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Abstract 

A semiparametric model for observational data combines a parametric form for 
some component of the data generating process (usually the behavioral relation 
between the dependent and explanatory variables) with weak nonparametric restric- 
tions on the remainder of the model (usually the distribution of the unobservable 
errors). This chapter surveys some of the recent literature on semiparametric 
methods, emphasizing microeconometric applications using limited dependent 
variable models. An introductory section defines semiparametric models more 
precisely and reviews the techniques used to derive the large-sample properties of 
the corresponding estimation methods. The next section describes a number of 
weak restrictions on error distributions conditional mean, conditional quantile, 
conditional symmetry, independence, and index restrictions - and show how they 
can be used to derive identifying restrictions on the distributions of observables. 
This general discussion is followed by a survey of a number of specific estimators 
proposed for particular econometric models, and the chapter concludes with a 
brief account of applications of these methods in practice. 

1. Introduction 

I.I. Overview 

Semiparametric modelling is, as its name suggests, a hybrid of the parametric and 
nonparametric approaches to construction, fitting, and validation of statistical 
models. To place semiparametric methods in context, it is useful to review the way 
these other approaches are used to address a generic microeconometric problem - 
namely, determination of the relationship of a dependent variable (or variables) y 
to a set of conditioning variables x given a random sample {zl - (yi, x~), i = 1 . . . . .  N} 
of observations on y and x. This would be considered a "micro"-econometric 
problem because the observations are mutually independent and the dimension 
of the conditioning variables x is finite and fixed. In a "macro"-econometric 
application using time series data, the analysis must also account for possible serial 
dependence in the observations, which is usually straightforward, and a growing 
or infinite number of conditioning variables, e.g. past values of the dependent 
variable y, which may be more difficult to accommodate. Even for microecono- 
metric analyses of cross-sectional data, distributional heterogeneity and dependence 
due to clustering and stratification must often be considered; still, while the random 
sampling assumption may not be typical, it is a useful simplification, and adaptation 
of statistical methods to non-random sampling is usually straightforward. 

In the classical parametric approach to this problem, it is typically assumed 
that the dependent variable is functionally dependent on the conditioning variables 
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("regressors") and unobservable "errors" according to a fixed structural relation 
of the form 

y = g(x, %, e), (1.1) 

where the structural function 9(9 is known but the finite-dimensional parameter 
vector ~oeR p and the error term e are unobserved. The form of Y(') is chosen to 
give a class of simple and interpretable data generating mechanisms which embody 
the relevant restrictions infposed by the characteristics of the data (e.g. g(') is 
dichotomous if y is binary) and/or economic theory (monotonicity, homotheticity, 
etc.). The error terms e are introduced to account for the lack of perfect fit of (1.1) 
for any fixed value of ~o and e, and are variously interpreted as expectational or 
optimization errors, measurement errors, unobserved differences in tastes or 
technology, or other omitted or unobserved conditioning variables; their inter- 
pretation influences the way they are incorporated into the structural function 
g('). 

To prevent (1.1) from holding tautologically for any value of ~0, the stochastic 
behavior of the error terms must be restricted. The parametric approach takes the 
error distribution to belong to a finite-dimensional family of distributions, 

Pr{e ~< 2Ix} = f ,(ulX, qo)d#,, (1.2) 

where f( .)  is a known density (with respect to the dominating measure #~) except 
for an unknown, finite-dimensional "nuisance" parameter ~/o. Given the assumed 
structural model (1.1) and the conditional error distribution (1.2), the conditional 
distribution of y given x can be derived, 

Pr{y ~< 2Ix} = l {y<~ 2} f ,  lx(ulx, eo, rlo)dl~,l x, 
- - o 0  

for some parametric conditional density fytx(')" Of course, it is usually possible to 
posit this conditional distribution of y given x directly, without recourse to 
unobservable "error" terms, but the adequacy of an assumed functional form is 
generally assessed with reference to an implicit structural model. In any case, with 
this conditional density, the unknown parameters e0 and qo can be estimated by 
maximizing the average conditional log-likelihood 

1 N 
LN(ct, q) = ~ ~=~1 In fYl~(yilxi' ~, q) 

over c~ and q. 
This fully parametric modelling strategy has a number of well-known optimality 

properties. If the specifications of the structural equation (1.1) and error distribution 
(1.2) are correct (and other mild regularity conditions hold), the maximum likeli- 
hood estimators of ~0 and qo will converge to the true parameters at the rate of 
the inverse square root of the sample size ("root-N-consistent") and will be 
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asymptotically normally distributed, with an asymptotic covariance matrix which 
is no larger than that of any other regular root-N-consistent estimator. Moreover, 
the parameter estimates yield a precise estimator of the conditional distribution 
of the dependent variable given the regressors, which might be used to predict y 
for values of x which fall outside the observed support of the regressors. The 
drawback to parametric modelling is the requirement that both the structural 
model and the error distribution are correctly specified. Correct specification may 
be particularly difficult for the error distribution, which represents the unpredict- 
able component of the relation of y to x. Unfortunately, if g(x, ~, ~) is fundamentally 
nonlinear in e - that is, it is noninvertible in e or has a Jacobian that depends on 
the unknown parameters ~ - then misspecification of the functional form of the 
error distribution f (e lx ,  rl) generally yields inconsistency of the MLE and inconsistent 
estimates of the conditional distribution of y given x. 

At the other extreme, a fully nonparametric approach to modelling the relation 
between y and x would define any such "relation" as a characteristic of the joint 
distribution of y and x, which would be the primitive object of interest. A "causal" 
or predictive relation from the regressors to the dependent variable would be given 
as a particular functional of the conditional distribution of y given x, 

g(x) = T(Fylx), (1.3) 

where Fy,x is the joint and Fylx is the conditional distribution. Usually the functional 
T(.) is a location measure, in which case the relation between y and x has a rep- 
resentation analogous to (1.1) and (1.2), but with unknown functional forms for 
f ( . )  and g(.). For  example, if g(x) is the mean regression function (T(Frlx) = E[ylx]) ,  
then y can be written as 

y = g(x) + ~, 

with e defined to have conditional density f~lx assumed to satisfy only the normali- 
zation E [elx] = 0. In this approach the interpretation of the error term e is different 
than for the parametric approach; its stochastic properties derive from its definition 
in terms of the functional g(') rather than a prior behavioral assumption. 

Estimation of the function g(') is straightforward once a suitable est imator  ffrlx 
of the conditional distribution of y given x is obtained; if the functional T(.) in 
(1.3) is well-behaved (i.e. continuous over the space of possible Fylx), a natural 
estimator is 

Thus the problem of estimating the "relationship" g(') reduces to the problem of 
estimating the conditional distribution function, which generally requires some 
smoothing across adjacent observations of the regressors x when some components 
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are continuously distributed (see, e.g. Prakasa Rao (1983), Silverman (1986), Bierens 
(1987), H~irdle (1991)). In some cases, the functional T(.) might be a well-defined 
functional of the empirical c.d.f, of the data (for example, g(x) might be the best 
linear projection of y on x, which depends only on the covariance matrix of the 
data); in these cases smoothing of the empirical c.d.f, will not be required. An 
alternative estimation strategy would approximate g(x) and the conditional distri- 
bution of e in (1.6) by a sequence of parametric models, with the number of param- 
eters expanding as the sample size increases; this approach, termed the "method 
of sieves" by Grenander (1981), is closely related to the "seminonparametric" 
modelling approach of Gallant (1981, 1987), Elbadawi et al. (1983) and Gallant 
and Nychka (1987). 

The advantages and disadvantages of the nonparametric approach are the 
opposite of those for parametric modelling. Nonparametric modelling typically 
imposes few restrictions on the form of the joint distribution of the data (like 
smoothness or monotonicity), so there is little room for misspecification, and 
consistency of an estimator of g(x) is established under much more general 
conditions than for parametric modelling. On the other hand, the precision of 
estimators which impose only nonparametric restrictions is often poor. When 
estimation of g(x) requires smoothing of the empirical c.d.f, of the data, the 
convergence rate of the estimator is usually slower than the parametric rate (square 
root of the sample size), due to the bias caused by the smoothing (see the chapter 
by H/irdle and Linton in this volume). And, although some prior economic 
restrictions like homotheticity and monotonicity can be incorporated into the 
nonparametric approach (as described in the chapter by Matzkin in this volume), 
the definition of the "relation" is statistical, not economic. Extrapolation of the 
relationship outside the observed support of the regressors is not generally possible 
with a nonparametric model, which is analogous to a "reduced form" in the classical 
terminology of simultaneous equations modelling. 

The semiparametric approach, the subject of this chapter, distinguishes between 
the "parameters of interest", which are finite-dimensional, and infinite-dimensional 
"nuisance parameters", which are treated nonparametrically. (When the "param- 
eter of interest" is infinite-dimensional, like the baseline hazard in a proportional 
hazards model, the nonparametric methods described in the H~irdle and Linton 
chapter are more appropriate.) In a typical parametric model, the parameters of 
interest, e0, appear only in a structural equation analogue to (1.1), while the 
conditional error distribution is treated as a nuisance parameter, subject to certain 
prior restrictions. More generally, unknown nuisance functions may also appear 
in the structural equation. Semiparametric analogues to equations (1.1) and (1.2) 
are 

y = g(x, ~o, e, Zo(')), (1.4) 

(1.5) 
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where, as before, eo is unknown but known to lie in a finite-dimensional Euclidean 
subspace, and where the unknown nuisance parameter is 

. 0  = ( ~ o ( ' ) , f o ( ' ) ) -  

As with the parametric approach, prior economic reasoning and interpretational 
convenience are used to determine the functional form of g(.) in (1.4), while general 
regularity and identification restrictions are imposed on the nuisance parameters 
tt o, as in the nonparametric approach. 

As a hybrid of the parametric and nonparametric approaches, semiparametric 
modelling shares the advantages and disadvantages of each. Because it allows a 
more general specification of the nuisance parameters, estimators of the parameters 
of interest for semiparametric models are consistent under a broader range of 
conditions than for parametric models, and these estimators are usually more 
precise (converging to the true values at the square root of the sample size) than 
their nonparametric counterparts. On the other hand, estimators for semiparametric 
models are generally less efficient than maximum likelihood estimators for a 
correctly-specified parametric model, and are still sensitive to misspecification of 
the structural function or other parametric components of the model. 

This chapter will survey the econometric literature on semiparametric estimation, 
with emphasis on a particular class of models, nonlinear latent variable models, 
which have been the focus of most of the attention in this literature. The remainder 
of Section 1 more precisely defines the "semiparametric" categorization, briefly 
lists the structural functions and error distributions to be considered and reviews 
the techniques for obtaining large-sample approximations to the distributions of 
various types of estimators for semiparametric models. The next section discusses 
how each of the semiparametric restrictions on the behavior of the error terms 
can be used to construct estimators for certain classes of structural functions. 
Section 3 then surveys existing results in the econometric literature for several 
groups of latent variable models, with a variety of error restrictions for each group 
of structural models. A concluding section summarizes this literature and suggests 
topics for further work. 

The coverage of the large literature on semiparametric estimation in this chapter 
will necessarily be incomplete; fortunately, other general references on the subject 
are available. A forthcoming monograph by Bickel et al. (1993) discusses much of 
the work on semiparametrics in the statistical literature, with special attention to 
construction of efficient estimators; a monograph by Manski (1988b) discusses the 
analogous econometric literature. Other surveys of the econometric literature 
include those by Robinson (1988a) and Stoker (1992), the latter giving an extensive 
treatment of estimation based upon index restrictions, as described in Section 2.5 
below. Newey (1990a) surveys the econometric literature on semiparametric 
efficiency bounds, which is not covered extensively in this chapter. Finally, given 
the close connection between the semiparametric approach and parametric and 
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nonparametric approaches, the chapters by Andrews, H/irdle and Linton, Manski, 
Matzkin, and Newey and McFadden in this volume provide more details on much 
of the material in the present chapter. 

1.2. Definition of "semiparametric" 

The characterization of semiparametric models as having a finite-dimensional 
parameter of interest (the "parametric component") and an infinite-dimensional 
nuisance parameter (the "nonparametric component") was given by Begun et al. 
(1983), who attribute the term to Oakes (1981). Although this distinction is a 
defining characteristic of semiparametric modelling, alone it appears to be too 
inclusive: many problems which would traditionally be viewed as "nonparametric" 
or "parametric" might well be classified as "semiparametric" along these lines. For  
example, the best linear predictor of y given x lies in a finite-dimensional space 
(indexed by the vector of projection coefficients), but this object is more closely 
analogous to the conditional mean of y given x (a "nonparametric" relation) than 
to a traditional structural relation of the form given in (1.1). The example suggests 
that the "dimensionality" of unknown components of a model is not sufficient to 
characterize it as nonparametric or semiparametric; instead, this distinction must 
depend somehow on the "size" of the space of nuisance parameters for the model - 
that is, on the generality of the restrictions imposed on qo. At the other extreme, 
for the typical parametric model with ancillary regressors, the marginal distribution 
of the regressors might be viewed as an infinite-dimensional nuisance parameter, 
blurring the line between "parametric" and "semiparametric" modelling. 

A refinement of the definition of semiparametric (versus nonparametric) modelling 
might exploit the distinction between "just-" and "over-identification" introduced in 
the simultaneous equations literature. In a nonparametric model, the parameters 
of interest can be said to be "just-identified", in that they are defined by a unique 
functional of the joint distribution of the data. That is, if s o = T(Fy,x ) defines the 
parameter of interest as a characteristic of the joint distribution of y and x, then 
a model might be defined to be nonparametric if the functional T is unique whenever 
it is well-defined. In contrast, a semiparametric model would restrict the space of 
permissible joint distribution functions so that more than one functional would 
yield the same value of the parameter of interest: So - T+(Fy,x), where T(Go) ¢ 
T+(Go) for some possible distribution function Go of y and x for which either side 
is well-defined. For  example, in a nonparametric model e0 could be the mean of 
the dependent variable y, whose marginal distribution is otherwise unrestricted, 
while a semiparametric model might restrict the distribution of y to be symmetric 
about the constant co, which could then be recovered as the mean, median, or 
any number of possible location measures for Fy. In a nonparametric setting, the 
only scope for differences in estimators of ~o in a nonparametric model would be 
through differences in estimates of the distribution function Fy,x of the data (due, 
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say, to different method~ and degrees of "smoothing" of the empirical c.d.f.), while 
estimation of a semiparametric model would require an additional choice of the 
particular functional T* upon which to base the estimates. 

On a related point, while it is common to refer to "semiparametric estimation" 
and "semiparametric estimators", this is somewhat misleading terminology. Some 
authors use the term "semiparametric estimator" to denote a statistic which in- 
volves a preliminary "plug-in" estimator of a nonparametric component (see, for 
example, Andrews' chapter in this volume); this leads to some semantic ambiguities, 
since the parameters of many semiparametric models can be estimated by "para- 
metric" estimators and vice versa. Thus, though certain estimators would be hard 
to interpret in a parametric or nonparametric context, in general the term "semi- 
parametric", like "parametric" or "nonparametric", will be used in this chapter to 
refer to classes of structural models and stochastic restrictions, and not to a 
particular statistic. In many cases, the same estimator can be viewed as parametric, 
nonparametric or semiparametric, depending on the assumptions of the model. 
For  example, for the classical linear model 

y = x ' f lo + e, 

the least squares estimator of the unknown coefficients flo, 

fi= E 
i=1 i=1 

would be considered a "parametric" estimator when the error terms are assumed 
to be Gaussian with zero mean and distributed independently of the regressors x. 
With these assumptions fi is the maximum likelihood estimator of flo, and thus 
is asymptotically efficient relative to all regular estimators of fl0. Alternatively, the 
least squares estimator arises in the context of a linear prediction problem, where 
the error term e has a density which is assumed to satisfy the unconditional moment 
restriction 

E[e.x] =0 .  

This restriction yields a unique representation for flo in terms of the joint distribu- 
tion of the data, 

flo = { e [ x - x ' ]  } - l e [ x . y ] ,  

so estimation of fl0 in this context would be considered a "nonparametric" problem 
by the criteria given above. Though other, less precise estimators of the moments 
E[x.x'] and E[x.y] (say, based only on a subset of the observations) might be 
used to define alternative estimators, the classical least squares estimator fl is, al- 
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most by default, an "efficient" estimator of flo in this model (as Levit (1975) makes 
precise). Finally, the least squares estimator/~ can be viewed as a special case of 
the broader class of weighted least squares estimators of/30 when the error terms 
e are assumed to have conditional mean zero, 

E[~ilx/] = 0 a.s. 

The model defined by this restriction would be considered "semiparametric", since 
flo is overidentified; while the least squares estimator fi is xSN-consistent and 
asymptotically normal for this model (assuming the relevant second moments are 
finite), it is inefficient in general, with an efficient estimator being based on the rep- 
resentation 

flo = T*(Fr,x) = {E[tr- 2(xl)xlx;] -1 } E [a-  2(xi)xiyi] 

of the parameters of interest, where tr2(X)~ Var(e~lx~) (as discussed in Section 2.1 
below). The least squares statistic/~ is a "semiparametric" estimator in this context, 
due to the restrictions imposed on the model, not on the form of the estimator. 

Two categories of estimators which are related to "semiparametric estimators", 
but logically distinct, are "robust" and "adaptive" estimators. The term "robustness" 
is used informally to denote statistical procedures which are well-behaved for slight 
misspecifications of the model. More formally, a robust estimator ~ = T(ffr,x) can 
be defined as one for which T(F) is a continuous functional at the true model 
(e.g. Manski (1988b)), or whose asymptotic distribution is continuous at the 
truth ("quantitative robustness", as defined by Huber (1981)). Other notions of 
robustness involve sensitivity of particular estimators to changes in a small frac- 
tion of the observations. While "semiparametric estimators" are designed to be 
well-behaved under weak conditions on the error distribution and other nuisance 
parameters (which are assumed to be correct), robust estimators are designed to 
be relatively efficient for correctly-specified models but also relatively insensitive 
to "slight" model misspecification. As noted in Section 1.4 below, robustness of 
an estimator is related to the boundedness (and continuity) of its influence function, 
defined in Section 1.4 below; whether a particular semiparametric model admits 
a robust estimator depends upon the particular restrictions imposed. For  example, 
for conditional mean restrictions described in Section 2.1 below, the influence 
functions for semiparametric estimators will be linear (and thus unbounded) 
functions of the error terms, so robust estimation is infeasible under this restriction. 
On the other hand, the influence function for estimators under conditional quantile 
restrictions depends upon the sign of the error terms, so quantile estimators are 
generally "robust" (at least with respect to outlying errors) as well as "semipara- 
metric". 

"Adaptive" estimators are efficient estimators of certain semiparametric models 
for which the best attainable efficiency for estimation of the parameters of interest 
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does not depend upon prior knowledge of a parametric form for the nuisance 
parameters. That  is, adaptive estimators are consistent under the semiparametric 
restrictions but as efficient (asymptotically) as a maximum likelihood estimator 
when the (infinite-dimensional) nuisance parameter is known to lie in a finite- 
dimensional parametric family. Adaptive estimation is possible only if the semi- 
parametric information bound for attainable efficiency for the parameters of 
interest is equal to the analogous Cram6r-Rao bound for any feasible parametric 
specification of the nuisance parameter. Adaptive estimators, which are described 
in more detail by Bickel et al. (1993) and Manski (1988b), involve explicit estimation 
of (nonparametric) nuisance parameters, as do efficient estimators for semipara- 
metric models more generally. 

1.3. Stochastic restrictions and structural models 

As discussed above, a semiparametric model for the relationship between y and 
x will be determined by the parametric form of the structural function g(') of (1.4) 
and the restrictions imposed on the error distribution and any other infinite- 
dimensional component of the model. The following sections of this chapter group 
semiparametric models by the restrictions imposed on the error distribution, 
describing estimation under these restrictions for a number of different structural 
models. A brief description of the restrictions to be considered, followed by a 
discussion of the structural models, is given in this section. 

A semiparametric restriction on e which is quite familiar in econometric theory 
and practice is a (constant) conditional mean restriction, where it is assumed that 

E(elx) = #o (1.6) 

for some unknown constant P0, which is usually normalized to zero to ensure 
identification of an intercept term. (Here and throughout, all conditional expec- 
tations are assumed to hold for a set of regressors x with probability one.) This 
restriction is the basis for much of the large-sample theory for least squares and 
method-of-moments estimation, and estimators derived for assumed Gaussian 
distributions of e (or, more generally, for error distributions in an exponential 
family) are often well-behaved under this weaker restriction. 

