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Abstract: In this paper we develop a general test for nonlinear
Granger causality in a bivariate context. The test is based upon a
measure of local correlation called the correlation integral. A small
Monte Carlo study is conducted to evaluate the performance of the
test. The test is applied to money and income. Some evidence of
nonlinear causality was found after the size of the test was
corrected.
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1. INTRODUCTION

The purpose of this study is to develop a statistical tool to
detect unidirectional <causal orderings between two, ©possibly
nonlinearly related, variables. "Causality" here is used in the sense
of Granger as exposited by Geweke (1984, p. 1102).  We apply our
version of a nonlinear Granger causality test to money and income
using the data of Stock and Watson (1989). Before we explain the new
test proposed in this paper we must give enough background on linear
causality tests to place the new test into context.

We use notation as follows: ¢>0, Rhﬁéenotes the vector space of
ktdimensional real vectors, {Zt} denotes a stochastic process, i.e., a
sequence of random variables from a common probability triple to the

real line, Rlim. Here t=1,2,.... Bold letters will denote vectors

(possibly infinite dimensional} of real numbers or random variables.

Let {Xt}’ {Yt} be two scalar valued strictly stationary, ergodic

stochastic processes. Let ZtE{Zt’Z .} denote the history to time -

t-1’ _ ol
t for any stochastic process {Zt}' All we need to exZZund our X

contribution to causality testing is to give an heuristic version of

the original Granger (1969) definition (in the linear context):

Definition: {Yt} causes {Xt} if Yt helps linearly predict Xt+1 in

addition to Xt. This idea is operationalized by regressing Xt+1 on

both xt’Yt and testing whether the coefficients of Yt are all zero. O
s ©

A host of issues such as (i) how to select the lag length, (ii)

how to select the background information set {Ut} against which the



incremental predictive contenﬁ of Yt for Xt+1 is to be measured, (iii)
which theoretically equivalent form of the linear Granger test should
one use, 4i.e., which of these have the best size and power
performance, (iv) how does one deal with problems in implementation
caused by different methods of detrending. We refer the reader to
Granger (1969), Geweke, Meese, and Dent (1983), Sims (1972), Stock and
Watson (1989), Sims, Stock, and Watson (1990), for discussion of these
issues. ‘Dealing with such issues in our nonlinear context is beyond
the scope of this paper. Turn now to explanation of our nonlinear
causality test. We need a pedagogical example.

Consider the following pair of processes,

Xt = 5xt-qxt—p

t € (1)

where {Et},{Yt} are mutually independent and each are Independently
and Identically Distributed (IID) Gaussian with zero mean and unit
variance. We shall refer to a pair of stochastic processes, such as
{ft},{Yt}, which are each IID but are also mutually independent at all
leads and lags as "IIDI." The point of example (1) is this. If one

linearly regresses Xt+ one will find zero coefficients on

on Xt’Y

1 t

both Xt’Yt' Yet it is obvious that Yt incrementally helps predict
Xt+i given Xt. It is easy to detect this incremental nonlinear
predictability by appropriate nonlinear regression. Rather than
nonlinear regression we take a general approach here based upon
something called the "correlation integral”™ which is a measure of
local spatial correlation of temporal series which are "embedded” in

an appropriate "embedding" space. The next section exposits this



idea.

The paper is organized as follows. Section one contains the
introduction. The second section defines the correlation integral
and gives some of its properties. Section three reports a small Monte
Carlo study on the size performance of our test. Section four applies
the test to money and income data. Finally, in Section five, we

summarize and conclude.

2. CORRELATION INTEGRAL

Let {Zt} denote an Rk-valued stochastic process. Put k=1, for

the moment, and define thZt,mE(Zt—l"'°’Zt—m) and call Wt an
"m-history of Z starting at t." Put, €>0,
_ *
C (e,T) = (1/T7) XN I (W, ,W_), (2)

where If(a,b)EMax{Iai—bil<f, i=1,2,...,m}, a,b € R™. Here the double
*

sum, X% is over {(s,t)llSs(tST}, T =T(T-1)/2 for the U-statistic form;

2

*x
T =T%, and XX is over {(s,t)|1¢s,t{T} for the V-statistic form.

Intuitively Cm measures the fraction of pairs of m-histories whose

>

distances are less than e¢. For the case when k=1, i.e., Zt takes
values in the real line, R, we would expect Cm to scale with the power
m as € increases if {Zt} is 1ID. If {Zt} is generated by a one
dimensional deterministic chaos (such as Zt=4Zt_1(1-Zt_1)) then one
would expect Cm to scale with the power one as ¢ increases. In
general the elasticity of Cm with respect to ¢ is a measure of the

number of active degrees of freedom at ¢ of {Zt}' See Brock and Baek

(1991) or Brock, Hsieh, and LeBaron (1991) for a general discussion of



the properties of Cm and references to the-literatu;e.

The theory of U and V statistics is e% ed by Denker and
Keller (1983). Intuitively U and V statistics are statistics that
behave much like averages. Denker and Keller (1983) show, under
conditions of weak dependence, stationarity, and ergodicity the

following, for both the U-statistic and V-statistic form of Cm:

Cm(f,T) — Cm(f),

Tl/z[Cm(e,T) - ¢ ()] 4, N(0,V_(€)) as T-w - (3)

where convergence is in distribution. Here N(0,V) denotes the normal

distribution with mean 0 and variance, V.

Maintained Assumptions: We shall assume weak dependence, strict

stationarity, and ergodicity of all data generating processes as in
Denker and Keller (1983, p. 507, for stochastic processes; 1986, p.
76, for deterministic, possibly chaotic, processes). We call this
maintained "regularity"” assumption "(DK)" for reference purposes.
Denker and Keller (1983) gives three versions of weak dependence which
are strong enough to deliver their results. The reader is free to use
whichever of the three she wishes. Only the U-statistic form is

treated here. The V-statistic form is similar. 0O

The quantity, Cm(e), that appears in (3) is easy to interpret.

It is given by,

Cm(f) = Pr{|h&- %/T-< €}

5

I If(vi,wfim(@dmw/i (4)

l
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where |[ denotes the max norm on Rm, "Pr" denotes "probability,"
F(w)EPr{WtEW € w}. Note that the probability is computed as a double
integral and that F(w) 1is the cumulative distribution of an
m-dimensional vector for embedding in dimension m. An obvious
generalization would replace € by an m-vector, e, which may be useful
when units vary across the components of W.

