
Econ 715

Local Power

1 Triangular Arrays – the Tools

Triangular arrays are arrays of random variables of the form:

X1,1

X2,1 X2,2

X3,1 X3,2 X3,3

... ... ... ...

Xn,1 Xn,2 Xn,3 ... Xn,n

... ... ... ... ... ...

A row-wise i.i.d. triangular array is a triangular array, in which variables in the

same row are mutually independent and have the same distribution. Distributions

of random variables in different rows are allowed to be different.

LLNs and CLTs are available for triangular arrays of random variables. They

typically require slightly stronger moment conditions than the LLNs and CLTs for

i.i.d. sequences of random variables. Here I give a WLLN and a uniform WLLN that

are simple but assume stronger than necessary conditions. I also give the Lindeberg-

Feller CLT and the Lyapounov CLT.

Theorem 7.1 (WLLN for triangular arrays). Let {Xn,i} be a row-wise i.i.d. triangular
array of random variables. If supnEX2

n,i < ∞, then

n−1
∑n

i=1
(Xni − EXni) →p 0.
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Proof. The proof simply applies the Chebyshev inequality:

Pr
(∣∣∣n−1

∑n

i=1
(Xni − EXni)

∣∣∣ > ε
)

≤ E (n−1
∑n

i=1(Xni − EXni))
2

ε2

=
E(Xni − EXni)

2

nε2

≤
supnEX2

n,i

nε2

→ 0 as n → ∞ (1)

The above equation holds for any ε > 0. Thus, Theorem 8.1 holds. Notice that

supn EX2
n,i < ∞ can be replaced with

EX2
n,i

n
→ 0 and the same proof goes through.

Theorem 7.2 (ULLN for triangular arrays): Suppose (a) Θ is compact, (b)

g(Xn,i, θ) is Lipschitz continuous in θ with Lipschitz constant b(Xn,i) (c) ∥b(Xn,i)∥2

and g2(Xn,i, θ) are dominated by a function G(Xn,i), i.e. g2(Xn,i, θ) ≤ G(Xn,i), and

(d) supn EG(Xn,i) < ∞. Then

sup
θ∈Θ

∣∣∣n−1
∑n

i=1
(g(Xni, θ)− Eg(Xni, θ))

∣∣∣→p 0.

The theorem can be proved by verifying the conditions of Theorem 2.8.1 of Van

der Vaart and Wellner (1996).

Theorem 7.3 (Lindeberg-Feller Theorem, Ferguson, p. 27): Let {Xn,i} be

a row-wise independent triangular array of random variables with EXn,i = 0 and

E
(
X2

n,i

)
= σ2

n,i. Let Zn =
∑n

i=1Xn,i, and let B2
n = V ar (Zn) =

∑n
i=1 σ

2
n,i. Then

Zn/Bn →d N(0, 1) if the Lindeberg condition below holds: for every ε > 0,

1

B2
n

∑n

i=1
E{X2

n,i1(|Xn,i| > εBn)} → 0.

Note that the Lindeberg-Feller Theorem only requires Xn,i to be row-wise inde-

pendent not identically distributed.

Corollary 7.4 (Lyapounov Theorem): Suppose that {Xn,i} is row-wise i.i.d.

Then the convergence in distribution holds with the Lindeberg condition replaced by
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the Lyapounov condition: there exists δ such that

lim
n→∞

E
∣∣X2+δ

n,i

∣∣
nδ/2σ2+δ

n,i

→ 0.

Corollary 7.4 is implied by Theorem 7.3 by Markov inequality.

2 Asymptotic Local Power

We want to find convenient approximations to the power functions of Wald, LM,

and QLR tests. If we consider a parameter value θ1 that is in the alternative and

calculate the probability of rejection of the null hypothesis as n → ∞, then often

this probability goes to one as n → ∞. 1 Since the limiting rejection probability is

one, but the finite sample rejection probability is something less than one, this type

of asymptotic calculation does not generate useful approximations.

