
Econ 715

Lecture 4
Asymptotic Normality of Extremum Estimators1

1 Useful Results

Convergence in distribution
Convergence in distribution has two de�nitions, and the two de�nitions are equivalent. The �rst

de�nition uses the distribution functions (df) of the random variables, while the second de�nition

uses the �rst moment of bounded continuous functions of the random variables. The second de�ni-

tion is superior in many aspects: (1) It generalizes to random elements of metric spaces and allows

us to prove results regarding convergence of stochastic processes; (2) it is often easier to work with

than the df�s of sums of random vectors.

De�nition 1: A sequence of random vectors Y1; Y2; ::: is said to converge in distribution to a

random vector Y if Fn(y)! F (y) for all continuity points y of the distribution function (df) F (�)
of Y , where Fn(�) is the df of Yn:

Notice that the property of convergence in distribution is solely a property of the marginal

distributions of the random vectors Y1; Y2; ::: and not of the random vectors themselves or of their

joint distribution. It is irrelevant whether Y1, Y2, Y3 are independent or not. Only the marginal

distributions of Y1, Y2, Y3; ::: are important. For example, we could have Yn = Y , 8n and then
Yn !d Y . Or, we could have Yn are iid with the same distribution as Y and we still have Yn !d Y:

Note the caveat in the de�nition that convergence is necessary only for continuity points y of

the df F (�) of Y: This caveat is necessary if we want to be able to have discrete distributions as the
limits of sequences of continuous random vectors. Since we sometimes want to do this, we set up

the de�nition appropriately. We will give an example of this later.

De�nition 2: A sequence of random vectors Y1; Y2; ::: in Rk is said to converge weakly (or to

converge in distribution) to Y or to the distribution of Y , if 8f 2 bC, Ef(Yn)! Ef(Y ) as n!1,
where bC is the class of all bounded, continuous, real-valued functions de�ned on Rk; where Y 2 Rk.

Result: De�nitions 1 and 2 of convergence in distribution are equivalent.

The central limit theorem (CLT) gives an example of weak convergence. It says: if X1; X2; :::

1The notes for this lecture is largely adapted from the notes of Donald Andrews on "Convergence in Distribution,
Continuous Mapping Theorem and Delta Method" and "Asymptotic Normality of Extremum Estimators." I am
grateful for Professor Andrews�generosity and elegant exposition. All errors are mine.
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are iid with EX 0
iXi <1, then

p
n(Xn � EX1)

d! Z � N(0;Var(X1)) as n!1:

Note that the assumption of iid summands is far stronger than necessary. There are triangular

array CLTs with non-identically distributed and non-independent summands. Heuristically, the

requirements for the CLT to hold are that no �nite number of summands can be dominant, the

�amount of dependence�between Xi and Xj must die out su¢ ciently quickly as the di¤erence in

subscripts ji � jj goes to in�nity, and the tails of Xi cannot be too thick. For the moment, we do
not discuss those cases in detail.

By using Taylor series expansions (or mean-value expansions), one can often use CLT results

to prove weak convergence results for hosts of random vectors beyond the basic random vectors to

which the CLT was applied originally.

We need more motheds to manipulate the convergence in distribution of one sequence into con-
vergence in distribution of another sequence. There are three main results that allow us to do

so:

(1) the continuous mapping theorem,

(2) the mean value theorem

(3) the generalized Slutsky�s Theorem (a corollary of the continuous mapping theorem).

Continuous Mapping Theorem: Suppose fYn : n � 1g is a sequence of random Rk-vectors such

that Yn !d Y as n ! 1. If g : Rk ! R` is continuous on a set C with P (Y 2 C) = 1, then

g(Yn)!d g(Y ) as n!1:

Comment: The requirement is that g must be continuous with Y -probability one. If g(�) is every-
where continuous, then there is no condition to check and we get instant results. For example,

(a) if
p
n(b�n � �)!d Z � N(0; 1), then n(b�n � �)2 !d Z

2 � �21;
(b) if

p
n(b�n � �)!d Z � N(0; Ik), then n(b�n � �)0(b�n � �)!d Z

0Z � �2k; and
(c) if

p
n(b�n��0)!d Z � N(0; Ik); then R(

p
n(b�n��)) = pn(Rb�n�R�)!d RZ � N(0; RR0).

