
Econ 715

Lecture 7
Testing Nonlinear Inequality Restrictions1

In Lecture 6, we discussed the testing problems where the null hypothesis is de�ned by nonlin-
ear equality restrictions:

H0 : h(�0) = 0 versus H1 : h(�0) 6= 0: (1)

We showed that the Wald, QLR and LM statistics have the same asymptotic distribution under H0
and the distribution is �2r. The rejection rule for the Wald, QLR and LM tests of signi�cance level

� can thus be:

reject H0 if Tn > �2r;1��, (2)

where Tn =Wn, QLRn or LMn and �2r;1�� is the 1�� quantile of �2r. A test de�ned as such has
correct asymptotic size because:

Asy:SZ : = lim
n!1

sup
�02�:h(�0)=0

Pr�0
�
Tn > �

2
r;1��

�
= Pr

�
�2r > �

2
r;1��

�
= �. (3)

When h is one-dimensional, these tests are often considered as "two-sided" test as violations of

h (�0) = 0 on both sides are detected.

In this lecture, we discuss the testing problems where the null hypothesis is de�ned by nonlinear
inequality restrictions:

H0 : h (�0) � 0 vs. H1 : h (�0) > 0. (4)

Testing situations like this arise when, for example, one wishes to test that some matrices are

positive semi-de�nite. They also arise, sometimes in a bit disguise, in speci�cation testing for

models de�ned by inequalities (e.g. moment inequalities).

Notice that, when testing (1), the asymptotic null distributions of Wn, QLRn or LMn do

not depend on �0. Test statistics with this property are called asymptotically pivotal. With
(asymptotically) pivotal test statistics, tests can be constructed easily. The critical values simply

can be chosen as the appropriate quantiles of the asymptotic distribution (that is invariant to the

true parameter). The asymptotic null rejection probabilities are exactly the signi�cance level we

choose, no matter what �0 is as long as H0 holds.

Analogous test statistics for (4) are not asymptotically pivotal. The asymptotic distributions

1The note is made up from my head based on Wolak (1991), Andrews and Soares (2010), Gourieroux and Monfort
(1995, chapter 21). It does not follow any of those sources closely. Accuracy is not guaranteed. Comments welcome.
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of them depend on �0, in particular, on whether some or all elements of h (�0) are zero. We de�ne

the Wald and QLR statistics �rst and then discuss the problems caused by the lack of pivotalness.

Throughout, we maintain Assumption QLR. Thus,
p
n
�
�̂n � �0

�
!d N(0; cB

�1
0 ) = N(0; c2
�10 ).

The Wald-type statistic is de�ned as

W�
n = min

t2[�1;0]r
n
�
h
�
�̂n

�
� t
�0 �

Ĥ
0

nĉnB̂
�1
n Ĥn

��1 �
h
�
�̂n

�
� t
�
, (5)

where Ĥn =
@h(�̂n)

0

@� , ĉn !p c and B̂n =
@2Q̂n(�̂n)

0

@�@�0 . Wald statistic de�ned this way does not require

one to compute the inequality constraint estimator ~�n:

h
�
~�n

�
� 0 and Q̂n

�
~�n

�
� inf

�2�:h(�)�0
Q̂n (�) + op

�
n�1=2

�
. (6)

This has advantage when the inequality constraints make ~�n hard to compute.

If one is willing to compute ~�n, there are other ways of de�ning Wald-type statistics as well:

~W �
n = n

�
h
�
�̂n

�
� h

�
~�n

��0 �
Ĥ

0

nĉnB̂
�1
n Ĥn

��1 �
h
�
�̂n

�
� h(~�n)

�
and

W �h
n = n

�
�̂n � ~�n

�0
ĉ�1n B̂n

�
�̂n � ~�n

�
. (7)

The second statistic is a Hausman-Wald type statistic as it has the feature of a Hausman test:

measuring the di¤erence between the unrestricted and the restricted estimators.

A QLR test statistic can be de�ned in the same way as in Lecture 6:

QLRn = 2nĉ
�1
n

�
Q̂n

�
~�n

�
� Q̂n

�
�̂n

��
: (8)

Theorem 7.1: Suppose Assumptions EE2, CF, R, COV, REE and QLR hold. Then,
(a) under H0, W�

n = ~W�
n + op(1) =W�h

n + op(1) = QLRn + op(1) and

(b) W�
n !d J�0;h�0 = mint2[�1;0]r (Z� + h�0 � t)

0
��10 (Z� + h�0 � t), where

Z� � N(0;�) and h�0 = (h�0;1; :::; h�0;r)
0

h�0;j =

(
0 if hj (�0) = 0

�1 if hj (�0) < 0

Before giving the (rather tedious) proof, I would like to discuss the implications of part (b). As

predicted above, the asymptotic distribution of the test statistics are not parameter free. If we want
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to construct a test using the same kind of critical value as in the equality constraint case, we have

to answer the question: which J�0;h�0 should we use to take the quantile from? Di¤erent J�0;h�0
have di¤erent quantiles. Naturally, we would like to control the size of the test. That is, we want:

sup
�0:h(�0)�0

Pr
�
J�0;h�0 > c�

�
= �. (9)

This idea requires us to �nd the least favorable J�0;h�0 : the J�0;h�0 that has the highest 1 � �
quantile. When r = 1, J�0;h�0 is one dimensional. The least favorable J�0 is straightforward: it

shoud be the J�0;h�0 such that h (�0) = 0, which is
1
2�

2
0 +

1
2�

2
1. When r > 1, the task is way more

complicated, as explained in Wolak (1991).