Instead, we consider asymptotic approximations in which the true parameter

drifts towards the null hypothesis at just the right rate so that even in the limit the

rejection probability is in (0, 1). We suppose the true parameter value is θn, where

θn = θ0 + λ/
√
n for n ≥ 1.

Here, θ0 is a parameter value that satisfies the null hypothesis, H0 : h(θ0) = 0.

We ask: What is the limit distribution of Wn, when the true parameter is θn, as

n → ∞? We have:

Wn =
√
nh(θ̂n)

′(ĤnB̂
−1
n Ω̂nB̂

−1
n Ĥ ′

n)
−1
√
nh(θ̂n)

=
√
n(h(θ̂n)− h(θn) + h(θn))

′(ĤnB̂
−1
n Ω̂nB̂

−1
n Ĥ ′

n)
−1
√
n(h(θ̂n)− h(θn) + h(θn)).

Now, under the sequence of local alternatives, the probability limit of Q̂n(θ) is

the same function Q(θ) as when the true value is θ0 for all n. To see why this is

true, consider the ML criterion function Q̂n(θ). The function Q(θ) in this case is

1If it does, we say that the test is consistent against the parameter θ1.
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−
∫
log f(w, θ)f(w, θ0)dµ(w). Suppose {Wi : i = 1, ..., n} are iid for given n and the

true parameter is θn for n ≥ 1. Since the true parameter θn changes with n, the

observations actually form a triangular array {Wni : i = 1, ..., n; n ≥ 1} rather

than a sequence. Then,

Q̂n(θ)− EθnQ̂n(θ) = −n−1

n∑
i=1

(log f(Wni, θ)− Eθn log f(Wni, θ)) →p 0

by a weak law of large numbers for a triangular array of random variables that are

row-wise iid (e.g. Theorem 7.2 above). Next, we have

EθnQ̂n(θ) = −
∫

log f(w, θ)f(w, θn)dµ(w)

= −
∫

log f(w, θ)f(w, θ0)dµ(w)

−
∫

log f(w, θ)
∂

∂θ′
f(w, θ+n )dµ(w)(θn − θ0)

= Q(θ)−
∫

log f(w, θ)
∂

∂θ′
f(w, θ+n )dµ(w)

λ√
n

= Q(θ) +O(n−1/2),

where the second equality holds by a mean-value expansion and the last equality holds

given some regularity conditions on f(w, θ) that ensure that
∫
log f(w, θ) ∂

∂θ′
f(w, θ+n )

dµ(w) = O(1). Hence, we find that Q̂n(θ) →p Q(θ), where Q(θ) is the same as when

the true value is θ0 for all n. The same sort of argument shows that this occurs not

just in the ML example, but for extremum estimators in general.

A consequence of the fact that the probability limit of Q̂n(θ) is the same function

Q(θ) under the sequence of local alternatives {θn : n ≥ 1} as under θ0 is that

θ̂n →p θ0 under {θn : n ≥ 1} as n → ∞. The reason is that, provided we can

strengthen pointwise convergence to uniform convergence, Assumption U-WCON

holds under {θn : n ≥ 1} and Assumption ID holds under {θn : n ≥ 1} provided it

holds under θ0, because it only depends on Q(θ), which is the same in both cases.

Hence, we can use the same consistency proof as in earlier lecture notes to establish
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that θ̂n →p θ0 under {θn : n ≥ 1}.
In addition, using the same method as we used to prove the asymptotic normality

of
√
n(θ̂n − θ0) under θ0, we can establish that

√
n(θ̂n − θn)

d→ Z ∼ N(0, B−1
0 Ω0B

−1
0 ) as n → ∞ under {θn : n ≥ 1}. (2)

Note that the only difference between this result and the asymptotic normality result

that holds when the true value is θ0 is that θn is subtracted off, rather than θ0. To

obtain this result, we carry out element by element mean-value expansions of the

first-order conditions about the true parameter value θn, rather than θ0 :

op(1) = n1/2 ∂

∂θ
Q̂n(θ̂n)

= n1/2 ∂

∂θ
Q̂n(θn) +

∂2

∂θ∂θ′
Q̂n(θ

+
n )