A restriction which is less familiar but gaining increasing attention in econometric 
practice is a (constant) conditional quantile restriction, under which a scalar error 
term e is assumed to satisfy 

Pr{e ~< qolX} = rc (1.7) 

for some fixed proportion roe(0, 1) and constant qo = ~/00t); a conditional median 
restriction is the (leading) special case with ~ = 1/2. Rewriting the conditional 
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probabil i ty in (1.7) as the condit ional  expectation of  an indicator function, the 
quantile restriction can be expressed as E [ n -  1 {e ~< qo} Ix] = 0, which specializes 
to E[sgn{e-rlo}lX] = 0  for a condit ional  median restriction. As discussed in 
Section 2.2 below, condit ional  quantile restrictions are useful for identifying the 
parameters  of  interest for structural  models which are mono ton ic  in the error  term. 

For  scalar error  terms, bo th  condit ional  mean  and condit ional  quantile restric- 
tions are themselves special cases of a constant conditional location restriction, in 
which, for some constant  Vo, the error terms satisfy 

E[q@ - Vo)lX] = 0, (1.8) 

where the function q(u) is nonposit ive for u < 0 and nonnegative otherwise. Often 
the constant  term v o can be expressed as the solution to a condit ional  minimizat ion 
problem, v o = argminbE[r(e- b)lx], where r(u) is an antiderivative of  - q ( u ) ;  this 
representation is often used as the basis for construct ion of estimators under  these 
restrictions. In  a limiting case, if r(u) is taken to be minus the Dirac delta func- 
tion, this corresponds to a conditional mode restriction, which asserts cons tancy of  
v o = max,, f~lx(Ulx), where f~lx is the condit ional  density of  the errors. This restric- 
t ion is useful for identification of the parameters  of  certain semiparametric models  
involving truncation. 

A stronger condit ion which implies both  the condit ional  mean (when it exists) 
and condit ional  median restrictions is a conditional symmetry restriction, under  
which 

Pr{@ - Vo) ~< ulx} = Pr{(v o - e) ~< ulx} (1.9) 

for some constant  v o and any conformable  u. Again for scalar errors, this restriction 
implies (1.6) and (1.7) hold (when the expectations are well-defined) whenever q(u) 
is an odd function of  u, which m a y  also depend upon  the regressors x in general; 
here the value v o is constant  across different choices of  q(-). A different restriction 
which is equivalent to imposit ion of  all possible condit ional  locat ion restrictions 
is an independence restriction: 

Pr{e ~< ulx} = Pr{e ~< u} (1.10) 

for all conformable  u. Est imators  based upon  condit ional  mean or  median restric- 
tions will also be well-behaved under  condit ional  symmetry or independence res- 
trictions, but  efficient estimation will generally require other choices for q(u) in 
(1.8) than q(u) = u or q(u) = sgn(u). 

Finally, a class of stochastic restrictions which can be viewed as generalizations 
of constant  condit ional  mean or  independence of  the errors and regressors are 
index restrictions. A strong or distributional index restriction on the error  terms is 
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an assumption that 

Pr{a ~< ulx} = Pr{e < ulv(x)} (1.11) 

for some "index" function v(x) with dim{v(x)} < dim{x}; a weak or mean index 
restriction asserts a similar property only for the conditional expec ta t ion -  

e[~lx]  = E[~lv(x)]. (1.12) 

For  different structural models, the index function v(x) might be assumed to be a 
known function of x, or known up to a finite number of unknown parameters 
(e.g. v(x) = x'flo), or an unknown function of known dimensionality (in which case 
some extra restriction(s) will be needed to identify the index). As a special case, 
the function v(x) may be trivial, which yields the independence or conditional 
mean restrictions as special cases; more generally, v(x) might be a known subvector 
xl of the regressors x, in which case (1.11) and (1.12) are strong and weak forms 
of an exclusion restriction, otherwise known as conditional independence and 
conditional mean independence of e and x given x 1, respectively. When the index func- 
tion is unknown, it is often assumed to be linear in the regressors, with coeffi- 
cients that are related to unknown parameters of interest in the structural 
model. 

The following diagram summarizes the hierarchy of the stochastic restrictions 
to be discussed in the following sections of this chapter, with declining level of 
generality from top to bottom: 

Stron index 

Nonparametric 

I 
Weak index 

I 
.Weak exclusion [ 

Conditional mean Location median 
I I 

Strong exclusion- 

i 1 Independence Conditional symmetry 

[ Parametric [ 

Turning now to a description of some structural models treated in the semi- 
parametric literature, an important  class of parametric forms for the structural 

/ 
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functions is the class of linear latent variable models, in which the dependent variable 
y is assumed to be generated as some transformation 

y = t(y*; 20, %(.)) (1.13) 

of some unobservable variable y*, which itself has a linear regression representation 

y* = x'flo + 5. (1.14) 

Here the regression coefficients flo and the finite-dimensional parameters 20 of the 
transformation function are the parameters of interest, while the error distribution 
and any nonparametric component %(.) of the transformation make up the non- 
parametric component of the model. In general y and y* may be vector-valued, 
and restrictions on the coefficient matrix/3 o may be imposed to ensure identification 
of the remaining parameters. This class of models, which includes the classical 
linear model as a special case, might be broadened to permit a nonlinear (but 
parametric) regression function for the latent variable y*, as long as the additivity 
of the error terms in (1.14) is maintained. 

One category of latent variable models, parametric transformation models, takes 
the transformation function t(y*;2o) to have no nonparametric nuisance com- 
ponent ~o(') and to be invertible in y* for all possible values of 2 o. A well-known 
example of a parametric transformation model is the Box-Cox regression model 
(Box and Cox (1964)), which has y = t(x'fl o +e;  20) for 

y~-- 1 
t -  l(y; )~) = 

2 
1{2 ~ 0}+  ln(y) 1{2 = 0}. 

This transformation, which includes linear and log-linear (in y) regression models 
as special cases, requires the support of the latent variable y* to be bounded from 
below ( b y -  1/2o) for noninteger values of 20, but has been extended by Bickel 
and Doksum (1981) to unbounded y*. Since the error term e can be expressed as 
a known function of the observable variables and unknown parameters for these 
models, a stochastic restriction on e (like a conditional mean restriction, defined 
below) translates directly into a restriction on y, x, fl0, and 20 which can be used 
to construct estimators. 

Another category, limited dependent variable models, includes latent variable 
models in which the transformation function t(y*) which does not depend upon 
unknown parameters, but which is noninvertible, mapping intervals of possible 
y* values into single values of y. Scalar versions of these models have received 
much of the attention in the econometric literature on semiparametric estimation, 
owing to their relative simplicity and the fact that parametric methods generally 
yield inconsistent estimators for flo when the functional form of the error distri- 
bution is misspecified. The simplest nontrivial transformation in this category is 
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an indicator for positivity of the latent variable y*, which yields the binary response 
model 

y = 1 {x'/3o + ~ > 0}, (1.15) 

which is commonly used in econometric applications to model dichotomous choice 
problems. For  this model, in which the parameters can be identified at most up 
to a scale normalization on fl0 or s, the only point of variation of the function 
t(y*) occurs at y* = 0, which makes identification of fig particularly difficult. A 
model which shares much of the structure of the binary response model is the 
ordered response model, with the latent variable y* is only known to fall in one of 
J + 1 ordered intervals { ( -  oe,Co],(Co, Cl] .... ,(Cs, oe)}; that is, 

J 

Y= E l{x ' /30+e>cJ}" (1.16) 
j = l  

Here the thresholds {ci} are assumed unknown (apart from a normalization like 
Co - 0), and must be estimated along with fl0. The grouped dependent variable model 
is a variation with known values of {c j}, where the values of y might correspond 
to prespecified income intervals. 

A structural function for which the transformation function is more "informative" 
about fig is the censored regression model, also known in econometrics as the 
censored Tobit model (after Tobin (1956)). Here the observable dependent variable 
is assumed to be subject to a nonnegativity constraint, so that 

y = max{0, x'/3 o + e}; (1.17) 

this structural function is often used as a model of individual demand or supply 
for some good when a fraction of individuals do not participate in that market. 
A variation on this model, the accelerated failure time model with fixed censoring, 
can be used as a model for duration data when some durations are incomplete. 
Here 

y = min {x'lfl o + e, x2}, (1.18) 

where y is the logarithm of the observable duration time (e.g. an unemployment 
spell), and x2 is the logarithm of the duration of the experiment (following which 
the time to completion for any ongoing spells is unobserved); the "fixed" qualifier 
denotes models in which both x 1 and x2 are observable (and may be functionally 
related). 

These univariate limited dependent variable models have multivariate analogues 
which have also been considered in the semiparametric literature. One multi- 
variate generalization of the binary response model is the multinomial response 
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model, for which the dependent variable is a J-dimensional vector of indicators, 
y = vec {y j, j = 1 . . . . .  J}, with 

yj = 1 {y* ,-'>~ Yk* for k C j} (1.19) 

and with each latent variable y* generated by a linear model 

1 j y* = x'flJo + eg, flo = [flo . . . . .  flo . . . . .  fls]. (1.20) 

That  is, yj = 1 if and only if its latent variable y* is the largest across alternatives. 
Another bivariate model which combines the binary response and censored reg- 
ression models is the censored sample selection model, which has one binary res- 
ponse variable Yl and one quantitative dependent variable Yz which is observed 
only when y~ = 1: 

Y l  = l(Xlfl~ + ~1 > O) (1.21) 

and 

Y2 = Y~ [x2fl 2 + e23. (1.22) 

This model includes the censored regression model as a special case, with fl~ = 
f12_ flo and e 1 = e 2 = e. A closely related model is the disequilibrium regression 
model with observed regime, for which only the smaller of two latent variables is 
observed, and it is known which variable is observed: 

and 

z t 2 Yl l(x'xfl~ +ea <Xz f lo+e2)  

t 2 Y2 = min{xl  fl~ + et, x2flo + e2} = YI [x'~ fl~ + e13 + (1 -- y l )[x2f l  2 + e23. 

(1.23) 

(1.24) 

A special case of this model, the randomly censored regression model, imposes the 
restriction f12 = 0, and is a variant of the duration model (1.18) in which the 
observable censoring threshold x2 is replaced by a random threshold e 2 which is 
unobserved for completed spells. 

A class of limited dependent variable models which does not neatly fit into the 
foregoing latent variable framework is the class of truncated dependent variable 
models, which includes the truncated regression and truncated sample selection 
models. In these models, an observable dependent variable y is constructed from 
latent variables drawn from a particular subset of their support. For  the truncated 
regression model, the dependent variable y has the distribution of y * =  x'fl o + e 
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conditional on y* > 0: 

y = x'/~ o + v, (1.25) 

with 

Pr{v ~< c l x }  = Pr{~ ~< clx ,  e > - x'flo}. (1.26) 

For the truncated selection model, the dependent variable y is generated in the 
same way as Yz in (1.24), conditionally on y~ = 1. Truncated models are variants 
of censored models for which no information on the conditioning variables x is 
available when the latent variable y* cannot be observed. Since truncated samples 
can be constructed from their censored counterparts by deleting censored obser- 
vations, identification and estimation of the parameters of interest is more challeng- 
ing for truncated data. 

An important class of multivariate latent dependent variable models arises in 
the analysis of panel data, where the dimensionality of the dependent variable y 
is proportional to the number of time periods each individual is observed. For  
concreteness, consider the special case in which a scalar dependent variable is 
observed for two time periods, with subscripts on y and x denoting time period; 
then a latent variable analogue of the standard linear "fixed effects" model for 
panel data has 

yl  = t(y + x'~/~ o + ~ ,  ~o), 

Y2 = t(y + X~/~ 0 + g2, "Co), 
(1.27) 

where t(.) is any of the transformation functions discussed above and ~ is an 
unobservable error term which is constant across time periods (unlike the time- 
specific errors el and e2) but may depend in an arbitrary way on the regressors, 
Xa and x2. Consistent estimation of the parameters of interest/~0 for such models 
is a very challenging problem; while "time-differencing" or "deviation from cell 
means" eliminates the fixed effect for linear models, these techniques are not 
applicable to nonlinear models, except in certain special cases (as discussed by 
Chamberlain (1984)). Even when the joint distribution of the error terms e 1 and 
e2 is known parametrically, maximum likelihood estimators for fig, Zo and the 
distributional parameters will be inconsistent in general if the unknown values of 
7 are treated as individual-specific intercept terms (as noted by Heckman and 
MaCurdy (1980)), so semiparametric methods will be useful even when the distri- 
bution of the fixed effects is the only nuisance parameter of the model. 

The structural functions considered so far have been assumed known up to a 
finite-dimensional parameter. This is not the case for the general ized regression 
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model, which has 

y = Zo(X'flo + e), (1.28) 

for some transformation function z0(') which is of unknown parametric form, but 
which is restricted either to be monotonic (as assumed by Han (1987a)), or smooth 
(or both). Formally, this model includes the univariate limited dependent variable 
and parametric transformation models as special cases; however, it is generally 
easier to identify and estimate the parameters of interest when the form of the 
transformation function t(') is (parametrically) known. 

Another model which at first glance has a nonparametric component in the 
structural component is the partially linear or semilinear regression model proposed 
by Engle et al. (1986), who labelled it the "semiparametric regression model"; esti- 
mation of this model was also considered by Robinson (1988). Here the regression 
function is a nonparametric function of a subset xl of the regressors, and a linear 
function of the rest: 

y = xl/~o + ,~o(X~) + e, (1.29) 

where )-0(') is unknown but smooth. By defining a new error term s* -- 20(xl) + 5, 
a constant conditional mean assumption on the original error term e translates 
into a mean exclusion restriction on the error terms in an otherwise-standard 
linear model. 

Yet another class of models with a nonparametric component are generated 
regressor models, in which the regressors x appear in the structural equation for 
y indirectly, through the conditional mean of some other observable variable w 
given x: 

y = h(EEwlx],Cto,e ) =_ g(x, Cto,6o(.),e), (1.3o) 

with 6o(X) = E [wlx]. These models arise when modelling individual behavior under 
uncertainty, when actions depend upon predictions (here, conditional expectations) 
of unobserved outcomes, as in the large literature on "rational expectations". 
Formally, the nonparametric component in the structural function can be absorbed 
into an unobservable error term satisfying a conditional mean restriction; that is, 
defining t / - w - E [ w l x ]  (so that E[tllx] =0), the model (1.30) with nonpara- 
metrically-generated regressors can be rewritten as y = g ( w - t / , ~ 0 , e ) ,  with a 
conditional mean restriction on the extra error term r/. In practice, this alternative 
representation is difficult to manipulate unless g(.) is linear, and estimators are 
more easily constructed using the original formulation (1.30). 

Although the models described above have received much of the attention in 
the econometric literature on semiparametrics, they by no means exhaust the set 
of models with parametric and nonparametric components which are used in 
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econometric applications. One group of semiparametric models, not considered 
here, include the proportional hazards model proposed and analyzed by Cox (1972, 
1975) for duration data, and duration models more generally; these are discussed 
by Lancaster (1990), among many others. Another class of semiparametric models 
which is not considered here are choice-based or response-based sampling models; 
these are similar to truncated sampling models, in that the observations are drawn 
from sub-populations with restricted ranges of the dependent variable, eliminating 
the ancillarity of the regressors x. These models are discussed by Manski and 
McFadden (1981) and, more recently, by Imbens (1992). 

1.4. Objectives and techniques of asymptotic theory 

Because of the generality of the restrictions imposed on the error terms for semi- 
parametric models, it is very difficult to obtain finite-sample results for the 
distribution of estimators except for special cases. Therefore, analysis of semi- 
parametric models is based on large-sample theory, using classical limit theorems 
to approximate the sampling distribution of estimators. The goals and methods 
to derive this asymptotic distribution theory, briefly described here, are discussed 
in much more detail in the chapter by Newey and McFadden in this volume. 

As mentioned earlier, the first step in the statistical analysis of a semiparametric 
model is to demonstrate identification of the parameters ~o of interest; though 
logically distinct, identification is often the first step in construction of an estimator 
of~ o. To identify ~o, at least one function T(.) must be found that yields T(Fo) = ~o, 
where F o is the true joint distribution function of z = (y, x) (as in (1.3) above). This 
functional may be implicit: for example, o% may be shown to uniquely solve some 
functional equation T(Fo,~o)= 0 (e.g. E[m(y,x,~o)] = 0, for some m(.)). Given 
the functional T(.) and a random sample {zl = (Yi, xi), i = 1 . . . . .  N} of observations 
on the data vector z, a natural estimator of ~o is 

= r(P), (1.31) 

where ff is a suitable estimator of the joint distribution function F o. Consistency 
of a (i.e. 02 ~ o% in probability as N ~ oo) is often demonstrated by invoking a law 
of large numbers after approximating the estimator as a sample average: 

1 N 
= ~ Z__I 'P~(Y~, x3 + %(1), (1.32) 

where E[~o2v(y, x)] ~ ot o. In other settings, consistency is demonstrated by showing 
that the estimator maximizes a random function which converges uniformly and 
almost surely to a limiting function with a unique maximum at the true value ~o. 
As noted below, establishing (1.31) can be difficult if construction of ~ involves 
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explicit nonparametric estimators (through smoothing of the empirical distribution 
function). 

Once consistency of the estimator is established, the next step is to determine 
its rate of convergence, i.e. the steepest function h(N) such that h(N)(a - So) = Op(1). 

For  regular parametric models, h(N) = x/~, so this is a maximal rate under weaker 

semiparametric restrictions. If the estimator ~ has h(N) = x / ~  (in which case it is 
said to be root-N-consistent), then it is usually possible to find conditions under 
which the estimator has an asymptotically linear representation: 

1 N 
= + q.(y,, + (1.33) 

where the "influence function" ~b(.) has E[~(y, x)] = 0 and finite second moments. 
The Lindeberg-Levy central limit theorem then yields asymptotic normality of the 
estimator, 

v/S(  - So) d W(O, Vo), (1.34) 

where V o = E{~,(y,x)[O(y,x)]'}. With a consistent estimator of V o (formed as the 
sample covariance matrix of some consistent estimator ~(yi, xi) of the influence 
function), confidence regions and test statistics can be constructed with coverage/ 
rejection probabilities which are approximately correct in large samples. 

For  semiparametric models, as defined above, there will be other functionals 
T+(F) which can be used to construct estimators of the parameters of interest. 
The asymptotic efficiency of a particular estimator ~ can be established by showing 
that its asymptotic covariance matrix V o in (1.34) is equal to the semiparametric 
analogue to the Cram~r-Rao bound for estimation of s o. This semiparametric 
efficiency bound is obtained as the smallest of all efficiency bounds for parametric 
models which satisfy the semiparametric restrictions. The representation 0% = 
T*(Fo) which yields an efficient estimator generally depends on some component 
60(') of the unknown, infinite-dimensional nuisance parameter t/o(.), i.e. T*(.) = 
T*(., 6o), so construction of an efficient estimator requires explicit nonparametric 
estimation of some characteristics of the nuisance parameter. 