/ Return now to the pair of stochastic processes, {Xt}, {Yt},

recall the definition of an m-history, Zt,mz(zt—l""’zt—m)’ and
consider the following probability
Pr{|X,-X_ |<e, given |xt’p—xs,p|<el, IYt’q—YS’q|<62}. (5)

Think of this probability as measuring the probability that

|Xt-XS|<€ given the pair of p-histories of X differ by less than €

1’

and the pair of gq-histories of Y differ by less than ¢, i.e., o d
ﬂhi& Y (8] 5= Lo R 4 4 2 A w%??i;f%”’

1

|X -X I(E , and, |Y -Y |<€ . This motivates the following (t.dru

t t . g -

d ftp- ?’p ' asal 4 WML""‘-’;L}

efinition. ful rlo/
#07).

Definition: Y fails to nonlinearly Granger cause X if

<€
t,q s,ql 2}

I<e;3. o (6)

Pr{|X, -X [<€; given |xt’p-xs’p|<e1, fy, -Y

= Pr{|X,-X_|<e; given lxt’p-xs,p

Note that the definition says, given 61 and 62, q lags of Y does not

incrementally help predict next period’s value of X given p lags of X.
ConAirrurae

If Xt= G(Xt ) for some deterministic,{function G then it is easy

Y
0’ t,q



to see why the event, "Yt,q close to Ys’q s would help nonlinearly
incrementally predict "Xt élose to XS". The definition is motivated
by a hope that at least part of the deterministic intuition may pass
to the case where. G is a stochastic function, especially if the
conditional variance of G given xt,p’Yt,q is small enough relative to
the unconditional variance of Xt. Of course this definition depends
on the number of lags of future prediction which is one here; the
61,62; the lags in the histories of X and Y i.e., p and q. Turn now
to operationalization of testing the null hypothesis HO:Y fails to
nonlinearly Granger cause X.

First rewrite each side of (6) as a ratio of unconditional
probabilities. Second, for a sample of length T, estimate each
nunmerator and denominator with correlation integrals. Third, take the
difference of the ratio of statistics of step two, multiply it by Tl/2
and use the delta method (Serfling (1980, p. 124) together with the
Denker-Keller (1983, 1986) theory to work out the limit distribution
which is normal with mean zero and variance V under the null
hypoﬁhesis ﬁo' Fourth, replace the variance V with a consistent
estimator G, divide by the square root of G to get a statistic which
is asymptotically distributed N(0,1) under the null, Ho.

Carrying out the first step we obtain,

Pr{lxt—XS|<€1 given Ixt,p—xs,p|<€1’ |y Y

- <€
t,q s,q' 2}

Pr{[X X [<ep |X, X [<e

t,p— S,D 1’
Pr{lxt,p-xs’p|<fl, |Yt’q—YS’q|<ez}

C(x’,x,y;e)/C(x,y;e), (7

lYt,q-Ys,q[<ez}




where we put x’ElXt—XS|<61, xElXt,p-Xs,p|<61, yElYt,q-Ys,q|<€2’

eE(el,ez) to lighten notation. Restating Ho in this new notation we

obtain,
H: C(x',x,y;e)/C(x,y5e) - C(x,x;e)/C(x;e) = 0. (8)

Now replace each "C" in (8) by a correlation integral estimator,

C{.;e,T), where

C(x",x,y;e,T)

_ *

= X% I{|Xt-XS|<61,|Xt’p-XS’p|<61,|Yt’q—Ys’q|<ez}/T , (9)
where I1{A} denotes the indicator function of event A which is one when
A is true and is zero otherwise. Estimators for +the other

probabilities in (8) are defined analogously.

Proposition_ 2.,1: Assume Ho and DK. Then,

Tl/z[C(X’,x,y;e,T)/C(x,y;e,T)-C(X’,x;e,T)/C(X;e,T)] 4, N(0,V)

as T-w (10)
where convergence is in distribution.
Proof: Put

GIC(x",x,¥;5e,T),C(x;e,T),C(x",x5€,T),C(x,y;e,T)] = GIU;,Uy,U,,U,]

=z C(x’,x,y;e,T)/C(x,y;e,T)-C(x",x;e,T)/C(x;e,T). (11)



We have a function G[.] of four U statistics. Let Oi denote the mean
of Ui' It follows from Denker and Keller (1986, Theorem 1, p. 75)
that, -Ui converges in probability to Oi for each 1. Under Ho’
G[91,02,03,94]EG[€H=0. Put UE(UI,Uz,U3,U4). Therefore, applying the

delta method (Serfling (1980, p. 124)),

/2(e[u1 - clel} ' (12)
has the same asymptotic distribution as

/%%(0)- (U - ©), (13)

where VG(©) denotes the gradient of G evaluated at © and "-" denotes
dot product. By Denker and Keller (1983, p. 507, Equation (1)) each
U-statistic has the representation

1/2

U. -6, =2/T% (hli(’) - ei) +R, T

i i Ri - 0as T = m, (14)

where convergence is in distribution. Here hli(') is the conditional
expectation of the summand (called the "kermel" of the U-statistic)
of the U-statistic on the subscript t argument. For example, in our

case of,

G(U) = U /U, =~ Uy/U,, (15)

hyaG) = by (XX ¥ o) F Ry (Z)



E[I{|Xt—XS|<61,|Xt’p-xs’p|<61,|Yt’q-YS’q|<ez}; given

X, ,X

S S A B (16)

t,p’ t,q

The other h are defined analogously. Let Gi denote (3G/Ui evaluated

1i
1/2

at ©, Since T Ri + 0 as T =+ o, use (14) to rewrite an

asymptotically equivalent form of (13) as follows,

1/2 d -
(2/1°7%) f { ? G, (hy,(Z,) - 6.)} — N(0,V) as T = u, (17)

where strict stationarity implies the asymptotic variance V is given

by
V= lim E{(2/T2) 2 (3 Gi(hli(zt)—ﬂi)}}z
T t i
2
= 4E{J(Z,)° + 2 ¥ J(Z2,)J(Z,)}, (18)
1 k>1 1 k
where J(Zk) = ? Gi(hli(zk) - 01). The infinite series in (18)

converges by the weak dependence assumed in the maintained regularity

hypothesis, DK. 0O

It is now time to discuss practical problems of implementing a
test of nonlinear Granger causality based upon Proposition 2.1. The
problems are several. First, a choice of 61, 62 and the lags p, q
must be made. Since the units of X and Y will typically differ, we
have dealt with this problem in the application to money and income in
Section 4 below by dividing each series by its estimated standard

deviation. This normalizes each series to have standard deviation



10

unity. However, this procedure introduces an estimated parameter
problem, i.e., the estimated standard deviation, which could change
the asymptotic distribution of the test statistic under the null.
More will be said about this problem when we give the application
below.