√
n(θ̂n − θn),

where θ+n lies between θn and θ0 and, hence, converges to θ0 as n → ∞. Rearrange-

ment gives

√
n(θ̂n − θn) = −(B0 + op(1))

−1n1/2 ∂

∂θ
Q̂n(θn) →d N(0, B−1

0 Ω0B
−1
0 ),

because n1/2 ∂
∂θ
Q̂n(θn) typically converges in distribution to a N(0,Ω0) random vari-

able under {θn : n ≥ 1}. For example, in the ML case,

n1/2 ∂

∂θ
Q̂n(θn) = −n−1/2

n∑
i=1

∂

∂θ
log f(Wni, θn) →d N(0,Ω0) under {θn : n ≥ 1}

by a central limit theorem for a triangular array of random variables because

Eθn(∂/∂θ) log f(Wni, θn) = 0

for all n ≥ 1.
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By (2) and the delta method, we obtain

√
n(h(θ̂n)− h(θn))

d→ HZ ∼ N(0, HB−1
0 Ω0B

−1
0 H ′) as n → ∞ under {θn : n ≥ 1},

where H = (∂/∂θ′)h(θ0). In addition, we can show that

(ĤnB̂
−1
n Ω̂nB̂

−1
n Ĥ ′

n)
−1 p→ (HB−1

0 Ω0B
−1
0 H ′)−1 as n → ∞ under {θn : n ≥ 1},

just as occurs under θ0. In addition, element by element mean value expansions about

θ0 give

√
nh(θn) =

√
n(h(θ0) + (∂/∂θ′)h(θ+n )λ/

√
n)

= Hλ+ op(1)

where θ+n lies between θn and θ0 and, hence, satisfies θ+n →p θ0 as n → ∞. The

second equality uses the fact that h(θ0) = 0 because θ0 is a null parameter point.

The results above and the continuous mapping theorem yield

Wn =
√
n(h(θ̂n)− h(θn) + h(θn))

′(ĤnB̂
−1
n Ω̂nB̂

−1
n Ĥ ′

n)
−1
√
n(h(θ̂n)− h(θn) + h(θn))

d→ (HZ +Hλ)′(HB−1
0 Ω0B

−1
0 H ′)−1(HZ +Hλ)

∼ χ2
r(δ) as n → ∞ under {θn : n ≥ 1}, where

δ = λ′H ′(HB−1
0 Ω0B

−1
0 H ′)−1Hλ.

Here, χ2
r(δ) denotes a noncentral chi-square distribution with r degrees of freedom

and noncentrality parameter δ. Note that

δn = nh(θn)
′(HB−1

0 Ω0B
−1
0 H ′)−1h(θn)

→ δ as n → ∞.

Hence, we can also approximate the distribution of Wn under θn simply by χ2
r(δn).

How can we use this result? There are two basic uses. The first is to compare

the local power of different tests and to select a good test based on its local power
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properties. Related to this use is the determination of an optimal test based on

local power. Such results, in terms of optimal weighted average power over certain

ellipses, are available for Wald, LM, and QLR tests in a nonstandard likelihood

contexts where the three tests are not asymptotically equivalent to the first order

(e.g. Andrews and Ploberger, 1994).

The second use of local power asymptotic results is to approximate the power of a

test in practice for a given sample size n and a given alternative parameter vector θ∗

of interest. This is done by approximating the distribution of Wn by χ2
r(δn), where

δn is defined as above with θn = θ∗. A related calculation is to find out how large δn

needs to be for the approximate power to be higher than a certain level (say 95%).

This gives the researcher useful information in the case of a nonrejection.

Next, we provide two examples to illustrate the usefulness of local power analysis.

Example 1. Let θ be a parameter we are interested in. For example, it can be a

regression coefficient. We would like to test

H0 : θ = 0 vs. H1 : θ ̸= 0 (3)

Let θ̂n be an estimator of θ. Let ŝn be the standard error of θ̂n and
√
nŝn →p σ ∈

(0, 1). For example, if θ is a regression coefficient, then σ2 is proportional to the

variance of the regression error term and the variance of the regressor associated

with θ.