Demonstration of (root-N) consistency and asymptotic normality of an estimator 
depends on the complexity of the asymptotic linearity representation (1.33), which 
in turn depends on the complexity of the estimator. In the simplest case, where 
the estimator can be written in a closed form as a smooth function of sample 
averages, 

~=a -- iSlm(yi, xi)), (1.35) 
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the so-called "delta method" yields an influence function ¢ of the form 

~b(y, x) = [~a(#0)/~#] [m(y, x) -- #o], (1.36) 

where #o = E l m ( y ,  x)]. Unfortunately, except for the classical linear model with a 
conditional mean restriction, estimators for semiparametric models are not of this 
simple form. Some estimators for models with weak index or exclusion restrictions 
on the errors can be written in closed form as functions of bivariate U-statistics, 

= a pN(zl, Zj) -- a(UN), 
i = i  j = i + l  

(1.37) 

with "kernel" function PN that has pN(Z~,Zj)=pN(Zj, Zi) for z i=-(yi,zi); under 
conditions given by Powell et al. (1989), the representation (1.33) for such an 
estimator has influence function ~b of the same form as in (1.36), where now 

m(y, x) = lim E[pN(zi,  z2) lzl = (y, x)], 
N~oo 

#o = E lm(y ,  x)]. (1.38) 

A consistent estimator of the asymptotic covariance matrix of 8 of (1.37) is the 
sample second moment matrix of 

1 G,]. 
~(yi,  xi) = [~a(ON)/~#] [ ~ _  1 j~_jiPN(Z,, zj) - (1.39) 

In most cases, the estimator a will not have a closed-form expression like in 
(1.35) or (1.37), but instead will be defined implicitly as a minimizer of some sample 
criterion function or a solution of estimating equations. Some (generally inefficient) 
estimators based on conditional location or symmetry restrictions are "M- 
estimators", defined as minimizers of an empirical process 

. 1 N 
d~ = argmln Y', P(Yi, xi, ~) =- argmin SN(CO 

• eo Ni= l  ~eo 

and/or solutions of estimating equations 

1 N 

0 = ~ 2 m(yi, xi, ~) =- rhN(~)" 
i = 1  

(1.40) 

(1.41) 

for some functions p(.) and m('), with dim{m(.)} =dim(a).  When p ( y , x , a )  (or 
m(y ,x ,  ~)) is a uniformly continuous function in the parameters over the entire 
parameter space 0 (with probability one), a standard uniform law of large numbers 
can be used to ensure that normalized versions of these criteria converge to their 
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expectations uniformly on the parameter space. This, along with an identification 
condition namely, uniqueness of a o as a minimizer of E[p(y , x ,a ) ]  or solution 
to 0 = E[m(y,  x, a)] over ee  O - e n s u r e s  consistency of the estimator 02 defined by 
(1.40) or (1.41). When p(.) (or m(-)) is discontinuous in the parameters, uniform 
convergence of the empirical processes SN(~ ) or rfiN(a) can usually be obtained by 
exploiting the special structure of p(.) or m(-), using the results by Huber (1967), 
Pollard (1985) and Pakes and Pollard (1989) described in the chapters on asymptotic 
theory in this volume. Under the regularity conditions imposed in these papers, 
the M-estimator ~ will have an asymptotic linearity representation (1.33), with 
influence function 

O(Y, x) = -- [aE[m(y,  x, a)]/~a'l~=~o]-' m(y, x, ao), (1.42) 

where m(. )= ~p(.)/~a for the estimator defined by (1.40). More generally, the 
functions p(-) and m(') may vary with the sample size N, in which case 
m(.) - lim mN(') -= lim ~pN(')/~ct. 

One variation on the M-estimator exploits moment restrictions E [re(y, x, ao)] = 0 
when dim{m(')} > dim(a). A generalized method-of-moments (GMM) estimator 
is defined as 

= argmin [thN(a)]'A N [rhN(a)], (1.43) 

where rfiN(~ ) is defined in (1.41) and A N is a sequence of positive semi-definite matrices 
converging in probability to some matrix A o. Estimators based on conditional 
mean restrictions are generally of this form. Under similar regularity conditions 
as for M-estimators, G M M  estimators will be consistent and asymptotically linear, 
with influence function 

~b(y, x) - - [ M o A o M o ] -  X M oAom(Y ' x, ao), 

where 

(1.44) 

M o =- ~E[m(y, x, a)]/~a' I~ =,o. (1.45) 

As pointed out by Hansen (1982), the asymptotic variance of the G M M  estimator 
is minimized by choosing A N so that its probability limit A o is proportional to 
the inverse of the covariance matrix E[m(y ,x ,  ao)m'(y,x, ao) ] of the moment 
functions. 

Another variation of the M-estimator of (1.40) defines the estimator o2 as a 
minimizer of a bivariate U-process, 

d~ a r g m i n ( N ~  -1N-1 N = 2 E PIq(Zi 'Zj' a) =-- argmin UN(a), (1.46) 
~ o  \ 2 /  i=1 j=i+l oral9 
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where the kernel PN(') has the same symmetry property as stated for (1.37) above; 
such estimators arise for models with independence or index restrictions on the 
error terms. Results by Nolan and Pollard (1987, 1988), Sherman (1993) and Honor6 
and Powell (1991) can be used to establish the consistency and asymptotic normality 
of this.estimator, which will have an influence function of the form (1.42) when 

m(y, x, e) = lim ~E[pN(z i, zj, ot)ly i = y, x i = x]/~o~. 
N--* eo 

(1.47) 

A more difficult class of estimators to analyze are those termed "semiparametric 
M-estimators" by Horowitz (1988a), for which the estimating equations in (1.41) 
also depend upon an estimator of a nonparametric component 60(-); that is, c~ solves 

1 N 
0 =  ~ ,~1 m(y i ' x "~ '8 ( ' ) )=r f iu (S t ' 8 ( ' ) )  (1.48) 

for some nonparametric estimator 8 of 60. This condition might arise as a first-order 
condition for minimization of an empirical loss function that depends on 8, 

1 N 
a = argmin ~ p(yi, x i ,~ ,8 ( . ) )  ' 

~EO N i= l 
(1.49) 

as considered by Andrews (1990a, b). As noted above, an efficient estimator for any 
semiparametric model is generally of this form and estimators for models with 
independence or index restrictions are often in this class. To derive the influence 
function for an estimator satisfying (1.48), a functional mean-value expansion of 
n~N(~, 8) around 8 = 60 can be used to determine the effect on d~ of estimation of 
60 . Formally, condition (1.48) yields 

0 = r~N(~, 8(')) = rfiN(d~, 60(')) + Lo(8(" ) -- 60(')) + op(1/x/~) (1.50) 

for some linear functional L0; then, with an influence function representation of 
this second term 

Lo(•') - 6o(')) = ~(Yi, xi) + op(1/x//N) 
i 

(1.51) 

(with E[~(y, x)] = 0), the form of the influence function for a semiparametric M- 
estimator is 

~,(y, x) = [~E(m(y,  x, c~, , - 1 6 o ) ] / ~  I~,=,~o] [m(y ,x ,  eo, Jo) + ~(Y, x)]. (1.52) 



Ch. 41: Estimation of Semiparametric Models 2465 

To illustrate, suppose &o is finite-dimensional, 60eNk; then the linear functional in 
(1.50) would be a matrix product, 

Lo(&- ) - 6o(')) =- Lo(&--  6o) - [~E(m(y,  x, ~, 8)/~6' ~=,o #=~o] (S-- 6o), (1.53) 

and the additional component ¢ of the influence function in (1.52) would be the 
product of the matrix L 0 with the influence function of the preliminary estimator 
f. When 6o is infinite-dimensional, calculation of the linear functional L o and the 
associated influence function ¢ depends on the nature of the nuisance parameter 
&o and how it enters the moment function m(y, x, ~, f). One important case has f o 
equal to the conditional expectation of some function s (y ,x )  of the data given 
some other function v(x) of the regressors, with m(') a function only of the fitted 
values of this expectation; that is, 

and 

6 o = 6 o ( V ( X ) ) = E [ s ( y , x ) l v ( x ) ]  

re(y, x, ct, 6(.))  = re(y, x, ct, f ( v (x )  ) ), 

(1.54) 

(1.55) 

with ~m/~f  well-defined. For  instance, this is the structure of efficient estimators 
for conditional location restrictions. For  this case, Newey (1991) has shown that 
the adjustment term ¢(y ,x )  to the influence function of a semiparametric M- 
estimator d~ is of the form 

~ (y, x) = [a E(m(y,  x, c~, &) lv(x) ]/a&'[, = ~o] [s(y, x) - fo(V(X) ) ]. (1.56) 

In some cases the leading matrix in this expression is identically zero, so the 
asymptotic distribution of the semiparametric M-estimator is the same as if bo(') 
were known; Andrews (1990a, b) considered this and other settings for which the 
adjustment term ~ is identically zero, giving regularity conditions for validity of 
the expansion (1.50) in such cases. General formulae for the influence functions of 
more complicated semiparametric M-estimators are derived by Newey (1991) 
and are summarized in Andrews' and Newey and McFadden's chapters in this 
volume. 

2. Stochastic restrictions 

This section discusses how various combinations of structural equations and 
stochastic restrictions on the unobservable errors imply restrictions on the joint 
distribution of the observable data, and presents general estimation methods for 
the parameters of interest which exploit these restrictions on observables. The 
classification scheme here is the same as introduced in the monograph by Manski 
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(1988b) (and also in Manski 's chapter in this volume), although the discussion 
here puts more emphasis on estimation techniques and properties. Readers who 
are familiar with this material or who are interested in a particular structural form, 
may wish to skip ahead to Section 3 (which reviews the literature for particular 
models), referring back to this section when necessary. 

2.1. Condi t ional  mean restr ic t ion 

As discussed in Section 1.3 above, the class of constant conditional location 
restrictions for the error distribution assert constancy of 

v0 = argmin E [r(e - b)[ x], (2.1) 
b 

for some function r( ')  which is nonincreasing for negative arguments and non- 
decreasing for positive arguments; this implies a moment  condition E[q(e  - P0)lx] = 
0, for q ( u ) =  ~r(u)/~u. When the loss function of (2.1) is taken to be quadratic, 
r(u) = u'u, the corresponding conditional location restriction imposes constancy of 
the conditional mean of the error terms, 

E(e lx )  = #o (2.2) 

for some #o. By appropriate definition of the dependent variable(s) y and "exogenous" 
variables x, this restriction may be applied to models with "endogenous" regressors 
(that is, some components of x may be excluded from the restriction (2.2)). 

This restriction is useful for identification of the parameters of interest for 
structural functions g(x,  ~, e) that are invertible in the error terms e; that is, 

Y = g( x,  ~o, e ) ~ e  = e(y, x ,  (Zo) 

for some function e(.), so that the mean restriction (2.1) can be rewritten 

E [e(yi, xi ,  Co) -- ,Uo Ixi] = 0 = E [e(yi,  xl ,  ~o)[ x/], (2.3) 

where the latter equality imposes the normalization # o -  0 (i.e., the mean/~o is 
appended to the vector ~o of parameters of interest). 

Conditional mean restrictions are useful for some models that are not completely 
specified - that is, for models in which some components of the structural function 
g(') are unknown or unspecified. In many cases it is more natural to specify the 
function e(') characterizing a subset of the error terms than the structural function 
g(.) for the dependent variable; for example, the parameters of interest may be 
coefficients of a single equation from a simultaneous equations system and it is 
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often possible to specify the function e(.) without specifying the remaining equations 
of the model. However, conditional mean restrictions generally are insufficient to 
identify the parameters of interest in noninvertible limited dependent variable 
models, as Manski (1988a) illustrates for the binary response model. 

The conditional moment condition (2.3) immediately yields an unconditional 
moment equation of the form 

O=E[d(x)e(y,X,~o)], (2.4) 

where d(x) is some conformable matrix with at least as many rows as the dimension 
of ~o. For  a given function d(-), the sample analogue of the right-hand side of (2.8) 
can be used to construct a method-of-moments or generalized method-of-moments 
estimator, as described in Section 1.4; the columns of the matrix d(x) are 
"instrumental variables" for the corresponding rows of the error vector e. More 

/generally, the function d(') may depend on the parameters of interest, ~0, and a 
(possibly) infinite-dimensional nuisance parameter 6o(0, so a semiparametric 
M-estimator for ~ may be defined to solve 

1 N 
0 =  N,~a d(x,,~,6)e(yi, x,,~), (2.5) 

A A 

where dim(d(.)) = dim(~) x dim(e) and 6 = 6(-) is a consistent estimator of the 
nuisance function 6o(. ). For  example, these sample moment equations arise as the 
first-order conditions for the G M M  minimization given in (1.43), where the moment 
functions take the form re(y, x, ~) = c(x) e(y, x, ~), for a matrix c(x) of fixed functions 
of x with number of rows greater than or equal to the number components of e. 
Then, assuming differentiability of e('), the G M M  estimator solves (2.5) with 

d(x, ~, 8) =- [~e(y,, x,, ~)/~'] '[c(xi)] '  ANc(x), 
i 

(2.6) 

where A N is the weight matrix given in (1.43). 
Since the function d(.) depends on the data only through the conditioning 

variable x, it is simple to derive the form of the asymptotic distribution for the 
estimator ~ which solves (2.5) using the results stated in Section 1.4: 

x//N( ~ - ~o) ~ JV(O, M o  ~ Vo(M'o)- 1), (2.7) 

where 
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and 

Vo = E. [d(x, ao, 6o) e(y, x, ~o) e'(y, x, ~o) d'(x, ~o, ~o)] 

= E[d(x, ao, 6o) Z,(x) d'(xi, ao, 6o) ]. 

In this expression, 2;(x) is the conditional covariance matrix of the error terms, 

S (x) = E [e(y, x, ~o) e'(y, x, ao) I x] --- E leg I x]. 

Also, the expectation and differentiation in the definition of M o can often be inter- 
changed, but the order given above is often well-defined even if d(') or e(.) is not 
smooth in a. 

A simple extension of the Gauss Markov argument can be used to show that 
an efficient choice of instrumental variable matrix d*(x) is of the form 

d*(x)=d*(x,  Oto,6o)= E[e(y,x ,  oOlxi]l~,=~, ° [•(x)]- 1; (2.8) 

the resulting efficient estimator 4" will have 

w/N( ~* - ao) ~ JV'(0, V*), with V* = {E[d*(x)[.S(x)][d*(x)]'} -1, 
(2.9) 

under suitable regularity conditions. Chamberlain (1987) showed that V* is the 
semiparametric efficiency bound for any "regular" estimator of So when only the 
conditional moment restriction (2.3) is imposed. Of course, the optimal matrix 
d*(x) of instrumental variables depends upon the conditional distribution of y 
given x, an infinite-dimensional nuisance parameter, so direct substitution of d*(x) 
in (2.5) is not feasible. Construction of a feasible efficient estimator for s0 generally 
uses nonparametric regression and a preliminary inefficient G M M  estimator of 
So to construct estimates of the components of d*(x), the conditional mean of 
Oe(y,x,~o)/O~' and the conditional covariance matrix of e(y,x,O~o). This is the 
approach taken by Carroll (1982), Robinson (1987), Newey (1990b), Linton (1992) 
and Delgado (1992), among others. Alternatively, a "nearly" efficient sequence of 
estimators can be generated as a sequence of G M M  estimators with moment 
functions of the form re(y, x, a) = c(x) e(y, x, o O, when the number of rows of c(x) 
(i.e. the number of "instrumental variables") increases slowly as the sample size 
increases; Newey (1988a) shows that if linear combinations of c(x) can be used to 
approximate d*(x) to an arbitrarily high degree as the size of c(x) increases, then 
the asymptotic variance of the corresponding sequence of G M M  estimators equals 
V*. 
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F o r  the linear model  

y = x'flo + e 

with scalar dependent  var iable  y, the form of the opt imal  ins t rumental  variable 
matr ix  d*(x) simplifies to the vector  

d*(x) = [a2(x)]-  ix, 

where a2(x) is the condi t ional  var iance of the error  te rm e. As noted  in Section 1.2 
above,  an efficient es t imator  for flo would be a weighted least squares est imator ,  
with weights p ropor t iona l  to a nonpa rame t r i c  es t imator  of [a2(x)] - 1, as considered 
by Robinson  (1987). 

2.2. Conditional quantile restrictions 

In its mos t  general  form, the condi t ional  nth quanti le  of a scalar error  te rm e is 
defined to be any funct ion r/(x; n) for which the condit ional  dis t r ibut ion of e has 
at least probabi l i ty  n to the left and  probabi l i ty  1 - n to the right of  q~(x): 

Pr{e<~q(x;n)Lx} >>.n and Pr{e>~tl(x;n)]x} t> 1 - n .  (2.10) 

A condi t ional  quanti le  restriction is the assumpt ion  that, for some hE(O, 1), this 
condi t ional  quanti le  is independent  of x, 

t/(x;rc) = qo(n) - tlo, a.s. (2.11) 

Usual ly  the condi t ional  distr ibution of e is further restricted to have no point  mass  
at its condi t ional  quanti le  (Pr{e = qo } = 0), which with (2.10) implies the condi t ional  
m o m e n t  restriction 

E [n - 1 {e < r/o } Ix] = 0'-= E In  -- 1 {e < 0} Ix], (2.12) 

where again the normal iza t ion  t/o = 0 is imposed  (absorbing qo as a c o m p o n e n t  
of %). To  ensure uniqueness of  the solution qo = 0 to this m o m e n t  condit ion,  the 
condi t ional  error  distr ibution is usually assumed to be absolutely cont inuous  with 
nonnegat ive  density in some ne ighborhood  of zero. Al though it is possible in 
principle to treat  the p ropor t ion  n as an unknown  parameter ,  it is generally 
assumed that  n is known in advance;  mos t  a t tent ion is paid to the special case 
n = 1 (i.e. a condit ional  median  restriction) which is implied by the s t ronger  
assumpt ions  of  either independence of the errors and  regressors or condi t ional  
symmet ry  of the errors  abou t  a constant.  



2470 J.L. Powell 

A conditional quantile restriction can be used to identify parameters of interest 
in models in which the dependent variable y and the error term e are both scalar, 
and the structural function 9(') of (1.4) is nondecreasing in e for all possible ~o 
and almost all x: 

ul~uE=~g(x,e ,  u l )~g (x , e ,  u2), a.s. (x). (2.13) 

(Of course, nonincreasing structural functions can be accommodated with a sign 
change on the dependent variable y.) This monotonicity and the quantile restriction 
(2.11) imply that the conditional mh quantile of y given x is g(x, Co,0); since 

e~<0 or e~>0 =~ y = g ( x ,  ao, e)<~g(X, ao,O) 

it follows that 

Pr{y<~g(x,%,O)[x} >~ Pr{e~Olx} >~n and 

Pr{y/> #(x, eo,0)lx } I> Pr{e 1> 0Ix} ~> 1 - n. 

or y >~ o(X, eo, O), 

(2.14) 

Unlike a conditional mean restriction, a conditional quantile restriction is useful 
for identification of eo even when the structural function g(x, e, e) is not invertible 
in e. Moreover, the equivariance of quantiles to monotonic transformations means 
that, when it is convenient, a transformation l(y) might be analyzed instead of the 
original dependent variable y, since the conditional quantile of l(y) is/(9(x, Co, 0)) 
if l(.) is nondecreasing. (Note, though, that application of a noninvertible trans- 
formation may well make the parameters eo more difficult to identify.) 

The main drawback with the use of quantile restrictions to identify e0 is that 
the approach is apparently restricted to models with a scalar error term e, because 
of their lack of additivity (i.e. quantiles of convolutions are not generally the sums 
of the corresponding quantiles) as well as the ambiguity of a monotonicity restric- 
tion on the structural function in a multivariate setting. Estimators based upon 
quantile restrictions have been proposed for the linear regression, parametric 
transformation, binary response, ordered response and censored regression models, 
as described in Section 3 below. 

For  values of x for which 9(x, Oto, e) is strictly increasing and differentiable at 
e = 0, the moment restriction given in (2.12) and monotonicity restriction (2.13) 
can be combined to obtain a conditional moment restriction for the observable 
data and unknown parameter Co. Let 

b(x, = 1 tf (2.15) 

then (2.12) immediately implies 

E {b(x, eo)[rc - l{y < 9(x, Oto, O) } ] lx  } - E[m(y,x, eo)lX] = 0. (2.16) 
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In principle, this conditional moment condition might be used directly to define 
a method-of-moments estimator for So; however, there are two drawbacks to this 
approach. First, the moment function m(.) defined above is necessarily a dis- 
continuous function of the unknown parameters, complicating the asymptotic 
theory. More importantly, this moment condition is substantially weaker than the 
derived quantile restriction (2.14), since observations for which g(x, So, U ) is not 
strictly increasing at u = 0 may still be useful in identifying the unknown parameters. 
As an extreme example, the binary response model has b(x, So) = 0 with probability 
one under standard conditions, yet (2.14) can be sufficient to identify the parameters 
of interest even in this case (as discussed below). 

An alternative approach to estimation of So can be based on a characterization 
of the reth conditional quantile as the solution to a particular expected loss 
minimization problem. Define 

R(b, x; re) =- E[p,~(y - b) - p,~(y) lx], 

where 

(2.17) 

p ~ ( u )  - u [ r e  - l(u < 0)]; 

since Ip ,~ (u -b ) -p=(u) l  ~ [bl, this minimand is well-defined irrespective of the 
existence of moments of the data. It is straightforward to show that Q(b,x) is 
minimized at b* =g(x,~0,0)  when (2.14) holds (more generally, Q(b,x) will be 
minimized at any conditional reth quantile of y given x, as noted by Ferguson 
(1967)). Therefore, the true parameter vector So will minimize 

Q(s; w(.), re) - E[w(x)  R(g(x, s, 0), x; re)] = E{w(x)[p,~(y -- g(x, s, 0)) -- P,~(Y)3 } 

(2.18) 

over the parameter space, where w(x) is any scalar, nonnegative function of x 
which has E[w(x) ' lg(x ,  s, 0)l] < ~ .  For  a particular structural function g(.), then, 
the unknown parameters will be identified if conditions on the error distribution, 
regressors, and weight function w(x) are imposed which ensure the uniqueness 
of the minimizer of Q(s; w(.),re) in (2.18). Sufficient conditions are uniqueness of 
the reth conditional quantile r/o = 0 of the error distribution and Pr{w(x)> 0, 
g(x, s, tl) # g(x, ~o, 0)} > 0 whenever s # So. 

