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Econometrica, Vol. 59, No. 4 (July, 1991), 1161-1167 

UNIFORM CONVERGENCE IN PROBABILITY AND STOCHASTIC 
EQUICONTINUITY1 

BY WHITNEY K. NEWEY 

1. INTRODUCTION 

CONDITIONS FOR UNIFORM CONVERGENCE in probability are useful in econometrics, for 
showing consistency and asymptotic normality of nonlinear estimators and consistency of 
standard error estimates. The purpose of this paper is to provide conditions that meet 
two related requirements: (i) objects other than sample averages are allowed; (ii) only 
pointwise convergence is assumed. These requirements are motivated by nonparametric 
and semiparametric estimation problems, which often depend on objects that are more 
complicated than averages. In addition, for sample averages (i.e. uniform laws of large 
numbers), requirement (ii) may be useful when the data satisfies complicated depen- 
dence restrictions, such as near epoch dependence as in Gallant and White (1988) or 
geometric ergodicity as in Duffie and Singleton (1989). In these environments it can be 
easier to check pointwise convergence in probability than to check convergence of 
various supremums and infimums, as is required by the conditions of Andrews (1987) or 
Potscher and Prucha (1989). The focus here on convergence in probability, rather than 
almost sure convergence, is also in keeping with these requirements. For complicated 
objects it can be more difficult to show almost sure convergence. In any case, conver- 
gence in probability is sufficient for showing validity of asymptotic inference procedures 
(e.g. confidence intervals). 

The paper first presents a stochastic equicontinuity condition that together with 
pointwise convergence characterizes uniform convergence in probability to equicontinu- 
ous functions on a compact set. Motivation for this condition is given by discussing its 
relationship to well known results on weak convergence of stochastic processes, e.g. 
Billingsley (1968) or Pollard (1989). 

The remainder of the paper focuses on simple sufficient conditions for stochastic 
equicontinuity. A global Lipschitz condition is given that, together with pointwise 
convergence, is sufficient for uniform convergence. When specialized to sample averages, 
these conditions yield a uniform weak law of large numbers that is complementary to 
Andrews (1989, Corollary 2). It requires only pointwise convergence of sample averages, 
rather than convergence of certain supremums and infimums, at the expense of imposing 
a global, rather than a local, Lipschitz condition. A uniform weak law analogous to that 
of Potscher and Prucha (1989, Theorem 1) is also given. 

The Lipschitz condition is also shown to be useful in two nonparametric examples. It 
is used to formulate simple sufficient conditions for uniform convergence in probability 
for U-statistics and for the nonparametric two-stage least squares criterion of Newey and 
Powell (1989). 

2. GENERIC UNIFORM CONVERGENCE IN PROBABILITY 

In order to discuss uniform convergence in probability it is necessary to introduce 
some notation. Let 0 be a parameter vector, which can be either finite or infinite 
dimensional. Let QJ(6) be a random function of 0 and the sample size n, where explicit 
dependence on the data will be suppressed for notational convenience. Let QC(6) be a 
nonrandom function of 0 and n, which might be thought of as the object which Q,(6) is 
estimating. For example, Q(6O) may be the expectation of QJ(6), or the expectation of an 

1 Financial support was provided by the NSF and the Sloan Foundation. Helpful comments were 
provided by two referees, L. Hansen, P. Perron, J. Powell, and especially D. W. K. Andrews. 
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1162 WHITNEY K. NEWEY 

analog of QJ(6) with preliminary nonparametric estimates replaced by true values. In 
keeping with the recent econometric literature, e.g. White (1980), Qn(6O) can depend on 
sample size to allow for moment drift. 

Uniform convergence in probability over a set e of parameter values is 

(2.1) sup E 
I 
Qn(0)- Q_((0)l op(1). 

To avoid measurability complications it will be assumed that probability statements such 
as this are for outer probability.2 

The following conditions are important for the results to follow: 

ASSUMPTION 1 (Compactness): e is compact. 

ASSUMPTION 2 (Pointwise Convergence): For each 0 E &, Qn(6) - Qn(6) = op(1). 

