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11. OUTLINE

THIS SUPPLEMENT INCLUDES six appendices.
Supplemental Appendix A gives proofs of Theorems 1 and 2(a).
Supplemental Appendix B provides a number of supplemental results to the

main paper. These include:
(i) results for Kolmogorov–Smirnov (KS) and approximate Cramér–von

Mises (A-CvM) tests and CS’s in Section 13.1,
(ii) three additional examples of collections G and probability measures Q

that satisfy Assumptions CI, M, FA(e), and Q in Section 13.2,
(iii) the verification of Assumption GMS2(a) under some conditions on S,

Q, and α in Section 13.3,
(iv) an illustration of the verification of Assumptions LA1–LA3 in Sec-

tion 13.4,
(v) an illustration of some uniformity issues that arise with infinite-

dimensional nuisance parameters in Section 13.5,
(vi) an illustration of problems with pointwise asymptotics in Section 13.6,

and
(vii) coverage probability results for subsampling tests and CS’s under drift-

ing sequences of distributions in Section 13.7.
Supplemental Appendix C provides proofs of the results that are stated in

the main paper but are not proved in Supplemental Appendix A. These in-
clude:

(i) the proofs of Lemmas 2 and 3 and Theorem 2(b) in Section 14.1,
(ii) the proofs of Lemma 4 and Theorem 3 concerning fixed alternatives in

Section 14.2,
(iii) the proof of Theorem 4 concerning local power in Section 14.3, and
(iv) the proof of Lemma 1 concerning the verification of Assumptions S1–S4

in Section 14.4.
Supplemental Appendix D provides proofs of the results stated in Supple-

mental Appendix B. These include:
(i) the proofs of Kolmogorov–Smirnov and approximate Cramér–von

Mises results in Section 15.1,
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(ii) the proof of Lemma B2 in Section 15.2,
(iii) the proofs of Theorems B4 and B5 regarding uniformity issues in Sec-

tion 15.3, and
(iv) the proofs of the subsampling results in Section 15.4.
Supplemental Appendix E proves Lemma A1, which is stated in Supplemen-

tal Appendix A.
Supplemental Appendix F provides the simulation results for the mean se-

lection and interval-outcome regression models and additional material (and
results) concerning the simulations in the quantile selection and entry game
models.

12. SUPPLEMENTAL APPENDIX A

This appendix provides proofs of the uniform asymptotic coverage proba-
bility results for GMS and PA CS’s. In particular, it proves Theorems 1 and
2(a). Proofs of the other results stated in the paper are given in Supplemental
Appendix C.

12.1. Proof of Theorem 1

The following lemma is used in the proofs of Theorems 1, 2, 3, and 4. It
establishes a functional CLT and uniform LLN for certain independent non-
identically distributed empirical processes.

Let h2 denote a k×k-matrix-valued covariance kernel on G × G (such as an
element of H2).

DEFINITION SubSeq(h2): SubSeq(h2) is the set of subsequences {(θan�Fan) :
n≥ 1}, where {an :n≥ 1} is some subsequence of {n}, for which

(i) lim
n→∞

sup
g�g∗∈G

∥∥h2�Fan

(
θan� g�g

∗)− h2

(
g�g∗)∥∥= 0�

(ii) θan ∈ Θ, (iii) {Wi : i ≥ 1} are i.i.d. under Fan , (iv) VarFan (mj(Wi� θan)) > 0
for j = 1� � � � �k, for n ≥ 1, (v) supn≥1EFan

|mj(Wi�θan)/σFan �j(θan)|2+δ < ∞ for
j = 1� � � � �k, for some δ > 0, and (vi) Assumption M holds with Fan in place of
F and Fn in Assumptions M(b) and M(c), respectively.

The sample paths of the Gaussian process νh2(·), which is defined in (4.2) and
appears in the following lemma, are bounded and uniformly ρ-continuous a.s.
The pseudo-metric ρ on G is a pseudo-metric commonly used in the empirical
process literature:

ρ2
(
g�g∗)= tr

(
h2(g�g)− h2

(
g�g∗)− h2

(
g∗� g

)+ h2

(
g∗� g∗))�(12.1)
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For h2(·� ·)= h2�F(θ� ·� ·), where (θ�F) ∈ F , this metric can be written equiva-
lently as

ρ2
(
g�g∗)=EF

∥∥D−1/2
F (θ)

[
m̃(Wi�θ�g)− m̃

(
Wi�θ�g

∗)]∥∥2
� where(12.2)

m̃(Wi� θ�g)=m(Wi�θ�g)−EFm(Wi�θ�g)�

LEMMA A1: For any subsequence {(θan�Fan) :n≥ 1} ∈ SubSeq(h2),
(a) νan�Fan (θan� ·)⇒ νh2(·) as n→ ∞ (as processes indexed by g ∈ G ), and
(b) supg�g∗∈G ‖ĥ2�an�Fan (θan� g�g

∗)− h2(g�g
∗)‖ →p 0 as n→ ∞.

COMMENTS: (i) The proof of Lemma A1 is given in Supplemental Ap-
pendix E. Part (a) is proved by establishing the manageability of {m(Wi�θan� g)−
EFan

m(Wi�θan� g) :g ∈ G} and by establishing a functional CLT for Rk-valued
i.n.i.d. empirical processes with the pseudo-metric ρ by using the functional
CLT in Pollard (1990, Thm. 10.2) for real-valued empirical processes. Part (b)
is proved using a maximal inequality given in Pollard (1990, (7.10)).

(ii) To obtain uniform asymptotic coverage probability results for CS’s,
Lemma A1 is applied with (θan�Fan) ∈ F for all n ≥ 1 and h2 ∈ H2. In this
case, conditions (ii)–(vi) in the definition of SubSeq(h2) hold automatically by
the definition of F . To obtain power results under fixed and local alternatives,
Lemma A1 is applied with (θan�Fan) /∈ F for all n ≥ 1 and h2 may or may not
be in H2.

PROOF OF THEOREM 1 : First, we prove part (a). Let {(θn�Fn) ∈ F :n ≥ 1}
be a sequence for which h2�Fn(θn) ∈ H2�cpt for all n≥ 1 and the term in square
brackets in Theorem 1(a), evaluated at (θn�Fn), differs from its supremum
over (θ�F) ∈ F with h2�F(θ) ∈ H2�cpt by δn or less, where 0< δn → 0 as n→ ∞.
Such a sequence always exists. To prove part (a), it suffices to show that part
(a) holds with the supremum deleted and with (θ�F) replaced by (θn�Fn).

By the compactness of H2�cpt, given any subsequence {un :n≥ 1} of {n}, there
exists a subsubsequence {an :n ≥ 1} for which d(h2�Fan (θan)�h2�0)→ 0 as n→
∞ for some θ0 ∈Θ, where d is defined in (5.6), and some h2�0 ∈ H2�cpt. This and
(θan�Fan) ∈ F for all n≥ 1 imply that {(θan�Fan) :n≥ 1} ∈ SubSeq(h2�0).

Now, by Lemma A1, we have(
νan�Fan (θan� ·)
ĥ2�an�Fan (θan� ·)

)
⇒

(
νh2�0(·)
h2�0(·)

)
as n→ ∞(12.3)

as stochastic processes on G , where ĥ2�an�Fan (θan� g) = ĥ2�an�Fan (θan� g�g) and
h2�0(g)= h2�0(g�g).

Given this, by the almost sure representation theorem (e.g., see Pollard
(1990, Thm. 9.4)), there exists a probability space and random quantities ν̃an(·),
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h̃2�an(·), ν̃0(·), and h̃2(·) defined on it such that (i) (ν̃an(·)� h̃2�an(·)) has the same
distribution as (νan�Fan (θan� ·)� ĥ2�an�Fan (θan� ·)), (ii) (ν̃0(·)� h̃2(·)) has the same
distribution as (νh2�0(·)�h2�0(·)), and

(iii) sup
g∈G

∥∥∥∥( ν̃an(g)

h̃2�an(g)

)
−
(
ν̃0(g)

h̃2(g)

)∥∥∥∥→ 0 as n→ ∞ a.s.(12.4)

Because h2�0(·) is deterministic, condition (ii) implies that h̃2(·)= h2�0(·) a.s.
Define

h̃ε2�an(·)= h̃2�an(·)+ ε · Diag
(
h̃2�an(1k)

)
�(12.5)

T̃an =
∫
S
(
ν̃an(g)+ h1�an�Fan (θan� g)� h̃

ε
2�an(g)

)
dQ(g)�

hε2�0(·)= h2�0(·)+ εIk�

T̃an�0 =
∫
S
(
ν̃0(g)+ h1�an�Fan (θan� g)�h

ε
2�0(g)

)
dQ(g)�

By construction, T̃an and Tan(θan) have the same distribution, and T̃an�0 and
T(han�Fan (θan)) have the same distribution for all n≥ 1.

Hence, to prove part (a), it suffices to show that

A= lim sup
n→∞

[
PFan (T̃an > xhan�Fan (θan ))− P(T̃an�0 + δ > xhan�Fan (θan ))

]≤ 0�(12.6)

Below we show that

T̃an − T̃an�0 → 0 as n→ ∞ a.s.(12.7)

Let

Δ̃n = 1
(
T̃an�0 + (T̃an − T̃an�0) > xhan�Fan (θan )

)− 1(T̃an�0 + δ > xhan�Fan (θan ))(12.8)

= Δ̃+
n − Δ̃−

n � where

Δ̃+
n = max{Δ̃n�0} ∈ [0�1] and

Δ̃−
n = max{−Δ̃n�0} ∈ [0�1]�

By (12.7) and δ > 0, limn→∞ Δ̃+
n = 0 a.s. Hence, by the bounded convergence

theorem,

lim
n→∞

EFan
Δ̃+
n = 0�(12.9)

A= lim sup
n→∞

EFan
Δ̃n
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= lim sup
n→∞

EFan
Δ̃+
n − lim inf

n→∞
EFan

Δ̃−
n

= − lim inf
n→∞

EFan
Δ̃−
n ≤ 0�

Hence, (12.6) holds and the proof of part (a) is complete, except for (12.7).
To prove part (b), analogous results to (12.6), (12.8), and (12.9) hold by anal-

ogous arguments.
It remains to show (12.7). We do so by fixing a sample path ω and using the

bounded convergence theorem (because T̃an and T̃an�0 are both integrals over
g ∈ G with respect to the measure Q). Let Ω̃ be the collection of all ω ∈ Ω
such that (ν̃an(g)� h̃2�an(g))(ω) converges to (ν̃0(g)�h2�0(g))(ω) uniformly over
g ∈ G as n→ ∞ and supg∈G ‖ν̃0(g)(ω)‖<∞. By (12.4) and h̃2(·)= h2�0(·) a.s.,
P(Ω̃)= 1. Consider a fixed ω ∈ Ω̃. By Assumption S2 and (12.4), for all g ∈ G ,

sup
μ∈[0�∞)p×{0}v

∣∣S(ν̃an(g)(ω)+μ� h̃ε2�an(g)(ω)
)

(12.10)

− S
(
ν̃0(g)(ω)+μ�hε2�0(g)

)∣∣→ 0

as n→ ∞. Thus, for all g ∈ G and all ω ∈ Ω̃,

S
(
ν̃an(g)(ω)+ h1�an�Fan (θan� g)� h̃

ε
2�an(g)(ω)

)
(12.11)

− S
(
ν̃0(g)(ω)+ h1�an�Fan (θan� g)�h

ε
2�0(g)

)→ 0 as n→ ∞�

Next, we show that, for fixed ω ∈ Ω̃, the first summand on the left-hand
side of (12.11) is bounded by a constant. Let 0< χ< 1. By (12.4), there exists
N <∞ such that, for all n≥N ,

sup
g∈G

∥∥ν̃an(g)(ω)− ν̃0(g)(ω)
∥∥<χ and(12.12)

∥∥Diag
(
h̃2�an(1k)

)
(ω)− Ik

∥∥<χ�
using the fact that Diag(h2�0(1k)) = Ik by construction. Let Bχ(ω) =
supg∈G ‖ν̃0(g)(ω)‖ +χ. Then, for all n≥N ,

sup
g∈G

∥∥ν̃an(g)(ω)∥∥≤ Bχ(ω) <∞�(12.13)

First, consider the case where no moment equalities are present, that is, v=
0 and k= p. In this case, for n≥N , we have: for all g ∈ G ,

0 ≤ S
(
ν̃an(g)(ω)+ h1�an�Fan (θan� g)� h̃

ε
2�an(g)(ω)

)
(12.14)

≤ S
(
ν̃an(g)(ω)� h̃

ε
2�an(g)(ω)

)



INFERENCE BASED ON CONDITIONAL MOMENT INEQUALITIES 7

≤ S
(−Bχ(ω)1p�ε · Diag

(
h̃2�an(1p)

))
≤ S

(−Bχ(ω)1p�ε(1 −χ)Ip
)
�

where the first inequality holds by Assumption S1(c), the second inequality
holds by Assumption S1(b) and h1�an�Fan (θan� g) ≥ 0p (which holds because
(θan�Fan) ∈ F ), the third inequality holds by Assumption S1(b) and (12.13)
as well as by Assumption S1(e) and the definition of h̃ε2�an(g)(ω) in (12.5), and
the last inequality holds by Assumption S1(e) and (12.12). For fixed ω ∈ Ω̃, the
constant S(−Bχ(ω)1p�ε(1 −χ)Ip) bounds the first summand on the left-hand
side of (12.11) for all n≥N .

For the case where v > 0, the third inequality in (12.14) needs to be al-
tered because S(m�Σ) is not assumed to be non-increasing in mII, where
m = (m′

I�m
′
II)

′. In this case, for the bound with respect to the last v ele-
ments of ν̃an(g)(ω), denoted by ν̃an�II(g)(ω), we use the continuity condition
on S(m�Σ), that is, Assumption S1(d), which yields uniform continuity of
S(−Bχ(ω)1p�mII� ε(1 −χ)Ik) over the compact set {mII :‖mII‖ ≤ Bχ(ω) <∞}
and delivers a finite bound because supg∈G�n≥1 ‖ν̃an�II(g)(ω)‖ ≤ Bχ(ω).

By an analogous but simpler argument, for fixedω ∈ Ω̃, the second summand
on the left-hand side of (12.11) is bounded by a constant.

Hence, the conditions of the bounded convergence theorem hold, and for
fixed ω ∈ Ω̃, T̃an(ω) − T̃an�0(ω) → 0 as n → ∞. Thus, (12.7) holds and the
proof is complete. Q.E.D.

12.2. Proof of Theorem 2(a)

For GMS CS’s, Theorem 2(a) follows immediately from the following three
lemmas. The PA critical value is a GMS critical value with ϕn(x) = 0 for all
x ∈ R and this function ϕn(x) satisfies Assumption GMS1 (though not As-
sumption GMS2(b)). Hence, Theorem 2(a) for GMS CS’s covers PA CS’s.

LEMMA A2: Suppose Assumptions M, S1, and S2 hold. Then, for every com-
pact subset H2�cpt of H2 and all δ > 0,

lim sup
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF
(
Tn(θ) > c0

(
hn�F(θ)�1 − α

)+ δ
)≤ α�

LEMMA A3: Suppose Assumptions M, S1, and GMS1 hold. Then, for every
compact subset H2�cpt of H2,

lim
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF
(
c
(
ϕn(θ)� ĥ2�n(θ)�1 − α

)
< c

(
h1�n�F(θ)� ĥ2�n(θ)�1 − α

))= 0�
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LEMMA A4: Suppose Assumptions M, S1, and S2 hold. Then, for every com-
pact subset H2�cpt of H2 and for all 0 < δ < η (where η is as in the definition of
c(h�1 − α)),

lim
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF
(
c
(
h1�n�F(θ)� ĥ2�n(θ)�1 − α

)
< c0

(
h1�n�F(θ)�h2�F(θ)�1 − α

)+ δ
)= 0�

The following lemma is used in the proof of Lemma A4.

LEMMA A5: Suppose Assumptions M, S1, and S2 hold. Let {h2�n :n≥ 1} and
{h∗

2�n :n ≥ 1} be any two sequences of k× k-valued covariance kernels on G × G
such that d(h2�n�h

∗
2�n)→ 0 and d(h2�n�h2�0)→ 0 for some k× k-valued covari-

ance kernel h2�0 on G × G . Then, for all η1 > 0 and all δ > 0,

lim inf
n→∞

inf
h1∈H1

[
c0(h1�h2�n�1 − α+η1)+ δ− c0

(
h1�h

∗
2�n�1 − α

)]≥ 0�

PROOF OF LEMMA A2: For all δ > 0, we have

lim sup
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF
(
Tn(θ) > c0

(
hn�F(θ)�1 − α

)+ δ
)

(12.15)

≤ lim sup
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

[
PF
(
Tn(θ) > c0

(
hn�F(θ)�1 − α

)+ δ
)

− P
(
T
(
hn�F(θ)

)
> c0

(
hn�F(θ)�1 − α

))]
+ lim sup

n→∞
sup

(θ�F)∈F :
h2�F (θ)∈H2�cpt

P
(
T
(
hn�F(θ)

)
> c0

(
hn�F(θ)�1 − α

))
≤ 0 + α�

where the second inequality holds by Theorem 1(a) with xhn�F (θ) = c0(hn�F(θ)�
1−α)+δ and by the definition of the quantile c0(hn�F(θ)�1−α) of T(hn�F(θ)).

Q.E.D.

PROOF OF LEMMA A3: Let {(θn�Fn) ∈ F :n ≥ 1} be a sequence for which
h2�Fn(θn) ∈ H2�cpt and the probability in the statement of the lemma evaluated
at (θn�Fn) differs from its supremum over (θ�F) ∈ F (with h2�F(θ) ∈ H2�cpt)
by δn or less, where 0 < δn → 0 as n→ ∞. Such a sequence always exists. It
suffices to show that

lim
n→∞

PFn
(
c
(
ϕn(θn)� ĥ2�n(θn)�1 − α

)
(12.16)

< c
(
h1�n�Fn(θn)� ĥ2�n(θn)�1 − α

))= 0�
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By the compactness of H2�cpt, given any subsequence {un :n ≥ 1} of {n},
there exists a subsubsequence {an :n≥ 1} for which d(h2�Fan (θan)�h2�0)→ 0 as
n→ ∞, for some h2�0 ∈ H2�cpt. This and (θan�Fan) ∈ F for all n≥ 1 imply that
{(θan�Fan) :n≥ 1} ∈ SubSeq(h2�0). Hence, it suffices to show that

lim
n→∞

PFan
(
c
(
ϕan(θan)� ĥ2�an(θan)�1 − α

)
(12.17)

< c
(
h1�an�Fan (θan)� ĥ2�an(θan)�1 − α

))= 0

for {(θan�Fan) :n≥ 1} ∈ SubSeq(h2�0).
By Lemma A1(a), for {(θan�Fan) :n≥ 1} ∈ SubSeq(h2�0), we have

νan�Fan (θan� ·)⇒ νh2�0(·) as n→ ∞�(12.18)

We now show that, for all sequences τn → ∞ as n→ ∞, we have

lim
n→∞

PFan

(
sup

g∈G�j≤p

∣∣νan�Fan �j(θan� g)∣∣> τan)= 0�(12.19)

where νan�Fan �j(θan� g) denotes the jth element of νan�Fan (θan� g). We show this
by noting that (12.18) and the continuous mapping theorem give: ∀τ > 0,

lim
n→∞

PFan

(
sup

g∈G�j≤p

∣∣νan�Fan �j(θan� g)∣∣> τ)= P
(

sup
g∈G�j≤p

∣∣νh2�0�j(g)
∣∣> τ)�(12.20)

where νh2�0�j(g) denotes the jth element of νh2�0(g). In addition, the sample
paths of νh2�0�j(·) are bounded a.s., which yields 1(sup

g∈G�j≤p |νh2�0�j(g)|> τ)→ 0
as τ→ ∞ a.s. Hence, by the bounded convergence theorem,

lim
τ→∞

P
(

sup
g∈G�j≤p

∣∣νh2�0�j(g)
∣∣> τ)= 0�(12.21)

Equations (12.20) and (12.21) imply ( 12.19).
Next, we have

ξan(θan� g)= κ−1
an

(
D̄−1/2
an

(θan� g)D
1/2
Fan
(θan)

)
(12.22)

× a1/2
n D−1/2

Fan
(θan)m̄an(θan� g)

= κ−1
an

Diag−1/2(h̄2�an�Fan (θan� g)
)

× (
νan�Fan (θan� g)+ h1�an�Fan (θan� g)

)
�

where the second equality holds by the definitions of h̄2�an�Fan (θan� g),
νan�Fan (θan� g), and h1�an�Fan (θan� g) in (5.2) and D̄n(θ�g)= Diag(Σ̄n(θ�g)).
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Consider constants {τn :n≥ 1} such that τn → ∞ and τn/κn → 0 as n→ ∞.
We have

PFan
(
c
(
ϕan(θan)� ĥ2�an(θan)�1 − α

)
(12.23)

< c
(
h1�an�Fan (θan)� ĥ2�an(θan)�1 − α

))
≤ PFan

(
ϕan�j(θan� g) > h1�an�Fan �j(θan� g)

for some j ≤ p� some g ∈ G
)

≤ PFan
(
ξan�j(θan� g) > 1 & h1�an�Fan �j(θan� g) < Ban

for some j ≤ p� some g ∈ G
)

≤ PFan
([
h̄−1/2

2�an�Fan �j
(θan� g)νan�Fan �j(θan� g)

+ h̄−1/2
2�an�Fan �j

(θan� g)h1�an�Fan �j(θan� g)
]
> κan

& h1�an�Fan �j(θan� g) < Ban for some j ≤ p� some g ∈ G
)

≤ PFan
([
τan + h̄−1/2

2�an�Fan �j
(θan� g)h1�an�Fan �j(θan� g)

]
> κan &

h1�an�Fan �j(θan� g) < Ban for some j ≤ p� some g ∈ G
)

+ PFan

(
sup

g∈G�j≤p

∣∣h̄−1/2
2�an�Fan �j

(θan� g)νan�Fan �j(θan� g)
∣∣> τan)

≤ PFan
(
h̄−1/2

2�an�Fan �j
(θan� g)h1�an�Fan �j(θan� g) > κan − τan &

h̄−1/2
2�an�Fan �j

(θan� g)h1�an�Fan �j(θan� g) < ε
−1/2

(
1 + op(1)

)
Ban

for some j ≤ p� some g ∈ G
)+ o(1)

= o(1)�

where the first inequality holds because c0(h�1 − α+ η) and c(h�1 − α) are
non-increasing in the first p elements of h1 by Assumption S1(b), the sec-
ond inequality holds because (θan�Fan) ∈ F implies that h1�an�Fan �j(θan� g) ≥
0 ∀j ≤ p�∀g ∈ G and Assumption GMS1(a) implies that (i) ϕan�j(θan� g) =
0 ≤ h1�an�Fan �j(θan� g) whenever ξan�j(θan� g) ≤ 1 and (ii) ϕan�j(θan� g) ≤ Ban a.s.
∀j ≤ p�∀g ∈ G , the third inequality holds by (12.22), the fourth inequal-
ity holds because P(A) ≤ P(A ∩ B) + P(Bc), the last inequality holds be-
cause (i) h̄−1/2

2�an�Fan �j
(θan� g) ≤ ε−1/2h−1/2

2�0�j (1k�1k)(1 + op(1)) = ε−1/2(1 + op(1))
by Lemma A1(b) and (5.2) and (ii) the second summand on the left-hand
side of the last inequality is o(1) by (12.19) with τan replaced by ε1/2τan/2
using (i), and the equality holds because (κan − τan) − ε−1/2(1 + op(1))Ban =
κan(1 − τan/κan − ε−1/2(1 + op(1))Ban/κan) = κan(1 + op(1)) using Assump-
tion GMS1(b) and κan → ∞ as n→ ∞.
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Hence, (12.17) holds and the lemma is proved. Q.E.D.

PROOF OF LEMMA A4: The result of the lemma is equivalent to

lim
n→∞

sup
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF
(
c0

(
h1�n�F(θ)� ĥ2�n(θ)�1 − α+η

)
(12.24)

< c0

(
h1�n�F(θ)�h2�F(θ)�1 − α

)− ε∗)= 0�

where ε∗ = η− δ > 0. By considering a sequence {(θn�Fn) ∈ F :n ≥ 1} that is
within δn → 0 of the supremum in (12.24) for all n≥ 1, it suffices to show that

lim
n→∞

PFn
(
c0

(
h1�n�Fn(θn)� ĥ2�n(θn)�1 − α+η

)
(12.25)

< c0

(
h1�n�Fn(θn)�h2�Fn(θn)�1 − α

)− ε∗)= 0�

Given any subsequence {un} of {n}, there exists a subsubsequence {an}
such that d(h2�Fan (θan)�h2�0) → 0 as n → ∞ for some h2�0 ∈ H2�cpt because
h2�Fn(θn) ∈ H2�cpt. Hence, it suffices to show that (12.25) holds with an in place
of n.

The condition d(h2�Fan (θan)�h2�0) → 0 and (θn�Fn) ∈ F for all n ≥ 1
imply that {(θan�Fan) :n ≥ 1} ∈ SubSeq(h2�0). Hence, by Lemma A1(b),
d(ĥ2�an�Fan (θan)�h2�0)→p 0 as n→ ∞. Furthermore,

ĥ2�an

(
θan� g�g

∗)(12.26)

= D̂−1/2
an

(θan)Σ̂an

(
θan� g�g

∗)D̂−1/2
an

(θan)

= Diag
(
ĥ2�an�Fan (θan�1k)

)−1/2
ĥ2�an�Fan

(
θan� g�g

∗)
× Diag

(
ĥ2�an�Fan (θan�1k)

)−1/2
�

Hence, d(ĥ2�an(θan)�h2�0) →p 0 as n → ∞. Given this, using the almost sure
representation theorem as above, we can construct {h̃2�an(g�g

∗) :g�g∗ ∈ G}
such that d(h̃2�an�h2�0) → 0 as n → ∞ a.s. and h̃2�an and ĥ2�an(θan) have the
same distribution under (θan�Fan) for all n≥ 1.

For fixed ω in the underlying probability space such that d(h̃2�an(·� ·)(ω)�
h2�0)→ 0 as n→ ∞, Lemma A5 with h2�n = h̃2�an(ω) (= h̃2�an(·� ·)(ω)), h∗

2�n =
h2�Fan (θan), h2�0 = h2�0, and η1 = η gives: for all δ > 0,

lim inf
n→∞

[
c0

(
h1�an�Fan (θan)� h̃2�an(ω)�1 − α+η

)+ δ(12.27)

− c0

(
h1�an�Fan (θan)�h2�Fan (θan)�1 − α

)]≥ 0�
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Equation (12.27) holds a.s. This implies that (12.25) holds with an in place of
n because (i) h̃2�an and ĥ2�an(θan) have the same distribution for all n ≥ 1 and
(ii) for any sequence of sets {An :n≥ 1}, P(An ev.) (= P(

⋃∞
m=1

⋂∞
k=mAk))= 1

(where ev. abbreviates eventually) implies that P(An)→ 1 as n→ ∞. Q.E.D.

PROOF OF LEMMA A5: Below we show that, for {h2�n} and {h∗
2�n} as in the

statement of the lemma, for all constants xh1�h
∗
2�n

∈R that may depend on h1 ∈
H1 and h∗

2�n, and all δ > 0,

lim sup
n→∞

sup
h1∈H1

[
P
(
T(h1�h2�n)≤ xh1�h

∗
2�n

)
(12.28)

− P
(
T
(
h1�h

∗
2�n

)≤ xh1�h
∗
2�n

+ δ
)]≤ 0�

Note that this result is similar to the results of Theorem 1.
We use (12.28) to obtain: for all δ > 0 and η1 > 0,

lim sup
n→∞

sup
h1∈H1

P
(
T(h1�h2�n)≤ c0

(
h1�h

∗
2�n�1 − α

)− δ
)

(12.29)

≤ lim sup
n→∞

sup
h1∈H1

[
P
(
T(h1�h2�n)≤ c0

(
h1�h

∗
2�n�1 − α

)− δ
)

− P
(
T
(
h1�h

∗
2�n

)≤ c0

(
h1�h

∗
2�n�1 − α

)− δ/2
)]

+ lim sup
n→∞

sup
h1∈H1

P
(
T
(
h1�h

∗
2�n

)≤ c0

(
h1�h

∗
2�n�1 − α

)− δ/2
)

≤ 0 + 1 − α

< 1 − α+η1�

where the second inequality holds by (12.28) with δ/2 in place of δ and
xh1�h

∗
2�n

= c0(h1�h
∗
2�n�1 − α)− δ and by the definition of the 1 − α quantile of

T(h1�h
∗
2�n).

We now use (12.29) to show by contradiction that the result of the lemma
holds. Suppose the result of the lemma does not hold. Then, there exist con-
stants δ > 0 and ε∗ > 0, a subsequence {an :n ≥ 1}, and a sequence {h1�an ∈
H1 :n≥ 1} such that

lim
n→∞

[
c0(h1�an�h2�an�1−α+η1)+δ− c0

(
h1�an�h

∗
2�an�1−α

)]≤ −ε∗ < 0�(12.30)

Using this and (12.29), we have

lim sup
n→∞

P
(
T(h1�an�h2�an)≤c0(h1�an�h2�an�1 − α+η1)+ δ

)
(12.31)

≤ lim sup
n→∞

P
(
T(h1�an�h2�an)≤c0

(
h1�an�h

∗
2�an�1 − α

)− ε∗/2
)
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≤ lim sup
n→∞

sup
h1∈H1

P
(
T(h1�h2�an)≤ c0

(
h1�h

∗
2�an�1 − α

)− ε∗/2
)

< 1 − α+η1�

where the first inequality holds by (12.30) and the last inequality holds by
(12.29) with ε∗/2 in place of δ.

Equation (12.31) is a contradiction to (12.30) because the left-hand-side
quantity in (12.31) (without the lim supn→∞) is greater than or equal to 1 −α+
η1 for all n ≥ 1 by the definition of the 1 − α+ η1 quantile c0(h1�an�h2�an�1 −
α + η1) of T(h1�an�h2�an). This completes the proof of the lemma except for
establishing (12.28).

To establish (12.28), we write

lim sup
n→∞

sup
h1∈H1

[
P
(
T(h1�h2�n)≤ xh1�h

∗
2�n

)− P
(
T
(
h1�h

∗
2�n

)≤ xh1�h
∗
2�n

+ δ
)]

(12.32)

≤ lim sup
n→∞

sup
h1∈H1

[
P
(
T(h1�h2�n)≤ xh1�h

∗
2�n

)− P
(
T(h1�h2�0)

≤ xh1�h
∗
2�n

+ δ/2
)]

+ lim sup
n→∞

sup
h1∈H1

[
P
(
T(h1�h2�0)≤ xh1�h

∗
2�n

+ δ/2
)− P

(
T
(
h1�h

∗
2�n

)
≤ xh1�h

∗
2�n

+ δ
)]
�

The first summand on the right-hand side of (12.32) is less than or equal to 0 by
the same argument as used to prove Theorem 1(a) with νan�Fan (θan� ·) replaced
by νh2�an

(·) in (12.3), where νh2�an
(·) is defined in (4.2), because d(h2�an�h2�0)→

0 as n→ ∞ implies that the Gaussian processes νh2�an
(·)⇒ νh2�0(·) as n→ ∞.