Given a sample {(yi, xi), i = 1 . . . . .  N} of observations on y and x, the sample 
analogue of the minimand in (2.18) is 

1 N 
QN(S; w(" ), re) = ~ i ~-1 w(xl) p,~(yi -- g(x,, s, 0)), (2.19) 

where an additive constant which does not affect the minimization problem has 
been deleted. In general, the weight function w(x) may be allowed to depend upon 
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nuisance parameters, w ( x ) -  w(x, 6o), so a feasible weighted quantile estimator of 
e0 might be defined to minimize SN(CC, t/,ff(');r0, with ~(x)=w(x,  6) for some 
preliminary estimator 6" of 60. In the special case of a conditional median restriction 
(~ = ½), minimization of QN is equivalent to minimization of a weighted sum of 
absolute deviations criterion 

1 N 
SN(C¢; W(') ) ~ 2QN(~; w('), ½) = P¢" ,~----a w(xt) ly~ -- g(x~, ~, 0) l, (2.20) 

which, with w(x) =- 1, is the usual starting point for estimation of the particular 
models considered in the literature cited below. When the structural function g(.) 
is of the latent variable form (g(x,a,e)= t(x'fl + e,z)), the estimator ~ which 
minimizes QN(a; if, re) will typically solve an approximate first-order condition, 

1 N 
,--~1'= ~(x~) [zt - l(y~ < g(x~, ~, O))]b(x~, ~) ~9(xi'~e ~' O) ~_ O, (2.21) 

where b(x, c¢) is defined in (2.15) and ~g(')/~ denotes the vector of left derivatives. 
(The equality is only approximate due to the nondifferentiability of p~(u) at zero 
and possible nondifferentiability of g(.) at ~; the symbol " = "  in (2.21) means the 
left-hand side converges in probability to zero at an appropriate rate.) These 
equations are of the form 

1 N 
~1 m(yi' xi' °O d(xi, ~, 6) ~- O, 

where the moment function m(') is defined in (2.16) and 

d(x, ~, $) - w(x,, $)b(x,, ~) ~O(xi, a, 0). 
~a 

Thus the quantile minimization problem yields an analogue to the unconditional 
moment restriction E[m(y, x, O~o)d(x, ~o, 6o)] = 0, which follows from (2.16). 

As outlined in Section 1.4 above, under certain regularity conditions (given by 
Powell (1991)) the quantile estimator ~ will be asymptotically normal, 

~(~ _ ~Xo) d ~  ,A/'(O, Mo 1 Vo(Mo)- 1), (2.22) 

where now 

Mo =- E|f(OI [- x) w(x, 6o) b(x, ao) ~g(x' ao, O)~g(x, ao, 0)|-] 
[ 
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and 

Vo = EIn(1 -- n)w2(x, 60)b(x, ~o) ~g(x-~-°'o~ O)~g(x'~'°'~ O)d ] '  

for f(01 x) being the conditional density of the "residual" y - g(x, Co, 0) at zero (which 
appears from the differentiation of the expectation of the indicator function in 
(2.21)). The "regularity" conditions include invertibility of the matrix Mo, which is 
identically zero for the binary and ordered response models; as shown by Kim and 
Pollard (1990), the rate of convergence of the estimator ~ is slower than x /N  for 
these models. 

When (2.22) holds, an efficient choice of weight function w(x) for this problem is 

w*(x) ~ f(01x), (2.23) 

for which the corresponding estimator ~* has 

~v/~(6~, S0 ) d - -  - - *  X ( 0 ,  V*) ,  (2.24) 

with 

The matrix V* was shown by Newey and Powell (1990) to be the semiparametric 
efficiency bound for the linear and censored regression models with a conditional 
quantile restriction, and this is likely to be the case for a more general class of 
structural models. 

For the linear regression model g(x, s o, e) = x'flo + e, estimation of the true coeffi- 
cients flo using a least absolute deviations criterion dates from Laplace (1793); the 
extension to other quantile restrictions was proposed by Koenker and Bassett 
(1978). In this case b(x, ~) = 1 and ~g(x, o~, e ) /~  = x, which simplifies the asymptotic 
variance formulae. In the special case in which the conditional density of ~ =- y - x'flo 
at zero is constant - f(01x) = fo - the asymptotic covariance matrix of the quantile 
estimator/~ further simplifies to 

v *  = ~(1 - - )  E f o ] - 2  { E E x x ' ]  } - 1. 

(Of course, imposition of the additional restriction of a constant conditional density 
at zero may affect the semiparametric information bound for estimation of flo-) The 
monograph by Bloomfield and Steiger (1983) gives a detailed discussion of the 
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historical development, theoretical properties, and computat ional  implementation 
of quantile estimators for linear models. 

As noted in Section 1.3, conditional mean and median/quantile restrictions do 
not exhaust the set of conditional location restrictions appearing in the semipara- 
metric literature. For  example, M. Lee (1989) considers estimation based upon a 
conditional mode restriction, which imposes constancy of the maximizer of the 
conditional density of the error terms, 

m a x f ~ l x ( e l x )  = Vo. 
e 

For  the linear model y = x ' f lo  + e, this restriction immediately implies a linear form 
for the conditional mode of y given x: 

maxfxLx(yix) = Vo + x'/~o. 
Y 

More generally, a mode restriction may impose constancy of the modal  interval of 
width co for the error distribution, defined as 

Vo(X, co) =- argmax Pr{ Is - ul ~< co/2[x}  = argmax E{I(Ie -- u[ ~< co/2)l x}, 
It it 

which yields the same linearity result for the modal co-interval of y given x in a linear 
model. M. Lee (1989) proposes an estimator for the linear model which solves a 
sample maximization problem derived from this restriction, and verifies its consis- 
tency under suitable conditions; he also shows how this restriction can be used to 
construct consistent estimators for the truncated regression model, since modes are 
invariant to truncation (provided they do not overlap the truncated region). 

2.3. C o n d i t i o n a l  s y m m e t r y  res t r i c t ions  

The assumption that the error terms e are conditionally symmetrically distributed 
around a constant term v 0 = 0, 

Pr{~<~u[x} = P r { - a ~ < u l x }  (2.25) 

for all u, clearly implies a constant conditional mean or median (when either is 
well-defined), so estimators which impose these weaker restrictions are also applic- 
able under (2.25). More generally, a conditional symmetry restriction is useful for 
identification of the parameters  of interest, ~o, for models that can be "symmetrized" 
in the error terms ~. Specifically, suppose that, for the structural relation y = g(x,  ~o, e), 
a function h(y ,  x ,  ~) can be constructed where t[ae composed function hog is an odd 
function of e. That  is, 

h(g(x,  o~, e), x ,  ~) = - h(g(x,  o~, - ~), x ,  o~) (2.26) 
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for some h(.) and all possible x, ~ and e. Then the random function h(y,x, oO= 
h(g(x,c%,e),x,o 0 will also be symmetrically distributed about zero when ~ = ~o, 
implying the conditional moment restriction 

E[h(y, x, O~o) [ x ] = E[h(g(x, ot o, e), x, O~o)[X ] = O. (2.27) 

As with the previous restrictions, the conditional moment restriction can be used 
to generate an unconditional moment equation of the form E[d(x) h(y, x, ~o)] = 0, 
with d(x) a conformable matrix of instruments with a number of rows equal to the 
number of components of ~0. In general, the function d(x) can be a function of 
and nuisance parameters 6 (possibly infinite-dimensional), so a semiparametric 
M-estimator ~ of ~o can be constructed to solve the sample moment equations 

0 = 1 ~ d(xi, ~, 6) h(y,, xl, ~), (2.28) 
N i = l  

for S an estimator of some nuisance parameters 6o. 
For  structural functions g(x, ct, ~) which are invertible in the error terms, it is 

straightforward to find a transformation satisfying condition (2.26). Since e = e(y, x, a) 
is an odd function of e, h(') can be chosen as this inverse function e(.). Even for 
noninvertible structural functions, it is still sometimes possible to find a "trimming" 
function h(.) which counteracts the asymmetry induced in the conditional distribution 
of y by the nonlinear transformation 9(')- Examples discussed below include the 
censored and truncated regression models and a particular selectivity bias model. 

As with the quantile estimators described in a preceding section, the moment 
condition (2.27) is sometimes insufficient to identify the parameters ~0, since the 
"trimming" transformation h(') may be identically zero when evaluated at certain 
values of ~ in the parameter space. For  example, the symmetrically censored least 
squares estimator proposed by PoweU (1986b) for the censored regression model 
satisfies condition (2.2~ with a function h(') which is nonzero only when the fitted 
regression function x'ifl exceeds the censoring point (.zero), so that the sample 
moment equation (2.28) will be trivially satisfied if fl is chosen so that x',fl is 
nonpositive for all observations. In this case, the estimator/~ was defined not only 
as a solution to a sample moment condition of the form (2.28), but in terms of a 
particular minimization p r o b l e m / ~ - a r g m i n o  S,(fl) which yields (2.28) as a first- 
order condition. The limiting minimand was shown to have a unique minimizer at 
flo, even though the limiting first-order conditions have multiple solutions; thus, 
this further restriction on the acceptable solutions to the first-order condition was 
enough to ensure consistency of the estimator/~ for fl0. Construction of an analogous 
minimization problem might be necessary to fully exploit the symmetry restriction 
for other structuralmodels. 

Once consistency of a particular estimator ~ satisfying (2.28) is established, the 
asymptotic distribution theory immediately follows from the G M M  formulae pre- 
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sented in Section 2.1 above. For  a particular choice of h('), the form of the sample 
moment condition (2.28) is the same as condition (2.6) of Section 2.2 above, replacing 
the inverse transformation "e(.)" with the more general "h(.)" here; thus, the form 
of the asymptotically normal distribution of ~ satisfying (2.28) is given by (2.7) of 

Sect ion 2.2, again replacing "e(.)" with "h(-)". 
Of course, the choice of the symmetrizing transformation h(.) is not unique - given 

any h(') satisfying (2.26), another transformation h*(y,x,o~)= l(h(y,x ,~) ,x ,o 0 will 
also satisfy (2.26) if l(u, x, o~) is an odd function of u for all x and e. This multiplicity 
of possible symmetrizing transformations complicates the derivation of the semi- 
parametric efficiency bounds for estimation of So under the symmetry restriction, 
which are typically derived on a case-by-case basis. For  example, Newey (1991) 
derived the semiparametric efficiency bounds for the censored and truncated reg- 
ression models under the conditional symmetry restriction (2.25), and indicated how 
efficient estimators for these models might be constructed. 

For  the linear regression model g(x, ~o, e) - x'fl + ~, the efficient symmetrizing 
transformation h(y, x, fl) is the derivative of the log-density of e given x, evaluated 
at the residual y - x'fl, with optimal instruments equal to the regressors x: 

h*(y,x ,  f l )=~ ln f ~ l x ( y -  x'fltx)/~e, d*(x, f l ,6)= x. 

Here an efficient estimator might be constructed using a nonparametric estimator 
of the conditional density of e given x, itself based on residuals ~ = y - x'/~ from a 
preliminary fit of the model. Alternatively, as proposed by Cragg (1983) and Newey 
(1988a), an efficient estimator might be constructed as a sequence of G M M  estimators, 
based on a growing number of transformation functions h(.) and instrument sets 
d(.), which are chosen to ensure that the sequence of G M M  influence functions can 
approximate the influence function for the optimal estimator arbitrarily well. In 
either case, the efficient estimator would be "adaptive" for the linear model, since 
it would be asymptotically equivalent to the maximum likelihood estimator with 
known error density. 

2.4. Independence restrictions 

Perhaps the most commonly-imposed semiparametric restriction is the assumption 
of independence of the error terms and the regressors, 

Pr{ei ~< 21xi} -= Pr{ei ~< 2} for all real 2, w.p.l. (2.29) 

Like conditional symmetry restrictions, this condition implies constancy of the 
conditional mean and median (as well as the conditional mode), so estimators which 
are consistent under these weaker restrictions are equally applicable here. In fact, 
for models which are invertible in the errors (e = e(y, x, ~0) for some e(.)), a large 
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class of G M M  estimators is available, based upon the general moment condition 

E{d(x)[l(e(y, x, ~o)) - Vo] } = 0 (2.30) 

for any conformable functions d(.) and l(.) for which the moment in (2.30) is 
well-defined, with Vo -~ Ell(e)]. (MaCurdy (1982) and Newey (1988a) discuss how to 
exploit these restrictions to obtain more efficient estimators of linear regression 
coefficients.) Independence restrictions are also stronger than the index and exclusion 
restrictions to be discussed in the next section, so estimation approaches based upon 
those restrictions will be relevant here. 

In addition to estimation approaches based on these weaker implied stochastic 
restrictions, certain approaches specific to independence restrictions have been 
proposed. One strategy to estimate the unknown parameters involves maximization 
of a "feasible" version of the log-likelihood function, in which the unknown distri- 
bution function of the errors is replaced by a (preliminary or concomitant) non- 
parametric estimator. For some structural functions (in particular, discrete response 
models), the conditional likelihood function for the observable data depends only 
on the cumulative distribution function F~(.) of the error terms, and not its derivative 
(density). Since cumulative distribution functions are bounded and satisfy certain 
monotonicity restrictions, the set of possible c.d.f.'s will be compact with respect to 
an appropriately chosen topology, so in such cases an estimator of the parameters 
of interest ct o can be defined by maximization of the log-likelihood simultaneously 
over the finite-dimensional parameter ~ and the infinite-dimensional nuisance par- 
ameter F,(.). That is, if f (y l  x, ~, F~(')) is the conditional density of y given x and the 
unknown parameters ~0 and F~ (with respect to a fixed measure #r), a nonparametric 
maximum likelihood (NPML) estimator for the parameters can be defined as 

= argmax -- ln f (Yi lXi ,  C~,F(.)), 
/?(') ~o .e~-  N i= 1 

(2.31) 

where ~ is the space of admissible c.d.f.'s. Such estimators were proposed by, e.g. 
Cosslett (1983) for the binary response model and Heckman and Singer (1984) for 
a duration model with unobserved heterogeneity. Consistency of ~ can be established 
by verification of the Kiefer and Wolfowitz (1956) conditions for consistency of 
N P M L  estimation; however, an asymptotic distribution theory for such estimators 
has not yet been developed, so the form of the influence function for ~ (if it exists) 
has not yet been rigorously established. 

When the likelihood function of the dependent variable y depends, at least for 
some observations, on the density function f~(e) =- dF~(e)/de of the error terms, the 
joint maximization problem given in (2.31) can be ill-posed: spurious maxima (at 
infinity) can be obtained by sending the (unbounded) density estimator f~ to infinity 
at particular points (depending on ~ and the data). In such cases, nonparametric 
density estimation techniques are sometimes used to obtain a preliminary estimator 
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f~ (possibly depending on ~) which is substituted into the likelihood function, 
yielding the "profile likelihood" criterion considered by Severini and Wong (1987a), 
Andrews (1990a, b) and Newey (1991). More generally, the profile likelihood approach 
might be used whenever the likelihood function depends upon an infinite-dimensional 
nuisance parameter go('); given a preliminary estimator 6(.) of this nuisance parameter, 
an estimator of So can be defined as 

6~ = argmax l n f ( y l ] x i ,  a,$(')),  
~EO N i = 1 

(2.32) 

which yields a first-order condition of the "semiparametric M-estimator" form 
discussed above. The nonparametric estimator 6(.) typically varies with ~ for 
example, a density estimator might be based on residuals ei - e(yi, x~, ~) - which 
complicates derivation of the asymptotic theory, requiring particular rates of con- 
vergence of 6"(-) to go() which are uniform over ~, as discussed in Andrews' and 
Newey and McFadden's chapters in this volume. Though the profile likelihood 
approach is, in principle, applicable to models which do not impose independence 
of the errors and regressors, it is more attractive under this restriction because the 
unknown nuisance parameter (the cumulative and/or density of the errors) is 
relatively low-dimensional, depending only on the dimension of e and not also on 
the number of regressors x. Such estimators have been proposed for most of the 
limited dependent variable models considered below. 

A variant of profile fikelihood estimation is based upon squared-error minimization 
rather than likelihood maximization. From the structural model y = g(x, ~, e), it is 
usually possible to deduce the form of the conditional mean of y, 

E[ y lx l  = E[9(x,  or, ~)lx] ~ 7(x, c~,f~(-)). (2.33) 

Given this expectation function and a nonparametric estimator f( .)  of f~(.), a 
semiparametric analogue of a nonlinear (weighted) least squares estimator of ~o is 

d~ = a r g m a x  1 (2.34) 

where the weights w(x) might also depend upon preliminary (parametric or non- 
parametric) estimators. In general, such estimators will be less efficient than their 
profile likelihood counterparts (just as least squares is generally less efficient than 
maximum likelihood), but in some circumstances may achieve the semiparametric 
efficiency bound. Semiparametric least squares estimators have also been proposed 
for many limited dependent variable models. 

Another method for construction of estimators under independence restrictions, 
the "pairwise comparison" approach, uses the fact that differences of independent 
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and identically distributed random variables are symmetrically distributed about 
zero. For a particular structural model y = 9(x, ~, e), the first step in the construction 
of a pairwise difference estimator is to find some transformation e(z~, zg, ~) =- e~(~) 
of pairs of observations (z~, zg) -= ((yl, x~), (yg, x j)) and the parameter vector so that, 
conditional on the regressors x~ and x j, the transformations e~g(~0) and e~(~o) are 
identically distributed, i.e. 

~(e l j (%)[x i ,  x j)  = ~(eji(ao)[Xi, Xj) a.s., (2.35) 

where 5e(.[.) denotes the conditional sampling distribution of the random variable. 
In order for the parameter ~0 to be identified using this transformation, it must also 
be true that £,e(%(~l)lx . x j ) #  5e(%(~1)lx ~, x j) with positive probability if ~ # ~o, 
which implies that observations i and j cannot enter symmetrically in the function 
e(z i, zj,~). Since e i and ej are assumed to be mutually independent given x~ and x j, 
eq(~) and eji(~) will be conditionally independent given xi and x j; thus, if (2.35) is 
satisfied, then the difference eij(~ ) -ej~(a) will be symmetrically distributed about 
zero, conditionally on x~ and x j, when evaluated at ~ = %. Given an odd function 
4(') (which, in general, might depend on xg and xi), the conditional symmetry of 
%(~) - ej~(~) implies the conditional moment restriction 

i 

E[~(eij(~o)- eji(%))[xi,  x j ]  = 0 a.s., (2.36) 

provided this expectation exists, and ~o will be identified using this restriction if it 
fails to hold when ~ # %. When 4(') is taken to be the identity mapping ¢(d) = d, 
the restriction that e~j(~o) and ejg(~o) have identical conditional distributions can be 
weakened to the restriction that they have identical conditional means, 

E [ % ( % ) l x i ,  x j ]  = E [ % ( % ) l x i ,  x j ]  a.s., (2.37) 

which may not require independence of the errors ~i and regressors xl, depending 
on the form of the transformation e('). 

