.)(8), h2.r.(0c,8): g € G},

and
7(g) v(g)
hyn(g) | — hz(g) -0 as.
Vien(8)

(14.14) TOMS = / S(#a(8) + Bu(8): han(8) + £11) dQ(g),

(14.13) (iii)) sup

geg

Let

where ¢,(g) is defined just as ¢,(0, g) is defined in (4.10) but with hz ni(8) +
ahz (1) in place of hz nF,i (0, g), where hz ,j(g) denotes the (j, j) element
of h2 2(g), and f,,(g) in place of £€,(0, g), where

(14.15)  &,(g) = Diag(hau(g) + £ha (1))~ (K Bn (@) + &5 i p 1 (e, 8))-

Then, TEMS and T°5(6.) have the same distribution for all n > 1 and the same
asymptotic distribution as n — oo. Let ¢,(1 — ) denote the 1 — @ + 1 quantile

of TnGMS plus i, where 7 is as in the definition of c(k, 1 — «). Then, ¢,(1 — «)
has the same distribution as c(¢,(6.), Ez,n(ec), 1—a)foralln>1.

Let * be the collection of w € £ such that, at w, 7(g)(w) is bounded and
the convergence in (14.13) holds. By (14.13) and the fact that the sample paths
of {¥(g): g € G} are bounded a.s., we have PFC(!}*) =1.

Under (6., F,) foralln>1,

(14.16) K, My e (8., 8) = k,'n" 2D (0) Er.m(W,, 6., 8) = hi o i, (0, 8)
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as n — 00, using Assumption GMS2(c). Thus, for fixed w € o,

(14.17)  &,(g)(w) = Diag "*(ha(g) + eha(15) + 0(1))
X (0(1) + Krjlhl,n,Fc(Oc, g))
— hl,oo,FL»(Gc, g)a

as n — oo for all g € G, where fzz,_,(g) denotes the (j, j) element of ﬁz(g),
using (14.13), hy(1;) = I (which holds by (5.1) and Definition SubSeq(4,)),
hy,;(8) >0,e>0.

By (14.17), Assumption GMS1(a), B, — oo as n — oo (by Assump-
tion GMS2(b)), and the fact that A ., . (6., g) equals either 0 or co by def-
inition, we have

(14.18) @, (&) (@) = hi rF (0,8 as n— oo

for all w € 2",
By (14.13), (14.15), (14.18), and Assumption S1(d), we have

(14.19)  S(7u(8) + Bu(), 13,,(8) + &) (@)
= S((8) + h.r (6, 8), har (e, 8) + i) ()

as n— oo Yo € 0*,Vg € G. Now, by the argument given from (12.14) to the
end of the proof of Theorem 1, the quantity on the left-hand side of (14.19)
is bounded by a finite constant. This, (14.19), and the bounded convergence
theorem give

(1420) TOMS _, Foms _ / S((2) + hrmor. (s ). o (Ber ) + £1,) dO(g)

as n — o0 a.s.
By (14.20),

(1421) P(T°™ <x) - P(T™ <x) as n— oo

for all continuity points x of the distribution of 7MS. Let & (1 — «) denote the
1 — a quantile of 7M. Let (1 — @) = &(1 — a + 1) + n, where 7 is as in the
definition of c(#, 1 — «). By Assumption GMS2(a), the distribution function of

TSMS | which equals that of T'(h., 5. (6.)), is continuous and strictly increasing
at x = ¢(1 — @). Using Lemma 5 of Andrews and Guggenberger (2010), this
gives

(14.22) ¢, (1 —a) —, ¢(l1—a) and
(02(00); B2 n(0), 1 — @) >, E(1 — a),
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\/N\here the second convergence result holds because ¢,(1 — «) and c(¢,(6.),
h,.,(0.), 1 — a) have the same distribution.

Next, by the same argument as used above to show (14.20), but with
Vi, .00 (8) and @, (0., g) replaced by v, (6, ) and hy ,, . (6., §), respectively,
we have

(14.23)  T,(0.) —a T (e £.(6.))
= /S(th,h(oc)(g)+hl,oo,Fc(0w g)a

hZ,FC(Ow g) + lc:Ik) dQ(g),

Where hoo,Fg(ec) == (hl,oo,FC(ec), hZ,FC(ec))’ hl,n,FC(ec) — hl,oo,Fg(ec) by Straight'
forward calculations, and v, (0., -) = Vi, . (4, (-) by Lemma Al(a). Note that
T (hoo.r.(0.)) and TS have the same distribution because Vi 5. (00 (-) and B(-)
have the same distribution. Thus, ¢(1 —«) (= &(1—a+n)+n)isthe l —a+n
quantile of 7' (hw ,(6.)) plus 7.

By (14.22), (14.23), Assumption GMS2(a), and Lemma 5 of Andrews and
Guggenberger (2010), for n > 0, we have

(14.24)  lim Py, (T,(0,) < c(@n(6.), 72 u(6.),1 — @)
= P(T(hoo,Fc(ec)) <é(l—a+mn)+ 77).

The limit as n — 0 of the right-hand side equals 1 — « because distribution
functions are right-continuous and the distribution function of T'(h r,(6.)) at

its 1 — @ quantile equals 1 — a by Assumption GMS2(a).
Combining (14.24) and the result of Theorem 2(a), which holds for all
1 > 0 and hence holds when the limit as n — 0 is taken, gives Theorem 2(b).
Q.E.D.

14.2. Proofs of Results for Fixed Alternatives

PROOF OF LEMMA 4: First, we prove part (a). It holds immediately that
Supp(Q.) = Gecuve because G e is countable and Q, has a probability mass
function that is positive at each element in G, cype-

Next, for part (b), consider g = g,., € Gpox, Where g, (y) = 1(y € C,,) - 11
and (x,r) €[0,1]% x (0,7)%. Let § > 0 be given. The idea of the proof is to
find a set G, ; C B,, (g, 6) (C Guox) such that Q,(G, ;) > 0. This implies that
0y(B,, (g, 8)) > 0, which is the desired result.

The set G, ; needs to be defined differently (for reasons stated below)
depending on whether x, <1 or x, =1, for u =1,...,d,, where x =
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(X1,...,x4.). For n > 0, define

(14.25) Gy ={8xtnprsm 1 (Mo» M) € Zp5},  where
Eei={(mo,m) e R?*: foru=1,...,d,,
if x, <1,m0.€[,20] & 71, €10, n] and
for x, =1, no.. € [—7,0] & n1,, € [-27, —71}.

We have Q,,(G, ;) = Qi ((x,r) + E, ;) > 0 for all 9 > 0 because Q; is the uni-
form distribution on [0, 1]% x (0, 7)%.

Next, we show that G, ; C B,, (g, 8). Let U1, C{1,...,d,} be the set of
indices u such that x, <1 and let U, -1, C {1,...,d,} be the set of indices u
such that x, = 1. Let g,y r+n, € Gg 5. The uth lower endpoints of the C, , and
Ciing,r+n, DOxes are x, —r, and x,, + o, — (r, + M1,4), T€spectively. The lower
endpoint of the C,,,, ,+,, boxis larger than that of the C, , box because 7, —
M. € [0,27] (whether u € U, .1y or u € U,,—1y). The uth upper endpoints of
the C, , and C,,,, r+,, boxes are x, +r, and x,, + 1 , + 7, + M1 4, respectively. If
u € Uy, -1, the upper endpoint of the C, ., ,,, boxis larger than that of the C, ,
box because 71, + n1., € [0,37]. If u € U,,-1), the uth upper endpoint of the
Cyng,r+n, DOX is smaller than that of the C, , box because 7, + 1., € [-37, 0].

Using the results of the previous paragraph, we have

(14.26)  p%(8xr»> Grimorins)
= EFx,o[l(Xi € Cx,r) - 1(Xl € Cx+n0,r+m )]2

dx
S ZPFx,O(Xi,u € (xu —Fy, Xy + nO,Lt - (ru + nl,u)])
u=1
+ Z PFx,o(Xi,ue(xu"l'ru’ xu+n0,u+ru+n1,u])
MGU(xu<1>

+ Z PFX,U(Xi,ue(1+n0,u+ru+n1,u:1+ru]m[0; 1])

u€Ux,=1)

dx

S ZPFX,O(XiM € (xll —Fy, Xy — Ty +2ﬁ])

u=1

+ Z PFX’O(Xi,ue(xu+ruyxu+ru+37_7])

uEU(xu<1>

+ Y Py (Xiwe (I+4r,—30, 1411010, 1),

u€lx,=1)
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where the first inequality uses the d,.-dimensional extension of the one-
dimensional result that (a, b]A(c,d] C (a,c]U (b,d] when a < c and b <d,
where A denotes the symmetric difference of two sets.

The first and second summands on the right-hand side (r.h.s.) of (14.26)
tend to zero as 7 | 0 by the right-continuity of distribution functions. The third
summand on the r.h.s. equals zero when 7 is sufficiently small (i.e., when 371 <
min,,, 1,,). Therefore, for 1 > 0 sufficiently small, p3 (g..., 8xingr+my) < 6 and
G, 7 C B,,(g,8). This completes the proof of part (b).

Note that, in the proof of part (b), we cannot treat the case where u € U,y
in the same way that we treat the case for u € U,,.1) because, for u € U, 1),
we use the center point x, + 7, > X,, which is not in [0, 1] if x, =1 and
hence violates the assumption of part (b) that the centers of the G, boxes lie
in [0, 1]%. Conversely, we cannot treat the case where u € U,,.;, in the same
way that we treat the case for u € U,,-, because doing so would lead to a term
Pry (X € (1 +1r,—3m,1+r,]) in (14.26) that does not go to zero as 7 |, 0 if
X, has positive probability of equaling 1 + r,,. Q.E.D.

PROOF OF THEOREM 3: Part (a) follows from part (b) because
(1427) c(@n(e*): il\Z,n(o*): 1 - a) =< C(Oga 7/"\2,11(0*): 1 - a)a

yhich holds because ¢,(6.,g) > 0, Vg € G by Assumption GMS1(a), c(h;,
h,,(0,),1 — @) is non-increasing in the first p elements of #; by Assump-
tion S1(b), and the last v elements of ¢, (6., g) equal zero.

Now we prove part (b). By Assumptions FA(a) and CI, B(go) > 0 for some
8o € G. By construction, e; = m;(80)/B(go) € [—1, 00) forj=1,...,kande; =
—1 for some j < p or |e;] =1 for some j=p +1,..., k. As defined above,
B,, (g0, 72) denotes a px-ball centered at g, with radius 7, > 0, where py is
defined in (6.3). First we show that, for some 7, > 0,

(14.28) S(m*(8)/B(80), hao(g) + €l) dQ(g) > 0,

Bpy (80,72)

where m*(g) = (mi(g),...,m;(g)) and h,(g) = h, (0., g). We have: for
j=1,...,k,

(14.29)  |mi(g) — m(go)|
= |EF0mj(Wi, 0*)gj(Xi) - EFgmj(VVia 0*)g0,j(Xi)‘/UFg,j(0*)

< (Erm>(Wi, 0.))" (Er,(8,(X) — 80,(X0)") " /5,.,(6.)
2)1/2

12

= (EFU ||m(I/I/l, 0*) PX(g> gO)/O-FU,j(e*)?

where g ;(X;) denotes the jth element of g,(X,).
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Given 1; € (0, 1), let
(1430) 7> =71B(80) 0%, j(0.)/(Er, |m(W,, 6.) ).

By (14.29), for all g € B, (80, 72),

(14.31) |m;f(g) — mj(g0)| <7B(gy) foralj=1,... k.

Hence, for all g € B,, (g0, 72), there exists j < k such that either

(14.32) j<p and m;(g)/B(g) <m;(g)/B(g)+m=—-1+71<0 or
je{p+1,....k} and
|m()/B(g0)| = |m;(g0)/B(g)| —T1=1—7,>0,

using the triangle inequality.

By (14.32) and Assumption S3, S(m*(g)/B(go), h20(g) + €l) > 0 for all
g € B,, (8o, 7). In addition, by Assumption Q, Q(B,, (g, 72)) > 0. These

properties combine to give (14.28).
We use (14.28) in the following: for all 6 > 0,

(14.33)  (n'*B(g0)) “T.(6.)
= (nl/ZB(go))_X
X / S(Vn,FO(B*y g) + hl,n,FU(e*; g), ilZ,n,FO(G*; g)) dQ(g)
g
> (n'*B(gy)) "

X / S(VH,F0(0*7 g) + hl,n,Fo(G*y g), }_ZZ,n,FO(G*a g)) dQ(g)
Bpy (80,72)

_ / S((n'"2B(g) Vs, (6. &)
Bpy (80,72)

+m*(8)/B(&0)s ha i, (0., 8)) dO(8)

-, S(m*(8)/B(80), hao(g) + €li) dO(g)

Bpy (80:72)

>0,

where y is as in Assumption S4, the first equality holds by (5.4), the first in-
equality holds by Assumption S1(c), the second equality holds by Assump-
tion S4 and the definition of 77 (g) in (6.2), the last inequality holds by (14.28),
and the convergence holds by the argument given in the following paragraph.
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By Lemma Al(a) and the continuous mapping theorem, sup,.; [|¥,,r, (6.,
&Il = 0,(1). (Note that Lemma Al applies for (6,,,F,,) = (0., Fy)) ¢ F
for all » > 1 because Assumptions FA(b)-(d) imply conditions (ii)-(v) in
the definition of SubSeq(/,r,(6.)).) Also, (n'?B(gy))~' = o(1), because
Assumptions FA and CI imply that B(go) > 0 for some g, € G. Hence,
(i) (n'?B(80)) 'Wnr,(b.,) = 0g. In addition, (ii) SUp,g 1h2.n (05, 8) —
ha0(g) — el |l =, 0, where h o(g) = hy (0, &, &), by Lemma Al(b), (12.26),
and the definition of 4, , (6, g). As in previous proofs, by the almost sure
representation theorem, there exist a probability space and random quanti-
ties defined on it with the same distributions as (n'>8(g)) 'v,r, (6., -) and
hs.n 5, (0s,-) for n > 1, such that the convergence in (i) and (ii) holds al-
most surely for these random quantities. Furthermore, using Assumptions
S1(b) and Sl1(e), the integrand in the last equality in (14.33) is bounded
by supgesgx(gn’Tz),VeRk:“VHSE*S(V + m*(g)/B(8o), (¢ — 6..)Ix) < oo for all g e
B, (8o, 72), for some &, 6.. > 0, for n sufficiently large, where Bf}x(go, 75)
denotes the closure of B,, (g, 72), because a continuous function on a com-
pact set attains its supremum using Assumption S1(d) and using an argument
analogous to that in (12.14) to treat the second argument of the function S.
Thus, by the bounded convergence theorem, the convergence in (14.33) holds
a.s. for the newly constructed random quantities. In consequence, it holds in
probability for the original random quantities by the equality in distribution
of the original and newly constructed random quantities. This completes the
proof of the convergence in (14.33).