This argument uses Assumption S2.
Similarly, the second summand on the right-hand side of (12.32) is less than

or equal to 0 by an argument analogous to that for Theorem 1(b). Hence,
(12.28) is established, which completes the proof. Q.E.D.

13. SUPPLEMENTAL APPENDIX B

13.1. Kolmogorov–Smirnov and Approximate CvM Tests and CS’s

In this appendix, we provide results for Kolmogorov–Smirnov (KS) and ap-
proximate CvM (A-CvM) tests and CS’s defined in Sections 3.1, 3.5, and 4.2,
respectively. A-CvM tests are Cramér–von Mises-type tests in which the test
statistic is an infinite sum that is truncated to include only the first sn func-
tions {g1� � � � � gsn}, or the test statistic is an integral with respect to the measure
Q and the integral is approximated by a (possibly weighted) average over the
functions {g1� � � � � gsn}� which are obtained by simulation or by a quasi-Monte
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Carlo method. The same functions {g1� � � � � gsn} are used for the test statis-
tic and the critical value. In the case of simulated functions, the probabilis-
tic results given here are for fixed (i.e., nonrandom) functions {g1� � � � � gsn}. If
{g1� � � � � gsn} are obtained via i.i.d. draws from Q, then the probability results
are made conditional on the observed functions {g1� � � � � gsn} for n≥ 1.

We show that (i) KS and A-CvM CS’s have uniform asymptotic coverage
probabilities that are greater than or equal to their nominal level 1 −α, (ii) KS
and A-CvM tests have asymptotic power equal to 1 for all fixed alternatives,
and (iii) KS and A-CvM tests have asymptotic power that is arbitrarily close to
1 for a broad array of n−1/2-local alternatives whose localization parameter is
arbitrarily large.

We consider a slightly more general KS statistic than that defined in (3.7):

Tn(θ)= sup
g∈Gn

S
(
n1/2m̄n(θ�g)� Σ̄n(θ�g)

)
�(13.1)

where Gn ⊂ G .
For KS tests and CS’s, we make use of the following assumptions.

ASSUMPTION KS: Gn ↑ G as n→ ∞.

Let Wbd denote a subset of W (the set of k× k positive-definite matrices)
containing matrices whose eigenvalues are bounded away from zero and infin-
ity.

ASSUMPTION S2′: S(m�Σ) is uniformly continuous in the sense that, for all
bounded sets M in Rk and all sets Wbd,

sup
μ∈[0�∞)p×{0}v

sup
m�m0∈M:
‖m−m0‖≤δ

sup
Σ�Σ0∈Wbd:
‖Σ−Σ0‖≤δ

∣∣S(m+μ�Σ)− S(m0 +μ�Σ0)
∣∣

→ 0 as δ→ 0�

The following lemma shows that Assumption S2′ is not restrictive.

LEMMA B1: The functions S1, S2, and S3 satisfy Assumption S2′.

The following assumption is a strengthening of Assumptions LA1(b) and
LA2.

ASSUMPTION LA2′: (a) For all B < ∞� supg∈G:h1(g)≤B ‖h1�n�Fn(θn� g) −
h1(g)‖ → 0 as n → ∞, where θn�Fn, and h1(g) are as in Assumption LA1,
and
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(b) the k × d matrix ΠF(θ�g) = (∂/∂θ′)[D−1/2
F (θ)EFm(Wi�θ�g)] exists and

satisfies: for all sequences {δn :n≥ 1} such that δn → 0 as n→ ∞,

sup
‖θ−θ0‖≤δn

sup
g∈G

∥∥ΠFn(θ�g)−ΠF0(θ0� g)
∥∥→ 0 as n→ ∞ and

sup
g∈G

∥∥ΠF0(θ0� g)
∥∥<∞�

where θ0, F0, and Fn are as in Assumption LA1.

Assumption LA2′(a) only requires uniform convergence of h1�n�Fn(θn� g) to
h1(g) over {g ∈ G :h1(g) ≤ B} because uniform convergence over g ∈ G typi-
cally does not hold. Assumption LA2′ is not restrictive.

For A-CvM tests and CS’s, we use Assumptions S2′, LA2′, and the follow-
ing assumptions, which hold automatically in the case of an approximate test
statistic that is a truncated sum with sn → ∞.

ASSUMPTION A1: The functions {g1� � � � � gsn} for n≥ 1 are fixed (i.e., nonran-
dom) and sn → ∞ as n→ ∞.

ASSUMPTION A2: The functions {g1� g2� � � �} satisfy

sn∑
�=1

wQ�n(�)S
(
m∗(g�)�h2�F0(θ∗� g�)+ εIk

)
→

∫
S
(
m∗(g)�h2�F0(θ∗� g)+ εIk

)
dQ(g) as n→ ∞�

where m∗(g) = (m∗
1(g)� � � � �m

∗
k(g))

′, m∗
j (g) = EF0mj(Wi�θ∗)gj(Xi)/σF0�j(θ∗),

θ∗ and F0 are defined as in Assumption FA, wQ�n(�) = Q({g�}) in the case of
an approximate test statistic that is a truncated sum, wQ�n(�)= n−1 in the case of
an approximate test statistic that is a simulated integral, and wQ�n(�) is a suitable
weight when a test statistic is approximated by a quasi-Monte Carlo method.

ASSUMPTION A3: The functions {g1� g2� � � �} satisfy: for some sequence of con-
stants {B∗

c <∞ : c = 1�2� � � �} such that B∗
c → ∞ as c→ ∞,

sn∑
�=1

wQ�n(�)1
(
h1(g�) < B

∗
c

)
S
(
Π0(g�)λ0�h2(g�)+ εIk

)
→

∫
1
(
h1(g) < B

∗
c

)
S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g) as n→ ∞�

where Π0(g)=ΠF0(θ0� g), h2(g)= h2�F0(θ0� g), and θ0 and F0 are defined as in
Assumption LA1.
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Assumptions A1–A3 are not restrictive because (i) they hold automatically
if the approximate test statistic is a truncated sum and (ii) if the approximate
test statistic is a simulated integral and {g1� g2� � � �} are i.i.d. with distribution Q
and sn → ∞ as n→ ∞, then they hold conditional on {g1� g2� � � �} with proba-
bility 1.

The following result establishes that nominal 1−αKS and A-CvM CS’s have
uniform asymptotic coverage probability greater than or equal to 1 − α.

THEOREM B1: Suppose Assumptions M, S1, and S2′ hold and Assump-
tion GMS1 holds when considering GMS CS’s. Then, for every compact subset
H2�cpt of H2, KS-GMS, KS-PA, A-CvM-GMS, and A-CvM-PA confidence sets
CSn satisfy

lim inf
n→∞

inf
(θ�F)∈F :

h2�F (θ)∈H2�cpt

PF(θ ∈ CSn)≥ 1 − α�

COMMENTS: (i) None of Assumptions KS, A1, A2, or A3 are needed in The-
orem B1.

(ii) Theorem B1 is an analogue of Theorem 2(a) for CS’s based on KS and
A-CvM statistics. It is proved by making adjustments to the proof of Theo-
rem 2(a). An analogue of Theorem 2(b) is not given here because the proof
of Theorem 2(b) does not go through with KS or A-CvM test statistics. The
proof of Theorem 2(b) utilizes the bounded convergence theorem, which ap-
plies only if the test statistic is an integral with respect to some measure Q.
The continuous mapping theorem cannot be applied because the convergence
of h1�n�Fn(θn� g) to h1�∞�F0(θ0� g) is not uniform over g ∈ G for many sequences
{(θn�Fn) ∈ F :n≥ 1}, where (θn�Fn)→ (θ0�F0).

The next result shows that KS and A-CvM tests have asymptotic power equal
to 1 against all fixed alternatives. This implies that any parameter value outside
the identified set is included in a KS or A-CvM CS with probability that goes
to zero as n→ ∞; see the Comment to Theorem 3.

THEOREM B2: Suppose Assumptions FA, CI, Q, S1, S3, and S4 hold, As-
sumption KS holds when considering the KS test, and Assumptions A1 and A2
hold when considering A-CvM tests. Then, the KS-GMS and KS-PA tests satisfy
the results of Theorem 3 concerning power under fixed alternatives. In addition,
A-CvM-GMS and A-CvM-PA tests, respectively, satisfy

(a) limn→∞ PF0(T̄n�sn(θ∗) > csn(ϕn(θ∗)� ĥ2�n(θ∗)�1 − α))= 1 and
(b) limn→∞ PF0(T̄n�sn(θ∗) > csn(0G� ĥ2�n(θ∗)�1 − α))= 1.

The following result is for n−1/2-local alternatives.
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THEOREM B3: Suppose Assumptions M, S1–S4, S2′, LA1, and LA2′ hold,
Assumptions KS and LA3 hold when considering the KS test, and Assumptions
A1, A3, and LA3′ hold when considering A-CvM tests. Let θn�∗ = θn�∗(β)= θn +
βλ0n

−1/2(1+o(1)) be as in Assumption LA1(a) with λ= βλ0 for someβ> 0 and
λ0 ∈Rdθ . Then, under n−1/2- local alternatives, the A-CvM-GMS and A-CvM-PA
tests, respectively, satisfy

(a) limβ→∞ limn→∞ PFn(T̄n�sn(θn�∗(β)) > csn(ϕn(θn�∗(β))� ĥ2�n(θn�∗(β))�1 −
α))= 1 provided Assumption GMS1 also holds,

(b) limβ→∞ limn→∞ PFn(T̄n�sn(θn�∗(β)) > csn(0G� ĥ2�n(θn�∗(β))�1−α))= 1, and
(c) KS-GMS and KS-PA tests satisfy parts (a) and (b), respectively, with

T̄n�sn(θn�∗(β)) replaced by Tn(θn�∗(β)) and with the subscript sn on csn(·� ·� ·)
deleted.

COMMENT: Theorem B3 shows that KS and A-CvM tests have power ar-
bitrarily close to 1 for the same n−1/2-local alternatives as Cramér–von Mises
tests that are based on integrals with respect to a probability measure Q.

13.2. Instruments and Weight Functions

In this section, we provide three additional examples of instruments G and
weight functionsQ that satisfy Assumptions CI, M, FA(e), and Q. We also spec-
ify non-data-dependent methods for transforming a regressor to lie in [0�1].

If x ∈R is known to lie in an open, closed, or half-open interval denoted by
�c�d�, where −∞ ≤ c ≤ d ≤ ∞, then one can transform x into [0�1] via

t(x)= x− c

d− c
if c >−∞ & d <∞�(13.2)

t(x)= ex

1 + ex
if c = −∞ & d = ∞�

t(x)= ex−c − 1
1 + ex−c

if c >−∞ & d = ∞�

t(x)= 2ex−d

1 + ex−d
if c = −∞ & d <∞�

Alternatively, a column vector Xi can be transformed first to have sample
mean equal to zero and sample variance matrix equal to Idx (by left multiplica-
tion by the inverse of the lower-triangular Cholesky decomposition of the sam-
ple covariance matrix of Xi). Then, it can be transformed to lie in [0�1]dx by
applying the standard normal distribution function �(·) element by element.
This method is employed in Section 10.4.

EXAMPLE 3—B-splines: A collection of B-splines provides a set G that
satisfies Assumptions CI and M for those (θ�F) for which EF(mj(Wi�θ)|Xi =
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x) is a continuous function of x for all j ≤ k. The regressors are transformed
to lie in [0�1]dx . We consider normalized cubic B-splines with equally spaced
knots on [0�1]dx . (B-splines of other orders also could be considered.) The
class of normalized cubic B-splines is a countable set defined by

GB-spline = {
g(x) :g(x)= BC(x) · 1k for C ∈ CB-spline

}
� where(13.3)

CB-spline =
{
C∗
a�r =

dx×
u=1

[(
(au − 1)/(2r)� (au + 3)/(2r)

]∩ [0�1]]
∈ [0�1]dx :a= (a1� � � � � adx)

′� au ∈ {−2�−1� � � � �2r}

for u= 1� � � � � dx and r=r0� r0 + 1� � � �

}
and

BC∗
a�r
(x)= 1

(
x ∈ C∗

a�r

)

×
dx∏
u=1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y3
u/6� for xu ∈ ((au − 1)/(2r)� au/(2r)

]
�(−3y3

u + 12y2
u − 12yu + 4

)
/6�

for xu ∈ (au/(2r)� (au + 1)/(2r)
]
�(−3z3

u + 12z2
u − 12zu + 4

)
/6�

for xu ∈ ((au + 1)/(2r)� (au + 2)/(2r)
]
�

z3
u/6� for xu ∈ ((au + 2)/(2r)� (au + 3)/(2r)

]
�

0� otherwise�

x= (x1� � � � � xdx)
′� yu = 2rxu − (au − 1)� and

zu = 4 − yu for u= 1� � � � � dx�

for some positive integer r0; see Schumaker (2007, p. 136). If dx = 1� a B-spline
in GB-spline has finite support given by the union of four consecutive subintervals
each of length (2r)−1. If dx ≥ 1, a cubic B-spline in GB-spline has support on a
dx-dimensional hypercube in [0�1]dx with edges of length 4 · (2r)−1.

Note that a bounded continuous product kernel with bounded support could
be used in place of B-splines in Example 3.

Weight Function Q for GB-spline

There is a one-to-one mapping ΠB-spline : GB-spline → AR∗, where AR∗ is de-
fined as AR is defined in Section 3.4 but with {−2�−1� � � � �2r}dx in place of
{1� � � � �2r}dx . We take Q =Π−1

B-splineQAR∗ , where QAR∗ is a probability measure
on AR∗. For example, the uniform distribution on a ∈ {−2�−1� � � � �2r}dx con-
ditional on r and some discrete mass function {w(r) : r = r0� r0 + 1� � � �} on r
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gives the test statistic:

Tn(θ)=
∞∑
r=r0

w(r)(13.4)

×
∑

a∈{−2�−1�����2r}dx
(2r + 3)−dxS

(
n1/2m̄n(θ�ga�r)� Σ̄n(θ�ga�r)

)
�

where ga�r(x)= BC∗
a�r
(x) · 1k for C∗

a�r ∈ CB-spline.

EXAMPLE 4—Data-Dependent Boxes: Next, we consider a class of functions
Gbox�dd that is designed to be applied with a data-dependent weight function Q
defined below. Because this Q only puts positive weight on center points x that
are in the support of Xi, it turns out to be necessary to consider boxes with
different left and right edge lengths as measured from the “center” point. (See
footnote 52 on p. 20 for an explanation.)

We define

Gbox�dd = {
g :g(x)= 1(x ∈ C) · 1k for C ∈ Cbox�dd

}
� where(13.5)

Cbox�dd =
{
Cx�r1�r2 =

dx×
u=1
(xu − r1�u� xu + r2�u] :

x ∈ SuppFX�0(Xi)� r1�u� r2�u ∈ (0� r̄) ∀u≤ dx

}

for some r̄ ∈ (0�∞], x = (x1� � � � � xdx)
′, r1 = (r1�1� � � � � r1�dx)

′, r2 = (r2�1� � � � �
r2�dx)

′, and SuppFX�0(Xi) denotes the support of Xi when F0 is the true dis-
tribution.

Data-Dependent Q for Gbox�dd

There is a one-to-one mappingΠbox�dd : Gbox�dd → {(x� r1� r2) ∈ SuppFX�0(Xi)×
(0� r̄)2dx}. Thus, for any probability measure Q∗ on {(x� r1� r2) ∈ SuppFX�0(Xi)×
(0� r̄)2dx}, (Πbox�dd)

−1Q∗ is a valid probability measure on Gbox�dd. In this case, the
inverse mapping (Πbox�dd)

−1 is (Πbox�dd)
−1[x� r1� r2] = gx�r1�r2(·) = 1(· ∈ Cx�r1�r2) ·

1k. Let

Q∗
FX�0

= FX�0 × Unif

((
dx×
u=1
(0�σX�ur̄)

)2)
� where(13.6)

σ2
X�u = VarFX�0(Xi�u) for u= 1� � � � � dx�
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and FX�0 denotes the true distribution of Xi.52 The scale factors σX�1� � � � �σX�dx
are included here to make Q∗

FX�0
equivariant to location and scale changes in

Xi. Of course, FX�0 and {σ2
X�u :u ≤ dx} are unknown, so they need to be re-

placed by estimators. The distribution FX�0 can be estimated by the empirical
distribution of Xi based on a subsample of size bn of {Xi : i ≤ n}, denoted by
F̂X�bn(·). Here we use the empirical distribution based on a subsample, rather
than the whole sample, because the computational costs are large when bn = n
and n is large.53 The variances {σ2

X�u :u ≤ dx} can be estimated by the sample
variances based on {Xi : i ≤ n}, denoted by {σ̂2

X�n�u :u= 1� � � � � dx}. In this case,
the test statistic is

Tn(θ)(13.7)

=
∫
Rdx

∫
(×dx

u=1(0�σ̂X�n�ur̄))
2
S
(
n1/2m̄n(θ�gx�r1�r2)� Σ̄n(θ�gx�r1�r2)

)
×

dx∏
u=1

(σ̂X�n�ur̄)
−2 dr1 dr2 dF̂X�mn(x)

= b−1
n

bn∑
i=1

∫
(×dx

u=1(0�σ̂X�n�ur̄))
2
S
(
n1/2m̄n(θ�gXi�r1�r2)�

Σ̄n(θ�gXi�r1�r2)
)
dr1 dr2

dx∏
u=1

(σ̂X�n�ur̄)
−2�

where gx�r1�r2 is as above.
When an approximate test statistic T̄n�sn(θ) that is a simulated integral is em-

ployed (see (3.16) in Section 3.5), it is defined as in (13.7) but with the integral
over (r1� r2) replaced by an average over �= 1� � � � � sn, the term

∏dx
u=1(σ̂X�n�ur̄)

−2

deleted, and gXi�r1�r2 replaced by gXi�r1���r2�� , where {(r1��� r2��) :� = 1� � � � � sn}

52One might think that a natural data-dependent measureQ isQs =Π−1
box(FX�0 ×Unif((0� r̄)dx ),

defined on Gs
box, where Gs

box is defined as Gbox is defined in (3.13) but with R replaced by Supp(Xi).
However, such a Q does not necessarily have support that contains Gs

box and, hence, the resulting
test may not have power against all fixed alternatives. See the following paragraph for details. It
is for this reason that Gbox�dd is defined to contain boxes that are asymmetric about their center
points.

The probability distribution Qs on Gs
box does not necessarily satisfy Assumption Q. To see why,

consider a simple example with dx = 1 and k = 1. Suppose Xi takes only four values: 0, 1, 2, 3,
each with probability 1/4 and r̄ > 1. Then, for g1�1(x)= 1(x ∈ (0�2]) ∈ Gs

box, we have B(g1�1� δ)=
{g1�1}. This holds because if ω > 0, g1�1+ω(0) = 1 but g1�1(0) = 0; if ω < 0, g1�1+ω(2) = 0 but
g1�1(2)= 1; if ω> 0, g2�1+ω(3)= 1 but g1�1(3)= 0; and if ω< 0, g2�1+ω(1)= 0 but g1�1(1)= 1. The
set {g1�1} has zero Qs measure. So, Qs does not satisfy Assumption Q.

53Also, it is easier to establish the asymptotic validity of this procedure when bn/n → 0 as
n→ ∞.
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are i.i.d. with a Unif(×dx
u=1(0� σ̂X�n�ur̄))

2 distribution. Alternatively, in this
case, one can take bn = sn� delete the integral over (r1� r2), delete the
term

∏dx
u=1(σ̂X�n�ur̄)

−2, and replace gXi�r1�r2 by gXi�r1�i�r2�i , where {(r1�i� r2�i) : i =
1� � � � � sn} are as above.

EXAMPLE 5—Continuous/Discrete Regressors: The collections Gc-cube and
Gbox (defined in the main paper) and GB-spline and Gbox�dd (defined here) can be
used with continuous and/or discrete regressors. However, one can design G
to exploit the known support of discrete regressors. Suppose Xi = (X ′

1�i�X
′
2�i)

′,
where X1�i ∈ Rdx�1 is a continuous random vector and X2�i ∈ Rdx�2 is a discrete
random vector that takes values in a countable set D = {x2�1�x2�2� � � �}, where
x2�u ∈Rdx�2 for all u≥ 1. Define the set Gc/d by

Gc/d = {g :g= g1g2� g1 ∈ G1� gd ∈ GD}�(13.8)

where x= (x′
1�x

′
2)

′, g1 is anRk-valued function of x1, g2 is anR-valued function
of x2, G1 = Gc-cube, Gbox, GB-spline, or Gbox�dd, with x and dx replaced by x1 and dx�1,
respectively, and GD = {gd :gd(x2)= 1{d}(x2)} for d ∈D}.
Weight Function Q for Gc/d

When G is of the form Gc/d , it is natural to take Q to be of the form Q1 ×QD,
whereQ1 is a probability measure on G1, such as any of those considered above
with x1 in place of x, and QD is a probability measure on D. If D is a finite set,
then one may take QD to be uniform. For example, when G1 = Gbox and QD is
uniform, the test statistic is

Tn(θ)= 1
#D

∑
d∈D

∫
[0�1]dx�1

∫
(0�r̄)dx�1

S
(
n1/2m̄n(θ�gx1�rgd)� Σ̄n(θ�gx1�rgd)

)
(13.9)

× r̄−dx dr dx1�

where #D denotes the number of elements in D and x1 ∈ Rdx�1 . When G1 =
Gc-cube or GB-spline, Tn(θ) is a combination of the formulae given above.

The following result establishes Assumptions CI, M, and FA(e) for GB-spline,
Gbox�dd, and Gc/d and Assumption Q for the weight functions Q on these sets.

LEMMA B2: (a) For any moment function m(Wi�θ), Assumptions CI and M
hold with G = GB-spline for all (θ�F) for which EF(mj(Wi�θ)|Xi = x) is a continu-
ous function of x for all j ≤ k.

(b) For any moment function m(Wi�θ), Assumptions CI and M hold with G =
Gbox�dd.

(c) For any moment function m(Wi�θ), Assumptions CI and M hold with G =
Gc/d , where G1 = Gc-cube, Gbox, GB-spline, or Gbox�dd, with (x�dx) replaced by (x1� dx�1)
and in the case of G1 = GB-spline Assumption CI and M only hold for (θ�F) for
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whichEF(mj(Wi�θ)|Xi�1 = x1�X2�i = d) is a continuous function of x1 ∈ [0�1]dx�1
∀d ∈D, ∀j ≤ k.

(d) Assumption FA(e) holds for GB-spline, Gbox�dd, and Gc/d .
(e) Assumption Q holds for the weight function Qc =Π−1

B-splineQAR∗ on GB-spline,
whereQAR∗ is uniform on a ∈ {−2�−1� � � � �2r}dx conditional on r and r has some
probability mass function {w(r) : r = r0� r0 + 1� � � �} with w(r) > 0 for all r.

(f) Assumption Q holds for the weight function Qd = (Πbox�dd)
−1Q∗

FX�0
, where

Q∗
FX�0

= (FX�0 × Unif((×dx
u=1(0�σX�ur̄))

2) on Gbox�dd.
(g) Assumption Q holds for the weight function Qe =Q1 ×QD on Gc/d , where

Q1 is a probability measure on G1 equal to any of the distributions Q on G consid-
ered in part (e), part (f), or in Lemma 4 but with x1 in place of x, D is a finite set,
and QD = Unif(D).

COMMENT: The uniform distribution that appears in parts (e)–(g) of the
lemma could be replaced by another distribution and the results of the lemma
still hold provided the other distribution has the same support. For example,
in part (g), Assumption Q holds when D is a countably infinite set and QD is a
probability measure whose support is D.

13.3. Sufficient Conditions for Assumption GMS2(a)

The following lemma verifies Assumption GMS2(a) for the CvM statistic
under some conditions on S, Q, and α.

LEMMA B3: Suppose Assumptions S1, S3, Q, and EP hold and S is the Sum
or Max function. Consider any (θc�Fc) ∈ F . Then,

(a) the d.f. of T(h∞�Fc (θc)) is continuous and strictly increasing at all x > 0 and
(b) if, in addition, Q(Gh0) > 0, where Gh0 = {g ∈ G :h1�∞�Fc�j∗(θc� g) = 0} for

some j∗ ≤ k and h2�Fc�j∗(g
∗) > 0 for some g∗ ∈ Gh0, then the 1 − α quantile of

T(h∞�Fc (θc)) is positive for any α< 1/2.

COMMENTS: (i) In the case of i.i.d. observations and no preliminary esti-
mator τ̂n(θ), Assumption EP is implied by Assumption M, so Assumption EP
holds under the conditions of Theorem 2(b).

(ii) The proof of Lemma B3 does not go through when S is the QLR function
because, in that case, T(h∞�Fc (θc)) is not a convex function of the Gaussian
process νh2�F (·).

PROOF OF LEMMA B3: When S is the Sum or Max function, T(h∞�Fc (θc)) is
a convex function of the Gaussian process νh2�F (·). By Theorem 11.1 of Davy-
dov, Lifshits, and Smorodina (1995), the d.f. of T(h∞�Fc (θc)) is continuous and
strictly increasing at every point in its support except the left endpoint. To prove
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part (a), it remains to show that the left endpoint of the support of T(h∞�Fc (θc))
is zero.

It suffices to show that zero is in the support of T(h∞�Fc (θc)) because
T(h∞�Fc (θc))≥ 0 with probability 1 by Assumption S1(c). For any ζ > 0,

Pr
(
T
(
h∞�Fc (θc)

)
< ζ

)
(13.10)

≥ Pr
(

sup
g∈G

S
(
νh2�Fc

(g)�h2�Fc (g)+ εIk
)
< ζ

)
≥ Pr

(
sup

g∈G�j≤k

∣∣(h2�Fc�j(g)+ ε
)−1/2

νh2�Fc �j
(g)

∣∣<√
ζ/k

)
> 0�

where the second inequality holds for both the Sum and Max functions (where,
for the Max function, there is no need to divide ζ by k) and the third inequality
holds because, by Problem 11.3 of Davydov, Lifshits, and Smorodina (1995,
p. 79), zero is the infimum of the support of the supremum of the absolute
value of a Gaussian process whose support is the set of bounded continuous
functions. Thus, part (a) holds.

Next, we prove part (b). Suppose that Q(Gh0) > 0. Then,

Pr
(
T
(
h∞�Fc (θc)

)
> 0

)
(13.11)

≥ Pr
(∫

Gh0

S
(
νh2�Fc

(g)+ h1�∞�Fc (θc� g)�h2�Fc (g)+ εIk
)
dQ(g) > 0

)
≥ Pr

(
S
(
νh2�Fc

(
g∗)+ h1�∞�Fc (θc� g

∗)�h2�Fc

(
g∗)+ εIk

)
> 0

)
≥ Pr

(
νh2�Fc �j

∗
(
g∗)< 0

)
= 1/2�

where the first inequality holds by Assumption S1(c), the second inequality
holds by Assumption Q,Q(Gh0) > 0, and the continuity of νh2�Fc

(·), h2�Fc (·), and
S (by Assumption S1(d)), the third inequality holds by Assumption S3 using
h1�∞�Fc�j∗(θc� g

∗)= 0 (whether or not the j∗th moment condition is an equality
or an inequality), and the equality holds because νh2�Fc �1(g

∗) is a normal random
variable with mean zero and positive variance h2�Fc�j(g

∗). Q.E.D.

13.4. Example: Verification of Assumptions LA1–LA3 and LA3′

Here we verify Assumptions LA1–LA3 and LA3′ in a simple example for
purposes of illustration. These assumptions are the main assumptions em-
ployed with local alternatives.
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EXAMPLE: Suppose Wi = (Yi�Xi)
′ ∈ R2 and there is a single moment in-

equality function m(Wi�θ) = Yi − θ and no moment equalities, that is, p = 1
and v= 0. Suppose the true parameters/distributions {(θn�Fn) ∈ F :n≥ 1} and
the null values {θn�∗ ∈ Θ :n ≥ 1} satisfy: (i) θn → θ0 and Fn → F0 (under the
Kolmogorov metric) for some (θ0�F0) ∈ F , (ii) θn�∗ = θn + λn−1/2 for some
λ > 0, (iii) Yi = θn + μ(Xi)n

−1/2 +Ui, (iv) μ(x)≥ 0, ∀x ∈R, and (v) under all
F such that (θ�F) ∈ F for some θ ∈Θ, (Xi�Ui) are i.i.d. with distribution that
does not depend on F , Xi and Ui are independent, EFUi = 0, VarF(Ui) = 1,
VarF(Xi) ∈ (0�∞), and EF |Ui|2+δ + EF |μ(Xi)|2+δ < ∞ for some δ > 0, and
supg∈G EF(1 +μ2(Xi))(1 + g2(Xi)) <∞.

We show that, in this example, Assumptions LA1 and LA2 hold, Assump-
tion LA3 holds if λ is sufficiently large, and Assumption LA3′ holds if G and Q
satisfy Assumptions CI and Q, respectively.

By (v), we can write EFg(Xi)=Eg(Xi) and EFμ(Xi)g(Xi)=Eμ(Xi)g(Xi).
Assumption LA1(a) holds by (i) and (ii). Assumption LA1(b) holds by the

following calculations:

n1/2EFnm(Wi�θn� g)= n1/2EFn

(
Ui +μ(Xi)n

−1/2
)
g(Xi)(13.12)

= h1(g)� where

h1(g)=Eμ(Xi)g(Xi) ∈ [0�∞) and

σ2
Fn
(θn)= VarFn(Yi)= VarFn

(
Ui +μ(Xi)n

−1/2
)

= 1 + n−1 VarFn
(
μ(Xi)

)→ 1�

To show Assumption LA1(c), we have

EFnY
2
i g(Xi)g

∗(Xi) = EFn

(
θn +μ(Xi)n

−1/2 +Ui

)2
g(Xi)g

∗(Xi)(13.13)

→ EF0(θ0 +Ui)
2g(Xi)g

∗(Xi)

= EF0Y
2
i g(Xi)g

∗(Xi) as n→ ∞�

uniformly over g�g∗ ∈ G , using (i), (iii), and (v). Here we have used Yi = θ0 +
Ui under F0. This holds because Fn → F0 by (ii), which implies that PFn(Yi ≤
y)→ PF0(Yi ≤ y) for all continuity points Yi, but direct calculations show that
PFn(Yi ≤ y)= P(θn +μ(Xi)n

−1/2 +Ui ≤ y)→ P(θ0 +Ui ≤ y) for all continuity
points y of Ui + θ0 and, hence, Yi = θ0 +Ui under F0.

Next, we write

EFnm(Wi�θn� g)m
(
Wi�θn�g

∗)(13.14)

=EFnY
2
i g(Xi)g

∗(Xi)− θnE
[
EFn(Yi|Xi)

(
g(Xi)+ g∗(Xi)

)]
+ θ2

nEg(Xi)g
∗(Xi)

=EFnY
2
i g(Xi)g

∗(Xi)− θnE
[(
θn +μ(Xi)n

−1/2
)(
g(Xi)+ g∗(Xi)

)]
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+ θ2
nEg(Xi)g

∗(Xi)

=EF0Y
2
i g(Xi)g

∗(Xi)− θ2
0Eg(Xi)− θ2

0Eg
∗(Xi)

+ θ2
0Eg(Xi)g

∗(Xi)+ o(1)

=EF0m(Wi�θ0� g)m
(
Wi�θ0� g

∗)+ o(1)�

where o(1) holds uniformly over g�g∗ ∈ G , using (13.13), (i), (iii), and (v). In
addition, EFnm(Wi�θn� g) = o(1) and EF0m(Wi�θ0� g) = o(1) uniformly over
g ∈ G by (13.12) and (v). Hence, the first part of Assumption LA1(c) holds.
The second part of Assumption LA1(c) holds by the same argument with θn�∗
in place of θn.