Given an appropriate (integrable) vector l(xl, x j, ~) of functions of the regressors 
and parameter vector, this yields the unconditional moment restrictions 

E[ ¢( elj(O~o) -- e ji(Oto) )l(x i, x j, %)] = O, (2.38) 

which can be used as a basis for estimation. If l(.) is chosen to have the same 
dimension as c~, a method-of-moments estimator ~ of ~o can be defined as the 
solution to the sample analogue of this population moment condition, namely, 

(~) -a ¢(e,J(d~)-e31(~))l(xi, xJ ,d t )=O 
i<j  

(2.39) 
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(which may only approximately hold if ~(eij(a) - eji(~)) is discontinuous in a). For  
many models (e.g. those depending on a latent variable y* =-g(x  i, ~ ) +  ei), it is 
possible to construct some minimization problem which has this sample moment 
condition as a first-order condition, i.e. for some function s(z, ,  z j ,  ~) with 

s(zi ,  z j ,  cO 
~ - ¢(ei j(e)  - e j i (e)) l (x i ,  x j ,  e), 

the estimator ~ might alternatively be defined as 

• n - 1  

a = a r g m m (  ~ ~ s(zi,  z j ,  o O. (2.40) 
~ o  \ 2 J  i<j  

A simple example of a model which is amenable to the pairwise differencing 
approach is the linear model, Yi = x'~flo + el, where ei and x i are assumed to be 
independent. For  this case, one transformation function which satisfies the require- 
ments above is 

e(y i ,  x i ,  x2, ~) = Yi - -  x'ifl, 

which does not depend on x~. Choosing l(x~, x j, ~)= x i -  x i, a pairwise difference 
estimator of flo can be defined to solve 

- - ( x l -  x j )  fl)(xi x j )  ~- O, 
i<j 

or, if • is the antiderivative of ~, to minimize 

s~(fl) = Y~ - ~ ( ( y ,  - y~)  - i x i -  xj)'fl). 
i<j 

When ¢(d) = d, the estimator fiis algebraically equal to the slope coefficient estimators 
of a classical least squares regression of Yl on x i and a constant (unless some 
normalization on the location of the distribution of e~ is imposed, a constant term 
is not identified by the independence restriction). When ~(d) = sgn(d), fi is a rank 
regression estimator which sets the sample covariance of the regressors x i with the 
ranks of the residuals Y i -  x'ifl equal (approximately) to zero (Jurerkov/t (1971), 
Jaeckel (1972)). The same general approach has been used to construct estimators 
for discrete response models and censored and truncated regression models• 

In all of these cases, the pairwise difference estimator ~ is defined as a minimizer 
of a second-order U-statistic of the form 

i<j 
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(with z, = (Yi, xl)), and will solve an approximate first-order condition 

( ~ ) - 1  ~ q(zi, zj, ~)= op(n-1/2), 
i<j 

where q(.) = ~ p(.)/~ ct when this derivative is well-defined. As described in Section 1.4 
above, the asymptotic normal distribution of the estimator ~ can be derived from 
the asymptotically linear representation 

m 
&=ct o ~ Ho x r(zi,~o)+op(n-ll2), (2.41) 

n i=1 

where r(zi, ~t) = E[q(zi, z j, a) lzi] and 

E[r(zi, ~o)] 
H o ~ '  

The pairwise comparison approach is also useful for construction of estimators 
for certain nonlinear panel data models. In this setting functions of pairs of observations 
are constructed, not across individuals, but over time for each individual. In the 
simplest case, where only two observations across time are available for each 
individual, a moment condition analogous to (2.36) is 

E[¢(e12,1(Cto)- e21,i(O~o))lxil,xi2 ] = 0 a.s., (2.42) 

where now e12,i(~t) =- e(zil, zi2 , 0~) for the same types of transformation functions e(.) 
described above, and where the second subscripts on the random variables denote 
the respective time periods. To obtain the restriction (2.42), it is not necessary for 
the error terms e~ = (e, ,  e~2) to be independent of the regressors x~ = (x , ,  x~2 ) across 
individuals i; it suffices that the components e~l and e~2 are mutually independent 
and identically distributed across time, given the regressors x~. The pairwise differ- 
encing approach, when it is applicable to panel data, has the added advantage that it 
automatically adjusts for the presence of individual-specific fixed effects, since 
e ,  + ?~ and e~: + 7i will be identically distributed i fe ,  and/~i2 are. A familiar example 
is the estimation of the coefficients flo in the linear fixed-effects model 

Ylt = x'itflo + ?i + eit, t = 1, 2, 

where setting the transformation el2 ,i(~) ~ Yil --X'il fl and ¢(u)= u in (2.42) results 
in the moment condition 

E [ ( y .  - Y~2) - ( x .  - X J ~ o l X . ,  x~2] = g [ e .  - e i21x . ,  x J  = 0, 



2482 J.L. Powell 

which is the basis for the traditional least squares fixed effects estimator. As described 
in Section 3.5 below, this idea has been exploited to construct estimators for panel 
data versions of the binary response and censored and truncated regression models 
which are semiparametric with respect to both the error distribution and the 
distribution of the fixed effects. 

2.5. Exclusion and index restrictions 

Construction of estimators based on index restrictions can be based on a variety of 
different approaches, depending upon whether the index function v(x) is completely 
known or depends upon (finite- or infinite-dimensional) unknown parameters, and 
whether the index sufficiency condition is of the "weak" (affecting only the condi- 
tional mean or median) or "strong" (applying to the entire error distribution) form. 
Estimators of the parameters of interest under mean index restrictions exploit 
modified forms of the moment conditions implied by the stronger constant condi- 
tional mean restrictions, just as estimators under distributional index restrictions 
use modifications of estimation strategies for independence restrictions. 

Perhaps the simplest version of the restrictions to analyze are mean exclusion 
restrictions, for which the index function is a subset of the regressors (i.e. v(x) =- x 1, 
where x =- (x' 1, x2)' ), so that the restriction is 

El-elx-I = E [ e l x x ]  a.s. (2.43) 

As for conditional mean restrictions, this condition can be used to identify the 
parameters of interest, ao, for structural functions y = g(x, "o, e) which are invertible 
in the error terms (e = e(y,x,  ao) ), so that the exclusion restriction (2.43) can be 
rewritten as 

E[e(y,  x, ~0)lx] - E[e(y, x, a0)lx 1 ] = 0. (2.44) 

By iterated expectations, this implies an unconditional moment restriction which 
is analogous to condition (2.4) of Section 2.1, namely, 

0 = E [d(x) e(y, x, ~o)], (2.45) 

where now 

d(x) = d ( x ) -  E[d(x) lx , ]  ( E[A(x) lx l ]  } -1  A(x) (2.46) 

for any conformable matrix d(x) and square matrix A(x) of functions of the regressors 
for which the relevant expectations and inverses exist. (Note that, by construction, 
E['d(x)lxl] = 0 almost surely.) Alternatively, estimation might be based on the 
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condition 

0 = E[d(x) ~(y, x, ~0)], (2.47) 

where, analogously to (2.46), 

~(y, x, o~) - e(y, x, o 0 -- E[e(y ,  x, ~)lxl ] {E[A(x) lxl ] } -1 A(x). 

Given a particular nonparametric method for estimation of conditional means 
given x 1 (denoted /~['lxl]), a semiparametric M-estimator ~ of the structural 
coefficients ~o can be defined as the solution to a sample analogue of (2.45), 

0 = 1 ~ {d(x,, ~, $) - ff~Ed(x,, ~, 6) Ix,1 ] (E[A(x , ) lx ,13)  -1 A(xO } e(y,,  x,,  c~), 
N i = l  

(2.48) 

where the instrumental variable matrix d(x) is permitted to depend upon ~ and a 
preliminary nuisance parameter estimator 6, as in Section 2.2. Formally, the asymp- 
totic distribution of this estimator is given by the same expression (2.7) for estimation 
with conditional mean restrictions, replacing d with d throughout. However, rigorous 
verification of the consistency and asymptotic normality of ~ is technically difficult, 
and the estimating equation (2.48) must often be modified to "trim" (i.e. delete) 
observations where the nonparametric regression estimator/~1-'] is imprecise. A 
bound on the attainable efficiency of estimators of ct o under condition (2.44) was 
derived by Chamberlain (1992), who showed that an optimal instrumental variable 
matrix d*(x) of the form (2.46) is related to the corresponding optimal instrument 
matrix d*(x) for the constant conditional moment restrictions of Section 2.2 by the 
formula 

d*(x) = d*(x) - e [ d * ( x ) l  x 1 ]  r E {  r,~7(x)] - 1 ix1}- ]  - 1 r .~ ' (x)]  - 1, (2.49) 

where d*(x) is defined in (2.8) above and •(x) is the conditional covariance matrix 
of the errors e given the regressors x. This formula directly generalizes to the case 
in which the subvector x 1 is replaced by a more general (but known) index function 
v(x). 

For a linear model y = x2fl o + e, the mean exclusion restriction (2.43) yields the 
semilinear model considered by Robinson (1988): 

y = x'~flo + O(xO + ~, 

where O(x 1) = E [e I xl ] and E[q I x] = E[e -- O(xl)l x] = 0. Defining e(y, x, a) = 
y -- x'2fl, d(x) =- x 2, and A = I, the moment condition (2.47) becomes 

E[  {x2 -- E [ x z l x l ]  } { y -- E[  y l x , ]  -- (x2 -- e [ x 2  Ixl])'fl0}] = 0, 
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which can be solved for flo: 

flo = {El-(x2-EFx21xl])(x2-EFx21x~-I)-I }- XE{(x2--EFx2 I x a ' l ) ( y - E E y l x a ] ) } .  

Robinson (1988) proposed an estimator of flo constructed from a sample analogue 
to (2.47), using kernel regression to nonparametrically estimate the conditional 
expectations and "trimming" observations where a nonparametric estimator of the 
density of xl (assumed continuously distributed) is close to zero and gave conditions 
under which the resulting estimator was root-N-consistent and asymptotically nor- 
mal. Linton (1992) constructs higher-order approximations to the distribution of 
this estimator. 

Strengthening the mean exclusion restriction to a distributional exclusion condi- 
tion widens the class of moment restrictions which can be exploited when the 
structural function is invertible in the errors. Imposing 

Pr{e ~< ulx}  = Pr{a ~< u l x l }  (2.50) 

for all possible values of u yields the general moment conditions 

0 = E[d(x) l(e(y, x, So))] (2.51) 

for any square-integrable function l(e) of the errors, which includes (2.45) as a special 
case. As with independence restrictions, precision of estimators ofa o can be improved 
by judicious choice of the transformation l('). 

Even for noninvertible structural functions, the pairwise comparison approach 
considered for index restrictions can be modified to be applicable for distributional 
exclusion (or known index) restrictions. For any pair of observations zl and zj which 
have the same value of the index function v(x~) = v(xj), the corresponding error terms 
e~ and ej will be independently and identically distributed, given the regressors x~ 
and x j, under the distributional index restriction 

Pr{e ~< ulx}  = Pr{e ~< ulv(x)}.  (2.52) 

Given the pairwise transformation function e(zl, z j, o~) = eij(o 0 described in the previous 
section, an analogue to restriction (2.35) holds under this additional restriction of 
equality of index functions: 

~(eij(~o)lXi,  x j) = ~(eji(Cto)lx i, x j)  a.s. if v(xi) = v(xj). (2.53) 

As for independence restrictions, (2.53) implies the weaker conditional mean restric- 
tion 

E[eij(O~o)lX i ,x j]  = E[eji(O~o)lX i ,xi  ] a.s. if v(xi) = v(xj), (2.54) 
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which is relevant for invertible structural functions (with eij(o 0 equated with the 
inverse function e(yi, xi,  ~) in this case). 

These restrictions suggest estimation of ~o by modifying the estimating equation 
(2.39) or the minimization problem (2.40) of the preceding subsection to exclude 
pairs of observations for which v(xi) v ~ v(xi).  However, in general v(xi) - v (x j )  may 
be continuously distributed around zero, so direct imposition of this restriction 
would exclude all pairs of observations. Still, if the sampling distributions £~'(eij(O:o) 
I xi,  x j,  l)(Xi) -- V(Xj) = C) or conditional expectations E[e i j (~o) lX  i, x j, v(xl) --  v (x j )  = c] 
are smooth functions ofc at c -- 0, the restrictions (2.53) or (2.54) will approximately 
hold if v(xi) - v(xj )  is close to zero. Then appropriate modifications of the estimating 
equations (2.39) and minimization problem (2.40) are 

N 2 ) - I  ¢(ei j(a)--ej i(~))l(xi ,  x j , ~ ) W N ( V ( x , ) - - v ( x j ) ) = O  
i<j 

(2.55) 

and 

. / ' N ~ - I  
a = argmm [ l ~ s(zi, zj, a ) w u ( v ( x i ) -  v(xj)) ,  

o~o \ 2 ]  i<j 
(2.56) 

for some weighting function WN(" ) which tends to zero as the magnitude of its 
argument increases and, at a faster rate, as the sample size N increases (so that, 
ultimately, only observations with v(x~) - v (x j )  very close to zero are included in the 
summations). 

Returning to the semilinear regression model y = x2fl  0 + O(x 0 + rl, E[r/Ix] = 0, 
the same transformation as used in the previous subsection can be used to construct 
a pairwise difference, provided the nonparametric components O(xn)  and O(xjl)  are 
equal for the two observations; that is, i f  e( yi, xi ,  x j, a) = eij(a) = y~ - x'~2fl and v(xi) =- 
x~x, then 

e~i(ao) - eji(ao) = (~i - e j)  = (rh - rlj) 

if v(xi) = v(xj) .  Provided O(xn)  is a smooth (continuous and differentiable) function, 
relation (2.36) will hold approximately if X~l ~ Xjl .  Defining the weight function 
WN(') to be a traditional kernel weight, 

WN(d) = k ( h ~ I d ) ,  k(0) > 0, k0.) ~ 0 as 11211 ~ oOlhN ~ 0  as N ~  o% (2.57) 

and, taking l(xi, x j,  o~) = xi2 -- X j2 and ~(d) = d, a pairwise difference estimator of flo 
using either (2.55) or (2.56) reduces to a weighted least squares regression of the 
distinct differences (Yi-  Yi) in dependent variables on the differences (xi2 - x j 2 )  in 
regressors, using k(h~ l ( x  a - x j l ) )  as weights (as proposed by Powell (1987)). 
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Consistency of the resulting estimator fi requires only the weak exclusion restric- 
tion (2.43); when the strong exclusion restriction (2.53) is imposed, other choices of 
odd function ~(d) besides the identity function are permissible in (2.55). Thus, an 
estimator of flo using ~(d) = sgn(d) might solve 

(N2) -~  ~ sgn((y~--y j )  (x~, ' ^  -- -- xj l)  fl)(xil -- xj t )k((xl2 - Xjz)/hN) ~- O. 
i<j 

(2.58) 

This is the first-order condition of a "smoothed" version of the minimization 
problem defining the rank regression estimator, 

/~ = arg~nin i<2~ I (Y i -  Yj) -- (xl - xj)'fll k((xi2 - Xjz)/hs), (2.59) 

which is a "robust" alternative to estimators proposed by Robinson (1988b) and 
Powell (1987) for the semilinear model. Although the asymptotic theory for such 
estimators has yet to be developed, it is likely that reasonable conditions can be 
found to ensure their root-N-consistency and asymptotic normality. 

So far, the discussion has been limited to models with known index functions v(x). 
When the index function depends upon unknown parameters 6 o which are functionally 
unrelated to the parameters of interest ~0, and when preliminary consistent estimators 
S of 60 are available, the estimators described above are easily adapted to use an 
estimated index function O(x) = v(x, 6). The asymptotic distribution theory for the 
resulting estimator must properly account for the variability of the preliminary 
estimator 8. When 6 o is related to ~0, and that relation is exploited in the construction 
of an estimator of ao, the foregoing estimation theory requires more substantial 
modification, both conceptually and technically. 

A leading special case occurs when the index governing the conditional error 
distribution appears in the same form in the structural function for the dependent 
variable y. For  example, suppose the structural function has a linear latent variable 
form, 

y = O(x, "o, e) = t(X'Bo + ~), (2.60) 

and index v(x) is the latent linear regression function x'flo, 

Pr{¢ ~< ulx}  = Pr{e ~< ulx'flo }. (2.61) 

This particular index restriction on the unobservable error terms immediately 
implies the same index restriction for the observable dependent variable, 

Pr{y  ~< ulx}  = Pr{y  ~< u{x'flo}, (2.62) 
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which can be used to generate moment restrictions for estimation of flo. For 
example, (2.62) implies the weaker restriction 

E [ Y l X ]  =,G(x'flo), (2.63) 

on the conditional mean of the dependent variable, where G(.) is some unknown 
nuisance function. (Clearly flo is at most identified up to a location and scale 
normalization without stronger restrictions on the form of G(').) Defining ~(y, x, b) -= 
y - E[  y lx'b], condition (2.63) implies that 

E[d(x) O(y, x, flo)] = 0 (2.64) 

for any conformable, square-integrable d(x). Thus, with a nonparametric estimator 
ff~[ylx'b] of the conditional expectation function E[ylx'b],  a semiparametric M- 
estimator of flo can be constructed as a sample analogue to (2.64). Alternatively, a 
weighted pairwise difference approach might be used: assuming G(') is continuous, 
the difference in the conditional means of the dependent variables for observations 
i and j satisfies 

E l -y , -  Y j l x , , x j l  = G(x;flo) - G(x)flo) ~ 0 if x'iflo ~- x'jflo. (2.65) 

So by estimating E [ y  i - Y j l X i ,  x j]  nonparametrically and determining when it is 
near zero, the corresponding pair of observations will have (x~-x j ) ' f lo_~O,  
which is useful in determining flo. When G(') is known to be monotonic (which 
follows, for example, if the transformation t(') of the latent variable in (2.60) is 
monotonic and e is assumed to be independent of x), a variation on the pairwise 
comparison approach could exploit the resulting inequality E [ y i - y j l x l ,  x j ]  = 
G(x'iflo) - G(x)flo) > 0 only if x'ifl o > x~fl o. 

Various estimators based upon these conditions have been proposed for the 
monotone regression model, as discussed in Section 3.2 below. More complicated 
examples involve multiple indices, with some indices depending upon parameters 
of interest and others depending upon unrelated nuisance parameters, as for some 
of the proposed estimators for selectivity bias models. The methods of estimation 
of the structural parameters ct o vary across the particular models but generally involve 
nonparametric estimation of regression or density functions involving the index v(x). 

,3. Structural models 

3.1. Discrete response models 

The parameters of the binary response model 

y = l(x'fl o + e > 0) (3.1) 
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are traditionally estimated by maximization of the average log-likelihood function 

1 N 

,LPN(fl; F) = JvG ,~=1 (y' ln[F(x ' i f l )]  + (1 -- Yi ) In[1  - F(x'~fl)]), (3.2) 

where the error term e is assumed to be distributed independently of x with known 
distribution function F(.) (typically standard normal or logistic). Estimators for 
semiparametric versions of the binary response model usually involve maximization 
of a modified form of this log-likelihood, one which does not presuppose knowledge 
of the distribution of the errors. For the more general multinomial response model, 
in which J indicator variables { y j , j  = 1,. . . ,  J} are generated as 

yj  = l {x'fl~o + ej > x'flko + e k for all k #j} ,  (3.3) 

the average log-likelihood has the analogous form 

1 N J 
.L#N(fll . . . . .  fls; F)  = ~ ~ ~.  y , j l n [ F j ( x i f l  ~ . . . . .  x;fls)],  (3.4) 

i = l j = l  

where F~(.) is the conditional probability that yj = 1 given the regressors x. This 
form easily specializes to the ordered response or grouped dependent variable models, 
replacing F~(.) with F(x'ifl o - cj) - F(x'ifl o - c j_  1), where the {cj} are the (known or 
unknown) group boundaries. 

The earliest example of a semiparametric approach for estimation of a limited 
dependent variable model in econometrics is the m a x i m u m  score estimation method 
proposed by Manski (1975). For the binary response mode, Manski suggested that 
fl0 be estimated by maximizing the number of correct predictions of y by the sign 
of the latent regression function x'fl; that is, fi was defined to maximize the predictive 
score function 

N 

S.(f l)  - ~ .  (y, l {x, f l  > O} + (1 -- Yi) l {xifl  "-~ 0}) (3.5) 
l = 1  

over a suitable parameter space O (e.g. the unit sphere). The error terms e were 
restricted to have conditional median zero to ensure consistency of the estimator. 
A later interpretation of the estimator (Manski (1985)) characterized the maximum 
score estimator fi as a least absolute deviations estimator, since the estimator solved 
the minimization problem 

f i_ -a rgminL ~ ly,- l{x'~fl>O}l. 
0 N i = l  

(3.6) 
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This led to the extension of the maximum score idea to more general quantile 
estimation of flo, under the assumption that the corresponding conditional quantile 
of the error terms was constant (Manski (1985)). The maximum score approach was 
also applied to the multinomial response model by Manski (1975); in this case, the 
score criterion becomes 

/ v  J 

S,(flt . . . . .  fls) = ~, ~ yql{x'iflJ> x;fl k, kv~ j}, (3.7) 
i = 1  j = l  

and its consistency was established under the stronger condition of mutual indepen- 
dence of the alternative specific errors {e j}. M. Lee (1992) used conditional median 
restrictions to define a least absolute deviations estimator of the parameters of the 
ordered response model along the same lines. 