It is difficult to do without the compactness assumption, and the pointwise conver- 
gence assumption is an obvious necessary condition for uniform convergence. The sense 
in which the results of this section are generic is that Assumption 2 is taken as a 
primitive condition. In particular cases Assumption 2 has to be verified, using some law 
of large numbers or other result appropriate to the form of QJ(6). 

Another important property is equicontinuity of fQn(tO)}nX1 on &. In what follows 
equicontinuity of fQn(6)} may be a hypothesis or conclusion, depending on the specificity 
of the result. 

The following condition generalizes equicontinuity to random functions: 

ASSUMPTION 3 (Stochastic Equicontinuity): For every e, 17 > 0 there exists random 
nA(?, 1) and constant n o(8 ,) such that for n > n o(8 ,), Prob( lA(8,l) I >0) < ij and for 
each 0 there is an open set X(0, e, ) containing 0 with 

(2.2) supOE /(O,6,7)I Qn(6) Q (6)J<'(6J), n > no(--, J). 

It is well known that pointwise convergence and equicontinuity characterize uniform 
convergence to a continuous function on a compact set; e.g. see Rudin (1976, Exercise 
7.16) for sufficiency. The following theorem is a stochastic generalization. 

THEOREM 2.1: Suppose Assumption 1 holds and fQ(6J)} is equicontinuous. Then 
sup_ IQ'(6)- Q_(0) = op(1) if and only if Assumptions 2 and 3 hold. 

Proofs are given in the Appendix. 
Theorem 2.1 is related to well known results on weak convergence (i.e. convergence in 

distribution) of the stochastic process QJ(6), with index 0. For example, suppose Q'(6) is 
continuous, Qn(6) does not depend on n, e is a compact metric space, and Q((6) is 
measurable for each 0. Let C be the metric space of continuous functions on 9, with the 
uniform metric d(q, q) = sup0 E ,g I q(6) - q(6) J.' In this context, uniform convergence in 
probability of Q(60) to Q(6) is convergence in probability as random elements of C. 
Furthermore, since Q(0) is nonrandom, this convergence is the same as weak conver- 
gence. 

2 The outer probability of an arbitrary set A is defined as inf{E[b]: b is measurable and 
1(A) < b}. 

3 It follows from 9 compact and metrizable that C is separable (see Kelley (1955, p. 245)). For 
separable C, Q(JO) is a random variable in C by Qn(Of) measurable at each 0 e O (see Billingsley 
(1968, p. 57)). 
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Well known necessary and sufficient conditions for weak convergence in C are 
convergence of the finite-dimensional distributions and tightness of the sequence of 
probability measures on C corresponding to QJ(6) (e.g. see Billingsley (1968, p. 35)). In 
the context of convergence in probability on C Assumption 2 is equivalent to conver- 
gence of the finite sample distributions. Furthermore, Assumption 3 is closely related to 
tightness. To be precise, a straightforward generalization of Theorem 8.2 of Billingsley 
gives the following. 

TIGHTNESS CHARACTERIZATION: WMn(6)} is tight in C if and only if Qn(6) = Op(l) for 
all 0 E e and Assumption 3 holds. 

Given this characterization, in the context of this example (which includes the 
important special case where QJ(0) is continuous and e c 8q), Theorem 2.1 becomes a 
special case of the tightness characterization of weak convergence. 

Tightness plays no direct role in Theorem 2.1, which is stated in terms of stochastic 
equicontinuity. In this respect Theorem 2.1 is like recent results on weak convergence 
such as Pollard (1989, Theorem 10.2), which have stochastic equicontinuity conditions 
rather than tightness as hypotheses. Indeed, when & is a metric space with metric d(A- * ) 
(e.g. for e c 8q), Theorem 2.1 becomes a special case of Pollard's result if A,(6,77) in 
Assumption 3 is specified as An(8, ) = SUp60 9; d(O, 0) < 8 IQn(j)- Q(6) I for small enough 
a > 0. Also, the resulting form of Assumption 3 is a more familiar definition of stochastic 
equicontinuity.4 

The remainder of the paper will focus on sufficient conditions for stochastic equiconti- 
nuity, in order to provide easily verifiable conditions for uniform convergence. One 
useful sufficient condition is the following Lipschitz condition. Henceforth, let h denote 
a function h: [0, oo) -) [0, oo), with h(O) = 0 and h continuous at zero (e.g. h(d) =da 
a > 0). 