Assumption LA1(d) holds because VarFn(mj(Wi� θn�∗)) = VarFn(mj(Wi�
θn)) > 0. Assumption LA1(e) holds using (v) and the above expression for
σ2
Fn
(θn).

Assumption LA2 holds because ΠF(θ�g) does not depend on (θ�F) by the
following calculations and (v): ∀F such that (θ�F) ∈ F and ∀g ∈ G ,

ΠF(θ�g)= (∂/∂θ)
[
D−1/2
F (θ)EFm(Wi�θ�g)

]
(13.15)

= σ−1
F (θ)(∂/∂θ)EF(Yi − θ)g(Xi)= −σ−1

F (θ)Eg(Xi)�

where the second equality holds because DF(θ)= σ2
F(θ)= VarF(Yi) does not

depend on θ.
We have Π0(g)=ΠF0(θ0� g)= −Eg(Xi) by (13.15) and σ2

F0
(θ0)= 1. Hence,

in Assumption LA3, h1(g)+Π0(g)λ=Eμ(Xi)g(Xi)−Eg(Xi)λ, which is neg-
ative whenever λ > Eμ(Xi)g(Xi)/Eg(Xi). Hence, if the null value θn�∗ de-
viates from the true value θn by enough (i.e., if n1/2(θn�∗ − θn) = λ is large
enough), then the null hypothesis is violated for all n and Assumption LA3
holds.

Next, we show that Assumption LA3′ holds provided Assumptions CI and Q
hold. We have: (a) Π0(g)= −Eg(Xi), (b) h1(g) <∞ ∀g ∈ G by (13.12) using
(v), and (c) λ0 = λ/β> 0 because λ > 0 by (ii) and β> 0 by definition. Hence,
the condition of Assumption LA3′ reduces to

Q
({
g ∈ G :Eg(Xi) > 0

})
> 0�(13.16)

Suppose Eg∗(Xi) > 0 for some g∗ ∈ G . (This is a very weak requirement
on G and is implied by Assumption CI; see below.) Let δ1 = Eg∗(Xi) > 0.
Then, using the metric ρX defined in (6.3), for any g ∈ G with ρX(g�g∗) < δ1,
we have Eg(Xi) > 0 because otherwise g(Xi) = 0 a.s. and δ1 > ρX(g�g

∗) =
(Eg∗(Xi)

2)1/2 ≥ Eg∗(Xi) = δ1, which is a contradiction. Thus, Eg(Xi) > 0 for
all g ∈ BρX (g

∗� δ1), where BρX (g
∗� δ1) is the open ρX -ball in G centered at g∗

with radius δ1. By Assumption Q, Q(BρX (g
∗� δ1)) > 0. Hence, (13.16) holds

and Assumption LA3′ is verified.



26 D. W. K. ANDREWS AND X. SHI

Lastly, we show that Assumption CI implies that Eg∗(Xi) > 0 for some
g∗ ∈ G . For all θ > θ0, we have

XF0(θ)= {
x ∈R :EF0

(
mj(Wi�θ)|Xi = x

)
< 0

}
(13.17)

= {x ∈R :θ0 − θ < 0} =R�

where the second equality holds because Yi = θ0 + Ui under F0, and so,
EF0(mj(Wi�θ)|Xi= x)=EF0(Yi − θ|Xi = x)= θ0 − θ.

By (13.17), PF0(Xi ∈ XF0(θ)) = PF0(Xi ∈ R) = 1 > 0. Hence, by Assump-
tion CI, there exists g∗ ∈ G such that EF0m(Wi�θ)g

∗(Xi)=E(θ0 −θ)g∗(Xi) < 0
for θ > θ0. That is, Eg∗(Xi) > 0.

13.5. Uniformity Issues With Infinite-Dimensional Nuisance Parameters

This section illustrates one of the subtleties that arises when considering
the uniform asymptotic behavior of a test or CS in a scenario in which a test
statistic exhibits a “discontinuity in its asymptotic distribution” and an infinite-
dimensional nuisance parameter affects the asymptotic behavior of the test
statistic.

In many testing problems, the asymptotic distribution of a KS-type statis-
tic is determined by establishing the weak convergence of some underlying
stochastic process and applying the continuous mapping theorem. This yields
the asymptotic distribution to be the supremum of the limit process. In the
context of conditional moment inequalities with drifting sequences of distri-
butions, this method does not work. The reason is that the normalized mean
function of the underlying stochastic process, that is, h1�n�Fn(θn� g), often (in
fact, usually) does not converge uniformly over g ∈ G to its pointwise limit,
that is, h1(g), and, hence, stochastic equicontinuity fails.54

We show by counterexample that the asymptotic distribution under drifting
sequences of null distributions of a KS statistic, where the “sup” is over g ∈ G ,
does not necessarily equal the supremum of the limiting process indexed by
g ∈ G that is determined by the finite-dimensional distributions. Hence, if the
critical value is based on this limiting process, a KS test does not necessarily
have correct asymptotic null rejection probability. In fact, we show that it can
over-reject the null hypothesis substantially.

The same phenomenon does not arise with CvM statistics, which are “av-
erage” statistics. This is because the averaging smooths out the nonuniform
convergence of the normalized mean function.

The results in the first section of this appendix show that the problem dis-
cussed above does not arise with the KS statistic when the critical value em-
ployed is a GMS critical value that satisfies Assumption GMS1 (see Section 4)

54Note that drifting sequences of distributions are of interest because correct asymptotic cov-
erage probabilities under all drifting sequences is necessary, though not sufficient, for correct
uniform asymptotic coverage probabilities.
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or a PA critical value. The validity of these critical values is established using a
uniform asymptotic approximation of the distribution of the KS statistic, rather
than using asymptotics under sequences of true distributions.

To start, we give a very simple deterministic example to illustrate a situation
in which a deterministic KS statistic does not converge to the supremum of the
pointwise limit, but an “average” CvM statistic does converge to the average of
the pointwise limit. Consider the piecewise linear functions fn : [0�1] → [0�1]
defined by

fn(x)=
⎧⎨⎩x/εn� for x ∈ [0� εn]�

1 − (x− εn)/εn� for x ∈ [εn�2εn]�
0� for x ∈ [2εn�1]�

(13.18)

where 0< εn → 0 as n→ ∞. Then, for all x ∈ [0�1],
fn(x)→ f (x)= 0 as n→ ∞�(13.19)

The KS statistic does not converge to the supremum of the limit function:

sup
x∈[0�1]

fn(x)= 1 � 0 = sup
x∈[0�1]

f (x) as n→ ∞�(13.20)

On the other hand, the CvM statistic does converge to the average of the limit
function: ∫ 1

0
fn(x)dx= εn → 0 =

∫ 1

0
f (x)dx as n→ ∞�(13.21)

The convergence result for the KS statistic in (13.20) is potentially problem-
atic because, in a testing problem with a KS statistic, the critical value might be
obtained from the distribution of the supremum of the limit process. If conver-
gence in distribution of the KS statistic to the “sup” of the limit process does
not hold, then such a critical value is not necessarily appropriate.

Now we show that the phenomenon illustrated in (13.18)–(13.21) arises in
conditional moment inequality models. We consider a particular conditional
moment inequality model with a single linear moment inequality, a fixed true
value θ0, and a particular drifting sequence of distributions. (Note that CX
stands for “counterexample.”)

ASSUMPTION CX: (a) m(Wi�θ)= Yi − θ for Yi�θ ∈R,
(b) m(Wi�θ0) = Yi = Ui + 1(Xi ∈ (εn�1]), where the true value θ0 equals 0,

EUi = 0, EU2
i = 1, the distribution of Ui does not depend on n, Ui and Xi are

independent, and the constants {εn :n≥ 1} satisfy εn → 0 as n→ ∞,
(c) Xi = εn with probability 1/2 and Xi is uniform on [0�1] with probability

1/2,
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(d) {Wi = (Yi�Xi)
′ : i≤ n�n≥ 1} is a row-wise independent and identically dis-

tributed triangular array (with the dependence of Wi, Yi, and Xi on n suppressed
for notational simplicity),

(e) S(m�Σ)= S(m) for m ∈R,
(f) S satisfies Assumptions S1 and S2, and
(g) G = {ga�b :ga�b = 1(x ∈ (a�b]) for some 0 ≤ a < b≤ 1}.
The function S1(m) = [m]2

− satisfies Assumptions CX(e)–(f). Assump-
tion CX(e) is made for simplicity. It could be removed and, with some changes
to the proofs, the results given below would hold for S = S2 as well. The class
of functions G specified in Assumption CX(g) is the class of one-dimensional
boxes, as in Example 1 of Section 3.3.

We write

n1/2m̄n(θ0� ga�b)= n−1/2
n∑
i=1

Yiga�b(Xi)= νn(ga�b)+ h1�n(ga�b)� where(13.22)

νn(ga�b)= n1/2
(
m̄n(θ0� ga�b)−EFnm̄n(θ0� ga�b)

)
and

h1�n(ga�b)= n1/2EFnm̄n(θ0� ga�b)�

The KS statistic is

sup
ga�b∈G

S
(
n1/2m̄n(θ0� ga�b)

)= sup
ga�b∈G

S
(
νn(ga�b)+ h1�n(ga�b)

)
�55(13.23)

Let ν(·) be a mean zero Gaussian process indexed by ga�b ∈ G with covariance
kernel K(·� ·) and with sample paths that are uniformly ρ-continuous, where
K(·� ·) and ρ(·� ·) are specified in the proof of Theorem B4 given in the next
subsection.

The KS statistic satisfies the following result.

THEOREM B4: Suppose Assumption CX holds. Then,
(a) νn(·)⇒ ν(·) as n→ ∞,
(b) h1�n(ga�b)→ h1(ga�b)= ∞ as n→ ∞ for all ga�b ∈ G ,
(c) supga�b∈G |h1�n(ga�b)− h1(ga�b)| � 0 as n→ ∞,
(d) S(νn(ga�b)+h1�n(ga�b))→d S(ν(ga�b)+h1(ga�b)) as n→ ∞ for all ga�b ∈ G ,
(e) supga�b∈G S(ν(ga�b)+ h1(ga�b))= 0 a.s.,
(f) supga�b∈G S(νn(ga�b) + h1�n(ga�b)) ≥ S(νn(g0�εn) + h1�n(g0�εn)) →d S(Z

∗) as
n→ ∞, where Z∗ ∼N(0�1/2) and the inequality holds a.s., and

(g) supga�b∈G S(νn(ga�b) + h1�n(ga�b)) �d supga�b∈G S(ν(ga�b) + h1(ga�b)) as
n→ ∞.

55Note that for simplicity we have not rescaled the moment functions m̄n(θn�ga�b) that appear
in the definition of the “sup” standard deviation estimators.
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COMMENTS: (i) Theorem B4(g) shows that the KS statistic does not have an
asymptotic distribution that equals the supremum over ga�b ∈ G of the point-
wise limit given in Theorem B4(d). This is due to the lack of uniform conver-
gence of h1�n(ga�b) shown in Theorem B4(c). (Note that the convergence in
part (d) of the theorem also holds jointly over any finite set of ga�b ∈ G�)

(ii) Let c∞�1−α denote the 1 −α quantile of supga�b∈G S(ν(ga�b)+h1(ga�b)). By
Theorem B4(e), c∞�1−α = 0. Theorem B4(f) and some calculations (given in the
proof of Theorem B4 below) yield

lim inf
n→∞

P
(

sup
ga�b∈G

S
(
νn(ga�b)+ h1�n(ga�b)

)
> c∞�1−α

)
≥ 1/2�(13.24)

That is, if one uses c∞�1−α as the critical value, the nominal level α test based
on the KS statistic has an asymptotic null rejection probability that is bounded
below by 1/2, which indicates substantial over-rejection.

Next, we provide results for a CvM statistic defined by∫
S
(
n1/2m̄n(θ0� ga�b)

)
dQ(ga�b)=

∫
S
(
νn(ga�b)+ h1�n(ga�b)

)
dQ(ga�b)�(13.25)

where Q is a probability measure on G . In contrast to the KS statistic, the CvM
statistic is well-behaved asymptotically.

THEOREM B5: Suppose Assumption CX holds. Then,∫
S
(
νn(ga�b)+ h1�n(ga�b)

)
dQ(ga�b)

→d

∫
S
(
ν(ga�b)+ h1(ga�b)

)
dQ(ga�b) as n→ ∞�

COMMENT: Theorem B5 is not proved using the continuous mapping the-
orem due to the nonuniform convergence of h1�n(ga�b). Rather, it is proved
using an almost sure representation argument coupled with the bounded con-
vergence theorem.

13.6. Problems With Pointwise Asymptotics

In the case of unconditional moment inequalities, pointwise asymptotics
have been shown in Andrews and Guggenberger (2009) to be deficient in the
sense that they fail to capture the finite-sample properties of a typical test
statistic of interest. This is due to the discontinuity in the asymptotic distri-
bution of the test statistic. In the case of conditional moment inequalities, the
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deficiency of pointwise asymptotics is even greater. We show in a simple ex-
ample that the asymptotic distribution of a test statistic Tn(θ0) under a fixed
distribution F0 often is pointmass at zero even when the true parameter θ0 is
on the boundary of the identified set. This does not reflect the statistic’s finite-
sample distribution.

Suppose (i) Wi = (Yi�Xi)
′, (ii) there is one moment inequality function

m(Wi�θ) = Yi − θ and no moment equalities (i.e., p = 1 and v = 0), (iii) the
true distribution is F0 for all n≥ 1, (iv) Yi = θ0 +μ(Xi)+Ui, where Xi�Ui ∈R
and μ(·) = μF0(·), (v) μ(x) ≥ 0 ∀x ∈ R, Xzero = {x ∈ SuppF0

(Xi) :μ(x) = 0} �=
∅, and μ(·) is continuous on R, and (vi) under F0, (Xi�Ui) are i.i.d., Xi and
Ui are independent, EF0Ui = 0, VarF0(Ui)= 1, Xi is absolutely continuous, and
VarF0(Xi) ∈ (0�∞). As defined, the conditional moment inequality is

EF0

(
m(Wi�θ0)|Xi

)= μ(Xi)≥ 0 a.s.(13.26)

The inequality in (13.26) is strict except when Xi ∈ Xzero. Often, the latter oc-
curs with probability zero. For example, this is true if Xzero is a singleton (or
a set with Lebesgue measure zero). In spite of the moment inequality being
strict with probability 1, the true value θ0 is on the boundary of the identified
set ΘF0 , that is, ΘF0 = (−∞� θ0].56

We consider a test statistic based on S(n1/2m̄n(θ�g)� I) with S = S1 = S2:

Tn(θ0)=
∫ [

n1/2m̄n(θ0� g)
]2

− dQ(g)(13.27)

=
∫ [

n1/2

(
n−1

n∑
i=1

(
Ui +μ(Xi)

)
g(Xi)−Δ(g)

)

+ n1/2Δ(g)

]2

−
dQ(g)� where

m̄n(θ0� g)= n−1
n∑
i=1

(Yi − θ0)g(Xi) and Δ(g)=EF0μ(Xi)g(Xi)�

The first summand in the integrand in (13.27) is Op(1) uniformly over g ∈ G by
a functional central limit theorem (CLT) and is identically zero if PF0(g(Xi)=
0)= 1. The second summand, n1/2Δ(g), diverges to infinity unless Δ(g)= 0. In
addition, [xn]2

− → 0 as xn → ∞. Hence, if Δ(g) > 0, the integrand converges

56This holds because, for any θ > θ0, (a) EF0(m(Wi�θ)|Xi) = μ(Xi) + θ0 − θ, (b) ∀δ > 0,
PF0(Xi ∈ B(Xzero� δ)) > 0 by the absolute continuity of Xi , where B(Xzero� δ) denotes the closed
set of points that are within δ of the set Xzero, (c) for δ∗ > 0 sufficiently small, μ(x) < θ −
θ0 ∀x ∈ B(Xzero� δ

∗) by the continuity of μ(·), and, hence, (d) 0 < PF0(Xi ∈ B(Xzero� δ
∗)) ≤

PF0(EF0(m(Wi�θ)|Xi) < 0), which implies that θ /∈ΘF0 .
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in probability to zero. In the leading case in which Xzero is a singleton set (or
any set with Lebesgue measure zero), Δ(g)= 0 only if PF0(g(Xi)= 0)= 1 (us-
ing the absolute continuity of Xi). In consequence, if Δ(g)= 0, the integrand
in (13.27) equals zero a.s. Combining these results shows that the asymptotic
distribution of Tn(θ0) under the fixed distribution F0 is pointmass at zero even
though the true parameter is on the boundary of the identified set.57

The pointmass asymptotic distribution of Tn(θ0) does not mimic its finite-
sample distribution well at all. In finite samples, the distribution of Tn(θ0) is
nondegenerate because the quantity n1/2Δ(g) is finite and far from infinity for
all functions g for which μ(x) is not large for x ∈ Supp(g). Pointwise asymp-
totics fail to capture this.

The implication of the discussion above is that, to obtain asymptotic results
that mimic the finite-sample situation, it is useful to consider uniform asymp-
totics or, at least, asymptotics under drifting sequences of distributions.

13.7. Subsampling Critical Values

13.7.1. Definition

Here we define subsampling critical values and CS’s. Let b denote the sub-
sample size when the full sample size is n. We assume b → ∞ and b/n → 0
as n → ∞. The number of different subsamples of size b is qn. There are
qn = n!/(b!(n− b)!) different subsamples of size b.

Let {Tn�b�j(θ) : j = 1� � � � � qn} be subsample statistics, where Tn�b�j(θ) is de-
fined exactly the same as Tn(θ) is defined but based on the jth subsample rather
than the full sample. The empirical distribution function and the 1−α quantile
of {Tn�b�j(θ) : j = 1� � � � � qn} are

Un�b(θ�x)= q−1
n

qn∑
j=1

1
(
Tn�b�j(θ)≤ x

)
for x ∈R and(13.28)

cn�b(θ�1 − α)= inf
{
x ∈R :Un�b(θ�x)≥ 1 − α

}
�

respectively. The subsampling critical value is cn�b(θ0�1−α). The nominal level
1 − α CS is given by (2.5) with cn�1−α(θ)= cn�b(θ�1 − α).58

57This argument is only heuristic. The result can be proved formally using a combination of an
almost sure representation result and the bounded convergence theorem, as in the proofs given
in Supplemental Appendix A.

58The subsampling critical value defined above is a non-recentered subsampling critical value.
One also could consider recentered subsampling critical values; see Andrews and Soares (2010)
for the definition. But, there is little reason to do so because tests based on recentered sub-
sampling critical values have the same first-order asymptotic power properties as PA tests and
recentered bootstrap tests and worse behavior than the latter two tests in terms of the magnitude
of errors in null rejection probabilities asymptotically.
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13.7.2. Asymptotic Coverage Probabilities of Subsampling Confidence Sets

Next, we show that nominal 1 − α subsampling CS’s have asymptotic cov-
erage probabilities greater than or equal to 1 − α under drifting sequences
of parameters and distributions {(θn�Fn) ∈ F :n ≥ 1}. The sequences that we
consider are those in the set Seqb, which is defined as follows.

Let H1�H2, and H be defined as in (5.5). Let H∗
1(h1)= {h∗

1 ∈ H1 :h∗
1�j(g) > 0

only if h1�j(g)= ∞ for j ≤ p, ∀g ∈ G}.

DEFINITION Seqb(h∗
1�h): For h ∈ H and h∗

1 ∈ H∗
1(h1), define Seqb(h∗

1�h) to
be the set of sequences {(θn�Fn) :n≥ 1} such that

(i) (θn�Fn) ∈ F ∀n≥ 1,
(ii) limn→∞ h1�n�Fn(θn� g)= h1(g) ∀g ∈ G ,

(iii) limn→∞supg�g∗∈G ‖D−1/2
Fn

(θn)ΣFn(θn� g�g
∗)D−1/2

Fn
(θn)−h2(g�g

∗)‖ = 0, and
(iv) limn→∞ b1/2D−1/2

Fn
(θn)EFnm(W �θn�g)= h∗

1(g) ∀g ∈ G .

Let

Seqb =
⋃

h∗
1∈H∗

1(h)�h∈H

Seqb
(
h∗

1�h
)
�(13.29)

We use the following assumptions.

ASSUMPTION SQ: For all functions h1 : G → R
p
[+∞] × {0}v, h2 : G 2 → W , and

mean zero Gaussian processes {νh2(g) :g ∈ G} with finite-dimensional covari-
ance matrix h2(g�g

∗) for g�g∗ ∈ G , the distribution function of
∫
S(νh2(g) +

h1(g)�h2(g)+ εIk)dQ(g) at x ∈R is
(a) continuous for x > 0 and
(b) strictly increasing for x > 0 unless v= 0 and h1(g)= ∞p a.s. [Q].
Lemma B4 below shows that Assumption SQ is satisfied by S1 and S2.

LEMMA B4: Assumption SQ holds when S = S1 or S2.

The following Assumption C is needed only to show that subsampling CS’s
are not asymptotically conservative. For (θ�F) ∈ F , define h1�j�F(θ�g) = ∞
if EFmj(Wi�θ�g) > 0 and h1�j�F(θ�g) = 0 if EFmj(Wi�θ�g) = 0 for g ∈ G� j =
1� � � � �p. Let h1�F(θ�g)= (h1�1�F(θ�g)� � � � �h1�p�F(θ�g)�0′

v)
′.

ASSUMPTION C: For some (θ�F) ∈ F ,
∫
S(νh2�F (θ�g) + h1�F(θ�g)�h2�F(θ�

g)+εIk)dQ(g) is continuous at its 1 −α quantile, where {νh2�F (θ�g) :g ∈ G} is a
mean zero Gaussian process concentrated on the space of uniformlyρ-continuous
bounded Rk-valued functionals on G , that is, Uk

ρ (G), with covariance kernel
h2�F(θ�g�g

∗) for g�g∗ ∈ G .
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Assumption C is not very restrictive.
The exact and asymptotic confidence sizes of a subsampling CS are

ExCSn = inf
(θ�F)∈F

PF
(
Tn(θ)≤ cn�b(θ�1 − α)

)
and(13.30)

AsyCS = lim inf
n→∞

ExCSn�

The next assumption is used to establish AsyCS for subsampling CS’s. It is a
high-level condition that is difficult to verify and hence is not very satisfactory.

ASSUMPTION SUB: For some subsequence {vn :n ≥ 1} of {n} for which
{(θvn�Fvn) ∈ F :n≥ 1} satisfies limn→∞ PFvn (Tn(θvn)≤ cn�b(θvn�1 −α))= AsyCS
(such a subsequence always exists), there is a subsequence {mn} of {vn} such that
{(θmn�Fmn) ∈ F :n ≥ 1} belongs to Seqb, where Seqb is defined with mn in place
of n throughout.

Part (a) of the following theorem shows that subsampling CS’s have correct
asymptotic coverage probabilities under drifting sequences of parameters and
distributions.

THEOREM B6: Suppose Assumptions M, S1, S2, and SQ hold. Then, a nomi-
nal 1 − α subsampling confidence set based on Tn(θ) satisfies

(a) inf{(θn�Fn):n≥1}∈Seqb lim infn→∞ PFn(Tn(θn)≤ cn�b(θn�1 − α))≥ 1 − α,
(b) if Assumption C also holds, then

inf
{(θn�Fn):n≥1}∈Seqb

lim inf
n→∞

PFn
(
Tn(θn)≤ cn�b(θn�1 − α)

)= 1 − α�

and
(c) if Assumptions Sub and C also hold, then AsyCS = 1 − α.

COMMENT: Theorem B6(c) establishes that subsampling CS’s have correct
AsyCS provided Assumption Sub holds. The latter condition is difficult to ver-
ify. Hence, this result is not nearly as useful as the uniformity results given for
GMS and PA CS’s in Section 5.

14. SUPPLEMENTAL APPENDIX C

In this appendix, we prove all the results stated in the main paper except
for Theorems 1 and 2(a), which are proved in Supplemental Appendix A, and
Lemma A1, which is proved in Supplemental Appendix E. The proofs are given
in the following order: Lemma 2, Lemma 3, Theorem 2(b), Lemma 4, Theo-
rem 3, Theorem 4, and Lemma 1.
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14.1. Proofs of Lemmas 2 and 3 and Theorem 2(b)

PROOF OF LEMMA 2: We have θ /∈ΘF(G) implies that EFmj(Wi�θ)gj(Xi) <
0 for some j ≤ p or EFmj(Wi�θ)gj(Xi) �= 0 for some j = p+ 1� � � � �k. By the
law of iterated expectations and gj(x)≥ 0 for all x ∈Rdx and j ≤ p, this implies
that PF(Xi ∈ XF(θ)) > 0 and, hence, θ /∈ΘF .

On the other hand, θ /∈ ΘF implies that PF(Xi ∈ XF(θ)) > 0 and the latter
implies that θ /∈ΘF(G) by Assumption CI. Q.E.D.

The proof of Lemma 3 uses the following lemma, which is an existence and
uniqueness result. The proof of the lemma utilizes an extended measure result
from Billingsley (1995, Thm. 11.3), which delivers the existence part of the
lemma. The proof is given after the proof of Lemma 3.

LEMMA C1: Let R be a semiring of subsets of Rdx . Let μ be a bounded count-
ably additive set function on σ(R) such that μ(∅) = 0 and μ(C) ≥ 0 for all
C ∈ R ∪{Rdx}. IfRdx can be written as the union of a countable number of disjoint
sets in R, then μ is a measure on σ(R) (and hence μ(C)≥ 0 for all C ∈ σ(R)).59

PROOF OF LEMMA 3: First, we establish Assumption CI for G = Gbox with
r̄ = ∞. It suffices to show that

EF

(
mj(Wi�θ)gj(Xi)

)≥ 0 ∀g ∈ G(14.1)

⇒ EF

(
mj(Wi�θ)|Xi

)≥ 0 a.s. for j = 1� � � � �p and

EF

(
mj(Wi�θ)gj(Xi)

)= 0 ∀g ∈ G
⇒ EF

(
mj(Wi�θ)|Xi

)= 0 a.s. for j = p+ 1� � � � �k�

We use the following set function:

μj(C)= σ−1
F�j(θ)EFmj(Wi�θ)1(Xi ∈ C) for C ∈ σ(Cbox)= B

(
Rdx

)
�(14.2)

where σ(Cbox) denotes the σ-field generated by Cbox, B(Rdx) is the Borel σ-field
onRdx , and σ(Cbox)= B(Rdx) is a well-known result. First we show μj(R

dx)≥ 0.
Let IL = (−L�L]dx . Then, IL ∈ Cbox and μj(IL)≥ 0. We have

0 ≤ lim
L→∞

μj(IL)= lim
L→∞

σ−1
F�j(θ)EFmj(Wi�θ)1(Xi ∈ IL)(14.3)

= σ−1
F�j(θ)EFmj(Wi�θ)1

(
Xi ∈Rdx

)= μj

(
Rdx

)
�

59A class of subsets, R, of a universal set is called a semiring if (a) the empty set ∅ ∈ R;
(b) A�B ∈ R implies A ∩ B ∈ R; (c) if A�B ∈ R and A ⊂ B, then there exist disjoint sets
C1� � � � �CN ⊂ R such that B−A=⋃N

i=1Ci; see Billingsley (1995, p. 138).
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where the second equality holds by the dominated convergence theorem,
σ−1
F�j(θ)mj(w�θ)1(x ∈ IL)→ σ−1

F�j(θ)mj(w�θ)1(x ∈ Rdx) as L→ ∞, |σ−1
F�j(θ)×

mj(w�θ)1(x ∈ IL)| ≤ σ−1
F�j(θ)|mj(w�θ)| for all w, and σ−1

F�j(θ)EF |mj(Wi�θ)| <
∞.

Next, we treat the cases j ≤ p and j > p separately because different tech-
niques are employed. First, we consider j = 1� � � � �p. Suppose EFmj(Wi�θ)×
gj(Xi) ≥ 0 ∀g ∈ G . Then, μj(C) ≥ 0 ∀C ∈ Cbox. We want to show that
EFmj(Wi�θ)1(Xi ∈ C) ≥ 0 ∀C ∈ B(Rdx), because this implies that EF(mj(Wi�
θ)|Xi)≥ 0 a.s. since Xi is Borel measurable.

By Lemma C1, we have μj(C) ≥ 0 ∀C ∈ σ(Cbox) if (a) Cbox is a semiring of
subsets of Rdx , (b) μj is bounded, (c) μj is countably additive, (d) μj(∅) = 0,
(e) μj(R

dx)≥ 0, and (f) Rdx can be written as the union of a countable number
of disjoint sets in Cbox. It is a well-known result that (a) holds (provided ∅ is
added to Cbox). By condition (vi) in (2.3), (b) holds. Condition (c) holds by the
dominated convergence theorem. Because 1(Xi ∈ ∅)= 0, condition (d) holds.
By (14.3), condition (e) holds. Condition (f) holds because

Rdx =
⋃

{i1�i2�����ik}∈Nk

k×
j=1
(ij� ij + 1]�(14.4)

where N is the set of all natural numbers. Therefore, μj(C)≥ 0 ∀C ∈ σ(Cbox)=
B(Rdx), that is,

EFmj(Wi�θ)1(Xi ∈ C)≥ 0 ∀C ∈ B
(
Rdx

)
�(14.5)

Next, we consider j = p + 1� � � � �k. Suppose EFmj(Wi�θ)gj(Xi) = 0 ∀g ∈
Gbox. Then, μj(C) = 0 ∀C ∈ Cbox. We want to show that EFmj(Wi�θ)1(Xi ∈
C) = 0 ∀C ∈ B(Rdx), because this implies that EF(mj(Wi�θ)|Xi) = 0 a.s. be-
cause Xi is Borel measurable. To do so, we show that C0 = B(Rdx), where C0 ≡
{C ∈ B(Rdx) :μj(C) = 0}. It suffices to show B(Rdx) ⊂ C0. Because Cbox ⊂ C0

and σ(Cbox) = B(Rdx), it suffices to show that C0 is a σ-field. The set C0 is in-
deed a σ-field because (a) Rdx ∈ C0 by (14.3), (b) if C ∈ C0, then μj(C

c) =
μj(R

dx)− μj(C) = 0, that is, Cc ∈ C0, and (c) if C1�C2� � � � are disjoint sets in
C0, then μj(

⋃∞
i=1Ci)=∑∞

i=1μj(Ci)= 0 because μj is an additive set function,
that is,

⋃∞
i=1Ci ∈ C0. This completes the proof of Assumption CI for G = Gbox

with r̄ = ∞.
Assumption CI holds for G = Gbox with r̄ = ∞ implies that Assumption CI

holds for G = Gbox when r̄ ∈ (0�∞). The reason is that if some deviation is
captured by a big box, it also must be captured by some smaller box contained
in the big box (because a big box is a finite disjoint union of smaller boxes).

For G = Gc-cube, Assumption CI holds by the same argument as for Gbox but
with Cc-cube in place of Cbox provided (i) Cc-cube ∪ {φ} is a semiring of subsets of
[0�1]dx , (ii) [0�1]dx can be written as the union of a countable number of dis-
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joint sets in Cc-cube, and (iii) σ(Cc-cube)= B([0�1]dx). Condition (i) is straightfor-
ward to verify. Condition (ii) is verified by using

⋃2r
�=1((�− 1)/(2r)� �/(2r)] =

[0�1] (since the interval (0�1/(2r)] is defined specially to include 0) to con-
struct a finite number of dx-dimensional boxes whose union is [0�1]dx . Con-
dition (iii) holds because every element of Cbox can be written as a countable
union of sets in Cc-cube and σ(Cbox)= B([0�1]dx).