After normalizing each series by the standard deviation we choose
the €’s so that €15€, and € is between 1/2 and 3/2. This particular
range of € was motivated by the Monte Carlo studies done on the one
dimensional case by Hsieh and LeBaron in Bréck, Hsieh, LeBaron (1991).
Hsieh and LeBaron showed that this range of ¢ gave good results on
size and power for a particular experimental design which was
motivated by applications to economics and finance.

Second, there are many test statistics besides (10) that one
could use to test Ho. For example, if one had a particular point
alternative Ha in mind then one could design a test of Ho that
maximized power against Ha' The study of such problems lies beyond
the scope of this paper.

Third, Dechert (1989) has shown that a closely related one
dimensional version of our test is not consistent. That is to say
there are alternatives to Ho against which the test has zero power.
We suspect that Dechert’s counterexample could be adapted to show that
our test is not consistent against all alternatives to Ho.

Fourth, under the general maintained hypothesis, DK, of Denker
and Keller (1983), the variance formula is given by an absolutely
convergent infinite series. The issue arises of how to cope with an
infinite number of terms in the construction of a consistent estimator

for the variance under Ho. Strictly speaking, one must let the number



11

of terﬁs in the series grow slowly enough as the sample size grows‘in
order to obtain a consistent estimator. Furthermore, the estimator
must be positive on small samples in order to be a variance estimator.

In order to remain within the scope of the current paper we dealt
with these problems by constructing test statistics with simple
variance formulae. The test statistics are constructed in such a way
as to have power against a wide class of alternatives to Ho but to
minimize power against the subclass in HO of processes that oniy
depend upon past X’s, not past Y’s, but give, at the same time, simple
variance formulae.

Consider the following equivalent statement of Ho,
HO: C{x",x,y;e)C(x;e)~-C(x’,x;e)C(x,y;e) = 0. (19)
Equation (19) suggests the following corollary of Proposition 2.1,

Corollary 2.2: Assume Ho and DK. Then,

Tl/z{C(X’ »X,y;e,T)C(x;e,T)-C(x",x;e,T)C(x,y;e,T)} 4, N(0,V)

as T = w. (20)
Proof: Follow the same type of argument as in Proposition 2.1. 0O

Although removing ratios in the statistic helps avoid numerical
instability problems the variance formula is still an infinite series
under Ho. There are three strategies that one can use to find an

estimator to approximate the variance, V, in (20). The first is to
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construct consistent estimators for each term in the expansion (18)
and let the number of estimated terms grow slowly enough with respect
to the sample size to achieve consistent estimation of V. The second
is to ignore the intertemporal terms and simply construct a consistent
estimator for the first term in (18). The third is to ignore the
cross dependence in the first term of (18) and construct an estimator

for it under the assumption that {Xt}’ {Yt} are mutually independent

and independently and identically distributed (IIDI); Note that we-

have listed the approximations in order of coarseness.

The third approximation for V in Corollary 2.5 in this paper is
used for an application to money - income causal relationship. The
intuition follows. Since the numerator of the test statistic in (10)

is multiplied by Tl/2

we placed the most importance at getting a
faithful approximation to H0 for the numerator of the test statistic
that was close to zero if Ho was true. The motivation for choosing a
coarse approximation for V was a crude attempt to optimize the
following tradeoff. The third 1level of approximation gives a
theoretically inaccurate formula, but one that contains few terms to
estimate. This is to be traded against a formula that was
1)

theoretically more accurate but contained more terms to estimate.

Let us define notatioms,h and Bi, to derive the variance

1i

formula V in (20) under the second level approximation. The unit of

the scale parameter, ¢, for standardized series, {Xt} and {Yt},is

7.,<,t':ommonly standard deviation of each series. Put

hll(xt’xt,p’Yt,q) = E[I{|Xt-xsl<€,|Xt,p-XS’p|<e,|Yt,q-Ys’q|<e};

Y. 1,

given xt’xt,p’ t,q
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hyg(Xe p) = E[I{lXt’p-X |<e; given X, 1,

S,p t,p
hya(XpsXy ) = E[I{|Xt—XS|<e,IXt,p-Xs’p|<6; given X, X, 1,
by (X 0¥ o) = E[I{|Xt’p-xs’p|<f,|Yt,q—Ys q|<e}; given X, Y, 1,

and BiEE[hli(.)] for each i. Omitting the arguments of the
conditional expectations, hli(-), we devise the useful notations for
the second moment calculations of hli(-). Under Ho of no Granger
causality from Y to X,

E(h11)2 = K(x’x)K(xy,x 1), E(h,,

E(h14)2 = K(xy), E(hllhlz) = B(x'x,xy), E(h 1h13) E K(X’X)B(xy,x_l),

)2 2 = K(x’'x),

K(x), E(h13)

- / -1
E(h11h14) = K(xy)B(x'x,x ), E(h12 13) = B{x'x,x),
E(h12 14) = B(xy,x), and E(h13 14) = B(x'x,xy)
where,

C(x) = f[fI€(Xt’p,Xs’p)dF(Xs,p)]dF(Xt’p)

C(x’x) = f[fI6(Xt,xs)1e(Xt,p,Xs’p)dF(xs,Xs JIAF(X,X, )

Clxy) = JUT (X, X, Ie(Yy Y, JdF(X LY ) IdF(Xy )

t,p’ t,q

K(x) = [UT (5, X, aF(x; )1%ar(x, ),

K(x'x) = f[fIf(Xt,Xs)IG(Xt’p,xs’p)dF(xs,Xs’p)]zdF(Xt,Xt’p),

K(xy,x 1) = fUr g oxg DT (Y Lot Ys, o AP (K oY ITT (X WX )
t,p t,q)’

: 2
) (Y s,q)dF(Xs,p’Ys,q)] dF(Xt’p,Y

dF(X )] dF(x
R(xy) = JUT (X, X, o

Blx"x,xy) = j[{fxf(xt,xs)lf(xt’p,xs’p)dF(xs,xs’p)}

t’q)’

