
Econ 715

Lecture 5
Covariance Estimation and Optimal Weighting Matrices1

In this lecture, we consider estimation of the asymptotic covariance matrix B�10 
0B
�1
0 of the

extremum estimator b�n:
1 Covariance Estimation

Lemma 4.1 and Assumptions EE2(i) and CF(iv)* combine to yield

bB�1n =

�
@2

@�@�0
Q̂n(b�n)��1 !p B

�1
0 : (1)

Hence, it remains to �nd a consistent estimator of 
0. The general principle employed is that

of forming estimators by replacing expectations with sample averages and unknown parameters

with consistent estimators of them. Then, Lemma 4.1 can be used to establish consistency of the

resulting estimator b
n:
We consider each of the examples in turn:

(1) ML Estimator: Let

bBn = � 1
n

Pn
i=1

@2

@�@�0
log f(Wi;b�n) and (2)

b
n = 1

n

Pn
i=1

@

@�
log f(Wi;b�n) @

@�0
log f(Wi;b�n):

We obtain b
n !p 
0 by verifying conditions (i), (ii), and (iii) of Lemma 4.1. Condition (i) holds by

consistency of b�n. Conditions (ii) and (iii) hold by the ULLN in Section 4 provided @
@� log f(w; �)

(or, equivalently, f(w; �) and @
@�f(w; �)) is continuous in � on �0 8w 2 W (as is assumed in Lecture

4) and

E sup
�2�0

�������� @@� log f(Wi; �)

��������2 <1;
where �0 is a compact neighborhood of �0:

If the model is correctly speci�ed, then B0 = 
0 and the covariance matrix B
�1
0 
0B

�1
0 can

be estimated by bB�1n b
n bB�1n , bB�1n , or b
�1n . Note that b
n only requires calculation of the �rst
derivative of f(w; �), whereas bBn requires calculation of the second derivatives.

1The notes for this lecture is largely adapted from the notes of Donald Andrews on the same topic I am grateful
for Professor Andrews�generosity and elegant exposition. All errors are mine.
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(2) LS Estimator: Let

bBn = 1

n

Pn
i=1

�
@

@�
g(Xi;b�n) @

@�0
g(Xi;b�n)� (Yi � g(Xi;b�n)) @2

@�@�0
g(Xi;b�n)� and

b
n = 1

n

Pn
i=1(Yi � g(Xi;b�n))2 @@� g(Xi;b�n) @@�0 g(Xi;b�n): (3)

We obtain b
n !p 
0 by verifying the three conditions of Lemma 4.1. Condition (i) holds by con-

sistency of b�n. Conditions (ii) and (iii) hold by ULLN provided g(x; �) and @
@�g(x; �) are continuous

in � on �0 8x 2 X (as is assumed in Lecture 4) and

E sup
�2�0

��������(Yi � g(Xi; �)) @@� g(Xi; �)
��������2 <1;

where �0 is a compact neighborhood of �0:

If the regression model is correctly speci�ed (i.e., E(YijXi) = g(Xi; �0) a.s.), then B0 simpli�es
and bBn can be simpli�ed correspondingly. Let

eBn = 1

n

Pn
i=1

@

@�
g(Xi;b�n) @

@�0
g(Xi;b�n): (4)

In the correctly speci�ed case, eBn !p B0 when CF(iv) holds. So, a consistent covariance matrix

estimator for a correctly speci�ed regression model is

eB�1n b
n eB�1n : (5)

Note that this estimator allows for conditional heteroskedasticity of the errors � i.e., it is a �het-

eroskedasticity consistent�covariance matrix estimate.

