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Econometrica, Vol. 59, No. 4 (July, 1991), 1161-1167

UNIFORM CONVERGENCE IN PROBABILITY AND STOCHASTIC
EQUICONTINUITY!

By WHITNEY K. NEWEY

1. INTRODUCTION

CONDITIONS FOR UNIFORM CONVERGENCE in probability are useful in econometrics, for
showing consistency and asymptotic normality of nonlinear estimators and consistency of
standard error estimates. The purpose of this paper is to provide conditions that meet
two related requirements: (i) objects other than sample averages are allowed; (ii) only
pointwise convergence is assumed. These requirements are motivated by nonparametric
and semiparametric estimation problems, which often depend on objects that are more
complicated than averages. In addition, for sample averages (i.e. uniform laws of large
numbers), requirement (i) may be useful when the data satisfies complicated depen-
dence restrictions, such as near epoch dependence as in Gallant and White (1988) or
geometric ergodicity as in Duffie and Singleton (1989). In these environments it can be
easier to check pointwise convergence in probability than to check convergence of
various supremums and infimums, as is required by the conditions of Andrews (1987) or
Potscher and Prucha (1989). The focus here on convergence in probability, rather than
almost sure convergence, is also in keeping with these requirements. For complicated
objects it can be more difficult to show almost sure convergence. In any case, conver-
gence in probability is sufficient for showing validity of asymptotic inference procedures
(e.g. confidence intervals).

The paper first presents a stochastic equicontinuity condition that together with
pointwise convergence characterizes uniform convergence in probability to equicontinu-
ous functions on a compact set. Motivation for this condition is given by discussing its
relationship to well known results on weak convergence of stochastic processes, e.g.
Billingsley (1968) or Pollard (1989).

The remainder of the paper focuses on simple sufficient conditions for stochastic
equicontinuity. A global Lipschitz condition is given that, together with pointwise
convergence, is sufficient for uniform convergence. When specialized to sample averages,
these conditions yield a uniform weak law of large numbers that is complementary to
Andrews (1989, Corollary 2). It requires only pointwise convergence of sample averages,
rather than convergence of certain supremums and infimums, at the expense of imposing
a global, rather than a local, Lipschitz condition. A uniform weak law analogous to that
of Potscher and Prucha (1989, Theorem 1) is also given.

The Lipschitz condition is also shown to be useful in two nonparametric examples. It
is used to formulate simple sufficient conditions for uniform convergence in probability
for U-statistics and for the nonparametric two-stage least squares criterion of Newey and
Powell (1989).

2. GENERIC UNIFORM CONVERGENCE IN PROBABILITY

In order to discuss uniform convergence in probability it is necessary to introduce
some notation. Let § be a parameter vector, which can be either finite or infinite
dimensional. Let Q,(6) be a random function of 6 and the sample size n, where explicit
dependence on the data will be suppressed for notational convenience. Let Q,(g) be a
nonrandom function of 6 and n, which might be thought of as the object which Q,(8) is
estimating. For example, Q,(8) may be the expectation of Q,(8), or the expectation of an

! Financial support was provided by the NSF and the Sloan Foundation. Helpful comments were
provided by two referees, L. Hansen, P. Perron, J. Powell, and especially D. W. K. Andrews.
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1162 WHITNEY K. NEWEY

analog of Qn(O) with preliminary nonparametric estimates replaced by true values. In
keeping with the recent econometric literature, e.g. White (1980), Q,(8) can depend on
sample size to allow for moment drift.

Uniform convergence in probability over a set @ of parameter values is

(21)  supyce|0u(0) — Tu(8)|=0,(1).

To avoid measurability complications it will be assumed that probability statements such
as this are for outer probability.?
The following conditions are important for the results to follow:

AssumpTioN 1 (Compactness): @ is compact.
Assumption 2 (Pointwise Convergence): For each 6 € 0, 0,(6) — 0,(60) = o,(D.