We will use the results from examples (b) and (c) when determining the asymptotic distribution

of the Wald statistic.

One use of the continuous mapping theorem, in addition to its use in the examples above, is

that it can be used to prove Slutsky�s Theorem and numerous related results all in one go. To do

this, we just need to establish two preliminary results:

Result 1: Let c be a nonrandom vector. If Yn !d Y and Wn !p c; then (Y 0n;W
0
n)
0 !d (Y

0; c0)0 as
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n!1:

Note this does not hold if c is a random vector. The reason is clear. If it did hold, we would

be making the statement that the joint distribution of (Y 0n;W
0
n)
0 converges in distribution to the

joint distribution of (Y 0; c0)0, but we have made no assumptions regarding the joint distribution of

Yn and Wn, only about their marginal distributions.

If we know that Yn !d Y ,Wn !d W , and (Yn;Wn) are independent random variables, then it is

true that (Y 0n;W
0
n)
0 !d (Y

0;W 0)0, where Y and W are independent random variables. This follows

easily using the df de�nition of convergence in distribution, because the joint df of independent

random variable is just the product of their marginal df�s.

The reason Result 1 holds even though we know nothing about the joint distribution of Yn and

Wn, is that since Wn converges in probability to a constant, Wn is asymptotically a constant and,

hence, is asymptotically independent of Yn:

Proof of Result 1: Suppose Wn is a scalar. For w < c;

F(Yn;Wn)(y; w) = P (Yn � y; Wn � w) � P (Wn � w)! 0 as n!1:

For w > c,

F(Yn;Wn)(y; w) = P (Yn � y) + P (Wn � w)� P (Yn � y or Wn � w)

! FY (y) + 1� 1

= FY (y)

if y is a continuity point of Y: Hence, the limit of the df of F(Yn;Wn)(y; w) equals the df of (Y
0; c0)0

at all continuity points of (Y 0; c0)0; as desired.

The Generalized Slutsky Theorem implied by Result 2 and the continuous mapping theorem,

we get:

Theorem (Generalized Slutsky Theorem): If Yn !p c, Wn !d W , and g(�; �) is continuous with
(c;W ) probability one (i.e., g(�; �) is continuous at (c; w), 8w in S such that P (W 2 S) = 1), then
g(Yn;Wn)!d g(c;W ) as n!1.

The theorem implies that if Yn !p c and Wn !d W; then

(i) Yn +Wn !d c+W;

(ii) Yn �Wn !d c �W;
(iii) Wn=Yn !d W=c provided c 6= 0; and
(iv) if Yn is a square weighting matrix such that Yn !p C, then W 0

nYnWn !d W
0CW:
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2 Asymptotic Normality of Extremum Estimators

This section provides conditions under which extremum estimators are asymptotically normally

distributed. The results given are not the most general that can be obtained. In particular, we

consider cases where the criterion function Q̂n(�) is smooth (i.e., twice di¤erentiable in �). Many

examples satisfy this condition, but some do not. It is possible to obtain asymptotic normality of an

extremum estimator with this assumption replaced by weaker assumptions. Also, we only consider

the cases in which the estimators have normal asymptotic distribution (or smooth functions of

normal distribution by the delta method). Extremum estimators do not always converge weakly to

normal distributions. Notable cases include the case in which the true value of a parameter is on

the boundary of the parameter space, and the case in which the true value of a parameter is not

identi�ed. Partially identi�ed models will be discussed later on in this course.

Heuristics. The idea of deriving asymptotic normality of an estimator in a nonlinear context
is to mimic what happens in the linear context. Consider an OLS estimator:

�̂n = argmin
�2B

Q̂n (�) = argmin
�2B

jjY �X�jj2=2. (1)

The �rst order condition is a linear equation in �̂n:

0 = X 0(Y �X�̂n). (2)

Because the equation is linear, we can easily solve for �̂n: �̂n = (X 0X)
�1
X 0Y . After solving for

�̂n, studying the asymptotic properties of �̂n is straightforward.