Next, we show that, under Fj,

(14.34)  ¢(0g, h2,u(6,),1 — @) = 0,(1).
This and (14.33) give
(14.35) Py, (T,(0,) > ¢(0g, h2,n(6.), 1 — @)
= Py, ((n'?B(g0)) “T,(6.)
> (n'2B(g0)) *¢(0g, 120(6,),1 — )

> Py, (/ S(m*(8)/B(g0), h2o(8) + €li) dQ(8) + 0,(1)
BPX(gOvTZ)

> op(1)>

—1

as n — oo, which establishes the result of the theorem.
It remains to show (14.34). Lemma A5, applied with A, ,, = h,, {h3,:n>1}
being any sequence of k x k-matrix-valued covariance kernels on G x G such
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that d(h;,,, hyo) — 0, hy = 0g, 1 as in the definition of ¢(h, 1 — a), a replaced
by & —n > 0, and 1, = §, gives: V6 > 0,

(14.36) liminf[cy(0g, hag, 1 — a+ 1+ 8)

+ 86— ¢(0g, 13 ,,1—a+m)] =0 and hence
limsup ¢y(0g, /15 ,, 1 — a4+ 1) < ¢(0g, hop, 1 —a+n+8) + 8 < co.

n—oo

By Lemma Al(b) and (12.26), we obtain d(ﬁz,n(ﬁ*), hs0) =, 0. As in previ-
ous proofs, by the almost sure representation theorem, there exist a proba-
bility space and random quantities hz,,( ,-) defined on it with the same dis-
tributions as hz,,(O*, ,+) for n > 1 such that d(hz s 2,0) = 0 a.s. This and
(14.36) give limsup,_, . co(0g, hz,,,, 1 —a+ 1) < oo a.s., which implies (14.34)
because itz,,,(-, -) and ’ﬁz’n(ﬁ*, -, -) have the same distribution for all » > 1 and
¢(0g, 2,,(8,), 1 — @) = ¢o(0g, hp,n(6,), 1 — a+ 1) + 1. Q.E.D.

14.3. Proofs of Results for n='/>-Local Alternatives

PROOF OF THEOREM 4: The proof of part (a) uses the following. By

element-by-element mean-value expansions about 6, and Assumptions
LAl(a), LA1(b), and LA2,

(14.37)  D;"*(6,.)Er,m(W,, 0,.,8)
=D, "(0,)Eg,m(W,, 0,,8) + Iz, (0,4, 8)(0,.—6,), andso
n2D (0, ) Erm(W, 0., 8) — hi(g) + TIy(g)A,

where 0, , may differ across rows of Iy, (0,,, g), 0, lies between 6, , and
0, 0, = 6o, I, (0, ., g) — II;(g), and by definition A,(g) + II;(g)A = oo if
hi(g) = oo.

Now, the proof of part (a) is the same as the proof of Theorem 2(b) with the
following changes: (i) (6,.., F,,) appears in place of (6., F,) whenever (6., F,)
is used in an expression with # finite, (ii) (6, Fy) appears in place of (6., F,)
whenever (6., F.) is used in an asymptotic expression, (iii) {(0,.., F,):n > 1}
satisfies the conditions to be in SubSeq(4,) (where A, = h, ,(6,)) by Assump-
tions LA1(a) and LA1(c)-(e) and because {W;:i > 1} are i.i.d. under F, and
Assumption M holds given that (6,, F,) € F by Assumption LA1, (iv) (14.16)
is replaced by

(1438)  k,'D;"*(0n., D10, 1 11, (0ney 8) — Ti(g) A 11— 00,
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which holds by Assumption LA4, (14.37) (because «,'n'/*IIf, (0,4, ) (0, —
6,) — 0), and D;nl/z(@n,*, g)Dgz(On, g) — I (using Assumption LAI1(c)),
(v) m(g) appears in place of iy ., 5. (6., g) in (14.17), (vi) ¢(7(g)) appears in
place of Ay o . (6., g) in (14.18)—(14.20), where (14.18) holds for all g € G, by
Assumption LA5(a) and (14.19) holds for all g € G, (vii) Assumption LA5(b)
is used in place of Assumption GMS2(a) in two places, (viii) (h; + 1A, hy) and
hi(g) appear in place of A, £, (0.) and Ay  r.(6.), respectively, in (14.23) and
(14.24), and (ix) (14.23) holds using (14.37) in place of &, ,, £, (6.) = h1.00.5.(6.)
and using v, 5, (0,., -) = v, (-) in place of v, £ (6c,) = v, (4,(-). The re-
sult v, g, (6,,., -) = v, (-) holds by Lemma Al(a) because {(6,.., F,):n>1} €
SubSeq(/,) by the argument given in (iii) above. The desired result is given by
(14.24) with the changes indicated above. This completes the proof of part (a).

Part (b) holds by the same argument as for part (a) but with ¢,(6, ., g) re-
placed by 0, which simplifies the argument considerably. Assumption LAG6 is
used in place of Assumption LA5(b) in the proof.

Part (c) holds by the following argument:

(14.39) B XT(hy + Ao B, )

iy / Sy (8) + () + Iy()AoB, ha(g) + e1,) dO(g)
_ / S, (8)/B + hi(8)/B + Iy(g) Ao, ha(g) + £1,) dO(g)

- / S(Io(g) Mo, halg) + £1,) dQ(g) > 0

as B — oo a.s., where y is as in Assumption S4, the second equality holds by
Assumption S4, the convergence holds a.s. (with respect to the randomness in
v;,,) by the bounded convergence theorem applied for each fixed sample path w
because ||v,,(g)]l has bounded sample paths a.s., and using Assumption LA3’
(which guarantees that £, ;(g) < oo and hence A, ;(g)/B — 0 as B — oo for
all j < p, for all g in a set with Q measure 1), and the inequality holds by
Assumptions LA3" and S3.

Equation (14.39) implies that T (A, + IIyAB, h,) — oo a.s. as B — oo. Be-
cause T'(hy + IlyAoB, hy) ~ Jj p), and the quantities c(¢(m), hy, 1 — ) and
¢(0g, hy, 1 — @) do not depend on B, the result of part (c) follows. O.E.D.

14.4. Proofs Concerning the Verification of Assumptions S1-54

PROOF OF LEMMA 1: Assumptions S1(a)—(d) and S3 hold for the functions
S1, 82, and §; by Lemma 1 of Andrews and Guggenberger (2009). Assumptions
S1(e) and S4 hold immediately for the functions Sy, S,, and S5 with y =2 in
Assumption S4.
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To verify Assumption S2 for § = §i, S, or S;, it suffices to show that

(14.40)  limsup|S(m, + pn, 3) — S0 + s 20)| =0

n—oo

for all sequences {u, € [0, 00)? x {0}":n > 1} and {(m,, 3,) :n > 1} such that
(m,, 3,) — (mgy, 3y), my € R*, and 3, e W.

For clarity of the proof, we consider a simple case first. We consider the
function S, and suppose ¥, = 3. In this case, without loss of generality, we can
assume that 3, = I;. Given that S, is additive, it suffices to consider the cases
where (p,v) = (1,0) and (0, 1). It is easy to see that Assumption S2 holds in
the latter case because u, does not appear. For the case where (p, v) = (1, 0),
we have

(14.41)  |Si(my, + pn, Ii) — S1(mo + pn, 1) |
= [(Im, + pal® — [mo + pal?)|
< |[m, + wa)= — mo + )= | ([m0 4 pal= + [mo + pal-)
< |my, — my| (|ma] + |my))

=0(1)O(1),

where the second inequality holds because |[a]_ — [b]_| < |a — b| and by As-
sumption S1(b). This completes the verification of Assumption S2 for the sim-
ple case.

Next, we verify Assumption S2 for S = S,. For any sequence {u, € [0, 00)? X
{0}”:n > 1}, there exists a subsequence {u, :n > 1} of {n} such that

(1442) }Lnolo|52(m1¢n + Moy, s Eun) - SZ(mO + Mo, s 210)|

= limsup|S,(m, + wn, =) — S2(mg + pa, 20)|.

n—o0o

Let {t,.,,, to.,, € [0, 00)? x {0}":n > 1} be sequences such that

(14.43) (M, + pu, — i)' 2, (May, + o, — tu,)
S SZ(mu,, + Mun, Eun) + 2—14,, and
(mO + M, — tO,Lt,,)/Zal(mO + M, — t(),un) < SZ(mO + Moy, 20) + 2—u,, .

Then,
(14.44)  1im [So(mu, + pay» Zu,) — S20mo + fha,, 30) ]

= llIIl [(mu,, + :u'u,, - tl,u,,)/z;”] (mun + /J'u,, - tl,u,l)

n—0o0o
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— 8,(mg + puy» 20)]

2 hm [(mu,, + Mu,, - tl,un),z;nl(mun + I-Lu,, - tl,u,,)
- (mO + My, — tl,u,,)/zal(mo + Moy, — tl,u,,)]

= ;}Lngo[(mu” + My, — t1,u,,)/(2;nl - 2‘(;1)(’7114,, + My, — tl,un)
+ (M, — me)' 35" (Mo + My, + 2, — 2t1,4,) |

= 0,

where the last equality holds if w,, — #,,, = O(1) because m,, — my < oo and
31— 37 asn— oo.
We now show that u,,, — t;,, = O(1). We have

(14.45) m,, 3 'm,, > Sy(mu, + pu,> 2u,)

> (M, + tou, — t,)' 2 (M, 4 o, — 1) — 27
Thus,
(14.46)  im (my, + phu, — tr.0,)' 3 (M, + s, — tr,)

. 1 _ 1
< lim[m] 3, 'm,, + 27" ] =my3;'my < oo,

which implies that m,,, + w,, — t1.,, = O(1). The latter and m,,, — my < oo give
(1447) oy, — t14, =O(1).

Next, by an analogous argument to (14.44) with > and ¢, replaced by <
and 4 ,,, respectively, we obtain the following upper bound:

(14.48)  lim [S(ma, + > Zu,) — S0 + s 20) ]
= lim [S(my, + pu,> 3u,)

— (Mg + pu, — to,0) 35" (Mo + Py — fo.,) ]

<0,

where the inequality uses u,, — %, = O(1), which holds by an analogous ar-
gument to that given for (14.47). Equations (14.44) and (14.48) imply that the
left-hand side of (14.42) equals zero, which completes the verification of As-
sumption S2 for S,.

The verification of Assumption S2 for § = S, where 3, need not equal 3,
is obtained by replacing 3, and 3, in the proof above for S, by Diag{3,} and
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Diag({3,}, respectively, because S,(m, 3) = S,(m, 3) when Y is diagonal. As-
sumption S2 holds for the function S; when (p, v) = (1, 0) and (0, 1) because
S; =81 =95, in these cases. It holds for §; in the general (p, v) case because it
holds in these two special cases. Q.E.D.

15. SUPPLEMENTAL APPENDIX D

In this appendix, we provide proofs of the results stated in Supplemental
Appendix B. The first subsection gives proofs for the Kolmogorov—Smirnov
and approximate CvM tests and CS’s. The second subsection gives proofs for
results concerning G gpiine and G.,. The third subsection gives proofs for results
concerning “asymptotic issues with the Kolmogorov—-Smirnov statistic.” The
fourth subsection gives proofs for the subsampling results.

15.1. Proofs of Kolmogorov-Smirnov and Approximate
Cramér—von Mises Results

PROOF OF LEMMA B1: To verify Assumption S2’ for Sj, S, and S;, it suffices
to show that

(151) llIIl SUP|S(mn + Moy Zn) - S(mn,O + Moy 2n,0)| = 0

n—0oo

for all sequences {u, € [0,00)? x {0}":n > 1}, {(m,, 3,) € M x Wyy:n > 1},
and {(m,0, 2,0) € M x Wyq:n > 1} for which (m,, 3,) — (m,9, 2,0) — 0 as
n— oo.

The verification of (15.1) is an extension of the verification of (14.40) in the
proof of Lemma 1. The extension consists of (i) replacing m, and 3, by m,, o
and %, o throughout (14.42)—(14.48), (ii) making use of the fact that m,,, m,, o,
and 3! are bounded by the definitions of M and W,q, and (iii) making use
of the fact that 3;' — 3! — 0 given that 3, — 3, o —> 0 and 3,,, 3,0 €
Wha. Q.E.D.

PROOF OF THEOREM B1: When T, (6) is the KS statistic and when 7,,(0) is
replaced by the approximate statistic 7, ;, (6), the results of Theorem 1 hold
under the assumptions of that theorem plus Assumption S2'. The proof of
Theorem 1 goes through with the following changes: (i) the statistics 7, and
Tamo are changed from integrals with respect to Q to suprema over g € G,
or weighted averages over {gi, ..., g,,} with weights {wg ,(£):€ =1,...,s,},
(ii) in the proof of (12.7), (12.10) holds uniformly over g € G because Assump-
tion S2 has been strengthened to Assumption S2’, and (iii) (12.11) holds with
the supremum over g € G, added or with the average over {g, ..., g;,} added,
because (12.10) holds uniformly over g € G and the weights are nonnegative
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and sum to at most 1 by Assumption A2. This completes the proof of Theo-
rem 1 for the KS and A-CvM test statistics.

The result of Theorem B1 is the same as that of Theorem 2(a). The proof
of Theorem 2(a) follows immediately from Lemmas A2-A4. The proof of
Lemma A4 uses Lemma AS. The proofs of Lemmas A2-AS go through for
the KS and A-CvM test statistics with the following minor changes: (i) in the
proof of Lemma A2, T'(h) is replaced by T;, (k) (defined in (4.6)) and the
new version of Theorem 1 for the KS and A-CvM statistics is employed, (ii) in
the proof of Lemma A3, the form of the test statistic only enters through the
first inequality of (12.23), which holds for the supremum and weighted aver-
age forms of the test statistic, (iii) in the proof of Lemma A4, no changes are
required because the form of the test statistic only enters through Lemma A5,
and (iv) in the proof of Lemma AS, T'(h) is replaced by T, (h). Q.E.D.

PROOF OF THEOREM B2: Theorem B2 is proved by adjusting the proof The-
orem 3. The proof of Theorem 3 goes through up to (14.32) with the only
change being that c(-, -, ) is replaced by ¢;, (-, -, -) for A-CvM tests in (14.27)—
in particular, the integral with respect to Q in (14.28) is not changed. Equa-
tion (14.33) needs to be replaced (see (15.2) and (15.6) below); (14.34) is es-
tablished with c(-, -, -) replaced by c, (-, -, -) for A-CvM tests; (14.35) holds,
with 7,(6,) and c(-, -, -) replaced by Tn,sn(e*) and ¢, (-, -, -) for A-CvM tests,
using the replacements for (14.33) given in (15.2) and (15.6) below; the first
equation in (14.36) holds by Lemma A5 with c(-, -, -) replaced by ¢, (-, -, -)
for A-CvM tests, noting that Lemma AS is extended to KS and A-CvM crit-
ical values in the proof of Theorem B1 above; in the second equation in
(14.36), “co(0g, hap, 1 —a + 1+ 8) < 00” holds for the KS critical value be-
cause ¢(0g, hap, 1 —a+ n + &) does not depend on » and the KS test statistic
T (0g, hy,) is finite a.s. since the sample paths of v, ((-) and 1, (-) are bounded
a.s.; and in the second equation in (14.36), “sup, ., ¢, (0g, 29, 1 —a+m+05) <
00” holds for an A-CvM critical value because ¢, (0g, 12,1 — a + 1 + 8)
is less than or equal to the corresponding quantile based on the KS statistic,
which does not depend on # and is finite a.s.

For the KS test, we replace (14.33) with the following:

(15.2)  (n'2B(g0)) “T.(6.) - Q(B, (80, 7))
= (n'?B(80)) " sup S(vu.r, (0:, &) + hinry (05, 8), honry (6., 8))

8€Gn

X Q(BpX (80, 72))

> (17B(g0) / 1(g€Gy)

Bpx(gOyTZ)

X S(Vn iy (Bur &) + M1 n iy (0es 8)5 12 1, (6., 8)) AO(Y)
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-1
2/ 1(g€G)S((n'*B(&0) vury(6s, &)
Bpy (80,72)

+m*(8)/B(80)s ha iy (6., 8)) AQ(Y)

-, S(m*(8)/B(g0), hao(g) + €li) dQ(g) > 0,

Bpx (80,72)

where y is as in Assumption S4, m*(g) = (m;(g), ..., m;(g)), m;(g) is defined
in (6.2) for j < k, hy g = hy 1, (6.), and the convergence uses the argument given
in the paragraph following (14.33) aswellas 1(g € G,) > 1(geG)=1asn —
oo by Assumption KS.