We can use the t-test:

reject if |tn| > cn,α, (4)

where tn = θ̂n
σ̂n

and cα is the 1 − α/2 quantile of the standard normal distribution.

Under H0 and reasonable condition, tn →d N(0, 1). Thus, the t-test has correct

asymptotic size:

lim
n→∞

Pr0 (|tn| > cn,α) = Pr
(
|Z0| > z1−α/2

)
= α, (5)

where Pr0 denotes the probability taken under a distribution of the data with θ = 0,
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Z0 ∼ N(0, 1) and z1−α/2 denotes the 1− α/2 quantile of N(0, 1).

For analyzing the power property of the test, asymptotic power under fixed al-

ternatives is misleading. To see why, consider a fixed alternative θ = 0.0001, then

under this fixed alternative (meaning “suppose EX = 0.0001”),

tn√
n
=

θ̂n − 0.0001√
nŝn

+
0.0001√

nŝ
→p

0.0001

σ
. (6)

But cn,α → z1−α/2, so

lim
n→∞

Pr0.0001 (|tn| > cn,α) = lim
n→∞

Pr0.0001

(∣∣∣∣ tn√n

∣∣∣∣ > cn,α√
n

)
= 1. (7)

In finite sample, the power of the test is always less than one and can be quite

small. In order to calculate the finite sample power, we make the normality assump-

tion: θ̂n ∼ N(θ, σ2/n). Also for simplicity, assume that σ is known: say σ = 3.

Then, θ̂n−θ
σ/

√
n
∼ N(0, 1). Let’s try a relatively large alternative: θ = 0.1. The fixed

alternative analysis will predict that the power against this alternative is close to

one. But the actual power at sample size n is:

Pr0.1 (|tn| > cn,α) = Pr0.1

(∣∣∣∣∣ θ̂n − θ

σ/
√
n
+

0.1
√
n

σ

∣∣∣∣∣ > cn,α

)

= Pr0.1

(
θ̂n − θ

σ/
√
n
+

0.1
√
n

σ
> cn,α

)
+

Pr0.1

(
θ̂n − θ

σ/
√
n
+

0.1
√
n

σ
< −cn,α

)

= Φ

(
0.1

√
n

σ
− cn,α

)
+ Φ

(
−0.1

√
n

σ
− cn,α

)
Suppose n = 100, α = 0.05, then Pr0.1 (|tn| > cn,α) = 0.063. The power increases

as we consider further and further alternatives, but only slowly. For example,

Pr0.3 (|tn| > cn,α) = 0.17, Pr0.5 (|tn| > cn,α) = 0.38, and Pr0.6 (|tn| > cn,α) = 0.52.
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The finite sample analysis requires the normality assumption. The local asymp-

totics theory allows us to approximate the finite sample power without the normality

assumption. As discussed in the previous lecture, we can consider a sequence of al-

ternatives that drifts to the null: θn → 0, and derive asymptotic power under this

drifting sequence of parameters. If the sequence drifts to zero at appropriate rate,

we get the same local power expression as above. We need the following high-level

assumption:

Assumption Asy.Norm: Under any sequence of true parameters θn → 0, we have

θ̂n − θn
ŝn

→d N(0, 1) and
√
nŝn →p σ. (8)

Under Assumption Asy.Norm, and if
√
nθn → b,

Prθn (|tn| > cn,α) = Prθn

(∣∣∣∣∣ θ̂n − θn
ŝn

+

√
nθn√
nŝn

∣∣∣∣∣ > cn,α

)

= Prθn

(
θ̂n − θn

ŝn
+

√
nθn√
nŝn

> cn,α

)
+

Prθn

(
θ̂n − θn

ŝn
+

√
nθn√
nŝn

< −cn,α

)

→ Φ

(
b

s
− cn,α

)
+ Φ

(
−b

s
− cn,α

)
This formula approximate the finite sample power derived under normality (above)

pretty well.