Now consider a nonlinear setting:

�̂n = argmin
�2�

Q̂n (�) . (3)

The �rst order condition is nonlinear in �̂n :

0 =
@Q̂
�
�̂n

�
@�

. (4)

We cannot solve for �̂n explicitly. However, we can linearize the �rst order condition using mean-

value expansion. The �rst question is that around which point we do the expansion. From last

lecture, we know �̂n !p �0 for some �0 2 �. The point �0 thus is the appropriate center point. The
mean-value expansion gives us:

0 =
@Q̂ (�0)

@�
+
@2Q̂

�
~�n

�
@�@�0

�
�̂n � �0

�
. (5)
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Now, we can "solve for" �̂n explicitly:

�̂n � �0 = �

24@2Q̂
�
~�n

�
@�@�0

35�1 @Q̂ (�0)
@�

. (6)

Therefore, the asymptotic distribution of �̂n � �0 can be obtained by studying the asymptotic
distributions of

@2Q̂(~�n)
@�@�0 and @Q̂(�0)

@� . Hopefully,

dn
@Q̂ (�0)

@�
! dZ (7)

@2Q̂
�
~�n

�
@�@�0

! pB, (8)

for some increasing sequence of numbers fdng, some mean-zero random variable Z and some in-

vertible deterministic matrix B. Then by the generalized Slutsky Theorem we have

dn

�
�̂n � �0

�
!d BZ. (9)

The two paragraphs above gives the heuristic derivation of the extremum estimator. The ob-

viously leaves a lot of questions open. For example: (1) when does (4) hold? (2) is Q̂n() smooth

enough to have second derivatives? (3) does (7) hold? (4) what is B and is it invertible? (5) when

does (8) hold? Before considering speci�c examples, we cannot really answer these questions in

detail. Instead, we make high level assumptions that we will verify later in the examples.

Asymptotic normality of the extremum estimator (EE) b�n holds under the following two high
level assumptions � one concerning the criterion function (CF) and the other concerning the

estimator itself.

Assumption CF: (i) �0 is in the interior of �:
(ii) Q̂n(�) is twice continuously di¤erentiable on some neighborhood �0 � � of �0 (with proba-

bility one).

(iii)
p
n @
@� Q̂n(�0)!d N(0;
0):

(iv) for any sequence ~�n !p �0, @2

@�@�0 Q̂n(
~�n) � B0 !p 0 for some non-stochastic d � d matrix

B0 that is nonsingular.

Assumption EE2: (i) b�n !p �0.

(ii) @
@� Q̂n(

b�n) = op(n�1=2):
Assumption CF will be veri�ed in the examples later.

Assumption EE2(i) assumes that we have already established consistency of b�n, perhaps by
Xiaoxia Shi Page: 5
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using the results of Lecture 3. Assumption EE2(ii) requires that the �rst-order conditions for

minimizing the criterion function Q̂n(�) hold approximately. This assumption allows one some

leeway in computing the estimator, since it may be di¢ cult and/or costly to �nd a value b�n that
exactly satis�es the �rst-order condition.

Theorem 4.1: Under Assumptions CF and EE2,

p
n(b�n � �0) d! N(0; B�10 
0B

�1
0 ):

Note that B0 must be symmetric given Assumption CF.

Proof of Theorem 4.1: Using CF(ii) and EE2(ii), element-by-element mean value expansions of
@
@� Q̂n(

b�n) about �0 yield
op(n

�1=2) =
@

@�
Q̂n(b�n) = @

@�
Q̂n(�0) +

@2

@�@�0
Q̂n(~�n)(b�n � �0); (10)

where ~�n lies between b�n and �0 (and, hence, satis�es ~�n !p �0) and ~�n may di¤er across the rows

of @2

@�@�0Qn(�
�
n). By Assumption CF(iv), and EE2(i),

@2

@�@�0
Q̂n(~�n) = B0 + op(1): (11)

Multiplying (10) by
p
n and substituting (11) into (10) gives

op(1) =
p
n
@

@�
Q̂n(�0) + (B0 + op(1))

p
n(b�n � �0): (12)

Rearranging (12) yields

p
n(b�n � �0) = �(B0 + op(1))�1

p
n
@

@�
Q̂n(�0) + op(1)

= �B�10
p
n
@

@�
Q̂n(�0) + op(1)

! d N(0; B
�1
0 
0B

�1
0 ) (13)

using CF(iii) and CF(iv) (i.e., nonsingularity of B0). �

The following su¢ cient condition makes it easier to verify Assumption CF.