ASSUMPTION 3A: & is a metric space and there is Bn and h such that Bn = Op( and for 
all 6, 0 E &, IQn(6)- Qn(6) I Bnh(d(60 )). 

COROLLARY 2.2: If Assumptions 1, 2, and 3A are satisfied, and fQn(0)} is equicontinu- 
ous, then sup0E I Qn(6)-Qn(6)I=op(1). 

Assumption 3A is similar to Andrews (1987, Assumption A4), although it is global 
rather than local and applies to the function Qn(6) rather than individual terms of a 
sample average. If Qn(6) = E[Qn(6)] and E[Bn] is bounded, then equicontinuity Of Qn(6) 
can be dropped as a hypothesis and included as a conclusion. Also, when 0 is a vector of 
real numbers, Assumption 3A can be replaced by the conditions that e is convex, Qn(6) 
continuously differentiable, and the derivative is dominated by Bn = Op(1). 

3. GENERIC WEAK UNIFORM LAWS OF LARGE NUMBERS 

Specializing previous results to the case where Qn(0) is a sample average gives 
uniform weak laws. Let the data realization be (z1, Z2,. . .), and consider a sequence of 
functions qt(zt, 0) of a data observation zt and a parameter vector 0. Define 

n n 

= E qt(zt,0)/n, QCn(6) E E[qt(zt,0)]/n. 
t=1 t=1 

Uniform weak laws concern conditions for equation (2.1) for these objects. 

4This metric space modification of Theorem 2.1 was pointed out by a referee and D. W. K. 
Andrews. 
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One such result is the following corollary. 

COROLLARY 3.1: Suppose that Assumptions 1 and 2 are satisfied and e is a metric 
space. Also suppose there exists b,(z,) and h such that Et= 1E[b(z,)]/n =0(1), and 
I qt(zt, 0) - qt(zt, 0)1 < bt(zt)h(d(0, 0)) for 0, 0 E -. Then sup0 EgIQn(0) - Qn(0)I = op(1) 

and fQn(0)} is equicontinuous. 

This result is complementary to the convergence in probability version of Andrews 
(1987, Corollary 2), imposing only pointwise convergence but requiring a global Lipschitz 
condition. Another uniform weak law is the following corollary. 

COROLLARY 3.2: Suppose that Assumptions 1 and 2 are satisfied and a is a metric 
space. Also, suppose zt E Z, Z a closed subset of R8S, fqt(z, 0)} is equicontinuous on Z x &, 
there are b (zt) and y> 1 such that sup0olIqt(zt,0) I <bt(zt) and En=iE[bt(zt)7]/nIn 
0(1), and {E=' 1Ht/n} is a tight family for Z, where Ht is the marginal distribution of zt. 
Then sup _ I, Qn(6) - Qn(6o) I = op(1) and fQn(0)} is equicontinuous. 

This result is like the convergence in probability version of Potscher and Prucha (1989, 
Theorem 1), except that only Assumption 2 is required rather than the convergence of 
various supremums and infimums in Potscher and Prucha (1989, Assumption 4). The 
tightness condition in Corollary 3.2 is implied by more primitive conditions, such as 
boundedness of E7=1E[ln(l + 11zt1D)1/n; see Potscher and Prucha. 

In general, stochastic equicontinuity is implied by the conditions of existing uniform 
laws of large numbers, since it is necessary for uniform convergence. In some cases it 
may be implied by a subset of the conditions, which may thus be thought of as stochastic 
equicontinuity assumptions. For example, if qt(z, 0) does not depend on t and fzt) is 
stationary and ergodic, Assumption 3 is implied by the first moment continuity condition 
of Hansen's (1982) uniform law. 

