FALL 2011
Econ 709
Prof. Xiaoxia Shi

Problem Set \#3 Solutions

TA: SeoJeong (Jay) Lee (slee279@wisc.edu)
1.
(a) Since $E X^{2}<\infty, \operatorname{MSE}(a)=E(X-a)^{2}=E X^{2}-2 a E X+a^{2}$. The first-order condition (FOC) is

$$
\frac{d M S E(a)}{d a}=-2 E X+2 a=0
$$

and the second-order sufficient condition (SOSC) is

$$
\frac{d^{2} M S E(a)}{d a^{2}}=2>0 .
$$

Thus, $a=E X$ minimizes the MSE and the MSE evaluated at $a=E X$ is the variance of X, i.e., $\operatorname{MSE}(E X)=E(X-E X)^{2}=\operatorname{Var}(X)$.
(b) Assume that X has a pdf $f(x)$ and $\operatorname{cdf} F(x)$. Then

$$
\begin{aligned}
\operatorname{MAD}(a) & =E|X-a| \\
& =\int_{-\infty}^{\infty}|x-a| f(x) d x \\
& =\int_{-\infty}^{a}(a-x) f(x) d x+\int_{a}^{\infty}(x-a) f(x) d x \\
& =a \int_{-\infty}^{a} f(x) d x-\int_{-\infty}^{a} x f(x) d x+\int_{a}^{\infty} x f(x) d x-a \int_{a}^{\infty} f(x) d x \\
& =a F(a)-a(1-F(a))-2 \int_{-\infty}^{a} x f(x) d x+\int_{-\infty}^{\infty} x f(x) d x
\end{aligned}
$$

Let $G(x)=\int x f(x) d x$. Since the second moment (and thus the first moment) exists, $\lim _{x \rightarrow-\infty} G(x)$ and $\lim _{x \rightarrow \infty} G(x)$ exist. Therefore,

$$
\begin{aligned}
\frac{d M A D(a)}{d a} & =F(a)+a f(a)-(1-F(a))+a f(a)-2 a f(a) \\
& =2 F(a)-1=0,
\end{aligned}
$$

and a is the median of $X($ SOSC is $2 f(a)>0)$.

2.

Fix x_{0} and take a decreasing sequence $\left\{x_{n}\right\}$ such that $\lim _{n \rightarrow \infty} x_{n}=x_{0}$. Let $C_{n}=\left\{\omega: X(\omega) \leq x_{n}\right\}$. Then C_{n} is a decreasing sequence of events and we have $\lim _{n \rightarrow \infty} C_{n}=\cap_{n=1}^{\infty} C_{n}=\left\{\omega: X(\omega) \leq x_{0}\right\}$.

$$
\begin{aligned}
\lim _{x \downarrow x_{0}} F_{X}(x)=\lim _{n \rightarrow \infty} F_{X}\left(x_{n}\right) & =\lim _{n \rightarrow \infty} P\left(C_{n}\right) \\
& =P\left(\lim _{n \rightarrow \infty} C_{n}\right) \quad(\because \text { HCM Theorem 1.3.6 }) \\
& =P\left\{\omega: X(\omega) \leq x_{0}\right\}=F_{X}\left(x_{0}\right) .
\end{aligned}
$$

3.

We say that a set C is a Borel set if C can be obtained by a countable number of operations, starting from open sets, each operation consisting in taking unions, intersections, or complements (Rudin, 1976).
Define $C_{1}=[0,1 / 3] \cup[2 / 3,1], C_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$, and so on. Then C_{n} is the union of 2^{n} disjoint closed intervals with length 3^{-n}. Now the Cantor set is $C=\cap_{n=1}^{\infty} C_{n}$.
(a) Since C_{n} is the union of 2^{n} disjoint closed intervals (each is the complement of an open interval), C_{n} is a Borel set. So $C=\cap_{n=1}^{\infty} C_{n}$ is a Borel set.
(b) Countable additivity: $\mu\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \mu\left(A_{n}\right)$ if $A_{i} \cap A_{j}=0$ for $i \neq j$.

$$
\begin{aligned}
\mu(C) & =1-\mu\left(C^{c}\right) \\
& =1-\mu\left(\cup_{n=1}^{\infty} C_{n}^{c}\right) \quad \because \text { De Morgan's law } \\
& =1-\sum_{n=1}^{\infty} \mu\left(C_{n}^{c}\right) \quad \because \text { countable additivity } \\
& =1-\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n} \frac{1}{2}=0
\end{aligned}
$$

(c) Omitted.

4.