For A-CvM tests, we replace (14.33) with the following results:

(15.3)  (n'*B(g0)) “Ts, (6.)
= wo.(OS((n'*B(80)) " ury (6., 80)
=1

+m*(8)/B(80)» honr, (0., 80)),

using Assumption S4. We have

(154)  sup|m; (9)] < (Erymi (W, 0.)/ 07, 1(0.))"(En G*(X0)'" < o0,
8eg

for j=1,..., k, using the definition of m*(g), Assumption FA (which imposes
Assumption M in part FA(e)), and the Cauchy—Schwarz inequality. Next, we
have

(155)  sup|S((n2B(g0) " ¥ r, (0., &) + m*(8)/B(80)s Mo 1, (62, &)

geg

— S(m*(8)/B(80), h20(8) + &li)| = 0,(1)

under Fj, using the uniform continuity of S over a compact set, which holds
by Assumption S1(d), where attention can be restricted to a compact set by
(i) equation (15.4), (ii) sup,., In~v, £, (0., &) = 0,(1) by Lemma Al(a), and
(iii) Sup,g 122,07, (0.) — hoo — eli]| = 0,(1) using Lemma A1(b) and the def-
inition of l_zz,,,,Fn(H*) in (5.2), and Lemma A1 applies for the reasons given in
the paragraph following (14.33).

Equations (15.3) and (15.5) yield

(15.6)  (n'2B(g0)) T, (0.) +0,(1)

=" wo. (OS(m*(80)/B(80) hao(80))

=1
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- /S(m*(g)/ﬁ(go), hz,o(g)) dQ(g)

> / S(m*(8)/B(80), ha(8)) dO(g) > 0,
BPX (80,72)

where the convergence holds for fixed {gi, £, ...} by Assumptions Al, A2, and
S4, the first inequality holds by Assumption S1(c), and the second inequality
holds by (14.28). This completes the proof. Q.E.D.

PROOF OF THEOREM B3: Part (a) follows from part (b) because

(157) Csn (¢n(0n,*); ’EZ,n(en,*)’ 1- C\{) = Csn (Og, ’EZ,n(en,*)a 1- (1),

yhich holds because ¢,(6.,g) > 0, Vg € G by Assumption GMS1(a), c(h;,
h,.,(0,),1 — @) is non-increasing in the first p elements of /; by Assumption
S1(b), and the last v elements of ¢, (6., g) equal zero.

Now, we prove part (b). When 7,(0) is replaced by the A-CvM statis-
tic T,,(60,..), the results of Theorem 1 hold under Assumptions M, S1, and
S2" with (6, F) replaced by (6,., F,), SUD (4. Fye iy p (), o deleted, T,(0),

T(h,r(0)), and x;, . replaced by T, (0,.), Ty, (h,r,(0,.)) (defined in
(4.6)), and x, ,. (s,.), respectively, where x;, . (,,) € R is a constant that may
depend on (0,_., F,) and n through 4, 5, (6, .). The adjustments needed to the
proof of Theorem 1 are quite similar to those stated at the beginning of the
proof of Theorem B1. In addition, the proof uses the fact that {(6, ., F,,) :n > 1}
satisfies the conditions to be in SubSeq(4,) (where h, = h, ,(6,)) by Assump-
tions LA1(a) and LA1(c)—(e) and because {W;:i > 1} are i.i.d. under F, and
Assumption M holds given that (6,, F,) € F by Assumption LA1. Because
{(0,.%, F,) :n > 1} € SubSeq(h,), Lemma A1l applies, which is used in (12.3).
Also, (hy,,.7(0), hy £(0)) is changed to (A, ,(0,..), h2.r,(6,..)) throughout the
proof of Theorem 1.

Next, using the mean-value expansion in (14.37) and the definition 4, , (6,

g) =n'2D;"*(0)Erm(W;, 0, g), we have
(158) Sup” hl,n,Fn (en,*a g) - hl,n,Fn(eru g) - HO(g))\”

geg

= Sup”HF,,(on,g, g)nl/z(en,* - 0n) - HO(g))\”

g<g

<sup sup |5 (6, 9)A(1+o(1)) — To()A|

8€G 0€0:]10—06)]|<n
— 0,
where 6, , may differ across rows of Ilg,(0,, g), 0, lies between 6, , and

0., 6, = 10, — 6, + 116, — 6]l — 0, the inequality holds using Assump-
tion LA1(a), and the convergence to zero uses Assumption LA2'(b). (Note that
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the (14 0(1)) termin (15.8) requires the condition in Assumption LA2'(b) that
SUpP,.g [HTo(§)All < 00).
Equation (15.8) and Assumption LA2'(a) give: for all B < oo,

(15.9)  sup | inr,(Buss 8) — hi(8) — Io()A| — 0.

8€G:h1(g)<B

By Assumption LAI(c), d(hyF,(0,.), hyr(6y)) — 0. This implies that
Vhy g, () (*) = Vi, (), Where hy = hy 5, (6p). As in previous proofs, by the almost
sure representation theorem, there exist a probability space and random quan-
tities 7,(-) and »(-) defined on it with the same distributions as iy p, (00 (+) @nd
v, (+), respectively, for n > 1, such that SUP,.g 17.(g) — v(g)|l — 0 a.s. Hence,

T, (M, (0,.)) and in (h,.r,(0,..)) have the same distribution, where the latter
is defined to be
(15.10) T, (hur, (6,.))

Sn

= Z wQ,n(e)S(ﬁn(gZ) + hl,n,Fn(en,*a gé); hZ,Fn(Hn,*, g() + glk)-

=1

For all B > 0, B < 0o, and A = A3, we have
(15.11) A.,.(B,B) = sup [|S(7.(9)/B

8€G:h1(9)<B
+ hl,n,Fn(en,*a g)/B, hZ,Fn(en,*a g) + 81k)
—S(v(8)/B+ hi(g)/B+ (&) Ao, ha(8) + 1))

—0 as n— o0 as.

using Assumption S2', (15.9), sup, ¢ [17,(g) — P(g)Il = 0 as., sup ¢ [17(8)l <
oo a.s., and d(hy 5, (0,..), hy) — 0, where hy = h, ,(0).
In addition, for all B < oo, we have

(1512) Ay(B,B) = sup |S(#(g)/B+hi(g)/B + (8o, ha(g) + ely)

g€G:h1(g)<B

— S(Ho(g) Ao, ha(8) + 1) |

—-0 as B—>o0 as.

We use (15.11) and (15.12) to obtain: for all constants B¥ < oo as in Assump-
tion A3,

(1513) BT, (hur, (6,..))

> ZwQ,n(Z)l(hl(gz) <B;)

=1
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X S(i)n(g/)/ﬁ + hl,n,F,z(On,*, gl)/B7 hZ,Fy,(en,*’ g() + Slk)

> > wo(O1(hi(g) < B:)S(Io(g) ho, ha(ge) + el

=1

- Al,n(Ba Br) - AZ(Ba Br)
s 85, / 1(h(g) < B?)S(Io(g) Ao, ha(g) + £1,) dO(g)
— 4:(B, B)

s, / 1(h(g) < BY)S(Io() Ao, ha(g) + £1,) dO(g),

where the first inequality uses Assumptions S1(c) and S4, the second inequality
holds by the definitions of A4, ,(B, B}) and A4,(B, B}), the first convergence
result holds by (15.11) and Assumption A3, and the second convergence result
holds by (15.12).

Let cupo(0g, 3,1 — ) denote the 1 — a quantile of T,(0g, h3) =
sup,.; S(v1,(8), h3(g) + €l;), where h} is some k x k-matrix-valued covari-
ance kernel on G x G. Let Og,¢ denote the k x k-matrix-valued covariance
kernel on G x G that equals the k x k zero matrix for all (g, g*) € G x G. The
A-PA critical value satisfies

(1514) Cs, (Og,il\z,n(an,*), 1- a) < Csup,o(og; /h\z,n(gn,*)a l-«a + 77) + n
=< Csup,O(Oga OQXQ’ 1 —a+ 77) + mn

< 00,

where the first inequality holds because a weighted average over {gi, ..., g;,}
with nonnegative weights that sum to 1 or less (by Assumption A2) is
less than or equal to the corresponding supremum over g € G, which im-
plies that T, (0g, h3) < Ty, (0g, h3) VA3, the second inequality holds because
S(vi,(8), h5(g) + &ly) < S(vy,(g), eli) Vg € G, for all covariance kernels A}
by Assumption S1(e), which implies that T,,(0g, /5) < T4, (0g, Ogxg) VA3, and
the last inequality holds because sup weq SV, (8), ely) < oo as., which holds by
Assumption S2" and sup,.g lva, (81l < oo as.
We now have: for all B} as in Assumption A3,

(15.15)  lim limint Ps, (T, (Fn r, (0,.0)) > €5, (0g, 7o n(6,.), 1 — @)

B—0o0 n—oo

> lim liminf P(8 T, (.5, (0,.))

B—oo n—oo

> B¥c(0g,0g.g, 1 —a+m) + B7¥n)
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> lim P< f 1(1(2) < B)S(ITy(8) Ao, ha(g) + £1,) dQ(g)
— Ax(B, B;) > B¥c(0g, hy, 1 — a4 m) + BX”7>

= 1(/ 1(h1(8) < BY)S(ITo(8) Ao, ha(g) + £li) dQ(8) > 0>,

where the first inequality holds by (15.14) and the equality in distribution

of Tsn(h,,,pn(ﬁ,,,*)) and Tsn(hn,Fn(Gn,*)), the second inequality holds by (i) the
first two inequalities in (15.13), (ii) the first convergence result in (15.13), and
(iii) the bounded convergence theorem, and the equality holds by the second
convergence result of (15.13) and the bounded convergence theorem.

The left-hand side (Lh.s.) in (15.15) does not depend on B:. Hence, the Lh.s.
is greater than or equal to the limit as ¢ — oo of the right-hand side, which
equals

(15.16) 1(/ 1(h1(g) < 00)S(ITp(8) o, ha(g) + €li) dQ(8) > 0) =1

by the monotone convergence theorem and the assumption that Bf — oo as
¢ — oo, where the equality holds by Assumptions LA3’ and S3.

Lastly, we prove part (c) regarding KS tests and CS’s. The proof is essentially
the same as that for parts (a) and (b) with T,, ,,(6,..), ¢, (-, - ), 3oy Won(€) - -+,
and f dQ(g) replaced by the KS quantities 7,(0,..), c(-, -, ), SUpP,.g> and
sup,.g - - -, respectively (or with G, in place of G). Q.E.D.

15.2. Proof of Lemma B2 Regarding Gg.spiines Gvox,da» and Geja

PROOF OF LEMMA B2: First we verify Assumption CI for G = Gg_gpiine. Let
m; (0, x) =Er(m;(W,;, 0)|X; = x). Write

P
(15.17)  Xr(6) = (U{x €R™:m; (0, x) < O})

j=1
k
U ( U {x€eR%:m;p(0,x) #0}).
J=p+1

If Pr(X; € Xr(6)) > 0, then the probability that X; lies in one of the &
sets in (15.17) is positive. Suppose (without loss of generality) that Pr(X; €
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{x:m; p(6,x) < 0}) > 0. The set {x:my (0, x) < 0} can be written as the
union of disjoint nondegenerate hypercubes in Cg.giine (i.€., hypercubes with
positive Lebesgue volumes) because continuity of m; (8, x) implies that if
my (6, x) <0, then m; (0, y) <0 for all y in some hypercube that includes
x. The number of such hypercubes is countable (because otherwise their union
would have infinite volume). One of these hypercubes, call it H, must have
positive X; probability. (Otherwise, the union of these hypercubes would have
X; probability zero.)

In sum, we have H € Cg.giine, Pr(X; € H) > 0, and m, z(60, x) < 0 for all
x € H. In addition, the B-spline whose support is H is positive on the interior
of H. Thus, if Pr(X; € int(H)) > 0, we have Exm(W;, 0)By(X;) < 0, which
establishes Assumption CI.

On the other hand, if Pr(X; € int(H)) = 0, then we must have Pr(X; €
H \ int(H)) > 0. Because m; (6, x) is a continuous function of x, there ex-
ists a finite number of hypercubes in Cg.gin. Whose interiors have union that
includes H \ int(H) and for which m; (6, x) <0 for all x in each hypercube.
One of these hypercubes, say H;, must have interior with positive probability
because Pr(X; € H \ int(H)) > 0. In sum, H, € Cg.giine, Pr(X; € int(H;)) > 0,
my r(0,x) < 0 for all x € H,, and the B-spline By, (x) is positive for x e
int(H,). Hence, Exm, (W, 6)By, (X;) < 0, which establishes Assumption CI.

Now we establish Assumption CI for Gy 4q- The fact that Assumption CI
holds for G = Gy for all 7 € (0, 00] by Lemma 3 implies that Assumption
CI holds for G = Gyexaa for all 7 € (0, 00]. The reason is as follows. Let
Goox(F) and Gpox.aa(7) denote Gyox and Gyoxad, respectively, when 7 is the up-
per bound on r, or r, and r,,. For any box C, , € Gy(7), if C,,, cap-
tures some deviation from the model, that is, Exm;(W;, H1(X; € C,,) <
0 for some j=1,...,p or Exm;(W;, 0)1(X; € C,,) # 0 for some j =
p+1,...,k, then (i) C,,, N SuppFX’O(X,») # @ and (ii) Cyj4yr+y captures
the same deviation for n > 0 sufficiently small. Result (ii) holds because
lim, o Epm;(W;, )1(X; € Cyjinrin) = Ermj(W,, 0)1(X; € C,,,). The latter
holds by the bounded convergence theorem because (Cyyir iy — Cyyr) 4 ¥ as
1 1 0, and hence m;(w, )1(x € Cyyiyriq) = mj(w, O1(x € Cy,,) as n | 0 for
every w, and Eg|m;(W;, 0)1(X; € Cy sy r10)| < Eplm;j(W;, 0)| < 00. By (i) and
1 € (0,7/2], Cyy1n,r+y can be written as a box, Cy,, ,, in Guox aa(37) by picking a
point x € C,,, N SuppFX’O (X;), which is necessarily in the interior of Cy 4y r4r,
and letting ry = x —xg+rand r, = xo+r—x+2n. We have |x —xo| <7, r <?2r,
and r, <3r. Because C, ,, ,, = Cy 1y 4y and Cy 4y -+, captures a deviation from
the model, C, ,, ,, does as well, and the proof is complete.

Note that in the preceding argument, it is necessary to expand C, , to
C.ytn.r+n because Cy, , is not necessarily in Gyox aa(37) if the only elements of
Cyy.r NSuppy, (X;) are on the boundary of C,, .. Also, note that the argument

above does not go through if one uses symmetric side lengths (i.e., r,, = 12,,,)
in the definition of Gy ad-
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Next, we verify Assumption CI for G = G, ,. We write

(15.18)  Xp(0) = JXi.r(0,d), where

deD
Xy p(0,d) ={x, € R :Ep(m;(W, 0)| X1, =x1, X2, =d) <0
for some j < p or
EF(mj(I/Vi, ONX1i=x1, Xoi = d) #0
forsome j=p+1,...,k},

for d € D. We have

(15.19) Pp(X: € xr(0)) = Pr <(X;),., X;.) el Jxur(o, d))

deD

= ZPF(Xl,i € x1.r(0, d)| Xy, = d)PF(XZ,i =d).

deD

If Pr(X; € xr(6)) > 0, then there exists some d* € D such that Pr(X,; =d*) >
0 and

(1520) PF(Xl,i € XI,F(G’ d*)|X2)[ = d*) > 0.

Given the inequality in (15.20), we use the same argument to verify Assump-
tion CI as given for Gecue, Gooxs I-splines OF Gvox,aa With d, replaced by d, ;,
but with Er(-) replaced by Er(-|X,,; = d*) throughout, and using the fact that
{g 8= gll{d*}, 81 € gl} - gc/d for gl = gc—cube7 gbox, gB-Splin57 or gbox,dd-

Next, we verify Assumption M. Assumptions M(a) and M(b) hold for Gg._giinc
by taking G(x) =2/3 Vx and 8, =4/6 + 3. Assumption M(c) holds for Gg.gpiine
because each element of Gp ine can be written as the sum of four functions,
each of which is the product of an indicator function of a box and a polyno-
mial of order 4. Manageability of polynomials and indicator functions of boxes
hold because they have finite pseudo-dimension (as defined in Pollard (1990,
Sec. 4)). Manageability of finite linear combinations of these functions holds
by the stability properties of cover numbers under addition and pointwise mul-
tiplication; see Pollard (1990, Sec. 5).