Example 2. In this example, we use local power to rank two tests for the general

inequality constraints discussed in the previous lecture. Let hF,1 and hF,2 be two

parameters of interest determined by the DGP F . We would like to test the inequality
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restrictions:

H0 : hF,1 ≤ 0

hF,2 ≤ 0. (9)

Let ĥ1 and ĥ2 be estimators of hF,1 and hF,2. Suppose that the estimators are asymp-

totically normal under any drifting sequence of true parameters {(hFn,1, hFn,2)},

√
n

((
ĥ1

ĥ2

)
−

(
hFn,1

hFn,2

))
→d N (0,Σ) (10)

for some Σ.

Let Σ̂n =

(
σ̂2
1 σ̂12

σ̂12 σ̂2
2

)
be a consistent estimator of Σ =

(
σ2
1 σ12

σ12 σ2
2

)
.

Let ĥ =
(
ĥ1, ĥ2

)
. A simpler version of the Wald test statistic proposed in Lecture

7 is

Wn =

[√
nĥ1

σ̂1

]2
+

+

[√
nĥ2

σ̂2

]2
+

, (11)

where σ̂1 and σ̂2 are the two diagonal elements of Σ̂n and []+ is the positive part

operator.

In earlier lectures, two data-dependent critical values are proposed: the Plug-in

Asymptotics (PA) and the Generalized Moment Selection (GMS). The PA critical

value, cPA
α , is the conditional 1− α quantile of

[Z1]
2
+ + [Z2]

2
+ , where

(
Z1

Z2

)
∼ N

(
0,

(
1 ρ̂

ρ̂ 1

))
, (12)

where ρ̂ = σ̂12

σ̂1σ̂2
. The GMS critical value, cGMS

α , is the conditional (1− α) quantile of

[Z1]
2
+ · 1(

√
nĥ1/σ̂1 > − log (n)) + [Z2]

2
+ · 1(

√
nĥ2/σ̂2 > − log (n)). (13)

Tests with both critical values are consistent. Consider fixed F such that hF ≰ 0.
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Without loss of generality, suppose hF,1 > 0. Under this fixed alternative, both

critical values converges in probability to a finite number but

Wn ≥

[√
nĥ1

σ̂1

]2
+

=

[√
nĥ1 −

√
nhF,1

σ̂1

+

√
nhF,1

σ̂1

]2
+

→p ∞, (14)

where the divergence holds because θ1 > 0.

The test with GMS critical value has higher asymptotic local power than the test

with PA critical value. It is easy to see cGMS
α ≤ cPA

α . Thus, the power of the GMS

test is no less than the PA test. Under certain drifting sequences of alternatives,

the local power of the GMS test is strictly larger than that of the PA test. To see

this, consider the drifting sequence of DGPs {Fn} such that
√
nhFn,1/σ1 → b1 > 0,

√
nhFn,2/(σ2 log(n)) → b2 < −1. Under this sequence of true parameters, the first

restriction is violated and the second restriction is slack. Asymptotically, we have

Wn →d (Z1 + b1)
2
+ . (15)

The PA critical value is the 1− α quantile of [Z1]
2
+ + [Z2]

2
+, while the GMS critical

value is the (1− α) quantile of [Z1]
2
+ with probability approaching one. Because [Z2]

2
+

is a positive random variable, cGMS
α < cPA

α . Moreover, plimn→∞cGMS
α < plimn→∞cPA

α .

Thus,

lim
n→∞

PrFn

(
Wn > cGMS

α

)
> lim

n→∞
PrFn

(
Wn > cPA

α

)
. (16)

The difference between the local power of the GMS test and the PA test are

not dramatic when there are only two nonlinear restrictions. When there are many

nonlinear restrictions and most of them are typically slack, the difference between

GMS and PA tests can be huge.

3 Exercise Questions

1. Readings:

Andrews, D. W. K. and W. Ploberger, 1994, Optimal Tests when a Nuisance
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Parameter is Present Only Under the Alternative, Econometrica, 62(6):1383-

1414
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