(a) Suppose that for some positive integer $k>k_{0}, X$ has finite k th moment. Then $E\left|X^{k}\right|<\infty$ and

$$
\begin{aligned}
E\left|X^{k}\right|=\int_{\mathbf{R}}\left|x^{k}\right| f(x) d x & =\int_{|x|>1}\left|x^{k}\right| f(x) d x+\int_{|x| \leq 1}\left|x^{k}\right| f(x) d x \\
& \geq \int_{|x|>1}\left|x^{k_{0}}\right| f(x) d x-\int_{|x| \leq 1}\left|x^{k}\right| f(x) d x \\
& \geq \int_{\mathbf{R}}\left|x^{k_{0}}\right| f(x) d x-\int_{|x| \leq 1}\left|x^{k_{0}}\right| f(x) d x-\int_{|x| \leq 1} f(x) d x \\
& =\infty,
\end{aligned}
$$

which contradicts to the assumption. Thus, X does not have finite k th moment for any $k>k_{0}$.
(b) Suppose that $M_{X}(t)$ is well-defined on a neighborhood of 0 and is differentiable with respect to t (differentiation under the integral sign). Since $e^{t X}$ is infinitely differentiable with respect to t, by Taylor's theorem,

$$
\begin{aligned}
E e^{t X} & =M_{X}(0)+\frac{M_{X}^{(1)}(0)}{1!} t+\frac{M_{X}^{(2)}(0)}{2!} t^{2}+\cdots+\frac{M_{X}^{\left(k_{0}\right)}(0)}{k_{0}!} t+R(t) \\
& =1+E X \cdot t+\frac{E X^{2}}{2!} t^{2}+\cdots+\frac{E X^{k_{0}}}{k_{0}!} t^{k_{0}}+R(t),
\end{aligned}
$$

where $R(t)=o\left(|t|^{k_{0}}\right)$ is a remainder term. Since $E X^{k_{0}}$ is not well-defined by assumption (\because $\left.E\left|X^{k_{0}}\right|=\infty\right)$, the right-hand side of the above equation is not well-defined. This contradicts to the assumption. Thus, $M_{X}(t)$ is not well-defined on a neighborhood of 0 .

5.

Since $e^{t x}>0$ for all x, by Markov's inequality,

$$
P\left(e^{t X} \geq e^{a t}\right) \leq e^{-a t} M_{X}(t)
$$

for $-h<t<h$. Now note that $e^{t x} \geq e^{a t}$ if and only if $x \geq a$ for $0<t<h$ and $e^{t x} \geq e^{a t}$ if and only if $x \leq a$ for $-k<t<0$. This completes the proof.

6.

Note that $P(X \geq 3)=(2 / 3)^{3}$. Then,

$$
\begin{aligned}
P(X=x \mid X \geq 3) & =\frac{P(X=x, X \geq 3)}{P(X \geq 3)} \\
& =\frac{1}{3}\left(\frac{2}{3}\right)^{x-3}
\end{aligned}
$$

for $x=3,4,5, \ldots$, and zero elsewhere.

7.

Since X is a continuous random variable, $P(c<X<d)=P(c<X \leq d)=P(X \leq d)-P(X \leq c)$ and $P(X<c)=P(X \leq c)$. Using the table in the appendix, we find $c=0.831$ and $d=12.833$.
8.
(a) Assume $x>0$ and $y>0 . P(X>x)=1-P(X \leq x)=1-\int_{-\infty}^{x} \lambda e^{-\lambda t} d t=e^{-\lambda t}$ for a positive λ. Then

$$
\begin{aligned}
P(X>x+y \mid X>x) & =\frac{P(X>x+y, X>x)}{P(X>x)} \\
& =\frac{P(X>x+y, X>x)}{P(X>x)} \\
& =\frac{P(X>x+y)}{P(X>x)} \quad(\because\{X>x+y\} \subset\{X>x\}) \\
& =\frac{e^{-\lambda x+y}}{e^{-\lambda x}} \\
& =e^{-\lambda y}=P(X>y) .
\end{aligned}
$$

(b) Since property (3.3.7) holds for $Y, P(Y>x+y)=P(Y>x) P(Y>y)$ for $x, y>0$. Let $g(y)=1-F_{Y}(y)$. Then $g(x+y)=g(x) g(y)$ and $\log g(x+y)=\log g(x)+\log g(y)$. Since Y is a continuous random variable, $g(\cdot)$ is differentiable. By differentiating $\log g(x+y)=\log g(x)+\log g(y)$ with respect to x on both sides,

$$
\frac{g^{\prime}(x+y)}{g(x+y)}=\frac{g^{\prime}(x)}{g(x)} .
$$

By letting $x=0$,

$$
\frac{g^{\prime}(y)}{g(y)}=\frac{g^{\prime}(0)}{g(0)}=g^{\prime}(0)
$$

because $g(0)=1-F_{Y}(0)=1$. Let $g^{\prime}(0)=-\lambda$ and solve the differential equation

$$
\frac{g^{\prime}(y)}{g(y)}=\frac{d \log g(y)}{d y}=-\lambda
$$

Then $\log g(y)=-\lambda y+C_{1}$ and $g(y)=C_{2} e^{-\lambda y}$ for some constants C_{1} and C_{2}. Since we know $g(0)=1, C_{2}=1$. Therefore, $g(y)=1-F_{Y}(y)=e^{-\lambda y}$ or $F_{Y}(y)=1-e^{-\lambda y}$ for $y>0$.
9.

The random variable X is $N\left(3,4^{2}\right)$. Thus,

$$
\begin{aligned}
P(-1<X<9) & =P\left(-1<\frac{X-3}{4}<1.5\right) \\
& =P(-1<Z<1.5) \\
& =\Phi(1.5)-\Phi(-1)=0.7745
\end{aligned}
$$

where Z is the standard normal random variable and $\Phi(\cdot)$ is its cdf.