It is difficult to do without the compactness assumption, and the pointwise conver-
gence assumption is an obvious necessary condition for uniform convergence. The sense
in which the results of this section are generic is that Assumption 2 is taken as a
primitive condition. In particular cases Assumption 2 has to be verified, using some law
of large numbers or other result appropriate to the form of Q,(6).

Another important property is equicontinuity of {Q,(6)};_; on 6. In what follows
equicontinuity of {Q,(6)} may be a hypothesis or conclusion, depending on the specificity
of the result.

The following condition generalizes equicontinuity to random functions:

AssumptioN 3 (Stochastic Equicontinuity): For every &, n >0 there exists random
A,(e,m) and constant ny(e,n) such that for n > ny(e,n), Prob(14,(e, )| > &) <n and for
each @ there is an open set ¥ (0,¢,m) containing 0 with

(2'2) SuPée/(o,e,n)IQn(é) ~QAn(o)|<An(“:7"7)’ n >rlO(“":’ 77)-

It is well known that pointwise convergence and equicontinuity characterize uniform
convergence to a continuous function on a compact set; e.g. see Rudin (1976, Exercise
7.16) for sufficiency. The following theorem is a stochastic generalization.

THEOREM 2.1: Suppose Assumption 1 holds and {Q,(0)} is equicontinuous. Then
sup‘,e@IQ @ -0, =0 (1) if and only if Assumptions 2 and 3 hold.

Proofs are givcn in the Appendix.

Theorem 2.1 is related to well known results on weak convergence (i.e. convergence in
distribution) of the stochastic process Q (), with index 6. For example, suppose Q 0)is
continuous, Q,(8) does not depend on n, @ is a compact metric space, and Q 9) is
measurable for each 6. Let C be the metric space of continuous functions on @, with the
uniform metric d(g, q) = supoeglq((?) q(0)|.3 In this context, uniform convergence in
probability of Q (0) to Q(O) is convergence in probability as random elements of C.
Furthermore, since Q(0) is nonrandom, this convergence is the same as weak conver-
gence.

2The outer probability of an arbitrary set A is defined as inf{E[b}: b is measurable and
1(4) < b}.

31t follows from ® compact and metrizable that C is separable (see Kelley (1955, p. 245)). For
separable C, Q,,(0) is a random variable in C by Q () measurable at each 6 € O (see Billingsley
(1968, p. 57)).
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Well known necessary and sufficient conditions for weak convergence in C are
convergence of the finite-dimensional distributions and tightness of the sequence of
probability measures on C corresponding to 0,(0) (e.g. see Billingsley (1968, p. 35)). In
the context of convergence in probability on C Assumption 2 is equivalent to conver-
gence of the finite sample distributions. Furthermore, Assumption 3 is closely related to
tightness. To be precise, a straightforward generalization of Theorem 8.2 of Billingsley
gives the following.

TIGHTNESS CHARACTERIZATION: {Qn(ﬂ)} is tight in C if and only if 0,(6) = 0,(1) for
all 6 € O and Assumption 3 holds.

Given this charactcrization,A in the context of this example (which includes the
important special case where Q,(6) is continuous and @ C R?), Theorem 2.1 becomes a
special case of the tightness characterization of weak convergence.

Tightness plays no direct role in Theorem 2.1, which is stated in terms of stochastic
equicontinuity. In this respect Theorem 2.1 is like recent results on weak convergence
such as Pollard (1989, Theorem 10.2), which have stochastic equicontinuity conditions
rather than tightness as hypotheses. Indeed, when @ is a metric space with metric d(-, )
(e.g. for ® cRY), Theorem 2.1 becomes a special case of Pollard’s result if 4,(e, n) in
Assumption 3 is specified as 4,(¢,m) = Supg g < 0, 44, 6)< 510,(6) — O(0)| for small enough
8 > 0. Also, the resulting form of Assumption 3 is a more familiar definition of stochastic
equicontinuity.*

The remainder of the paper will focus on sufficient conditions for stochastic equiconti-
nuity, in order to provide easily verifiable conditions for uniform convergence. One
useful sufficient condition is the following Lipschitz condition. Henceforth, let & denote
a function A: [0,0) — [0,), with A(0) =0 and h continuous at zero (e.g. h(d)=d*,
a>0).

