FALL 2011
Econ 709

Problem Set \#1 Solutions

TA: SeoJeong "Jay" Lee (slee279@wisc.edu)

1.

Let A and B be events "tossing at least one six in six tosses", "tossing at least two sixes in twelve tosses", respectively. We calculate and compare $P(A)$ and $P(B)$. Then,

$$
\begin{aligned}
P(A) & =1-P(\text { toss no sixes in six tosses }) \\
& =1-\left(\frac{5}{6}\right)^{6} \approx 0.665, \\
P(B) & =1-P(\text { toss no sixes in twelve tosses })-P(\text { toss exactly one six in twelve tosses }) \\
& =1-\left(\frac{5}{6}\right)^{12}-{ }_{12} C_{1} \times \frac{1}{6}\left(\frac{5}{6}\right)^{11} \approx 0.619 .
\end{aligned}
$$

Now we have $P(A)>P(B)$.

2.

Want to show the following two statements:

$$
\begin{aligned}
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C), \\
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
\end{aligned}
$$

I only prove the first statement. The second one can be proved similarly.
(C) Take any x such that $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in(B \cup C)$. There are two cases: (i) $x \in A$ and $x \in B$, or (ii) $x \in A$ and $x \in C$. For (i), $x \in(A \cap B)$ and thus, $x \in(A \cap B) \cup(A \cap C)$. For (ii), $x \in(A \cap C)$ and thus, $x \in(A \cap B) \cup(A \cap C)$. This proves

$$
A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C) .
$$

($\supset)$ Take any x such that $x \in(A \cap B) \cup(A \cap C)$. Then $x \in(A \cap B)$ or $x \in(A \cap C)$. If $x \in(A \cap B)$ then $x \in A \cap(B \cup C)$ because $B \subset(B \cup C)$. If $x \in(A \cap C)$ then $x \in A \cap(B \cup C)$ because $C \subset(B \cup C)$. This proves

$$
A \cap(B \cup C) \supset(A \cap B) \cup(A \cap C) .
$$

3.

(From the definition of σ-field) Want to show:
(i) $\emptyset \in \mathcal{B}$.
(ii) If $A \in \mathcal{B}$, then $A^{c} \in \mathcal{B}$.
(iii) If $A_{1}, A_{2}, \ldots \in \mathcal{B}$, then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{B}$.
(i) is already proved. For (ii), suppose $A \in \mathcal{B}$. Then $A \in \mathcal{E}$ for all \mathcal{E} s.t. $\mathcal{D} \subset \mathcal{E}$ and \mathcal{E} is a σ-field. Since \mathcal{E} is a σ-field, $A^{c} \in \mathcal{E}$ for all such \mathcal{E}. By definition, $A^{c} \in \mathcal{B}$ and this proves (ii). For (iii), suppose $A_{1}, A_{2}, \ldots \in \mathcal{B}$. Then $A_{1}, A_{2}, \ldots \in \mathcal{E}$ for all \mathcal{E} s.t. $\mathcal{D} \subset \mathcal{E}$ and \mathcal{E} is a σ-field. Since \mathcal{E} is a σ-field, $\cup_{i=1}^{\infty} A_{i} \in \mathcal{E}$ for all such \mathcal{E}. By definition, $\cup_{i=1}^{\infty} A_{i} \in \mathcal{B}$ and this proves (iii). Since \mathcal{B} satisfies (i),(ii), and (iii), \mathcal{B} is a σ-field.

4.

Take any real number $a \in(0,1)$ and consider a sequence of intervals

$$
C_{n}=\left(a-\frac{a}{n}, a+\frac{1-a}{n}\right),
$$

for $n \in \mathbf{N}$. Then $C_{n} \subset(0,1)$ for all n and is a decreasing sequence converging to $\{a\}$. By Theorem 1.3.6,

$$
P(\{a\})=P\left(\bigcap_{n=1}^{\infty} C_{n}\right)=\lim _{n \rightarrow \infty} P\left(C_{n}\right)=\lim _{n \rightarrow \infty} a+\frac{1-a}{n}-a+\frac{a}{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 .
$$

5.

(a) For each wolf i, define $A_{i}=\{$ wolf i is white $\}$. Then $P\left(A_{i}\right)=0.02$ for $i=1,2, \ldots, 6$, and $\{$ at least one wolf is white $\}=\cup_{i=1}^{6} A_{i}$. By Boole's inequality,

$$
P\left(\bigcup_{i=1}^{6} A_{i}\right) \leq \sum_{i=1}^{6} P\left(A_{i}\right)=0.12
$$

so that the upper bound is 0.12 . Since $A_{i} \subset \cup_{i=1}^{6} A_{i}$,

$$
0.02=P\left(A_{i}\right) \leq P\left(\bigcup_{i=1}^{6} A_{i}\right),
$$

for all $i=1,2, . ., 6$. Thus, the lower bound is 0.02 .
(b) The lower bound is achieved when $A_{i}=\cup_{i=1}^{6} A_{i}$ for $i=1,2, \ldots, 6$.
(c) The upper bound is achieved when A_{i} 's are mutually exclusive.
(d) Assume wolves randomly form packs, i.e., they are random draws from the population. Then

$$
P\left(\bigcup_{i=1}^{6} A_{i}\right)=1-P\left(\bigcap_{i=1}^{6} A_{i}^{c}\right)=1-(0.98)^{6} \approx 0.114
$$

The probability falls within the bounds.

6.

The number of total outcomes is ${ }_{52} C_{5}$ The number of "full house" outcomes is ${ }_{13} C_{1} \times{ }_{12} C_{1} \times{ }_{4} C_{2} \times{ }_{4} C_{3}$. The probability of a full house is

$$
\frac{{ }_{13} C_{1} \times{ }_{12} C_{1} \times{ }_{4} C_{2} \times{ }_{4} C_{3}}{{ }_{52} C_{5}} \approx 0.00144
$$

