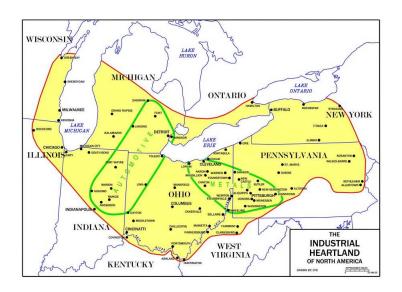
# Labor Market Conflict and the Decline of the Rust Belt


Simeon Alder<sup>1</sup> David Lagakos<sup>2</sup> Lee Ohanian<sup>3</sup>

<sup>1</sup>Wisconsin-Madison

<sup>2</sup>UCSD and NBER

<sup>3</sup>UCLA and NBER

### The Rust Belt

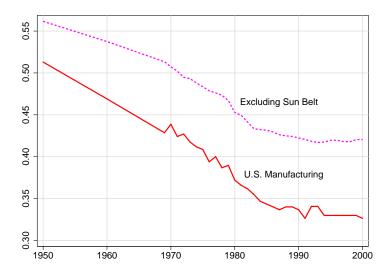


### Four Facts About Rust Belt Since WW II

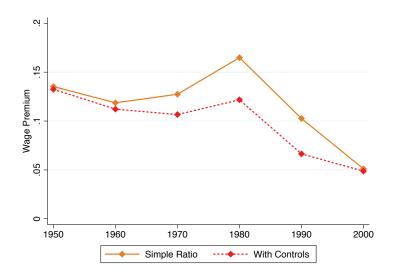
- Rust Belt share of economic activity declined slowly & persistently
- Rust Belt wages substantially higher than average after end of WW II
- 3. Labor-management relations were prone to conflict
- 4. Weak productivity growth in Rust Belt industries

### Five Facts About Rust Belt Since WW II

- Rust Belt share of economic activity declined slowly & persistently
- Rust Belt wages substantially higher than average after end of WW II
- 3. Labor-management relations were prone to conflict
- 4. Weak productivity growth in Rust Belt industries
- 5. Starting in early 1980s,
  - Rust Belt decline slowed
  - wage premia declined
  - labor market conflict decreased
  - Rust Belt productivity growth gap narrowed


## Our Theory

- ► Theory explores three channels of Rust Belt's decline:
  - lack of competition and inefficient rent sharing in labor markets (where unions have ability to hold up firms)
  - 2. rise of foreign competition:
    - effect of shift in absolute advantage on aggregate growth
    - effect of shift in comparative advantage on regional growth
  - structural change (secular shift of economic activity from manufacturing to non-manufacturing)
- Competition in labor and output markets affects firms' incentive to innovate
- ► Economic activity shifts to region with faster productivity growth




- 1. Four Facts
- 2. Model
- 3. Quantitative Analysis

## Rust Belt Employment Share Declined



## Rust Belt Wages High



#### Labor Market Conflict

Unionization and Stoppages pre-1980s

Panel A: Major Work Stoppages Rates (1958 to 1977)

|                 | Manufacturing | Services | Overall |
|-----------------|---------------|----------|---------|
| Rust Belt       | 19.2          | 3.2      | 9.7     |
| Rest of Country | 2.7           | 0.9      | 1.6     |

Panel B: Unionization Rates (1973 to 1980)

|                 | Manufacturing | Services | Overall |
|-----------------|---------------|----------|---------|
| Rust Belt       | 48.1          | 22.5     | 30.9    |
| Rest of Country | 28.4          | 14.4     | 18.1    |

## Labor Market Conflict

Stoppages pre- vs. post-1980s



## Rust Belt Productivity Growth Low

#### Labor Productivity Growth in Rust Belt Industries

|                                   | Annualized Growth Rate, % |           |           |
|-----------------------------------|---------------------------|-----------|-----------|
|                                   | 1958-1985                 | 1985-1997 | 1958-1997 |
| Blast furnaces, steelworks, mills | 0.9                       | 7.6       | 2.8       |
| Engines turbines                  | 2.3                       | 2.9       | 2.5       |
| Iron and steel foundries          | 1.5                       | 2.3       | 1.7       |
| Metal forgings/stampings          | 1.5                       | 2.8       | 1.9       |
| Metalworking machinery            | 0.9                       | 3.5       | 1.6       |
| Motor vehicles/equipment          | 2.5                       | 3.8       | 2.9       |
| Photographic equipment/supplies   | 4.7                       | 5.1       | 4.9       |
| Railroad locomotives/equipment    | 1.6                       | 3.1       | 2.0       |
| Screw machine products            | 1.2                       | 1.1       | 1.2       |
| Rust Belt weighted average        | 2.0                       | 4.2       | 2.6       |
| Manufacturing weighted average    | 2.6                       | 3.2       | 2.8       |