4. NONPARAMETRIC EXAMPLES 

A uniform convergence result for U-statistics is useful for showing consistency of the 
residual-based m-estimators for nonlinear simultaneous equations models discussed in 
Newey (1989). Let m(z, z, 0) be a function of a pair of data arguments that is symmetric 
in the data arguments, i.e. m(z, z,0) = m(z, z, 0). Consider a U-statistic, depending on 0, 
and population analog 

n 

(4.1) Qn(6) 2 E, , m(zt, zs, 6)/n(n -1), Q(6) -E[m(z1, Z2, 0)] 

t=1 s>t 

where zt is assumed i.i.d. Results on convergence of Qn(6) to Q(6) for fixed 0 are well 
known, e.g. Serfling (1980). Such results can easily be turned into uniform convergence 
results via Corollary 2.3. An example is as follows: 

COROLLARY 4.1: Suppose that Assumption 1 is satisfied, e is a metric space, and zt, 
(t = 1, 2, ... ) are i.i.d.. Also suppose ELIm(z12,z2 00)1 ] < X for some 00 E &, and there 
are b(z, z) and h such that E[b(z1, Z2)]< oo and for e, 0 6 e, Im(z, z, 6) - m(z,2z, 0)j < 
b(z, 2)h(d(6, 0)). Then suP0_ Q(6) - Q(6) I = op(1) and Q(6) is continuous. 

A second example is the nonparametric two-stage least squares criterion of Newey and 
Powell (1989). Let p(z, 0) be a function of a data observation and parameters, satisfying 
the conditional moment restriction E[p(zt, 0) ixt ] = 0 at the true parameter values 00, 
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where the instruments xt are a subvector of zt. Also, let E[p(z, 0)Ixt] be a nonparamet- 
ric regression estimator of E[p(z, 0)Ix], evaluated at xt. Consider 

n2 

(4.2) Qn(6)-E (E[p(z,0)ixt]} /n, Q(6)=E[{E[p(zt,0)iXt]}]2 
t= 1 

Corollary 2.3 can be used to establish uniform convergence in probability of Qn(O) to 
Q(6), and hence to show consistency of an estimator of 00 obtained by minimizing Qn(6) 
over &. To be concrete, consider a series estimator, E[p(z, 6)Ixt]=PtK(P'P)-P'P(0), 
where PtK = (P1K(Xt). * I PKK(xt)), for approximating functions fpkK(X)} (K = 1, 2,...) 
(e.g. power or Fourier series, or B-splines), P = [P1 K, PK]'K (-) denotes a general- 
ized inverse, and p(6) = (p(Z1 0), ... I P(Zn ,I )).n 

COROLLARY 4.2: Suppose that Assumption 1 is satisfied, & is a metric space, and zt 
(t = 1, 2, ... ) are i.i.d. Also suppose that (i) Var [p(z, 0)jx] is bounded for each 0 EE , for 
any g(x) with E[g(xt)2] < 00 there exists fT7K} such that limK x E[fg(xt) - PtK 7K}2] = 0, 
and K = K(n) such that K(n) -c oo and K(n)/n --0; (ii) there is b(z) and continuous h 
with Ip(z, 6) - p(z, 0) I < b(z)h(d(j, 0)) and E[b(z1)2] < cr. Then supo E Qn(6) - Q() I 
= op(1) and Q(6) is continuous. 

Condition (i) and (ii) are used to establish Assumptions 2 and 3A, respectively. A 
more general result, that allows for other types of nonparametric regression estimators 
(e.g. nearest neighbor), is given in Newey and Powell (1989). 

Department of Economics, Massachusetts Institute of Technology, Cambridge, AM 
02139, U. S.A. 

Manuscript received April, 1989; final revision received August, 1990. 