Finally, we establish Assumption M. For G = Gbox, Assumptions M(a) and
M(b) hold by taking G(x) = 1 ∀x and δ1 = 4/δ + 3. Assumption M(c) holds
because Cbox forms a Vapnik–Cervonenkis class of sets. Assumption M holds
for Gc-cube because Gc-cube ⊂ Gbox. Q.E.D.

PROOF OF LEMMA C1: Because (i) μ :σ(R) → R is a bounded countably
additive set function, (ii) μ(∅) = 0, and (iii) μ(C) ≥ 0 ∀C ∈ R, Billingsley’s
(1995) Theorem 11.3 implies that there exists a measure, μ∗, on σ(R) that
agrees with μ on R. We want to show that μ∗ agrees with μ on σ(R). That is,
we want to show that Ceq = σ(R), where

Ceq = {
C ∈ σ(R) :μ∗(C)= μ(C)

}
�(14.6)

It suffices to show that σ(R)⊆ Ceq because, by definition, σ(R)⊇ Ceq. We use
Dynkin’s π-λ theorem; for example, see Billingsley (1995, p. 33), to establish
this.

Because R is a semiring, R is a π-system. Now, we show that Ceq is a λ-
system. By definition, the set Ceq is a λ-system if (a) Rdx ∈ Ceq, (b) ∀C1�C2 ∈ Ceq

such that C1 ⊂ C2, C2 − C1 ∈ Ceq, and (c) ∀C1�C2� � � � ∈ Ceq such that Ci ↑ C,
C ∈ Ceq. We show (a), (b), and (c) in turn.

(a) By assumption, Rdx can be written as the union of countable disjoint R-
sets, say C1�C2� � � � ∈ R, where Rdx = ⋃n

i=1Ci. By countable additivity of both
μ and μ∗, we have

μ
(
Rdx

)=
∞∑
i=1

μ(Ci)=
∞∑
i=1

μ∗(Ci)= μ∗(Rdx
)
�(14.7)

where the second equality holds because C1�C2� � � � ∈ R and μ∗ agrees with μ
on R. Thus condition (a) holds.

(b) Suppose C1�C2 ∈ Ceq and C1 ⊂ C2; then C2 = (C2 −C1)∪C1. Thus,

μ(C2 −C1)= μ(C2)−μ(C1)= μ∗(C2)−μ∗(C1)= μ∗(C2 −C1)�(14.8)

where the first and the third equalities hold by the countable additivity of μ
and μ∗ and the second equality holds because C1�C2 ∈ Ceq. Thus, condition (b)
holds.

(c) Suppose C1�C2� � � � ∈ Ceq and Ci ↑ C; then C = C1 ∪(⋃∞
i=2(Ci−Ci−1)) and

C1�C2 −C1� � � � are mutually disjoint. By condition (b), Ci −Ci−1 ∈ Ceq for i≥ 2.
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Thus,

μ(C)= μ(C1)+
∞∑
i=2

μ(Ci −Ci−1)(14.9)

= μ∗(C1)+
∞∑
i=2

μ∗(Ci −Ci−1)= μ∗(C)�

That is, condition (c) holds.
Therefore, Ceq is a λ-system. Because R ⊂ Ceq by Dynkin’s π-λ theorem,

σ(R) ⊆ Ceq. In consequence, σ(R) = Ceq, that is, μ∗ agrees with μ on σ(R).
Because μ∗ is a measure on σ(R), μ must be a measure on σ(R). Q.E.D.

PROOF OF THEOREM 2(b): Consider the parameters (θc�Fc) that appear in
Assumption GMS2. First, we determine the asymptotic behavior of the critical
value c(ϕn(θc)� ĥn�2(θc)�1 − α) under (θc�Fc). We have

ξn(θc� g)= κ−1
n n

1/2D̄−1/2
n (θc� g)m̄n(θc� g)(14.10)

= D̄−1/2
n (θc� g)D

1/2
Fc
(θc)κ

−1
n

[
νn�Fc (θc� g)+ h1�n�Fc (θc� g)

]
= Diag−1/2(h̄2�n�Fc (θc� g)

)
κ−1
n

[
νn�Fc (θc� g)+ h1�n�Fc (θc� g)

]
�

Note that h̄2�n�Fc (θc� g) is a function of ĥ2�n�Fc (θc� g�g) by (5.2). Let

TGMS
n (θc)=

∫
S
(
νĥ2�n(θc)

(g)+ϕn(θc� g)� ĥ2�n(θc� g)+ εIk
)
dQ(g)�(14.11)

where {νh2(g) :g ∈ G} is defined as in (4.2) on the same probability space as
the observations and is independent of the observations, and νĥ2�n(θc)

(·) equals
νh2(·) evaluated at h2 = ĥ2�n(θc). Equations (4.10), (12.26), (14.10), and (14.11)
imply that the distribution of TGMS

n (θc) is determined by the joint distribution
of {νĥ2�n(θc)

(g) :g ∈ G}, {ĥ2�n�Fc (θc� g) :g ∈ G}, and {κ−1
n νn�Fc (θc� g) :g ∈ G}.

We have {(θc�Fc) :n ≥ 1} ∈ SubSeq(h2�Fc (θc)) because (θc�Fc) ∈ F . Hence,
by Lemma A1(b), d(ĥ2�n�Fc (θc)�h2�Fc (θc)) →p 0 as n → ∞. By the same ar-
gument as in (12.26), this yields d(ĥ2�n(θc)�h2�Fc (θc)) →p 0. The latter, the
independence of ĥ2�n�Fc (θc) and {νh2(·) :h2 ∈ H2}, and an almost sure rep-
resentation argument imply that the Gaussian processes {νĥ2�n(θc)

(·) :n ≥ 1}
converge weakly to νh2�Fc (θc)

(·) as n → ∞. The sequence of random pro-
cesses {ĥ2�n(θc� ·) :n≥ 1} converges in probability uniformly (and hence in dis-
tribution) to h2�Fc (θc� ·), where ĥ2�n(θc� g) = ĥ2�n(θc� g�g) and h2�Fc (θc� g) =
h2�Fc (θc� g�g). The sequence {κ−1

n νn�Fc (θc� ·) :n≥ 1} converges in probability to
zero uniformly over g ∈ G because κn → ∞ and {νn�Fn(θc� ·) :n≥ 1} converges
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to a Gaussian process with sample paths that are bounded a.s. Therefore, we
have ⎛⎜⎝ νĥ2�n(θc)

(·)
ĥ2�n(θc� ·)

κ−1
n νn�Fc (θc� ·)

⎞⎟⎠⇒
⎛⎝ νh2�Fc (θc)

(·)
h2�Fc (θc� ·)

0G

⎞⎠ as n→ ∞�(14.12)

where ĥ2�n(θc) that appears in νĥ2�n(θc)
(·) is a function on G × G whereas

ĥ2�n(θc� ·) is a function on G , likewise for νh2�Fc (θc)
(·) and h2�Fc (θc� ·), and 0G

denotes the Rk-valued function on G that is identically (0� � � � �0)′ ∈Rk.
By the almost sure representation theorem (see Pollard (1990, Thm. 9.4)),

there exist {(ν̃n(g)� h̃2�n(g), ν̃κ�n(g)) :g ∈ G� n ≥ 1} and {ν̃(g)� h̃2(g) :g ∈ G}
such that (i) {(ν̃n(g)� h̃2�n(g)� ν̃κ�n(g)) :g ∈ G} has the same distribution as
{(νĥ2�n(θc)

(g), ĥ2�n(θc� g), κ−1
n νn�Fc (θc� g)) :g ∈ G} for all n ≥ 1, (ii) {(ν̃(g)�

h̃2(g)) :g ∈ G} has the same distribution as {(νh2�Fc (θc)
(g)�h2�Fc (θc� g) :g ∈ G}�

and

(iii) sup
g∈G

∥∥∥∥∥∥
⎛⎝ ν̃n(g)

h̃2�n(g)
ν̃κ�n(g)

⎞⎠−
⎛⎝ ν̃(g)

h̃2(g)
0

⎞⎠∥∥∥∥∥∥→ 0 a.s.(14.13)

Let

T̃GMS
n =

∫
S
(
ν̃n(g)+ ϕ̃n(g)� h̃2�n(g)+ εIk

)
dQ(g)�(14.14)

where ϕ̃n(g) is defined just as ϕn(θ�g) is defined in (4.10) but with h̃2�n�j(g)+
εh̃2�n�j(1k) in place of h̄2�n�Fn�j(θ�g), where h̃2�n�j(g) denotes the (j� j) element
of h̃2�n(g), and ξ̃n(g) in place of ξn(θ�g), where

ξ̃n(g)= Diag
(
h̃2�n(g)+ εh̃2�n(1k)

)−1/2(
κ−1
n ν̃κ�n(g)+ κ−1

n h1�n�Fc (θc� g)
)
�(14.15)

Then, T̃GMS
n and TGMS

n (θc) have the same distribution for all n≥ 1 and the same
asymptotic distribution as n→ ∞. Let c̃n(1 −α) denote the 1 −α+η quantile
of T̃GMS

n plus η, where η is as in the definition of c(h�1 − α). Then, c̃n(1 − α)

has the same distribution as c(ϕn(θc)� ĥ2�n(θc)�1 − α) for all n≥ 1.
Let Ω̃∗ be the collection of ω ∈Ω such that, at ω, ν̃(g)(ω) is bounded and

the convergence in (14.13) holds. By (14.13) and the fact that the sample paths
of {ν̃(g) :g ∈ G} are bounded a.s., we have PFc(Ω̃∗)= 1.

Under (θc�Fc) for all n≥ 1,

κ−1
n h1�n�Fc (θc� g)= κ−1

n n
1/2D−1/2

Fc
(θc)EFcm(Wi�θc� g)→ h1�∞�Fc (θc� g)(14.16)
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as n→ ∞, using Assumption GMS2(c). Thus, for fixed ω ∈ Ω̃∗,

ξ̃n(g)(ω) = Diag−1/2(h̃2(g)+ εh̃2(1k)+ o(1)
)

(14.17)

× (
o(1)+ κ−1

n h1�n�Fc (θc� g)
)

→ h1�∞�Fc (θc� g)�

as n → ∞ for all g ∈ G , where h̃2�j(g) denotes the (j� j) element of h̃2(g),
using (14.13), h̃2(1k) = Ik (which holds by (5.1) and Definition SubSeq(h2)),
h̃2�j(g)≥ 0, ε > 0.

By (14.17), Assumption GMS1(a), Bn → ∞ as n → ∞ (by Assump-
tion GMS2(b)), and the fact that h1�∞�Fc (θc� g) equals either 0 or ∞ by def-
inition, we have

ϕ̃n(g)(ω)→ h1�∞�Fc (θc� g) as n→ ∞(14.18)

for all ω ∈ Ω̃∗.
By (14.13), (14.15), (14.18), and Assumption S1(d), we have

S
(
ν̃n(g)+ ϕ̃n(g)� h̃

∗
2�n(g)+ εIk

)
(ω)(14.19)

→ S
(
ν̃(g)+ h1�∞�Fc (θc� g)�h2�Fc (θc� g)+ εIk

)
(ω)

as n→ ∞ ∀ω ∈ Ω̃∗�∀g ∈ G . Now, by the argument given from (12.14) to the
end of the proof of Theorem 1, the quantity on the left-hand side of (14.19)
is bounded by a finite constant. This, (14.19), and the bounded convergence
theorem give

T̃GMS
n → T̃GMS =

∫
S
(
ν̃(g)+ h1�∞�Fc (θc� g)�h2�Fc (θc� g)+ εIk

)
dQ(g)(14.20)

as n→ ∞ a.s.
By (14.20),

P
(
T̃GMS
n ≤ x

)→ P
(
T̃GMS ≤ x

)
as n→ ∞(14.21)

for all continuity points x of the distribution of T̃GMS. Let c̃0(1 −α) denote the
1 − α quantile of T̃GMS. Let c̃(1 − α)= c̃0(1 − α+η)+η, where η is as in the
definition of c(h�1−α). By Assumption GMS2(a), the distribution function of
T̃GMS, which equals that of T(h∞�Fc (θc)), is continuous and strictly increasing
at x = c̃(1 − α). Using Lemma 5 of Andrews and Guggenberger (2010), this
gives

c̃n(1 − α)→p c̃(1 − α) and(14.22)

c
(
ϕn(θc)� ĥ2�n(θc)�1 − α

)→p c̃(1 − α)�
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where the second convergence result holds because c̃n(1 − α) and c(ϕn(θc)�
ĥ2�n(θc), 1 − α) have the same distribution.

Next, by the same argument as used above to show (14.20), but with
νĥ2�n(θc)

(g) and ϕn(θc� g) replaced by νn�Fc (θc� g) and h1�n�Fc (θc� g), respectively,
we have

Tn(θc)→d T
(
h∞�Fc (θc)

)
(14.23)

=
∫
S
(
νh2�Fc (θc)

(g)+ h1�∞�Fc (θc� g)�

h2�Fc (θc� g)+ εIk
)
dQ(g)�

where h∞�Fc (θc)= (h1�∞�Fc (θc)�h2�Fc (θc)), h1�n�Fc (θc)→ h1�∞�Fc (θc) by straight-
forward calculations, and νn�Fc (θc� ·)⇒ νh2�Fc (θc)

(·) by Lemma A1(a). Note that
T(h∞�Fc (θc)) and T̃GMS have the same distribution because νh2�Fc (θc)

(·) and ν̃(·)
have the same distribution. Thus, c̃(1−α) (= c̃0(1−α+η)+η) is the 1−α+η
quantile of T(h∞�Fc (θc)) plus η.

By (14.22), (14.23), Assumption GMS2(a), and Lemma 5 of Andrews and
Guggenberger (2010), for η> 0, we have

lim
n→∞

PFc
(
Tn(θc) ≤ c

(
ϕn(θc)� ĥ2�n(θc)�1 − α

))
(14.24)

= P
(
T
(
h∞�Fc (θc)

)≤ c̃0(1 − α+η)+η
)
�

The limit as η → 0 of the right-hand side equals 1 − α because distribution
functions are right-continuous and the distribution function of T(h∞�Fc (θc)) at
its 1 − α quantile equals 1 − α by Assumption GMS2(a).

Combining (14.24) and the result of Theorem 2(a), which holds for all
η > 0 and hence holds when the limit as η→ 0 is taken, gives Theorem 2(b).

Q.E.D.

14.2. Proofs of Results for Fixed Alternatives

PROOF OF LEMMA 4: First, we prove part (a). It holds immediately that
Supp(Qa) = Gc-cube because Gc-cube is countable and Qa has a probability mass
function that is positive at each element in Gc-cube.

Next, for part (b), consider g = gx�r ∈ Gbox, where gx�r(y) = 1(y ∈ Cx�r) · 1k
and (x� r) ∈ [0�1]dx × (0� r̄)dx . Let δ > 0 be given. The idea of the proof is to
find a set Gg�η̄ ⊂ BρX (g�δ) (⊂ Gbox) such that Qb(Gg�η̄) > 0. This implies that
Qb(BρX (g�δ)) > 0, which is the desired result.

The set Gg�η̄ needs to be defined differently (for reasons stated below)
depending on whether xu < 1 or xu = 1, for u = 1� � � � � dx, where x =
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(x1� � � � � xdx)
′. For η̄ > 0� define

Gg�η̄ = {
gx+η0�r+η1 : (η0�η1) ∈Ξg�η̄

}
� where(14.25)

Ξg�η̄ = {
(η0�η1) ∈R2dx : for u= 1� � � � � dx�

if xu < 1�η0�u ∈ [η̄�2η̄] & η1�u ∈ [0� η̄] and

for xu = 1�η0�u ∈ [−η̄�0] & η1�u ∈ [−2η̄�−η̄]}�
We have Qb(Gg�η̄)=Q∗

b((x� r)+Ξg�η̄) > 0 for all η̄ > 0 because Q∗
b is the uni-

form distribution on [0�1]dx × (0� r̄)dx .
Next, we show that Gg�η̄ ⊂ BρX (g�δ). Let U(xu<1) ⊂ {1� � � � � dx} be the set of

indices u such that xu < 1 and let U(xu=1) ⊂ {1� � � � � dx} be the set of indices u
such that xu = 1. Let gx+η0�r+η1 ∈Gg�η̄. The uth lower endpoints of the Cx�r and
Cx+η0�r+η1 boxes are xu − ru and xu +η0�u − (ru +η1�u), respectively. The lower
endpoint of the Cx+η0�r+η1 box is larger than that of the Cx�r box because η0�u −
η1�u ∈ [0�2η̄] (whether u ∈U(xu<1) or u ∈U(xu=1)). The uth upper endpoints of
the Cx�r and Cx+η0�r+η1 boxes are xu+ ru and xu+η0�u+ ru+η1�u, respectively. If
u ∈Uxu<1, the upper endpoint of the Cx+η0�r+η1 box is larger than that of the Cx�r

box because η0�u + η1�u ∈ [0�3η̄]. If u ∈U(xu=1), the uth upper endpoint of the
Cx+η0�r+η1 box is smaller than that of the Cx�r box because η0�u+η1�u ∈ [−3η̄�0].

Using the results of the previous paragraph, we have

ρ2
X(gx�r� gx+η0�r+η1)(14.26)

=EFX�0

[
1(Xi ∈Cx�r)− 1(Xi ∈ Cx+η0�r+η1)

]2

≤
dx∑
u=1

PFX�0
(
Xi�u ∈ (xu − ru�xu +η0�u − (ru +η1�u)

])
+

∑
u∈U(xu<1)

PFX�0
(
Xi�u ∈ (xu + ru�xu +η0�u + ru +η1�u]

)
+

∑
u∈U(xu=1)

PFX�0
(
Xi�u ∈ (1 +η0�u + ru +η1�u�1 + ru] ∩ [0�1])

≤
dx∑
u=1

PFX�0
(
Xi�u ∈ (xu − ru�xu − ru + 2η̄])

+
∑

u∈U(xu<1)

PFX�0
(
Xi�u ∈ (xu + ru�xu + ru + 3η̄])

+
∑

u∈U(xu=1)

PFX�0
(
Xi�u ∈ (1 + ru − 3η̄�1 + ru] ∩ [0�1])�
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where the first inequality uses the dx-dimensional extension of the one-
dimensional result that (a�b] (c�d] ⊂ (a� c] ∪ (b�d] when a ≤ c and b ≤ d,
where  denotes the symmetric difference of two sets.

The first and second summands on the right-hand side (r.h.s.) of (14.26)
tend to zero as η̄ ↓ 0 by the right-continuity of distribution functions. The third
summand on the r.h.s. equals zero when η̄ is sufficiently small (i.e., when 3η̄ <
minu≤dx ru). Therefore, for η̄ > 0 sufficiently small, ρ2

X(gx�r� gx+η0�r+η1) < δ and
Gg�η̄ ⊂ BρX (g�δ). This completes the proof of part (b).

Note that, in the proof of part (b), we cannot treat the case where u ∈U(xu=1)

in the same way that we treat the case for u ∈U(xu<1) because, for u ∈U(xu<1),
we use the center point xu + η0�u > xu, which is not in [0�1] if xu = 1 and
hence violates the assumption of part (b) that the centers of the Gbox boxes lie
in [0�1]dx . Conversely, we cannot treat the case where u ∈ U(xu<1) in the same
way that we treat the case for u ∈U(xu=1) because doing so would lead to a term
PFX�0(Xi�u ∈ (1 + ru − 3η̄�1 + ru]) in (14.26) that does not go to zero as η̄ ↓ 0 if
Xi�u has positive probability of equaling 1 + ru. Q.E.D.

PROOF OF THEOREM 3: Part (a) follows from part (b) because

c
(
ϕn(θ∗)� ĥ2�n(θ∗)�1 − α

)≤ c
(
0G� ĥ2�n(θ∗)�1 − α

)
�(14.27)

which holds because ϕn(θ∗� g) ≥ 0k ∀g ∈ G by Assumption GMS1(a), c(h1�

ĥ2�n(θ∗)�1 − α) is non-increasing in the first p elements of h1 by Assump-
tion S1(b), and the last v elements of ϕn(θ∗� g) equal zero.

Now we prove part (b). By Assumptions FA(a) and CI, β(g0) > 0 for some
g0 ∈ G . By construction, ej =m∗

j (g0)/β(g0) ∈ [−1�∞) for j = 1� � � � �k and ej =
−1 for some j ≤ p or |ej| = 1 for some j = p + 1� � � � �k. As defined above,
BρX (g0� τ2) denotes a ρX-ball centered at g0 with radius τ2 > 0, where ρX is
defined in (6.3). First we show that, for some τ2 > 0,∫

BρX
(g0�τ2)

S
(
m∗(g)/β(g0)�h2�0(g)+ εIk

)
dQ(g) > 0�(14.28)

where m∗(g) = (m∗
1(g)� � � � �m

∗
k(g))

′ and h2�0(g) = h2�F0(θ∗� g). We have: for
j = 1� � � � �k,∣∣m∗

j (g)−m∗
j (g0)

∣∣(14.29)

= ∣∣EF0mj(Wi�θ∗)gj(Xi)−EF0mj(Wi�θ∗)g0�j(Xi)
∣∣/σF0�j(θ∗)

≤ (
EF0m

2
j (Wi� θ∗)

)1/2(
EF0

(
gj(Xi)− g0�j(Xi)

)2)1/2
/σF0�j(θ∗)

≤ (
EF0

∥∥m(Wi�θ∗)
∥∥2)1/2

ρX(g�g0)/σF0�j(θ∗)�

where g0�j(Xi) denotes the jth element of g0(Xi).
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Given τ1 ∈ (0�1), let

τ2 = τ1β(g0)σF0�j(θ∗)/
(
EF0

∥∥m(Wi�θ∗)
∥∥2)1/2

�(14.30)

By (14.29), for all g ∈ BρX (g0� τ2),∣∣m∗
j (g)−m∗

j (g0)
∣∣≤ τ1β(g0) for all j = 1� � � � �k�(14.31)

Hence, for all g ∈ BρX (g0� τ2), there exists j ≤ k such that either

j ≤ p and m∗
j (g)/β(g0)≤m∗

j (g0)/β(g0)+ τ1 = −1 + τ1 < 0 or(14.32)

j ∈ {p+ 1� � � � �k} and∣∣m∗
j (g)/β(g0)

∣∣≥ ∣∣m∗
j (g0)/β(g0)

∣∣− τ1 = 1 − τ1 > 0�

using the triangle inequality.
By (14.32) and Assumption S3, S(m∗(g)/β(g0)�h2�0(g) + εIk) > 0 for all

g ∈ BρX (g0� τ2). In addition, by Assumption Q, Q(BρX (g0� τ2)) > 0. These
properties combine to give (14.28).

We use (14.28) in the following: for all δ > 0,(
n1/2β(g0)

)−χ
Tn(θ∗)(14.33)

= (
n1/2β(g0)

)−χ
×
∫

G
S
(
νn�F0(θ∗� g)+ h1�n�F0(θ∗� g)� h̄2�n�F0(θ∗� g)

)
dQ(g)

≥ (
n1/2β(g0)

)−χ
×
∫

BρX
(g0�τ2)

S
(
νn�F0(θ∗� g)+ h1�n�F0(θ∗� g)� h̄2�n�F0(θ∗� g)

)
dQ(g)

=
∫

BρX
(g0�τ2)

S
((
n1/2β(g0)

)−1
νn�F0(θ∗� g)

+m∗(g)/β(g0)� h̄2�n�F0(θ∗� g)
)
dQ(g)

→p

∫
BρX

(g0�τ2)

S
(
m∗(g)/β(g0)�h2�0(g)+ εIk

)
dQ(g)

> 0�

where χ is as in Assumption S4, the first equality holds by (5.4), the first in-
equality holds by Assumption S1(c), the second equality holds by Assump-
tion S4 and the definition of m∗

j (g) in (6.2), the last inequality holds by (14.28),
and the convergence holds by the argument given in the following paragraph.
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By Lemma A1(a) and the continuous mapping theorem, supg∈G ‖νn�F0(θ∗�
g)‖ = Op(1). (Note that Lemma A1 applies for (θan�Fan) = (θ∗�F0) /∈ F
for all n ≥ 1 because Assumptions FA(b)–(d) imply conditions (ii)–(v) in
the definition of SubSeq(h2�F0(θ∗)).) Also, (n1/2β(g0))

−1 = o(1), because
Assumptions FA and CI imply that β(g0) > 0 for some g0 ∈ G . Hence,
(i) (n1/2β(g0))

−1νn�F0(θ∗� ·) ⇒ 0G . In addition, (ii) supg∈G ‖h̄2�n�F0(θ∗� g) −
h2�0(g)− εIk‖ →p 0, where h2�0(g)= h2�F0(θ∗� g�g), by Lemma A1(b), (12.26),
and the definition of h̄2�n�F(θ�g). As in previous proofs, by the almost sure
representation theorem, there exist a probability space and random quanti-
ties defined on it with the same distributions as (n1/2β(g0))

−1νn�F0(θ∗� ·) and
h̄2�n�F0(θ∗� ·) for n ≥ 1, such that the convergence in (i) and (ii) holds al-
most surely for these random quantities. Furthermore, using Assumptions
S1(b) and S1(e), the integrand in the last equality in (14.33) is bounded
by supg∈Bcl

ρX
(g0�τ2)�ν∈Rk:‖ν‖≤δ∗ S(ν + m∗(g)/β(g0)� (ε − δ∗∗)Ik) < ∞ for all g ∈

BρX (g0� τ2), for some δ∗� δ∗∗ > 0, for n sufficiently large, where Bcl
ρX
(g0� τ2)

denotes the closure of BρX (g0� τ2), because a continuous function on a com-
pact set attains its supremum using Assumption S1(d) and using an argument
analogous to that in (12.14) to treat the second argument of the function S.
Thus, by the bounded convergence theorem, the convergence in (14.33) holds
a.s. for the newly constructed random quantities. In consequence, it holds in
probability for the original random quantities by the equality in distribution
of the original and newly constructed random quantities. This completes the
proof of the convergence in (14.33).

Next, we show that, under F0,

c
(
0G� ĥ2�n(θ∗)�1 − α

)=Op(1)�(14.34)

This and (14.33) give

PF0

(
Tn(θ∗) > c

(
0G� ĥ2�n(θ∗)�1 − α

))
(14.35)

= PF0

((
n1/2β(g0)

)−χ
Tn(θ∗)

>
(
n1/2β(g0)

)−χ
c
(
0G� ĥ2�n(θ∗)�1 − α

))
≥ PF0

(∫
BρX

(g0�τ2)

S
(
m∗(g)/β(g0)�h2�0(g)+ εIk

)
dQ(g)+ op(1)

> op(1)
)

→ 1

as n→ ∞, which establishes the result of the theorem.
It remains to show (14.34). Lemma A5, applied with h2�n = h2�0, {h∗

2�n :n≥ 1}
being any sequence of k× k-matrix-valued covariance kernels on G × G such
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that d(h∗
2�n�h2�0)→ 0, h1 = 0G , η as in the definition of c(h�1 − α), α replaced

by α−η> 0, and η1 = δ, gives: ∀δ > 0,

lim inf
n→∞

[
c0(0G�h2�0�1 − α+η+ δ)(14.36)

+ δ− c0

(
0G�h

∗
2�n�1 − α+η

)]≥ 0 and hence

lim sup
n→∞

c0

(
0G�h

∗
2�n�1 − α+η

)≤ c0(0G�h2�0�1 − α+η+ δ)+ δ <∞�

By Lemma A1(b) and (12.26), we obtain d(ĥ2�n(θ∗)�h2�0) →p 0. As in previ-
ous proofs, by the almost sure representation theorem, there exist a proba-
bility space and random quantities h̃2�n(·� ·) defined on it with the same dis-
tributions as ĥ2�n(θ∗� ·� ·) for n ≥ 1 such that d(h̃2�n�h2�0) → 0 a.s. This and
(14.36) give lim supn→∞ c0(0G� h̃2�n�1 − α+ η) <∞ a.s., which implies (14.34)
because h̃2�n(·� ·) and ĥ2�n(θ∗� ·� ·) have the same distribution for all n ≥ 1 and
c(0G� ĥ2�n(θ∗)�1 − α)= c0(0G� ĥ2�n(θ∗)�1 − α+η)+η. Q.E.D.

14.3. Proofs of Results for n−1/2-Local Alternatives

PROOF OF THEOREM 4: The proof of part (a) uses the following. By
element-by-element mean-value expansions about θn and Assumptions
LA1(a), LA1(b), and LA2,

D−1/2
Fn

(θn�∗)EFnm(Wi�θn�∗� g)(14.37)

=D−1/2
Fn

(θn)EFnm(Wi�θn� g)+ΠFn(θn�g� g)(θn�∗ − θn)� and so

n1/2D−1/2
Fn

(θn�∗)EFnm(Wi�θn�∗� g)→ h1(g)+Π0(g)λ�

where θn�g may differ across rows of ΠFn(θn�g� g), θn�g lies between θn�∗ and
θn, θn�g → θ0, ΠFn(θn�g� g)→Π0(g), and by definition h1(g)+Π0(g)λ= ∞ if
h1(g)= ∞.

Now, the proof of part (a) is the same as the proof of Theorem 2(b) with the
following changes: (i) (θn�∗�Fn) appears in place of (θc�Fc) whenever (θc�Fc)
is used in an expression with n finite, (ii) (θ0�F0) appears in place of (θc�Fc)
whenever (θc�Fc) is used in an asymptotic expression, (iii) {(θn�∗�Fn) :n ≥ 1}
satisfies the conditions to be in SubSeq(h2) (where h2 = h2�F0(θ0)) by Assump-
tions LA1(a) and LA1(c)–(e) and because {Wi : i ≥ 1} are i.i.d. under Fn and
Assumption M holds given that (θn�Fn) ∈ F by Assumption LA1, (iv) (14.16)
is replaced by

κ−1
n D̄

−1/2
Fn

(θn�∗� g)D
1/2
Fn
(θn�∗)h1�n�Fn(θn�∗� g)→ π1(g) as n→ ∞�(14.38)
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which holds by Assumption LA4, (14.37) (because κ−1
n n

1/2ΠFn(θn�g� g)(θn�∗ −
θn) → 0), and D̄−1/2

Fn
(θn�∗� g)D̄

1/2
Fn
(θn� g) → Ik (using Assumption LA1(c)),

(v) π1(g) appears in place of h1�∞�Fc (θc� g) in (14.17), (vi) ϕ(π1(g)) appears in
place of h1�∞�Fc (θc� g) in (14.18)–(14.20), where (14.18) holds for all g ∈ Gϕ by
Assumption LA5(a) and (14.19) holds for all g ∈ Gϕ, (vii) Assumption LA5(b)
is used in place of Assumption GMS2(a) in two places, (viii) (h1 +Π0λ�h2) and
h1(g) appear in place of h∞�Fc (θc) and h1�∞�Fc (θc), respectively, in (14.23) and
(14.24), and (ix) (14.23) holds using (14.37) in place of h1�n�Fc (θc)→ h1�∞�Fc (θc)
and using νn�Fn(θn�∗� ·) ⇒ νh2(·) in place of νn�Fc (θc� ·) ⇒ νh2�Fc (θc)

(·). The re-
sult νn�Fn(θn�∗� ·)⇒ νh2(·) holds by Lemma A1(a) because {(θn�∗�Fn) :n ≥ 1} ∈
SubSeq(h2) by the argument given in (iii) above. The desired result is given by
(14.24) with the changes indicated above. This completes the proof of part (a).

