
Econ 715

Lecture 9
Local Power

1 Triangular Arrays – the Tools

Triangular arrays are arrays of random variables of the form:

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3

... ... ... ...

Xn,1 Xn,2 Xn,3 ... Xn,n

... ... ... ... ... ...

A row-wise i.i.d. triangular array is a triangular array, in which variables in the same row are

mutually independent and have the same distribution. Distributions of random variables in different

rows are allowed to be different.

LLNs and CLTs are available for triangular arrays of random variables. They typically re-

quire slightly stronger moment conditions than the LLNs and CLTs for i.i.d. sequences of random

variables. Here I give a WLLN and a uniform WLLN that are simple but assume stronger than

necessary conditions. I also give the Lindeberg-Feller CLT and the Lyapounov CLT.

Theorem 8.1 (WLLN for triangular arrays). Let {Xn,i} be a row-wise i.i.d. triangular array of

random variables. If supnEX
2
n,i <∞, then

n−1
∑n

i=1
(Xni − EXni)→p 0.

Proof. The proof simply applies the Chebyshev inequality:

Pr
(∣∣∣n−1

∑n

i=1
(Xni − EXni)

∣∣∣ > ε
)
≤

E
(
n−1

∑n
i=1(Xni − EXni)

)2
ε2

=
E(Xni − EXni)

2

nε2

≤
supnEX

2
n,i

nε2

→ 0 as n→∞ (1)

The above equation holds for any ε > 0. Thus, Theorem 8.1 holds. Notice that supnEX
2
n,i < ∞

can be replaced with
EX2

n,i

n → 0 and the same proof goes through.
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Theorem 8.2 (ULLN for triangular arrays): Suppose (a) Θ is compact, (b) g(Xn,i, θ) is

continuous at each θ ∈ Θ with probability one, (c) g2(Xn,i, θ) is dominated by a function G(Xn,i),

i.e. g2(Xn,i, θ) ≤ G(Xn,i), and (d) supnEG(Xn,i) <∞. Then

sup
θ∈Θ

∣∣∣n−1
∑n

i=1
(g(Xni, θ)− Eg(Xni, θ))

∣∣∣→p 0.

The proof of Theorem 8.2 is the same as that of the ULLN1 in Lecture 2 and is omitted.

Theorem 8.3 (Lindeberg-Feller Theorem, Ferguson, p. 27): Let {Xn,i} be a row-wise

independent triangular array of random variables with EXn,i = 0 and E
(
X2
n,i

)
= σ2

n,i. Let

Zn =
∑n
i=1Xn,i, and let B2

n = V ar (Zn) =
∑n
i=1 σ

2
n,i. Then Zn/Bn →d N(0, 1) if the Lindeberg

condition below holds: for every ε > 0,

1

B2
n

∑n

i=1
E{X2

n,i1(|Xn,i| > εBn)} → 0.

Note that the Lindeberg-Feller Theorem only requires Xn,i to be row-wise independent not

identically distributed.

Corollary 8.4 (Lyapounov Theorem): Suppose that {Xn,i} is row-wise i.i.d. Then the con-

vergence in distribution holds with the Lindeberg condition replaced by the Lyapounov condition:

there exists δ such that

sup
n

E
∣∣X2+δ

n,i

∣∣
σ2+δ
n,i

<∞.

Corollary 8.4 is implied by Theorem 8.3 by Markov inequality.

2 Asymptotic Local Power

We want to find convenient approximations to the power functions of Wald, LM, and QLR tests. If

we consider a parameter value θ1 that is in the alternative and calculate the probability of rejection

of the null hypothesis as n → ∞, then often this probability goes to one as n → ∞. 1 Since the

limiting rejection probability is one, but the finite sample rejection probability is something less

than one, this type of asymptotic calculation does not generate useful approximations.

Instead, we consider asymptotic approximations in which the true parameter drifts towards the

null hypothesis at just the right rate so that even in the limit the rejection probability is in (0, 1).