AssumpTION 3A: O is a metric space and there is B, and h such that B, = O,(1) and for
all ,0€0, |0,6) - Q (0)| < B,h(d(6,0)).

CoroLLARY 2.2:_If Assumptions 1, 2, and 3 A are satisfied, and {Q,(9)} is equicontinu-
ous, then supyc 610,(8) — 3,(0) = 0,(1).

Assumption 3A is similar to Andrews (1987, Assumption A4), although it is global
rather than local and applies to the function Q (0) rather than individual terms of a
sample average. If Q,(9) = E[Q (8)] and E[B,] is bounded, then equicontinuity of 0,(8)
can be dropped as a hypothesis and included as a conclusion. Also, when 6 is a vector of
real numbers, Assumption 3A can be replaced by the conditions that @ is convex, Q,,(O)
continuously differentiable, and the derivative is dominated by B, = O, (1)

3. GENERIC WEAK UNIFORM LAWS OF LARGE NUMBERS

Specializing previous results to the case where Qn(o) is a sample average gives
uniform weak laws. Let the data realization be (zy, z,,...), and consider a sequence of
functions ¢,(z,,8) of a data observation z, and a parameter vector 6. Define

0.(0) = ¥ az00)/n,  Du(0)= ¥ E[a,(2,.0)]/n.
=1

t=1
Uniform weak laws concern conditions for equation (2.1) for these objects.

* This metric space modification of Theorem 2.1 was pointed out by a referee and D. W. K.
Andrews.
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One such result is the following corollary.

CoroLLARY 3.1: Suppose that Assumptions 1 and 2 are satisfied and © is a metric
space. Also suppose there exists b(z,) and h such that ¥}_,E[b(z)]/n=0Q), and
Iq,(z,,O) a.z,,0| <b(z)n(d(@, 0)) for 6,0 € O. Then sup,,e@IQ,,(O) 0,8 =0 Xe)

and {Q,(0)} is equicontinuous.

This result is complementary to the convergence in probability version of Andrews
(1987, Corollary 2), imposing only pointwise convergence but requiring a global Lipschitz
condition. Another uniform weak law is the following corollary.

CoroLLARY 3.2: Suppose that Assumptions 1 and 2 are satisfied and O is a metric
space. Also, suppose z, € Z, Z a closed subset of R, {q,(z,0)} is equicontinuous on Z X 0,
there are b(z,) and y > 1 such that supy . gla(z,,0)| <b/(z,) and L}_ Elb(2,)")/n =
OQ), and {X}_,H,/n} is a tight family for Z, where H, is the marginal distribution of z,.
Then sup, < o10,(0) — 0,(0)] = 0,(1) and {Q,(0)} is equicontinuous.

This result is like the convergence in probability version of Potscher and Prucha (1989,
Theorem 1), except that only Assumption 2 is required rather than the convergence of
various supremums and infimums in Potscher and Prucha (1989, Assumption 4). The
tightness condition in Corollary 3.2 is implied by more primitive conditions, such as
boundedness of X7_; E[In(1 + [|z,ID]/n; see Potscher and Prucha.

In general, stochastic equicontinuity is implied by the conditions of existing uniform
laws of large numbers, since it is necessary for uniform convergence. In some cases it
may be implied by a subset of the conditions,.which may thus be thought of as stochastic
equicontinuity assumptions. For example, if ¢,(z,6) does not depend on ¢ and {z,} is
stationary and ergodic, Assumption 3 is implied by the first moment continuity condition
of Hansen’s (1982) uniform law.