APPENDIX 

LEMMA A.l: Define Rfn(O) -Q(O) - Q,(O). If {Qj(O)} is equicontinuous and 0 compact, then 
Assumption 3 is satisfied if and only if it is satisfied with Q0(O) replaced by Rfn(O) 

PROOF: The proof is a consequence of the simple triangle inequalities 

(A.1) I(a-b)-(c-d)j< la-cl + lb-dl, la-cl <I(a-b)-(c-d)j+ lb-dl, 

for a = QO(j), b = Qn(6), c = Q0(O), and d = QO(M): For the if part for Assumption 3, consider E, 
71 > 0. Let JE(1/2, -q) and c4/(0, E/2, -q) be_as in Assumption 3, and let .>4'(0, E/2, -q) C .>4(O, E/2, -q) 
be an open set such that supN , --I QL(O) - Qn(O)I < E/2. Then for An(c, 7) = A(c/2, 7) + c/2, 
Pr(A'n > ) = Pr(An > /2) <-q, while by the first half of equation (A.1), for n > n0(E/2, -), 

sup6 1-IRn(o) - Rn(O) I < (c/2, -q) + E/2 = A'n(E, -). The "only if" part for Assumption 3 fol- 
lows by the second half of equation (A.l) by the same argument, interchanging R,, and Qn. Q.E.D. 

PROOF OF THEOREM 2.1: By Lemma A.1 it suffices to show the result with Rn(O) replacing Q0(O) 
in Assumption 3. For the if part, consider E, -j > 0, A,(J/2, -q), and .4(O, E/2, -q). By 0 compact 
there is an open subcovering {.AY(0)}/i= 1 of such dP(0, E/2, 7)). Then by the triangle inequality, 

sup0 (H)I Rn(o) I < max,| 1n(o ) |+ SUp,,,9 -, R, n(O) - fit(o) I < oP(1) + An(c/2, -q), 

where the second inequality follows by Assumptions 2 and 3. Thus, 

PrDuoc0 fino. I > E) <n Pr (Ae2 _-> E12) + Pr _( /op > E12) < -1\ o8 
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for large enough n. For the only if part, note that Assumption 2 is a trivial consequence of uniform 
convergence. Also, AJn(E,') 2supe,e&lRn(6)I =op(l) and for any 0 and open neighborhood A4, 
sup6 E v1Rn(1 ) - R)(6) I 6 An(, 7j), giving Assumption 3. Q.E.D. 

PROOF OF TIGHTNESS CHARACTERIZATION: Omitted for brevity, but available from author upon 
request. 

PROOF OF COROLLARY 2.2: By Theorem 2.1 it suffices to show Assumption 3. Consider ?, 71 > 0. 
By Bn = Op(l), there is M such that for all n, Pr(Bn > eM) < 77, so the first condition of 
Assumption 3 is satisfied for An(e, -q) = B /M. Choose 8 small enough that h(d) < 1/M for all 
0 6 d < 8 and let XV(0, E, r= ( E 0: d(6, 0) < 81. Then sup.jQn(6) - Qn(6) I 6 Bn SUpO < d < h(d) 
< Az(E, 77), giving the second condition of Assumption 3. Q.E.D. 

PROOF OF COROLLARY 3.1: Let Bn = n=. lbt(zt)/n. By hypothesis, E[Bj = 0(1) and IQn(O)- 
Qn(6)I < En=. Iq,(zt, 0)- q,(z,, 0)I/n < B h(d(6, 0)), sO that the conclusion follows by Corollary 
2.2 and the remarks that follow it. Q.E.D. 

PROOF OF COROLLARY 3.2: Let Dn(K) EL= 11(z, 0 K)bt(z,)/n for a compact set K c Z. By the 
Holder inequality, 

n 
(A.2) E[D,(-K)] 

< 
Y, {Pr (zt 0 K)} 7 /7{yE[bt(zt) Y] }ll/n 

t= 1 

n (y - IVY n 1 /y 

< 1: Pr (zt 0K)ln; 1 E [ bt(z)y ]/nJ 
t=l t=1 

Consider E, 77 > 0. By hypothesis E7n.=E[bt(zt)'f/n is bounded and there exists K such that 
Et=I Pr(z t q K)/n is arbitrarily small for all n, so that K can be chosen so that E[Dn(K)] < ?71/4 
for all n. Also, as in Potscher and Prucha (1989), qt(z, 0) is continuous on K x & uniformly in t for 
each compact K, so for any 0 there exists X such that SUPtze)e Kx-/Iqt(z, 6) - qt(z,0) I < E/2, 
implying 

(A.3) supj06Iqt(z,) -qt(z,60) <E/2 + 2- 1(z 4K)bt(z) (t = 1,2,...). 