Part (b) holds by the same argument as for part (a) but with ϕn(θn�∗� g) re-
placed by 0, which simplifies the argument considerably. Assumption LA6 is
used in place of Assumption LA5(b) in the proof.

Part (c) holds by the following argument:

β−χT(h1 +Π0λ0β�h2)(14.39)

= β−χ
∫
S
(
νh2(g)+ h1(g)+Π0(g)λ0β�h2(g)+ εIk

)
dQ(g)

=
∫
S
(
νh2(g)/β+ h1(g)/β+Π0(g)λ0�h2(g)+ εIk

)
dQ(g)

→
∫
S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g) > 0

as β→ ∞ a.s., where χ is as in Assumption S4, the second equality holds by
Assumption S4, the convergence holds a.s. (with respect to the randomness in
νh2 ) by the bounded convergence theorem applied for each fixed sample pathω
because ‖νh2(g)‖ has bounded sample paths a.s., and using Assumption LA3′

(which guarantees that h1�j(g) < ∞ and hence h1�j(g)/β → 0 as β → ∞ for
all j ≤ p, for all g in a set with Q measure 1), and the inequality holds by
Assumptions LA3′ and S3.

Equation (14.39) implies that T(h1 +Π0λ0β�h2)→ ∞ a.s. as β→ ∞. Be-
cause T(h1 + Π0λ0β�h2) ∼ Jh�βλ0 and the quantities c(ϕ(π1)�h2�1 − α) and
c(0G�h2�1 − α) do not depend on β, the result of part (c) follows. Q.E.D.

14.4. Proofs Concerning the Verification of Assumptions S1–S4

PROOF OF LEMMA 1: Assumptions S1(a)–(d) and S3 hold for the functions
S1, S2, and S3 by Lemma 1 of Andrews and Guggenberger (2009). Assumptions
S1(e) and S4 hold immediately for the functions S1, S2, and S3 with χ = 2 in
Assumption S4.
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To verify Assumption S2 for S = S1, S2, or S3, it suffices to show that

lim sup
n→∞

∣∣S(mn +μn�Σn)− S(m0 +μn�Σ0)
∣∣= 0(14.40)

for all sequences {μn ∈ [0�∞)p × {0}v :n ≥ 1} and {(mn�Σn) :n ≥ 1} such that
(mn�Σn)→ (m0�Σ0), m0 ∈Rk, and Σ0 ∈ W .

For clarity of the proof, we consider a simple case first. We consider the
function S1 and suppose Σn = Σ0. In this case, without loss of generality, we can
assume that Σ0 = Ik. Given that S1 is additive, it suffices to consider the cases
where (p�v)= (1�0) and (0�1). It is easy to see that Assumption S2 holds in
the latter case because μn does not appear. For the case where (p�v)= (1�0),
we have ∣∣S1(mn +μn� Ik)− S1(m0 +μn� Ik)

∣∣(14.41)

= ∣∣([mn +μn]2
− − [m0 +μn]2

−
)∣∣

≤ ∣∣[mn +μn]− − [m0 +μn]−
∣∣([mn +μn]− + [m0 +μn]−

)
≤ |mn −m0|

(|mn| + |m0|
)

= o(1)O(1)�

where the second inequality holds because |[a]− − [b]−| ≤ |a− b| and by As-
sumption S1(b). This completes the verification of Assumption S2 for the sim-
ple case.

Next, we verify Assumption S2 for S = S2. For any sequence {μn ∈ [0�∞)p ×
{0}v :n≥ 1}, there exists a subsequence {un :n≥ 1} of {n} such that

lim
n→∞

∣∣S2(mun +μun�Σun)− S2(m0 +μun�Σ0)
∣∣(14.42)

= lim sup
n→∞

∣∣S2(mn +μn�Σn)− S2(m0 +μn�Σ0)
∣∣�

Let {t1�un� t0�un ∈ [0�∞)p × {0}v :n≥ 1} be sequences such that

(mun +μun − t1�un)
′Σ−1

un
(mun +μun − t1�un)(14.43)

≤ S2(mun +μun�Σun)+ 2−un and

(m0 +μun − t0�un)
′Σ−1

0 (m0 +μun − t0�un)≤ S2(m0 +μun�Σ0)+ 2−un �

Then,

lim
n→∞

[
S2(mun +μun�Σun)− S2(m0 +μun�Σ0)

]
(14.44)

= lim
n→∞

[
(mun +μun − t1�un)

′Σ−1
un
(mun +μun − t1�un)
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− S2(m0 +μun�Σ0)
]

≥ lim
n→∞

[
(mun +μun − t1�un)

′Σ−1
un
(mun +μun − t1�un)

− (m0 +μun − t1�un)
′Σ−1

0 (m0 +μun − t1�un)
]

= lim
n→∞

[
(mun +μun − t1�un)

′(Σ−1
un

−Σ−1
0

)
(mun +μun − t1�un)

+ (mun −m0)
′Σ−1

0 (m0 +mun + 2μun − 2t1�un)
]

= 0�

where the last equality holds if μun − t1�un =O(1) because mun →m0 <∞ and
Σ−1
un

→ Σ−1
0 as n→ ∞.

We now show that μun − t1�un =O(1). We have

m′
un
Σ−1
un
mun ≥ S2(mun +μun�Σun)(14.45)

≥ (mun +μun − t1�un)
′Σ−1

un
(mun +μun − t1�un)− 2−un �

Thus,

lim
n→∞

(mun +μun − t1�un)
′Σ−1

un
(mun +μun − t1�un)(14.46)

≤ lim
n→∞

[
m′

un
Σ−1
un
mun + 2−un]=m′

0Σ
−1
0 m0 <∞�

which implies thatmun +μun − t1�un =O(1). The latter andmun →m0 <∞ give

μun − t1�un =O(1)�(14.47)

Next, by an analogous argument to (14.44) with ≥ and t1�un replaced by ≤
and t0�un , respectively, we obtain the following upper bound:

lim
n→∞

[
S(mun +μun�Σun)− S(m0 +μun�Σ0)

]
(14.48)

= lim
n→∞

[
S(mun +μun�Σun)

− (m0 +μun − t0�n)
′Σ−1

0 (m0 +μun − t0�un)
]

≤ 0�

where the inequality uses μun − t0�un = O(1), which holds by an analogous ar-
gument to that given for (14.47). Equations (14.44) and (14.48) imply that the
left-hand side of (14.42) equals zero, which completes the verification of As-
sumption S2 for S2.

The verification of Assumption S2 for S = S1, where Σn need not equal Σ0,
is obtained by replacing Σn and Σ0 in the proof above for S2 by Diag{Σn} and
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Diag{Σ0}, respectively, because S1(m�Σ) = S2(m�Σ) when Σ is diagonal. As-
sumption S2 holds for the function S3 when (p�v)= (1�0) and (0�1) because
S3 = S1 = S2 in these cases. It holds for S3 in the general (p�v) case because it
holds in these two special cases. Q.E.D.

15. SUPPLEMENTAL APPENDIX D

In this appendix, we provide proofs of the results stated in Supplemental
Appendix B. The first subsection gives proofs for the Kolmogorov–Smirnov
and approximate CvM tests and CS’s. The second subsection gives proofs for
results concerning GB-spline and Gc/d . The third subsection gives proofs for results
concerning “asymptotic issues with the Kolmogorov–Smirnov statistic.” The
fourth subsection gives proofs for the subsampling results.

15.1. Proofs of Kolmogorov–Smirnov and Approximate
Cramér–von Mises Results

PROOF OF LEMMA B1: To verify Assumption S2′ for S1, S2, and S3, it suffices
to show that

lim sup
n→∞

∣∣S(mn +μn�Σn)− S(mn�0 +μn�Σn�0)
∣∣= 0(15.1)

for all sequences {μn ∈ [0�∞)p × {0}v :n ≥ 1}, {(mn�Σn) ∈ M × W bd :n ≥ 1},
and {(mn�0�Σn�0) ∈ M × W bd :n ≥ 1} for which (mn�Σn)− (mn�0�Σn�0)→ 0 as
n→ ∞.

The verification of (15.1) is an extension of the verification of (14.40) in the
proof of Lemma 1. The extension consists of (i) replacing m0 and Σ0 by mun�0

andΣun�0 throughout (14.42)–(14.48), (ii) making use of the fact thatmun ,mun�0,
and Σ−1

un
are bounded by the definitions of M and Wbd, and (iii) making use

of the fact that Σ−1
un

− Σ−1
un�0 → 0 given that Σun − Σun�0 → 0 and Σun�Σun�0 ∈

Wbd. Q.E.D.

PROOF OF THEOREM B1: When Tn(θ) is the KS statistic and when Tn(θ) is
replaced by the approximate statistic T̄n�sn(θ), the results of Theorem 1 hold
under the assumptions of that theorem plus Assumption S2′. The proof of
Theorem 1 goes through with the following changes: (i) the statistics T̃an and
T̃an�0 are changed from integrals with respect to Q to suprema over g ∈ Gn

or weighted averages over {g1� � � � � gsn} with weights {wQ�n(�) :� = 1� � � � � sn},
(ii) in the proof of (12.7), (12.10) holds uniformly over g ∈ G because Assump-
tion S2 has been strengthened to Assumption S2′, and (iii) (12.11) holds with
the supremum over g ∈ Gn added or with the average over {g1� � � � � gsn} added,
because (12.10) holds uniformly over g ∈ G and the weights are nonnegative
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and sum to at most 1 by Assumption A2. This completes the proof of Theo-
rem 1 for the KS and A-CvM test statistics.

The result of Theorem B1 is the same as that of Theorem 2(a). The proof
of Theorem 2(a) follows immediately from Lemmas A2–A4. The proof of
Lemma A4 uses Lemma A5. The proofs of Lemmas A2–A5 go through for
the KS and A-CvM test statistics with the following minor changes: (i) in the
proof of Lemma A2, T(h) is replaced by T̄sn(h) (defined in (4.6)) and the
new version of Theorem 1 for the KS and A-CvM statistics is employed, (ii) in
the proof of Lemma A3, the form of the test statistic only enters through the
first inequality of (12.23), which holds for the supremum and weighted aver-
age forms of the test statistic, (iii) in the proof of Lemma A4, no changes are
required because the form of the test statistic only enters through Lemma A5,
and (iv) in the proof of Lemma A5, T(h) is replaced by T̄sn(h). Q.E.D.

PROOF OF THEOREM B2: Theorem B2 is proved by adjusting the proof The-
orem 3. The proof of Theorem 3 goes through up to (14.32) with the only
change being that c(·� ·� ·) is replaced by csn(·� ·� ·) for A-CvM tests in (14.27)—
in particular, the integral with respect to Q in (14.28) is not changed. Equa-
tion (14.33) needs to be replaced (see (15.2) and (15.6) below); (14.34) is es-
tablished with c(·� ·� ·) replaced by csn(·� ·� ·) for A-CvM tests; (14.35) holds,
with Tn(θ∗) and c(·� ·� ·) replaced by T̄n�sn(θ∗) and csn(·� ·� ·) for A-CvM tests,
using the replacements for (14.33) given in (15.2) and (15.6) below; the first
equation in (14.36) holds by Lemma A5 with c(·� ·� ·) replaced by csn(·� ·� ·)
for A-CvM tests, noting that Lemma A5 is extended to KS and A-CvM crit-
ical values in the proof of Theorem B1 above; in the second equation in
(14.36), “c0(0G�h2�0�1 − α + η + δ) < ∞” holds for the KS critical value be-
cause c0(0G�h2�0�1 −α+η+ δ) does not depend on n and the KS test statistic
T(0G�h2�0) is finite a.s. since the sample paths of νh2�0(·) and h2�0(·) are bounded
a.s.; and in the second equation in (14.36), “supn≥1 c0�sn(0G�h2�0�1−α+η+δ) <
∞” holds for an A-CvM critical value because c0�sn(0G�h2�0�1 − α + η + δ)
is less than or equal to the corresponding quantile based on the KS statistic,
which does not depend on n and is finite a.s.

For the KS test, we replace (14.33) with the following:(
n1/2β(g0)

)−χ
Tn(θ∗) ·Q(BρX (g0� τ2)

)
(15.2)

= (
n1/2β(g0)

)−χ
sup
g∈Gn

S
(
νn�F0(θ∗� g)+ h1�n�F0(θ∗� g)� h̄2�n�F0(θ∗� g)

)
×Q

(
BρX (g0� τ2)

)
≥ (

n1/2β(g0)
)−χ ∫

BρX
(g0�τ2)

1(g ∈ Gn)

× S
(
νn�F0(θ∗� g)+ h1�n�F0(θ∗� g)� h̄2�n�F0(θ∗� g)

)
dQ(g)
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=
∫

BρX
(g0�τ2)

1(g ∈ Gn)S
((
n1/2β(g0)

)−1
νn�F0(θ∗� g)

+m∗(g)/β(g0)� h̄2�n�F0(θ∗� g)
)
dQ(g)

→p

∫
BρX

(g0�τ2)

S
(
m∗(g)/β(g0)�h2�0(g)+ εIk

)
dQ(g) > 0�

where χ is as in Assumption S4,m∗(g)= (m∗
1(g)� � � � �m

∗
k(g))

′,m∗
j (g) is defined

in (6.2) for j ≤ k, h2�0 = h2�F0(θ∗), and the convergence uses the argument given
in the paragraph following (14.33) as well as 1(g ∈ Gn)→ 1(g ∈ G)= 1 as n→
∞ by Assumption KS.

For A-CvM tests, we replace (14.33) with the following results:(
n1/2β(g0)

)−χ
T̄n�sn(θ∗)(15.3)

=
sn∑
�=1

wQ�n(�)S
((
n1/2β(g0)

)−1
νn�F0(θ∗� g�)

+m∗(g�)/β(g0)� h̄2�n�F0(θ∗� g�)
)
�

using Assumption S4. We have

sup
g∈G

∣∣m∗
j (g)

∣∣≤ (
EF0m

2
j (Wi� θ∗)/σ2

F0�j
(θ∗)

)1/2(
EF0G

2(Xi)
)1/2

<∞�(15.4)

for j = 1� � � � �k, using the definition of m∗(g), Assumption FA (which imposes
Assumption M in part FA(e)), and the Cauchy–Schwarz inequality. Next, we
have

sup
g∈G

∣∣S((n1/2β(g0)
)−1
νn�F0(θ∗� g)+m∗(g)/β(g0)� h̄2�n�F0(θ∗� g)

)
(15.5)

− S
(
m∗(g)/β(g0)�h2�0(g)+ εIk

)∣∣= op(1)

under F0, using the uniform continuity of S over a compact set, which holds
by Assumption S1(d), where attention can be restricted to a compact set by
(i) equation (15.4), (ii) supg∈G ‖n−1/2νn�F0(θ∗� g)‖ = op(1) by Lemma A1(a), and
(iii) supg∈G ‖h̄2�n�F0(θ∗)− h2�0 − εIk‖ = op(1) using Lemma A1(b) and the def-
inition of h̄2�n�F0(θ∗) in (5.2), and Lemma A1 applies for the reasons given in
the paragraph following (14.33).

Equations (15.3) and (15.5) yield(
n1/2β(g0)

)−χ
T̄n�sn(θ∗)+ op(1)(15.6)

=
sn∑
�=1

wQ�n(�)S
(
m∗(g�)/β(g0)�h2�0(g�)

)
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→
∫
S
(
m∗(g)/β(g0)�h2�0(g)

)
dQ(g)

≥
∫

BρX
(g0�τ2)

S
(
m∗(g)/β(g0)�h2�0(g)

)
dQ(g) > 0�

where the convergence holds for fixed {g1� g2� � � �} by Assumptions A1, A2, and
S4, the first inequality holds by Assumption S1(c), and the second inequality
holds by (14.28). This completes the proof. Q.E.D.

PROOF OF THEOREM B3: Part (a) follows from part (b) because

csn
(
ϕn(θn�∗)� ĥ2�n(θn�∗)�1 − α

)≤ csn
(
0G� ĥ2�n(θn�∗)�1 − α

)
�(15.7)

which holds because ϕn(θ∗� g) ≥ 0k ∀g ∈ G by Assumption GMS1(a), c(h1�

ĥ2�n(θ∗)�1 − α) is non-increasing in the first p elements of h1 by Assumption
S1(b), and the last v elements of ϕn(θ∗� g) equal zero.

Now, we prove part (b). When Tn(θ) is replaced by the A-CvM statis-
tic T̄n�sn(θn�∗), the results of Theorem 1 hold under Assumptions M, S1, and
S2′ with (θ�F) replaced by (θn�∗�Fn), sup(θ�F)∈F :h2�F (θ)∈H2�cpt

deleted, Tn(θ),

T(hn�F(θ)), and xhn�F (θ) replaced by T̄n�sn(θn�∗)� T̄sn(hn�Fn(θn�∗)) (defined in
(4.6)), and xhn�Fn (θn�∗), respectively, where xhn�Fn (θn�∗) ∈ R is a constant that may
depend on (θn�∗�Fn) and n through hn�Fn(θn�∗). The adjustments needed to the
proof of Theorem 1 are quite similar to those stated at the beginning of the
proof of Theorem B1. In addition, the proof uses the fact that {(θn�∗�Fn) :n≥ 1}
satisfies the conditions to be in SubSeq(h2) (where h2 = h2�F0(θ0)) by Assump-
tions LA1(a) and LA1(c)–(e) and because {Wi : i ≥ 1} are i.i.d. under Fn and
Assumption M holds given that (θn�Fn) ∈ F by Assumption LA1. Because
{(θn�∗�Fn) :n ≥ 1} ∈ SubSeq(h2), Lemma A1 applies, which is used in (12.3).
Also, (h1�n�F(θ)�h2�F(θ)) is changed to (h1�n�Fn(θn�∗)�h2�Fn(θn�∗)) throughout the
proof of Theorem 1.

Next, using the mean-value expansion in (14.37) and the definition h1�n�F(θ�

g)= n1/2D−1/2
F (θ)EFm(Wi�θ�g), we have

sup
g∈G

∥∥h1�n�Fn(θn�∗� g)− h1�n�Fn(θn� g)−Π0(g)λ
∥∥(15.8)

= sup
g∈G

∥∥ΠFn(θn�g� g)n
1/2(θn�∗ − θn)−Π0(g)λ

∥∥
≤ sup

g∈G
sup

θ∈Θ:‖θ−θ0‖≤δn

∥∥ΠFn(θ�g)λ
(
1 + o(1)

)−Π0(g)λ
∥∥

→ 0�

where θn�g may differ across rows of ΠFn(θn�g� g), θn�g lies between θn�∗ and
θn, δn = ‖θn�∗ − θn‖ + ‖θn − θ0‖ → 0, the inequality holds using Assump-
tion LA1(a), and the convergence to zero uses Assumption LA2′(b). (Note that
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the (1+o(1)) term in (15.8) requires the condition in Assumption LA2′(b) that
supg∈G ‖Π0(g)λ‖<∞).

Equation (15.8) and Assumption LA2′(a) give: for all B <∞,

sup
g∈G:h1(g)≤B

∥∥h1�n�Fn(θn�∗� g)− h1(g)−Π0(g)λ
∥∥→ 0�(15.9)

By Assumption LA1(c), d(h2�Fn(θn�∗)�h2�F0(θ0)) → 0. This implies that
νh2�Fn (θn�∗)(·)⇒ νh2(·), where h2 = h2�F0(θ0). As in previous proofs, by the almost
sure representation theorem, there exist a probability space and random quan-
tities ν̃n(·) and ν̃(·) defined on it with the same distributions as νh2�Fn (θn�∗)(·) and
νh2(·), respectively, for n≥ 1, such that supg∈G ‖ν̃n(g)− ν̃(g)‖ → 0 a.s. Hence,
T̄sn(hn�Fn(θn�∗)) and ¯̃Tsn(hn�Fn(θn�∗)) have the same distribution, where the latter
is defined to be

¯̃Tsn
(
hn�Fn(θn�∗)

)
(15.10)

=
sn∑
�=1

wQ�n(�)S
(
ν̃n(g�)+ h1�n�Fn(θn�∗� g�)�h2�Fn(θn�∗� g�)+ εIk

)
�

For all β> 0, B <∞, and λ= λ0β, we have

A1�n(β�B) = sup
g∈G:h1(g)≤B

∣∣S(ν̃n(g)/β(15.11)

+ h1�n�Fn(θn�∗� g)/β�h2�Fn(θn�∗� g)+ εIk
)

− S
(
ν̃(g)/β+ h1(g)/β+Π0(g)λ0�h2(g)+ εIk

)∣∣
→ 0 as n→ ∞ a.s.

using Assumption S2′, (15.9), supg∈G ‖ν̃n(g)− ν̃(g)‖ → 0 a.s., supg∈G ‖ν̃(g)‖ <
∞ a.s., and d(h2�Fn(θn�∗)�h2)→ 0, where h2 = h2�F0(θ0).

In addition, for all B <∞, we have

A2(β�B) = sup
g∈G:h1(g)≤B

∣∣S(ν̃(g)/β+ h1(g)/β+Π0(g)λ0�h2(g)+ εIk
)

(15.12)

− S
(
Π0(g)λ0�h2(g)+ εIk

)∣∣
→ 0 as β→ ∞ a.s.

We use (15.11) and (15.12) to obtain: for all constants B∗
c <∞ as in Assump-

tion A3,

β−χ ¯̃Tsn
(
hn�Fn(θn�∗)

)
(15.13)

≥
sn∑
�=1

wQ�n(�)1
(
h1(g�)≤ B∗

c

)
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× S
(
ν̃n(g�)/β+ h1�n�Fn(θn�∗� g�)/β�h2�Fn(θn�∗� g�)+ εIk

)
≥

sn∑
�=1

wQ�n(�)1
(
h1(g�)≤ B∗

c

)
S
(
Π0(g�)λ0�h2(g�)+ εIk

)
−A1�n

(
β�B∗

c

)−A2

(
β�B∗

c

)
→n→∞ a.s.

∫
1
(
h1(g)≤ B∗

c

)
S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g)

−A2

(
β�B∗

c

)
→β→∞ a.s.

∫
1
(
h1(g)≤ B∗

c

)
S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g)�

where the first inequality uses Assumptions S1(c) and S4, the second inequality
holds by the definitions of A1�n(β�B

∗
c ) and A2(β�B

∗
c ), the first convergence

result holds by (15.11) and Assumption A3, and the second convergence result
holds by (15.12).

Let csup�0(0G�h
∗
2�1 − α) denote the 1 − α quantile of Tsup(0G�h

∗
2) =

supg∈G S(νh2(g)�h
∗
2(g) + εIk), where h∗

2 is some k × k-matrix-valued covari-
ance kernel on G × G . Let 0G×G denote the k × k-matrix-valued covariance
kernel on G × G that equals the k× k zero matrix for all (g�g∗) ∈ G × G . The
A-PA critical value satisfies

csn
(
0G� ĥ2�n(θn�∗)�1 − α

) ≤ csup�0

(
0G� ĥ2�n(θn�∗)�1 − α+η

)+η(15.14)

≤ csup�0(0G�0G×G�1 − α+η)+η

<∞�

where the first inequality holds because a weighted average over {g1� � � � � gsn}
with nonnegative weights that sum to 1 or less (by Assumption A2) is
less than or equal to the corresponding supremum over g ∈ G , which im-
plies that T̄sn(0G�h

∗
2) ≤ Tsup(0G�h

∗
2) ∀h∗

2, the second inequality holds because
S(νh2(g)�h

∗
2(g) + εIk) ≤ S(νh2(g)�εIk) ∀g ∈ G , for all covariance kernels h∗

2
by Assumption S1(e), which implies that Tsup(0G�h

∗
2)≤ Tsup(0G�0G×G) ∀h∗

2, and
the last inequality holds because supg∈G S(νh2(g)�εIk) <∞ a.s., which holds by
Assumption S2′ and supg∈G ‖νh2(g)‖<∞ a.s.

We now have: for all B∗
c as in Assumption A3,

lim
β→∞

lim inf
n→∞

PFn
(
T̄sn
(
hn�Fn(θn�∗)

)
> csn

(
0G� ĥ2�n(θn�∗)�1 − α

))
(15.15)

≥ lim
β→∞

lim inf
n→∞

P
(
β−χ ¯̃Tsn

(
hn�Fn(θn�∗)

)
>β−χc(0G�0G×G�1 − α+η)+β−χη

)
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≥ lim
β→∞

P

(∫
1
(
h1(g)≤ B∗

c

)
S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g)

−A2

(
β�B∗

c

)
>β−χc(0G�h2�1 − α+η)+β−χη

)
= 1

(∫
1
(
h1(g)≤ B∗

c

)
S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g) > 0

)
�

where the first inequality holds by (15.14) and the equality in distribution
of ¯̃Tsn(hn�Fn(θn�∗)) and T̄sn(hn�Fn(θn�∗)), the second inequality holds by (i) the
first two inequalities in (15.13), (ii) the first convergence result in (15.13), and
(iii) the bounded convergence theorem, and the equality holds by the second
convergence result of (15.13) and the bounded convergence theorem.

The left-hand side (l.h.s.) in (15.15) does not depend on B∗
c . Hence, the l.h.s.

is greater than or equal to the limit as c → ∞ of the right-hand side, which
equals

1
(∫

1
(
h1(g)≤ ∞)

S
(
Π0(g)λ0�h2(g)+ εIk

)
dQ(g) > 0

)
= 1(15.16)

by the monotone convergence theorem and the assumption that B∗
c → ∞ as

c→ ∞, where the equality holds by Assumptions LA3′ and S3.
Lastly, we prove part (c) regarding KS tests and CS’s. The proof is essentially

the same as that for parts (a) and (b) with T̄n�sn(θn�∗), csn(·� ·� ·),
∑sn

�=1wQ�n(�) · · ·,
and

∫ · · · dQ(g) replaced by the KS quantities Tn(θn�∗), c(·� ·� ·), supg∈G , and
supg∈G · · ·, respectively (or with Gn in place of G ). Q.E.D.

15.2. Proof of Lemma B2 Regarding GB-spline, Gbox�dd, and Gc/d

PROOF OF LEMMA B2: First we verify Assumption CI for G = GB-spline. Let
mj�F(θ�x)=EF(mj(Wi�θ)|Xi = x). Write

XF(θ)=
(

p⋃
j=1

{
x ∈Rdx :mj�F(θ�x) < 0

})
(15.17)

∪
(

k⋃
j=p+1

{
x ∈Rdx :mj�F(θ�x) �= 0

})
�

If PF(Xi ∈ XF(θ)) > 0, then the probability that Xi lies in one of the k
sets in (15.17) is positive. Suppose (without loss of generality) that PF(Xi ∈
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{x :m1�F(θ�x) < 0}) > 0. The set {x :m1�F(θ�x) < 0} can be written as the
union of disjoint nondegenerate hypercubes in CB-spline (i.e., hypercubes with
positive Lebesgue volumes) because continuity of m1�F(θ�x) implies that if
m1�F(θ�x) < 0, then m1�F(θ� y) < 0 for all y in some hypercube that includes
x. The number of such hypercubes is countable (because otherwise their union
would have infinite volume). One of these hypercubes, call it H, must have
positive Xi probability. (Otherwise, the union of these hypercubes would have
Xi probability zero.)

In sum, we have H ∈ CB-spline, PF(Xi ∈ H) > 0, and m1�F(θ�x) < 0 for all
x ∈H. In addition, the B-spline whose support is H is positive on the interior
of H. Thus, if PF(Xi ∈ int(H)) > 0, we have EFm1(Wi� θ)BH(Xi) < 0, which
establishes Assumption CI.

On the other hand, if PF(Xi ∈ int(H)) = 0, then we must have PF(Xi ∈
H \ int(H)) > 0. Because m1�F(θ�x) is a continuous function of x, there ex-
ists a finite number of hypercubes in CB-spline whose interiors have union that
includes H \ int(H) and for which m1�F(θ�x) < 0 for all x in each hypercube.
One of these hypercubes, say H1, must have interior with positive probability
because PF(Xi ∈H \ int(H)) > 0. In sum, H1 ∈ CB-spline, PF(Xi ∈ int(H1)) > 0,
m1�F(θ�x) < 0 for all x ∈ H1, and the B-spline BH1(x) is positive for x ∈
int(H1). Hence, EFm1(Wi� θ)BH1(Xi) < 0, which establishes Assumption CI.

Now we establish Assumption CI for Gbox�dd. The fact that Assumption CI
holds for G = Gbox for all r̄ ∈ (0�∞] by Lemma 3 implies that Assumption
CI holds for G = Gbox�dd for all r̄ ∈ (0�∞]. The reason is as follows. Let
Gbox(r̄) and Gbox�dd(r̄) denote Gbox and Gbox�dd, respectively, when r̄ is the up-
per bound on ru or r1�u and r2�u. For any box Cx0�r ∈ Gbox(r̄), if Cx0�r cap-
tures some deviation from the model, that is, EFmj(Wi�θ)1(Xi ∈ Cx0�r) <
0 for some j = 1� � � � �p or EFmj(Wi�θ)1(Xi ∈ Cx0�r) �= 0 for some j =
p + 1� � � � �k, then (i) Cx0�r ∩ SuppFX�0(Xi) �= ∅ and (ii) Cx0+η�r+η captures
the same deviation for η > 0 sufficiently small. Result (ii) holds because
limη↓0EFmj(Wi�θ)1(Xi ∈ Cx0+η�r+η) = EFmj(Wi�θ)1(Xi ∈ Cx0�r). The latter
holds by the bounded convergence theorem because (Cx0+η�r+η − Cx0�r) ↓ ∅ as
η ↓ 0, and hence mj(w�θ)1(x ∈ Cx0+η�r+η)→mj(w�θ)1(x ∈ Cx0�r) as η ↓ 0 for
every w, and EF |mj(Wi�θ)1(Xi ∈ Cx0+η�r+η)| ≤ EF |mj(Wi�θ)| <∞. By (i) and
η ∈ (0� r̄/2], Cx0+η�r+η can be written as a box, Cx�r1�r2 in Gbox�dd(3r̄) by picking a
point x ∈ Cx0�r ∩ SuppFX�0(Xi), which is necessarily in the interior of Cx0+η�r+η,
and letting r1 = x−x0 + r and r2 = x0 + r−x+2η. We have |x−x0| ≤ r̄, r1 ≤ 2r̄,
and r2 ≤ 3r̄. Because Cx�r1�r2 = Cx0+η�r+η and Cx0+η�r+η captures a deviation from
the model, Cx�r1�r2 does as well, and the proof is complete.