{fIE(Xt,p,XS’p)IE(Yt’q,Ys’q)dF(Xs,p,Ys’q)}]dF(Xt,Xt’p,Yt,q),

B(xy,x 1) = JUJT Xy X DT (Y oY DAF(X Y )Y/

’

{flf(xttp’xssp)dF(xs1p)}]dF(xt’p’Yt’q)

Y, AR LY )

Blxyv,x) = JUUJT (X, X (Y, s,p’'5,Q

S,Dp » a4
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UT (X oX JAF(X. DX, LY, ),
B(x'x,%) = JIUT (X, X )T (X X, DdAF(X X))

U1 (X, »X )AF(X DYIAF(X X )
BOx,x 1) = ST (XX )T (R, WX AF(X,X )Y/

1 (x pJAF(X )HIAF(X X, )

X
t,p’ s, t,p

where F(-) is the unconditional cumulative distribution of the
corresponding random variables. The notation " ' " is for the current
forecasting horizon so that the variable x or y is automatically its

lagged variables.

Corollary 2.3: Assume HO and DK. Then the variance V in (20) under

the second level approximation

V = 4[C(x’x)zC(xy)2K(x)/C(x)2 + 4C(x‘'x)C(xy)B(x'x,xy)

ZC(x’x)ZC(xy)B(xy,x)/C(x) - ZC(x’x)C(xy)zB(x’x,k)/C(x)

+

C(x)zK(x'x)K(xy,x—l) - ZC(x)C(x'x)K(xy)B(x'x,x—l)

Clx)Clxy)K(x/x)B(xy,x 1) + Clx'x)2K(xy) + Cxy)2K(x’x)].  (21)

4
Proof: We know that J(Zl) =i§IGi(hli(Zl)-0i) where (GI’GZ’G3’G4) =

(9 01,—04,-03), then the first term in (18) approximates the variance

2’

vV 4E[J(Zl)2]

_ _ 2 2 2 _ _
= 16(9192 0304) + 4[91E(h12) + 20102E(h11h12) 29193E(h12h14)

2 2
26, 9,E(h ,hy,) + 0 E(h )" - 26,05E(h

2

11P14) - 2050,E(hy by g)

2 2 2
63E(h )" + 29304E(h13h14) + 94E(h13) 1. (22)
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By definition of 01, 92=C(x), 93=C(x’x), 94=C(xy). Since 0102 = 0304

under H 01=C(x’x)C(xy)C(x)—1. Finally, replace 91 and the second

) )
moments of h1i with C(')g, K(-)s, and B(-)s in (22) to obtain (21). O

If we care intertemporal terms due to weak dependence in (18),
the number of terms will increase geometrically according to the

parameter k. For instance, the variance formula up to k=2 will be

_ _ 2 2 2 _ _
V= 48(9102 9394) + 4[91E(h12) + 20102E(h11h12) 29193E(h12h14)

2 2
20104E(h12h13) + 02E(h11) - 29203E(h11h14) - 20294E(h11h13) +
2 2 2 2 ¥
03E(h + 20304E(h ) + 94E(h13) 1+ 8[01E(h12h12) +

2
14) 13114

¥
9192{E(h 12h14) + E(h

- 0293{E(h

* *
11P12) *+ Elhyohy )}

* * 2
12h13)+E(h13h12)} + 02E(h
*

0204{E(h11h13) + E(h

*
- 6,0,(E(n L)) -
* *
8,6,{E(h 11P17) 11P1g) *
b)) + 6%E(h, .hT ) +
13Py1)} * O3E(hy by,

2
} o+ 04E(h1

*
E(hy hyy)} -

*
0304{E(h } + E(h

13h14 (23)

*
14113) ahy13) ]
where * denotes the conditional probabilities of hli(') for the

. . *
one-period ahead, i.e. hll—hll(x
*

13713

*
£+ %41, p ¥, o0 P22 Fesr,p)

* .
h (X h14—h14(xt+1,p,xt+1,q). Define all the second

moment of h1i for the current and one-period ahead in the following

t+1’xt+1,p)

way:

* - =-1. *
E(hllhll) = B(x‘x,xy,x"x’,x'y,x l,x' 1), E(h, h., ) = B(x,x"),

12712
* - to Mot * _ £
E(h13h13) = B(x‘x,x"x"), E(h14h14) = B(xy,x'y’),

* * , , -1 »_ s oy’ 2
E(h11h12+h12h11) = B(x'x,xy,x ,x ) + B{x"x",x’y ,x,x" "),

* *
E(hy hyathyghyy)

* * ’ .7 —1 " 4 P 1_1
E(h11h14+h14h11) = B(x'x,xy,x'¥ ,x 7) + B(x"x’,x"y ,xy,x" 7),

-1 . -1
B(x’x,xy,x"x",x 7) + B(x"x’,x"y ,x'x,x" "),
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* * .. ’ / ’/
E(h12h13+h13h12) = B(x,x"x’) + B(x’,x’x),

* * /7 / /
E(h12h14+h14h12) = B{x,x’y")+B(x’,xy),

* * 4 / ’ n 14
E(h13h14+h14h13) = B{x“x,x'y’) + B(x"x",xy)

where B(-)s - the expected values of multiplication of the conditional
probabilities - can be easily defined in a similar way to other B(:)s
previously defined for Corollary 2.3. The notation " " " is for

one-period ahead forecasting horizon.

Corollary 2.4: Let V1 be the variance in (21) which is the first term

in (18). The variance V in (20) when p=q=1 under Ho becomes,

V = V1 + V2 where

p = BICH 1) %C(xn) 2B (x,x")/C(x)% + C(x’x)C(xy) (B(x"x,37,%7 ,x 1)

<
H

+ B(X"X’,X’y’,x,X’-l)} - C(X’X)ZC(xy){B(x,X’y’)+B(X’,xy)}/C(X)

C(x’x)C(xy)z{B(x,x“x’)+B(x’,x’x)}/c(x) ' C(X)Z{B(x'x,xy,x"x’,

X¥)x ,x'_l)} - C(x)C(x'x){B(x’x,xy,x’y’,x-l) + B(X"X',X'Y’ XY,
"1} = Cx)C(xy) (B(x'x,xy, x"x 5 1) + Bx"x’,x"y" ,x'x,x" 1)} +
Clx'x)2B(xy,x"y") + C(x’%)C(xy) (B(x"x,x" ¥ )+B(x"x" ,xy) } + Clxy)?