Let A(E, )=e/2 + 2Dn(K). By equation (A.3) and the triangle inequality, sup, ,IQn(O)- 
Qn(6)l <zAn(E,-t7). Also, 

Pr('An(E, 77) > E) = Pr (2Dn(K) > ?/2) < E[Dn(K)]I(EI4) < -f , 

giving Assumption 3. Furthermore, 

supjE.4jQn(j) - QCn(6) = supjE_,IE[Q n() - QJ()] I 
<E[supj c,/V|Qn(j) - Qn(0)I] <E[An(E q)] <m 

so {Qn(6)} is equicontinuous. Theorem 2.1 then gives the conclusion. Q.E.D. 

PROOF OF COROLLARY 4.1: Assumption 2 is satisfied by Theorem A of Serfling (1980). By the 
i.i.d. assumption, E[Q,(6)] = Q(6). Also, for Bn 2En=1E5>b(z5, zt)/n(n - 1), E[Bn] = 

E[d(zl, z2)] < oo, and 
n 

IQ'n(j) - Qn(0)j S 2 ME E zsl Zt0) -M(Z5g ztl )|ln(n - 1) < Bnh(d(j, 0)), 
t=1 S>t 

so that the conclusion follows by Corollary 2.2 and its following remarks. Q.E.D. 

PROOF OF COROLLARY 4.2: To show that Assumption 2 holds, let y = p(6), g = 
(E[p(z,6)Ixl.]..,E[p(z,6)lxn])', and W=P(P'P)-P'. Note that 

|Q'n() - (g'g/n)| = IIwyI2 - jglln2 |/ < (Wy - gil2 + 211gII IhWy -g11)/n, 
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and that lIgIl2/n = O0(1) by the Markov inequality, so that to show l Qn() - (g'g/n)l = op(1) it 
suffices to show IIWy - g112/n = op(1). Next for X = (x, xn)', by WP = P, W idempotent with 
rank (= trace) no bigger than K, and condition (i), 

E[IIWy -gil2] =E[E[IlWy _gIl21X]] =E[E[IIW(y -g) - (I- W)gll2lX]] 

=E[trace{E[W(y -g)(y -g)'WIX]} +g'(I- W)g] 

= E[trace {W Var (y IX)W} + {g - P7-K}'(I - W){g - P7K}] 

? supx var (p(z, 0)lx)E[trace (W)] 

+ nE [{(XI)- PK7K} ] = O(K) + o(n). 

Thus, Wy - gIl2/n = op(1) follows by the Markov inequality. Then since g'g/n= Q(0) + op(l) by 
the weak law of large numbers, the triangle inequality gives Assumption 2. To show Assumption 4A, 
let b = (b(zl),..., b(zn))' and B, = (1lb112 + 211p(OO)I Ilbll)/n. Note (i) and (ii) imply 1lb112/n = OP(1) 
and llp(0I)11/n = OP(1), so Bn = Op(1). Also, by W idempotent (implying IlWall < liall for con- 
formable a), compactness, and continuity of h( ) (implying h(d(6, 0)) is bounded on 0 x 0), there 
is a constant C such that 

QJ(O) - Qn(o) I = | wp(O) -11 p(6) 112 /n 

(| 
()-P(o) 112 + 2| 11 || p(j) - p(O) II)In 

? {llbll2h (d(O, 0)) + 211b112h (d(6, 00)) + 211 p(O ) | Illbll} 

xh(d(j, 0))/n 

? Bn h ( d (j , 0)) , 

with Bn = CBn for some constant C. Assumption 4A follows by B, = C OP(1). Continuity of Q(0) 
follows by a similar argument, which gives 

Q(6) - Q(O) I < E [ I E[ p(z, 6) Ix] 2-E[p(z, 0)lx ] 2 

< CE[b(z)2 + 21p(z,Oo)I Ib(z)j]h(d(O,0)). Q.E. D. 
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