1If it does, we say that the test is consistent against the parameter θ1.
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We suppose the true parameter value is θn, where

θn = θ0 + λ/
√
n for n ≥ 1.

Here, θ0 is a parameter value that satisfies the null hypothesis, H0 : h(θ0) = 0.

We ask: What is the limit distribution of Wn, when the true parameter is θn, as n → ∞? We

have:

Wn =
√
nh(θ̂n)′(ĤnB̂

−1
n Ω̂nB̂

−1
n Ĥ ′n)−1

√
nh(θ̂n)

=
√
n(h(θ̂n)− h(θn) + h(θn))′(ĤnB̂

−1
n Ω̂nB̂

−1
n Ĥ ′n)−1

√
n(h(θ̂n)− h(θn) + h(θn)).

Now, under the sequence of local alternatives, the probability limit of Q̂n(θ) is the same function

Q(θ) as when the true value is θ0 for all n. To see why this is true, consider the ML criterion function

Q̂n(θ). The function Q(θ) in this case is −
∫

log f(w, θ)f(w, θ0)dµ(w). Suppose {Wi : i = 1, ..., n}
are iid for given n and the true parameter is θn for n ≥ 1. Since the true parameter θn changes

with n, the observations actually form a triangular array {Wni : i = 1, ..., n; n ≥ 1} rather than

a sequence. Then,

Q̂n(θ)− EθnQ̂n(θ) = −n−1
n∑
i=1

(log f(Wni, θ)− Eθn log f(Wni, θ))→p 0

by a weak law of large numbers for a triangular array of random variables that are row-wise iid

(e.g. Theorem 8.2 above). Next, we have

EθnQ̂n(θ) = −
∫

log f(w, θ)f(w, θn)dµ(w)

= −
∫

log f(w, θ)f(w, θ0)dµ(w)

−
∫

log f(w, θ)
∂

∂θ′
f(w, θ+

n )dµ(w)(θn − θ0)

= Q(θ)−
∫

log f(w, θ)
∂

∂θ′
f(w, θ+

n )dµ(w)
λ√
n

= Q(θ) +O(n−1/2),

where the second equality holds by a mean-value expansion and the last equality holds given some

regularity conditions on f(w, θ) that ensure that
∫

log f(w, θ) ∂
∂θ′ f(w, θ+

n )dµ(w) = O(1). Hence, we

find that Q̂n(θ)→p Q(θ), where Q(θ) is the same as when the true value is θ0 for all n. The same

sort of argument shows that this occurs not just in the ML example, but for extremum estimators

in general.
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A consequence of the fact that the probability limit of Q̂n(θ) is the same function Q(θ) under

the sequence of local alternatives {θn : n ≥ 1} as under θ0 is that θ̂n →p θ0 under {θn : n ≥ 1}
as n → ∞. The reason is that, provided we can strengthen pointwise convergence to uniform

convergence, Assumption U-WCON holds under {θn : n ≥ 1} and Assumption ID holds under

{θn : n ≥ 1} provided it holds under θ0, because it only depends on Q(θ), which is the same in

both cases. Hence, we can use the same consistency proof as in earlier lecture notes to establish

that θ̂n →p θ0 under {θn : n ≥ 1}.
In addition, using the same method as we used to prove the asymptotic normality of

√
n(θ̂n−θ0)

under θ0, we can establish that

√
n(θ̂n − θn)

d→ Z ∼ N(0, B−1
0 Ω0B

−1
0 ) as n→∞ under {θn : n ≥ 1}. (2)

Note that the only difference between this result and the asymptotic normality result that holds

when the true value is θ0 is that θn is subtracted off, rather than θ0. To obtain this result, we

carry out element by element mean-value expansions of the first-order conditions about the true

parameter value θn, rather than θ0 :

op(1) = n1/2 ∂

∂θ
Q̂n(θ̂n)