Assumption CF(iv)* sup�2�0

������ @2

@�@�0 Q̂n(�)�B(�)
������!p 0 for some non-stochastic d� d matrix-

valued function B(�) that is continuous at �0 and for which B0 = B(�0) is nonsingular.
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The following Lemma shows that Assumption CF(iv)* is a su¢ cient condition for Assumption

CF(iv).

Lemma 4.1: Assumption CF(iv)* implies Assumption CF(iv).
The proof of Lemma 4.1 uses the following lemma. Let �wp ! 1�abbreviate �with probability

that goes to one as n!1.�

Lemma 4.2: Suppose (i) b�n !p �0 2 Rs, (ii) sup�2B(�0;") jLn(�) � L(�)j !p 0 for some " > 0,

and (iii) the non-stochastic function L(�) is continuous at �0. Then,

Ln(b�n) p! L(�0):

Proof of Lemma 4.2: We have

jLn(b�n)� L(�0)j
= jLn(b�n)� L(b�n) + L(b�n)� L(�0)j
� jLn(b�n)� L(b�n)j+ jL(b�n)� L(�0)j
� sup

�2B(�0;")
jLn(�)� L(�)j+ jL(b�n)� L(�0)j

p! 0;

where the �rst inequality holds by the triangle inequality, the second inequality holds wp ! 1

because b�n 2 B(�0; ") wp ! 1 by (i), and the convergence to zero holds using (i), (ii), and (iii). �

Proof of Lemma 4.1: Lemma 4.1 is a direct application of Lemma 4.2. �

3 Examples

We now provide su¢ cient conditions for Assumption CF and discuss the form of the asymptotic

covariance matrix, B�10 
0B
�1
0 , for each of the �ve examples introduced above.

(1) ML Estimator (with iid observations): We have

@

@�
Q̂n(�) = �

1

n

Pn
i=1

@

@�
log f(Wi; �); (14)

@2

@�@�0
Q̂n(�) = �

1

n

Pn
i=1

@2

@�@�0
log f(Wi; �);


0 = E
@

@�
log f(Wi; �0)

@

@�0
log f(Wi; �0), and

B(�) = �E @2

@�@�0
log f(Wi; �):
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From (13), the linear expansion of
p
n(b�n � �0) is

p
n(b�n � �0) = �B�10

p
n
@

@�
Q̂n(�0) + op(1)

= �
�
�E @2

@�@�0
log f(Wi; �0)

��1
1

n1=2
Pn

i=1

@

@�
log f(Wi; �0) + op(1): (15)

Assumption CF(ii) holds if f(w; �) is twice continuously di¤erentiable in � on some neighborhood

�0 � � of �0 for all w in the support W of Wi:

Assumption CF(iii) holds by the central limit theorem (CLT) for iid random vectors with �nite

second moment provided

E
@

@�
Q̂n(�0) = 0 and E

�������� @@� log f(Wi; �0)

��������2 <1: (16)

The former condition holds by the �rst order conditions for minimization of Q(�) over �, provided

�0 is an interior point of �. That is,

0 =
@

@�
Q(�0) = �

@

@�
E log f(Wi; �0) = �E

@

@�
log f(Wi; �0) = E

@

@�
Q̂n(�0); (17)

provided the inter-change of E and @=@� in the third equality is justi�ed. (Su¢ cient conditions for

interchange are that log f(w; �) is continuously di¤erentiable in � on a neighborhood �0 of �0 for

all w 2 W and E sup�2�0

���� @
@� log f(Wi; �)

���� <1. Su¢ ciency holds by the dominated convergence
theorem with the mean value theorem applied to obtain the dominating function.) Note that (16)

holds by de�nition of �0 (as the value that minimizes Q(�)), whether or not the model is correctly

speci�ed.