4. NONPARAMETRIC EXAMPLES

A uniform convergence result for U-statistics is useful for showing consistency of the
residual-based m-estimators for nonlinear simultaneous equations models discussed in
Newey (1989). Let m(z, Z, ) be a function of a pair of data arguments that is symmetric
in the data arguments, i.e. m(z, Z,0) = m(Z, z, 8). Consider a U-statistic, depending on 6,
and population analog

(41) 0, (0)=2 i Y m(z,2,,0)/n(n—1),  Q(8) =E[m(z,2,,0)],

t=1s>t

where z, is assumed i.i.d. Results on convergence of Qn(O) to O(8) for fixed 6 are well
known, e.g. Serfling (1980). Such results can easily be turned into uniform convergence
results via Corollary 2.3. An example is as follows:

CoroLLARY 4.1: Suppose that Assumption 1 is satisfied, © is a metric space, and z,,
(t=1,2,...) are i.i.d.. Also suppose E[|m(z,,z,,0,)|] < for some 6, € O, and there
are b(z, %) and h such that E[b(z,, z,)] <  and for 8,0€0, \m(z,%60) —m(z, 3,0 <
b(z, £)h(d(8,0)). Then sup,c o!0,(0) — 0,(0)] = 0,(1) and Q(8) is continuous.

A second example is the nonparametric two-stage least squares criterion of Newey and
Powell (1989). Let p(z,8) be a function of a data observation and parameters, satisfying
the conditional moment restriction E[p(z,,8,)|x,] =0 at the true parameter values 6,
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where the instruments x, are a subvector of z,. Also, let E[p(z,8)|x,] be a nonparamet-
ric regression estimator of E[p(z,8)|x], evaluated at x,. Consider

n

CEROEDY {E[p(2.0)x,]) /n,  ©(0) =E[{E[p(z,.0)Ix,]}7].

(=
Corollary 2.3 can be used to establish uniform convergence in probability of Q"(Q) to
Q(8), and hence to show consistency of an estimator of 8, obtained by minimizing Q,(6)
over 0. To be concrete, consider a series estimator, E[p(z,@)lx,] =P/ (P'P)~P'p(8),
where P/ =(px(x,),..., pxi(x,), for approximating functions {p, ((x)} (K=1,2,...)
(e.g. power or Fourier series, or B-splines), P =[P ,..., P,x], (:)~ denotes a general-
ized inverse, and p(0) = (p(z,0),...,p(z,,0)).

CoroLLARY 4.2: Suppose that Assumption 1 is satisfied, © is a metric space, and z,
(t=1,2,...) are i.i.d. Also suppose that (i) Var[p(z,8)|x] is bounded for each 0 € @, for
any g(x) with E[g(x,)*] < o there exists {m} such that limy _, , E[{g(x,) — P/ym¢}*1=0,
and K = K(n) such that K(n) —» ®_and K(n)/n —0; (i) there is b(z) and continuous h
with |p(z,0) — p(z,0)| <b(2)h(d(6,8)) and E[b(zl)z] <. Then sup,  |0,(0) — 0,(60)]
=0,(1) and 0(9) is continuous.

Condition (i) and (ii) are used to establish Assumptions 2 and 3A, respectively. A
more general result, that allows for other types of nonparametric regression estimators
(e.g. nearest neighbor), is given in Newey and Powell (1989).

Department of Economics, Massachusetts Institute of Technology, Cambridge, MA
02139, U.S.A.

Manuscript received April, 1989; final revision received August, 1990.

APPENDIX

Lemma A.1: Define R, (8)=0,(0)— 0,(0). If {0,(0)} is equicontinuous and © compact, then
Assumption 3 is satisfied if and only if it is satisfied with Q,(0) replaced by R, (6).