= n1/2 ∂

∂θ
Q̂n(θn) +

∂2

∂θ∂θ′
Q̂n(θ+

n )
√
n(θ̂n − θn),

where θ+
n lies between θn and θ0 and, hence, converges to θ0 as n→∞. Rearrangement gives

√
n(θ̂n − θn) = −(B0 + op(1))−1n1/2 ∂

∂θ
Q̂n(θn)→d N(0, B−1

0 Ω0B
−1
0 ),

because n1/2 ∂
∂θ Q̂n(θn) typically converges in distribution to a N(0,Ω0) random variable under

{θn : n ≥ 1}. For example, in the ML case,

n1/2 ∂

∂θ
Q̂n(θn) = −n−1/2

n∑
i=1

∂

∂θ
log f(Wni, θn)→d N(0,Ω0) under {θn : n ≥ 1}

by a central limit theorem for a triangular array of random variables because Eθn(∂/∂θ) log f(Wni, θn) =

0 for all n ≥ 1.

By (2) and the delta method, we obtain

√
n(h(θ̂n)− h(θn))

d→ HZ ∼ N(0, HB−1
0 Ω0B

−1
0 H ′) as n→∞ under {θn : n ≥ 1},
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where H = (∂/∂θ′)h(θ0). In addition, we can show that

(ĤnB̂
−1
n Ω̂nB̂

−1
n Ĥ ′n)−1 p→ (HB−1

0 Ω0B
−1
0 H ′)−1 as n→∞ under {θn : n ≥ 1},

just as occurs under θ0. In addition, element by element mean value expansions about θ0 give

√
nh(θn) =

√
n(h(θ0) + (∂/∂θ′)h(θ+

n )λ/
√
n)

= Hλ+ op(1)

where θ+
n lies between θn and θ0 and, hence, satisfies θ+

n →p θ0 as n → ∞. The second equality

uses the fact that h(θ0) = 0 because θ0 is a null parameter point.

The results above and the continuous mapping theorem yield

Wn =
√
n(h(θ̂n)− h(θn) + h(θn))′(ĤnB̂

−1
n Ω̂nB̂

−1
n Ĥ ′n)−1

√
n(h(θ̂n)− h(θn) + h(θn))

d→ (HZ +Hλ)′(HB−1
0 Ω0B

−1
0 H ′)−1(HZ +Hλ)

∼ χ2
r(δ) as n→∞ under {θn : n ≥ 1}, where

δ = λ′H ′(HB−1
0 Ω0B

−1
0 H ′)−1Hλ.

Here, χ2
r(δ) denotes a noncentral chi-square distribution with r degrees of freedom and noncentrality

parameter δ. Note that

δn = nh(θn)′(HB−1
0 Ω0B

−1
0 H ′)−1h(θn)

→ δ as n→∞.

Hence, we can also approximate the distribution of Wn under θn simply by χ2
r(δn).

How can we use this result? There are two basic uses. The first is to compare the local power of

different tests and to select a good test based on its local power properties. Related to this use is the

determination of an optimal test based on local power. Such results, in terms of optimal weighted

average power over certain ellipses, are available for Wald, LM, and QLR tests in likelihood contexts

(Andrews and Ploberger, 1994).

The second use of local power asymptotic results is to approximate the power of a test in

practice for a given sample size n and a given alternative parameter vector θ∗ of interest. This

is done by approximating the distribution of Wn by χ2
r(δn), where δn is defined as above with

θn = θ∗. A related calculation is to find out how large δn needs to be for the approximate power to

be higher than a certain level (say 95%). This gives the researcher useful information in the case

of a nonrejection.

Next, we provide two examples to illustrate the usefulness of local power analysis.
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Example 1. Let θ be a parameter we are interested in. For example, it can be a regression

coefficient. We would like to test

H0 : θ = 0 vs. H1 : θ 6= 0 (3)

Let θ̂n be an estimator of θ. Let ŝn be the standard error of θ̂n and
√
nŝn →p σ ∈ (0, 1). For

example, if θ is a regression coefficient, then σ2 is proportional to the variance of the regression

error term and the variance of the regressor associated with θ.