Note that in the preceding argument, it is necessary to expand Cx0�r to
Cx0+η�r+η because Cx0�r is not necessarily in Gbox�dd(3r̄) if the only elements of
Cx0�r ∩ SuppFX�0(Xi) are on the boundary of Cx0�r . Also, note that the argument
above does not go through if one uses symmetric side lengths (i.e., r1�u = r2�u)
in the definition of Gbox�dd.
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Next, we verify Assumption CI for G = Gc/d . We write

XF(θ)=
⋃
d∈D

X1�F(θ�d)� where(15.18)

X1�F(θ�d)= {
x1 ∈Rdx�1 :EF

(
mj(Wi�θ)|X1�i = x1�X2�i = d

)
< 0

for some j ≤ p or

EF

(
mj(Wi�θ)|X1�i = x1�X2�i = d

) �= 0

for some j = p+ 1� � � � �k
}
�

for d ∈D. We have

PF
(
Xi ∈ χF(θ)

)= PF

((
X ′

1�i�X
′
2�i

)′ ∈⋃
d∈D

χ1�F(θ�d)

)
(15.19)

=
∑
d∈D

PF
(
X1�i ∈ χ1�F(θ�d)|X2�i = d

)
PF(X2�i = d)�

If PF(Xi ∈ χF(θ)) > 0, then there exists some d∗ ∈D such that PF(X2�i = d∗) >
0 and

PF
(
X1�i ∈ χ1�F

(
θ�d∗)|X2�i = d∗)> 0�(15.20)

Given the inequality in (15.20), we use the same argument to verify Assump-
tion CI as given for Gc-cube, Gbox, GB-spline, or Gbox�dd with dx replaced by dx�1,
but with EF(·) replaced by EF(·|X2�i = d∗) throughout, and using the fact that
{g :g= g11{d∗}, g1 ∈ G1} ⊂ Gc/d for G1 = Gc-cube, Gbox, GB-spline, or Gbox�dd.

Next, we verify Assumption M. Assumptions M(a) and M(b) hold for GB-spline

by taking G(x)= 2/3 ∀x and δ1 = 4/δ+ 3. Assumption M(c) holds for GB-spline

because each element of GB-spline can be written as the sum of four functions,
each of which is the product of an indicator function of a box and a polyno-
mial of order 4. Manageability of polynomials and indicator functions of boxes
hold because they have finite pseudo-dimension (as defined in Pollard (1990,
Sec. 4)). Manageability of finite linear combinations of these functions holds
by the stability properties of cover numbers under addition and pointwise mul-
tiplication; see Pollard (1990, Sec. 5).

Assumption M holds for Gbox�dd because it holds for Gbox by Lemma 3 and
Gbox�dd ⊂ Gbox.

The verification of Assumption M for G = Gc/d is the same as in the proof
of Lemma 3 when G1 is Gc-cube, Gbox, or Gbox�dd because Cbox × {{d} :d ∈D} is a
Vapnik–Cervonenkis class of sets. The verification of Assumption M for G =
Gc/d when G1 is GB-spline is essentially the same as the proof above for GB-spline. The
functions in Gc/d in this case still can be written as the sum of four functions,
each of which is the product of an indicator function of a box—in this case,
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the box is of the form B × {d}, where B is a box in Rdx�1 and d ∈ D—and a
polynomial of order 4.

Assumption FA(e) holds for GB-spline, Gbox�dd, and Gc/d by the same arguments
as given above for Assumption M.

This completes the proofs of parts (a)–(d) of the lemma.
Part (e) of the lemma holds, that is, Supp(Qc) = GB-spline, because GB-spline

is countable and Qc has a probability mass function that is positive at each
element in GB-spline.

Now, we prove part (f) using a similar argument to that for part (b) of
Lemma 4. Consider g = gx�r1�r2 ∈ Gbox�dd, where gx�r1�r2(y) = 1(y ∈ Cx�r1�r2) · 1k
and (x� r1� r2) ∈ Supp(Xi) × (×dx

u=1(0�σX�ur̄))
2. Let δ > 0 be given. Let η0 =

(η0�1� � � � �η0�dx)
′ and likewise for η1 and η2. Define

Gg�η̄ = {gx+η0�r1−η1�r2+η2 :−η̄≤ η0�u ≤ η̄� η̄≤ η1�u�η2�u ≤ 2η̄ ∀u≤ dx}�(15.21)

By the same sort of argument as for (14.26), for g∗ = gx+η0�r1−η1�r2+η2 ∈Gg�η̄,
we have

ρ2
X

(
g�g∗)= EFX�0

[
1(Xi ∈ Cx�r1�r2)− 1(Xi ∈ Cx+η0�r1−η1�r2+η2)

]2
(15.22)

≤
dx∑
u=1

[
PFX�0

(
Xi�u ∈ (xu − r1�u� xu +η0�u − (r1�u −η1�u)

])
+ PFX�0

(
Xi�u ∈ (xu + r2�u� xu +η0�u + r2�u +η2�u]

)]
≤

dx∑
u=1

[
FXu�0(xu − r1�u + 3η̄)− FXu�0(xu − r1�u)

]
+

dx∑
u=1

[
FXu�0(xu + r2�u + 3η̄)− FXu�0(xu + r2�u)

]
�

where FXu�0(·) denotes the distribution function of Xi�u and the first inequality
holds because η0�u+η1�u ≥ 0 and η0�u+η2�u ≥ 0. Because distribution functions
are right-continuous, the r.h.s. of (15.22) converges to zero as η̄ ↓ 0. Thus,
ρ2
X(g�g

∗) converges to zero uniformly over Gg�η̄ as η̄ ↓ 0 and there exists an
η̄ > 0 sufficiently small that Gg�η̄ ⊂ BρX (g�δ).

Next, we have Qc(Gg�η̄) equals

Q∗
FX�0

(
dx×
u=1

[xu − η̄� xu + η̄]
dx×
u=1

[r1�u − 2η̄� r1�u − η̄](15.23)

×
dx×
u=1

[r2�u + η̄� r2�u + 2η̄]
)
> 0�
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whereQ∗
FX�0

= FX�0 ×Unif((×dx
u=1(0�σX�ur̄))

2) and the inequality holds because
x ∈ Supp(Xi) and η̄ > 0. This completes the proof of part (f).

Lastly, we prove part (g). By parts (e) and (f) and parts (a) and (b) of
Lemma 4, we have G1 ⊂ Supp(Q1). Because Supp(QD)=D andQe =Q1 ×QD,
we have Gc/d ⊂ Supp(Qe). Q.E.D.

15.3. Proofs of Theorems B4 and B5 Regarding Uniformity Issues

PROOF OF THEOREM B4: Part (a) holds by an empirical process central
limit theorem because the intervals {(a�b] : 0 ≤ a < b ≤ 1} form a Vapnik–
Cervonenkis class of sets; for example, see the proof of Lemma A1(a). The
covariance kernel of ν(·) and the pseudo-metric ρ∗ are specified below.

Let c ∨ d = max{c�d} and c ∧ d = min{c�d}.
To prove part (b), we write

Yiga�b(Xi)= (
Ui + 1

(
Xi ∈ (εn�1])) · 1

(
Xi ∈ (a�b]

)
(15.24)

= Ui1
(
Xi ∈ (a�b]

)+ 1
(
Xi ∈ (a∨ εn�b]

)
and

EFnYiga�b(Xi) = EFnUi1
(
Xi ∈ (a�b]

)+ PFn
(
Xi ∈ (a∨ εn�b]

)
(15.25)

= PFn
(
Xi ∈ (a∨ εn�b]

)
→ (b− a)/2�

where the second equality uses Assumption CX(b) and the convergence
uses Assumption CX(c) and holds by slightly different arguments when
a = 0 and a > 0. Equation (15.25) and b − a > 0 imply that h1�n(ga�b) =
n1/2EFnYiga�b(Xi)→ ∞ = h1(ga�b) as n→ ∞ for all ga�b ∈ G , which proves part
(b).

Part (c) holds because h1(ga�b)= ∞ for all ga�b ∈ G and

inf
ga�b∈G

h1�n(ga�b)= inf
ga�b∈G

n1/2PFn
(
Xi ∈ (a∨ εn�b]

)
(15.26)

= inf
a�b:εn≤a<b≤1

n1/2PFn
(
Xi ∈ (a�b]

)= 0

for all n, where the first equality holds by (15.25) and the last equality holds by
Assumption CX(c).

Part (d) holds because νn(ga�b) + h1�n(ga�b) = Op(1) + n1/2(b − a)/2 →p ∞
by part (a) and (15.25) for all ga�b ∈ G . This, combined with Assumption CX(f)
(in particular, Assumption S1(d)), proves part (d).

Part (e) holds by part (b) and Assumption CX(f) (in particular, Assump-
tion S2) because S(ν(ga�b)+ h1(ga�b))= S(∞)= 0 for all ga�b ∈ G .
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To show part (f), we define

g∗
n(x)= 1

(
x ∈ (0� εn]

)
�(15.27)

Then,

h1�n

(
g∗
n

)= n1/2EFnYig
∗
n(Xi)= PFn

(
Xi ∈ (0 ∨ εn�εn]

)= 0(15.28)

for all n, where the second equality holds by (15.25) with a= 0 and b= εn.
Next, we have

sup
ga�b∈G

S
(
νn(ga�b)+ h1�n(ga�b)

)≥ S
(
νn
(
g∗
n

)+ h1�n

(
g∗
n

))= S
(
νn
(
g∗
n

))
�(15.29)

where the equality holds by (15.28). The asymptotic distribution of S(νn(g∗
n))

is established as follows:

νn
(
g∗
n

) = n−1/2
n∑
i=1

[
Yi1

(
Xi ∈ (0� εn]

)−EFnYi1
(
Xi ∈ (0� εn]

)]
(15.30)

= n−1/2
n∑
i=1

[
Ui1(Xi = εn)+Ui1

(
Xi ∈ (0� εn)

)
+ 1

(
Xi ∈ (εn�1])1(Xi ∈ (0� εn]

)
−EFn1

(
Xi ∈ (εn�1])1(Xi ∈ (0� εn]

)]
= n−1/2

n∑
i=1

Ui1(Xi = εn)+ n−1/2
n∑
i=1

Ui1
(
Xi ∈ (0� εn)

)
→d Z

∗ ∼N(0�1/2)�

where the second equality uses EFnUi = 0 and Ui and Xi are independent.
The convergence in distribution in (15.30) holds by a triangular array CLT for
the first summand on the second to last line because Ui1(Xi = εn) has mean
zero and variance EFnU

2
i 1(Xi = εn) = 1 · PFn(Xi = εn) = 1/2 for all n, using

Assumption CX(b). The second summand on the second to last line of (15.30)
is op(1) because its mean is zero and its variance is

Var

(
n−1/2

n∑
i=1

Ui1
(
Xi ∈ (0� εn)

))
(15.31)

= Var
(
Ui1

(
Xi ∈ (0� εn)

))
=EFnU

2
i 1
(
Xi ∈ (0� εn)

)= 1 · PFn
(
Xi ∈ (0� εn)

)= εn/2�
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where the first equality holds by Assumption CX(d), the second and third
equalities hold by Assumption CX(b), and the last equality holds by Assump-
tion CX(c).

Equations (15.29) and (15.30), Assumption S1(d), and the continuous map-
ping theorem combine to prove part (f).

Part (g) holds if

sup
ga�b∈G

S
(
νn(ga�b)+ h1�n(ga�b)

)
�p 0�(15.32)

using part (e). By part (f), for all δ≥ 0,

lim inf
n→∞

P
(

sup
ga�b∈G

S
(
νn(ga�b)+ h1�n(ga�b)

)
> δ

)
(15.33)

≥ lim inf
n→∞

P
(
S
(
νn
(
g∗
n

))
> δ

)
= P

(
S
(
Z∗)> δ)�

Now, by the dominated convergence theorem, as δ→ 0,

P
(
S
(
Z∗)> δ)→ P

(
S
(
Z∗)> 0

)= 1/2�(15.34)

where the equality holds because S(m) > 0 iff m < 0 by Assumption S2 and
P(Z∗ < 0) = 1/2. Hence, the right-hand side in (15.33) is arbitrarily close to
1/2 for δ > 0 sufficiently small, which implies that (15.32) holds and part (g) is
established.

Lastly, we compute the covariance kernel K(ga1�b1� ga2�b2) of the Gaussian
process ν(·). We have

EFnY
2
i ga1�b1(Xi)ga2�b2(Xi)(15.35)

=EFn

(
Ui + 1

(
Xi ∈ (εn�1]))2 · 1

(
Xi ∈ (a1 ∨ a2� b1 ∧ b2]

)
=EFnU

2
i 1
(
Xi ∈ (a1 ∨ a2� b1 ∧ b2]

)
+EFn(2Ui + 1)1

(
Xi ∈ (a1 ∨ a2 ∨ εn�b1 ∧ b2]

)
= PFn

(
Xi ∈ (a1 ∨ a2� b1 ∧ b2]

)+ PFn
(
Xi ∈ (a1 ∨ a2 ∨ εn�b1 ∧ b2]

)
→ (1/2)1(a1 = a2 = 0)+ max

{
(b1 ∧ b2)− (a1 ∨ a2)�0

}
=K1(ga1�b1� ga2�b2)�

where the third equality uses Assumption CX(b) and the convergence uses
Assumption CX(c).

In addition, we have

lim
n→∞

EFnYiga�b(Xi)= (b− a)/2 =K2(ga�b)�(15.36)
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where the first equality holds by (15.25). Putting the results of (15.35) and
(15.36) together yields

K(ga1�b1� ga2�b2)(15.37)

= lim
n→∞

(
EFnY

2
i ga1�b1(Xi)ga2�b2(Xi)

−EFnYiga1�b1(Xi) ·EFnYiga2�b2(Xi)
)

=K1(ga1�b1� ga2�b2)−K2(ga1�b1)K2(ga2�b2)�

The square of the pseudo-metric ρ∗ on G is

ρ2
∗(ga1�b1� ga2�b2)(15.38)

= lim
n→∞

EFn

(
Yiga1�b1(Xi)−Yiga2�b2(Xi)

−EFnYiga1�b1(Xi)+EFnYiga2�b2(Xi)
)2
�

The limit in (15.38) exists and can be computed via calculations analogous to
those in (15.25) and (15.35). Q.E.D.

PROOF OF THEOREM B5: For notational convenience, we let g denote ga�b.
By Theorem B4(a), νn(·)⇒ ν(·) as n→ ∞. As in the proof of Theorem 1(a), by
an almost sure representation argument (e.g., see Thm. 9.4 of Pollard (1990)),
there exist processes ν̃n(·) and ν̃(·) on G that have the same distributions as
νn(·) and ν(·), respectively, for which

sup
g∈G

∣∣ν̃n(g)− ν̃(g)
∣∣→ 0 a.s.(15.39)

Let Ω̃ denote the sample paths for which the convergence in (15.39) holds. By
(15.39), P(Ω̃)= 1.

For each ω ∈ Ω̃, we apply the bounded convergence theorem to obtain

lim
n→∞

∫
S
(
ν̃n(g)(ω)+ h1�n(g)

)
dQ(g)(15.40)

=
∫
S
(
ν̃(g)(ω)+ h1(g)

)
dQ(g)�

which yields the result of the theorem. Now we check the conditions for the
bounded convergence theorem. For all g ∈ G , pointwise convergence holds:

S
(
ν̃n(g)(ω)+ h1�n(g)

)→ S
(
ν̃(g)(ω)+ h1(g)

)
as n→ ∞

by (15.39), Theorem B4(b), and Assumption S1(d). A bound on S(ν̃n(g)(ω)+
h1�n(g)) over g ∈ G and n sufficiently large is given by S(infg∗∈G ν̃(g

∗)(ω)− ε)
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for some ε > 0. This follows because, for all ε > 0 and g ∈ G , we have

0 ≤ S
(
ν̃n(g)(ω)+ h1�n(g)

)≤ S
(
ν̃n(g)(ω)

)
(15.41)

≤ S
(

inf
g∗∈G

ν̃n
(
g∗)(ω))≤ S

(
inf
g∗∈G

ν̃
(
g∗)(ω)− ε

)
<∞�

where the first inequality holds by Assumption S1(c), the second inequality
holds by Assumption S1(b) and h1�n(g) ≥ 0 for all g ∈ G by (15.25), the third
inequality holds by Assumption S1(b), the fourth inequality holds for all n suf-
ficiently large by (15.39) and Assumption S1(b), and the last inequality holds
because infg∗∈G ν̃(g

∗)(ω) >−∞ because the sample paths of ν̃(·) are bounded
a.s. (which follows from |m(Wi�θ0)g(Xi)| ≤ |m(Wi�θ0)| ≤ |Ui| + 1 < ∞ a.s.
and (15.39)). This completes the proof of (15.40) and the theorem is proved.

Q.E.D.

15.4. Proofs of Subsampling Results

PROOF OF LEMMA B4: For S1, Assumption SQ(a) holds because (i) if
v ≥ 1, the summand

∑k

j=p+1(ν
2
h2�j
(g)/(h2�j�j(g) + ε)) is absolutely continu-

ous for all g ∈ G , where νh2(g) = (νh2�1(g)� � � � � νh2�k(g))
′ and h2�j�j(g) de-

notes the jth diagonal element of h2(g), (ii) if v = 0 and h1(g) �= ∞p, the
summands [νh2�j(g) + h1�j(g)]2

−/(h2�j�j(g) + ε) are absolutely continuous for
x > 0 and all j ≤ p such that h1�j(g) < ∞, (iii) if v = 0 and h1(g) = ∞p,
S1(νh2(g) + h1(g)�h2(g) + εIk) = 0 and its distribution function equals 1 for
all x > 0, and (iv) if S1(νh2(g) + h1(g)�h2(g) + εIk) is absolutely continuous
for all g ∈ G , then

∫
S1(νh2(g)+h1(g)�h2(g)+εIk)dQ(g) is absolutely contin-

uous.
Assumption SQ(b) holds for S1 because (i) if v ≥ 1, the summand∫ ∑k

j=p+1(ν
2
h2�j
(g)/(h2�j�j(g) + ε))dQ(g) has positive density on [0�∞), and

(ii) if v = 0 and h1(g) �= ∞p on some G ⊂ G such that Q(G) > 0, each sum-
mand

∫ [νh2�j(g) + h1�j(g)]2
−/(h2�j�j(g) + ε)dQ(g) for which h1�j(g) < ∞ on

some G ⊂ G such that Q(G) > 0 has positive density on [0�∞), and so does
the sum over

∑p

j=1.
For S2, if v = 0 and h1(g) = ∞p a.s. [Q], then S2(νh2(g) + h1(g)�h2(g) +

εIk)= 0 a.s. [Q], J(h1�h2)(x)= 1 for all x > 0, Assumption SQ(a) holds, and As-
sumption SQ(b) does not impose any restriction. Otherwise, v ≥ 1 or h1(g) <
∞p on a subset G ⊂ G such that Q(G) > 0. In this case, the random variable∫
S2(νh2(g) + h1(g)�h2(g) + εIk)dQ(g) has support [0�∞) and is absolutely

continuous. Hence, Assumptions SQ(a)–(b) hold. Q.E.D.

The proof of Theorem B6 uses the following lemma.
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LEMMA D1: Suppose Assumptions M and S1 hold. Then, for all h ∈ H, under
any sequence {(θn�Fn) :n≥ 1} ∈ Seqb(h∗

1�h),

Tn(θn)→d

∫
S
(
νh2(g)+ h1(g)�h2(g)+ εIk

)
dQ(g)

∼ J(h1�h2) as n→ ∞�

COMMENT: Condition (iv) of Seqb(h∗
1�h) is not needed for the result of

Lemma D1 to hold.

PROOF OF THEOREM B6: First, we prove part (a). Suppose {(θn�Fn) :
n ≥ 1} ∈ Seqb. Then, there exist h ∈ H and h∗

1 ∈ H∗
1(h) such that {(θn�Fn) :

n ≥ 1} ∈ Seqb(h∗
1�h). We need to show that, under {(θn�Fn) :n ≥ 1},

lim supn→∞ PFn(Tn(θn) ≤ cn�b(θn�1 − α)) ≥ 1 − α. The asymptotic distribution
of Tn(θn) is given by Lemma D1. We now determine the probability limit of
cn�b(θn�1 − α).

Let J(h1�h2)(x) for x ∈ R denote the distribution function of J(h1�h2). By
Lemma 5 in Andrews and Guggenberger (2010), if (i)Un�b(θn�x)→p J(h∗

1�h2)(x)

for all x ∈C(J(h∗
1�h2)), where C(J(h∗

1�h2)) denotes the continuity points of J(h∗
1�h2),

and (ii) for all ξ > 0, J(h∗
1�h2)(c∞ + ξ) > 1 − α, where c∞ is the 1 − α quantile of

J(h∗
1�h2), then

cn�b(θn�1 − α)→p c∞�(15.42)

Condition (i) holds by the properties of U-statistics of degree b and
Tn�b�j(θn)→d J(h∗

1�h2) (see Thm. 2.1(i) in Politis and Romano (1994)). The latter
holds by Lemma D1 because subsample j is an i.i.d. sample of size b from the
population distribution.

By Assumption S1(c), J(h1�h2)(x) = 0 ∀x < 0 for h ∈ H. Thus, c∞ ≥ 0. If
v = 0 and h1(g) = ∞p a.s. [Q], then J(h∗

1�h2)(0) = 1, c∞ = 0, J(h∗
1�h2)(c∞ + ξ) =

1 > 1 − α. In all other cases, Assumption SQ(b) applies, J(h∗
1�h2)(0) < 1, and

J(h∗
1�h2)(c∞ + ξ) > J(h∗

1�h2)(c∞)≥ 1 − α. Thus, condition (ii) holds and (15.42) is
established.

If c∞ > 0, c∞ ∈ C(J(h1�h2)) by Assumption SQ(a). Thus,

lim inf
n→∞

PFn
(
Tn(θn)≤ cn�b(θn�1 − α)

)
(15.43)

= J(h1�h2)(c∞)≥ J(h∗
1�h2)(c∞)= 1 − α�

where the first equality holds by (15.42) and Lemma D1, the inequality holds
by Assumption S1(b) and h∗

1 ≤ h1, and the second equality holds by Assump-
tion SQ(a) and the definition of c∞.
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If c∞ = 0, for some set G⊂ G with Q(G)= 1, we have

PFn
(
Tn(θn)≤ cn�b(θn�1 − α)

)
(15.44)

≥ PFn
(
Tn(θn)≤ 0

)
= PFn

(
n1/2m̄n�j(θn� g)

σ̄n�j(θn� g)
≥ 0 ∀j ≤ p &

m̄n�j(θn� g)

σ̄n�j(θn� g)
= 0

∀j = p+ 1� � � � �k�∀g ∈G
)

→ P

(
νh�j(g)+ h1�j(g)

h2�j�j(g)+ ε
≥ 0 ∀j ≤ p &

νh�j(g)

h2�j�j(g)+ ε
= 0

∀j = p+ 1� � � � �k�∀g ∈G
)

= P
(
S
(
νh(g)+ h1(g)�h2(g)+ εIk

)= 0 ∀g ∈G)
= J(h1�h2)(0)≥ J(h∗

1�h2)(0)≥ 1 − α�

where σ̄n�j(θ�g) and h2�j�j(g) denote the jth diagonal elements of Σ̄n(θ�g) and
h2(g), respectively. In (15.44), the first inequality holds because cn�b(θn�1 − α)
is the 1−α sample quantile of the subsample test statistics and the test statistics
are nonnegative (by Assumption S1(a)), the first and second equalities hold by
Assumption S2, the convergence holds by Lemma A1(a)–(b), the third equality
holds by the definition of J(h1�h2), and the last inequality holds because 0 is the
1 − α quantile of J(h∗

1�h2).
Next, we prove part (b). Let (θ∗

n�F
∗
n ) = (θ�F) for n ≥ 1, where (θ�F)

is specified in Assumption C. Then, {(θ∗
n�F

∗
n ) :n ≥ 1} ∈ Seqb(h∗

1�h)� where
h∗

1 = h1�F(θ) and h= (h1�F(θ)�h2�F(θ)). Thus,

lim inf
n→∞

PF∗
n

(
Tn
(
θ∗
n

)≤ cn�b
(
θ∗
n�1 − α

))
(15.45)

= J(h1�h2)(c∞)= J(h∗
1�h2)(c∞)= 1 − α�

This and the result of Theorem B6(a) establish part (b).
Lastly, we prove part (c). Suppose Assumption Sub holds and {(θmn�Fmn) :

n≥ 1} belongs to Seqb (where Seqb is defined with mn in place of n). Then,

AsyCS = lim
n→∞

PFmn
(
Tn(θmn)≤ cn�b(θmn�1 − α)

)
(15.46)

≥ inf
{(θn�Fn):n≥1}∈Seqb

lim inf
n→∞

PFn
(
Tn(θn)≤ cn�b(θn�1 − α)

)
= 1 − α
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using Theorem B6(b). On the other hand,

AsyCS = lim inf
n→∞

inf
(θ�F)∈F

PF
(
Tn(θ)≤ cn�b(θ�1 − α)

)
(15.47)

≤ inf
{(θn�Fn):n≥1}∈Seqb

lim inf
n→∞

PFn
(
Tn(θn)≤ cn�b(θn�1 − α)

)
= 1 − α�

Thus, we have AsyCS = 1 − α. Q.E.D.

PROOF OF LEMMA D1: By the same argument as used above to show
(14.20), but with νĥ2�n(θc)

(g) andϕn(θc� g) replaced by νn�Fn(θn� g) and h1�n�Fn(θn�
g), respectively, we have

Tn(θn)→d T (h)=
∫
S
(
νh2(g)+ h1(g)�h2(g)+ εIk

)
dQ(g)�(15.48)

where νn�Fn(θn� ·) ⇒ νh2(·) by Lemma A1(a), h1�n�Fn(θn� g) → h1(g) ∀g ∈ G
by Definition Seqb(h∗

1�h)(ii), and d(ĥ2�n(θn)�h2) → 0 by Lemma A1(b) and
(12.26). Note that the assumption that {(θn�Fn) :n ≥ 1} satisfies Defini-
tion Seqb(h∗

1�h) and Assumption M implies that {(θn�Fn) :n≥ 1} satisfies Def-
inition SubSeq(h2) and hence the conditions of Lemma A1 hold. Q.E.D.

16. SUPPLEMENTAL APPENDIX E

This appendix proves Lemma A1, which is stated in Supplemental Ap-
pendix A.

16.1. Preliminary Lemmas E1–E3

Before we prove Lemma A1, we review a few concepts from Pollard (1990)
and state several lemmas that are used in the proof.

DEFINITION E1—Pollard (1990, Definition 3.3): The packing number
D(ξ�ρ�G) for a subset G of a metric space (G�ρ) is defined as the largest
b for which there exist points g(1)� � � � � g(b) in G such that ρ(g(s)� g(s′)) > ξ for
all s �= s′. The covering numberN(ξ�ρ�G) is defined to be the smallest number
of closed balls with ρ-radius ξ whose union covers G.

It is easy to see that N(ξ�ρ�G)≤D(ξ�ρ�G)≤N(ξ/2�ρ�G).
Let (Ω���P) be the underlying probability space equipped with probabil-

ity distribution P. Let {fn�i(ω�g) :g ∈ G� i ≤ n�n ≥ 1} be a triangular array of
random processes. Let

Fn�ω = {(
fn�1(ω�g)� � � � � fn�n(ω�g)

)′
:g ∈ G

}
�(16.1)
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Because Fn�ω ⊂ Rn, we use the Euclidean metric ‖ · ‖ on this space. For sim-
plicity, we omit the metric argument in the packing number function, that is,
we write D(ξ�G) in place of D(ξ�‖ · ‖�G) when G⊂ Fn�ω.

Let � denote the element-by-element product. For example, for a�b ∈ Rn,
a� b = (a1b1� � � � � anbn)

′. Let envelope functions of a triangular array of pro-
cesses {fn�i(ω�g) :g ∈ G� i ≤ n�n ≥ 1} be an array of functions {Fn(ω) =
(Fn�1(ω)� � � � �Fn�n(ω))

′ :n ≥ 1} such that |fn�i(ω�g)| ≤ Fn�i(ω) ∀i ≤ n�n ≥
1� g ∈ G�ω ∈Ω.

DEFINITION E2—Pollard (1990, Definition 7.9): A triangular array of pro-
cesses {fn�i(ω�g) :g ∈ G� i ≤ n�n≥ 1} is said to be manageable with respect to
envelopes {Fn(ω) :n≥ 1} if there exists a deterministic real function λ on (0�1]
for which (i)

∫ 1
0

√
logλ(ξ)dξ <∞ and (ii) D(ξ‖α� Fn(ω)‖�α� Fn�ω)≤ λ(ξ)

for 0< ξ≤ 1, all ω ∈Ω, all n-vectors α of nonnegative weights, and all n≥ 1.

LEMMA E1: If a row-wise i.i.d. triangular array of random processes {φn�i(ω�
g) :g ∈ G� i ≤ n�n ≥ 1} is manageable with respect to the envelopes {Fn(ω) :n ≥
1} and cn(ω)= (cn�1(ω)� � � � � cn�n(ω))

′ is anRn-valued function on the underlying
probability space, then

(a) {φn�i(ω�g)cn�i(ω) :g ∈ G� i ≤ n�n ≥ 1} is manageable with respect to the
envelopes

Fn(ω)= (
Fn�1(ω)

∣∣cn�1(ω)∣∣� � � � �Fn�n(ω)∣∣cn�n(ω)∣∣)′ for n≥ 1�(16.2)

(b) {Eφn�i(·� g) :g ∈ G� i ≤ n�n ≥ 1} is manageable with respect to the en-
velopes {EFn :n≥ 1} provided EFn�1 <∞ for all n≥ 1, and

(c) if another triangular array of random processes {φ∗
n�i(ω�g) :g ∈ G� i ≤

n�n ≥ 1} is manageable with respect to the envelopes {F∗
n (ω) :n ≥ 1}, then

{φ∗
n�i(ω�g) + φn�i(ω�g) :g ∈ G� i ≤ n�n ≥ 1} is manageable with respect to the

envelopes {Fn(ω)+ F∗
n (ω) :n≥ 1}.

LEMMA E2: If the triangular array of processes {fn�i(ω�g) :g ∈ G� i≤ n�n≥ 1}
is manageable with respect to the envelopes {Fn(ω) = (Fn�1(ω)� � � � �Fn�n(ω))

′ :
n≥ 1}, and there exist 0<η< 1 and 0<B∗ <∞ such that n−1

∑
i≤n EF

1+η
n�i ≤ B∗

for all n≥ 1, then

sup
g∈G

∣∣∣∣∣n−1
n∑
i=1

(
fn�i(ω�g)−Efn�i(·� g)

)∣∣∣∣∣→p 0�(16.3)

Lemma E1(b)–(c) imply that if {fn�i(ω�g) :g ∈ G� i ≤ n�n ≥ 1} is man-
ageable, then the triangular array of recentered processes {fn�i(ω�g) −
Efn�i(·� g) :g ∈ G� i ≤ n�n ≥ 1} also is manageable with respect to their cor-
responding envelopes. Lemma E2 is a uniform weak law of large numbers for
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triangular arrays of row-wise independent random processes. Lemma E2 is a
complement to Theorem 8.2 in Pollard (1990), which is a uniform weak law of
large numbers for independent sequences of random processes.

Lemma A1(a) is a functional central limit theorem result for multidimen-
sional empirical processes. We prove it using a functional central limit theorem
for real-valued empirical processes given in Pollard (1990, Thm. 10.3) and the
Cramér–Wold device.