Proor: The proof is a consequence of the simple triangle inequalities
(A1) [(a=b)—(c—d)|<la—cl+|b-dl, la—cl <|(a=b)-(c—d)|+|b—dl,

for a = Qn(o), b=0,8), c= Q,,(B), and d = Q,(8): For the if part for Assumption 3, consider &,
1 >0.Let 4,(e/2,m) and .#76, ¢ /2,7) be as in Assumption 3, and let A#(6,¢/2,m) CA(6,£/2,7)
be an open set such that sup, 5o ,10,(0) — 0,(6)] <e/2. Then for A (e,n)=A4,(c/2,m) +¢/2,
Pr(4, > 8)A= Pr(A,A, >¢/2) <m, while by the first half of equation (A.1), for n>ny(e/2,7),
supge .4+ IR(0) = R,(0)| <A, (e/2,m)+e/2=A,(e,m). The “only if” part for Assumption 3 fol-
lows by the second half of equation (A.1) by the same argument, interchanging R, and Q,. Q.E.D.

ProoF oF THEOREM 2.1: By Lemma A.1 it suffices to show the result with R ,(8) replacing Q 0)
in Assumption 3. For the if part, consider e, n >0, 4,(¢/2,7), and #6, s/2 7). By ® compact
there is an open subcovering {49, )} | of such #18,¢e/2,m). Then by the triangle inequality,

SUDOGQ' Rn(o)l< max,’ Rll(ej) '+SUD/,0€J (Oj)l Rn(e) - Rn(01) | < Op(l) + An(e/z’ 77)’

where the second inequality follows by Assumptions 2 and 3. Thus,

Pr(supge(.,|1$"(o)| >e) <Pr(4,(/2,m)>e/2) +Pr(o,(1) >¢/2) <n
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for large enough n. For the only if part, note that Assumption 2 is a trivial consequence of uniform
convergence. Also A,(e,m)= 25upoeglR (0)] =0,(1) and for any 6 and open neighborhood .#/

supae/lR @ -R A0 <A4,(e,n), giving Assumptlon 3, Q.E.D.

PRrROOF OF TIGHTNESS CHARACTERIZATION: Omitted for brevity, but available from author upon
request.

ProOF OF CorOLLARY 2.2: By Theorem 2.1 it suffices to show Assumption 3. Consider €, n > 0.
By B, =0,(1), there is M such that for all n, Pr(B,>&M)<n, so the first condition of
Assumptlon 3 is satisfied for A, (e,n)=B,/M. Choose 8 small enough that h(d) <1/M for all
0<d <& andlet #(8,¢,m) = {0 €0:d(6,0) <8). Then suprlQ,,(()) - Q,,(B)l <B,supycy<s h(d)
< 4,(e, m), giving the second condition of Assumption 3. Q.E.

ProoF oF CoroLLARY 3.1 Let B, = ¥7_b,(z,)/n. By hypothesis, E[B,]= O(1) and !Q,,(B) -
0.0 <x_lglz,, 0 - q,(z,,B)I/n < B, h(d(8, 0)) so that the conclusion follows by Corollary
2.2 and the remarks that follow it. Q.E.D.

Proor oF CoroLLARY 3.2: Let D,(K)=L}_1(z, & K)b,(z,)/n for a compact set K C Z. By the
Holder inequality,

(A2)  E[D(K)]< Z{Pr(z £ KV E[b(z)]) /n

n =D/y( n 17y
<{Z Pr(z,eK)/n} {ZE[b,(z,)Y]/n}

t=1 t=1
Consider &, n>0. By hypothesis L_,E[b,(z,)"]/n is bounded and there exists K such that
Y71 Prlz, € K)/n is arbitrarily small for all n, so that K can be chosen so that E[D,(K)] <en/4
for all n. Also, as in Potscher and Prucha (1989), g,(z, 6) is continuous on K X @ uniformly in ¢ for
each compact K, so for any 6 there exists .#" such that sup, (, 5)e xx.+19,.(2,8) — q,(z,0)| <&/2,
implying
(A3)  supjcla(2.6) —q(2.0)| <e/2+2-1(z€K)b,(2) (t=1,2,...).