B(x’'x,x"x")]. (24)

Proof: Under H , 01€2=0394 holds and replace all the second moment of

£
hli(~) and hli(') with B(-)s defined above to get (24). 0O

The complicated variance formula V in (21) or (24) is
dramatically simplified wunder the third level approximation.

Corollary 2.5 below gives the results for, (a) p=q=1; (b) general



17

P, q<w,

Corollary 2.5: Under the third level approximation (i.e., {Xt}, {Yt}

1IDI) we have, (a), for p=q=1,

V = 4[c(x)1%K(x) [K(x)-C(x) 21 [K(y)-C(y) 21, (25)
(b), for p,q<m,

v = 41C(x) 1%PR(x) PR (x)-C(x) 21 IR (y) 3-c(y) 29, (26)

Proof: We will show only {(a) here because (b) can be shown

analogously. Under the assumption of IIDI,

C(x'x)=C(x) %, Cly)=C(x)C(¥), Kx'x)=K(x)%, K(xy)=K(x)K(y),
K(xy.x_1)=K(y), B(x,x"x)=K(x)C(x), B(x,xy)=K(x)C(y), B(X’x,x-1)=C(y),
B(xy,x 1)=C(y), B(x"x,xy)=K(x)C(x)C(y),B(x,x")=C(x)Z, B(x,x"x")=C(x)°,
B(x’,x"x)=K(x)C(x), B(x,x'y")=C(x)%c(y), B(x’,xy)=c(x)2c(y),
B(x'x,x"x’)=K(x)C(x)?, B(xy,x'y’)=C(x)Zc(y)?,
B(x’x,x’y")=K(x)C(x)C(y), B(x"x’,xy)=C(x)3C(y),

B(x'x,xy,%x",x 1)=K(x)C(x)C(y), B(x"x",x'y",x,x" 1)=c(x)3c(y),
B(x’%,xy,x"x’,x 1)=K(x)C(x)2C(y), B(x"x’,x’y",x’x,x* 1)=K(x)C(x)%C(y),
B(x'x,xy,x'¥",x 1)=K(x)C(x)C(v)2, Bx"x,x"y" ,xy,x’ " H=c(x)3c(v)?,

B(x’x,xy,x"X’,X’y,x-l,X’-1)=K(x)C(X)ZC(y)2.

Replacing B(-)s, C(-)s, and K(-)s in (21) and (24) with much simpler

expressions above, we show that
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V1 = 4[C(x)]2K(x)[K(x)—C(x)2][K(y)-C(y)Z] and V2 = 0.. Therefore the

variance V under IIDI assumption is exactly same as that in (25). o
1f {Xt}, {Yt} are 1IDI we have,

C(x’,x,y;e)C(x;e) - C(x",x;e)C(x,yse) =

C(x’,x,y;e) - C(x";€,)C(x5€,)C(y;¢€,) = 0. (27)
Tests of IIDI can be based upon the test statistic,
™/25(1) = T/2{0(x" 3,75, T)-Clx 5 €, TIC(x; €, TIC(y3 €5, T}, (28)

Under I1IDI, Baek and Brock (1992) show (28) is asymptotically normal

with mean 0 and variance V. Note that tests based upon
8 = C(x,x,y5e) - C(x"5€,)C(x;€,)C(y5€,), (29)

are not appropriate for testing HO (cf. (8) or (19)) because HO can be
true while S is not equal to zero because of temporal dependence in

{Xt} even though past Y’s do not help predict future X’s.

3. SIZE PERFORMANCE

The size performance of the nonlinear Granger cauéélity test
based upon (24) is studied by a small Monte Carlo experiment. The
size is calculated under the assumption that {Xt}’ {Yt} is IIDI.Z)

Hence the experiment we report should be taken as suggestive only. We

generated two series of 320 N(0,1) pseudo-random numbers by using the
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IMSL Fortran Subroutine. We calculated the test statistic R=2500
3) '

times using the formula
Tl/z[C(X’,X.Y)C(X) - ¢(x’,x)C(x,y)1/v}/2 (30)

where V in (26) is consistently estimated from the given sample.

Figure 1 gives a sample histogram for p=3, q=3, ¢=1, R=2500.4)
All of the histograms appear unimodal and bell-shaped. We looked at
size, sample statistics, and sample quantiles for p=q ranging from 1
to 6 and ¢=1 and 1.5. The choice of € values was motivated by the
findings of Hsieh and LeBaron in Brock, Hsieh, and Lebaron (1991) that
the related BDS (Brock, Dechert, and Scheinkman (1987)) statistic had
best size and power performance for ¢ in [0.5,1.5].

Turn now t&iEEEEE:;>for the size of the test statistic. Note
that, as p=q increases the size increases. Therefore we must use
size-corrected critical values for practical use. For small values of
€, the size is biased upward dramatically f;r higher values of p=q.
This appears to be caused by scarcity of the number of pairs of
m-histories that are within € in distance of each other for small €.
Because of this problem we recommend use of ¢=1.5 rather than €=1. A
serious issue is raised by the choice of ¢ and the lags p, aq.
Presumably if one had an alternative to the null which one wished
maximal power against, then one could choose €, p, q to maximize power
against that alternative. The optimal choice of ¢, p, q is beyond the
scope of this paper.

The second table, Table 2, exhibits the quality of the

approximation to normality. Even though sample means, medians, and
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standard deviations are very «close to the standard normal
distribution, all test statistics are skewed to the right, and except
for a few cases, they are also leptokurtic. The test statistic
approximates the normal distribution better for €=1.5 than for e€=1.
In Table 3, we correct the quantiles of the nonlinear Granger
causality statistic for practical inference. Since size 1is very
biased for certain parameter values, we recommend use of these size
corrected critical values. Note that the problem of bias does not
arise from poor accuracy of our estimates of C(x;e¢), C(y;e), K(x;e¢),
K(y;€). Table 4 reports simulated values of these quantities and
shows that they are close to the theoretical values reported by Hsieh
and Lebaron in Brock, Hsieh, LeBaron (1991).

Another strategy for dealing with the problems caused by poor
quality asymptotics 1is to wuse the bbotstrap to Dbootstrap the
distribution of the test statistic under the null. Versions of
bootstrap technology are now available for general stationary
observations. See Kunsch (1989), and Leger, Politis, Romano (1991).

Turn now to an application to money and income.