Assumption M holds for Gy 44 because it holds for Gy, by Lemma 3 and
Grvox,dd C Gpox-

The verification of Assumption M for G = G, is the same as in the proof
of Lemma 3 when G, iS G cuber Gboxs O Gvox.aa Decause Coox X {{d}:d € D} is a
Vapnik—Cervonenkis class of sets. The verification of Assumption M for G =
Gcja when G is Gp giine 18 essentially the same as the proof above for Gg gine. The
functions in G, , in this case still can be written as the sum of four functions,
each of which is the product of an indicator function of a box—in this case,



58 D. W. K. ANDREWS AND X. SHI

the box is of the form B x {d}, where B is a box in R%! and d € D—and a
polynomial of order 4.

Assumption FA(e) holds for Gg. piine; Gbox,ad> and G4 by the same arguments
as given above for Assumption M.

This completes the proofs of parts (a)—(d) of the lemma.

Part (e) of the lemma holds, that is, Supp(Q.) = Gp.piine, because Gp gpiine
is countable and Q. has a probability mass function that is positive at each
element in Gg_gpiine-

Now, we prove part (f) using a similar argument to that for part (b) of
Lemma 4. Consider g = g, € Gvox,dd» Where g, ., (y) =1(y € Cy,.1,) - 1k
and (x,r,7,) € Supp(X;) x (XZ”ZI(O, ox.))% Let 8 > 0 be given. Let 1y =
(Mo, ---»>Mo.q) and likewise for n; and 7,. Define

(15.21) Gg,ﬁ = {gX+170,r17m,r2+172 =N = Mo NN = N Mo <20 Yu < d. ).

By the same sort of argument as for (14.26), for g* = g, ny.r—np.ratm € Ge >
we have

2

(1522) pg((g, g*) = EFX,(J [I(Xl € Cx,rl,rz) - 1(X1 € Cx+710,r171]1,r2+712)]

S Z[PFXA,O(X@M S (xu - rl,ua Xy + n(],u - (rl,u - nl,u)])

u=1

+ PFX’O (Xi,u S (xu + Yo us Xu + M0,u + u + 772,u]):|
dy
< Z[qu,o(xu —riu+3m) — Fx,0(x, — rl,u)]
u=1
dy

+ Z[qu,o(xu +r2u+3m) — Fx, 0(x, + r2,u)]7

u=1

where Fy, o(-) denotes the distribution function of X;, and the first inequality
holds because 7, + 11, > 0 and 1y, + 1., > 0. Because distribution functions
are right-continuous, the r.h.s. of (15.22) converges to zero as 1 | 0. Thus,
p% (g, g*) converges to zero uniformly over G, ; as 1 | 0 and there exists an
1 > 0 sufficiently small that G, ; C B, (g, ).

Next, we have O (G, ;) equals

dy dy
(1523) Q;XO(X[xu_ﬁ:xu'i‘ﬁ] X[rl,u_zﬁarl,u_ﬁ]
’ u=1

u=1

u=1

dx
X X[rZ,u + 7_7’ r2,u +2ﬁ]) > 07
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where Q}X’O = Fyox Unif((X’f‘: (0, ox ,7))?) and the inequality holds because
x € Supp(X;) and i > 0. This completes the proof of part (f).

Lastly, we prove part (g). By parts (e) and (f) and parts (a) and (b) of
Lemma 4, we have G; C Supp(Q;). Because Supp(Qp) = D and Q, = O x Op,
we have G, C Supp(Q.). O.E.D.

15.3. Proofs of Theorems B4 and B5 Regarding Uniformity Issues

PROOF OF THEOREM B4: Part (a) holds by an empirical process central
limit theorem because the intervals {(a,b]:0 < a < b < 1} form a Vapnik-
Cervonenkis class of sets; for example, see the proof of Lemma Al(a). The
covariance kernel of v(-) and the pseudo-metric p, are specified below.

Let ¢ vd =max{c, d} and ¢ A d = min{c, d}.

To prove part (b), we write

(15.24)  Yigun(X) = (Ui + 1(X; € (&4, 11)) - 1(X; € (a, b])
= U1(X; € (a,b]) + 1(X; € (a V &,, b))
and
(15.25) Er,Y:gus(X:) = Ep,Ul(X; € (a,b]) + Pr,(X; € (a V &,, b))
= Pr,(Xi€(aV g, b))
— (b—-a)/2,

where the second equality uses Assumption CX(b) and the convergence
uses Assumption CX(c) and holds by slightly different arguments when
a =0 and a > 0. Equation (15.25) and b — a > 0 imply that A, ,(g.») =
n'?Er Y,g,5(X;) = 00 = hy(g.,) as n — oo for all g, , € G, which proves part
(b).
Part (c) holds because #,(g,,,) = oo forall g,, € G and

(15.26)  inf hy,(8.p) = inf n'’Pr, (X; € (aV &,, b))
8abeS ’ 8a,bEG "

= inf l’ll/ZPFn (Xl € ((1, b]) =0

a,b:ep<a<b<l

for all n, where the first equality holds by (15.25) and the last equality holds by
Assumption CX(c).

Part (d) holds because v,(g45) + h1.,(8as) = O,(1) + n'*(b — a)/2 — , 00
by part (a) and (15.25) for all g, , € G. This, combined with Assumption CX(f)
(in particular, Assumption S1(d)), proves part (d).

Part (e) holds by part (b) and Assumption CX(f) (in particular, Assump-
tion S2) because S(v(g..5) + h1(gap)) =S(c0) =0forall g,, €G.
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To show part (f), we define
(15.27)  gi(x) =1(x € (0, &,]).
Then,
(15.28)  hy,(g;) =n'"?EF,Yigi (X)) = Pr,(Xi € (0V &,, £,]) =0

for all n, where the second equality holds by (15.25) with a =0 and b = ¢,.
Next, we have

(15.29)  sup S(vu(gu) + h1u(8us)) = S(va(g2) + hia(g2)) = S(a(g7)),

8a,b€9

where the equality holds by (15.28). The asymptotic distribution of S(v,(g}))
is established as follows:

n

(15.30) v,(g;) = n 2 [Yil(Xi € (0, &,]) — Er, Yi1(X, € (0, &,])]

i=1

— pl2 Z[Uz]-(Xl =&, + Ull(X, € (0, 8n))

i=1
+1(X; € (&, 11)1(X; € (0, &,])
— Er,1(X; € (84, 11)1(X; € (0, &,]) ]

= Y Ul (Xi=e) +n2 Y Ud(Xi € (0, 2,))

i=1 i=1

—a Z"~N(0,1/2),

where the second equality uses Er,U; =0 and U; and X; are independent.
The convergence in distribution in (15.30) holds by a triangular array CLT for
the first summand on the second to last line because U;1(X; = &,) has mean
zero and variance Er, U1(X; = ¢,) =1 P, (X, = &,) = 1/2 for all n, using
Assumption CX(b). The second summand on the second to last line of (15.30)
is 0,,(1) because its mean is zero and its variance is

(15.31) Var(nl/zz Uil(X; € (0, sn)))

i=1
= Var(U1(X; € (0, &,)))
=EnUil(Xie 0, e0) =1-Pr(Xi€ 0, &) = £./2,
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where the first equality holds by Assumption CX(d), the second and third
equalities hold by Assumption CX(b), and the last equality holds by Assump-
tion CX(c).

Equations (15.29) and (15.30), Assumption S1(d), and the continuous map-
ping theorem combine to prove part (f).

Part (g) holds if
(1532) Sup S(Vn(ga,b) + hl,n(ga,b)) _"_)p 07
8a,p€9

using part (e). By part (f), for all 6 > 0,

(15.33) lim ian( sup S(va(8ap) + M1.0(8as)) > 5)

8a,ped
> limint P(S(1,(s;) > 3)
=P(S(Z") > 9).
Now, by the dominated convergence theorem, as § — 0,
(15.34) P(S(Z*) > 8) — P(S(Z*) > 0) =12,

where the equality holds because S(m) > 0 iff m < 0 by Assumption S2 and
P(Z* < 0) =1/2. Hence, the right-hand side in (15.33) is arbitrarily close to
1/2 for é > 0 sufficiently small, which implies that (15.32) holds and part (g) is
established.

Lastly, we compute the covariance kernel K (g4, .5,> 84,.5,) Of the Gaussian
process v(-). We have

(15.35) EFnYizgal,bl(Xi)gaz,bz(Xi)
= Ep, (Ui + 1(X; € (80, 1)) 1(X; € (a1 V a3, by A b))
=Ep,U1(X; € (a1 V a2, by A b))
+ Er,QU; + D1(X; € (a1 V ay V &,, by A by])
= Pp,(X; € (a1 V az, by Aby]) + Pr(Xi € (a1 V ay V &,, by A b))
— (1/2)1(a; = a, = 0) +max{(b; A by) — (a; V a5), 0}
= Ki(8a,.by> 8arbr)s

where the third equality uses Assumption CX(b) and the convergence uses
Assumption CX(c).
In addition, we have

(1536)  lim Ey, Yigas(Xp) = (b— a)/2 = Kx(8u.),
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where the first equality holds by (15.25). Putting the results of (15.35) and
(15.36) together yields

(15'37) K(gal,bl’ g(lz,bz)
= }'}Lrlgo(EF” Kzgal,bl (Xi)gaz,bz(Xi)
—Er,Yiga, 5, (X)) - EF, Yigaz,bz(Xi))
= Kl(gal,bl s gaz,bz) - KZ(gal,bl )Kz(gllz,bz)'
The square of the pseudo-metric p, on G is

(15.38)  p2(8uyby» 8arihy)
- r}l)ngo Ep, (}/igﬂ]»bl (Xi) = Yi8ay b, (Xi)

2
—Eg, Y845, (X)) +Er,Yiga, 5, (Xi)) .

The limit in (15.38) exists and can be computed via calculations analogous to
those in (15.25) and (15.35). Q.E.D.

PROOF OF THEOREM BS5: For notational convenience, we let g denote g, 5.
By Theorem B4(a), v,(-) = v(-) as n — oo. As in the proof of Theorem 1(a), by
an almost sure representation argument (e.g., see Thm. 9.4 of Pollard (1990)),
there exist processes 7,(-) and v(-) on G that have the same distributions as
v,(+) and v(-), respectively, for which

(15.39) sup|p.(g) —#(g)| >0 as.

g€g

Let £ denote the sample paths for which the convergence in (15.39) holds. By
(15.39), P(2) = 1.
For each w € (2, we apply the bounded convergence theorem to obtain

(15.40)  lim f S(#a(g)(@) 4 h1u(8)) dO(g)

:fS(ﬂ(g)(w)+h1(g)) dQ(g),

which yields the result of the theorem. Now we check the conditions for the
bounded convergence theorem. For all g € G, pointwise convergence holds:

S(Fa() (@) + h1,(8)) = S(P(g)(w) + hi(g)) as n— oo

by (15.39), Theorem B4(b), and Assumption S1(d). A bound on S(7,(g)(w) +
hi,,(g)) over g € G and n sufficiently large is given by S(infecq 7(g*)(w) — &)
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for some & > 0. This follows because, for all ¢ > 0 and g € G, we have
(1541) 0= S(7.(8)(@) + h1.u(8)) < S(Fu(8) (@)
= S(inf Pl )() = S(EP(E )0 — ) <ox.

where the first inequality holds by Assumption S1(c), the second inequality
holds by Assumption S1(b) and /4, ,(g) > 0 for all g € G by (15.25), the third
inequality holds by Assumption S1(b), the fourth inequality holds for all # suf-
ficiently large by (15.39) and Assumption S1(b), and the last inequality holds
because inf,.c; 7(g*)(w) > —oo because the sample paths of 7(-) are bounded
a.s. (which follows from |m(W,, 6y)g(X;)| < |m(W;, 6p)| < |U;| + 1 < oo a.s.
and (15.39)). This completes the proof of (15.40) and the theorem is proved.

Q.E.D.

15.4. Proofs of Subsampling Results

PROOF OF LEMMA B4: For ), Assumption SQ(a) holds because (i) if
v > 1, the summand Zj;,,H(vﬁz,,(g)/(hz,,,,»(g) + &)) is absolutely continu-
ous for all g € G, where v),,(g8) = (V4,,1(8), ..., Vn,k(g)) and h,;;(g) de-
notes the jth diagonal element of A,(g), (ii) if v =0 and h;(g) # oo”, the
summands [v, ;(g) + hi;(g)]*/(ha;,;(g) + &) are absolutely continuous for
x >0 and all j < p such that s ;(g) < oo, (iii) if v=10 and h;(g) = oo?,
S1 (i, (8) + hi(g), ha(g) + el) =0 and its distribution function equals 1 for
all x > 0, and (iv) if S;(v4,(g) + hi1(g), ha(g) + €l)) is absolutely continuous
forall g € G, then [ S;(vy,(8) + hi(8), ha(g) + &) dQ(g) is absolutely contin-
uous.

Assumption SQ(b) holds for §; because (i) if v > 1, the summand
fZ;‘:pﬂ(Vﬁz,j(g)/(hz,j,j(g) + £))dQ(g) has positive density on [0, c0), and
(i) if v=0 and h,(g) # oo”? on some G C G such that Q(G) > 0, each sum-
mand [[v, ;(8) + hi;(8)12/(hy;;(8) + &) dQ(g) for which A, ;(g) < oo on
some G C G such that Q(G) > 0 has positive density on [0, c0), and so does
the sum over 37 ,.

For S, if v=10 and A,(g) = oo as. [Q], then S,(v,,(8) + hi(g), ha(g) +
el) =0a.s. [Q], Jou ) (x) =1for all x >0, Assumption SQ(a) holds, and As-
sumption SQ(b) does not impose any restriction. Otherwise, v > 1 or h(g) <
oo? on a subset G C G such that Q(G) > 0. In this case, the random variable
sz(th(g) + hi(g), ha(g) + el) dQ(g) has support [0, co) and is absolutely
continuous. Hence, Assumptions SQ(a)-(b) hold. Q.E.D.

The proof of Theorem B6 uses the following lemma.
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LEMMA D1: Suppose Assumptions M and S1 hold. Then, for all h € H, under
any sequence {(0,, F,):n>1} € Seqb(h’f, h),

1,(6,) —>dfS(th(g)+h1(g),hz(g)+slk) do(g)

~ Jn,ny as n— 0.

COMMENT: Condition (iv) of Seq’(h?, h) is not needed for the result of
Lemma D1 to hold.

PROOF OF THEOREM B6: First, we prove part (a). Suppose {(8,,F,):
n>1}e Seqb. Then, there exist &~ € H and A} € Hj(h) such that {(6,, F,):
n>1} e Seqb(h’f, h). We need to show that, under {(0,,F,) :n > 1},
limsup,, . Pr,(T,(0,) < cup(6,,1 —a)) > 1 — a. The asymptotic distribution
of 7,(6,) is given by Lemma D1. We now determine the probability limit of
Cop(0,, 1 — ).

Let Ji, 0,y (x) for x € R denote the distribution function of J, 5. By
Lemma 5 in Andrews and Guggenberger (2010), if (i) U,,5(6,, X) = 5 J(u1,1,) (X)
for all x € C(Juy 1), where C(J iz 1n,)) denotes the continuity points of Jox 1),
and (ii) for all £ > 0, Jir 1y (¢ + €) > 1 — @, where ¢, is the 1 — a quantile of
J(h’l‘,hz), then

(15.42) ¢, (6,1 — @) >, Cx.

