FALL 2011
Econ 709
Prof. Xiaoxia Shi

Problem Set \#2 Solutions

TA: SeoJeong (Jay) Lee (slee279@wisc.edu)

1.

(simulation exercise) Omitted.

2.

(a) Let X and Y be random variables for the number of sixes Player 1 and 2 gets, respectively. Let T be a random variable for total number of sixes. Then $T=X+Y$. The probability of having total t sixes given P1's x sixes is given by

$$
\begin{aligned}
P(T=t \mid X=x) & =\frac{P(T=t \cap X=x)}{P(X=x)} \\
& =\frac{P(Y=t-x \cap X=x)}{P(X=x)} \\
& =\frac{P(Y=t-x) P(X=x)}{P(X=x)} \\
& =P(Y=t-x)
\end{aligned}
$$

The third equality holds because X and Y are independent. Since $t-x=0,1,2,3$, we find $P(Y=y)$ for $y=0,1,2,3$:

$$
\begin{aligned}
& P(Y=0)=\left(\frac{5}{6}\right)^{3}=\frac{125}{216} \approx 0.58 \\
& P(Y=1)={ }_{3} C_{1}\left(\frac{5}{6}\right)^{2}\left(\frac{1}{6}\right)=\frac{75}{216} \approx 0.35 \\
& P(Y=2)={ }_{3} C_{2}\left(\frac{5}{6}\right)\left(\frac{1}{6}\right)^{2}=\frac{15}{216} \approx 0.07 \\
& P(Y=3)=\left(\frac{1}{6}\right)^{3}=\frac{1}{216} \approx 0.005 .
\end{aligned}
$$

This means that $P(T=t \mid X=x)=P(Y=t-x)$ is maximized when $t-x=0$, i.e, $t=x$. Therefore, P1's best guess is $X=x$, the number of sixes she has, for $x=0,1,2,3$.
(b) The probability of having total t sixes given P2's $Y=y$ and P1's $X=x$ is given by

$$
\begin{aligned}
P(T=t \mid X=x, Y=y) & =\frac{P(T=t \cap X=x, Y=y)}{P(X=x, Y=y)} \\
& =\frac{P(X=x, Y=y)}{P(X=x, Y=y)}=1 .
\end{aligned}
$$

The second equality holds because knowing X and Y is equivalent to knowing T (recall that $T=X+Y)$. This means that P2 knows the total number of sixes on the table with certainty. Her best guess is $X+Y$.
(c) Each player has two actions: Challenge (C) or Make a bigger guess (B). Let P2 be the second mover. First suppose $y>0$. Given $X=x$, P2 makes a bigger guess, $x+y$. Since P1's best guess is smaller than P2's guess, P1 challenges and loses $\$ 1$. This implies that the second mover always wins if $y>0$. Now suppose $y=0$. Given $X=x$, P2's best guess is also x, so she challenges with prob. 0.5 (and lose $\$ 1$) or makes a bigger guess $x+1$ with prob. 0.5 . For the latter case, P1 always challenges and wins $\$ 1$ because P1's guess (x) is smaller than P2's guess $(x+1)$. Thus, the second mover always loses when $y=0$. But we already calculated that $P(Y=0) \approx 0.58$ is higher than the sum of the other events, which in turn implies the second mover has a disadvantage. Therefore, the first mover has an advantage.
(d) (simulation exercise) omitted.

3.

Let $\mathrm{P}=$ positive, $\mathrm{N}=$ negative, $S_{0}=$ without disease, $S_{1}=$ early stage, $S_{2}=$ intermeditate stage, $S_{3}=$ late stage.
(a) The probability that a person actually is healthy given that the test returns negative is

$$
\begin{aligned}
P\left(S_{0} \mid N\right) & =\frac{P\left(S_{0} \cap N\right)}{P(N)} \\
& =\frac{P\left(N \mid S_{0}\right) P\left(S_{0}\right)}{\sum_{i=0}^{3} P\left(N \mid S_{i}\right) P\left(S_{i}\right)} \\
& =\frac{(1-0.05) \times 0.6}{0.95 \times 0.6+0.5 \times 0.3+0.05 \times 0.099+0 \times 0.001} \approx 0.786
\end{aligned}
$$

(b) We want $P\left(S_{0} \mid N\right)=0.95$ by considering a prior distribution $P\left(S_{i}\right)$ for $i=0,1,2,3$.