4. AN APPLICATION TO MONEY AND INCOME

In this part of the paper we apply the nonlinear Granger
causality test to money and income. The data consists of monthly
observations from January, 1959 to December, 1985, on seasonally
adjusted nominal M1 and industrial production from Stock and Watson
(1989). We thank Stock and Watson for giving us this data. Following
Stock and Watson, we take logarithms (denoted by m and y), and

estimate the bivariate Vector AutoRegression (VAR) given below,
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4

T QLY LT ¢ L a g - g ¢ 000,y

e T e * 0 g ¢ 02 e

e O s G e e

_(?é?zg)mt_s + Uy (31)

m, = 0.088 + 9.61x10™°t + 0.054 Yy = 0.066 y, _, - 0.015y, .

(2.30) (2.73) (2.15) (-1.54) (-0.32)
TG (e T8 T T8 T ailen) "t
T(hoen) v T(2lag) 3 T (2a00e) "0 Tl M
_(?éng)mt_s tu. . (32)

Here the F-test statistic=3.10 [2.09] with significance level 0.0060
[0.0542] for the restriction of all zero money [output] coefficients.

The issue we wish to treat in our paper concerns predictive
content of one series for the other beyond linear predictability.
Hence, we apply the nonlinear Granger causality test to the residuals
of the VAR model (31), (32). The above VAR was an attempt to extract
the linear structure. Application of the nonlinear causality test to
estimated residuals of linear models raises three issues. First, we
may have miss-specified the linear model even if the data generating
process was linear. We need to be precise about what we mean by
"linear."

We define a data generating process to be linear if it is
generated by a Wold-like representation with IID innovations, Note

that it is 71ID innovations not Jjust uncorrelated innovations that
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gives the definition content. Although we shall not deal with it in
this paper, we want to point out that IID-linearity is not the only
useful definition of linearity. Another definition is MDS-linearity
where "IID" is replaced by "MDS" and ."MDS" stands for Martingale
Difference Sequence. We attempted to deal with the linear
miss-specification problem by using a likelihood ratio test to select
the optimal lag length.

A second, and possibly more serious issue, is the use of
estimated residuals in the nonlinear causality test. This causes an
estimated parameters problem. Even if the correct linear model is
estimated and all of the potential incremental predictability lies in
the innovations of this linear model and even if Ho is true, the
asymptotic distribution of the test statistic under HO will typically
be distorted.

Baek and Brock (1992) have shown that a test of the null
hypothesis of IIDI model innovations based on (27) has the same
asymptotic distribution whether estimated residuals or true residuals
are used of IID-linear models provided the data generating process is
IID~linear and the correct IID~linear model is estimated. But that
result does not apply to a test of Ho (cf. (8) or (20)) on the
residuals of an estimated linear model. It is beyond the scope of
this paper to deal with it here.

A third issue is how to interpret the results of a rejection of
the null hypothesis when the test is applied to estimated residuals.
The problems are several. For example, the rejection may be due to
neglected nonstationarity or other kinds of dependence which may be of

no or little direct wuse for forecasting purposes such as
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heteroscedasticity.

Put X=u YEumt. We first test whether money residuals help

yt’

predict income residuals, i.e.,
H (u # u s C(x%,x,y;e)C(x;e) - C(x",x;e)C(x,y5e) = O, (33)

second, we reverse the roles of X and Y to test whether income
residuals help predict money residuals. The residual series were
normalized by their estimated standard deviations before applying the
tests.

We use the notation Ho(um $ uy), for the null hypothesis: {um}
does not incrementally help predict {uy}. Recall that {um}, {uy} are
residuals of the VAR (31), (32) so incremental predictive power of one
residual series for another measured by test statistic (20) is, by

definition, incremental nonlinear predictive power.

Table 5: Nonlinear Granger causality test for Money and Income
1959:12 - 1985:12

VAR Lag = 6, ¢ = 1.0

(p,a) (1,1) (2,2) (3,3) (4,4) (5,5) (6,6)

money - income 2.06 2.42 2.27 2.23 2.70 1.72
(0.0330) (0.0284) (0.0772) (0.1584) {(0.2016) (0.3436)

income = money 0.13 -1.70 -3.13 -2.18 -4,01 3.98

(0.4276) (0.0668) (0.0140) (0.1432) (0.0980) (0.2012)

VAR Lag = 6, € = 1.5

(D’Q) (1,1) (2,2) (313) (4,4) (5,5) (6,6)

money - income 0.82 1.18 0.95 1.86 1.47 0.57
(0.2024) (0.1388) (0.1880) (0.0608) (0.1164) (0.3296)
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income <+ money -0.13 -1.08 -1.86 -1.92 -3.27 -2.12
(0.4536) (0.1352) (0.0328) (0.0380) (0.0020) (0.0532)

Notes: P—valu*es, which are based on Table 3, are in parenthesis. The
null hypothesis of the first row is that money does not Granger cause
income and the second row’s null hypothesis is that income does not

Granger cause money.

Note that we are tgsting for incremental nonlinear predicfability
above and beyond linear predictability. When we apply a two-tail
test, the test statistics demonstrate that the first null hypothesis,
money does not incrementally nonlinearly Granger cause income, is
significant at 10% level at (1,1) and (2,2) variable lags for €=1.0
since their p-values are 0.03 and 0.0284. Moreover the second null
hypothesis that income does not incrementally nonlinearly Granger
cause money becomes significant at (3,3) for €=1.0, and at (3,3),
(4,4) and (5,5) for ¢=1.5 since their p-values are 0.014, 0.0328,
0.038, and 0.002 respectively.

The results in the Table above are consistent with the
possibility that the bivariate VAR does not capture all the structure
between money and income. A possible reason may be variation in the
strength of the causal relation across the business cycle.s) However,
we wish to empasize, as was stressed earlier, that rejection of the
null hypothesis 1is consistent with neglected nonstationarity and
neglected heteroscedasticity as well as potentially useful nonlinear
predictability. Given this caveat the results above suggest that it
might be worthwhile to see if improved prediction of money and income

can be done by a nonlinear model.

We empasize that the test was applied to normalized estimated
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residuals of an estimated bivariate VAR which contained estimated
trends. This introduces at least three estimated parameters problems
which may contaminate the asymptotic distribution of the test
statistic even if we correctly detrended and correctly identified the
VAR and even if the correct VAR has IIDI innovafions.