If the model is correctly speci�ed and the errors are conditionally homoskedastic, then 
0 =

�2B0 and b
n can be replaced by the estimator
b�2 eB�1n , where b�2 = 1

n

Pn
i=1(Yi � g(Xi;b�n)2: (6)

For a linear regression model, b�2 eB�1n equals b�2 � 1nPn
i=1XiX

0
i

��1
:

(3) GMM Estimators: Let

bBn = �
1

n

Pn
i=1

@

@�0
g(Wi;b�n)�0A0nAn 1nPn

i=1

@

@�0
g(Wi;b�n) and (7)

b
n = �
1

n

Pn
i=1

@

@�0
g(Wi;b�n)�0A0nAn 1nPn

i=1 g(Wi;b�n)g(Wi;b�n)0A0nAn 1nPn
i=1

@

@�0
g(Wi;b�n):
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Note that the de�nition of bBn does not include the second summand of @2

@�@�0 Q̂n(
b�n) in Equation

(33) in Lecture 4. The reason is that the second summand converges in probability to zero since

Eg(Wi; �0) = 0 and, hence, can be omitted.

Each component of b
n has been shown in Lecture 4 to converge in probability to the corre-
sponding component of 
0. The only exception is the component 1

n

Pn
i=1 g(Wi;b�n)g(Wi;b�n)0. The

latter converges in probability to Eg(Wi; �0)g(Wi; �0)
0 by Lemma 12.1 and Theorem 11.3 providedb�n !p �0, g(w; �) is continuous in � on �0 8w 2 W and

E sup
�2�0

jjg(Wi; �)jj2 <1;

where �0 is a compact neighborhood of �0.

(4) MD Estimators: Let

bBn = �
@

@�0
g(b�n)�0A0nAn @@�0 g(b�n) and (8)

b
n = �
@

@�0
g(b�n)�0A0nAn bVnA0nAn @@�0 g(b�n);

where bVn is some consistent estimator of V0, the asymptotic covariance matrix of pn(b�n � �0).
Note that the de�nition of bBn does not include the second summand of @2

@�@�0 Q̂n(
b�n) in Equation

(37) in Lecture 4, because the latter converges in probability to zero given that �0 = g(�0). Each

component of b
n has been shown in Lecture 12 to converge in probability to the corresponding
component of 
0, except bVn. We simply assume bVn !p V0 here, because the speci�c form of V0 has

not been stated.

(5) TS Estimators: Let

bBn = �
@

@�0
Gn(b�n;b�n)�0A0nAn @@�0Gn(b�n;b�n) and (9)

b
n = �
@

@�0
Gn(b�n;b�n)�0A0nAn(bV1n + b�n bV 02n + bV2nb�0n + b�n bV3nb�0n)

� A0nAn
@

@�0
Gn(b�n;b�n), where

b�n = @

@� 0
Gn(b�n;b�n)

and bVjn is some consistent estimator of Vj0 for j = 1; 2; 3. If �0 is zero, as occurs in some cases,
such as feasible GLS estimation, then one can take b�n = 0 and the estimators bV2n and bV3n are not
required.
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2 Optimal Weight Matrices for GMM, MD, and TS Estima-

tors

The GMM, MD, and TS estimators have asymptotic covariance matrices of the form

(�00C�0)
�1�00C�0C�0(�

0
0C�0)

�1; (10)

where C = A0A and �0 is a symmetric positive semi-de�nite (psd) matrix that depends on the

estimator. We will show that the optimal choice of weight matrix An is a choice such that

A0A = ��10 , where An
p! A: (11)

This choice minimizes the asymptotic covariance matrix of b�n:
When (11) holds, the asymptotic covariance matrix in (10) simpli�es to (�00�

�1
0 �0)

�1. We will

show that

(�00C�0)
�1�00C�0C�0(�

0
0C�0)

�1 � (�00��10 �0)
�1 � 0; (12)

where �� 0�denotes �is psd.�Note that F�1�G�1 � 0 if and only if G�F � 0. Thus, (12) holds
if and only if

�00�
�1
0 �0 � �00C�0(�00C�0C�0)�1�00C�0 � 0: (13)

The left-hand side of (12) equals

�00�
�1=2
0

h
Ik � �1=20 C�0(�

0
0C�0C�0)

�1�00C�
1=2
0

i
�
�1=2
0 �0 (14)