Although consistency of the maximum score estimator for binary response was 
rigorously established by Manski (1985) and Amemiya (1985), its asymptotic distri- 
bution cannot be established by the methods described in Section 2.2 above, because 
of lack of continuity of the median regression function 1 {x'flo > 0} of the dependent 
variable y. More importantly, because this median regression function is fiat except 
at its discontinuity points, the estimator is not root-N-consistent under standard 
regularity conditions on the errors and regressors. Kim and Pollard (1990) found 
that the rate of convergence of the maximum score estimator to fl0 under such 
conditions is N U3, with a nonstandard asymptotic distribution (involving the 
distribution of the maximum value of a particular Gaussian process with quadratic 
drift). This result was confirmed for finite samples by the simulation study of Manski 
and Thompson (1986). 

Chamberlain (1986) showed that this slow rate of convergence of the maximum 
score estimator was not particular to the estimation method, but a general con- 
sequence of estimation of the binary response model with a conditional median 
restriction. Chamberlain showed that the semiparametric version of the information 
matrix for this model is identically zero, so that no regular root-N-consistent 
estimator of flo exists in this case. An extension by Zheng (1992) derived the same 
result - a zero semiparametric information matrix - even if the conditional median 
restriction is strengthened to an assumption of conditional symmetry of the error 
distribution. Still, consistency of the maximum score estimator/~ illustrates the fact 
that the parameters 130 of the binary response model are identified under conditional 
quantile or symmetry assumptions on the error terms, which is not the case if the 
errors are restricted only to have constant conditional mean. 

If additional smoothness restrictions on the distribution of the errors and regres- 
sors are imposed, the maximum score (quantile) approach can be modified to 
obtain estimators which converge to the true parameters at a faster rate than N 1/3. 
Nawata (1992) proposed an estimator which, in essence, estimates flo by maximizing 
the fit of an estimator of the conditional median function l(x'flo > 0) of the binary 
variable to a nonparametric estimator of the conditional median of y given x. In a 
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first stage, the observations are grouped by a partition of the space of regressors, 
and the median value of the dependent variable y is calculated for each of these 
regressor bins. ,These group medians, along with the average value of the regression 
vector in each group, are treated as raw data in a second-stage fit of the binary 
response model using the likelihood function (3.2) with a standard normal cumulative 
and a correction for heteroskedasticity induced by the grouping scheme. Nawata 
(1992) gives conditions under which the rate of convergence of the resulting estimator 
is N 2/5, and indicates how the estimator and regularity conditions can be modified 
to achieve a rate of convergence arbitrarily close to N 1/2. Horowitz (1992) used a 
different approach, but similar strengthening of the regularity conditions, to obtain 
a median estimator for binary response with a faster convergence rate. Horowitz 
modifies the score function of (3.5) by replacing the conditional median function 
l{x'fl > 0} by a "smoothed" version, so that an estimator of flo is defined as a 
minimizer of the criterion 

N 

S*(fl) = ~ y, K ( x f / h s )  + (1 - y,) [1 - K(x;fl/hs)], (3.8) 
i = 1  

where K(.) is a smooth function in [0, 1] with K(u)~O or 1 as u ~  -- ~ or oo, and 
h N is a sequence of bandwidths which tends to zero as the sample size increases (so 
that K(x'flo/hN) approaches the binary median l(x'flo > 0) as N ~ oo). With particular 
conditions on the function K(.) and the smoothness of the regressor distribution 
and with the conditional density of the errors at the median being zero, Horowitz 
(1992) shows how the rate of convergence of the minimizer of S*(fl) over O can be 
made at least N z/5 and arbitrarily close to N1/Z; moreover, asymptotic normality 
of the resulting estimator is shown (and consistent estimators of asymptotic bias 
and covariance terms are provided), so that normal sampling theory can be used to 
construct confidence regions and hypothesis tests in large samples. 

When the error terms in the binary response model are assumed to satisfy the 
stronger assumption of independence of the errors and regressors, Cosslett (1987) 
showed that the semiparametric information matrix for estimation of flo in (3.1) 
(once a suitable normalization is imposed) is generally nonsingular, a necessary 
condition for existence of a regular root-N-consistent estimator. Its form is anal- 
ogous to the parametric information matrix when the distribution function F(.) of 
the errors is known, except that the regressors x are replaced by deviations from 
their conditional means given the latent regression function x'flo; that is, the best 
attainable asymptotic covariance matrix for a regular estimator of flo when ~ is 
independent of x with unknown distribution function F(.) is 

( Lf(x'fl~-- F~flo)] (3.9) 

where f(u) = dF(u)/du and ~ is the subvector of regressors x which eliminates the 
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last component (whose coefficient is assumed normalized to unity to pin down the 
scale of/3o). Existence of the inverse in (3.9) implies that a constant term is excluded 
from the regression vector, and the corresponding intercept term is absorbed into 
the definition of the error cumulative F(.). 

For the binary response model under an index restriction, Cosslett (1983) proposed 
a nonparametric maximum likelihood estimator (NPMLE) of/3o through maxi- 
mization of the average log-likelihood function &aN(/3"~ F) simultaneously over/3 E 0 
and F E ~ ,  where ~ is the space of possible cumulative distributions (monotonic 
functions on [-0, 1]). Computationally, given a particular trial value b of/3, an 
estimator of F is obtained by monotonic regression of the indicator y on x'b, using 
the pool adjacent violators algorithm of isotonic regression; this estimator/? of F is 
then substituted into the likelihood function, and the concentrated criterion &aN(b; if) 
is maximized over be O___ (/3: II/3 II = 1 }. Cosslett (1983) establishes consistency of 
the resulting estimators of/30 and F(.) through verification of the Kiefer-Wolfowitz 
(1956) conditions for the consistency of NPMLE, constructing a topology which 
ensures compactness of the parameter space ~ of possible nuisance functions F(.). 
As noted in Section 2.4 above, an asymptotic distribution for NMPLE has not yet 
been established. 

Instead of the monotonic regression estimator if(.) of F(.) implicit in the construc- 
tion of the NPMLE, the same estimation approach can be based upon other 
nonparametric estimators of the error cumulative. The resulting profile likelihood 
estimator of/30, maximizing &aN(b;/7) of (3.2) using a kernel regression estimator/7, 
was considered by Severini and Wong (1987a) (for a single parameter) and Klein 
and Spady (1993). Because kernel regression does not impose monotonicity of the 
function estimator, this profile likelihood estimator is valid under a weaker index 
restriction on the error distribution Pr{e ~< ulx} = Pr{e ~< ulx'/3o}, which implies 
that E[ y lx] = F(x'/30) for some (not necessarily monotone) function F(.). Theoreti- 
cally, the form of the profile likelihood &aN(b;/7) is modified by Klein and Spady 
(1993) to "trim" observations with imprecise estimators of F(') in order to show 
root-N-consistency and asymptotic normality of the resulting estimator/3. Klein 
and Spady show that this estimator is asymptotically efficient under the assumption 
of independence of the errors and regressors, since its asymptotic covariance matrix 
equals the best attainable value V* of (3.9) under this restriction. 

Other estimators of the parameters of the binary response model have been 
proposed which do not exploit the particular structure of the binary response model, 
but instead are based upon general properties of transformation models. If indepen- 
dence of the errors and regressors is assumed, the monotonicity of the structural 
function (3.1) in e can be used to define a pairwise comparison estimator of/30. 
Imposition of a weaker index restriction Pr {e ~< u lx } = Pr{e ~< u lx'/30 } implies that 

E[ y{ x] = G(x' /3o) (3.10) 

for some unknown function G(-), so any estimator which is based on this restriction 
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is applicable to the binary response model. A number of estimators proposed for 
this more general setup are discussed in the following section on transformation 
models. 

Estimation of the multinomial response model (3.3) under independence and 
index restrictions can be based on natural extensions of the methods for the binary 
response model. In addition to the maximum score estimator defined by minimizing 
(3.7), Thompson (1989a, b) considered identification and estimation of the parameters 
in (3.3) assuming independence of the errors and regressors; Thompson showed how 
consistent estimators of(to ~ . . . . .  fls) could be constructed using a least squares criterion 
even if only a single element yj  of the vector of choice indicators (Yl . . . . .  yj) is 
observed. L. Lee (1991) extended profile likelihood estimation to the multinomial 
response model, and obtained a similar efficiency result to Klein and Spady's (1993) 
result for binary response under index restrictions on the error terms. And, as for 
the binary response model, various pairwise comparison or index restriction esti- 
mators for multiple index models are applicable to the muitinomial response model; 
these estimators are reviewed in the next section. 

3.2. Trans format ion  models  

In Section 1.3 above, two general classes of transformation models were distinguished. 
Parametric transformation models, in which the relation between the latent and 
observed dependent variables is invertible and of known parametric form, are 
traditionally estimated assuming the errors are independent of the regressors with 
density function f( . ;  z) of known parametric form. In this setting, the average 
conditional log-likelihood function for the dependent variable 

y = t(x'flo + e; 2o),~e = t -  l(y; 20) - x'flo =- e(y,  x,  t o ,  20) (3.11) 

is 

1 N 
~°N(fl, 2, Z; f )  = ~ i ~---1 (In [ f ( e ( y i ,  xi, 13, 2); z)] -- In [l~ e(yi, xi ,  t ,  2)/~yl] ), 

(3.12) 

which is maximized over 0 = (fl, 2, z) to obtain estimators of the parameters to and 
20 of interest. 

Given both the monotonicity of the transformation t(.) in the latent variable and 
the explicit representation function e(.) for the errors in terms of the observable 
variables and unknown parameters, these models are amenable to estimation under 
most of the semiparametric restrictions on the error distribution discussed in 
Section 2. For example, Amemiya and Powell (1981) considered nonlinear two- 
stage least squares (method-of-moments) estimation of to  and 20 for the Box-Cox 
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transformation under a conditional mean restriction on the errors e given the 
regressors x, and showed how this estimator could greatly outperform (in a mean- 
squared-error sense) a misspecified Gaussian ML estimator over some ranges of the 
transformation parameter 2 o. Carroll and Ruppert (1984) and Powell (1991) discuss 
least absolute deviations and quantile estimators of the Box-Cox regression model, 
imposing independence or constant quantile restrictions on the errors. Han (1987b) 
also assumes independence of the errors and regressors, and constructs a pairwise 
difference estimator of the transformation parameter 20 and the slope coefficients 
t0 which involves maximization of a fourth-order U-statistic; this approach is a 
natural generalization of the maximum rank correlation estimation method de- 
scribed below. Newey (1989c) constructs efficient method-of-moments estimators for 
the Box-Cox regression model under conditional mean, symmetry, and independence 
restrictions on the error terms. Though not yet considered in the econometric 
literature, it would be straightforward to extend the general estimation strategies 
described in Section 2.5 above to estimate the parameters of interest in a semilinear 
variant of the Box-Cox regression model. 

When the form of the transformation function t(.) in (3.11) is not parametrically 
specified (i.e. the transformation itself is an infinite-dimensional nuisance parameter), 
estimation of to  becomes more problematic, since some of the semiparametric 
restrictions on the errors no longer suffice to identify to  (which is, at most, uniquely 
determined up to a scale normalization). For  instance, since a special case is the 
binary response model, it is clear from the discussion of the previous section that a 
conditional mean restriction on e is insufficient to identify the parameters of interest. 
Conversely, any dependent variable generated from an unknown (nonconstant and 
monotonic) transformation can be further transformed to a binary response model, 
so that identification of the parameters of a binary response model generally implies 
identification of the parameters of an analogous transformation model. 

Under the assumption of independence of the errors and regressors, Han (1987a) 
proposed a pairwise comparison estimator, termed the maximum rank correlation 
estimator, for the model (3.11)with t(.) unknown but nondecreasing. Han actually 
considered a generalization of (3.11), the generalized regression model, with structural 
function 

y = t r s ( x ' f l o ,  5)1, (3.13) 

with t [ ' ]  a monotone (but possibly poninvertible) function and s(.) smooth and 
invertible in both of its arguments; with continuity and unbounded support of th~ 
error distribution, this construction ensures that the support of y will not depend 
upon the unknown parameters to.  Though the discussion below focusses on the 
special case s(x' t ,  e)= x'fl + e, the same arguments apply to this, more general, 
setup. 

For  model (3.11), with t(-) unknown and e and x assumed independent, Han 
proposed estimation of to  by maximization of 
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N ) - X  N - 1  N 

R,,(fl)- Z Z 
2 i = l  j = i + l  

[l(yi > yj)  l(x;fl > x~fl) + l ( y  i < yj) l(x;fl < x)fl)] 

(3.14) 

over a suitably-restricted parameter space (9 (e.g. normalizing one of the components 
of fl0 to unity). Maximization of (3.14) is equivalent to minimization of a least 
absolute deviations criterion for the sign of Y i -  Yj minus its median, the sign of 
x'ifl - x~fl, for those observations with nonzero values of Yi - Y j: 

f i = a r g m a x R N ( f l ) = a r g y i n  ~ 2 l ( y i ¢ y j ) l l ( y ~ > y j ) - -  (x,f l>xjfl)l .  
o 2 i=1 j=i+l 

(3.15) 

In terms of the pairwise difference estimators of Section 2.4, defining 

%(fl) =- l(yi # yj)sgn[l(yi  > y j ) -  l(x'ifl > x)fl)], 

identification of flo using the maximum rank correlation criterion is related to the 
conditional symmetry of 

eij(flo) - eji(flo) = 2 eij(flo) 

= 2 l ( y  i # yj) sgn[l((xi - xj)'flo > ej - el) - l((xi - xj)'flo > 0)] 

about zero given xl and xj. The maximum rank correlation estimator defined in 
(3.15) does not solve a sample moment condition like (2.39) of Section 2.4 (though 
such estimators could easily be constructed), because the derivative of Rs(fl)  is zero 
wherever it is well-defined; still, the estimator fi is motivated by the same general 
pairwise comparison approach described in Section 2.4. 

Han (1987a) gave regularity conditions under which fl is consistent for fl0; these 
included continuity of the error distribution and compact support for the regressors. 
Under similar conditions Sherman (1993) demonstrated the root-N-consistency and 
asymptotic normality of the maximum rank estimator; writing the estimator as the 
minimizer of a second-order U-process, 

N ) - I  N - - 1  N 

y] ~ p(z,,zj, fl), (3.16) fi-argomaX 2 i=1 j=i+l 

Sherman showed that the asymptotic distribution of fi is the same as that for an 
M-estimator based on N / 2  observations which maximizes the sample average of 
the conditional expectation r(zi, f l )= E[p(zt,  z j, fl)] zi] over the parameter space 19, 
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and also showed consistency of an estimator of the asymptotic covariance matrix 
of/~ based upon numerical derivatives of sample estimators of this expectation 
function r(z, fl). Cavanagh and Sherman (1991) propose a variant of the maximum 
rank correlation estimator which maximizes 

N 

QN(~)= ~ M(Yi)~m(f l ) ,  (3.17) 
j= l  

I i r • for M(') an increasing function and ~m([3) the rank of x J3 n {xjfl, j = 1 . . . . .  N}, i.e. 

N 

- ( 3 . 1 8 )  
j = l  

They also consider a related estimator based on a criterion which replaces M(yi)  in 
(3.17) with the rank of yl in {yj}, defined analogously to (3.18). For  the binary 
response model, maximization of any of these criteria is numerically equivalent to 
maximization of the criterion RN([3) of (3.14), but the estimators differ for non-binary 
dependent variables. Cavanagh and Sherman (1991) demonstrate root-N-consistency 
and asymptotic normality of these estimators under relatively weak regularity con- 
ditions, and discuss how consistent asymptotic covariance matrix estimators can 
be obtained. 

When the transformation function t(.) of (3.11) is not known to be monotonic, or 
when the errors are assumed to satisfy only the weaker index restriction ~(e[x)  = 
5°(elx'flo), the maximum rank correlation estimator and its variants will not be 
consistent in general (being based on monotonicity of the relation between y and 
x'flo ). Instead, the resulting index restriction on the dependent variable, £~a(ylx) = 
~ ( y l x ' f l o  ), or the implied mean index restriction E [ylx]  = E[ylx'flo], can be used 
to form estimators of B0- Some of these estimators impose strong restrictions on 
the distribution of the regressors, while others use nonparametric estimators to 
sidestep such restrictions. 

A number of papers in the statistics and econometrics literature have noted that, 
under the index restriction, certain misspecified maximum likelihood estimators will 
be consistent for flo (up to an intercept and scale normalization) when the regressors 
satisfy a particular linearity condition on their conditional expectations. Chung and 
Goldberger (1984) show that the classical least squares regression coefficients for y 
on x (and a constant term) will be consistent up to scale if the joint distribution of 
the regressors and latent variable y* ~ x'flo + e satisfies 

E[xly*]  =- #o + roy* (3.19) 

for some fixed vectors #o and Vo; in this case, the least squares coefficients tend to 
Xflo, where x is the population least squares regression coefficient of y - t(y*) on 
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y*. Greene (1981, 1983) derives similar results for classical least squares estimates 
in the special case of a censored dependent variable. Brillinger (1983) shows consis- 
tency of classical least squares estimates for the general transformation model when 
the regressors are jointly normally distributed, which implies that the conditional 
distribution of the regressors x given the index x'flo has the linear form 

E [ x l x ' ~ o ]  - ~o + Vo(X'Bo) (3.20) 

for some kto and Vo. Ruud (1983) noted that condition (3.20) (with a full-rank 
condition on the distribution of the regressors) was sufficient for consistency (up to 
scale) of a misspecified maximum likelihood estimator of flo in a binary response 
model with independence of the errors and regressors; this result was extended by 
Ruud (1986) to include all misspecified maximum likelihood estimators for latent 
variable models when (3.11), (3.20) and independence of the errors and regressors 
are assumed. Li and Duan (1989) have recently noted this result, emphasizing the 
importance of convexity of the assumed likelihood function (which ensures unique- 
ness of the minimizer Xflo of the limiting objective function). As Ruud points out, 
all of these results use the fact that the least squares or misspecified ML estimators 

and ~ of the intercept term and slope coefficients satisfy a sample moment condi- 
tion of the form 

O=~.r(yi,~+x'i~)I~] (3.21) 
i = 1  i 

for some "quasi-residual" function r(.). Letting ?(x'flo, c~ + x'7) = Elf(y, ~ + x'3')lx] 
and imposing condition (3.20), the value 3,*= Xflo will solve the corresponding 
population moment condition if x and the intercept ~ are chosen to satisfy the two 
conditions 

0 = e f f ( x ' / ~ o ,  ~ + x(x ' /~o)) ]  = Ef f (x ' /~o ,  ~ + x(x ' /~o) ) (x ' /~o) ] ,  

since the population analogue of condition (3.21) then becomes 

0 E{~(x'flo,~+x(x'flo))(Ill + (x'flo))} 
#o Vo 

under the restriction (3.20). (An analogous argument works for condition (3.19), 
replacing x'flo with y* where appropriate; in this case, the index restriction £~a(y I x ) = 
L~(ylx'flo) is not necessary, though this condition may not be as easily verified as 
(3.20).) Conditions (3.19) and (3.20) are strong restrictions which seem unlikely to 
hold for observational data, but the consistency results may be useful in experimental 
design settings (where the distribution of the regressors can be  chosen to satisfy 
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(3.20)), and the results suggest that the inconsistency of traditional maximum 
likelihood estimators may be small when the index restriction holds and (3.19) or 
(3.20) is approximately satisfied. 

If the regressors are assumed to be jointly continuously distributed with known 
density function fx(x) ,  modifications of least squares estimators can yield consistent 
estimators of 8o (up to scale) even if neither (3.19) nor (3.20) holds. Ruud (1986) 
proposed estimation of 8o by weighted least squares, 

fi = (q~(x,)/f~(x,)) ( x , -  2)(x, -- 2)' ~ (~)(x,)/fx(X,))(x, - 2)(y,  -- ~), 
i = 1  i = l  

(3.22) 

where ~b(x) is any density function for a random vector satisfying condition (3.20) 
(for example, a multivariate normal density function) and 

1 N 
= U ,Y~=, (4)(x,)/L(x,)) x,, (3.23) 

with an analogous definition for ~9. This reweighting ensures that the probability 
limit for the weighted least squares estimator in (3.22) is the same as the probability 
limit for an unweighted least squares estimator with regressors having marginal 
density q~(x); since this density is assumed to satisfy (3.20), the resulting estimator 
will be consistent for fl0 (up to scale) by the results cited above. 

