FALL 2011
Econ 709
Prof. Xiaoxia Shi

Problem Set \#4 Solutions

TA: SeoJeong (Jay) Lee (slee279@wisc.edu)

1.

Since $g(\cdot)$ is one-to-one, the inverse $g^{-1}(\cdot)$ is well-defined. Assume $g^{-1}(z)$ is differentiable. Let $W=X$. Then $(f(X), g(Y))=(W, Z)$ where $f(\cdot)$ is an identity function. Then $f^{-1}(\cdot)$ is also an identity function, $\partial f^{-1}(w) / \partial w=1$, and $\partial f^{-1}(w) / \partial z=0$.

$$
\begin{aligned}
f_{X \mid Z}(x \mid z) & =\frac{f_{X, Z}(x, z)}{f_{Z}(z)} \\
& =\frac{f_{W, Y}\left(w, g^{-1}(z)\right)\left|\begin{array}{cc}
1 & 0 \\
0 & \frac{\partial g^{-1}(z)}{\partial z}
\end{array}\right|}{f_{Y}\left(g^{-1}(z)\right)\left|\frac{\partial g^{-1}(z)}{\partial z}\right|} \\
& =\frac{f_{W, Y}\left(w, g^{-1}(z)\right)}{f_{Y}\left(g^{-1}(z)\right)} \\
& =\frac{f_{X, Y}(x, y)}{f_{Y}(y)}=f_{X \mid Y}(x \mid y) .
\end{aligned}
$$

2.

$$
\begin{aligned}
P(2 X+3 Y<1) & =P\left(Y<\frac{1-2 X}{3}\right) \\
& =P\left(0<Y<\frac{1-2 X}{3}, 0<X<\frac{1}{2}\right) \\
& =\int_{0}^{1 / 2} \int_{0}^{\frac{1-2 x}{3}} f(x, y) d x d y \\
& =\int_{0}^{1 / 2} \int_{0}^{\frac{1-2 x}{3}} 6(1-x-y) d x d y=\frac{13}{36} . \\
E[X Y+2 X] & =\int_{0}^{1} \int_{0}^{1-x}\left(x y+2 x^{2}\right) 6(1-x-y) d y d x=\frac{1}{4} .
\end{aligned}
$$

3.

The marginal pmf's are

$$
\begin{aligned}
& p_{X_{1}}\left(x_{1}\right)=\left\{\begin{array}{cc}
\frac{4}{18} & \text { when } x_{1}=0 \\
\frac{7}{18} & \text { when } x_{1}=1 \\
\frac{7}{18} & \text { when } x_{1}=2 \\
0 & \text { elsewhere }
\end{array}\right. \\
& p_{X_{2}}\left(x_{2}\right)=\left\{\begin{array}{cc}
\frac{11}{18} & \text { when } x_{2}=0 \\
\frac{7}{18} & \text { when } x_{2}=1 \\
0 & \text { elsewhere }
\end{array}\right.
\end{aligned}
$$

The conditional means are $E\left[X_{1} \mid X_{2}=0\right]=16 / 11, E\left[X_{1} \mid X_{2}=1\right]=5 / 7, E\left[X_{2} \mid X_{1}=0\right]=3 / 4$, $E\left[X_{2} \mid X_{1}=1\right]=3 / 7$, and $E\left[X_{2} \mid X_{1}=2\right]=1 / 7$.

4.

By using the definition of the conditional density function, $f_{Y \mid X}(y \mid x)=f_{X Y}(x, y) / f_{X}(x)=1 / f_{X}(x)$ and $f_{X \mid Y}(x \mid y)=f_{X Y}(x, y) / f_{Y}(y)=1 / f_{Y}(y)$. The marginal pdf $f_{X}(x)$ is given by

$$
f_{X}(x)=\int_{-x}^{x} 1 d y=2 x
$$

and zero elsewhere. The marginal pdf $f_{Y}(y)$ is given by

$$
f_{Y}(y)=\int_{|y|}^{1} 1 d x=1-|y|,
$$

and zero elsewhere. Now the conditional expectations $E[Y \mid X=x]$ and $E[X \mid Y=y]$ are

$$
\begin{aligned}
E[Y \mid X=x] & =\int_{-x}^{x} y f_{Y \mid X}(y \mid x) d y \\
& =\int_{-x}^{x} y \frac{1}{2 x} d y=0 \text { for } 0<x<1 . \\
E[X \mid Y=y] & =\int_{|y|}^{1} x f_{X \mid Y}(x \mid y) d x \\
& =\int_{|y|}^{1} x \frac{1}{1-|y|} d x=\frac{1+|y|}{2} \text { for }-1<y<1 .
\end{aligned}
$$

Therefore, $E[Y \mid x]$ is a straight line, but $E[X \mid y]$ is not.

5.

