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1.

Detailed solution omitted. KS statistic is expected to decrease as the sample size increases. Need
to clearly demonstrate the value of the KS statistic for different sample sizes and for different
distributions.

2.

We prove the following lemma:

Lemma 1. Suppose {Yn,1}∞n=1 and {Yn,2}∞n=1 are two sequences of random vectors such that Yn,1 ∈
Rk and Yn,2 ∈ Rl and as n → n, Yn,1 →d Y1 and Yn,2 →p r for a random vector Y1 ∈ Rk and a
constant vector r ∈ Rl. Then, (

Yn,1
Yn,2

)
→d

(
Y1
r

)
.

Take a constant vector c = (c′1, c
′
2) ∈ Rk ×Rl. Since a linear combination is a continuous function,

we have c′1Yn,1 →d c
′
1Y1 and c′2Yn,2 →d c

′
2r by CMT. Note that c′1Yn,1 ∈ R and c′2Yn,2 ∈ R, i.e.,

they are random variables. This implies that we can use the scalar version of the Lemma 1:(
c′1Yn,1
c′2Yn,2

)
→d

(
c′1Y1
c′2r

)
.

By CMT, c′1Yn,1 + c′2Yn,2 →d c
′
1Y1 + c′2r. We can rewrite it as

c′
(
Yn,1
Yn,2

)
= c′1Yn,1 + c′2Yn,2 →d c

′
1Y1 + c′2r = c′

(
Y1
r

)
.

Since the vector c is arbitrary, by Cramer-Wold device, we conclude(
Yn,1
Yn,2

)
→d

(
Y1
r

)
.

3.

Without loss of generality, assume EX1i = EX2i = 0 throughout the question.
(a) I propose the following estimator for ρ:

ρ̂ =
n−1

∑n
i=1(X1i − X̄1n)(X2i − X̄2n)(

n−1
∑n

i=1(X1i − X̄1n)2
)1/2 (

n−1
∑n

i=1(X2i − X̄2n)2
)1/2 ,

=
n−1

∑n
i=1X1iX2i − X̄1nX̄2n(

n−1
∑n

i=1X
2
1i − (X̄1n)2

)1/2 (
n−1

∑n
i=1X

2
2i − (X̄2n)2

)1/2 .
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where X̄jn = n−1
∑n

i=1Xji for j = 1, 2. Since Xji’s are iid and have finite variance, we can apply
the WLLN to have X̄jn = n−1

∑n
i=1Xji →p EXj = 0 for j = 1, 2. Assume Xji’s have finite fourth

moment.1 Then we can apply the WLLN to have

n−1
n∑

i=1

(Xji − X̄jn)2 →p E(Xji − EXji)
2 = σ2j ,

n−1
n∑

i=1

(X1i − X̄1n)(X2i − X̄2n)→p E(X1i − EX1i)(X2i − EX2i) = Cov(X1i, X2i) = ρσ1σ2,

for j = 1, 2.
Consider a function g : R5 → R such that g(a, b, c, e, d) = e−ab

(c−a2)1/2(d−b2)1/2 . Then

ρ̂ = g

(
X̄1n, X̄2n, n

−1
n∑

i=1

X2
1i, n

−1
n∑

i=1

X2
2i, n

−1
n∑

i=1

X1iX2i

)
.

Since g(a, b, c, d, e) is continuous where c− a2 > 0 and d− b2 > 0, by CMT, we have

ρ̂ = g

(
X̄1n, X̄2n, n

−1
n∑

i=1

X2
1i, n

−1
n∑

i=1

X2
2i, n

−1
n∑

i=1

X1iX2i

)
→p g(EX1i, EX2i, EX

2
1i, EX

2
2i, EX1iX2i) = ρ.

Thus, ρ̂ is consistent for ρ.