Condition (i) holds by the properties of U-statistics of degree b and
T,.5,j(60.) = a J .1y (se€ Thm. 2.1(i) in Politis and Romano (1994)). The latter
holds by Lemma D1 because subsample j is an i.i.d. sample of size b from the
population distribution.

By Assumption S1(c), Ji, n,)(x) =0 Vx <0 for h € H. Thus, ¢y, > 0. If
v=20 and h;(g) = co” a.s. [Q], then J(h»f,hQ)(O) =1, c, =0, J g np (€0 + & =
1> 1 — «. In all other cases, Assumption SQ(b) applies, J(hxf,hz)(O) <1, and
St ny (Coo + &) > J it 1y (€)= 1 — a. Thus, condition (ii) holds and (15.42) is
established.

If ¢, > 0, coo € C(J 1y, 1,)) by Assumption SQ(a). Thus,

(15.43) liminf Pr, (T,(6,) < ¢,5(6,,1 — a))
=J 1) (€o0) = Tt iy (€oc) =1 —
where the first equality holds by (15.42) and Lemma D1, the inequality holds

by Assumption S1(b) and A} < h, and the second equality holds by Assump-
tion SQ(a) and the definition of c,..
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If ¢, =0, for some set G C G with Q(G) = 1, we have
(15.44)  Pr,(T.(6,) < (6,1 — @)
> Pr, (T,(6,) <0)

¥ (nl/zm_—n’j(e"’ 85 ovj<pa mnlin8)_,
! C_rn,j(em g) - - (_Tn,j(ena g)

Vj:p—l—l,...,k,‘v’geG)

v, (&)

_)P<Vh,j(g)+hl,j(g) S 0vji<p& _
hy;i(8) +e&

hy;i(8) + &
Vj=p+1,...,k,‘v’geG)

=P(S(vi(g) + M (g), ha(g) + l) =0 Vg € G)
=J 1 (0) = T2 1y (0) > 1 — @,

65

where 0, ;(0, g) and h, ; ;(g) denote the jth diagonal elements of 3,(6, g) and
h,(g), respectively. In (15.44), the first inequality holds because ¢, ,(0,, 1 — a)
is the 1 —a sample quantile of the subsample test statistics and the test statistics
are nonnegative (by Assumption S1(a)), the first and second equalities hold by
Assumption S2, the convergence holds by Lemma A1l(a)—(b), the third equality
holds by the definition of J, 4,), and the last inequality holds because 0 is the

1 — a quantile of J 41 1y).

Next, we prove part (b). Let (6%, F*) = (0, F) for n > 1, where (6, F)
is specified in Assumption C. Then, {(6*,F}):n > 1} € Seqh(h’{, h), where

hi = hy p(0) and h = (hy z(0), hy £(0)). Thus,
(15.45) Timin Py, (T,(67) < ¢,5(67, 1 — )
=Jny,ny (Coo) =T nzny (Coo) =1 — .

This and the result of Theorem B6(a) establish part (b).

Lastly, we prove part (c). Suppose Assumption Sub holds and {(6,,,, F.,,):

n > 1} belongs to Seq” (where Seq” is defined with 1, in place of 7). Then,

(15.46) AsyCS = lim Py, (T,(0,,) < Cup(Opn,, 1 — @)

> inf  liminf Py, (T,(6,) < Cup(6,, 1 — )

{(6n, Fp)m=1}eSeq? >0

=1l—-a
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using Theorem B6(b). On the other hand,
(15.47) AsyCS = lim 1nf(0}g£FPF(Tn(0) <cp(0,1—))

n— 00

< inf liminf Pr, (7,,(6,) < €,5(6,, 1 — @)

{(6n,Fn):n=1}eSeq? 1>

=1-a
Thus, we have AsyCS =1 — a. Q.E.D.

PROOF OF LEMMA D1: By the same argument as used above to show
(14.20), but with vy, ,,(g) and ¢, (8., g) replaced by v,, 7, (8,, g) and k5., (0.,
g), respectively, we have

(1548) T,(0,) =4 T(h) = / S(vy(8) + I (9), ha(g) + £1) dQ(g),

where v, 5, (0,, ) = v, (-) by Lemma Al(a), hi 5, (0., 8) — hi(g) YVge§
by Definition Seqb(h’{, h)(ii), and d(il\g’n(en), h;) — 0 by Lemma Al(b) and
(12.26). Note that the assumption that {(6,, F,):n > 1} satisfies Defini-
tion Seqh(h’{, h) and Assumption M implies that {(0,, F,,) : n > 1} satisfies Def-
inition SubSeq(/,) and hence the conditions of Lemma A1 hold. Q.E.D.

16. SUPPLEMENTAL APPENDIX E

This appendix proves Lemma Al, which is stated in Supplemental Ap-
pendix A.

16.1. Preliminary Lemmas E1-E3

Before we prove Lemma Al, we review a few concepts from Pollard (1990)
and state several lemmas that are used in the proof.

DEFINITION El—Pollard (1990, Definition 3.3): The packing number
D(¢, p, G) for a subset G of a metric space (G, p) is defined as the largest
b for which there exist points g, ..., g® in G such that p(g®, g*’) > & for
all s # §'. The covering number N (&, p, G) is defined to be the smallest number
of closed balls with p-radius & whose union covers G.

It is easy to see that N(§, p, G) < D(§, p, G) < N(&/2, p, G).

Let (£2, F,P) be the underlying probability space equipped with probabil-
ity distribution P. Let {f, ;(w,g):g € G,i < n,n > 1} be a triangular array of
random processes. Let

(161) ]:n,w = {(fn,l(wa g)7 ---7fn,n(wa 8))/g€g}
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Because F, , C R", we use the Euclidean metric | - || on this space. For sim-
plicity, we omit the metric argument in the packing number function, that is,
we write D(¢, G) in place of D(&, || - ||, G) when G C F,, .

Let © denote the element-by-element product. For example, for a, b € R",
a®b=(aby,...,a,b,). Let envelope functions of a triangular array of pro-
cesses {f,i(w,8):g € G,i <n,n > 1} be an array of functions {F,(w) =
(Fui(w),...,F (@) :n > 1} such that |f, (0w, g)] < F,(w) Vi < n,n >
1l,g€eG, we .

DEFINITION E2—Pollard (1990, Definition 7.9): A triangular array of pro-
cesses {f,.i(w,g):g€G,i <n,n>1}is said to be manageable with respect to
envelopes {F,(w) :n > 1} if there exists a deterministic real function A on (0, 1]

for which (i) fol V9ogA(€)dé < oo and (ii) D(€|la © Fu(w)ll, @ © Fro) < A(E)

for 0 < £ <1, all w € {2, all n-vectors a of nonnegative weights, and all n > 1.

LEMMA E1: If a row-wise i.i.d. triangular array of random processes {¢, (v,
g):g €G,i <n,n> 1} is manageable with respect to the envelopes {F,(w):n >
1}and c,(w) = (cp1(@), ..., chp(w)) is an R*-valued function on the underlying
probability space, then

(a) {pni(w, g)cri(w):g € G,i <n,n > 1} is manageable with respect to the
envelopes

(162) F.(w)= (Fn,l(w)|cn,l(w)

seooos Fyp(@)|euu(@)|) for n=>1,

) {(Edni(-,8):8 € G,i <n,n > 1} is manageable with respect to the en-
velopes {EF, :n > 1} provided EF, ; < oo forall n > 1, and

(c) if another triangular array of random processes {¢; (w,8):g € G,i <
n,n > 1} is manageable with respect to the envelopes {F(w):n > 1}, then
{¢) (w,8) + dui(w,8):g €G,i < n,n> 1} is manageable with respect to the
envelopes {F,(w) + F(w):n>1}.

LEMMA E2: If the triangular array of processes {f,(w,g):g€G,i <n,n> 1}
is manageable with respect to the envelopes {F,(w) = (Fy1(®), ..., F,(®))":
n > 1}, and there exist 0 < m < 1and 0 < B* < co such that n™ 'y EF;;T" < B*
forall n > 1, then

i<n

n

(16.3)  sup|n”! Z(fn,,-(w, g) — Ef.i(-, )| =, 0.

86 i=1

Lemma E1(b)—(c) imply that if {f,(w,g8):g € G,i <n,n > 1} is man-
ageable, then the triangular array of recentered processes {f,(w,g) —
Ef,:(-,g):g€G,i <n,n> 1} also is manageable with respect to their cor-
responding envelopes. Lemma E2 is a uniform weak law of large numbers for
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triangular arrays of row-wise independent random processes. Lemma E2 is a
complement to Theorem 8.2 in Pollard (1990), which is a uniform weak law of
large numbers for independent sequences of random processes.

Lemma Al(a) is a functional central limit theorem result for multidimen-
sional empirical processes. We prove it using a functional central limit theorem
for real-valued empirical processes given in Pollard (1990, Thm. 10.3) and the
Cramér—Wold device.

For a € R*/{0,}, let

(164)  f.i(w,8) =aD;"*(0,)n'"

X [m(W’l,i(w)3 01’1: g) - Ean(VI/n,i(')a 0117 g)]
for wel), geg,

where W, ;(-) = W, and the index n in W, ; signifies the fact that the distribution
of W, is changing with #n. The random variable f, ;(w, g) depends on a, but for
notational simplicity, a does not appear explicitly in f, ;(w, g). By definition,
we have

(16.5) v, (00,8 =Y fri(w, 8).

i=1

Let

(166) pn,a(g’ g*) = (nE|fn,i('7 g) - fn,i('a g*)

We show in the proof of Lemma E3 below that, under the assumptions, the se-
quence {p, .(g, g*):n > 1} converges for each pair g, g* € G. In consequence,
the pointwise limit of p, ,(-, -) is an appropriate choice for the pseudo-metric
on G. Denote the limit by p,(, -), that is,

2)1/2

for g,g°€g.

(167) pa(g, g*) =nlgl(;lopn,a(ga g*)

LEMMA E3: For all a € R* \ {0} and any subsequence {(0,,,F,,):n > 1} €
SubSeq(h,), for some k x k-matrix-valued covariance kernel h, on G x G,

(a) G is totally bounded under the pseudo-metric p,,,

(b) the finite-dimensional distributions of a'v,, r,, (0.,, &) have Gaussian limits
with zero means and covariances given by a'h,(g, g*)a Vg, g* € G, which uniquely
determine a Gaussian distribution v, concentrated on the space of uniformly
pa (-, -)-continuous bounded functionals on G, U, (G), and

(c) a'va,.r,, (0a,,-) converges in distribution to v,.

The proofs of Lemmas E1-E3 are given below. The proof of Lemma E2 uses
the maximal inequality in (7.10) of Pollard (1990). The proof of Lemma E3
uses the real-valued empirical process result of Theorem 10.6 in Pollard (1990).
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16.2. Proof of Lemma Al(a)

Lemma Al is stated in terms of subsequences {a,}. For notational simplicity,
we prove it for the sequence {n}. All of the arguments in this subsection and
the next go through with {a,} in place of {n}.

The following three conditions are sufficient for weak convergence:
(a) (G, p) is a totally bounded pseudo-metric space, (b) finite-dimensional
convergence holds: V{g",..., g} C G, (v, (0,,8"), ..., vuE, (0,,85))
converges in distribution, and (c) {v, r,(8,, -) :n > 1} is stochastically equicon-
tinuous. (For example, see Thm. 10.2 of Pollard (1990).)

First, we establish the total boundedness of the pseudo-metric space (G, p),
that is, N(¢, p, G) < oo for all £ > 0. This is done by constructing a finite col-
lection of closed balls that covers (G, p).

Consider ¢ > 0. Let B,(g, £) denote a closed ball centered at g with p-
radius £. Let #G denote the number of elements in G when G is a finite set.
(Throughout this proof, G denotes a subset of G, not the envelope function
that appears in Assumption M.) For j=1, ..., k, let e; be a k-dimensional vec-
tor with the jth coordinate equal to 1 and all other coordinates equal to zero.
Then, e; € R* \ {0}, and by Lemma E3(a), the pseudo-metric spaces (G, Pe;)
are totally bounded. Consequently, for all G C G, (G, p,,) is totally bounded.
Our construction of the collection of closed balls is based on the following re-
lationship between {p,;: j < k} and p: Vg, g* € G,

(168)  p*(8,8") =tr(2(8,8) = (8, 8) — (8", 8) + ha(g". 87))
D20, [(W, 6,..8) — (W, 6, )]

= lim Ep,
n—oo

k k
= lim Y 0 (88) =D r(s:8)
j=1 j=1

where the second equality holds by (16.7), which is proved in (16.40)—(16.41).
We start with j = 1. Because (G, p,,) is totally bounded, we can find a set
G, C G such that

(16.9) #G,=N(é, p.,,G) and supglip pe (8, 8%) < &0
eGy

8€g

where & = £/(2Vk). For all g € Gy, let B})el (8, &) = By, (g, &) NG. Then,

UgeGl Bll;el (g7 gk) Ccovers g
Because By, (8, &x) C G, (B, (8, &), pe,) is totally bounded. We are then
able to choose a set G, , such that

(16.10) #Go, = N (&, po,» By, (8 £)) and

sup  min p,, (g, g") < é.

*eG
geBl, (8.6 8 <728
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Let G, = UgeG1 G,,. We have #G, = deGl #G,, < 00. For all g € G, and
g, € G2,ga let

(16.11) B (g, &) =B, (g, &) N B,, (8, &)

By construction, U, .q, , B;, (8> &) covers B, (g, &). Because U, B, (8,

&) covers G, Ug,EG2 Bpe2 (g, &) covers G.

Repeat the previous steps to obtain, in turn, Gs, {Bze3 (g, é0):g€ G3}, e,
Gy, {B’,jek (8, €): g € Gi}. One can induce that (i) # Gy < oo, (i) Uy, B ka (g,
&) covers G, and (iii) Vg € G, there exists (g, g%V, ..., gM) e G, x G;_; x

-+ x G such that

(16.12) geB, (3“,&)cB, ' (8", &) c---CB, (87, &)

Pe_q

Thus,

/2
€;2
16.13 ©) =30 (3.8%) SR S ,
( ) plg.g ( p;, (88 ) §<4k+4k+ +4k> <¢

Equation (16.13) implies that ., B’,j (g, &) covers G, Gy is the desired finite
collection we set out to construct, N (&, p, G) < #G, < 0o, and (G, p) is totally
bounded.

Second, we show that finite-dimensional convergence holds. By Lemma E3,
the finite-dimensional random vector (a'v,r,(6,,8"),...,av, 5, (0,,87))
converges in distribution:

a/Vn,Fn (0,,, g(l))
(16.14)

a/Vn,Fn(ena g(L))
a/hz(g“), g(l))a a’hg(g(l), g(L))a

—4N |0, : :
ahy(g®,gM)a---a'hy(g®, g")a
for all a € R*. Thus, by the Cramér-Wold device, for all g», g@, ..., g® e g,

Vn,F,,(en, g(”) hz(g(l), gm) hz(g“), g(L))
(16.15) : —,N |0, : ;

Vn,F,,(Hn, g<L)) hz(g(“, g<1)) hz(g(L), g(L))

Lastly, we show that {v, r,(0,,-):n > 1} is stochastically equicontinuous
with respect to p. By Lemma ES3, {e}v,,,Fn(Gn, -):n > 1} is stochastically
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equicontinuous with respect to p,, for all j < k. (Weak convergence im-
plies stochastic equicontinuity.) Because p(g, §*) > p.,(g, g") forall g, g* € G,
{€vr,(0,,-):in > 1} is stochastically equicontinuous with respect to p for all
j< < k. Note that ¢’ V5, (6, ) is the jth coordinate of v, r,(6,, -). Therefore,
Vo, (0, ) :n>1}1 is stochastically equicontinuous with respect to p. Q.E.D.