For a ∈Rk/{0k}, let

fn�i(ω�g)= a′D−1/2
Fn

(θn)n
−1/2(16.4)

× [
m
(
Wn�i(ω)�θn�g

)−EFnm
(
Wn�i(·)�θn� g

)]
for ω ∈Ω� g ∈ G�

whereWn�i(·)=Wi, and the index n inWn�i signifies the fact that the distribution
of Wi is changing with n. The random variable fn�i(ω�g) depends on a, but for
notational simplicity, a does not appear explicitly in fn�i(ω�g). By definition,
we have

a′νn�Fn(θn� g)=
n∑
i=1

fn�i(ω�g)�(16.5)

Let

ρn�a
(
g�g∗)= (

nE
∣∣fn�i(·� g)− fn�i

(·� g∗)∣∣2)1/2
for g�g∗ ∈ G�(16.6)

We show in the proof of Lemma E3 below that, under the assumptions, the se-
quence {ρn�a(g�g∗) :n ≥ 1} converges for each pair g�g∗ ∈ G . In consequence,
the pointwise limit of ρn�a(·� ·) is an appropriate choice for the pseudo-metric
on G . Denote the limit by ρa(·� ·), that is,

ρa
(
g�g∗)= lim

n→∞
ρn�a

(
g�g∗)�(16.7)

LEMMA E3: For all a ∈ Rk \ {0} and any subsequence {(θan�Fan) :n ≥ 1} ∈
SubSeq(h2), for some k× k-matrix-valued covariance kernel h2 on G × G ,

(a) G is totally bounded under the pseudo-metric ρa,
(b) the finite-dimensional distributions of a′νan�Fan (θan� g) have Gaussian limits

with zero means and covariances given by a′h2(g�g
∗)a ∀g�g∗ ∈ G , which uniquely

determine a Gaussian distribution νa concentrated on the space of uniformly
ρa(·� ·)-continuous bounded functionals on G , Uρa(G), and

(c) a′νan�Fan (θan� ·) converges in distribution to νa.

The proofs of Lemmas E1–E3 are given below. The proof of Lemma E2 uses
the maximal inequality in (7.10) of Pollard (1990). The proof of Lemma E3
uses the real-valued empirical process result of Theorem 10.6 in Pollard (1990).
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16.2. Proof of Lemma A1(a)

Lemma A1 is stated in terms of subsequences {an}. For notational simplicity,
we prove it for the sequence {n}. All of the arguments in this subsection and
the next go through with {an} in place of {n}.

The following three conditions are sufficient for weak convergence:
(a) (G�ρ) is a totally bounded pseudo-metric space, (b) finite-dimensional
convergence holds: ∀{g(1)� � � � � g(L)} ⊂ G , (νn�Fn(θn� g(1))′� � � � � νn�Fn(θn� g(L))′)′
converges in distribution, and (c) {νn�Fn(θn� ·) :n≥ 1} is stochastically equicon-
tinuous. (For example, see Thm. 10.2 of Pollard (1990).)

First, we establish the total boundedness of the pseudo-metric space (G�ρ),
that is, N(ξ�ρ�G) <∞ for all ξ > 0. This is done by constructing a finite col-
lection of closed balls that covers (G�ρ).

Consider ξ > 0. Let Bρ(g�ξ) denote a closed ball centered at g with ρ-
radius ξ. Let #G denote the number of elements in G when G is a finite set.
(Throughout this proof, G denotes a subset of G , not the envelope function
that appears in Assumption M.) For j = 1� � � � �k, let ej be a k-dimensional vec-
tor with the jth coordinate equal to 1 and all other coordinates equal to zero.
Then, ej ∈ Rk \ {0}, and by Lemma E3(a), the pseudo-metric spaces (G�ρej )
are totally bounded. Consequently, for all G⊂ G , (G�ρej ) is totally bounded.
Our construction of the collection of closed balls is based on the following re-
lationship between {ρej : j ≤ k} and ρ: ∀g�g∗ ∈ G ,

ρ2
(
g�g∗)= tr

(
h2(g�g)− h2

(
g�g∗)− h2

(
g∗� g

)+ h2

(
g∗� g∗))(16.8)

= lim
n→∞

EFn

∥∥D−1/2
Fn

(θn)
[
m̃(Wi� θn� g)− m̃

(
Wi�θn�g

∗)]∥∥2

= lim
n→∞

k∑
j=1

ρ2
n�ej

(
g�g∗)=

k∑
j=1

ρ2
ej

(
g�g∗)�

where the second equality holds by (16.7), which is proved in (16.40)–(16.41).
We start with j = 1. Because (G�ρe1) is totally bounded, we can find a set

G1 ⊂ G such that

#G1 =N(ξk�ρe1�G) and sup
g∈G

min
g∗∈G1

ρe1

(
g�g∗)≤ ξk�(16.9)

where ξk = ξ/(2
√
k). For all g ∈ G1, let B1

ρe1
(g�ξk) = Bρe1

(g�ξk) ∩ G . Then,⋃
g∈G1

B1
ρe1
(g�ξk) covers G .

Because B1
ρe1
(g�ξk) ⊂ G , (B1

ρe1
(g�ξk)�ρe2) is totally bounded. We are then

able to choose a set G2�g such that

#G2�g =N
(
ξk�ρe2�B

1
ρe1
(g�ξk)

)
and(16.10)

sup
g′∈B1

ρe1
(g�ξk)

min
g∗∈G2�g

ρe2

(
g′� g∗)≤ ξk�
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Let G2 = ⋃
g∈G1

G2�g. We have #G2 = ∑
g∈G1

#G2�g < ∞. For all g ∈ G1 and
g′ ∈G2�g, let

B2
ρe2

(
g′� ξk

)= Bρe2

(
g′� ξk

)∩B1
ρe1
(g�ξk)�(16.11)

By construction,
⋃

g′∈G2�g
B2
ρe2
(g′� ξk) covers B1

ρe1
(g�ξk). Because

⋃
g∈G1

B1
ρe1
(g�

ξk) covers G ,
⋃

g′∈G2
B2
ρe2
(g′� ξk) covers G .

Repeat the previous steps to obtain, in turn, G3, {B3
ρe3
(g�ξk) :g ∈G3}� � � � �

Gk, {Bk
ρek
(g�ξk) :g ∈Gk}. One can induce that (i) #Gk <∞, (ii)

⋃
g′∈GkB

k
ρek
(g′�

ξk) covers G , and (iii) ∀g ∈ G , there exists (g(k)� g(k−1)� � � � � g(1)) ∈Gk ×Gk−1 ×
· · · ×G1 such that

g ∈ Bk
ρek

(
g(k)� ξk

)⊂ Bk−1
ρek−1

(
g(k−1)� ξk

)⊂ · · · ⊂ B1
ρe1

(
g(1)� ξk

)
�(16.12)

Thus,

ρ
(
g�g(k)

)=
(

k∑
j=1

ρ2
ej

(
g�g(k)

))1/2

≤
(
ξ2

4k
+ 4ξ2

4k
+ · · · + 4ξ2

4k

)1/2

< ξ�(16.13)

Equation (16.13) implies that
⋃

g∈Gk B
k
ρ(g�ξ) covers G , Gk is the desired finite

collection we set out to construct, N(ξ�ρ�G)≤ #Gk <∞, and (G�ρ) is totally
bounded.

Second, we show that finite-dimensional convergence holds. By Lemma E3,
the finite-dimensional random vector (a′νn�Fn(θn� g

(1))� � � � � a′νn�Fn(θn� g
(I)))′

converges in distribution:⎛⎜⎝ a
′νn�Fn

(
θn�g

(1)
)

���

a′νn�Fn
(
θn�g

(L)
)
⎞⎟⎠(16.14)

→d N

⎛⎜⎝0�

⎛⎜⎝ a
′h2

(
g(1)� g(1)

)
a · · · a′h2

(
g(1)� g(L)

)
a

��� · · · ���

a′h2

(
g(L)� g(1)

)
a · · · a′h2

(
g(L)� g(L)

)
a

⎞⎟⎠
⎞⎟⎠

for all a ∈Rk. Thus, by the Cramér–Wold device, for all g(1)� g(2)� � � � � g(L) ∈ G ,⎛⎜⎝ νn�Fn
(
θn�g

(1)
)

���

νn�Fn
(
θn�g

(L)
)
⎞⎟⎠→d N

⎛⎜⎝0�

⎛⎜⎝h2

(
g(1)� g(1)

) · · · h2

(
g(1)� g(L)

)
��� · · · ���

h2

(
g(L)� g(1)

) · · · h2

(
g(L)� g(L)

)
⎞⎟⎠
⎞⎟⎠ �(16.15)

Lastly, we show that {νn�Fn(θn� ·) :n ≥ 1} is stochastically equicontinuous
with respect to ρ. By Lemma E3, {e′

jνn�Fn(θn� ·) :n ≥ 1} is stochastically
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equicontinuous with respect to ρej for all j ≤ k. (Weak convergence im-
plies stochastic equicontinuity.) Because ρ(g�g∗)≥ ρej (g�g

∗) for all g�g∗ ∈ G ,
{e′

jνn�Fn(θn� ·) :n ≥ 1} is stochastically equicontinuous with respect to ρ for all
j ≤ k. Note that e′

jνn�Fn(θn� ·) is the jth coordinate of νn�Fn(θn� ·). Therefore,
{νn�Fn(θn� ·) :n≥ 1} is stochastically equicontinuous with respect to ρ. Q.E.D.

16.3. Proof of Lemma A1(b)

It suffices to show that each element of D−1/2
F (θ)Σ̂n(θ�g�g

∗)D−1/2
F (θ) con-

verges in probability uniformly over g�g∗ ∈ G . Suppose 1 ≤ j� j′ ≤ k. The
(j� j′)th element of D−1/2

Fn
(θn)Σ̂n(θn� g�g

∗)D−1/2
Fn

(θn) can be decomposed into
two parts:

n−1
n∑
i=1

σ−1
Fn�j
(θn)mj(Wi�θn)mj′(Wi� θn)σ

−1
Fn�j′(θn)gj(Xi)g

∗
j′(Xi)(16.16)

− σ−1
Fn�j
(θn)m̄n�j(θn� g)m̄n�j′

(
θn�g

∗)σ−1
Fn�j′(θn)

≡ n−1
n∑
i=1

fmmn�i�j�j′
(
ω�g�g∗)

− n−1
n∑
i=1

fmn�i�j(ω�g)

(
n−1

n∑
i=1

fmn�i�j′
(
ω�g∗))�

where

fmn�i�j(ω�g)= σ−1
Fn�j
(θn)mj(Wi�θn)gj(Xi) and(16.17)

fmmn�i�j�j′
(
ω�g�g∗)= fmn�i�j(ω�g)f

m
n�i�j′

(
ω�g∗)�

Note that {fmmn�i�j�j′(ω�g�g
∗) :g�g∗ ∈ G� i ≤ n�n ≥ 1} and {fmn�i�j(ω�g) :g ∈ G� i ≤

n�n ≥ 1} are triangular arrays of row-wise i.i.d. random processes. We show
the uniform convergence of their sample means using Lemma E2.

We first study fmn�i�j(ω�g). Let

F m
n�ω�j =

{(
fmn�1�j(ω�g)� � � � � f

m
n�n�j(ω�g)

)′
:g ∈ G

}
�(16.18)

By Assumption M(c) and Lemma E1, {fmn�i�j(ω�g) : i ≤ n, g ∈ G} are manage-
able with respect to the envelopes

Fm
n�·�j(ω)= (

Fm
n�1�j(ω)� � � � �F

m
n�n�j(ω)

)′
� where(16.19)

Fm
n�i�j(ω)=G(Xi)σ

−1
Fn�j
(θn)

∣∣mj(Wi�θn)
∣∣�
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In consequence, there exist functions λj : (0�1] → [0�∞) for j ≤ k such
that

D
(
ξ
∣∣α� Fm

n�·�j
∣∣�α� F m

n�ω�j

)≤ λj(ξ)(16.20)

for all α ∈ [0�∞)n, ω ∈ Ω, and n ≥ 1 and
√

logλj(ξ) is integrable over
(0�1].

Because the data are i.i.d., we have, for all 0<η≤ 1 and all n,

n−1
n∑
i=1

E
(
Fm
n�i�j

)1+η = E
(
Fm
n�1�j

)1+η
(16.21)

≤ (
EFnG

δ1(Xi)
)(1+η)/δ1

(
EFn

∣∣∣∣mj(W1� θn)

σFn�h�j(θn)

∣∣∣∣δ2
)(1+η)/δ2

<∞�

where δ2 = (1+η)δ1/(δ1 −1−η). The first inequality above holds by Hölder’s
inequality and the second holds by Assumption M(b), δ2 ≤ 2 + 4/(δ1 − 1 −
η) ≤ 2 + 4/(4δ−1 + 1 − η) ≤ 2 + δ, and condition (vi) of (2.3). Therefore, by
Lemma E2,

sup
g∈G

∣∣∣∣∣n−1
n∑
i=1

fmn�i�j(ω�g)−Efmn�1�j(·� g)
∣∣∣∣∣→p 0�(16.22)

Now we study fmmn�i�j�j′(ω�g�g
∗). For all n≥ 1 and ω ∈Ω, let

F mm
n�ω�j�j′ =

{(
fmmn�1�j�j′

(
ω�g�g∗)� � � � � fmmn�n�j�j′

(
ω�g�g∗))′ :g�g∗ ∈ G

}
�(16.23)

Then, F mm
n�ω�j�j′ = F m

n�ω�j � F m
n�ω�j . Let Fmm

n�·�j�j′(ω)= Fm
n�·�j(ω)� Fm

n�·�j′(ω). We have:
for all α ∈ [0�∞)n, ω ∈Ω, and n≥ 1,

D
(
ξ
∣∣α� Fmm

n�·�j�j′(ω)
∣∣�α� F mm

n�ω�j�j′
)

(16.24)

=D
(
ξ
∣∣α� Fmm

n�·�j�j′(ω)
∣∣�α� F m

n�ω�j � F m
n�ω�j

)
≤D

(
ξ

4

∣∣α� Fm
n�·�j′(ω)� Fm

n�·�j(ω)
∣∣�α� Fm

n�·�j′(ω)� F m
n�ω�j

)
·D

(
ξ

4

∣∣α� Fm
n�·�j(ω)� Fm

n�·�j′(ω)
∣∣�α� Fm

n�·�j(ω)� F m
n�ω�j′

)
≤ λj(ξ/4)λj′(ξ/4)�
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where the first inequality holds by equation (5.2) in Pollard (1990) and the
second inequality holds by (16.20). We have∫ 1

0

√
log

(
λj(ξ/4)λj′(ξ/4)

)
dξ(16.25)

=
∫ 1

0

√
logλj(ξ/4)+ logλj′(ξ/4)dξ

≤ 4
∫ 1/4

0

(√
logλj(ξ)+

√
logλj′(ξ)

)
dξ <∞�

where the first inequality holds by
√
a+ b≤ √

a+√
b. Therefore, {fmmn�i�j�j′(ω�g�

g∗) :g�g∗ ∈ G� i ≤ n�n ≥ 1} are manageable with respect to the envelopes
{Fmm

n�·�j�j′(ω) :n≥ 1}.
Let η be a small positive number. We have

n−1
∑
i≤n

E
(
Fmm
n�j�j′(·)

)1+η
(16.26)

=E
(
Fmm
n�j�j′(·)

)1+η

≤ [
EFnG

δ3(X1)
]2(1+η)/δ3

[
EFn

∣∣∣∣mj(W1� θn)

σFn�j(θn)

∣∣∣∣2+δ](1+η)/(2+δ)

×
[
EFn

∣∣∣∣mj′(W1� θn)

σFn�j′(θn)

∣∣∣∣2+δ](1+η)/(2+δ)

<∞�

where δ3 = 2(1 +η)(2 + δ)/(δ− 2η), the first inequality holds by Hölder’s in-
equality, and the second holds for sufficiently small η> 0 by Assumption M(b)
and condition (vi) of (2.3).

With the manageability of {fmmn�i�j�j′(ω�g�g
∗) :g�g∗ ∈ G� i ≤ n�n ≥ 1} and

(16.26), Lemma E2 gives

sup
g�g∗∈G

∣∣∣∣∣n−1
n∑
i=1

fmmn�i�j�j′
(
ω�g�g∗)−Efmmn�1�j�j′

(·� g�g∗)∣∣∣∣∣→p 0�(16.27)

By (16.16), (16.22), (16.27), as well as |Efmmn�1�j(·� g)| ≤ E(Fm
n�1�j)

1+η < ∞, we
conclude that the difference between the (j� j′)th element of D−1/2

Fn
(θn)Σ̂n(θn�

g�g∗)D−1/2
Fn

(θn) and Efmmn�1�j�j′(·� g�g∗) − Efmn�1�j(·� g)Efmn�1�j′(·� g∗) converges to
zero uniformly over (g�g∗) ∈ G 2.
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By definition,

Efmmn�1�j�j′
(·� g�g∗)−Efmn�1�j(·� g)Efmn�1�j′

(·� g∗)(16.28)

=EFn

[
σ−1
Fn�j
(θn)σ

−1
Fn�j′(θn)mj(W1� θn)gj(X1)mj′(W1� θn)g

∗
j′(X1)

]
−EFn

[
σ−1
Fn�j
(θn)mj(W1� θn)gj(X1)

]
×EFn

[
σ−1
Fn�j′(θn)mj′(W1� θn)g

∗
j′(X1)

]
= σ−1

Fn�j
(θn)σ

−1
Fn�j′(θn)

[
ΣFn

(
θn�g�g

∗)]
j�j′

→ [
h2

(
g�g∗)]

j�j′�

where the convergence holds uniformly over (g�g∗) ∈ G 2 by conditions (i) and
(iv) in Definition SubSeq(h2). This completes the proof of Lemma A1(b).

Q.E.D.

16.4. Proof of Lemma E1

Part (a) is proved by a similar, but simpler, argument to that given in (16.24)–
(16.25).

Next, we prove part (b). Because EFn�i <∞ and the processes {φn�i(ω�g) :
g ∈ G� i ≤ n�n ≥ 1} are row-wise i.i.d., EFn ≡ {Eφn�i(·� g) · 1n :g ∈ G} is a sub-
set of a one-dimensional affine subspace of Rn with diameter no greater than
2EFn�i. Thus, α� EFn is a subset of a one-dimensional affine subspace of Rn

with diameter no greater than 2‖α‖EFn�i. By Lemma 4.1 in Pollard (1990), we
have: for all n≥ 1,

D
(
ξ‖α�EFn‖�α�EFn

)≤ 6‖α‖EFn�i/
(
ξ‖α�EFn‖

)= 6/ξ�(16.29)

Because
∫ 1

0

√
log(6/ξ)dξ= 3

√
π <∞, part (b) holds.

Finally, we prove part (c). Let λ∗
φ(ξ) : (0�1] → R+ be the square-root-log

integrable function such that

D
(
ξ
∥∥α� F∗

n (ω)
∥∥�α� F ∗

n�ω

)≤ λ∗
φ(ξ) for 0< ξ≤ 1�(16.30)

for all α ∈ [0�∞)n, ω ∈Ω, and n≥ 1. Let

F ∗
n�ω = {

φ∗
n(ω�g) :g ∈ G

}
�(16.31)

F sum
n�ω = {

φn(ω�g)+φ∗
n(ω�g) :g ∈ G

}
�

F +
n�ω = F ∗

n�ω ⊕ Fn�ω ≡ {
a+ b ∈Rn :a ∈ Fn�ω� b ∈ F ∗

n�ω

}
�

where φn(ω�g)= (φn�1(ω�g)� � � � �φn�n(ω�g))
′. Let

F sum
n (ω)= Fn(ω)+ F∗

n (ω)�(16.32)
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Then, for 0< ξ≤ 1 and α ∈ [0�∞)n,

D
(
ξ
∥∥α� F sum

n (ω)
∥∥�α� F sum

n�ω

)
(16.33)

≤D
(
ξ
∥∥α� F sum

n (ω)
∥∥�α� F +

n�ω

)
≤D

(
ξ
(∥∥α� Fn(ω)

∥∥+ ∥∥α� F∗
n (ω)

∥∥)/√2�α� F +
n�ω

)
≤D

(
ξ
∥∥α� Fn(ω)

∥∥/(2√
2)�α� Fn�ω

)
×D

(
ξ
∥∥α� F∗

n (ω)
∥∥/(2√

2)�α� F ∗
n�ω

)
≤ λφ

(
ξ/(2

√
2)
)
λ∗
φ

(
ξ/(2

√
2)
)
�

where λφ(ξ) denotes the packing number bounding function given in Defini-
tion E2 for the processes {φn(ω�g) :g ∈ G� i ≤ n�n ≥ 1}, the first inequality
holds because F sum

n�ω ⊂ F +
n�ω, the second inequality holds because D(x�G) is

decreasing in x and ‖a + b‖ ≥ (‖a‖ + ‖b‖)/√2 for a�b ∈ [0�∞)n, the third
inequality holds by a stability result for packing numbers (see Pollard (1990,
p. 22)), and the last inequality holds by the manageability of {φn(ω�g) :g ∈
G� i≤ n�n≥ 1} and (16.30).

The function λφ(ξ/(2
√

2))λ∗
φ(ξ/(2

√
2)) is square-root-log integrable by

(16.25), which completes the proof of part (c). Q.E.D.

16.5. Proof of Lemma E2

We prove convergence in probability by showing convergence in L1. We have

E sup
g∈G

∣∣∣∣∣n−1
n∑
i=1

[
fn�i(·� g)−Efn�i(·� g)

]∣∣∣∣∣(16.34)

≤ n−1KE

(
n∑
i=1

F 2
n�i

)1/2

≤ n−1KE

(
n∑
i=1

F 1+η
n�i

)1/(1+η)

≤ n−1K

(
E

n∑
i=1

F 1+η
n�i

)1/(1+η)

≤ n−η/(1+η)K
(
B∗)1/(1+η) → 0 as n→ ∞�

where the first inequality holds for some constantK <∞ by manageability and
the maximal inequality (7.10) in Pollard (1990), the second inequality holds
using 0<η< 1 by applying the inequality

∑n

i=1 x
s
i ≤ (

∑n

i=1 xi)
s, which holds for

s ≥ 1 and xi ≥ 0 for i= 1� � � � � n, with xi = F 1+η
n�i and s = 2/(1+η) > 0, the third

inequality holds by the concavity of the function f (x) = x1/(1+η) when η > 0,
and the last inequality holds because n−1

∑n

i=1EF
1+η
n�1 ≤ B∗for all n≥ 1. Q.E.D.



76 D. W. K. ANDREWS AND X. SHI

16.6. Proof of Lemma E3

For notational simplicity, we prove Lemma E3 for the sequence {n}, rather
than the subsequence {an}. All of the arguments in this subsection go through
with {an} in place of {n}.

The conclusions of Lemma E3 are implied by the result of Theorem 10.6 of
Pollard (1990), which relies on the following five conditions:

(i) the {fni(ω�g) :g ∈ G} defined in (16.4) are manageable with respect to
some envelope Fa�n(ω)= (Fa�n�1(ω)� � � � �Fa�n�n(ω))

′,
(ii) limn→∞Ea′νn�Fn(θn� g)νn�Fn(θn� g

∗)′a= a′h2(g�g
∗)a for all g, g∗ ∈ G ,

(iii) lim supn→∞
∑n

i=1EF
2
a�n�i <∞,

(iv)
∑n

i=1EF
2
a�n�i{Fa�n�i > ξ} → 0 as n→ ∞ for each ξ > 0, and

(v) the limit ρa(·� ·) is well defined by (16.7), and for all deterministic
sequences {g(n)} and {g∗

(n)}, if ρa(g(n)� g∗
(n)) → 0, then ρn�a(g(n)� g

∗
(n)) → 0 as

n→ ∞.
Now we verify the five conditions:
(i) By (16.4), we have

fn�i(ω�g)=
k∑
j=1

ajσ
−1
Fn�j
(θn)n

−1/2
[
mj

(
Wn�i(ω)�θn

)
gj
(
Xn�i(ω)

)
(16.35)

−EFnmj(Wi�θn)gj(Xi)
]
�

where aj denotes the jth element of a. By Assumption M(c), {gj(Xn�i(ω)) : i≤
n} are manageable with respect to envelopes G(Xn�i(ω)). Therefore, by
Lemma E1(a)–(c), {fn�i(ω�g) : i ≤ n} is manageable with respect to envelopes
Fa�n = (Fa�n�1� � � � �Fa�n�n)

′ defined by

Fa�n�i(ω)= n−1/2
k∑
j=1

ajσ
−1
Fn�j
(θn)

[∣∣mj

(
Wn�i(ω)�θn

)∣∣G(Xni(ω)
)

(16.36)

+EFn

∣∣mj(Wi�θn)
∣∣G(Xi)

]
�

(ii) By (16.5), we have

Ea′νn�Fn(θn� g)ν
′
n�Fn

(
θn�g

∗)a(16.37)

=E

(
n∑
i=1

fn�i(·� g)
)(

n∑
i=1

fn�i
(·� g∗))′

= nEfn�1(·� g)fn�1
(·� g∗)′

= n−1a′D−1/2
Fn

(θn) · CovFn
(
m(W1� θn� g)�m

(
W1� θn� g

∗)) ·D−1/2
Fn

(θn)a

= n−1a′D−1/2
Fn

(θn)ΣFn

(
θn�g�g

∗)D−1/2
Fn

(θn)a�
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where the second equality holds because the data are i.i.d. and the third in-
equality holds by (16.4). Condition (i) in Definition SubSeq(h2) completes the
verification of condition (ii) above.

(iii) Next, we verify lim supn→∞
∑n

i=1EF
2
a�n�i <∞. By the linear structure of

Fa�n�i, it suffices to show that

lim sup
n→∞

EFnσ
−2
Fn�j
(θn)

∣∣mj(Wi�θn)
∣∣2G2(Xi) <∞ and(16.38)

lim sup
n→∞

EFnσ
−1
Fn�j
(θn)

∣∣mj(Wi�θn)
∣∣G(Xi) <∞�

The latter is implied by the former and the former holds by the same argument
as in (16.21) with η= 1.

(iv) For B as in condition (vi) of (2.3), ξ > 0, and η> 0 sufficiently small,
n∑
i=1

EF 2
a�n�i{Fa�n�i > ξ}(16.39)

= nEF 2
a�n�i{Fa�n�i > ξ} ≤ nEF 2+η

a�n�i/ξ
η

≤ 2(2k)2+η

nη/2ξη

k∑
j=1

|aj|2+ηEFnG
2+η(Xi)σ

−2−η
Fn�j

(θn)
∣∣mj(Wi�θn)

∣∣2+η

≤ 2(2k)2+η

nη/2ξη

k∑
j=1

|aj|2+η[EFnG
δ4(X1)

](2+η)/δ4B(2+η)/(2+δ)

≤ 2(2k)2+ηB(2+η)/(2+δ)C(2+η)/δ1

nη/2ξη

k∑
j=1

|aj|2+η → 0�

where the first equality holds because the data are identically distributed,
the second inequality holds by Jensen’s inequality using the convexity of
ψ(x) = x2+η, that is, ((2k)−1

∑k

j=1(|Xj| + E|Xj|))2+η ≤ (2k)−1
∑k

j=1(|Xj|2+η +
(E|Xj|)2+η) and (E|Xj|)2+η ≤ E|Xj|2+η, the third inequality holds with δ4 =
(2 + η)(2 + δ)/(δ − η) by the same arguments as in (16.26), and the fourth
inequality holds by Assumption M(b) and δ4 ≤ δ1 for sufficiently small η.

(v) First we show that the limit ρa(·� ·) is well defined by (16.7). For any
g�g∗ ∈ G ,

ρ2
n�a

(
g�g∗)(16.40)

= nE
(
fn�i(·� g)− fn�i

(·� g∗))2

= a′D−1/2
Fn

(θn)VarFn
(
m(Wi�θn�g)−m

(
Wi�θn�g

∗))D−1/2
Fn

(θn)a

→ a′h2(g�g)a+ a′h2

(
g∗� g∗)a− a′h2

(
g�g∗)a− a′h2

(
g∗� g

)
a�
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where the convergence hold uniformly over G 2 by condition (i) in Defini-
tion SubSeq(h2). Thus, ρa(g�g∗)= limn→∞ ρn�a(g�g∗) is well defined, and

lim
n→∞

sup
g�g∗∈G

∣∣ρn�a(g�g∗)− ρa
(
g�g∗)∣∣= 0�(16.41)

Lastly, we show the second property of condition (v). Let ξ > 0 be arbitrary.
Suppose ρa(g(n)� g∗

(n))→ 0. Then, there exists an N0 <∞ such that, for n≥N0,

ρa
(
g(n)� g

∗
(n)

)≤ ξ/2�(16.42)

By (16.41), we have

lim
m→∞

sup
n≥1

∣∣ρm�a(g(n)� g∗
(n)

)− ρa
(
g(n)� g

∗
(n)

)∣∣= 0�(16.43)

Thus, there exists an N1 <∞ such that, for all m≥N1,

sup
n≥1

∣∣ρm�a(g(n)� g∗
(n)

)− ρa
(
g(n)� g

∗
(n)

)∣∣≤ ξ/2�(16.44)

Take N = max{N0�N1}; then we have, for n≥N ,

ρn�a
(
g(n)� g

∗
(n)

)≤ ξ�(16.45)

Thus, ρa(g(n)� g∗
(n))→ 0 implies ρn�a(g(n)� g∗

(n))→ 0. Q.E.D.

17. SUPPLEMENTAL APPENDIX F

In Sections 17.1 and 17.5, this appendix provides additional material con-
cerning the Monte Carlo simulations in the quantile selection and entry game
models. In Sections 17.2 and 17.4, it provides all of the Monte Carlo simula-
tion results for the mean selection and interval-outcome regression models. In
Section 17.3, it provides some results for CLR-series CI’s with different up-
per bounds on the number of series terms considered by the cross-validation
procedure that is used to select the number of series terms.

17.1. Quantile Selection Model

Section 17.1.1 provides additional simulation results to those given in the
paper. Section 17.1.2 provides figures for the conditional moment functions
evaluated at the θ values at which the FCP’s are computed in Table IV of the
paper. Section 17.1.3 describes the computation of the Chernozhukov, Lee,
and Rosen (2013) (CLR) and Lee, Song, and Whang (2011) (LSW) CI’s.
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TABLE S-I

QUANTILE SELECTION MODEL, KINKED BOUND, AND LOWER ENDPOINT: VARIATIONS
ON THE BASE CASE

(a) Coverage Probabilities (b) False CP’s (CP-corrected)

Statistic: CvM/Max KS/Max CvM/Max KS/Max
Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n= 250� r1 = 7� ε= 5/100) .983 .984 .34 .52
n= 100 .981 .985 .34 .55
n= 500 .984 .984 .39 .54
n= 1000 .984 .980 .41 .54
r1 = 5 .981 .981 .34 .49
r1 = 9 .983 .986 .35 .55
r1 = 11 .984 .987 .36 .60
(κn�Bn)= 1/2(κn�bc�Bn�bc) .984 .997 .39 .51
(κn�Bn)= 2(κn�bc�Bn�bc) .990 .991 .38 .59
ε= 1/100 .981 .981 .34 .56

α= �5 .721 .710 .03 .06
α= �5 &n= 500 .741 .734 .04 .08

17.1.1. Additional Simulation Results

Table S-I reports CP and FCP results for variations on the base case for the
lower endpoint with the kinked bound DGP. (Table III of AS reports analogous
results for the lower endpoint with the flat bound.) The results are similar to
those in Table III of AS. There is relatively little sensitivity to the sample size,
the number of cubes g, and the choice of ε. There is relatively little sensitivity
of the CP’s to the choice of (κn�Bn), but some sensitivity of the FCP’s with the
base case choice being superior to values of (κn�Bn) that are twice or half as
large. The CI with α = �5 is half-median unbiased and avoids the well-known
problem of inward-bias. But, it is farther from being median-unbiased than in
the flat bound case.