$$
\begin{aligned}
P\left(S_{0} \mid N\right) & =\frac{P\left(N \mid S_{0}\right) P\left(S_{0}\right)}{\sum_{i=0}^{3} P\left(N \mid S_{i}\right) P\left(S_{i}\right)} \\
& =\frac{0.95 \times P\left(S_{0}\right)}{0.95 \times P\left(S_{0}\right)+0.5 \times P\left(S_{1}\right)+0.05 \times P\left(S_{2}\right)+0 \times P\left(S_{3}\right)}=0.95 .
\end{aligned}
$$

Solving this equation, we get $P\left(S_{0}\right)=10 P\left(S_{1}\right)+P\left(S_{2}\right)$. To be a valid probability, we need $\sum_{i=0}^{3} P\left(S_{i}\right)=1$. Another reasonable constraint would be $P\left(S_{1}\right) \geq P\left(S_{2}\right) \geq P\left(S_{3}\right)$. One prior that satisfies the constraints would be $P\left(S_{0}\right)=0.905, P\left(S_{1}\right)=0.09, P\left(S_{2}\right)=0.005$, and $P\left(S_{3}\right)=0$.

4.

Suppose that X and Y are independent random variables.
WTS1: $g(X)$ and $f(Y)$ are random variables.
Note $g(X):(\Omega, \mathcal{F}) \rightarrow\left(\Omega_{g}, \mathcal{B}\left(\Omega_{g}\right)\right) . \forall A \in \mathcal{B}\left(\Omega_{g}\right), E=g^{-1}(A) \in \mathcal{B}\left(\Omega_{X}\right)$ since g is measurable. Then $X^{-1}(E)=X^{-1}\left(g^{-1}(A)\right)=(g \circ X)^{-1}(A) \in \mathcal{F}$ since X is measurable (i.e., random variable). The proof for $f(Y)$ is similar.

WTS2: $g(X)$ and $f(Y)$ are independent.
$\forall A \in \mathcal{B}\left(\Omega_{g}\right), \forall B \in \mathcal{B}\left(\Omega_{f}\right)$, we have $g^{-1}(A) \in \mathcal{B}\left(\Omega_{X}\right)$ and $f^{-1}(B) \in \mathcal{B}\left(\Omega_{Y}\right)$ as we just did in the proof of WTS1. Now

$$
\begin{aligned}
P\left((g \circ X)^{-1}(A) \cap(f \circ Y)^{-1}(B)\right) & =P\left(X^{-1}\left(g^{-1}(A)\right) \cap Y^{-1}\left(f^{-1}(B)\right)\right) \\
& =P\left(X^{-1}\left(g^{-1}(A)\right)\right) P\left(Y^{-1}\left(f^{-1}(B)\right)\right) \quad(\because X \perp Y) \\
& =P\left((g \circ X)^{-1}(A)\right) P\left((f \circ Y)^{-1}(B)\right) .
\end{aligned}
$$

Thus, $g(X)$ and $f(Y)$ are independent random variables.

5.

The induced probability P_{X} on D is defined by $P_{X}(A)=P(\{c: X(c) \in A\}), \forall A \in \mathcal{F}_{D}$, where \mathcal{F}_{D} is a sigma-field on D.
(i) $P_{X}(\emptyset)=0$.
(ii) $P_{X}(\{1\})=P_{X}(\{2\})=P_{X}(\{3\})=P_{X}(\{4\})=1 / 13$ and $P_{X}(\{0\})=9 / 13$.
(iii) For any set $A \in \mathcal{F}_{D}, P_{X}(A)=\sum_{i=0}^{4} P_{X}(\{i\}) \mathbf{1}(i \in A)$, where $\mathbf{1}(\cdot)$ is the indicator function.
6.
(i) $P(X=1$ or 2$)=p_{X}(1)+p_{X}(2)=1 / 5$.
(ii) $P(1 / 2<X<5 / 2)=p_{X}(1)+p_{X}(2)=1 / 5$.
(iii) $P(1 \leq X \leq 2)=p_{X}(1)+p_{X}(2)=1 / 5$.

7.

The graph is omitted.
(a) $P(-1 / 2<X \leq 1 / 2)=P(X \leq 1 / 2)-P(X \leq-1 / 2)=F(1 / 2)-F(-1 / 2)=1 / 4$.
(b) $P(X=0)=P(X \leq 0)-P(X<0)=1 / 2-1 / 2=0$.
(c) $P(X=1)=P(X \leq 1)-P(X<1)=1 / 4$.
(d) $P(2<X \leq 3)=P(X \leq 3)-P(X \leq 2)=0$.