16.3. Proof of Lemma A1(b)

It suffices to show that each element of D_I/Z(Q)g (6,8,8 )D‘”Z(e) con-
verges in probability uniformly over g, g* € G. Suppose 1 < j,j* < k. The

(j, j)th element of D, 1/2(6? )2 (0,.,8,8 )D_l/2(6 ) can be decomposed into
two parts:

(16.16) n”' Z (0. m; (W, 0,)m; Wy, )07 (0,)8/(X)g5 (X))
_ O';n,]'(en)rhn,j(en, g)n_”l,,,j/(en,g )O'F J (0 )

n
= n—l Zf'z'i""j’j,(w’ g, g*)
i=1

—n! fo:li,j(w’ 8 (”I foi,j'(“” g*)) )
i=1 i=1
where
(16.17) f" (@, 8) = oy j(0,)m;(W;, 0,)8;(X;) and

wi(@8.8") = 110, 817 (0.8).

Note that {f,""} (0, 8,8"):8,8" €G,i<n,n>1} and {f"; (0,8):8€G,i <
n,n > 1} are triangular arrays of row-wise i.i.d. random processes. We show
the uniform convergence of their sample means using Lemma E2.

We first study 7 (w, g). Let

n,i,j

(16.18) Fr, ={(fr (@, 8),.... ) (»,8) :g€G}.

By Assumption M(c) and Lemma E1, {f"; (0, g):i <n, g € G} are manage-
able with respect to the envelopes

(16.19) F)' (w)=(F), (w),.. ”](a))) where
El (o) =G(X)oy, (6, )|m (W, 6,)|.

n,i,j
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In consequence, there exist functions A;:(0,1] — [0,00) for j < k such
that

(1620) D(élaOF)

for all @ € [0,00)", w € {2, and n > 1 and ,/logA;(£) is integrable over
(0, 1].
Because the data are i.i.d., we have, for all 0 < <1 and all n,

(16.21) n 'Y E(Fr )" =E(F)

1+n
n,l,j)

i=1
m; (W1, 6,)

U-th,j(en)

< (Er, GP (X)) (Epn

52) (14m)/8,

where 6, = (14 1)6,/(6; —1 —n). The first inequality above holds by Holder’s
inequality and the second holds by Assumption M(b), 6, <2 +4/(6; — 1 —
M) <2+4/(467'+1—m) <2+ 8, and condition (vi) of (2.3). Therefore, by
Lemma E2,

< 00,

n

(1622) Sup an ,:tli,]'(wa g)_E;:l],j(.a g)

geg i=1

-, 0.

Now we study ffﬁj,(w, g,g").Foralln>1and w € (2, let

(16.23) Fro = (0, 8:87)s s F (@, 8, 87)) 18, 8" € G-
Then, Frmin=Fr,  ©OF), Let B (w) =F) (0) OF ,(w). We have:
forall « € [0, 00)", w € 2,and n > 1,

(16.24) D(f’a@F;’?f’"j’j,(w) 70‘@-7:;:',127,]',]")
=D(¢la O F (o), a0 F, O F", )

< D(§|a OF (@) O F? (0)

,a O F" (w) @.7:,':'&,,])

.D<§|a OF (0)OF (0)|,a®F) (0)©® j—“;jw,j,>

< X(&/DA;(E/9),
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where the first inequality holds by equation (5.2) in Pollard (1990) and the
second inequality holds by (16.20). We have

(16.25) / Jlog(n,(&/400,(¢/4) dé
0

1
_ / JlogA,(¢/4) + log A, (¢/4) d¢
0

1/4
<4 [ (Jloen @)+ flog,(©) de < o,
0

where the first inequality holds by v/a + b < /a ++/b. Therefore, { Sl i@, 8,
g*):8,8 € G,i <n,n> 1} are manageable with respect to the envelopes
{F" (w):n=1}

n,J,J'
Let 1 be a small positive number. We have

(16.26) n™' Y E(Frm.())"”

n,j.J'
i<n

=E(F™. ()"

n,j,j'

m;(Wi, 0,,)
O'F,,,j(en)
2+5i|(1+11)/(2+6)

S [EFn G53 (Xl)]2(1+7l)/53 [EF

X |:E Fp

< 00,

2+3:| (14+m)/(2+9)

mj’(VVl, 9,,)
O'F,,,j/(en)

where 6; =2(1+ m)(2+ 8)/(6 — 27), the first inequality holds by Holder’s in-
equality, and the second holds for sufficiently small n > 0 by Assumption M(b)
and condition (vi) of (2.3).

With the manageability of {f, (w,g,8"):8,8" € G,i <n,n>1} and
(16.26), Lemma E2 gives

(16.27) sup Y fn (o, 8,8") = Ef (5 8,8%)| = 0.
8:8%€ =

By (16.16), (16.22), (16.27), as well as |Ef"".(-, &)| < E(F}", )" < o0, we

conclude that the difference between the (j, j/)th element of D;nl/ 2(t9,,)2,,(6,,,

g,8)D5*(0,) and Ef™", (-, g,8") — Eff" (-, &)EfM ,(-,g*) converges to
zero uniformly over (g, g*) € G.
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By definition,
(16.28) Ef, (8,87 — Eff ;o O Ef (&)
= Eg, [0z (8005, (0.)m;(Wy, 0,)g:(X1)m; (W, 6,)85(X1)]
— Ep |07 (6,)m;(Wi, 6,)g;(X1)]
x Er, [} (8,)m; (W, 6,)87(X1)]
=07, (0005 (0[5, (60,8, 87)],
- [hZ(g’g*)]j,j”

where the convergence holds uniformly over (g, g*) € G* by conditions (i) and
(iv) in Definition SubSeq(#,). This completes the proof of Lemma Al(b).
Q.E.D.

16.4. Proof of Lemma E1

Part (a) is proved by a similar, but simpler, argument to that given in (16.24)—
(16.25).

Next, we prove part (b). Because EF,; < co and the processes {¢, ;(w, g):
ge€G,i<n,n> 1} are row-wise i.i.d., EF, ={Ed, (-, g) - 1,:g € G} is a sub-
set of a one-dimensional affine subspace of R" with diameter no greater than
2EF, ;. Thus, a © EF, is a subset of a one-dimensional affine subspace of R"
with diameter no greater than 2|/« || EF, ;. By Lemma 4.1 in Pollard (1990), we
have: forall n > 1,

(1629) D(élla © EF,||,a © EF,) <6la|EF,/(éla® EF,|) =6/¢.

Because fol V0og(6/€)dé =3,/m < oo, part (b) holds.
Finally, we prove part (c). Let A}(£):(0,1] — R* be the square-root-log
integrable function such that

(1630) D(é|a0Fj(o)|,a0F;,) <A;(6) for 0<é<,

for all « € [0, 00)", w € {2, and n > 1. Let

(16.31) Fr,={di(w,8):8€G},
Frm={du(w,8) + ¢ (w,8:8€G},
Fro=Fi,®Fio={a+beR':acF,,beF,,},

where ¢, (@, g) = (¢, 1(®,8), ..., Pua(w,8)). Let

(1632) F'™(w)=F,(0)+ F}().
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Then, for0 < ¢ <1 and a € [0, 00)",
(16.33) D(£[a0 F™(w)|, a0 F'm)
< D(§”a OF"™(w)|,a® fnfw)

<D((|a @ Fu(o)| + a0 Fy(w)])/V2, e 0 F,)
<D(¢|a @ Fu(w)]/(2v2), 20 F,.)

x D(¢[a @ Fy(w)]/(2v2), a0 F; )
< A (E/(2V2) N, (£/(2V2)),

where A4(§) denotes the packing number bounding function given in Defini-
tion E2 for the processes {¢,(w,g):g € G,i < n,n > 1}, the first inequality
holds because F,°0' C F,',, the second inequality holds because D(x, G) is

decreasing in x and |la + b|| > (|lall + |1b]l)/~/2 for a, b € [0, 00)", the third
inequality holds by a stability result for packing numbers (see Pollard (1990,
p- 22)), and the last inequality holds by the manageability of {¢,(w, g):g €
G,i<n,n>1}and (16.30).

The function A4(&/ (2\/5))/\;(5/ (24/2)) is square-root-log integrable by
(16.25), which completes the proof of part (c). Q.E.D.

16.5. Proof of Lemma E2

We prove convergence in probability by showing convergence in L'. We have

(16.34) Esup

geg

n_l Z[fh,i(" g) - Efn,i('; g)]‘

i=1

n 1/2
<n'KE (Z Fj,,.)
i=1
1/(1+4m)

n 1/(1+4m) n
<n'KE (Z F;j”) <n'K <E > F;j”)
i=1 i=1

_ 1/(1+m)
§n”/(1+”)K(B*)/ Y50 as n— oo,

where the first inequality holds for some constant K < co by manageability and
the maximal inequality (7.10) in Pollard (1990), the second inequality holds
using 0 < 1 < 1 by applying the inequality > 7, x3 < (3__, x;)*, which holds for
s>landx;,>0fori= 1,...,n,withx,~=Fi’f" and s =2/(14n) > 0, the third
inequality holds by the concavity of the function f(x) = x"*" when n > 0,
and the last inequality holds because n~' 3" EF,{" < B*for all n > 1. Q.E.D.
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16.6. Proof of Lemma E3

For notational simplicity, we prove Lemma E3 for the sequence {n}, rather
than the subsequence {a,}. All of the arguments in this subsection go through
with {a,} in place of {n}.

The conclusions of Lemma E3 are implied by the result of Theorem 10.6 of
Pollard (1990), which relies on the following five conditions:

(i) the {f.i(w, g):g € G} defined in (16.4) are manageable with respect to
some envelope F, ,(w) = (F,,1(®), ..., Fopn(w)),

(i) lim,. o Ea'v,r,(0,, )Vur, (0,0, 8°)a=ahy(g,g")aforall g, g* € G,

(iii) limsup, > i EF;, < oo,

(iv) > i EF;, {Fyn;> €} — 0asn— oo for each ¢ > 0, and

(v) the limit p,(-,-) is well defined by (16.7), and for all deterministic
sequences {g} and {g{,}, if p.(&w> &) — 0, then p, (8w, &(,) — 0 as
n— o0o.

Now we verify the five conditions:

(i) By (16.4), we have

k
(16.35)  fui(w,g) = Zajo-;nl,_,'(On)n_l/Z[mj(I/Vn,i(w): On)gj(Xn,i(w))

j=1

_EF,,mj(I/Vi, 9n)gj(Xi)],

where a; denotes the jth element of a. By Assumption M(c), {g;(X,.(w)):i <
n} are manageable with respect to envelopes G(X, ;(w)). Therefore, by
Lemma El(a)—(c), {f,..(w, g):i < n} is manageable with respect to envelopes
Fon=Funi,---»Fonn) defined by

k
(1636) Fa,n,i(w) = n—1/2 Zaja-;nl,j(en)ﬂmj(m,i(w)a On)’G(Xm(w))

j=1

+ E, |m;(W;, 6,)|G(X))].

(ii) By (16.5), we have

(16.37)  Ea'v,r, (0., &)V, 1, (0., 8")a

= E(an'i(.’ g)> (Z fn,i(': g*)) = nEfn,l(': g)fn,l(': g*)/

=n"'a'D;"*(8,) - Covg,(m(W, 0,, ), m(Wi, 0., %)) - D> (8,)a
=n"'a'D;"*(0,)3r, (0., 8, 8") D5, (0,)a,
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where the second equality holds because the data are i.i.d. and the third in-
equality holds by (16.4). Condition (i) in Definition SubSeq(4,) completes the
verification of condition (ii) above.

(iii) Next, we verify limsup,_, >/ | EF,, ; < oo. By the linear structure of
F, .., it suffices to show that

(16.38) limsup Ex,07.2,(8,)|m; (W, 6,)|'G*(X,) < oo and

n—oo

limsup Er, o7, (6,) |m;(W;, 6,)| G(X;) < 0.

n—0o0o

The latter is implied by the former and the former holds by the same argument
asin (16.21) with n = 1.
(iv) For B as in condition (vi) of (2.3), £ > 0, and 1 > 0 sufficiently small,

(1639) Y EF., {Funi> &)
i=1

=nEF?

a,n,i

2(2k)*m
<77
— pn2én

(Fppi> &) <nEF."/&

k
> g P ER, G (X ) oy (0,0 | my (W, 6,0
j=1

2+
- 2(2k)=*n

k
2 5 (241)/84 12 246
< Sng 2ol ER GR X ] T  pEe
j=1

2(2k)2+1 B+ /4o C2+m ey K
<
- nn/2§n

|aj|2+n - O’
j=1
where the first equality holds because the data are identically distributed,
the second inequality holds by Jensen’s inequality using the convexity of
P (x) = x>, that is, (26) 7' 0, (1X;] + E1X; )7 < k)7 Y0 (1X 17 +
(E|X;])*™) and (E|X;|)*"™ < E|X;|*™, the third inequality holds with 8, =
(24 1)(2+ 8)/(6 — n) by the same arguments as in (16.26), and the fourth
inequality holds by Assumption M(b) and 8, < &, for sufficiently small 7.

(v) First we show that the limit p,(-,-) is well defined by (16.7). For any
8.8 €0,

(16.40) p;,(g.8")
=nE(fui(»8) — fuil &)’
=a' Dy, (6,) Vary, (m(W,, 6,, ) — m(W, 6, 87)) Dy, (6,)a
— d'hy(g,9)a+a'hy(g*,8")a—ahyg, g )a—ahy(g*8)a,
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where the convergence hold uniformly over G* by condition (i) in Defini-
tion SubSeq(4,). Thus, p.(g, g*) =lim,_ . p...(g, g*) is well defined, and

=0.

(1641)  lim Supg|pn,a(g,g*) —pa(8.8")
8.8%€

Lastly, we show the second property of condition (v). Let ¢ > 0 be arbitrary.
Suppose p,(&gm)> &,)) —> 0. Then, there exists an Ny < oo such that, for n > N,

(16.42)  pa(gum» &) < €/2.

By (16.41), we have

(16.43)  lim sup|py..a(gun: &) = pa(gn: 8in) | =0-
Thus, there exists an N; < oo such that, for all m > Ny,

(16.44) Sul?‘pm,a(g(n)a gz{n)) - pa(g(n)a gzkn))‘ <§/2.

Take N = max{N,, N;}; then we have, for n > N,

(16.45)  pua(gun» 8G0) < &

Thus, p, (g &) — 0 implies p,,.a(gn> &) — 0. Q.E.D.

17. SUPPLEMENTAL APPENDIX F

In Sections 17.1 and 17.5, this appendix provides additional material con-
cerning the Monte Carlo simulations in the quantile selection and entry game
models. In Sections 17.2 and 17.4, it provides all of the Monte Carlo simula-
tion results for the mean selection and interval-outcome regression models. In
Section 17.3, it provides some results for CLR-series CI’s with different up-
per bounds on the number of series terms considered by the cross-validation
procedure that is used to select the number of series terms.

17.1. Quantile Selection Model

Section 17.1.1 provides additional simulation results to those given in the
paper. Section 17.1.2 provides figures for the conditional moment functions
evaluated at the 6 values at which the FCP’s are computed in Table IV of the
paper. Section 17.1.3 describes the computation of the Chernozhukov, Lee,
and Rosen (2013) (CLR) and Lee, Song, and Whang (2011) (LSW) CI’s.
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TABLE S-1

QUANTILE SELECTION MODEL, KINKED BOUND, AND LOWER ENDPOINT: VARIATIONS
ON THE BASE CASE

(a) Coverage Probabilities (b) False CP’s (CP-corrected)
Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy
Base Case (n =250,r, =7, e =5/100) .983 984 34 52
n=100 981 985 34 .55
n =500 .984 984 .39 54
n=1000 .984 .980 41 .54
rn=> 981 981 34 49
rn=9 .983 .986 35 .55
r=11 .984 987 .36 .60
(K By) = 1/2(Knpes Buve) 984 997 39 51
(K Bn) = 2(Kn.pe» Bube) 990 991 38 59
e=1/100 981 981 34 .56
a=.5 721 710 03 06
a=.5&n=500 741 134 .04 .08

17.1.1. Additional Simulation Results

Table S-I reports CP and FCP results for variations on the base case for the
lower endpoint with the kinked bound DGP. (Table III of AS reports analogous
results for the lower endpoint with the flat bound.) The results are similar to
those in Table III of AS. There is relatively little sensitivity to the sample size,
the number of cubes g, and the choice of €. There is relatively little sensitivity
of the CP’s to the choice of (k,, B,,), but some sensitivity of the FCP’s with the
base case choice being superior to values of (k,, B,) that are twice or half as
large. The CI with a = .5 is half-median unbiased and avoids the well-known
problem of inward-bias. But, it is farther from being median-unbiased than in
the flat bound case.