One way to attempt to correct for this problem is to bootstrap
the distribution of the test statistic under the bivariate model we
fitted by resampling the residuals of that model. In this way a 5%,
say, rejection region could be constructed under the null hypothesis
that the data was generated by our bivariate VAR with IIDI innovations
against the alternative of a nonlinear model. Of course this
procedure relies on correct identification of the VAR if the data is
truly VAR.

The bootstrap could also be used to correct for the estimated
parameters problem caused by normalizing each residual series by its
estimated standard deviation.

Finally the estimated parameters problem could be dealt with in
the usual way by using a Taylor series argument to correct the
asymptotic distribution. That strategy was used by Baek and Brock
(1992) on a simpler problem. These interesting questions must await

further research.

5. SUMMARY, CONCLUSIONS, AND SUGGESTIONS FOR FUTURE RESEARCH

In this paper we used a méasure of local spatial correlation,
called the correlation integral, in order to build a statistical test
for nonlinear (Granger) causal orderings between two variables. The

test could be implemented on raw data or, if there is a strong
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presumption of a linear relationship, such as VAR’s in aggregative
macro econometrics, the test could be implemented on residuals of
fitted linear models.

We executed a small Monte Carlo study of this test and found
serious bias in the size. Therefore we recommend use of size-adjusted
critical values or use of the bootstrap to bootstrap the distribution
of the statistic under the null. The bootstrap is a way of dealing
with the estimated parameters problem that arises in application.of
the test to residuals of VAR’s.

We applied our test to the residuals of a bivariate VAR fit to
money and income data and found some evidence consistjwith nonlinear
predictability in these residuals.

Given the increasing speed of modern computers we feel that, in
time, our methods will become useful for nonlinear causality testing.
However, more work needs to be done on techniques to improve size and
power performance before the techniques advocated in this paper are of

practical use.

FOOTNOTES

1. Craig Hiemstra (1992) has done preliminary work that suggests our
neglect of the intertemporally dependent terms hurts the size
performance of the test a lot. To resolve this problem, we use the

size adjusted critical values in the application section.

2. Hiemstra pointed out that asymptotic normality based critical

values from IIDI assumption lead to Qerious size problem. To avoid
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this criticism, we obtaiﬂlcritical values from the quantiles table

(Table 3) for the moneyzincome causa%é%y¢§¢74ék;‘zeh;a >

!

3. It costs about 230 U.S. dollars to run one Fortran simulation
program on a VWYLBUR mainframe for a given ¢ when the number of
replications is 2500 for a sample size of 320. The GAUSS programming
language was used to do the money and income application. This
application took about 4 minutes for p=q=6 and took less than 2

minutes for p=q=1 on a 20-MHz 386 PC.

4. Histograms for a range of values of p, q, € may be had by writing

the authors at the Korean address.

5. After we completed this work, Simon Potter gave us a copy of Holmes
and Tufte (1991). They show that conclusions drawn on causality
relations between real GNP and the nominal monetary base are dependent
on business cycle asymmetry. More precisely "several measures of the
monetary base are prima facie causes of real GNP only during
contractions. These results suggest that studies of the efficacy of
monetray policy should explicitly account for business cycle
asymmetry."” (Holmes and Tufte, (1991) abstract). It may be possible
that their findings lie behind our resuits, but this requires more

investigation.
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Table 1: Size of nonlinear Granger causality statistic

Standard Normal Distribution: Sample size = 320

p=1, g=1 €=1.0 €=1.5 N(0,1) p=2, g=2 €=1.0 €=1.5 N(0,1)
% ¢ -2.33 0.56 0.52 1.00 %< -2.33 1.9 0.92 1.00
%< -1.96 2.08 2.08 2.50 % < -1.96 4.52 2.12 2.50
%< -1.64 4.84 4.36 5.00 % <-1.64 7.56 4.48 5.00
%> 1.64 6.92 5.80 5.00 %> 1.64 9.20 7.08 5.00
%> 1.96 3.60 3.12 2.50 %> 1.96 6.12 3.52 2.50
%> 2.33 1.80 1.40 1.00 %> 2.33 3.60 1.84 1.00
p=3, q=3 €=1.0 €=1.5 N(0,1) p=4, g=4 €=1.0 ¢=1.5 N(0,1)
% < -2.33 5.32 1.52 1.00 % < -2.33 12.76 1.88 1.00
% < -1.96 9.20 2.80 2.50 %< -1.96 16.68 3.68 2.50
%< -1.64 13.00 5.72 5.00 % < -1.64 20.56 6.20 5.00
%> 1.64 14.44 7.24 5.00 %> 1.64 21.48 8.40 5.00
%> 1.96 11.04 4.56 2.50 %> 1.96 18.12 4.76 2.50
%> 2.33 7.16  2.24 1.00 %> 2.33 14.48 2.32 1.00
p=5, g=b €=1.0 €=1.5 N(0,1) p=6, gq=6 €=1.0 €=1.5 N(0,1)
% < -2.33 22.52 1.96 1.00 % < -2.33 31.12 3.80 1.00
% < -1.96 26.56 4.20 2.50 % < -1.96 34.28 6.36 2.50
% < -1.64 29.72 7.88 5.00 % < -1.64 36.88 10.16 5.00
%> 1.64 31.00 9.76 5.00 %> 1.64 34.80 11.32 5.00
%> 1.96 27.28 5.84 2.50 %> 1.96 32.64 7.52 2.50
%> 2.33 23.84 3.56 1.00 % > 2.33 30.00 4.92 1.00

Notes: IMSL subroutine DRNNOA was called to generate two sets of 320
standard normal random numbers,and RNSET was called to set initial
seeds. Total number of replications is 2500, The parameters, p and

q, denote 1 of the first and the second variable for nonlinear
Granger QEE§§EE§'test. Epsilon is the the scale parameter. Standard

normal distribution is denoted by N(0,1).