A different approach to use of a known regressor density was taken by Stoker 
(1986), who used the mean index restriction E [ y l x ]  = E [y  lx'flo] =- G(x'flo) implied 
by the transformation model with a strong index restriction on the errors. If the 
nuisance function G(.) is assumed to be smooth, an average of the derivative of 
E l y  I x]  with respect to the regressors x will be proportional to 80: 

E D  EU yl x l /~  x]  = E[  dG(x'  flo)/d(x' flo) ] flo - x* flo. (3.24) 

Furthermore, if the regressor density f~(x) declines smoothly to zero on the boundary 
of its support (which is most plausible when the support is unbounded), an integration- 
by-parts argument yields 

x*flo = - E { y ~  l n [ f x ( x ) ] / ~ x } ,  (3.25) 

which implies that flo can be consistently estimated (up to scale) by the sample 
average of Yl times the derivative of the log-density of the regressors, B In [f~(xi)]/~ x. 
Also, using the facts that 

E{~ l n [ f x ( x ) ] / ~ x }  = 0, E{(~ l n [ f x ( x ) ] / ~ x ) x ' }  = -- I, (3.26) 
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Stoker proposed an alternative estimator of x*flo as the slope coefficients of an 
instrumental variables fit of Yi on x i using the log-density derivatives ~ ln[fx(x~)]/~ x, 
and a constant as instruments. This estimator, as well as Ruud's density-weighted 
least squares estimator, is easily generalized to include models which have regressor 
density fx(x;  %) of known parametric form, by substitution of a preliminary esti- 
mator f for the unknown distribution parameters and accounting for the variability 
of this preliminary estimator in the asymptotic covariance matrix formulae, using 
formula (1.53) in Section 1.4 above. 

When the regressors are continuously distributed with density function f x (x )  of 
unknown form, nonparametric (kernel) estimators of this density function (and its 
derivatives) can be substituted into the formulae for the foregoing estimators. 
Although the nonparametrically-estimated components necessarily converge at a 
rate slower than N 1/2, the corresponding density-weighted LS and average derivative 
estimators will be root-N-consistent under appropriate conditions, because they 
involve averages of these nonparametric components across the data. Newey and 
Ruud (1991) give conditions which ensure that the density-weighted LS estimator 
(defined in (3.22) and (3.23)) is root-N-consistent and asymptotically normal when 
fx(x)  is replaced by a kernel estimatorf~(x). These conditions include the requirement 
that the reweighting density q~(x) is nonzero only inside a compact set which has 
fx(X) bounded above zero, to guarantee that the reciprocal of the corresponding 
nonparametric estimator f , ( x )  is well-behaved. H/irdle and Stoker (1989) and Stoker 
(1991) considered substitution of the derivative of a kernel estimator of the log- 
density, ~ l n [ f~ (x ) ] /~x  into a sample analogue of condition (3.26) (which deletes 
observations for which ~ ln[fx(xi)-]/~x is small), and gave conditions for root-N- 
consistency and asymptotic normality of the resulting estimator. 

A "density-weighted" variant on the average derivative estimator was proposed 
by Powell et al. (1989), using the fact that 

E [ f  x(x) ~ E [ y  lx] /~x]  = El f (x )dG(x ' f lo ) /d (x ' f lo ) ]  flo = ,X + flo = - 2E { y ~ f x(x)/~x},  
(3.27) 

where the last inequality follows from a similar integration-by-parts argument as 
used to derive (3.25). The resulting estimator 8 of 60 -= x + flo, 

$ :  1 ~ _ 2(~fx(xi)/~x )y, ,  
N i = l  

(3.28) 

was shown to have Ith component of the form 

~OIN(Xi -- X j) 
i = 1  j = i + l  I_Xil-- Xf l l  

(3.29) 

with weights ~O~N(Xi -- Xj) which tend to zero as ]] xi - xj ]] increases, and, for fixed 
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[I x i -  xj 1[, which tend to zero as N increases. Thus, the estimator implicitly uses 
finite difference ratios to approximate derivatives, averaging over those difference 
ratios for which the denominator is small. An instrumental variables version of the 
estimator, which uses ~L(x~)/~x as instrumental variables for a linear fit of y~ on 
x i, was also proposed, using the integration-by-parts condition 

-- 2E{ (~ fx(X)/~x)x' } = e[ f~(x)  ]I. (3.30) 

Because the estimator $ (and the components of its instrumental variables version) 
is of the U-statistic form considered in Section 1.4, its root-N-consistency and 
asymptotic normality are relatively simple to establish under appropriate conditions; 
Powell et al. (1989) showed its influence function is 

q~(y,x, 60) = 2{ ( fx (x )~E[y lx] /~x  - 6o) + (y - E[y lx] )~  fx(x)/~x}. (3.31) 

As in the H/irdle and Stoker (1989) and Newey and Ruud (1991) papers, the 
conditions imposed on the density-weighted average derivative estimator 6 include 
particular rates of convergence of a "bandwidth" sequence (governing the degree of 
smoothing in the nonparametric estimators) to zero, and the use of "higher-order 
bias reducing" kernels to ensure that the asymptotic bias of the estimator is of 
o(N-  a/2). 

If some components of the regressor vector x are not continuously distributed, 
neither the density-weighted LS nor average derivative estimation approaches are 
applicable, since they need a regressor density fx(x) which is well-defined (with 
respect to the Lebesgue measure). In this general setting, Ichimura (1992) proposed a 
semiparametric M-estimator for fl0 (up to scale) under an index restriction on the 
errors, using the conditional mean formulation 

E[y  lx] = G(x' flo) = E[y lx '  flo] = E l y  Ix'b] Ib=~o. (3.32) 

This estimator, a specialization of the Friedman and Stuetzle (1981) projection 
pursuit approach, uses kernel regression to estimate E[ylx 'b]  as a function of b, 
then chooses fi to maximize 

N 

SN(b) = ~ (~(xl)(y,-  ff~[yilx'~b]) 2, (3.33) 
i = l  

where the weights k(x) are constructed to equal zero where the nonparametric 
estimator of the conditional expectation is imprecise. Ichimura (1992) gave condi- 
tions for the identification of fl0 and the root-N-consistency and asymptotic normality 
of ft. The formula for the asymptotic covariance of this estimator is similar to the 
analogous formula for a weighted nonlinear least squares estimator with known 
expectation function G(.), except that the regression vector x, where it would appear 
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separately from the index x'flo in that formula, is replaced by the deviation of the 
regressors from their conditional mean given the index, x - E[x[x'flo]. Newey and 
Stoker (1993) derived the semiparametric efficiency bound for estimation of fl0 (up 
to a scale normalization on one coefficient) under condition (3.32), which has a 
similar form to the semiparametric efficiency bound for estimation under exclusion 
restrictions given by Chamberlain (1992), as described in Section 2.5 above. 

3.3. Censored and truncated regression models 

A general notation for censored regression models which covers fixed and random 
censoring takes the dependent variable y and an observable indicator variable d to 
be generated as 

y = m i n { x ' f l o + e , u  }, d =  l{y<u} .  (3.34) 

This notation covers the censored Tobit model with the dependent variable censored 
below at zero (with u -  0 and a sign change on the dependent and explanatory 
variables) and the accelerated failure time model (y equals log failure time) with 
either fixed (u always observable) or random censoring times. Given a parametric 
density f(e; to) for the error terms (assumed independent of x), estimation of the 
resulting parametric model can be based upon maximization of the likelihood 
function 

1 N 
~ c  (fl, T; F) ~ ,= (di l n [ f  (yl - xifl, T)] + (1 - di) In[1 - F(ui -- x,fl, T)]) (3.35) 

over possible values for/3o and 3 o, where F(.) is the c.d.f, of e (i.e. the antiderivative 
of the density f(.)). This likelihood is actually the conditional likelihood of Yi, d~ 
given the regressors {x,} and the censoring points {u,} for all observations (assuming 
ui is independent of y~ and x~), but since it only involves the censoring point u~ for 
those observations which are censored, maximization of the likelihood in (3.35) is 
equally feasible for fixed or random censoring. For truncated data (i.e. sampling 
conditional on d = 1), the likelihood function becomes 

r 1 N 
L~'~(fl, T; F) = ~ ~ l n [ f  (y i -- x'ifl; T)/F(ui -- x'~fl; T)]; (3.36) 

i=1  

here the truncation points must be known for all observations. 
When the error density is Gaussian (or in a more general exponential family), the 

first-order conditions for the maximum likelihood estimator of/~0 with censored 
data can be interpreted in terms of the "EM algorithm" (Dempster et al. (1977), as 
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a solution to 

o = -  (y,+(L O -  
N i= l  

(3.37) 

where 

Yi + (flo, %) = diyi + (1 - dl)E[x;fl o + el ] dl = O, xl, ui] 

= d l y i + ( 1 - d l  x f l o +  ef(e;zo)d~ , (3.38) 

,-X;Po 

with a similar expression for the nuisance parameter  estimator ~. Related formulae 
for the conditional mean of y given x and u, 

f/ o E[ylx ,  u ] = [ 1 - - F ( u - - x ' f l o ) ] U +  [x ' f lo+e] f (e;zo)de ,  (3.39) 

or for the conditional mean of y given x and u and with d = 1, 

E[ylx ,  u,d = 1] = [F(u - x'flo)] -1 [x'flo + e]f(e;zo)de, (3.40) 

can be used to define nonlinear least ~quares estimators for censored data (or for 
truncated data using (3.40)) in a fully parametric model. 

As discussed in Section 2.1 above, the parameters of interest flo for the censored 
regression model (3.34) will not in general be identified if the error terms are assumed 
only to satisfy a constant conditional mean restriction, because the structural 
function is not invertible in the error terms. However, the monotonicity of the 
censoring transformation in e for fixed x and u implies that the constant conditional 
quantile restrictions discussed in Section 2.2 will be useful in identifying and consis- 
tently estimating flo. For  fixed censoring (at zero), Powell (1984) proposed a least 
absolute deviations estimator for flo under the assumption that the error terms 
had conditional median zero; in the notation of model (3.34), this estimator fi would 
be defined as 

fi= argmin 1 0 N i=l ]Yi - -min{x ' i f l ,  ui}[ (3.41) 

where O is the (compact) parameter  space. Since the conditional median of y given 
x and u depends on the censoring value u for all observations (even if y is uncensored), 
the estimator is not directly applicable to random censoring models. Demonstrat ion 
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of the root-N-consistency and asymptotic normality of this estimator follows the 

steps outlined in Section 2.3. The asymptotic covariance matrix of xfN(fi - flo) for 
this model will be H o 1VoHo  1, with 

Ho - 2 E [ f ( O l x )  l{x'flo < u } x x ' ]  and Vo - E [ l { x ' f l o  < u}xx ' ] .  

f(0] x) is the conditional density of the error term e at its median, zero. 
This approach was extended to the model with a general constant quantile 

restriction by Powell (1986a), which derived analogous conditions for consistency 
and asymptotic normality. Under the stronger restriction that the error terms are 
independent of the regressors, this paper showed how more efficient estimators of 
the slope coefficients in flo could be obtained by combining coefficients estimated 
at different quantiles, and how the assumption of independent errors could be tested 
by testing convergence of the differences in quantile slope estimators to zero, as 
proposed by Koenker and Bassett (i982) for the linear model. Nawata (1990) 
proposed a two-step estimator for flo which calculates a nonparametric estimator 
of the conditional median of y given x, in the first step, by grouping the regressors 
into cells and computing the within-ceU medians of the dependent variable. The 
second step treats these cell medians 33~ and the corresponding cell averages of the 
regressors 2j as raw data in a Gaussian version of the likelihood function (3.35) and 
weights these quasi-observations by the cell frequencies (which would be optimal if 
the conditional density of the errors at the median were constant). Nawata gives 
conditions for the consistency of this estimator, and shows how its asymptotic 
distribution approaches the distribution of the censored least absolute deviations 
estimator (defined in (3.41)) as the regressor cells become small. And, as mentioned 
in Section 3.2, Newey and Powell (1990) showed that an efficient estimator of flo, 
under a quantile restriction on the errors, is a weighted quantile estimator with 
weights proportional to f(01x), the conditional density of the errors at their condi- 
tional quantile, and proposed a feasible one-step version of this estimator which is 
asymptotically efficient. 

When the censoring value u is observed only for censored observations, with u 
independently distributed from (y, x), Ying et al. (199 l) propose a quantile estimator 
for flo under the restriction Pr{e ~< 0Ix} = n~(0, 1) using the implied relation 

P r { y > x ' f l o ] x } = P r { x ' f l o < U  and e>0]x)  

= Vr{x ' f lo  < uJx} Vr(e > 0]x) 

= H(x' f lo)(1 - 7r), (3.42) 

where H(c) = Pr{u > c} is the survivor function of the random variable u. The 
unknown function H(.) can be consistently estimated using the Kaplan and Meier 
(1958) product-limit estimator for the distribution function for censored data. The 
resulting consistent estimator/~(.) uses only the dependent variables {Yl) and the 
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censoring indicators {d~}. Ying et al. (1991) define a quantile estimator /~ as a 
solution to estimating equations of the form 

1 
Y 1 ' -- o = -  , -  

Ni=1 
(3.43) 

based on the conditional moment restriction (3.42) and give conditions for the 
root-N-consistency and asymptotic normality of this estimator. Since H(x ' f l o )  = 

IQ(x'flo ) = l{x'flo ~< Uo} when the censoring points ui are constant at some value u o 
with probability one, these equations are not well-defined for fixed censoring (say, 
at zero) except in the special case Pr{x'flo ~< u0} - 1. A modification of the sample 
moment conditions defined in (3.43), 

1 
0~-  ~ [ l { y i >  x ; f l } - [ H ( x ' i f l ) ] ( 1 - T z ) ] x ~ ,  

N i = 1  
(3.44) 

would allow a constant censoring value, and when rc = ½ would reduce to the 
subgradient condition for the minimization problem (3.41) in this case. Unfortunately, 
this condition may have a continuum of inconsistent roots, if/~ can be chosen so 
that x'i/~ > ul for all observations. It is not immediately clear whether an antiderivative 
of the right-hand side of (3.44) would yield a minimand which could be used to 
consistently estimate flo under random censoring, as it does (yielding (3.41) for rc = ½) 
for fixed censoring. 

Because the conditional median (and other quantiles) of the dependent variable 
y depend explicitly on the error distribution when the dependent variable is trun- 
cated, quantile restrictions are not helpful in identifying fl0 for truncated samples. 
With a stronger restriction of conditional symmetry of the errors about a constant 
(zero), the "symmetric trimming" idea mentioned in Section 2.3 can be used to 
construct consistent estimators for both censored and truncated samples. Powell 
(1986b) proposed a symmetrically truncated least squares estimator of flo for a 
truncated sample. The estimator exploited the moment condition 

E[ l{y  > 2x ' f lo  - u } ( y  --  x ' f lo) lX,  y < u] = E[l{e > x' f lo  - u } e l x ,  e < u --  x ' f lo]  = 0 

(3.45) 

which holds for the truncated model under conditional symmetry given x and u. 
The resulting estimator is defined to minimize 

Ts(f l)  - ~ Y i -  min x'ifl, - u, , 
i = 1  

(3.46) 

which yields a sample analogue to (3.45) as an approximate first-order condition. 
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Similarly, a symmetrically censored least squares estimator for the censored regres- 
sion model (3.34) will solve a sample moment condition based upon the condition 

E[max {y, 2x'/~ o - u} - x'/3 o Ix] -- E[max{min(e, u -- x'/3o), x'/3 o -- u}lx] = 0. 

(3.47) 

The root-N-consistency and asymptotic normality of these estimators were established 
by Powell (1986b). In addition to conditional symmetry and a full-rank condition 
on the matrix Vo = E[l{x ' /3o < u}xx '] ,  a unimodality condition on the error distri- 
bution was imposed in the truncated case. A variant on the symmetric trimming 
approach was proposed by M. Lee (1993a, b) which, for a fixed scalar w > 0 ,  
constructed estimators for truncated and censored samples based on the moment 
conditions 

El-1 {u -x ' /3o  > w} 1{ [y - x'/3o[ < w} (y  - x'flo)[X, y < u] 

= El-l{u - x'/~o > w} l{lel < w}elx] = 0 (3.48) 

and 

E[l{u -- x'flo > w} min{ ly -- x'/3ol,W } sgn{y -- x'flo}JX] 

= El1 {u -- x'/3 o > w} min {I e I, w} sgn {e} Ix] = 0, (3.49) 

respectively. Newey (1989a) derives the semiparametric efficiency bounds for estimation 
offlo under conditional symmetry with censored and truncated samples, noting that 
the symmetrically truncated least squares estimator attains that efficiency bound in 
the special case where the unknown error distribution is, in fact, Gaussian (the 
analogous result does not hold, though, for the symmetrically censored estimator). 

As described at the end of Section 2.2, conditional mode restrictions can be used 
to identify/3o for truncated data, and an estimator proposed by M. Lee (1992) 
exploits this restriction. This estimator solves a sample analogue to the characteriza- 
tion of/3o as the solution to the minimization problem 

/30 = argmin Pr{ly - min{ui + co, x;b}l > c9}, 
o 

(.3.50) 

as long as the modal interval of length 2~o for the untruncated error distribution is 
assumed to be centered at zero. M. Lee (1992) showed the N1/3-consistency of this 
estimator and considered its robustness properties. 

Most of the literature on semiparametrie estimation for censored and truncated 
regression in both statistics and econometrics has been based upon independence 
restrictions. Early estimators of flo for random censoring models which relaxed the 
assumed parametric form of the error distribution (but maintained independence 
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of the censoring times and the latent dependent variable) were proposed by Buckley 
and James (1979) and Koul et al. (1981). The Buckley-James estimator uses the 
Kaplan-Meier (1958) nonparametric estimator for the error distribution, applied 
using residuals ~ = y - x'fl and their censoring points u - x'f l ,  to obtain nonpara- 
metric estimators of the conditional expectation E [ y l x ,  d = 0] in (3.38)'above. Then, 
(3.37) and (3.38) are used iteratively to obtain a semiparametric analogue of the 
EM algorithm. Although Buckley and James did not rigorously establish consistency 
of this estimator, they demonstrated that it was well-behaved in practice, and Ritov 
(1990) showed how a modification of this approach yields a root-N-consistent and 
asymptotically normal estimator. Koul et al. (1981) proposed estimation offlo using 
a weighted least squares regression of the uncensored dependent variables on their 
correspondingregressors, using the inverse of the estimated survival function for u 
evaluated at y, [H(y)]-~, as weights. Using the fact that 

E[d]x ,e]  = Pr{x'fl0 + e < u) = H(x' f lo  + e), (3.51) 

this estimator exploits the moment condition 

e[d" [ H ( y ) ] -  l(y _ x, flo) lx] = E[e[d lx ,  e] [H(x'flo + e) ] -  l~lx] = E[e lx ]  = 0. 

(3.52) 

Thus, only a conditional mean restriction is required for consistency of the resulting 
estimator; however, the upper limit of the support of the censoring variable u must 
be larger than the upper limit of the support of the latent variable y* = x'flo + e, 
which rules out a fixed censoring point (unless censoring never occurs). 

In the econometrics literature, where the censoring value u is assumed to be fixed 
at zero, Duncan (1986) and Fernandez (1986) proposed semiparametric profile 
likelihood estimators of r0 by replacing the unknown error density and cumulative 
by nonparametric estimators, using different smoothing techniques. Horowitz (1986) 
showed consistency of a nonlinear least squares estimator for flo using an integration- 
by-parts formula for the conditional mean of y = min {x'flo + e, 0} given x: 

r -~'po c' -x,po 
E[y lx] - | (e + X'Bo)f(e) de = - | F(e) de, 

--*1--oo tl--oo 
(3.53) 

where f ( ' )  and F(-) are the error density and cumulative. To obtain a feasible 
estimator, the unknown error cumulative F(') is replaced by its Kaplan-Meier 
estimator based upon residuals, as for the Buckley-James estimator. Horowitz 
(1988) constructed a more efficient nonlinear weighted least squares version of this 
estimator and showed its root-N-consistency and asymptotic normality. A similar 
approach, based on the analogous expression for the conditional mean of y given 
x and with d = 1, was proposed by Moon (1989). 
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Pairwise difference estimators for the censored and truncated regression models 
have also been constructed by Honor6 and Powell (1991). For model (3.34) with 
fixed censoring, and using the notation of Section 2.4, these estimators were based 
upon the transformation 

e,j(O) - e(z , ,  zi, r) = min{y, - x'ifl , u, - x ' j f l} ,  (3.54) 

which satisfies 

eij(0o) = min{min{e, ui - x ' i f lo},  u~ - x ) f l o }  = min{e, u~ - x'ifl o, ui - x~ f lo} ,  

so that e~j (0 o) and ej~(0o) are clearly independently and identically distributed given 
x~ and xj. Again choosing l (x  i, x j ,  O) = x i - x j ,  the pairwise difference estimator for 
the censored regression model was given as a solution to the sample moment 
condition (2.39) of Section 2.4 above. These estimating equations were shown to 
have a unique solution, since they correspond to first-order conditions for a convex 
minimization problem. Honor6 and Powell (199 l) also considered estimation of the 
truncated regression model, in which y~ and x~ are observed only if y~ is positive; 
that is, ifyg = x'iflo + vi, where vg has the conditional distribution o f e  i given ei > - x'~flo, 

then L¢(vil  x l )  = Z~'(eil x l ,  ~i > - x ' i f l o ) .  Again assuming the untruncated errors e i are 
i.i.d, and independent of the regressors x~, a pairwise difference estimator of r0 was 
defined using the transformation 

e(z i ,  Z j ,  r )  ---- (Yi  - -  X'ifl) l ( y l  - -  X'ifl > - -  X} f l )  l(yj - x' j f l  > - -  x'ifl ). (3.55) 

When evaluated at the true value flo, the difference 

eli(flo) - -  e j i ( f l o )  = (vi  - -  V j )  I (V  i > - -  X ) f l )  I (V j  > - -  X'ifl  ) (3.56) 

is symmetricall]( distributed around zero given x, and x j .  As for the censored case, 
the estimator fl for this model was defined using l (x  i, x j ,  O ) =  (x  i - x  j )  and (2.39) 
through (2.40) above. When the function ~(d) = sgn(d), the solution to (2.39) for this 
model was proposed by Bhattacharya et al. (1983) as an estimator of flo for this 
model under the assumption that x, is a scalar. The general theory derived for 
minimizers of ruth-order U-statistics (discussed in Section 1.3) was applied to show 
root-N-consistency and to obtain the large-sample distributions of the pairwise 
difference estimators for the censored and truncated regression models. 