## Mechanism

```
labor market conflict \Rightarrow \quad \text{inefficient} \\ \quad \text{rent-sharing} \\ \quad \Rightarrow \quad \text{low innovation rates} \\ \quad \Rightarrow \quad \text{low employment growth}
```

## Non-Structural Evidence (I): Work Stoppages (1957-78)

Unit of Observation: state-industry (2-digit)

|                        | Log Employment Growth 1950-2000 |          |
|------------------------|---------------------------------|----------|
| Independent Variables  | (1)                             | (2)      |
|                        |                                 |          |
| Work Stoppages / Year  | -0.30***                        | -0.27*** |
|                        | (0.063)                         | (0.056)  |
| State Manufacturing    | -1.90***                        |          |
| Employment Share, 1950 | (0.13)                          |          |
| State Employment       | -2.10***                        |          |
| Herfindahl Index, 1950 | (0.38)                          |          |
| Constant               | -0.87***                        | -1.40*** |
|                        | (0.10)                          | (0.13)   |
| Observations           | 5,128                           | 5,128    |
| $R^2$                  | 0.617                           | 0.735    |
| Industry Fixed Effects | Υ                               | Υ        |
| State Fixed Effects    | N                               | Υ        |

# Non-Structural Evidence (II): Unionization Rate (1973-77)

Unit of Observation: state-industry (2-digit)

|                        | Log Employment Growth 1950-2000 |          |
|------------------------|---------------------------------|----------|
| Independent Variables  | (1)                             | (2)      |
|                        |                                 |          |
| Unionization Rate      | -0.56***                        | -0.30*** |
|                        | (0.077)                         | (0.072)  |
| State Manufacturing    | -1.83***                        |          |
| Employment Share, 1950 | (0.12)                          |          |
| State Employment       | -2.41***                        |          |
| Herfindahl Index, 1950 | (0.37)                          |          |
| Constant               | -0.83***                        | -1.45*** |
|                        | (0.10)                          | (0.13)   |
| Observations           | 4,691                           | 4,691    |
| $R^2$                  | 0.637                           | 0.747    |
| Industry Fixed Effects | Υ                               | Υ        |
| State Fixed Effects    | N                               | Υ        |

# Non-Structural Evidence (III): Strikes / Year (1927-34)

Unit of Observation: state-industry (2-digit)

|                        | Log Employment Growth 1950-2000 |           |
|------------------------|---------------------------------|-----------|
| Independent Variables  | (1)                             | (2)       |
|                        |                                 |           |
| Strikes 1927-34        | -0.019***                       | -0.012*** |
|                        | (0.0040)                        | (0.0039)  |
| State Manufacturing    | -2.68***                        |           |
| Employment Share, 1950 | (0.14)                          |           |
| State Employment       | 3.85***                         |           |
| Herfindahl Index, 1950 | (0.68)                          |           |
| Constant               | -0.70***                        | -1.33***  |
|                        | (0.18)                          | (0.19)    |
| Observations           | 2,834                           | 2,834     |
| $R^2$                  | 0.712                           | 0.745     |
| Industry Fixed Effects | Υ                               | Υ         |
| State Fixed Effects    | N                               | Υ         |

- 1. Four Facts
- 2. Model
- 3. Quantitative Analysis

## **Key Ingredients**

- Risk-neutral households, inelastic labor supply
- ► Two regions: Rust Belt (R), Rest of Country(S)
- ▶ Two sectors: manufactures (m), non-tradables (n)
- ► Two countries: U.S., Rest of the World (\*)
- ► Technologies linear in labor in all sectors / regions / countries

### Static Problem

- ► For *given* productivities in all sectors / regions / countries, the model has standard features:
  - ► Trade à la Armington in manufactured goods
  - Manufactured goods and non-tradeables (services) are gross complements in CES production technology of final good
- Labor market in Rust Belt manufacturing is non-competitive but does not affect static allocation of labor across sectors / regions

### Final Good

Final good in each region produced from manufactured goods and local services:

$$Y_{t}^{\cdot} = \left(\mu m_{t}^{\frac{\theta-1}{\theta}} + (1-\mu)(n_{t}^{\cdot})^{\frac{\theta-1}{\theta}}\right)^{\frac{\theta}{\theta-1}}$$