Next, Table S-II provides coverage probability (CP) and false coverage
probability (FCP) results for the upper endpoint of the identified interval in
the quantile selection model.* (Table I of AS provides analogous results for
the lower endpoint.) Table S-II provides a comparison of CI’s based on the
CvM/Sum, CvM/QLR, CvM/Max, KS/Sum, KS/QLR, and KS/Max statistics,
coupled with the PA/Asy and GMS/Asy critical values. The relative attributes
of the different CI’s are quite similar to those reported in Table I of AS for
the lower endpoint. None of the CI’s under-cover. So, the relative attributes of

%For the upper endpoint with the flat bound and the upper endpoint with the kinked bound,
the FCP’s are computed at the points (1) + 0.40 x sqrt(250/n) and 6(1) + 0.75 x sqrt(250/n),
respectively. These points are chosen to yield similar values for the FCP’s across the different
cases considered.
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TABLE S-11
QUANTILE SELECTION MODEL, UPPER ENDPOINT: BASE CASE TEST STATISTIC COMPARISONS

Statistic

DGP Crit Val CvM/Sum CvM/QLR CvM/Max  KS/Sum KS/QLR  KS/Max

(a) Coverage Probabilities

Flat Bound PA/Asy .994 .994 .993 .984 .984 .982
GMS/Asy 971 971 970 974 974 972

Kinked Bound PA/Asy .996 .996 .996 .989 .989 .988
GMS/Asy 974 974 972 .976 976 975

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound PA/Asy 73 72 71 .70 .70 .69
GMS/Asy 42 42 42 55 .55 .55

Kinked Bound PA/Asy 73 73 72 74 74 73
GMS/Asy 41 41 41 52 52 52

the CI’s are determined by their FCP’s. The CvM-based CI’s have lower FCP’s
than the KS-based CI’s. The CI’s that use the GMS/Asy critical values have
lower FCP’s than those based on the PA/Asy critical values. The FCP’s do not
depend on whether the Sum, QLR, or Max version of the statistic is employed.
Hence, the best CI of those considered is the CvM/Max/GMS/Asy CI, or this
CI with Max replaced by Sum or QLR.

17.1.2. Conditional Moment Function Figures

Figure S-1 shows the conditional moment functions B(x, #) (defined in
(10.6)), as functions of x, evaluated at the 6 values 1.531, 1.181, and 1.151
at which the FCP’s are computed in Tables I and II of the paper in the flat,
kinked, and peaked cases, respectively.

Flat Conditional Moment at § = 1.531 Kinked Conditional Moment at 6 = 1.181 Peaked Conditional Moment at § = 1.151
0.6, 0.6 0.6,
0.4/ 0.4 0.4/ \‘
02 02 —— 02
3 g g ~
x x X ——
& & \ & \
0 0 0
-0.2] -0.2] -0.2
-0.4 -0.4 -0.4
0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.2 1.6 2 0 0.4 0.8 1.2 1.6 2
X X X

FIGURE S-1.—Conditional moment functions for the quantile selection model evaluated at 0
values below the lower endpoint of the identified set.
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17.1.3. Description of the CLR-Series, CLR-Local Linear, and LSW Confidence
Intervals

Here we describe the computation of the CLR and LSW CI’s reported in Ta-
ble IV for the quantile selection model. These are two-sided CI’s. In the quan-
tile selection model, the parameter 6 is not separable from its bound functions.
In consequence, for the CLR CI’s, we follow the method in Example C in the
2011 version of CLR. We define an auxiliary parameter 3:

(17.1) ,8(9)=mi1£1,8(x, 0), where

EQY; =0, Ti=0)+UT; #1) — 71X, =x), ifx<ux,
(17.2) - Blx, 0)_{E(T—l(YiSG,TiztﬂXi:x), if x > x,.
We obtain a CLR bound estimator éa(e) for a null 0 value using the GAUSS
code provided by CLR and let the nominal 1 — « confidence set for 6 be
CSSLR(a) ={0: éa(e) > 0}.%! Note that the CLR CI is constructed using the
auxiliary parameter 3, for which the bound is one-sided. Therefore, the one-
sided inference procedure of CLR is applied, even though the resulting confi-
dence set for 6 is two-sided (if it is an interval).

To implement the LSW confidence set in the quantile selection model, for
each 6, we use LSW’s test for the null hypothesis Hy: —B(x,0) <0,Vx € X
and let the confidence set consist of all of the 6 values for which the test does
not reject the null. We use the GAUSS code provided by LSW to carry out the
LSW test.*

We report results for the L' version of the LSW CI with inverse standard
deviation weight function and bandwidth parameter ¢, = 2.0. These choices
provide the best overall performance of the LSW CI. As noted in a footnote
29 in Section 10.1 of the paper, we use the inverse standard deviation weight
function, rather than the uniform weight function, because the CI that uses the
latter performs very poorly in terms of FCP’s in the cases reported in Table V
of the paper.

As noted in footnote 28 in Section 10.1 of the paper, the number of series
terms is selected by cross-validation with an upper bound of 30 on the number
of series terms with the CLR-series CI, whereas CLR used an upper bound of
9 in the 2011 version of their paper. The footnote explains why. Briefly, the
choice of 9 performs very poorly in terms of CP’s in the cases considered in
Table V of the paper. The lower bound on the number of series terms is 5, as
in CLR.

®1See the simulation section of the 2011 version of CLR for a description of what the code
does. We thank CLR for making their code available to us.

2See the simulation section of the 2012 version of LSW for a description of what the code
does. We thank LSW for making their code available to us.
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17.2. Mean Selection Model
17.2.1. The Model

In this section, we consider the same mean selection model that is considered
in the 2009 working paper version of CLR (which considers the CLR CI’s, but
not the AS and LSW CI’s). As in the latter paper, all of the CI’s considered with

this model are one-sided CI’s of the form [ﬁ),,, o) for some random variable
Ib,. Hence, only a single moment inequality is considered and the Sum, Max,
and QLR statistics are identical. We compare the CP’s and FCP’s of the CI'’s
based on the CvM and KS statistics and the PA and GMS critical values.®
We also compare the CvM/Max/GMS/Asy CI (abbreviated by AS below) with
several other CI’s in the literature, that is to say, the CLR-series, CLR-local
linear, and LSW CI’s.%

The model is essentially the same as the quantile selection model described
in the paper, except that the parameter of interest 6 is the conditional mean
E(y;(1)| X; = x) for some x,, rather than the conditional quantile. In addition,
the QMIV assumption is replaced with the monotone instrumental variable
(MIV) assumption of Manski and Pepper (2000): for all (x;, x,) € X? such
that X1 < Xy,

(17.3)  E((DIX: = x1) < E(r(DIX; = x2).

The MIV assumption is not informative unless y;(¢) has bounded support. Let
the support of y;(1) be [Y}, Y,]. The MIV assumption leads to the following
moment inequalities:

(174)  E(1(X; <x)[0 - YiI(T,;=1) = Y I(T; # D]IX;)) =0 as. and
EQU(X, = x)[YA(T, = 1) + Y U(T,#1) — 6]|1X) =0 as.

We only use the first inequality because we consider one-sided CI’s in this
model.

We consider the following data generating processes (DGP’s): y;(1) =
w(X;) + u; and [Y;, Y,] = [—1.96, 1.96], where X; ~ Unif[—2,2] and u; ~
1.96 A ((=1.96) v N(0, 1)), T; = 1{L(X;) + &; = 0}, where ¢; ~ N(0,1) and
&, u;, and X; are independent of each other, and Y; = y;(T;). Three speci-
fications of (u(x), o(x), L(x)) are considered, which yield flat, kinked, and
peaked bound functions for the conditional mean 6. For the flat bound DGP,
m(x) =0 = L(x). For the kinked bound DGP, w(x) =2(x A1) and L(x) =
x A 1. For the peaked bound DGP, u(x) =2|x — 1| and L(x) = (x A 1). The

%These comparisons are similar to those given in Table I of the paper for the quantile selection
model, but all of the CI’s are one-sided, not two-sided.

%These comparisons are similar to those given in Table IV of the paper for the quantile selec-
tion model, but all of the CI's are one-sided, not two-sided.
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parameter of interest is the conditional mean of y;(1) at xo = 1.5, that is,
0 =E(y(D]X;=15).

17.2.2. Description of the CLR-Series, CLR-Local Linear, and LSW Confidence
Intervals

Next, we describe the computation of the CLR and LSW CI’s reported in
Table S-IV (given below) for the mean selection model. In this model, all of
the CI’s are one-sided CI’s. In the mean selection model, the parameter 6 is
separable from its bound function:

(17.5) 6=>sup6,(x), where

x€R

0(x)=E(Y, (T, =)+ Y 1(Y; #0)|X;,=x) for x<x,.

We obtain a CLR bound estimator 6, using the GAUSS code provided by CLR
and let the nominal 1 — « confidence set for 6 be CSSLR(a) ={60:60> 6,). This
yields a one-sided CI.

For the LSW CI, we compute a one-sided CI as well. For each 6, we use
LSW’s test for the null hypothesis Hy: (6,(x) — 6)1(x < x¢) <0,Vx € X and
let the CI consist of all of the 6 values such that the test does not reject the
null. We use the GAUSS code provided by LSW to carry out the LSW test.

17.2.3. Simulation Results

We consider sample size n = 250 (which is also the base case sample size
for the quantile selection model in the paper). All results concern the lower
end of the identified interval for 6, which equals —.98, 1.372, and .530 in the
flat, kinked, and peaked bound cases, respectively.> All results are based on
(5000, 5001) coverage probability and critical value repetitions, respectively.
The FCP’s are CP-corrected, as described in Section 10 of the paper.%

Tables S-III and S-IV report the simulation results for the mean selection
model.

Table S-1II provides CP and FCP comparisons of the CI’s based on the test
statistics CvM/Max and KS/Max (which are equivalent to Sum and QLR ver-
sions of these statistics because only one moment function is considered) and
the PA/Asy and GMS/Asy critical values. The CP results are similar to those
for the quantile selection model given in Table 1. All versions of the CI's have
good CP’s (i.e., CP’s greater than or equal to .95). In contrast to the quantile

%The DGP is the same for FCP’s as for CP’s; just the value 6 that is to be covered is different.
For the lower endpoint of the identified set, FCP’s are computed for 6 equal to §(1) — ¢, where
¢ =.155, .68, and .78 in the flat, kinked, and peaked bound cases, respectively. These points are
chosen to yield similar values for the FCP’s across the three cases.

%That is, a positive constant is added to the critical value such that the CP for the given case
being considered is .95 whenever the CP for the given case (without correction) is less than .95.
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TABLE S-I11
MEAN SELECTION MODEL: BASE CASE TEST STATISTIC AND CRITICAL VALUE COMPARISONS

Statistic

DGP Crit Val CvM KS

(a) Coverage Probabilities

Flat Bound PA/Asy 953 961
GMS/Asy 947 959

Kinked Bound PA/Asy 1.000 .996
GMS/Asy 958 931

Peaked Bound PA/Asy 1.000 1.000
GMS/Asy 999 .998

(b) False Coverage Probabilities (coverage probability corrected)

Flat Bound PA/Asy 37 .63
GMS/Asy .37 .63

Kinked Bound PA/Asy .81 .55
GMS/Asy .35 .34

Peaked Bound PA/Asy .58 .66
GMS/Asy .38 57

selection model, the CvM/Max/PA/Asy has CP close to .95 in the flat bound
case. This can be attributed to the one-sided nature of the CI’s in Table S-III.
Those in the quantile selection model are two-sided.

The FCP results in Table S-III also are similar to those in Table I. The
GMS/Asy critical value outperforms the PA/Asy critical value in the kinked and
peaked bound cases and is equally good in the flat bound case. When using the
GMS/Asy critical values, the CvM statistic outperforms the KS version in terms
of FCP’s in the flat and peaked bound cases and has equally good performance
in the kinked bound case. The main differences between the FCP results in Ta-
ble S-III and Table I are (i) the GMS/Asy critical value has equal performance

TABLE S-1V

MEAN SELECTION MODEL: COMPARISONS OF AS CONFIDENCE INTERVALS WITH THOSE
PROPOSED IN CLR AND LSW

CP (95%) FCP (corrected) CP (50%)
CI Flat Kink Peak Flat Kink Peak Flat Kink Peak
n =250
CvM/Max/GMS/Asy 947 .958 .999 37 .35 .38 .46 .63 .97
CLR-series 946 .893 .983 77 .38 35 S1 .57 91
CLR-local linear 947 930 987 .68 .30 .30 .49 .69 91

LSW 939 1.000  1.000 .35 .86 .90 57 .95 1.00
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to the PA/Asy critical value in the flat bound case, rather than better perfor-
mance, and (ii) the CvM form of the test statistic has equal performance to the
KS version in the kinked bound case, rather than better performance.

Overall, Table S-III shows that the CvM/Max statistic combined with the
GMS/Asy critical value performs very well. It has CP equal to .947 in the flat
bound case and CP greater than .95 in the kinked and peaked bound cases. It
has the lowest FCP in the flat and peaked bound cases and very close to the
lowest FCP in the kinked bound case.

Table S-IV compares the AS CI with the CLR-series, CLR-local linear, and
LSW CI’s in terms of CP’s and FCP’s. The AS CI has good CP properties, that
is to say, CP’s greater than or equal to .947. The CLR-series and CLR-local
linear CI’s have minimum CP’s over the three bounds of .893 and .930, which
demonstrates that their finite-sample sizes are less than .95, but not too much
less for the local linear version (at least if the least favorable case is among the
three cases considered). The LSW CI has minimum CP of .939 over the three
bounds, which is close to .95. Compared to the results in Table IV for n = 250
(which gives results for two-sided CI’s in the quantile selection model), the CP
performance of AS is the same, CLR-local linear is better, CLR-series is worse,
and LSW is slightly worse (because of under-coverage in the flat bound case in
Table S-1V).

The LSW and AS CI’s have clearly the best (CP-corrected) FCP’s for the
flat bound case, with the LSW CI being slightly better than the AS CI. The
CLR-local linear and CLR-series CI's have best (CP-corrected) FCP’s for the
kinked and peaked bound cases by a relatively narrow margin over the AS CI.
The LSW CI has poor FCP’s in the kinked and peaked cases.

The FCP performances of the AS CI relative to the CLR CI’s in Table S-IV
compared to Table IV (with n = 250) are better in Table S-IV for the flat and
peaked bound cases and a little worse for the kinked bound case. The FCP
performances of the LSW CI relative to the other CI’s are better in the flat
bound case in Table S-IV compared to Table IV (with n = 250) and worse in
the kinked and peaked cases in Table S-IV compared to Table IV.

17.3. CLR-series CI’s With Different Cross-Validation Upper Bounds

In this section, we present additional simulation results for CLR-series CI’s.
Specifically, we report results where the upper bound for the number of series
terms used in the cross-validation procedure used to determine the number of
series terms is 9, which is the choice used in the 2011 version of CLR, rather
than 30, which is used in Tables IV and V of the main paper. Footnote 28 in
Section 10.1 of the paper provides the reason for using an upper bound of 30.
Briefly, the reason is that an upper bound of 9 yields very poor performance in
terms of CP’s in the cases reported in Table S-IV below. For ease of compari-
son, results also are reported for the AS/CvM/Max/GMS/Asy CI.