The type of critical value suggested above is called "�xed critical-value". They are �xed in a

sense that they do not vary with data. There are other ways of choosing critical values, which are

much more feasible than �xed critical values in the context we are dealing with. We de�ne two

types here.

The �rst type is "plug-in asymptotics (PA)". Literally, it means, we use the asymptotic dis-

tribution (not parameter free) and plug in the estimated values of the parameters. In J�0;h�0 , �0
can be consistently estimated under the null. Therefore, we use the estimated value in place of �0.

However, h�0 cannot be consistently estimated because it takes in�nite values sometimes. We get

around this by using 0 in place of h�0 . Using 0 instead of h�0(� 0) shifts the distribution of J�0;h�0
to the right and thus tends to make the critical values large. If we only care about controlling the

size, this shouldn�t cause any problem. To sum up, the PA critical value is taken as the conditional

(on data) 1� � quantile of J�̂n;0, where

J�̂n;0 = min
t2[�1;0]r

�
Z�̂n � t

�0 �
�̂n

��1 �
Z�̂n � t

�
, (10)

where �̂n = ĉnĤ
0
nB̂

�1
n Ĥn. You can show that J�̂n;0 !d J�0;0, and the 1 � � quantile of J�̂n;0

converges in probability to that of J�0;0, which is no smaller than that of J�0;h�0 , at any �0 under

the null. This implies that the size of the test is well controlled asymptotically.

The second type is "generalized moment selection (GMS)".2 The PA procedure replaces h�0
by zero and can potentially produce critical values that are too large. Large critical values a¤ects

the power of the test. To improve power, GMS procedure uses the data to decide whether h�0 is

in�nite or not. The judgement is not perfect, but it helps reducing the critical value while at the

same time preserving the size property of the test. The GMS procedure replaces h�0 by a moment

2We use the the term "moment" even though h (�0) are not necessarily moment of anything. But the term is
developed in moment inequality literature. It�s convenient to follow the tradition.
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selection function:

�n =

8<: �1 if {nh
�
�̂n

�
< �1

0 if {nh
�
�̂n

�
> �1

;

where {n = o (
p
n) is a sequence of positive numbers. The GMS critical value is taken to be the

conditional 1 � � quantile of J�̂n;�n . It can be shown that the sizes of the GMS tests are well
controlled asymptotically and the tests have better power than PA tests.

Notice that PA and GMS tests are developed only recently because they require simulating the

quantiles of non-regular distributions. Even though they are much easier to use than �xed critical

value tests, they could not be more feasible than the latter without powerful computers.

Now, let�s prove Theorem 7.1.

Proof of Theorem 7.1: First we establish part (a). We start with the asymptotic equivalence
between W�

n and ~W�
n. Let t

q
n be the solution to the quadratic minimization problem in (5). It

su¢ ces to show that

p
n
�
h
�
�̂
�
� h

�
~�n

��
=
p
n
�
h
�
�̂
�
� tqn

�
+ op(1): (11)

We show this by comparing the Kuhn-Tucker conditions for the quadratic minimization problem

and those for inf�2�:h(�)�0 Q̂n (�). By the Kuhn-Tucker theorem, �
q
n satis�es:

(KTq):
�
Ĥ

0

nĉnB̂
�1
n Ĥn

��1 �
h
�
�̂n

�
� tqn

�
= �qn

h (�qn) � 0, �qn � 0

h (�qn)
0
�qn = 0, (12)

where the �qn are the Lagrange multipliers. Eliminating �
q
n, we have

(KTq):
�
Ĥ

0

nĉnB̂
�1
n Ĥn

��1 �
h
�
�̂n

�
� tqn

�
� 0

tqn � 0

tq0n

�
Ĥ

0

nĉnB̂
�1
n Ĥn

��1 �
h
�
�̂n

�
� tqn

�
= 0, (13)
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By the Kuhn-Tucker Theorem, ~�n satis�es

(KTc):
@Q̂n

�
~�n

�
@�

+ ~Hn�
c
n = op

�
n�1=2

�
h
�
~�n

�
� 0, �cn � 0

h
�
~�n

�0
�cn = 0. (14)

Mean-value expansion of
@Q̂n(~�n)

@� around �̂n gives:

~Hn�
c
n = op

�
n�1=2

�
�
@Q̂n

�
�̂n

�
@�

+B�n

�
�̂n � ~�n

�
= op

�
n�1=2

�
+B�n

�
�̂n � ~�n

�
, (15)

where B�n =
@2Q̂n(�

�
n)

@�@�0 for some ��n lying between �̂n and ~�n, and the second equality holds by

Assumption EE2(ii). Let H+
n be the matrix that satis�es h

�
�̂n

�
� h

�
~�n

�
= H+

n

�
�̂n � ~�n

�
. Such

a matrix always exists by the mean-value theorem and H+
n !p H0 under our assumptions (R(i),

EE2(i), REE, CF(iv)). Premultiplying H+
n (B

�
n)
�1 to both sides of the equation above and we have:

H+
n (B

�
n)
�1 ~Hn�

c
n = h

�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

�
. (16)

Thus

�cn =
�
H+
n (B

�
n)
�1 ~Hn

��1 �
h
�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

��
. (17)

Using this to eliminate �cn in (14), we have

(KTc):
�
H+
n (B

�
n)
�1 ~Hn

��1 �
h
�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

��
� 0

h
�
~�n

�
� 0,

h
�
~�n

�0 �
H+
n (B

�
n)
�1 ~Hn

��1 �
h
�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

��
= 0 (18)

The systems (KTq) and (KTc) uniquely pin down tqn and h
�
~�n

�
respectively. The two systems are

asymptotically equivalent. Therefore,
p
n
�
h
�
~�n

�
� h (�0)

�
=
p
n (tqn � h (�0)) + op(1).3 Because

p
n
�
h
�
�̂n

�
� h (�0)

�
!d N(0;H0cB

�1
0 H0), we have (11).

3More rigorous argument uses the facts that (1) either system implicitly de�nes a continuous mappings from

elements with known asymptotic distributions to
p
n
�
h
�
~�n
�
� h (�0)

�
or
p
n
�
tqn � h (�0)

�
, respectively, (2) The

continuous mappings de�ned in the two systems are the same; and (3) the elements with known asymptotic distrib-
utions in both systems have the same asymptotic distributions.
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Next we establish the asymptotic equivalence between ~W�
n and W�h

n . Combining (15) and (17),

we have �
�̂n � ~�n

�
= (B�n)

�1 ~Hn

�
H+
n (B

�
n)
�1 ~Hn

��1 �
h
�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

��
. (19)

Plug that in W�h
n , we have

W�h
n = n

�
h
�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

��0 �
H+
n (B

�
n)
�1 ~Hn

��1
~H 0
n (B

�
n)
�1
ĉ�1n B̂n �

(B�n)
�1 ~Hn

�
H+
n (B

�
n)
�1 ~Hn

��1 �
h
�
�̂n

�
� h

�
~�n

�
+ op

�
n�1=2

��
= n

�
h
�
�̂n

�
� h

�
~�n

��0�
Ĥnĉn

�
B̂n

��1
Ĥn

��1 �
h
�
�̂n

�
� h

�
~�n

��
+ op(1)

= ~W�
n + op(1). (20)

The second equality holds because Assumption COV holds and
p
n(h

�
�̂n

�
� h

�
~�n

�
) = Op(1), the

later of which holds by the arguments used to establish (11).

Next we establish the asymptotic equivalence between QLRn and W�h
n . Using second-order

Taylor expansion of Q̂n around �̂n, we have

QLRn = 2nĉ�1n

"
@Q̂n(�̂n)

@�0

�
�̂ � ~�n

�
+
1

2

�
�̂ � ~�n

�0 @2Q̂n(��n)
@�@�

�
�̂ � ~�n

�#

= 2nĉ�1n

�
op
�
n�1

�
+
1

2

�
�̂ � ~�n

�0
B̂n

�
�̂ � ~�n

��
=

�
�̂ � ~�n

�0
ĉ�1n B̂n

�
�̂ � ~�n

�
+ op(1)

= W�h
n + op(1), (21)

where the second equality holds by Assumption EE2(ii), COV and �̂�~�n = Op(n�1=2) (which holds
by (19) and

p
n(h

�
�̂n

�
� h

�
~�n

�
) = Op(1)).

Now we establish part (b). De�ne

S (m;�) = min
t2[�1;0]r

(m� t)0 � (m� t) , (22)

The proof is a direct application of the continuous mapping theorem once we observe that

W�
n = S

�p
n(h

�
�̂n

�
� h (�0)) +

p
nh (�0) ;

�
Ĥ 0
nĉnB̂

�1
n Ĥn

��1�
, (23)

and show that S is continuous in both of its arguments on (R [ f�1g)r � �, where � is the space
of positive de�nite matrices. The proof of this is left as an exercise and a version of it can be found
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in Andrews and Soares (2010). Note that we need the continuity to hold on the extended real space

because we want to allow h�0 to take in�nite values.
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