We can use the t-test:

reject if |tn| > cn,α, (4)

where tn = θ̂n
σ̂n

and cα is the 1− α/2 quantile of the standard normal distribution. Under H0 and

reasonable condition, tn →d N(0, 1). Thus, the t-test has correct asymptotic size:

lim
n→∞

Pr0 (|tn| > cn,α) = Pr
(
|Z0| > z1−α/2

)
= α, (5)

where Pr0 denotes the probability taken under a distribution of the data with θ = 0, Z0 ∼ N(0, 1)

and z1−α/2 denotes the 1− α/2 quantile of N(0, 1).

For analyzing the power property of the test, asymptotic power under fixed alternatives is

misleading. To see why, consider a fixed alternative θ = 0.0001, then under this fixed alternative

(meaning ”suppose EX = 0.0001”),

tn√
n

=
θ̂n − 0.0001√

nŝn
+

0.0001√
nŝ
→p

0.0001

σ
. (6)

But cn,α → z1−α/2, so

lim
n→∞

Pr0.0001 (|tn| > cn,α) = lim
n→∞

Pr0.0001

(∣∣∣∣ tn√n
∣∣∣∣ > cn,α√

n

)
= 1. (7)

In finite sample, the power of the test is always less than one and can be quite small. In order

to calculate the finite sample power, we make the normality assumption: θ̂n ∼ N(θ, σ2/n). Also

for simplicity, assume that σ is known: say σ = 3. Then, θ̂n−θ
σ/
√
n
∼ N(0, 1). Let’s try a relatively

large alternative: θ = 0.1. The fixed alternative analysis will predict that the power against this
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alternative is close to one. But the actual power at sample size n is:

Pr0.1 (|tn| > cn,α) = Pr0.1

(∣∣∣∣∣ θ̂n − θσ/
√
n

+
0.1
√
n

σ

∣∣∣∣∣ > cn,α

)

= Pr0.1

(
θ̂n − θ
σ/
√
n

+
0.1
√
n

σ
> cn,α

)
+

Pr0.1

(
θ̂n − θ
σ/
√
n

+
0.1
√
n

σ
< −cn,α

)

= Φ

(
0.1
√
n

σ
− cn,α

)
+ Φ

(
−0.1

√
n

σ
− cn,α

)
Suppose n = 100, α = 0.05, then Pr0.1 (|tn| > cn,α) = 0.063. The power increases as we con-

sider further and further alternatives, but only slowly. For example, Pr0.3 (|tn| > cn,α) = 0.17,

Pr0.5 (|tn| > cn,α) = 0.38, and Pr0.6 (|tn| > cn,α) = 0.52.

The finite sample analysis requires the normality assumption. The local asymptotics theory

allows us to approximate the finite sample power without the normality assumption. As discussed

in the previous lecture, we can consider a sequence of alternatives that drifts to the null: θn → 0,

and derive asymptotic power under this drifting sequence of parameters. If the sequence drifts to

zero at appropriate rate, we get the same local power expression as above. We need the following

high-level assumption:

Assumption Asy.Norm: Under any sequence of true parameters θn → 0, we have

θ̂n − θn
ŝn

→d N(0, 1) and
√
nŝn →p σ. (8)

Under Assumption Asy.Norm, and if
√
nθn → b,

Prθn (|tn| > cn,α) = Prθn

(∣∣∣∣∣ θ̂n − θnŝn
+

√
nθn√
nŝn

∣∣∣∣∣ > cn,α

)

= Prθn

(
θ̂n − θn
ŝn

+

√
nθn√
nŝn

> cn,α

)
+

Prθn

(
θ̂n − θn
ŝn

+

√
nθn√
nŝn

< −cn,α

)