3.4.  S e l e c t i o n  m o d e l s  

Rewriting the censored selection model of (1.21) and (1.22) as 

d =  l{x~o + n >0}, 

y = d[x '2 f l  o + e] 
(3.57) 
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(for Yl - d, Y2 = Y, flo 1 ----- 6 o ,  and f12 _ flo), a fully parametric model would specify the 
functional form of the joint density f(e, r/; %) of the error terms. Then the maximiza- 
tion of the average log-likelihood function 

1 ~l~(fl, 6, ;f)  = ~ ~ d i In f (Y i  - x'21fl, ~; z) dr~ 

+ (1 -- di) In f(e, r/; z) dr/de (3.58) 
-oo x~ - i 

over r, 6, and z in the parameter space. An alternative estimation method, proposed 
by Heckman (1976), can be based upon the conditional mean of y given x and with 
d = l :  

[ f~c~ f oo ]-1 E[y[x ,  d = 1] = x'2fl o + f ( e ,  q; %)  dq de 
-x'16 o ] ,  , .  x e f(e,r/;Zo) dr/de = x2fl  o + 2(X13o,%). (3.59) 

xl~o 

When the "selection correction function" 2(x'16; z) is linear in the distributional 
parameters z (as is the case for bivariate Gaussian densities), a two-step estimator 
of flo can be constructed using linear least squares, after inserting a consistent 
first-step estimator 6" of 6o (using the indicator d and regressors xl in the binary 
log-likelihood of (3.2)) into the selection correction function. Alternatively, a non- 
linear least squares estimator of the parameters can be constructed using (3.59), 
which is also applicable for truncated data (i.e. for y and x being observed conditional 
on d =  1). 

To date, semiparametric modelling of the selection model (3.57) has imposed 
independence or index restrictions on the error terms (e, r/). Chamberlain (1986a) 
derived the semiparametric efficiency bound for estimation of flo and 60 in (3.57) 
when the errors are independent of the regressors with unknown error density. The 
form of the efficiency bound is a simple modification of the parametric efficiency 
bound for this problem when the error density is known, with the regression vectors 
xl and x2 being replaced by their deviations from their conditional means, given 
the selection index, x 1 -- E[xl lx '160]  and x 2 - E [ x 2 l x  ] 60], except for terms which 
involve the index x'~ 6 o. Chamberlain notes that, in general, nonsingularity of the 
semiparametric information matrix will require an exclusion restriction on x2 (i.e. 
some component of x~ with nonzero coefficient in 60 is excluded from x2), as well 
as a normalization restriction on 60. The efficiency bound, which was derived 
imposing independence of the errors and regressors, apparently holds more generally 
when the joint distribution of the errors in (3.57), given the regressors, depends only 
upon the index x'~ 60 appearing in the selection equation. 
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Under this index restriction, the conditional mean of y given d = 1 and x will 
have the same form as in (3.59), but with a selection correction function of unknown 
form. More generally, conditional on d = 1, the dependent variable y has the linear 
representation y = Xzfl o + e, where e satisfies the distributional index restriction 

~(e]d  = 1,x) = ~(e ld  = 1,x'16o) a.s., (3.60) 

so that other estimation methods for distributional index restrictions (discussed in 
Section 2.5) are applicable here. So far, though, the econometric literature has 
exploited only the weaker mean index restriction 

E(eld = 1,x) = E(eld = 1, x'16o). (3.61) 

A semiparametric analogue of Heckman's two-step estimator was constructed by 
Cosslett (1991), assuming independence of the errors and regressors. In the first step 
of this approach, a consistent estimator of the selectivity parameter 6 o is obtained 
using Cosslett's (1983) N P M L E  for the binary response model, described in Section 
3.1 above. In this first step, the concomitant estimator/?(.) of the marginal c.d.f. 
of the selection error t/is a step function, constant on a finite number J of intervals 
{I=- (C'j- 1, C'j),J = 1 . . . . .  J} with Co -= - oo and cs - oe. The second-step estimator of 
13 o approximates the selection correction function 2(') by a piecewise-constant 
function on those intervals. That is, writing 

J 

y = + E ' 2j l {x~ 6o~I j} + ~, (3.62) 
j = l  

the estimator/~ is constructed from a linear least squares regression of y on x 2 and 
the d indicator variables {l{x'lS~I'j} }. Cosslett (1991) showed consistency of the 
resulting estimator, using the fact that the number of intervals, J, increases slowly 
to infinity as the sample size increases so that the piecewise linear function could 
approximate the true selection function 2(-) to an arbitrary degree. An important 
identifying assumption was the requirement that some component of the regression 
vector xl for the selection equation was excluded from the regressors x 2 in the 
equation for y, as discussed by Chamberlain (1986a). 

Although independence of the errors and regressors was imposed by Cosslett 
(1991), this was primarily used to ensure consistency of the N P M L  estimator of the 
selection coefficient vector 6 o. The same approach to approximation of the selection 
correction function will work under an index restriction on the errors, provided the 
first-step estimator of 6 o only requires this index restriction. In a parametric context, 
L. Lee (1982) proposed estimation of flo using a flexible parametrization of the 
selection correction function 2(') in (3.59). For  the semiparametric model Newey 
(1988) proposed a similar two-step estimator, which in the second step used a series 
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approximation to the selection correction function to obtain the approximate model 

J 

y - Xzflo + ~ 2jpj(x'lgo) + e, (3.63) 
j = l  

which was estimated (substituting a preliminary estimator 6" for g0) by least squares 
tO obtain an estimator of flo. Here the functions {Pi(')} were a series of functions 
whose linear combination could be used to approximate (in a mean-squared-error 
sense) the function ~(-) arbitrarily well as J ~ ~ .  Newey (1988) gave conditions 
(including a particular rate of growth of the number J of series components) under 
which the estimator fi of rio was root-N-consistent and asymptotically normal, and 
also discussed how efficient estimators of the parameters could be constructed. 

As discussed in Section 2.5, weighted versions of the pairwise-difference estima- 
tion approach can be used under the index restriction of (3.61). Assuming a pre- 
liminary, root-N-consistent estimator 6" of go is available, Powell (1987) considers 
a pairwise-difference estimator of the form (2.55) when ~(d) = d, eij(O) = Yi - X'izfl 
and l(xi, x2, 0) -- x,2 - x j2, yielding the explicit estimator 

f i  = w , , ( ( x , 1  - x j l )  a ) ( x , ~  - x i~) (x i~  - x j~) '  

× WN( (X i l  - -  X j1 )  g ) ( X i 2  - -  Xj2 ) (Y i2  - -  Y j2 )  • (3.64) 

Conditions were given in Powell (1987) on the data generating process, the weighting 
functions wN(. ), and the preliminary estimator 6" which ensured the root-N-consistency 
and asymptotic normality of ft. The dependence of this asymptotic distribution on 
the large-sample behavior of 6 was explicitly derived, along with a consistent 
estimator of the asymptotic covariance matrix. The approach was also extended to 
permit endogeneity of some components of Xiz using an instrumental variables 
version of the estimator. L. Lee (1991) considers system identification of semipara- 
metric selection models with endogenous regressors and proposes efficient estimators 
of the unknown parameters under an independence assumption on the errors. 

When the errors in (3.57) are assumed independent of the regressors, and the 
support of the selection error r/is the entire real line, the assumption of a known 
parametric form x'16 o of the regression function in the selection equation can be 
relaxed. In this case, the dependent variable y given d = 1 has the linear representation 
yl = x'~flo + e~, where the error term e satisfies the distributional index restriction 

~ ( e l d  = 1,x) = ~(e ld  = 1,p(xx)) a.s., (3.65) 

where noW the single index p ( x l )  is the "propensity score" (Rosenbaum and Rubin 
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(1983)), defined as 

p ( x p  = E [ d l x x ]  = E[d lx] .  (3.66) 

Given a nonparametric estimator i0(x ~) of the conditional mean p(x 1) of the selection 
indicator, it is straightforward to modify the estimation methods above to accommo- 
date this new index restriction, by replacing the estimated linear index x' 1 $ by the 
nonparametric index/~(x~) throughout. Choi (1990) proposed a series estimator of 
flo based on (3.63) with this substitution, while Ahn and Powell (1993) modified the 
weighted pairwise-difference estimator in (3.64) along these lines. Both papers used 
a nonparametric kernel estimator to construct i0(xa), and both gave conditions on 
the model, the first-step nonparametric estimator and the degree of smoothing in 
the second step which guaranteed root-N-consistency and asymptotic normality of 
the resulting estimators of flo. The influence functions for these estimators depend 
upon the conditional variability of the errors e and the deviations of the selection 
indicator from its conditional mean, d - p(xO.  Newey and Powell (1993) calculate 
the semiparametric efficiency bounds for flo under the distributional index restric- 
tion (3.65) and its mean index analogue, while Newey and Powell (1991) discuss 
construction of semiparametric M-estimators which will attain these efficiency 
bounds. 

For the truncated selection model (sampling from (3.57) conditional on d = 1), 
identification and estimation of the unknown parameters is much more difficult. 
Ichimura and Lee (1991) consider a semiparametric version of a nonlinear least 
squares estimator using the form of the truncated conditional mean function 

E [ y  lx, d = 1] = x'zfl o + 2(x'~,~o) (3.67) 

from (3.59) with 2(') unknown, following the definition of Ichimura's (1992) estimator 
in (3.33) above. Besides giving conditions for identification of the parameters and 
root-N-consistency of their estimators, Ichimura and Lee (1991) consider a genera- 
lization of this model in which the nonparametric component depends upon several 
linear indices. If the linear index restriction (3.61) is replaced by the nonparametric 
index restriction (3.65), identification and consistent estimation of//0 requires the 
functional independence of xl and x2, in which case the estimator proposed by 
Robinson (1988), discussed in Section 2.5 above, will be applicable. Chamberlain 
(1992) derives the efficiency bound for estimation of the parameters of the truncated 
regression model under the index restriction (3.65). 

Just as eliminating the information provided by the selection variable d makes 
identification and estimation of/~0 harder, a strengthening of the information in the 
selection variable makes estimation easier, and permits identification using other 
semiparametric restrictions on the errors. Honor6 et al. (1992) consider a model in 
which the binary selection variable d is replaced by a censored dependent variable 
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Yl, SO that the model becomes 

Yl = max{O, x'16 o + q}, 

Yz = l{yi  > O} [x2flo + s]. 
(3.68) 

This model is called the "Type 3 Tobit" model by Amemiya (1985). Assuming 
conditional symmetry of the errors (s, t/) about zero given x (as defined in Section 
2.3), the authors note that 6o can be consistently estimated using the quantile or 
symmetric trimming estimators for censored regression models discussed in Section 
3.3, and, furthermore, by symmetrically trimming the dependent variable Y2 using 
the trimming functi~m 

h(yl, Y2, xx, x z, 6, fl) = 1 {0 < yl < 2x'~ 6} (Y2 - x2fl), (3.69) 

the function h(.) satisfies the conditional moment restriction 

E[h(yl, Y2, x l, x2, 6o, flo)lX] - E[I{--  x'a6o < ,7 < x'16o}Slx] = 0 (3.70) 

because of the joint conditional symmetry of the errors. By constructing a sample 
analogue of (3.70) (possibly based on other odd functions of Y2 - x2fl) and inserting 
the preliminary estimator 6, Honor6 et al. (1992) show the resulting estimator/~ to 
be root-N-consistent and asymptotically normal under relatively weak conditions 
on the model. Thus, with the additional information on the latent variable x'16 o + t 1 
provided by the censored variable Y2, it is possible to consistently estimate flo 
without obtaining explicit nonparametric estimators of infinite-dimensional nuisance 
functions. 

3.5. Nonlinear panel data models 

For panel data versions of the latent variable models considered above, with 

y~=t(~+x~flo+e~,To),  s - 1 , . . . , T ,  (3.71) 

derivation of log-likelihood functions like the ones above is straightforward if the 
individual-specific intercept t/is assumed independent of x (or its dependence is 
parametrically specified) with a distribution of known parametric form. The condi- 
tional density of y-= (Yl . . . .  , Yr) given x for each individual can be obtained from 
the joint density of the convolution u = (t/+ e I . . . . .  ?/+ st), which, for special (e.g. 
Gaussian) choices of error distribution is of simple form. Maximum likelihood 
estimators of fl0 for these nonlinear "random effect" models have the usual optimitlity 
properties, but their consistency depends on proper specification of both the error 
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terms e - (el . . . . .  e r) and the random effect t/. When the individual-specific intercepts 
are treated as unknown parameters ("fixed effects"), the corresponding log-likelihoods 
for the parameters fl0 and the vector of intercept terms (q~ . . . . .  ql . . . . .  r/N) are even 
simpler to derive, being of the same general forms as given above when the errors 
es are assumed to be i.i.d, across individuals and time. However, because the vector 
of unknown intercept terms increases with the sample size, maximum likelihood 
estimators of these fixed effects will be inconsistent unless the number of time periods 
T also increases to infinity; moreover, the inconsistency of the fixed effect estimators 
leads to inconsistency of the estimators of the parameters of interest, flo, as a 
consequence of the notorious "incidental parameters" problem (Neyman and Scott 
(1948)). 

For some special parametric discrete response models, consistent estimators of 
flo with fixed effects can be obtained by maximizing a "conditional likelihood" 
function, which conditions on a fixed sum of the discrete dependent variable across 
time for each individual. In the special case T = 2, this is the same as maximizing 
the conditional likelihood given that y~ ~ Y2 and that the estimation method is the 
analogue to estimation using pairwise differences (over time) for linear panel data 
models. Models for which a version of pairwise differencing can be used to eliminate 
the fixed effect in panel data include the binary logit model (Andersen (1970)), the 
Poisson regression model (Hausman et al. (1984)) and certain duration models 
(Chamberlain (1984)); however, these results require a particular (exponential) struc- 
ture to the likelihood which does not hold in general. 

For  the binary, censored, and truncated regression models with fixed effects, 
estimators have been proposed under the assumption that the time-specific errors 
{e,} are identically distributed across time periods s given the regressors x. Manski 
(1987) shows that, with T = 2 time periods, the conditional median of the differ- 
ence Y 2 -  Y~ of the binary variables Ys = l{x'~flo + es/> 0}, given that y~ ~Y2, is 
l{(x2 - x l ) ' f l o  > 0}, so that a consistent estimator for flo will be 

^ 1 N 
fl = argmin ~ ~ 1 {Y,2 ¢ Yi , } I (Y ,2  - Y ,1)  - 1{ (x 2 - x l)'flo > 0}l, 

0 N i = l  
(3.72) 

which will be consistent under conditions o n  (xi2 -Xil), etc., similar to those for 
consistency of the maximum score estimator. Honor6 (1992) considered pairwise- 
difference estimators for censored and truncated regression models with fixed effects 
using the approach described in Section 3.3. Specifically, using the transformations 
given in (3.54) and (3.55) for the censored and truncated cases, respectively, estimators 
of the parameter vector flo in both cases were defined as solutions to minimization 
problems which generate a first-order condition of the form 

N 

0 ~-- L ¢[e(ziz, z i l ,  f l) - -  e(z,,, z,2,/~)] (Xiz --  x,O. (3.73) 
i = i  
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As discussed at the end of Section 2.4, the expectation of the right-hand side of(3.73) 
will be zero when evaluated at/~o, even in the presence of a fixed effect. As for 
Manski's binary panel data estimator, this estimation approach can be generalized 
to allow for more than T = 2 time periods. 

4. Summary and conclusions 

As the previous section indicates, the theoretical analysis of the properties of 
estimators under various semiparametric restrictions is quite extensive, at least for 
the latent variable models considered above. The following table gives a general 
summary of the state of the econometric literature on estimation of several semi- 
parametric models. 

Mean Median Mode Index Symmetry Independence 

Linear 3 3 1 0 + 3 3 
Transformed 3 3 0 0 + 3 3 
Censored 0 3 0 0 + 3 3 
Truncated 0 0 1 0 3 3 
Binary 0 1 0 3 1 3 
Monotone 0 1 0 2 1 2 
Semilinear 3 2 ? 3 2 3 
Selection 0 ? ? 3 2 3 
Binary panel 0 ? ? ? ? 1 
Censored panel 0 ? ? ? ? 2 

Key: 0 - Not  identified (0 + Identified only up to scale); 1 - Parameter identified/consistent esti- 

mator; 2 - x/N-consistent, asymptotically normal estimator; 3 - Efficient estimator. 

Of course, this table should be viewed with caution, as some of its entries are 
ambiguous (for instance, the entry under "symmetry" for the "selection" row refers 
to the "Type 3 Tobit" model with a censored regression model as the selection 
equation, while the other columns presume a binary selection equation). Nevertheless, 
the table should be suggestive of areas where more research is needed. 

The literature on the empirical application of semiparametric methods (apart 
from estimation of invertible models under conditional mean restrictions) is much 
less extensive. When applied to relatively small data sets (roughly 100 observations 
per parameter), the potential bias from misspecification of the parametric model 
has proven to be less important than the additional imprecision induced when 
parametric restrictions are relaxed. For  example, Horowitz and Neumann (1987) 
and McFadden and Han (1987) estimate the parameters of an employment duration 
data set imposing independence and quantile restrictions, but for these data even 
maximum likelihood estimates are imprecise (in terms of their asymptotic standard 
errors). A similar outcome was obtained by Newey et al. (1990), which reanalyzed 
data on married women's labor supply originally studied (in a parametric context) 
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by Mroz (1987). For  these data, estimates based upon semiparametric restrictions 
were fairly comparable to their parametric counterparts, with differences in the 
estimates having large standard errors. On the other hand, for larger data sets (with 
relatively few parameters), the bias due to distributional misspecification is more 
likely to be evident. Chamberlain (1990) and Buchinski (1991b) apply quantile 
methods to estimate the returns to education for a large, right-censored data set, 
and find these estimates to be quite precise. Other empirical papers which use 
semiparametric methods, with mixed success, include those by Deaton and Irish 
(1984), Newey (1987), Das (1991), Horowitz (1993), Bult (1992a, b), Horowitz and 
Marka tou  (1993), Deaton and Ng (1993) and Melenberg and van Soest (1993). 

Besides the possible imprecision due to weakening of semiparametric restrictions, 
an obstacle to routine use of some of the estimators described in Section 3 is their 
dependence upon a choice of type and degree of"smoothing" imposed for estimators 
which depend explicitly upon nonparametr ic  components of the model. Though 
this question has been widely studied in the literature on nonparametrics,  the results 
are different when the nonparametric  component  is a nuisance parameter.  Some 
early results on the proper degree of smoothing are available for some special cases 
of estimators for censored regression (Hall and Horowitz (1990)) or upon index 
restrictions (Hall and Marron  (1987), Powell and Stoker (1991), H~irdle et al. (1992)), 
but more theoretical results are needed to narrow the choice of possible estimators 
which depend upon nonparametrically-estimated components. 
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