(b) By multivariate CLT,

√
n




X̄1n

X̄2n

n−1
∑n

i=1X
2
1i

n−1
∑n

i=1X
2
2i

n−1
∑n

i=1X1iX2i

−


0
0
σ21
σ22

ρσ1σ2


→d N(0,Σ),

where 0 is 5× 1 vector of zeros and Σ is 5× 5 covariance matrix. Let

G(a, b, c, d, e) =
(

∂g(a,b,d,c,e)
∂a

∂g(a,b,d,c,e)
∂b

∂g(a,b,d,c,e)
∂c

∂g(a,b,d,c,e)
∂d

∂g(a,b,d,c,e)
∂e

)
.

You should check whether G(0, 0, σ1, σ2, ρσ1σ2) exists and is non-zero to apply the delta method.
Write G(0, 0, σ1, σ2, ρσ1σ2) ≡ G. By the delta method,

√
n(ρ̂− ρ) =

√
n

g


X̄1n

X̄2n

n−1
∑n

i=1X
2
1i

n−1
∑n

i=1X
2
2i

n−1
∑n

i=1X1iX2i

− g


0
0
σ21
σ22

ρσ1σ2


→d N(0, GΣG′).

Note that GΣG′ is a scalar and is the asymptotic variance of
√
n(ρ̂− ρ).

1This is not a necessary condition for the WLLN, though.
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4.

If Yn ∼ b(n, p) then Yn =
∑n

i=1Xi with Xi ∼ Bern(p) for i = 1, ..., n. Since EXi = p, by the
WLLN,

Yn
n

=
1

n

n∑
i=1

Xi →p EXi = p.

Let g(x) = x(1− x). Then g(x) is continuous. By CMT (or Slutsky’s theorem),

Yn
n

(
1− Yn

n

)
= g

(
Yn
n

)
→p g(p) = p(1− p).

5.

Since Xi’s are random sample from χ2(50), EXi = 50 and V ar(Xi) = 100. CLT implies that√
n(X̄ − EXi)/10 is asymptotically standard normal. We use this fact to approximate the proba-

bility P (49 < X̄ < 51):

P (49 < X̄ < 51) = P (−1 < X̄ − 50 < 1)

= P (
√

100×−1 <
√

100(X̄ − 50) <
√

100× 1)

= P (−1 <
√

100(X̄ − 50)/10 < 1)

≈ P (−1 < Z < 1) = 2Φ(1)− 1 = 0.6826.

6.

Let Xi’s be random sample. Then

P (Xi < 3) =

∫ 3

1

1

x2
dx =

2

3
.

Each observation is either larger than (or equal to) 3 with probability 1/3 or less than 3 with
probability 2/3. Let Yi be a random variable such that Yi = 1{Xi < 3}. Then Yi is a Bernoulli
random variable with p = 2/3 and

∑72
i=1 Yi is a binomial random variable such that

∑72
i=1 Yi ∼

b(72, 2/3). Let Yn =
∑72

i=1 Yi. The distribution of Yn can be approximated by Zn such that
Zn ∼ N(48, 16): P (Yn > 50) ≈ P (Zn > 50.5) with continuity correction. Now

P (Yn > 50) ≈ P (Zn > 50.5)

= P (
Zn − 48

4
>

50.5− 48

4
)

= P (Z > 0.625) = 0.266,

where Z is standard normal random variable.
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7.

First, we show Y1 →p a. Take any ε > 0.

P (|Y1 − a| < ε) = P (a− ε < Y1 < a+ ε)

= P (a < Y1 < a+ ε)

= P (a < minXi < a+ ε)

= 1− P (minXi ≥ a+ ε)

= 1− P (Xi ≥ a+ ε, i = 1, 2, ..., n)

= 1− (P (Xi ≥ a+ ε))n

= 1−
(
b− a− ε
b− a

)n

→ 1,

as n → ∞. Similarly, we can show Y2 →p b. In class, we learned that if Y1n →d Y1 and Y2n →d r,
where r is a constant, then (Y1n, Y2n)′ →d (Y1, r)

′. This is Lemma 1. Convergence in probability
to a constant is the same as convergence in distribution to a constant. This implies that we have
(Y1, Y2)

′ →p (a, b)′ by Lemma 1.

8.

By Lemma 1, we have (
Xn − Yn
Xn

)
→d

(
0
X

)
.

By CMT, Xn − (Xn − Yn) = Yn →d X − 0 = X.
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