The third condition in (14) is equivalent to requiring the information matrix at �0 to be well
de�ned. The information matrix is

I0 = E
@

@�
log f(Wi; �0)

@

@�0
log f(Wi; �0): (18)

Assumption CF(iv) holds if Assumption CF(iv)* holds by Lemma 3.1. The latter assumption

holds if
n

@2

@�@�0 log f(Wi; �) : i � 1
o
satis�es a uniform WLLN over � 2 �0, B0 is nonsingular, and

B(�) is continuous at �0. By the ULLN in Lecture 2 and Lemma 3.2, the convergence holds and

B(�) is continuous at �0, if @2

@�@�0 log f(w; �) is continuous in � on �0 8w 2 W (as assumed above),

E sup
�2�0

�������� @2

@�@�0
log f(Wi; �)

�������� <1; (19)

and �0 is compact.
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The information matrix equality holds if the parametric model is correctly speci�ed and one can

switch the order of di¤erentiation and integration in the de�nition of B0 = B(�0). (The latter holds

under weak assumptions.) The information matrix equality is

B0 = 
0: (20)

Hence, in this case, the asymptotic covariance matrix of
p
n(b�n��0) is the inverse of the information

matrix

B�10 : (21)

The information matrix equality is derived as follows: We di¤erentiate the equality 1 =
R
f(w; �)d�(w)

with respect to � to get2

0 =
@

@�

Z
f(w; �)d�(w)

=

Z
@

@�
f(w; �)d�(w)

=

Z
@

@�
log f(w; �) � f(w; �)d�(w): (22)

Di¤erentiating again gives

0 =
@

@�0

Z
@

@�
log f(w; �) � f(w; �)d�(w)

=

Z
@

@�0

�
@

@�
log f(w; �) � f(w; �)

�
d�(w)

=

Z
@2

@�@�0
log f(w; �) � f(w; �)d�(w) +

Z
@

@�
log f(w; �) � @

@�0
f(w; �)d�(w)

=

Z
@2

@�@�0
log f(w; �) � f(w; �)d�(w)

+

Z
@

@�
log f(w; �) � @

@�0
log f(w; �) � f(w; �)d�(w): (23)

Now, if the model is correctly speci�ed, then the density of Wi is f(w; �0) and the equation above

yields

0 = E
@2

@�@�0
log f(Wi; �0) + E

@

@�
log f(Wi; �0) �

@

@�0
log f(Wi; �0)

= �B0 +
0: (24)

2� is a dominating measure on the space of w. For example, � can be the Lebesgue measure if Wi is a continuous
random vector on the Euclidean space. When � is the Lebesgue measure, a perhaps more familiar form of the integralR
�d� (w) is

R
�dw.
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(2) LS Estimator: We have

@

@�
Q̂n(�) = �

1

n

Pn
i=1(Yi � g(Xi; �))

@

@�
g(Xi; �); (25)

@2

@�@�0
Q̂n(�) =

1

n

Pn
i=1

�
@

@�
g(Xi; �)

@

@�0
g(Xi; �)� (Yi � g(Xi; �))

@2

@�@�0
g(Xi; �)

�
;


0 = EU
2
i

@

@�
g(Xi; �0)

@

@�0
g(Xi; �0), where Ui = Yi � g(Xi; �0),

B(�) = E
@

@�
g(Xi; �)

@

@�0
g(Xi; �)� E(Yi � g(Xi; �))

@2

@�@�0
g(Xi; �); and

B0 = E
@

@�
g(Xi; �0)

@

@�0
g(Xi; �0)� E(Yi � g(Xi; �0))

@2

@�@�0
g(Xi; �0): (26)

By iterated expectations,


0 = E�
2(Xi)

@

@�
g(Xi; �0)

@

@�0
g(Xi; �0); where �2(Xi) = E(U2i jXi): (27)

From (13), the linear expansion of
p
n(b�n � �0) is

p
n(b�n � �0) = �B�10

p
n
@

@�
Q̂n(�0) + op(1)

= �B�10 1p
n

Pn
i=1 Ui

@

@�
g(Xi; �0) + op(1): (28)

Assumption CF(ii) holds if g(x; �) is twice continuously di¤erentiable in � on some neighborhood

�0 � � of �0 for all x in the support X of Xi.