= HPH 0

= HP (HP )0

� 0;

where H = �00�
�1=2
0 , P = Ik � �1=20 C�0(�

0
0C�0C�0)

�1�00C�
1=2
0 , and the second equality uses the

fact that P is a projection matrix (i.e., P is symmetric and idempotent, P 2 = P ). A matrix of the

form HP (HP )0 is necessarily psd, since z0HP (HP )0z = jjPH 0zjj2 � 0 8z 2 Rd:
In sum, the optimal weight matrix for the GMM, MD, and TS estimators depends on the

asymptotic covariance matrix of
p
n @
@� Q̂n(�0), which is 
0 = �

0
0C�0C�0. For the GMM and MD

estimators, �0 = V0 and the optimal weight matrix An is such that

A0nAn
p! A0A = V �10 : (15)
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For the TS estimator, the optimal weight matrix An is such that

A0nAn
p! A0A = (V10 + �0V

0
20 + V20�

0
0 + �0V30�

0
0)
�1: (16)

Two-Step GMM
It is usually desirable to use the optimal weight matrix rather than an arbitrary weight matrix

when doing GMM and MD estimations. However, the optimal weight matrices depend on the

covariance of the moment functions in the GMM case and the asymptotic variance of the initial

estimator in the MD case. Either the covariance or the asymptotic variance is not known. Therefore,

we need to obtain consistent estimators for them.

In the case of MD, the asymptotic variance of the initial estimator �̂n can be estimated from

the initial procedure used to obtain �̂n. Denote the estimator by V �n .

In the case of GMM, the covariance �0 = E (g (Wi; �0) g (Wi; �0)) can be consistently estimated

by �̂�n = n�1
Pn

i=1 g
�
Wi; �̂n;1

�
g
�
Wi; �̂n;1

�0
for some consistent estimator �̂n. The consistent

estimator �̂n may be obtained using GMM with the identity matrix as the weight matrix.

After estimating V �n and �̂
�
n, we can use An = sqrtm(V

�
n ) and An = sqrtm(�̂

�
n) as the estimated

optimal weight matrix to carry out GMM and MD estimation, respectively. The GMM/MD esti-

mators obtained have the same asymptotic variance as GMM/MD estimators using the (infeasible)

optimal weight matrices. The reason simply is that our estimators for the optimal weight matrices

are consistent.

The GMM estimators obtained using the above procedure are called two-step GMM estimators

because in this procedure, GMM estimation is carried out twice.

Multi-step GMM: Now that the two-step GMM estimators are "better" (in a second order

asymptotic sense) than a one-step GMM estimator with identity weight matrix (or any other ar-

bitrary weight matrix that is not the optimal weight matrix). Suppose that we estimate �0 again

using the two-step GMM estimators. The estimated �0 can be reasonably believed to be better

than the �̂�n. You may wonder if we should run GMM again using the better covariance matrix

estimator, and obtain a 3-step GMM estimator. You may also want to keep the iteration going.

(Iterative GMM)
The multi-step GMM estimators do not improve upon the two-step version in �rst order (consis-

tency) or second order (asymptotic variance) asymptotics. Some argues that �nite sample property

(like mean-bias or median-bias) might be better for iterated GMM.

Continuous Updating GMM (CUE): unlike the iterative or two-step GMM, CUE does

not take the weight matrix as given. Instead, it treats the weight matrix as a function of �, and

minimizes:

Q̂n (�) = �gn (�)
0
�̂n (�) �gn (�) , (17)
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where

�̂n (�) = n
�1Pn

i=1 g (Wi; �) g (Wi; �)
0 . (18)

The CUE is consistent and has the same asymptotic variance as the two-step or the iterative GMM

estimators.

All three procedures are used in practice and none dominates the others. See Hansen, Heaton

and Yaron (1994) for a Monte Carlo experiments that compare the three in �nance applications.

(Homework question: �nd a GMM problem in a cross-section setting and compare the three pro-

cedures by simulation)
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