Let A,(e,m)=¢/2+2D,(K). By equation (A.3) and the triangle inequality, supje s IQ 9 -
Q (0)| <4,(e,m). Also,

Pr(4,(e.n)>e) =Pr(2D,(K)>e/2) <E[D,,(K)]/(e/4) <m,
giving Assumption 3. Furthermore,
supjc 1 @n(0) ~ 2n(9)| = supsc H|E[ 0,(8) ~ 0.(0)]|
<E[supjc 410.(6) - 0.(0)[] <E[4,(e,m)] <,
SO {Q,(B)} is equicontinuous. Theorem 2.1 then gives the conclusion. Q.E.D.
Proor ofF COROLLARY 4.1: Assumption 2 is satisfied by Theorem A of Serfling (1980). By the

iid. assumption, E[Q(8)]=0(6). Also, for B,=2%L"_\L,. ,b(z,,z,)/n(n —1), E[B,] =
E[d(z,, z,)] < ®, and

|Q:,(é) - Qn(0)|<2 Z Z !m(zs,z,,é) —m(zs,z,,0)|/n(n -1) <B,,h(d((;,0)),

t=1s>t

so that the conclusion follows by Corollary 2.2 and its following remarks. Q.E.D.

Proor oOF CoroLLarRY 4.2: To show that Assumption 2 holds, let y = p(9), g =
(Elp(z,0)|x,],..., E[p(z,0)|x,], and W= P(P'P)~P'. Note that

10,(8) — (g'g/m)| =lImyI> = l1gl*| /n < (IWy — glI* + 2l gl- 1wy — gll) /n,
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and that IIgII /n=0,1) by the Markov inequality, so that to show IQ (8) —(g'g/m) =0,(1) it
suffices to show IIWy gll? /n=o0,(1). Next for X=(xy,...,x,), by WP=P, W ldempotent with
rank (= trace) no bigger than K, and condition (i),

E[Iwy - gI*] =E[E[Iwy —gI’1X ]| =E[E[IW(y —g) - (1 - W)zI’IxX]]
=E[trace (E[W(y —g)(y —g)WIX]} +g'(I-W)g]
= E[trace (W Var (y| X)W} + {g — Prg}(I - W){g — Pmg}]
< sup, var (p(z, 0)lx)E[trace (W)]

+nE[{g(x,) = Pl )| = 0(K) + o(n).

Thus, [|Wy —gll>/n = 0,(1) follows by the Markov inequality. Then since g'g/n = Q(6) + o0,(1) by
the weak law of large numbers, the tnangle inequality gives Assumption 2. To show Assumptlon 4A,
let b= (b(zl) .,b(z,)) and B =6l + 2llp(6Il - 161D /n. Note (i) and (ii) imply IbI? /n=0,1)
and llp(00)|l /n—O (1), so B =0,(1). Also, by W idempotent (implying |[Wall <llall for con-
formable a), compactness, and contmu1ty of h(-) (implying h(d(6,6)) is bounded on O X O), there
is a constant C such that

16,(8) - 6.(0)| = |[[Wo (@) = 1Wo(0) 1P|/

<(lo@ =p® I +200(0)11-1o(8) - p(®) 1) /1

< {IbI*r(d(8,0)) +21IbII*A(d(8,6,)) + 2l p(6,)]|- Ib]]}
Xh(d(8,0))/n

<B,h(d(8,6)),

with B, = CB, for some constant C. Assumption 4A follows by B, = C - 0,(1). Continuity of 9())
follows by a similar argument, which gives

0(6) - 0(0)| <E[|E[ (2. 6) x| ~E[p(z.0)xT]]
< CE[b(2)*+2]p(2,0y)|16(2)|] h(d(8,6)). Q.E.D.
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