Next, Table S-II provides coverage probability (CP) and false coverage
probability (FCP) results for the upper endpoint of the identified interval in
the quantile selection model.60 (Table I of AS provides analogous results for
the lower endpoint.) Table S-II provides a comparison of CI’s based on the
CvM/Sum, CvM/QLR, CvM/Max, KS/Sum, KS/QLR, and KS/Max statistics,
coupled with the PA/Asy and GMS/Asy critical values. The relative attributes
of the different CI’s are quite similar to those reported in Table I of AS for
the lower endpoint. None of the CI’s under-cover. So, the relative attributes of

60For the upper endpoint with the flat bound and the upper endpoint with the kinked bound,
the FCP’s are computed at the points ¯θ(1)+ 0�40 × sqrt(250/n) and ¯θ(1)+ 0�75 × sqrt(250/n),
respectively. These points are chosen to yield similar values for the FCP’s across the different
cases considered.
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TABLE S-II

QUANTILE SELECTION MODEL, UPPER ENDPOINT: BASE CASE TEST STATISTIC COMPARISONS

Statistic

DGP Crit Val CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(a) Coverage Probabilities
Flat Bound PA/Asy �994 �994 �993 �984 �984 �982

GMS/Asy �971 �971 �970 �974 �974 �972

Kinked Bound PA/Asy �996 �996 �996 �989 �989 �988
GMS/Asy �974 �974 �972 �976 �976 �975

(b) False Coverage Probabilities (coverage probability corrected)
Flat Bound PA/Asy �73 �72 �71 �70 �70 �69

GMS/Asy �42 �42 �42 �55 �55 �55

Kinked Bound PA/Asy �73 �73 �72 �74 �74 �73
GMS/Asy �41 �41 �41 �52 �52 �52

the CI’s are determined by their FCP’s. The CvM-based CI’s have lower FCP’s
than the KS-based CI’s. The CI’s that use the GMS/Asy critical values have
lower FCP’s than those based on the PA/Asy critical values. The FCP’s do not
depend on whether the Sum, QLR, or Max version of the statistic is employed.
Hence, the best CI of those considered is the CvM/Max/GMS/Asy CI, or this
CI with Max replaced by Sum or QLR.

17.1.2. Conditional Moment Function Figures

Figure S-1 shows the conditional moment functions β(x�θ) (defined in
(10.6)), as functions of x, evaluated at the θ values 1�531, 1�181, and 1�151
at which the FCP’s are computed in Tables I and II of the paper in the flat,
kinked, and peaked cases, respectively.

FIGURE S-1.—Conditional moment functions for the quantile selection model evaluated at θ
values below the lower endpoint of the identified set.
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17.1.3. Description of the CLR-Series, CLR-Local Linear, and LSW Confidence
Intervals

Here we describe the computation of the CLR and LSW CI’s reported in Ta-
ble IV for the quantile selection model. These are two-sided CI’s. In the quan-
tile selection model, the parameter θ is not separable from its bound functions.
In consequence, for the CLR CI’s, we follow the method in Example C in the
2011 version of CLR. We define an auxiliary parameter β:

β(θ)= min
x∈R

β(x�θ)� where(17.1)

β(x�θ)=
{
E
(
1(Yi ≤ θ�Ti = t)+ 1(Ti �= t)− τ|Xi = x

)
� if x < x0�

E
(
τ− 1(Yi ≤ θ�Ti = t)|Xi = x

)
� if x≥ x0�

(17.2)

We obtain a CLR bound estimator β̂α(θ) for a null θ value using the GAUSS
code provided by CLR and let the nominal 1 − α confidence set for θ be
CSCLR

n (α) = {θ : β̂α(θ) ≥ 0}.61 Note that the CLR CI is constructed using the
auxiliary parameter β, for which the bound is one-sided. Therefore, the one-
sided inference procedure of CLR is applied, even though the resulting confi-
dence set for θ is two-sided (if it is an interval).

To implement the LSW confidence set in the quantile selection model, for
each θ, we use LSW’s test for the null hypothesis H0 :−β(x�θ) ≤ 0�∀x ∈ X
and let the confidence set consist of all of the θ values for which the test does
not reject the null. We use the GAUSS code provided by LSW to carry out the
LSW test.62

We report results for the L1 version of the LSW CI with inverse standard
deviation weight function and bandwidth parameter ch = 2�0. These choices
provide the best overall performance of the LSW CI. As noted in a footnote
29 in Section 10.1 of the paper, we use the inverse standard deviation weight
function, rather than the uniform weight function, because the CI that uses the
latter performs very poorly in terms of FCP’s in the cases reported in Table V
of the paper.

As noted in footnote 28 in Section 10.1 of the paper, the number of series
terms is selected by cross-validation with an upper bound of 30 on the number
of series terms with the CLR-series CI, whereas CLR used an upper bound of
9 in the 2011 version of their paper. The footnote explains why. Briefly, the
choice of 9 performs very poorly in terms of CP’s in the cases considered in
Table V of the paper. The lower bound on the number of series terms is 5, as
in CLR.

61See the simulation section of the 2011 version of CLR for a description of what the code
does. We thank CLR for making their code available to us.

62See the simulation section of the 2012 version of LSW for a description of what the code
does. We thank LSW for making their code available to us.



82 D. W. K. ANDREWS AND X. SHI

17.2. Mean Selection Model

17.2.1. The Model

In this section, we consider the same mean selection model that is considered
in the 2009 working paper version of CLR (which considers the CLR CI’s, but
not the AS and LSW CI’s). As in the latter paper, all of the CI’s considered with
this model are one-sided CI’s of the form [l̂bn�∞) for some random variable
l̂bn. Hence, only a single moment inequality is considered and the Sum, Max,
and QLR statistics are identical. We compare the CP’s and FCP’s of the CI’s
based on the CvM and KS statistics and the PA and GMS critical values.63

We also compare the CvM/Max/GMS/Asy CI (abbreviated by AS below) with
several other CI’s in the literature, that is to say, the CLR-series, CLR-local
linear, and LSW CI’s.64

The model is essentially the same as the quantile selection model described
in the paper, except that the parameter of interest θ is the conditional mean
E(yi(1)|Xi = x0) for some x0, rather than the conditional quantile. In addition,
the QMIV assumption is replaced with the monotone instrumental variable
(MIV) assumption of Manski and Pepper (2000): for all (x1�x2) ∈ X 2 such
that x1 ≤ x2,

E
(
yi(1)|Xi = x1

)≤ E
(
yi(1)|Xi = x2

)
�(17.3)

The MIV assumption is not informative unless yi(t) has bounded support. Let
the support of yi(1) be [Yl�Yu]. The MIV assumption leads to the following
moment inequalities:

E
(
1(Xi ≤ x0)

[
θ−Yi1(Ti = 1)−Yl1(Ti �= 1)

]|Xi

)≥ 0 a.s. and(17.4)

E
(
1(Xi ≥ x0)

[
Yi1(Ti = 1)+Yu1(Ti �= 1)− θ

]|Xi

)≥ 0 a.s.

We only use the first inequality because we consider one-sided CI’s in this
model.

We consider the following data generating processes (DGP’s): yi(1) =
μ(Xi) + ui and [Yl�Yu] = [−1�96�1�96], where Xi ∼ Unif[−2�2] and ui ∼
1�96 ∧ ((−1�96) ∨ N(0�1)), Ti = 1{L(Xi) + εi ≥ 0}, where εi ∼ N(0�1) and
εi�ui, and Xi are independent of each other, and Yi = yi(Ti). Three speci-
fications of (μ(x)�σ(x)�L(x)) are considered, which yield flat, kinked, and
peaked bound functions for the conditional mean θ. For the flat bound DGP,
μ(x) = 0 = L(x). For the kinked bound DGP, μ(x) = 2(x ∧ 1) and L(x) =
x ∧ 1. For the peaked bound DGP, μ(x) = 2|x− 1| and L(x) = (x ∧ 1). The

63These comparisons are similar to those given in Table I of the paper for the quantile selection
model, but all of the CI’s are one-sided, not two-sided.

64These comparisons are similar to those given in Table IV of the paper for the quantile selec-
tion model, but all of the CI’s are one-sided, not two-sided.
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parameter of interest is the conditional mean of yi(1) at x0 = 1�5, that is,
θ=E(yi(1)|Xi = 1�5).

17.2.2. Description of the CLR-Series, CLR-Local Linear, and LSW Confidence
Intervals

Next, we describe the computation of the CLR and LSW CI’s reported in
Table S-IV (given below) for the mean selection model. In this model, all of
the CI’s are one-sided CI’s. In the mean selection model, the parameter θ is
separable from its bound function:

θ≥ sup
x∈R

θl(x)� where(17.5)

θl(x)=E
(
Yi1(Ti = t)+Yl1(Yi �= t)|Xi = x

)
for x < x0�

We obtain a CLR bound estimator θ̂α using the GAUSS code provided by CLR
and let the nominal 1 − α confidence set for θ be CSCLR

n (α)= {θ :θ≥ θ̂α}. This
yields a one-sided CI.

For the LSW CI, we compute a one-sided CI as well. For each θ, we use
LSW’s test for the null hypothesis H0 : (θl(x) − θ)1(x < x0) ≤ 0�∀x ∈ X and
let the CI consist of all of the θ values such that the test does not reject the
null. We use the GAUSS code provided by LSW to carry out the LSW test.

17.2.3. Simulation Results

We consider sample size n = 250 (which is also the base case sample size
for the quantile selection model in the paper). All results concern the lower
end of the identified interval for θ, which equals −�98, 1�372, and �530 in the
flat, kinked, and peaked bound cases, respectively.65 All results are based on
(5000, 5001) coverage probability and critical value repetitions, respectively.
The FCP’s are CP-corrected, as described in Section 10 of the paper.66

Tables S-III and S-IV report the simulation results for the mean selection
model.

Table S-III provides CP and FCP comparisons of the CI’s based on the test
statistics CvM/Max and KS/Max (which are equivalent to Sum and QLR ver-
sions of these statistics because only one moment function is considered) and
the PA/Asy and GMS/Asy critical values. The CP results are similar to those
for the quantile selection model given in Table I. All versions of the CI’s have
good CP’s (i.e., CP’s greater than or equal to �95). In contrast to the quantile

65The DGP is the same for FCP’s as for CP’s; just the value θ that is to be covered is different.
For the lower endpoint of the identified set, FCP’s are computed for θ equal to ¯θ(1)− c, where
c = �155, �68, and �78 in the flat, kinked, and peaked bound cases, respectively. These points are
chosen to yield similar values for the FCP’s across the three cases.

66That is, a positive constant is added to the critical value such that the CP for the given case
being considered is �95 whenever the CP for the given case (without correction) is less than �95.
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TABLE S-III

MEAN SELECTION MODEL: BASE CASE TEST STATISTIC AND CRITICAL VALUE COMPARISONS

Statistic

DGP Crit Val CvM KS

(a) Coverage Probabilities
Flat Bound PA/Asy �953 �961

GMS/Asy �947 �959

Kinked Bound PA/Asy 1�000 �996
GMS/Asy �958 �931

Peaked Bound PA/Asy 1�000 1�000
GMS/Asy �999 �998

(b) False Coverage Probabilities (coverage probability corrected)
Flat Bound PA/Asy �37 �63

GMS/Asy �37 �63

Kinked Bound PA/Asy �81 �55
GMS/Asy �35 �34

Peaked Bound PA/Asy �58 �66
GMS/Asy �38 �57

selection model, the CvM/Max/PA/Asy has CP close to �95 in the flat bound
case. This can be attributed to the one-sided nature of the CI’s in Table S-III.
Those in the quantile selection model are two-sided.

The FCP results in Table S-III also are similar to those in Table I. The
GMS/Asy critical value outperforms the PA/Asy critical value in the kinked and
peaked bound cases and is equally good in the flat bound case. When using the
GMS/Asy critical values, the CvM statistic outperforms the KS version in terms
of FCP’s in the flat and peaked bound cases and has equally good performance
in the kinked bound case. The main differences between the FCP results in Ta-
ble S-III and Table I are (i) the GMS/Asy critical value has equal performance

TABLE S-IV

MEAN SELECTION MODEL: COMPARISONS OF AS CONFIDENCE INTERVALS WITH THOSE
PROPOSED IN CLR AND LSW

CP (95%) FCP (corrected) CP (50%)

CI Flat Kink Peak Flat Kink Peak Flat Kink Peak

n= 250
CvM/Max/GMS/Asy �947 �958 �999 �37 �35 �38 �46 �63 �97
CLR-series �946 �893 �983 �77 �38 �35 �51 �57 �91
CLR-local linear �947 �930 �987 �68 �30 �30 �49 �69 �91
LSW �939 1�000 1�000 �35 �86 �90 �57 �95 1�00
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to the PA/Asy critical value in the flat bound case, rather than better perfor-
mance, and (ii) the CvM form of the test statistic has equal performance to the
KS version in the kinked bound case, rather than better performance.

Overall, Table S-III shows that the CvM/Max statistic combined with the
GMS/Asy critical value performs very well. It has CP equal to �947 in the flat
bound case and CP greater than �95 in the kinked and peaked bound cases. It
has the lowest FCP in the flat and peaked bound cases and very close to the
lowest FCP in the kinked bound case.

Table S-IV compares the AS CI with the CLR-series, CLR-local linear, and
LSW CI’s in terms of CP’s and FCP’s. The AS CI has good CP properties, that
is to say, CP’s greater than or equal to �947. The CLR-series and CLR-local
linear CI’s have minimum CP’s over the three bounds of �893 and �930, which
demonstrates that their finite-sample sizes are less than �95, but not too much
less for the local linear version (at least if the least favorable case is among the
three cases considered). The LSW CI has minimum CP of �939 over the three
bounds, which is close to �95. Compared to the results in Table IV for n= 250
(which gives results for two-sided CI’s in the quantile selection model), the CP
performance of AS is the same, CLR-local linear is better, CLR-series is worse,
and LSW is slightly worse (because of under-coverage in the flat bound case in
Table S-IV).

The LSW and AS CI’s have clearly the best (CP-corrected) FCP’s for the
flat bound case, with the LSW CI being slightly better than the AS CI. The
CLR-local linear and CLR-series CI’s have best (CP-corrected) FCP’s for the
kinked and peaked bound cases by a relatively narrow margin over the AS CI.
The LSW CI has poor FCP’s in the kinked and peaked cases.

The FCP performances of the AS CI relative to the CLR CI’s in Table S-IV
compared to Table IV (with n= 250) are better in Table S-IV for the flat and
peaked bound cases and a little worse for the kinked bound case. The FCP
performances of the LSW CI relative to the other CI’s are better in the flat
bound case in Table S-IV compared to Table IV (with n = 250) and worse in
the kinked and peaked cases in Table S-IV compared to Table IV.

17.3. CLR-series CI’s With Different Cross-Validation Upper Bounds

In this section, we present additional simulation results for CLR-series CI’s.
Specifically, we report results where the upper bound for the number of series
terms used in the cross-validation procedure used to determine the number of
series terms is 9, which is the choice used in the 2011 version of CLR, rather
than 30, which is used in Tables IV and V of the main paper. Footnote 28 in
Section 10.1 of the paper provides the reason for using an upper bound of 30.
Briefly, the reason is that an upper bound of 9 yields very poor performance in
terms of CP’s in the cases reported in Table S-IV below. For ease of compari-
son, results also are reported for the AS/CvM/Max/GMS/Asy CI.

Tables S-V, S-VI, and S-VII show that the CLR-series CI’s are sensitive to the
upper bound used in the cross-validation procedure in some cases. The CP’s
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TABLE S-V

QUANTILE SELECTION MODEL: COMPARISONS OF NOMINAL 95% CLR-SERIES CI’S WITH
CROSS-VALIDATION UPPER BOUNDS OF 30 AND 9

CP (95%) FCP (corrected) CP (50%)

CS Flat Kink Peak Flat Kink Peak Flat Kink Peak

n= 100
CvM/Max/GMS/Asy .957 .981 .989 .40 .34 .47 .52 .69 .73
CLR-series-30a .854 .894 .862 .80 .78 .79 .51 .67 .64
CLR-series-9 .889 .954 .945 .69 .35 .19 .54 .73 .71

n= 250
CvM/Max/GMS/Asy .951 .983 .997 .37 .34 .41 .52 .72 .82
CLR-series-30 .918 .951 .937 .70 .37 .24 .55 .76 .73
CLR-series-9 .939 .972 .979 .65 .39 .18 .57 .80 .79

n= 500
CvM/Max/GMS/Asy .954 .984 .998 .36 .39 .72 .51 .74 .88
CLR-series-30 .937 .975 .978 .70 .45 .49 .57 .80 .81
CLR-series-9 .950 .987 .989 .65 .44 .33 .59 .73 .84

aCLR-series-30 means that the upper bound on the number of series terms used in the cross-validation procedure
is 30. CLR-series-9 means that the upper bound is 9.

TABLE S-VI

PLATEAU BOUND FUNCTIONS: COMPARISONS OF NOMINAL 95% CLR-SERIES CI’S WITH
CROSS-VALIDATION UPPER BOUNDS OF 30 AND 9

CP FCP (CP-corrected)

AS CLR AS CLR

n CvM series-30 series-9 CvM series-30 series-9

DGP1 100 �986 .707 .734 �84 .88 .83
250 �975 .805 .734 �57 .82 .75
500 �975 .872 .525 �25 .72 .66

1000 �971 .909 .090 �03 .57 .38

DGP2 100 1�000 .394 .207 1�00 .91 .90
250 1�000 .683 .057 1�00 .85 .87
500 1�000 .833 .004 �97 .77 .84

1000 1�000 .900 .000 �70 .61 .72

DGP3 100 �970 .620 .736 �70 .89 .83
250 �969 .762 .665 �30 .83 .75
500 �963 .854 .436 �06 .70 .66

1000 �969 .901 .089 �00 .55 .43

DGP4 100 �998 .321 .241 �95 .91 .90
250 �997 .612 .021 �66 .86 .89
500 �994 .808 .000 �23 .74 .86

1000 �994 .893 .000 �01 .59 .79
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TABLE S-VII

MEAN SELECTION MODEL: COMPARISONS OF NOMINAL 95% CLR-SERIES CI’S WITH
CROSS-VALIDATION UPPER BOUNDS OF 30 AND 9

CP (95%) FCP (corrected) CP (50%)

CI Flat Kink Peak Flat Kink Peak Flat Kink Peak

n= 250
CvM/Max/GMS/Asy .947 .958 .999 .37 .35 .38 .46 .63 .97
CLR-series-30 .946 .893 .983 .77 .38 .35 .51 .57 .91
CLR-series-9 .960 .918 .992 .77 .31 .34 .52 .60 .92

and FCP’s change dramatically when the upper bound is changed from 30 to 9
in the intersection bound example for all four DGP’s and all four sample sizes,
especially for large sample sizes; see Table S-VI. The reason is that the upper
bound of 9 is binding in these cases. The CP’s and FCP’s also change noticeably
in the quantile selection model for the smaller sample sizes, especially with
n = 100, but also with n = 250; see Table S-V. This is due to the additional
noise that is introduced by allowing for a greater choice in the number of series
terms.

The computation times in minutes for 5000 CLR-series tests using 5001 crit-
ical value repetitions for each test (and using a 3�33 GHz processor running
GAUSS 6.0) for n = 100, 250, and 500 are 20, 24, and 44, respectively, when
the upper bound on the number of series terms is 30. The times are 10, 11, and
12, respectively, when the upper bound is 9.

17.4. Interval-Outcome Regression Model

17.4.1. Description of Model

Here we report simulation results for an interval-outcome regression model.
This model has been considered by Manski and Tamer (2002, Sec. 4.5). It is a
regression model where the outcome variable Y ∗

i is partially observed:

Y ∗
i = θ1 +Xiθ2 +Ui� where E(Ui|Xi)= 0 a.s.�(17.6)

for i= 1� � � � � n�

One observes Xi and an interval [YL�i�YU�i] that contains Y ∗
i : YL�i = �Yi� and

YU�i = �Yi�+1, where �x� denotes the integer part of x. Thus, Y ∗
i ∈ [YL�i�YU�i].

It is straightforward to see that the following conditional moment inequali-
ties hold in this model:

E(θ1 +Xiθ2 −YL�i|Xi)≥ 0 a.s. and(17.7)

E(YU�i − θ1 −Xiθ2|Xi)≥ 0 a.s.
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FIGURE S-2.—The identified set of the interval-outcome model.

In the simulation experiment, we take the true parameters to be (θ1� θ2) =
(1�1) (without loss of generality), Xi ∼U[0�1], and Ui ∼N(0�1). We consider
a base case sample size of n= 250, as well as n= 100, 500, and 1000.

The parameter θ= (θ1� θ2) is not identified. Figure S-2 shows the identified
set. It is a parallelogram in (θ1� θ2) space enclosed by thick solid lines with
vertices at (�5�1)� (�5�2)� (1�5�0), and (1�5�1). The point (1�1) is the true pa-
rameter. The thin solid lines are the lower bounds defined by the first moment
inequality and the dashed lines are the upper bounds defined by the second
moment inequality.

By symmetry, CP’s of CS’s are the same for the points (�5�1) and (1�5�1).
Also, they are the same for (�5�2) and (1�5�0). We focus on CP’s at the cor-
ner point (�5�1), which is in the identified set, and at points close to (�5�1) but
outside the identified set.67 The corner point (�5�1) is of interest because it is
a point in the identified set where CP’s of CS’s typically are strictly less than 1.
Due to the features of the model, the CP’s of CS’s typically equal 1 (or essen-
tially equal 1) at interior points, non-corner boundary points, and the corner
points (�5�2) and (1�5�0).

17.4.2. g Functions

The g functions employed by the test statistics are indicator functions of
hypercubes in [0�1]. It is not assumed that the researcher knows that Xi ∼
U[0�1] and so the regressor Xi is transformed via the method described in

67Specifically, the θ values outside the identified set are given by θ1 = 0�5 − 0�075 × (500/n)1/2

and θ2 = 1�0 − 0�050 × (500/n)1/2. These θ values are selected so that the FCP’s of the CS’s take
values in an interesting range for all values of n considered.
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TABLE S-VIII

INTERVAL-OUTCOME REGRESSION MODEL: BASE CASE TEST STATISTIC COMPARISONS

Statistic

Critical Value CvM/Sum CvM/QLR CvM/Max KS/Sum KS/QLR KS/Max

(a) Coverage Probabilities
PA/Asy �990 �993 �990 �989 �990 �989
GMS/Asy �950 �950 �950 �963 �963 �963

(b) False Coverage Probabilities (coverage probability corrected)
PA/Asy �62 �66 �61 �78 �80 �78
GMS/Asy �37 �37 �37 �61 �61 �61

Section 9 to lie in (0�1)�68 The hypercubes have side-edge lengths (2r)−1 for r =
r0� � � � � r1, where r0 = 1 and the base case value of r1 is 7. The base case number
of hypercubes is 56. We also report results for r1 = 5, 9, and 11, which yield 30,
90, and 132 hypercubes, respectively. With n = 250 and r1 = 7, the expected
number of observations per cube is 125, 62�5� � � � �20�8, or 17�9 depending on
the cube. With n= 250 and r1 = 11, the expected number also can equal 12�5
or 11�4. With n= 100 and r1 = 7, the expected number is 50, 25� � � � �8�3, or 7�3.

17.4.3. Simulation Results

Tables S-VIII, S-IX, and S-X provide results for the interval-outcome re-
gression model that are analogous to the results in Tables I–III for the quantile
selection model. In spite of the differences in the models—the former is linear
and parametric with a bivariate parameter, while the latter is nonparametric
with a scalar parameter—the results are similar.

TABLE S-IX

INTERVAL-OUTCOME REGRESSION MODEL: BASE CASE CRITICAL VALUE COMPARISONS

Critical Value

Statistic PA/Asy PA/Bt GMS/Asy GMS/Bt Sub

(a) Coverage Probabilities
CvM/Max �990 �995 �950 �941 �963
KS/Max �989 �999 �963 �953 �890

(b) False Coverage Probabilities (coverage probability corrected)
CvM/Max �61 �69 �37 �38 �45
KS/Max �78 �96 �61 �54 �66

68This method takes the transformed regressor to be �((Xi − X̄n)/σX�n), where X̄n and σX�n
are the sample mean and standard deviations of Xi and �(·) is the standard normal distribution
function.
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TABLE S-X

INTERVAL-OUTCOME REGRESSION MODEL: VARIATIONS ON THE BASE CASE

(a) Coverage Probabilities (b) False Cov Probs (CPcor)

Statistic: CvM/Max KS/Max CvM/Max KS/Max
Case Crit Val: GMS/Asy GMS/Asy GMS/Asy GMS/Asy

Base Case (n= 250� r1 = 7� ε= 5/100) �950 .963 .37 .61
n= 100 �949 .970 .39 .66
n= 500 �950 .956 .37 .60
n= 1000 �954 .955 .37 .60
r1 = 5 (30 cubes) �949 .961 .37 .59
r1 = 9 (90 cubes) �951 .965 .37 .63
r1 = 11 (132 cubes) �950 .968 .38 .64
(κn�Bn)= 1/2(κn�bc�Bn�bc) �944 .961 .40 .62
(κn�Bn)= 2(κn�bc�Bn�bc) �958 .973 .39 .65
ε= 1/100 �946 .966 .39 .69

(θ1� θ2)= (1�0�0�5) �999 .996 .91 .92
(θ1� θ2)= (1�5�0�0) 1�000 .996 .99 .97

α= �5 �472 .481 .03 .08
α= �5 & n= 500 �478 .500 .03 .07

Table S-VIII shows that the CvM/Max statistic combined with the GMS/Asy
critical value has CP’s that are very close to the nominal level .95. Its FCP’s
are noticeably lower than those for CS’s that use the KS form or PA-based
critical values. The CvM/Sum-GMS/Asy and CvM/QLR-GMS/Asy CS’s per-
form equally well as the Max version. Table S-IX shows that the results for the
Asy and Bt versions of the critical values are quite similar for the CvM/Max-
GMS CS, which is the best CS. The Sub critical value yields substantial under-
coverage for the KS/Max statistic. The Sub critical values are dominated by the
GMS critical values in terms of FCP’s.

Table S-X shows that the CS’s do not exhibit much sensitivity to the sample
size or the number of cubes employed. It also shows that at the non-corner
boundary point θ = (1�0�0�5) and the corner point θ = (1�5�0), all CP’s are
(essentially) equal to 1.69 Lastly, Table S-X shows that the lower endpoint es-
timator based on the CvM/Max-GMS/Asy CS with α = �5 is close to being
median-unbiased, as in the quantile selection model. It is less than the lower
bound with probability �472 and exceeds it with probability �528 when n= 250.

We conclude that the preferred CS for this model is of the CvM form, com-
bined with the Max, Sum, or QLR function, and uses a GMS critical value,
either Asy or Bt.

69This is due to the fact that the CP’s at these points are linked to the CP’s at the corner point
θ = (0�5�1�0) given the linear structure of the model. If the CP is reduced at the two former
points (by reducing the critical value), the CP at the latter point is very much reduced and the CS
does not have the desired size.



INFERENCE BASED ON CONDITIONAL MOMENT INEQUALITIES 91

17.5. Entry Game Model

17.5.1. Probit Log Likelihood Function

In the entry game model, the probit log likelihood function for τ = (τ1� τ2)
given θ= (θ1� θ2) is

n∑
i=1

1
(
Yi = (0�0)

)
ln
(
�
(−X ′

i�1τ1

)
�
(−X ′

i�2τ2

))
(17.8)

+
n∑
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1
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)
over τ ∈R8 for fixed θ. The estimator τ̂n(θ)maximizes this function over τ ∈R8

given θ.
The gradient of the probit log likelihood for τ given θ is

−
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where ψ(x)=φ(x)/�(x).

17.5.2. Identification

Here we briefly discuss identification of the entry game model. Tamer (2003,
Thm. 1) provided identification results that cover the model considered in Sec-
tion 10.4 because Xi�1 and Xi�2 both contain continuous regressors whose sup-
port is R.

We point out here that this support condition is probably much stronger
than is needed for identification in many contexts. For example, suppose the
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unobservables Ui�1 and Ui�2 are independent and standard normal, as in Sec-
tion 10.4. Suppose the regressor vectors are Xi�1 = (1�Zi)

′ and Xi�2 = 1 and
their coefficient vectors are τ1 = (τ11� τ12)

′ and τ2, respectively. Then, τ1 and τ2

are identified provided Zi has a density with respect to Lebesgue measure on
some nondegenerate interval and τ12 �= 0. Thus, in this case, no large support
condition is needed.

To prove this result, note that P(Yi = (0�0)|Xi�1) = �(−X ′
i�1τ1)�(−τ2).

Thus, for identification at (τ1� τ2), it suffices to show that

P
(
�
(−X ′

i�1τ1

)
�(−τ2)=�

(−X ′
i�1λ1

)
�(−λ2)

)= 1(17.10)

only if λ1 = τ1 and λ2 = τ2.
Suppose λ2 = τ2. Then, (17.10) holds iff P(X ′

i�1τ1 = X ′
i�1λ1) = 1. The left-

hand side equals P(τ11 −λ11 +Zi(τ12 −λ12)= 0). Given the condition onZi, the
latter equals 1 only if λ1 = τ1. Hence, when λ2 = τ2, (λ1�λ2) is observationally
equivalent to (τ1� τ2) only if (λ1�λ2)= (τ1� τ2).

Next, suppose λ2 �= τ2. Let c = �(−λ2)/�(−τ2) ( �= 1). Then, (17.10) holds
iff P(�(−τ11 − Ziτ12) = �(−λ11 − Ziλ12)c) = 1. The latter implies that, for
all z in an open interval, say I, �(−τ11 − zτ12)=�(−λ11 − zλ12)c. Taking the
derivative with respect to z for z ∈ I, one obtains φ(−τ11 − zτ12)=φ(−λ11 −
zλ12)cλ12/τ12. Taking logs yields a quadratic equation in z for z ∈ I:

(τ11 + zτ12)
2 = (λ11 + zλ12)

2 + c1 or(17.11) (
τ2

12 − λ2
12

)
z2 + 2(τ11τ12 − λ11λ12)z+ τ2

11 − λ2
11 − c1 = 0�

where c1 = log(cλ12/τ12) and c1 is well-defined because τ12 �= 0. A quadratic
equation cannot hold for all z ∈ I unless each coefficient of the equation is
zero, because a nondegenerate quadratic equation has at most two solutions.
Suppose τ2

12 − λ2
12 = 0. Then, τ11τ12 − λ11λ12 = 0 requires τ11 = ±λ11, which

implies that τ2
11 − λ2

11 = 0. In consequence, τ2
11 − λ2

11 − c1 = −c1 �= 0 and the
quadratic equation is not degenerate. (Note that c1 �= 0 because c1 = 0 iff
cλ12/τ12 = 1 iff λ12 = cτ12, and the latter condition violates τ2

12 − λ2
12 = 0.) In

conclusion, if λ2 �= τ2, (17.10) cannot hold for any λ1 and τ1. This completes
the proof of identification.

Note that it is not clear that even continuity of Zi in a nondegenerate in-
terval is necessary for identification of τ. If Zi is discrete with s ≥ 3 support
points, then observational equivalence requires s nonlinear equations in two
unknowns to hold. These equations depend on the joint distribution F(·� ·) of
(Ui�1�Ui�2). This suggests (but does not prove) that, for most joint distribution
functions F(·� ·) of (Ui�1�Ui�2), identification holds under quite weak conditions
on the regressor Zi.
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