Manufactured good is composite of differentiated varieties (indexed by j) in a continuum of sectors (indexed by i), produced at home and abroad:

$$m_{t} = \left(\int_{0}^{1} m_{t}(i)^{\frac{\sigma-1}{\sigma}} di\right)^{\frac{\sigma}{\sigma-1}}$$

$$m_{t}(i) = \left(\int_{0}^{1} m_{t}(i,j)^{\frac{\rho-1}{\rho}} dj + \int_{0}^{1} m_{t}^{*}(i,\tilde{j})^{\frac{\rho-1}{\rho}} d\tilde{j}\right)^{\frac{\rho}{\rho-1}},$$

where \* denotes varieties produced abroad



### Final Good

- Final output consumed or used for investment
- $\blacktriangleright$  Manufactures and services are gross complements, i.e.  $\theta \in [0,1)$
- ▶ Intermediates are gross substitutes , i.e.  $\rho > \sigma > 1$

### Intermediate Goods

- ▶ Industries  $i \in [0, \lambda)$  located in Rust Belt (R)
- ▶ Industries  $i \in [\lambda, 1]$  located in Rest-of-Country (S)
- ▶ Competition in labor markets varies by region (captured by time-varying union bargaining power  $\beta_t$ )

### Intermediate Goods

Each intermediate firm (producing variety j in industry i) has access to production and innovation technologies.

1. Production is linear in labor:

$$m_t = z_t \cdot l_t$$

2. By investing C(x, z, Z) units of the final good, firm can enhance idiosyncratic productivity by rate x next period:

$$z_{t+1} = z_t(1+x_t)$$

### Union

- Union bargains with (individual) Rust Belt producers over profits
- ▶ Protocol is atemporal Nash with time-varying bargaining weight  $\beta_t$ :

$$\beta_t = \arg\max_b \left( (1 - b) \Pi^R \right)^{1 - \beta_t} \left( b \Pi^R \right)^{\beta_t}$$

► Results robust to alternative protocols (e.g. dynamic take-it-or-leave-it bargaining ► TIOLI)

## Intermediate Firms' Dynamic Problem (Innovation)

In the Rest-of-Country:

$$V^{S}(Z, U, z_{S}; \beta, \tau) = \max_{x_{S}>0} \left\{ \Pi^{S}(Z, U, z_{S}; \beta, \tau) - P(Z, U; \beta, \tau) \cdot C(x_{S}, z_{S}, Z) + \delta E \left[ V^{S}(Z', U', z'_{S}; \beta', \tau) \right] \right\},$$

In the Rust Belt:

$$\begin{split} V^R(Z,U,z_R;\beta,\tau) = & \max_{x_R>0} & \left\{ \frac{(1-\beta)\Pi^R(Z,U,z_R;\beta,\tau)}{-P(Z,U;\beta,\tau) \cdot C(x_R,z_R,Z)} \right. \\ & \left. + \delta E \left[ V^R(Z',U',z_R';\beta',\tau) \right] \right\}, \end{split}$$

### Worker's Problem

- Rust Belt manufacturing jobs pay premium over competitive wage
- "Closed Shop" in Rust Belt manufacturing implies rationing of jobs
- Each period fixed fraction of the labor force retires and non-union workers decide whether to apply for lifetime union card

▶ Quantitative Analysis

- 1. Four Facts
- 2. Model
- 3. Quantitative Analysis

## Quantitative Analysis

▶ How big is model's decline in Rust Belt employment share?

## Quantitative Analysis

- ▶ How big is model's decline in Rust Belt employment share?
- Discipline quantitative exercise by:
  - 1. extent of competition from foreign producers (regional trade shares, 1950-2000)

    import shares are low in 1950 and rising gradually
  - 2. labor market frictions (estimated wage premiums, 1950-2000) wage premia high 1950 to early 1980s, followed by sharp drop
  - 3. structural change (manufacturing vs. non-manufacturing) secular decline of manufacturing employment share

- ightharpoonup au iceberg trade costs
- $lackbox{}\chi^{*S}$  productivity growth in foreign S manufacturing
- $(\beta_H, \beta_L)$  union's bargaining weight
- $\triangleright$   $\lambda$  share of varieties produced by Rust Belt
- $ightharpoonup \alpha$  linear (scale) parameter of cost function
- $ightharpoonup \gamma$  curvature parameter of cost function
- ightharpoonup  $\mu$  CES weight on manufactures
- $ightharpoonup \chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



- ► Aggregate import share: 3% (1950)
- $\blacktriangleright~\chi^{*S}$  productivity growth in foreign S manufacturing
- $(\beta_H, \beta_L)$  union's bargaining weight
- $\triangleright$   $\lambda$  share of varieties produced by Rust Belt
- $ightharpoonup \alpha$  linear (scale) parameter of cost function
- $ightharpoonup \gamma$  curvature parameter of cost function
- ightharpoonup  $\mu$  CES weight on manufactures
- lacksquare  $\chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- $(\beta_H, \beta_L)$  union's bargaining weight
- $\triangleright$   $\lambda$  share of varieties produced by Rust Belt
- lacktriangledown  $\alpha$  linear (scale) parameter of cost function
- $ightharpoonup \gamma$  curvature parameter of cost function
- ightharpoonup  $\mu$  CES weight on manufactures
- lacksquare  $\chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing

- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- $\triangleright$   $\lambda$  share of varieties produced by Rust Belt
- ightharpoonup lpha linear (scale) parameter of cost function
- $ightharpoonup \gamma$  curvature parameter of cost function
- ightharpoonup  $\mu$  CES weight on manufactures
- lacksquare  $\chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- $ightharpoonup \alpha$  linear (scale) parameter of cost function
- $ightharpoonup \gamma$  curvature parameter of cost function
- ightharpoonup  $\mu$  CES weight on manufactures
- $ightharpoonup \chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- ▶ 1.8% TFP growth (average, 1950-2000)
- $ightharpoonup \gamma$  curvature parameter of cost function
- $\blacktriangleright$   $\mu$  CES weight on manufactures
- $ightharpoonup \chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- ▶ 1.8% TFP growth (average, 1950-2000)
- ▶ 8.5% Investment-to-GDP ratio (average, 1950-2000)
- ightharpoonup  $\mu$  CES weight on manufactures
- lacksquare  $\chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing

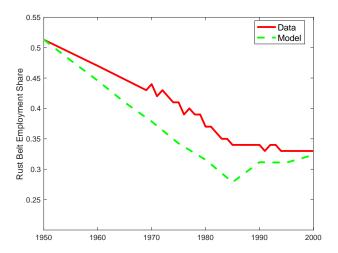
- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- ▶ 1.8% TFP growth (average, 1950-2000)
- ▶ 8.5% Investment-to-GDP ratio (average, 1950-2000)
- ▶ 30.2% employment share of manufacturing (national, 1950)
- lacksquare  $\chi^n$  exogenous productivity growth in service sector
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- ▶ 1.8% TFP growth (average, 1950-2000)
- ▶ 8.5% Investment-to-GDP ratio (average, 1950-2000)
- ▶ 30.2% employment share of manufacturing (national, 1950)
- ▶ 12.9% employment share of manufacturing (national, 2000)
- ▶  $z_{1950}^{*R}$  foreign Rust Belt productivity in 1950
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing



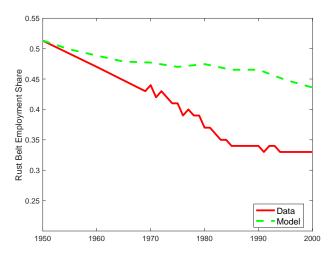
- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- ▶ Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- ▶ 1.8% TFP growth (average, 1950-2000)
- ▶ 8.5% Investment-to-GDP ratio (average, 1950-2000)
- ▶ 30.2% employment share of manufacturing (national, 1950)
- ▶ 12.9% employment share of manufacturing (national, 2000)
- ▶ Rust Belt import share: 5.7% (1958)
- $\triangleright \chi^{*R}$  productivity growth in foreign R manufacturing




- ► Aggregate import share: 3% (1950)
- ► Aggregate import share: 12.3% (2000)
- Wage premium: 12% (pre-1985), 5% (post-1985)
- ▶ Rust Belt employment share (manufacturing): 51.3% (1950)
- ▶ 1.8% TFP growth (average, 1950-2000)
- ▶ 8.5% Investment-to-GDP ratio (average, 1950-2000)
- ▶ 30.2% employment share of manufacturing (national, 1950)
- ▶ 12.9% employment share of manufacturing (national, 2000)
- ▶ Rust Belt import share: 5.7% (1958)
- ▶ Rust Belt import share: 91% (1994)

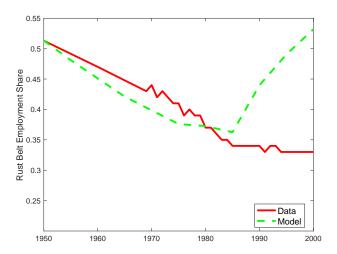


## Rust Belt Employment Share in Model and Data


 $\beta_H$  (1950 to 1984) and  $\beta_L$  (1985 to 2000)






# Counterfactual (1): Weak Unions

 $\beta_L$  (1950-2000)



# Counterfactual (2): "No" Shift in Comparative Advantage

 $\chi^{*R} = \chi^{*S}$ 



#### Conclusion

- ▶ Relative to the rest of the US, Rust Belt declined in economic terms (employment, value added) from 1950 to 2000
- ► Theory emphasizes lack of competition as force of Rust Belt's decline
- Quantitative model can generate sizeable share of employment loss