→ Φ

(
b

s
− cn,α

)
+ Φ

(
− b
s
− cn,α

)
This formula approximate the finite sample power derived under normality (above) pretty well.
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Example 2. In this example, we use local power to rank two tests for the general inequality

constraints discussed in the previous lecture. Let hF,1 and hF,2 be two parameters of interest

determined by the DGP F . We would like to test the inequality restrictions:

H0 : hF,1 ≤ 0

hF,2 ≤ 0. (9)

Let ĥ1 and ĥ2 be estimators of hF,1 and hF,2. Suppose that the estimators are asymptotically

normal under any drifting sequence of true parameters {(hFn,1, hFn,2)},

√
n

((
ĥ1

ĥ2

)
−

(
hFn,1

hFn,2

))
→d N (0,Σ) (10)

for some Σ.

Let Σ̂n =

(
σ̂2

1 σ̂12

σ̂12 σ̂2
2

)
be a consistent estimator of Σ =

(
σ2

1 σ12

σ12 σ2
2

)
.

Let ĥ =
(
ĥ1, ĥ2

)
. A simpler version of the Wald test statistic proposed in Lecture 7 is

Wn =

[√
nĥ1

σ̂1

]2

+

+

[√
nĥ2

σ̂2

]2

+

, (11)

where σ̂1 and σ̂2 are the two diagonal elements of Σ̂n and []+ is the positive part operator.

In earlier lectures, two data-dependent critical values are proposed: the Plug-in Asymptotics

(PA) and the Generalized Moment Selection (GMS). The PA critical value, cPAα , is the conditional

1− α quantile of

[Z1]
2
+ + [Z2]

2
+ , where

(
Z1

Z2

)
∼ N

(
0,

(
1 ρ̂

ρ̂ 1

))
, (12)

where ρ̂ = σ̂12

σ̂1σ̂2
. The GMS critical value, cGMS

α , is the conditional (1− α) quantile of

[Z1]
2
+ · 1(

√
nĥ1/σ̂1 > − log (n)) + [Z2]

2
+ · 1(

√
nĥ2/σ̂2 > − log (n)). (13)

Tests with both critical values are consistent. Consider fixed F such that hF � 0. Without

loss of generality, suppose hF,1 > 0. Under this fixed alternative, both critical values converges in

probability to a finite number but

Wn ≥

[√
nĥ1

σ̂1

]2

+

=

[√
nĥ1 −

√
nhF,1

σ̂1
+

√
nhF,1
σ̂1

]2

+

→p ∞, (14)
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where the divergence holds because θ1 > 0.

The test with GMS critical value has higher asymptotic local power than the test with PA

critical value. It is easy to see cGMS
α ≤ cPAα . Thus, the power of the GMS test is no less than the

PA test. Under certain drifting sequences of alternatives, the local power of the GMS test is strictly

larger than that of the PA test. To see this, consider the drifting sequence of DGPs {Fn} such that
√
nhFn,1/σ1 → b1 > 0,

√
nhFn,2/(σ2 log(n)) → b2 < −1. Under this sequence of true parameters,

the first restriction is violated and the second restriction is slack. Asymptotically, we have

Wn →d (Z1 + b1)
2
+ . (15)

The PA critical value is the 1 − α quantile of [Z1]
2
+ + [Z2]

2
+, while the GMS critical value is the

(1− α) quantile of [Z1]
2
+ with probability approaching one. Because [Z2]

2
+ is a positive random

variable, cGMS
α < cPAα . Moreover, plimn→∞c

GMS
α < plimn→∞c

PA
α . Thus,

lim
n→∞

PrFn

(
Wn > cGMS

α

)
> lim
n→∞

PrFn

(
Wn > cPAα

)
. (16)

The difference between the local power of the GMS test and the PA test are not dramatic when

there are only two nonlinear restrictions. When there are many nonlinear restrictions and most of

them are typically slack, the difference between GMS and PA tests can be huge.
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