Table 2: Distribution of nonlinear Granger causality statistic

NP WYNY e

Standard Normal Distribution: Sample size = 320

p=1, q=1 €=1.0 €=1.5 N(O0,1) p=2, q=2 €=1.0 €=1.5 N(0,1)
Mean 0.00 0.02 0.00 Mean 0.01 0.03 0.00
Median -0.04 0.01 0.00 Median -0.03 -0.01 0.00
Std dev 1.03 1.00 1.00 Std dev 1.19 1.04 1.00
Skewkess 0.28 0.20 0.00 Skewness 0.22 0.20 0.00
(0.00) (0.00) (0.00) (0.00)
Kurtosis 3.05 3.06 3.00 Kurtosis 3.01 3.22 3.00
(0.63) (0.51) (0.96) (0.03)
p=3, q=3 €=1.0 €=1.5 N(0,1) p=4, q=4 €=1.0 €=1.5 N(0,1) ]
Mean 0.03 0.03 0.00 Mean 0.07 0.04 0.00 -
Median 0.00 -0.01 0.00 Median 0.01 -0.03 0.00 3
Std dev 1.51 1.22 1.00 Std dev 2.11 1.13 1.00 5
Skewkess 0.16 0.10 0.00 Skewness 0.23 0.08 0.00 ;
(0.00) (0.05) (0.00) (0.11) ;
Kurtosis 3.02 3.08 3.00 Kurtosis 3.38 3.20 3.00
(0.83) (0.39) {(0.00) {0.04)
p=5, q=5 €=1.0 €=1.5 N(0,1) p=6, q=6 €=1.0 €=1.5 N(0,1) i
Mean 0.09 0.04 0.00 Mean 0.10 0.04 0.00
Median -0.01 0.00 0.00 Median -0.14 0.01 0.00
Std dev 3.36 1.22 1.00 Std dev 5.19 1.38 1.00
Skewkess 0.19 0.25 0.00 Skewness 0.42 0.21 0.00
(0.00) (0.00) (0.00) (0.00)
Kurtosis 3.94 3.41 3.00 Kurtosis 4.48 3.50 3.00 ;
(0.00) (0.00) (0.00) (0.00) :

Notes: IMSL subroutine DRNNOA was called to generate two sets of 320 ‘ .
standard normal random numbers,and RNSET was called to set initial : i
seeds. Total number of replications is 2500. The parameters, p and ;
q, denote lags of the first and the second variable for nonlinear
Granger causlity test. Epsilon is the the scale parameter. Standard
normal distribution is denoted by N(0,1). Significance level is
reported in parenthesis for skewness and kurtosis.




Table 3: Quantiles of nonlinear Granger causality statistic

Standard Normal Distribution: Sample Size = 320

p=1, g=1 €=1.0 €=1.5 N(0,1) p=2, g=2 €=1.0 €=1.5 N(0,1)
1.0% -2.18 -2.15 -2.33 1.0% -2.56 -2.31 -2.33
2.5% -1.88 -1.86 -1.96 2.5% -2.23 -1.92 -1.96
5.0% -1.63 -1.57 -1.64 5.0% -1.88 -1.61 -1.64

10.0% -1.29 -1.23 -1.28 10.0% -1.48 -1.25 -1.28

25.0% -0.74 -0.67 -0.67 25.0% -0.79 -0.68 -0.67

75.0% 0.67 0.68 0.67 75.0% 0.78 0.70 0.67

90.0% 1.39 1.30 1.28 90.0% 1.58 1.39 1.28

95.02 1.81 1.71 1.64 95.0% 2.06 1.79 1.64

97.5% 2.14  2.60 1.96 97.5% 2.52  2.16 1.96

99.0% 2.60  2.60 2.33 99.0% 3.01  2.70 2.33

p=3, gq=3 €=1.0 e=1.5 N{0,1) p=4, q=4 €=1.0 €=1.5 N(0,1)
1.0% -3.24 -2.52 -2.33 1.0% -4.49 -2.60 -2.33
2.5% -2.81 -2.07 -1.96 2.5% -3.93 -2.20 -1.96
5.0% -2.36 -1.70 -1.64 5.0% -3.26 -1.75 -1.64

10.0% -1.91 -1.32 -1.28 10.0% -2.61 -1.34 -1.28

25.0% -1.03 -0.70 -0.67 25.0% -1.33 -0.70 -0.67

75.0% 1.00 0.70 0.67 75.0% 1.39 0.78 0.67

90.0% 2.04 1.43 1.28 90.0% 2.84 1.52 1.28

95.0% 2.65 1.89 1.64 95.0% 3.66 1.93 1.64

97.5% 3.16 2.29 1.96 97.5% 4.30 2.29 1.96

99.0% 3.68  2.62 2.33 99.0% 5.20  2.79 2.33

p=5, g=5 €=1.0 ¢=1.5 N(0,1) p=6, gq=6 €=1.0 €=1.5 N(0,1) §
1.0% -7.72 -2.68 -2.33 1.0% -11.22 -3.14 -2.33
2.5% -6.32 -2.20 -1.96 2.5% -9.71 -2.58 -1.96
5.0% -5.48 -1.84 -1.64 5.0% -7.91 -2.18 -1.64

10.0% -3.98 -1.49 -1.28 10.02 -6.08 -1.65 -1.28

25.0% -2.10 -0.76 -0.67 25.0% -3.11 -0.89 -0.67

75.0% 2.19 0.81 0.67 75.0% 3.08 0.92 0.67

90.0% 4.34 1.62 1.28 90.0% 6.52 1.75 1.28

95.0% 5.69 2.11  1.64 95.0% 8.92 2.32 1.64

97.5% 6.78 2.57 1.96 97.5% 11.43 2.88 1.96

99.0% 8.47 3.16 2.33 99.0% 13.95 3.62  2.33

- Notes: IMSL subroutine DRNNOA was called to generate two sets of 320
standard normal random numbers,and RNSET was called to set initial
seeds. Total number of replications is 2500. The parameters, p and
a4, denote lags of the first and the second variable for nonlinear
Granger causlity test. Epsilon is the the scale parameter. Standard
normal distribution is denoted by N(0,1).
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Figure ¢

DISTRIBUTION OF THE NONLINEAR GRANGER CAUSALITY TEST STATISTICS

P =3 Q=3 EPSILON = 1.0, ITERATIONS = 2500

TEST STATISTIC




Téble 4: Simulated Values of C(x;€), C(y:¢), K(x;€) and K(y;e¢)

€ =1.0 . € =1.5
C(x;¢€) 0.5195 (0.0068) 0.7104 (0.0053)
C(y;e) 0.5196 (0.0066) 0.7104 (0.0052)
K(x;€) 0.2984 (0.0101) 0.5365 (0.0100)
K(y;e€) 0.2985 (0.0099) 0.5366 (0.0099)

Notes: IMSL subroutine DRNNOA was called to generate two sets of 320
standard normal random numbers,and RNSET was called to set initial
seeds. Total number of replications is 2500.