Let X_{i} be the midpoint of the i th line segment. Since they are independent and uniformly distributed, the marginal pdf's are given by $f_{X_{1}}\left(x_{1}\right)=1 / 14$ for $0<x_{1}<14, f_{X_{2}}\left(x_{2}\right)=1 / 14$ for $6<x_{2}<20$ and zero elsewhere. The joint pdf is given by $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{196}$ for $0<x_{1}<14$ and
$6<x_{2}<20$, and zero elsewhere. The two line segments overlap if $\left|x_{1}-x_{2}\right|<2$. The probability of the event is

$$
\begin{aligned}
P\left(\left|X_{1}-X_{2}\right|<2\right) & =P\left(\left|X_{1}-X_{2}\right|<2, X_{1} \leq X_{2}\right)+P\left(\left|X_{1}-X_{2}\right|<2, X_{1}>X_{2}\right) \\
& =P\left(X_{2}-X_{1}<2, X_{1} \leq X_{2}\right)+P\left(X_{1}-X_{2}<2, X_{1}>X_{2}\right) .
\end{aligned}
$$

The region $X_{2}-X_{1}<2, X_{1} \leq X_{2}$ and $X_{1}-X_{2}<2, X_{1}>X_{2}$ on (x_{1}, x_{2}) plane is the sum of a triangle and a parallelogram (check this) and we take the integration of the joint density over this region.

$$
P\left(\left|X_{1}-X_{2}\right|<2\right)=\int_{4}^{8} \int_{6}^{x_{1}+2} \frac{1}{196} d x 2 d x 1+\int_{8}^{14} \int_{x_{1}-2}^{x_{1}+2} \frac{1}{196} d x 2 d x 1=\frac{8}{49}
$$

6.

(a) $f_{X}(x)=2 / 3(1+x)$ for $0<x<1, f_{Y}(y)=2 / 3(1+y), f_{Z}(z)=2 / 3(1+z)$, and zero elsewhere.
(b) $P(0<X<1 / 2,0<Y<1 / 2,0<Z<1 / 2)=1 / 16 . ~ P(0<X<1 / 2)=P(0<Y<1 / 2)=$ $P(0<Z<1 / 2)=5 / 12$.
(c) Since $f_{X}(x) f_{Y}(y) f_{Z}(z)=(2 / 3)^{3}(1+x)(1+y)(1+z) \neq f(x, y, z), X, Y$, and Z are not (mutually) independent.
(d) $E\left[X^{2} Y Z\right]+E\left[3 X Y^{4} Z^{2}\right] \approx 0.2657$.
(e) $F_{X}(x)=\left\{\begin{array}{cc}0 & , x \leq 0 \\ \frac{1}{3}\left(x^{2}+2 x\right) & , 0<x<1 \quad F_{Y}(y) \text { and } F_{Z}(z) \text { are the same with } F_{X}(x) \text { by replacing } \\ 1 & , x \geq 1\end{array}\right.$ x with y and z, respectively.
(f) Note that $E[X+Y \mid z]=E[X \mid z]+E[Y \mid z]$. Since $E[X \mid z]=E[Y \mid z]=(7 / 12+z / 2) /(z+1)$, $E[X+Y \mid z]=(7 / 6+z) /(z+1)$.
(g) The conditional pdf is given by $f_{X \mid Y, Z}(x \mid y, z)=\frac{f_{X Y Z}(x, y, z)}{f_{Y Z}(y, z)}=(x+y+z)(1 / 2+y+z)^{-1}$ for $0<x<1,0<y<1,0<z<1$, and zero elsewhere. Then $E[X \mid Y=y, Z=z]=\frac{2+3 y+3 z}{3+6 y+6 z}$.

7.

Let X be wife's height and Y be husband's height. Then $\mu_{X}=64, \sigma_{X}=1.5, \mu_{Y}=70, \sigma_{Y}=2, \rho=$ 0.7. The conditional distribution of X, given $Y=y$ is $X \left\lvert\, y \sim N\left(\mu_{X}+\rho \frac{\sigma_{x}}{\sigma_{Y}}\left(y-\mu_{Y}\right), \sigma_{X}^{2}\left(1-\rho^{2}\right)\right)\right.$. Thus,

$$
X \mid y=72 \sim N(65.05,1.1475)
$$

The best guess of the height of a woman whose husband's height is 6 feet is $E[X \mid y=72]=65.05$ inches. The 95% prediction interval for her height is $65.05 \pm 1.96 \times \sqrt{1.1475}=(62.95,67.15)$.

8.

To show $f(x, y)$ is a joint pdf, we show $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1$ and $f(x, y) \geq 0$ for $-\infty<x<\infty$ and $-\infty<y<\infty$. First,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{2 p i} \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}\right)\right)\left[1+x y \exp \left(-\frac{1}{2}\left(x^{2}+y^{2}-2\right)\right)\right] d y d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 p i}} \exp \left(-\frac{1}{2} x^{2}\right) d x \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 p i}} \exp \left(-\frac{1}{2} y^{2}\right) d y=1,
\end{aligned}
$$

where the first equality follows from the fact that the integration of an odd function over the real line is zero, and the last equality follows from the fact that $1 / \sqrt{2 p i} \exp \left(-x^{2} / 2\right)$ and $1 / \sqrt{2 p i} \exp \left(-y^{2} / 2\right)$ are normal pdfs. Using the inequalities $\exp \left(x^{2} / 2-1 / 2\right) \geq|x|$ and $\exp \left(y^{2} / 2-1 / 2\right) \geq|y|$, we can show $1+x y \exp \left(-\left(x^{2}+y^{2}-2\right) / 2\right) \geq 0$ for $x, y \in \mathbf{R}$. The calculation above shows that the marginal pdfs are given by

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} x^{2}\right), \quad f_{Y}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} y^{2}\right)
$$

so that they are normal.