Assumption CF(iii) holds by the CLT provided

E
@

@�
Q̂n(�0) = 0 and EU2i

�������� @@� g(Xi; �0)
��������2 <1: (29)

The �rst condition holds because, by de�nition, �0 minimizes Q(�) over �. Since �0 is assumed to

be an interior point of �, the �rst order conditions for the minimization of Q(�) give

0 =
@

@�
Q(�0) =

@

@�
E(Yi � g(Xi; �0))2=2 (30)

= E
@

@�
(Yi � g(Xi; �0))2=2 = E

@

@�
Q̂n(�0);

provided the interchange of E and @=@� in the third equality is justi�ed. (Su¢ cient conditions

are that g(x; �) is continuously di¤erentiable in a neighborhood �0 of �0 for all x in X and

E sup�2�0

����(Yi � g(Xi; �)) @@�g(Xi; �)���� < 1.) As in the ML example, E @
@� Q̂n(�0) = 0 by de�-

nition of �0 whether or not the model is correctly speci�ed.
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Assumption CF(iv) holds if Assumption CF(iv)* holds by Lemma 4.1. The latter assumption

holds by the ULLN in Lecture 2 and Lemma 3.2 provided that @
@�g(x; �) and

@2

@�@�0 g(x; �) are

continuous in � on �0 8x 2 X (as is assumed above),

E sup
�2�0

"�������� @@� g(Xi; �)
��������2 + ��������(Yi � g(Xi; �)) @2

@�@�0
g(Xi; �0)

��������
#
<1;

�0 is compact, and B0 is nonsingular.

If the model is correctly speci�ed (i.e., E(UijXi) = 0 a.s.) or g(Xi; �) is linear in � (i.e.,

g(Xi; �) = X
0
i�), then the second summand of B0 is zero, which gives

B0 = E
@

@�
g(Xi; �0)

@

@�0
g(Xi; �0): (31)

If, in addition, the errors fUi : i � 1g are homoskedastic, i.e., �2(Xi) = �2 a.s. for some �2 > 0,

then


0 = �
2B0

and the asymptotic covariance matrix of
p
n(b�n � �0) is
�2B�10 : (32)

(3) GMM Estimator (with iid observations): We have

@
@� Q̂n(�) =

�
1
n

Pn
i=1

@
@�0 g(Wi; �)

�0
A0nAn

1
n

Pn
i=1 g(Wi; �)h

@2

@�@�0 Q̂n(�)
i
mj
= 1

n

Pn
i=1

@
@�m

g(Wi; �)
0A0nAn

1
n

Pn
i=1

@
@�j
g(Wi; �)

+ 1
n

Pn
i=1

@2

@�m@�j
g(Wi; �)

0A0nAn
1
n

Pn
i=1 g(Wi; �), for m; j = 1; :::; d;


0 = �
0
0A

0AV0A
0A�0, where

V0 = Eg(Wi; �0)g(Wi; �0)
0, �0 = E @

@�0 g(Wi; �0), and An
p! A;

[B(�)]mj = E
@

@�m
g(Wi; �)

0A0AE @
@�j
g(Wi; �)

+ E @2

@�m@�j
g(Wi; �)

0A0AEg(Wi; �), for m; j = 1; :::; d; and

B0 = �
0
0A

0A�0:

(33)
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From (13), the linear expansion of
p
n(b�n � �0) is

p
n(b�n � �0) = �B�10

p
n
@

@�
Q̂n(�0) + op(1)

= �(�00A0A�0)�1
�
1

n

Pn
i=1

@

@�0
g(Wi; �0)

�0
A0nAn

1

n1=2
Pn

i=1 g(Wi; �0) + op(1)

= �(�00A0A�)�1�00A0A
1

n1=2
Pn

i=1 g(Wi; �0) + op(1): (34)

Assumption CF(ii) holds if g(w; �) is twice continuously di¤erentiable in � on some neighborhood

