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1.

(a) Since EX2 <∞, MSE(a) = E(X−a)2 = EX2− 2aEX +a2. The first-order condition (FOC)
is

dMSE(a)

da
= −2EX + 2a = 0,

and the second-order sufficient condition (SOSC) is

d2MSE(a)

da2
= 2 > 0.

Thus, a = EX minimizes the MSE and the MSE evaluated at a = EX is the variance of X, i.e.,
MSE(EX) = E(X − EX)2 = V ar(X).

(b) Assume that X has a pdf f(x) and cdf F (x). Then

MAD(a) = E|X − a|

=

∫ ∞
−∞
|x− a|f(x)dx

=

∫ a

−∞
(a− x)f(x)dx+

∫ ∞
a

(x− a)f(x)dx

= a

∫ a

−∞
f(x)dx−

∫ a

−∞
xf(x)dx+

∫ ∞
a

xf(x)dx− a
∫ ∞
a

f(x)dx

= aF (a)− a(1− F (a))− 2

∫ a

−∞
xf(x)dx+

∫ ∞
−∞

xf(x)dx.

Let G(x) =
∫
xf(x)dx. Since the second moment (and thus the first moment) exists, limx→−∞G(x)

and limx→∞G(x) exist. Therefore,

dMAD(a)

da
= F (a) + af(a)− (1− F (a)) + af(a)− 2af(a)

= 2F (a)− 1 = 0,

and a is the median of X (SOSC is 2f(a) > 0).

2.

Fix x0 and take a decreasing sequence {xn} such that limn→∞ xn = x0. Let Cn = {ω : X(ω) ≤ xn}.
Then Cn is a decreasing sequence of events and we have limn→∞Cn = ∩∞n=1Cn = {ω : X(ω) ≤ x0}.

lim
x↓x0

FX(x) = lim
n→∞

FX(xn) = lim
n→∞

P (Cn)

= P ( lim
n→∞

Cn) (∵ HCM Theorem 1.3.6)

= P{ω : X(ω) ≤ x0} = FX(x0).
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3.

We say that a set C is a Borel set if C can be obtained by a countable number of operations,
starting from open sets, each operation consisting in taking unions, intersections, or complements
(Rudin, 1976).
Define C1 = [0, 1/3] ∪ [2/3, 1], C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], and so on. Then Cn
is the union of 2n disjoint closed intervals with length 3−n. Now the Cantor set is C = ∩∞n=1Cn.

(a) Since Cn is the union of 2n disjoint closed intervals (each is the complement of an open interval),
Cn is a Borel set. So C = ∩∞n=1Cn is a Borel set.

(b) Countable additivity: µ(∪∞n=1An) =
∑∞

n=1 µ(An) if Ai ∩Aj = 0 for i 6= j.

µ(C) = 1− µ(Cc)

= 1− µ(∪∞n=1C
c
n) ∵ De Morgan’s law

= 1−
∞∑
n=1

µ(Ccn) ∵ countable additivity

= 1−
∞∑
n=1

(
2

3

)n 1

2
= 0.

(c) Omitted.

4.

(a) Suppose that for some positive integer k > k0, X has finite kth moment. Then E|Xk| <∞ and

E|Xk| =
∫
R
|xk|f(x)dx =

∫
|x|>1

|xk|f(x)dx+

∫
|x|≤1

|xk|f(x)dx

≥
∫
|x|>1

|xk0 |f(x)dx−
∫
|x|≤1

|xk|f(x)dx

≥
∫
R
|xk0 |f(x)dx−

∫
|x|≤1

|xk0 |f(x)dx−
∫
|x|≤1

f(x)dx

= ∞,

which contradicts to the assumption. Thus, X does not have finite kth moment for any k > k0.

(b) Suppose that MX(t) is well-defined on a neighborhood of 0 and is differentiable with respect
to t (differentiation under the integral sign). Since etX is infinitely differentiable with respect to t,
by Taylor’s theorem,

EetX = MX(0) +
M

(1)
X (0)

1!
t+

M
(2)
X (0)

2!
t2 + · · ·+

M
(k0)
X (0)

k0!
t+R(t)

= 1 + EX · t+
EX2

2!
t2 + · · ·+ EXk0

k0!
tk0 +R(t),

where R(t) = o(|t|k0) is a remainder term. Since EXk0 is not well-defined by assumption (∵
E|Xk0 | = ∞), the right-hand side of the above equation is not well-defined. This contradicts to
the assumption. Thus, MX(t) is not well-defined on a neighborhood of 0.
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5.

Since etx > 0 for all x, by Markov’s inequality,

P (etX ≥ eat) ≤ e−atMX(t),

for −h < t < h. Now note that etx ≥ eat if and only if x ≥ a for 0 < t < h and etx ≥ eat if and
only if x ≤ a for −k < t < 0. This completes the proof.

6.

Note that P (X ≥ 3) = (2/3)3. Then,

P (X = x|X ≥ 3) =
P (X = x,X ≥ 3)

P (X ≥ 3)

=
1

3

(
2

3

)x−3
,

for x = 3, 4, 5, ..., and zero elsewhere.

7.

Since X is a continuous random variable, P (c < X < d) = P (c < X ≤ d) = P (X ≤ d)− P (X ≤ c)
and P (X < c) = P (X ≤ c). Using the table in the appendix, we find c = 0.831 and d = 12.833.

8.

(a) Assume x > 0 and y > 0. P (X > x) = 1− P (X ≤ x) = 1−
∫ x
−∞ λe

−λtdt = e−λt for a positive
λ. Then

P (X > x+ y|X > x) =
P (X > x+ y,X > x)

P (X > x)

=
P (X > x+ y,X > x)

P (X > x)

=
P (X > x+ y)

P (X > x)
(∵ {X > x+ y} ⊂ {X > x})

=
e−λx+y

e−λx

= e−λy = P (X > y).

(b) Since property (3.3.7) holds for Y , P (Y > x + y) = P (Y > x)P (Y > y) for x, y > 0. Let
g(y) = 1 − FY (y). Then g(x + y) = g(x)g(y) and log g(x + y) = log g(x) + log g(y). Since Y is a
continuous random variable, g(·) is differentiable. By differentiating log g(x+y) = log g(x)+log g(y)
with respect to x on both sides,

g′(x+ y)

g(x+ y)
=
g′(x)

g(x)
.

By letting x = 0,
g′(y)

g(y)
=
g′(0)

g(0)
= g′(0),
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because g(0) = 1− FY (0) = 1. Let g′(0) = −λ and solve the differential equation

g′(y)

g(y)
=
d log g(y)

dy
= −λ.

Then log g(y) = −λy + C1 and g(y) = C2e
−λy for some constants C1 and C2. Since we know

g(0) = 1, C2 = 1. Therefore, g(y) = 1− FY (y) = e−λy or FY (y) = 1− e−λy for y > 0.

9.

The random variable X is N(3, 42). Thus,

P (−1 < X < 9) = P

(
−1 <

X − 3

4
< 1.5

)
= P (−1 < Z < 1.5)

= Φ(1.5)− Φ(−1) = 0.7745,

where Z is the standard normal random variable and Φ(·) is its cdf.
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