Tables S-V, S-VI, and S-VII show that the CLR-series CI’s are sensitive to the
upper bound used in the cross-validation procedure in some cases. The CP’s
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TABLE S-V
QUANTILE SELECTION MODEL: COMPARISONS OF NOMINAL 95% CLR-SERIES CI’'S WITH

CROSS-VALIDATION UPPER BOUNDS OF 30 AND 9

CP (95%) FCP (corrected) CP (50%)
CS Flat Kink Peak Flat Kink Peak Flat Kink Peak
n=100
CvM/Max/GMS/Asy 957 981 989 .40 34 47 52 .69 .73
CLR-series-30* .854 .894 .862 .80 .78 .79 S1 .67 .64
CLR-series-9 .889 954 945 .69 .35 19 54 73 71
n=250
CvM/Max/GMS/Asy 951 983 997 37 34 41 52 72 .82
CLR-series-30 918 951 937 .70 .37 24 .55 .76 73
CLR-series-9 939 972 979 .65 .39 18 57 .80 .79
n =500
CvM/Max/GMS/Asy 954 984 998 .36 .39 72 S1 74 .88
CLR-series-30 937 975 978 .70 45 49 =y .80 81
CLR-series-9 950 987 989 .65 44 33 .59 73 .84

4CLR-series-30 means that the upper bound on the number of series terms used in the cross-validation procedure
is 30. CLR-series-9 means that the upper bound is 9.

TABLE S-VI
PLATEAU BOUND FUNCTIONS: COMPARISONS OF NOMINAL 95% CLR-SERIES CI’'S WITH

CROSS-VALIDATION UPPER BOUNDS OF 30 AND 9

CP FCP (CP-corrected)
AS CLR AS CLR
n CvM series-30 series-9 CvM series-30 series-9
DGP1 100 .986 707 734 .84 .88 .83
250 975 .805 734 .57 .82 75
500 975 872 525 25 72 .66
1000 971 .909 .090 .03 57 .38
DGP2 100 1.000 .394 207 1.00 91 .90
250 1.000 .683 .057 1.00 .85 .87
500 1.000 .833 .004 .97 77 .84
1000 1.000 .900 .000 .70 .61 72
DGP3 100 .970 .620 736 .70 .89 .83
250 .969 762 .665 .30 .83 75
500 .963 .854 436 .06 .70 .66
1000 .969 901 .089 .00 .55 43
DGP4 100 .998 321 241 .95 91 .90
250 .997 .612 .021 .66 .86 .89
500 .994 .808 .000 23 74 .86
1000 .994 .893 .000 .01 .59 79
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TABLE S-VII

MEAN SELECTION MODEL: COMPARISONS OF NOMINAL 95% CLR-SERIES CI’'S WITH
CROSS-VALIDATION UPPER BOUNDS OF 30 AND 9

CP (95%) FCP (corrected) CP (50%)
CI Flat Kink Peak Flat Kink Peak Flat Kink Peak
n =250
CvM/Max/GMS/Asy 947 958 999 37 .35 .38 46 .63 97
CLR-series-30 946 .893 983 77 .38 .35 S1 57 91
CLR-series-9 960 918 992 77 31 34 52 .60 92

and FCP’s change dramatically when the upper bound is changed from 30 to 9
in the intersection bound example for all four DGP’s and all four sample sizes,
especially for large sample sizes; see Table S-VI. The reason is that the upper
bound of 9 is binding in these cases. The CP’s and FCP’s also change noticeably
in the quantile selection model for the smaller sample sizes, especially with
n = 100, but also with n = 250; see Table S-V. This is due to the additional
noise that is introduced by allowing for a greater choice in the number of series
terms.

The computation times in minutes for 5000 CLR-series tests using 5001 crit-
ical value repetitions for each test (and using a 3.33 GHz processor running
GAUSS 6.0) for n =100, 250, and 500 are 20, 24, and 44, respectively, when
the upper bound on the number of series terms is 30. The times are 10, 11, and
12, respectively, when the upper bound is 9.

17.4. Interval-Outcome Regression Model
17.4.1. Description of Model

Here we report simulation results for an interval-outcome regression model.
This model has been considered by Manski and Tamer (2002, Sec. 4.5). Itis a
regression model where the outcome variable Y}* is partially observed:

(17.6) Y '=6,+X,0,+U;, where EU;X;)=0 as.,

for i=1,...,n.
One observes X; and an interval [Y} ;, Yy ;] that contains Y;: Y, ; = |Y;] and
Yy, = Y:]+1, where | x| denotes the integer part of x. Thus, Y € [Y, ;, Yy :].

It is straightforward to see that the following conditional moment inequali-
ties hold in this model:

(17.7)  E6,+X;0,—Y,;|X;,)>0 as. and
E(Yy,—6— X6, X;) >0 as.



88 D. W. K. ANDREWS AND X. SHI

3

25

05

FIGURE S-2.—The identified set of the interval-outcome model.

In the simulation experiment, we take the true parameters to be (6, 6,) =
(1, 1) (without loss of generality), X; ~ U[0, 1], and U; ~ N(0, 1). We consider
a base case sample size of n = 250, as well as n = 100, 500, and 1000.

The parameter 6 = (04, 6,) is not identified. Figure S-2 shows the identified
set. It is a parallelogram in (6, 6,) space enclosed by thick solid lines with
vertices at (.5, 1), (.5, 2), (1.5,0), and (1.5, 1). The point (1, 1) is the true pa-
rameter. The thin solid lines are the lower bounds defined by the first moment
inequality and the dashed lines are the upper bounds defined by the second
moment inequality.

By symmetry, CP’s of CS’s are the same for the points (.5, 1) and (1.5, 1).
Also, they are the same for (.5, 2) and (1.5, 0). We focus on CP’s at the cor-
ner point (.5, 1), which is in the identified set, and at points close to (.5, 1) but
outside the identified set.®” The corner point (.5, 1) is of interest because it is
a point in the identified set where CP’s of CS’s typically are strictly less than 1.
Due to the features of the model, the CP’s of CS’s typically equal 1 (or essen-
tially equal 1) at interior points, non-corner boundary points, and the corner
points (.5, 2) and (1.5, 0).

17.4.2. g Functions

The g functions employed by the test statistics are indicator functions of
hypercubes in [0, 1]. It is not assumed that the researcher knows that X; ~
U0, 1] and so the regressor X; is transformed via the method described in

7Specifically, the 0 values outside the identified set are given by ; = 0.5 — 0.075 x (500/n)'/?
and 6, =1.0 — 0.050 x (500/n)'/2. These 6 values are selected so that the FCP’s of the CS’s take
values in an interesting range for all values of n considered.
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TABLE S-VIII
INTERVAL-OUTCOME REGRESSION MODEL: BASE CASE TEST STATISTIC COMPARISONS

Statistic

Critical Value CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(a) Coverage Probabilities

PA/Asy 990 .993 990 .989 .990 .989

GMS/Asy 950 950 950 .963 .963 963
(b) False Coverage Probabilities (coverage probability corrected)

PA/Asy .62 .66 .61 18 .80 78

GMS/Asy 37 37 .37 .61 .61 .61

Section 9 to lie in (0, 1).% The hypercubes have side-edge lengths (2r)~! for r =
To, ..., 1, where ry = 1 and the base case value of r; is 7. The base case number
of hypercubes is 56. We also report results for r; =5, 9, and 11, which yield 30,
90, and 132 hypercubes, respectively. With n = 250 and r; = 7, the expected
number of observations per cube is 125, 62.5,...,20.8, or 17.9 depending on
the cube. With n =250 and r; = 11, the expected number also can equal 12.5
or 11.4. With n =100 and r; = 7, the expected number is 50, 25, ..., 8.3, or 7.3.

17.4.3. Simulation Results

Tables S-VIII, S-IX, and S-X provide results for the interval-outcome re-
gression model that are analogous to the results in Tables I-III for the quantile
selection model. In spite of the differences in the models—the former is linear
and parametric with a bivariate parameter, while the latter is nonparametric
with a scalar parameter—the results are similar.

TABLE S-1X
INTERVAL-OUTCOME REGRESSION MODEL: BASE CASE CRITICAL VALUE COMPARISONS

Critical Value

Statistic PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

(a) Coverage Probabilities

CvM/Max .990 995 950 941 963
KS/Max .989 .999 .963 .953 .890
(b) False Coverage Probabilities (coverage probability corrected)

CvM/Max .61 .69 37 38 45
KS/Max .78 .96 .61 .54 .66

%This method takes the transformed regressor to be ®((X; — )_(,,)/van), where X, and Ox n
are the sample mean and standard deviations of X; and ®(-) is the standard normal distribution
function.
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TABLE S-X
INTERVAL-OUTCOME REGRESSION MODEL: VARIATIONS ON THE BASE CASE

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max

Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy
Base Case (n =250,r, =7, e =5/100) 950 .963 .37 .61
n=100 .949 970 .39 .66
n=>500 950 .956 .37 .60
n=1000 954 955 37 .60
r1 =5 (30 cubes) .949 961 .37 .59
71 =9 (90 cubes) 951 965 37 63
r1 = 11 (132 cubes) 950 .968 .38 .64
(Kn, B,) = 1/2(Kn,bc, Bn,bc) 944 961 .40 .62
(Knv Bn) = 2(Kn,bw Bn,bc) .958 973 .39 .65
e=1/100 946 .966 .39 .69
(61, 65) = (1.0,0.5) 999 996 91 92
(6, 6,) =(1.5,0.0) 1.000 .996 99 .97
a=.5 472 481 03 08
a=.5&n=500 478 .500 .03 .07

Table S-VIII shows that the CvM/Max statistic combined with the GMS/Asy
critical value has CP’s that are very close to the nominal level .95. Its FCP’s
are noticeably lower than those for CS’s that use the KS form or PA-based
critical values. The CvM/Sum-GMS/Asy and CvM/QLR-GMS/Asy CS’s per-
form equally well as the Max version. Table S-IX shows that the results for the
Asy and Bt versions of the critical values are quite similar for the CvM/Max-
GMS CS, which is the best CS. The Sub critical value yields substantial under-
coverage for the KS/Max statistic. The Sub critical values are dominated by the
GMS critical values in terms of FCP’s.

Table S-X shows that the CS’s do not exhibit much sensitivity to the sample
size or the number of cubes employed. It also shows that at the non-corner
boundary point 6 = (1.0, 0.5) and the corner point 6 = (1.5, 0), all CP’s are
(essentially) equal to 1. Lastly, Table S-X shows that the lower endpoint es-
timator based on the CvM/Max-GMS/Asy CS with « = .5 is close to being
median-unbiased, as in the quantile selection model. It is less than the lower
bound with probability .472 and exceeds it with probability .528 when n = 250.

We conclude that the preferred CS for this model is of the CvM form, com-
bined with the Max, Sum, or QLR function, and uses a GMS critical value,
either Asy or Bt.

%This is due to the fact that the CP’s at these points are linked to the CP’s at the corner point
0 = (0.5, 1.0) given the linear structure of the model. If the CP is reduced at the two former
points (by reducing the critical value), the CP at the latter point is very much reduced and the CS
does not have the desired size.
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17.5. Entry Game Model
17.5.1. Probit Log Likelihood Function

In the entry game model, the probit log likelihood function for = = (7, 75)
given 6 = (64, 6,) is

n

(17.8) Z 1(Y; = (0,0)) In(P(=X;, 1) (—X[,72))

i=1

+Zl = (1, 1) In(®(X], 71 — 0,)D(X],7, — 6,))

+ Z 1(Y;=(1,0) or ¥;= (0, 1)) In(g;(7, 6)), where

gi(1, 0) =1—®(=X],7)P(—X],7,) — P(X]

L

171 — 01)(1)()(;,272 — 02)

over 7 € R® for fixed 6. The estimator 7,,() maximizes this function over 7 € R®
given 6.
The gradient of the probit log likelihood for 7 given 0 is

(17.9) 21 =(0,0)) (‘p(_X;,]Tl)Xi,l)

Y(=X],m2)Xi2
‘ P(X] = 01)Xia
+Zl i=1LD) (ll'(X,{,zfz—(’z)Xi,z)

1
1(Y;=(1,0)or Y; = (0,1)) ——
+§j (Y;=(1,0) or ( ))g,-(f,m

(X ) O(= X 5m) Xy = S(XG 71— 01) DX 572 — 02) Xy
O(—X! 171)(;[)( X2T2)X,2 (I)(le,ln—Ol)qb(le,sz—Bz)X,-,z

where (x) = ¢ (x)/P(x).

17.5.2. Identification

Here we briefly discuss identification of the entry game model. Tamer (2003,
Thm. 1) provided identification results that cover the model considered in Sec-
tion 10.4 because X;; and X;, both contain continuous regressors whose sup-
portis R.

We point out here that this support condition is probably much stronger
than is needed for identification in many contexts. For example, suppose the
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unobservables U;; and U, are independent and standard normal, as in Sec-
tion 10.4. Suppose the regressor vectors are X;; = (1, Z;)’ and X,, =1 and
their coefficient vectors are 7, = (71, 712)’ and 7, respectively. Then, 7; and =,
are identified provided Z; has a density with respect to Lebesgue measure on
some nondegenerate interval and 7, # 0. Thus, in this case, no large support
condition is needed.

To prove this result, note that P(Y; = (0,0)|X;;) = P(—X| ;7)P(—72).
Thus, for identification at (7, 7»), it suffices to show that

(17.10)  P(®(=X],7)D(~72) = B(—X, M) D(=)y) =1

Only if A=T and Ay = 7.

Suppose A; = 7,. Then, (17.10) holds iff P(X 7 = X],A;) = 1. The left-
hand side equals P(71; — A1+ Z; (712 — A1) = 0). Given the condition on Z;, the
latter equals 1 only if A; = 7;. Hence, when A, = 75, (A4, Ay) is observationally
equivalent to (7, 7) only if (A, Ay) = (71, 72).

Next, suppose A, # 7. Let ¢ = ®(—=A,)/P(—7,) (# 1). Then, (17.10) holds
iff P(®(—7y — Zi112) = P(—Ayy — Z;Ap)c) = 1. The latter implies that, for
all z in an open interval, say I, ®(—71y; — z712) = P(—Ay; — zApp)c. Taking the
derivative with respect to z for z € I, one obtains ¢ (—7; — z72) = p(—Ay —
ZA1p)cApp/71p. Taking logs yields a quadratic equation in z for z € I

(17.11)  (tu+z7)* = (A +zAp)* +¢ or

(T — AL) 2+ 2(Tum — AuAn)z+ 15 — Al — e =0,

where ¢; = log(cAp/712) and ¢; is well-defined because 71, # 0. A quadratic
equation cannot hold for all z € I unless each coefficient of the equation is
zero, because a nondegenerate quadratic equation has at most two solutions.
Suppose 73, — A2, = 0. Then, 71712 — A1 A = 0 requires 7, = £\, which
implies that 77, — A3, = 0. In consequence, 73, — A3, — ¢; = —¢; # 0 and the
quadratic equation is not degenerate. (Note that ¢; # 0 because ¢; = 0 iff
cAip/T12 = 1iff Ajp = c71p, and the latter condition violates 72, — A2, = 0.) In
conclusion, if A, # 7, (17.10) cannot hold for any A, and 7,. This completes
the proof of identification.

Note that it is not clear that even continuity of Z; in a nondegenerate in-
terval is necessary for identification of 7. If Z; is discrete with s > 3 support
points, then observational equivalence requires s nonlinear equations in two
unknowns to hold. These equations depend on the joint distribution F(-, -) of
(Ui, U;»). This suggests (but does not prove) that, for most joint distribution
functions F (-, -) of (U; 1, U ), identification holds under quite weak conditions
on the regressor Z,.
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