�0 � � of �0 for all w in the support W of Wi:

Assumption CF(iii) holds by the CLT applied to 1p
n

Pn
i=1 g(Wi; �0) since Eg(Wi; �0) = 0, by

the WLLN applied to 1
n

Pn
i=1

@
@�0 g(Wi; �0), and by the assumption that An !p A. The CLT and

WLLN require

Ejjg(Wi; �0)jj2 <1 and E

�������� @@�0 g(Wi; �0)

�������� <1:
Assumption CF(iv) holds if Assumption CF(iv)* holds by Lemma 4.1. The latter assumption

holds if fg(Wi; �) : i � 1g ;
�
@
@�0 g(Wi; �) : i � 1

	
; and

n
@2

@�m@�j
g(Wi; �) : i � 1

o
for m; j = 1; :::; d

satisfy uniform WLLNs over �0, �0 is full rank, A is nonsingular, and Eg(Wi; �); E
@
@�0 g(Wi; �);

and E @2

@�m@�j
g(Wi; �) are continuous at �0 8m; j = 1; :::; d. By the ULLN in Lecture 2 is satis�ed

and B(�) is continuous at �0 by Lemma 3.2, if g(w; �); @
@�g(w; �); and

@2

@�m@�j
g(w; �) are continuous

in � on �0 8w 2 W 8m; j = 1; :::; d (as is assumed above),

E sup
�2�0

�������� @@� g(Wi; �)

�������� <1, E sup
�2�0

�������� @2

@�m@�j
g(Wi; �)

�������� <1 (35)

8m; j = 1; :::; d, and �0 is compact.
If the number k of moment conditions equals the dimension d of �0, then �0 and A are non-

singular square matrices, B�10 = ��10 A�1(A0)�1(�00)
�1, and the asymptotic covariance matrix of

p
n(b�n � �0) simpli�es:

B�10 
0B
�1
0 = ��10 V0(�

�1
0 )0: (36)

(4) MD Estimator: We have

@

@�
Q̂n(�) = �

�
@

@�0
g(�)

�0
A0nAn(b�n � g(�)) (37)�

@2

@�@�0
Q̂n(�)

�
mj

=
@

@�m
g(�)0A0nAn

@

@�j
g(�)� @2

@�m@�j
g(�)0A0nAn(b�n � g(�))

for m; j = 1; :::; d:
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We assume
p
n(b�n � �0) d! N(0; V0) and An

p! A: (38)

This assumption can be established using Theorem 4.1 if b�n is an extremum estimator.

Given (38), we have


0 = �
0
0A

0AV0A
0A�0, where �0 = @

@�0 g(�0), and

[B(�)]mj =
@

@�m
g(�)0A0A @

@�j
g(�)� @2

@�m@�j
g(�)0A0A(�0 � g(�)) for m; j = 1; :::; d:

(39)

Assumption CF(ii) holds if g(�) is twice di¤erentiable on some neighborhood �0 � � of �0:
CF(iii) holds by (38) and (39) provided the restrictions �0 = g(�0) hold (where �0 is the

probability limit of b�n). Note that �0 = g(�0) implies that B0 simpli�es, since the second summand
of [B(�0)]mj equals zero:

B0 = �
0
0A

0A�0: (40)

CF(iv) holds under the assumptions given above, provided �0 and A are full rank.

Using (13), the linear expansion for
p
n(b�n��0) is obtained by substituting the linear expansion

for
p
n(b�n � �0) into

p
n(b�n � �0) = �B�10

p
n
@

@�
Q̂n(�0) + op(1)

= (�00A
0A�0)

�1�00A
0A
p
n(b�n � �0) + op(1): (41)

(5) TS Estimator: We have

@
@� Q̂n(�) =

�
@
@�0Gn(�;b�n)�0A0nAnGn(�;b�n);h

@2

@�@�0 Q̂n(�)
i
mj
= @

@�m
Gn(�;b�n)0A0nAn @

@�j
Gn(�;b�n) + @2

@�m@�j
Gn(�;b�n)0A0nAnGn(�;b�n)

for m; j = 1; :::; d:

(42)

For brevity, we do not give su¢ cient conditions for Assumption CF for this example. We show

what B0 and 
0 equal in this example by making intermediate, rather than primitive assumptions.
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We assume the following:

p
n

 
Gn(�0; �0)b�n � �0

!
!d

 
Z1

Z2

!
� N

 
0;

 
V10 V20

V 020 V30

!!
;

@

@�0
Gn(�0;b�n)!p

@

@�0
G(�0; �0) = �0;

An !p A;

@

@� 0
Gn(�0; �

�
n)!p

@

@� 0
G(�0; �0) = �0;

sup
�2�0

�������� @2

@�@�0
Q̂n(�)�B(�)

��������!p 0, where

[B(�)]mj =
@

@�m
G(�; �0)

0A0A
@

@�j
G(�; �0) +

@2

@�m@�j
G(�; �0)

0A0AG(�; �0), and

B0 = �
0
0A

0A�0:

(43)

where ��n is any random vector that satis�es ��n !p �0: The �rst convergence result in (43) is

veri�ed by applying the multivariate CLT to the linear expansion for n1=2(b�n� �0) coupled with (i)
the normalized sample average n�1=2

Pn
i=1 g(Wi; �0) in the GMM case and (ii) the linear expansion

for n1=2(b�n � g(�0; �0)) = n1=2(b�n � �0) in the minimum distance case. The second and fourth

convergence results in (43) are veri�ed by using Lemma 4.1.

To �nd the asymptotic distribution N(0;
0) of
p
n @
@� Q̂n(�0), as required for CF(ii), we carry

out element-by-element mean value expansions of
p
n @
@� Q̂n(�0) about �0 and use the assumptions

of (43):

p
n @
@� Q̂n(�0) =

�
@

@�0
Gn(�0;b�n)�0A0nAnpnGn(�0;b�n)

= (�0 + op(1))
0A0nAn

�p
nGn(�0; �0) +

@

@� 0
Gn(�0; �

�
n)
p
n(b�n � �0)�

= (�0 + op(1))
0A0nAn[Ik

... �0 + op(1)]
p
n

 
Gn(�0; �0)b�n � �0

!
d! �00A

0A(Z1 + �0Z2)

� N(0;
0), where


0 = �00A
0A(V10 + �0V

0
20 + V20�

0
0 + �0V30�

0
0)A

0A�0

(44)

and ��n lies between b�n and �0 and may di¤er across rows of @
@� 0Gn(�0; �

�
n):

Note that if �0 = 0, as occurs with the feasible GLS estimator of linear and nonlinear regression

models, then 
0 simpli�es to an expression that is the same as one would get if �0 replaced b�n in
Q̂n(�). In this case, the asymptotic distribution of

p
n(b�n� �0) is the same whether �0 is known or
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is estimated. In general, however, �0 6= 0 and the estimator of �0 by b�n a¤ects the limit distribution
of b�n:
Using (13), the linear expansion for

p
n(b�n��0) is obtained by substituting the linear expansion

for
p
n(Gn(�0; �0)

0; (b�n � �0)0)0 into the following expression:
p
n(b�n � �0) = �B�10

p
n
@

@�
Q̂n(�0) + op(1)

= (�00A
0A�0)

�1�00A
0A[Ik

... �0]
p
n

 
Gn(�0; �0)b�n � �0

!
+ op(1): (45)

To show Assumption CF(iv) in this example and in others, the following lemma is useful.

Lemma 4.3: Suppose (i) b�n !p �0 2 Rs, (ii) sup2� sup�2B(�0;") jLn(; �) � L(; �)j !p 0 for

some " > 0, and (iii) L(; �) is continuous in � at �0 uniformly over  2 � (i.e., lim�!�0 sup2� jL(; �)�
L(; �0)j = 0.) Then,

sup
2�

jLn(; b�n)� L(; �0)j p! 0:

Proof of Lemma 4.3: (Problem Set Question #4. Hint: similar to Lemma 4.2)

Note that condition (iii) of the Lemma holds if � is compact and L(; �) is continuous in (; �) on

��B(�0; "):
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