Deflationary Equilibrium under Uncertainty

Philip Coyle (U. of Wisconsin) Naoki Maezono (U. of Tokyo) Taisuke Nakata (U. of Tokyo) Sebastian Schmidt (ECB)

What We Do

Theoretical

- We theoretically analyze the so-called deflationary equilibrium of the New Keynesian model with an interest-rate lower bound and make a novel observation.
- Novel observation: Inflation is higher at the Risky Steady State (RSS) than at the Deterministic Steady State (DSS).
 - RSS takes into account uncertainty, while DSS does not.
 - Certainty Equivalence breaks down.

Empirical

- We relate the theory to the Japanese experience in 2010s.
 - Lack of deflation in 2010s while at the lower bound is more consistent with RSS than with DSS

<u>Literature</u>

Uncertainty in Macroeconomics

Many

DSGE-based Analysis of the Japanese economy

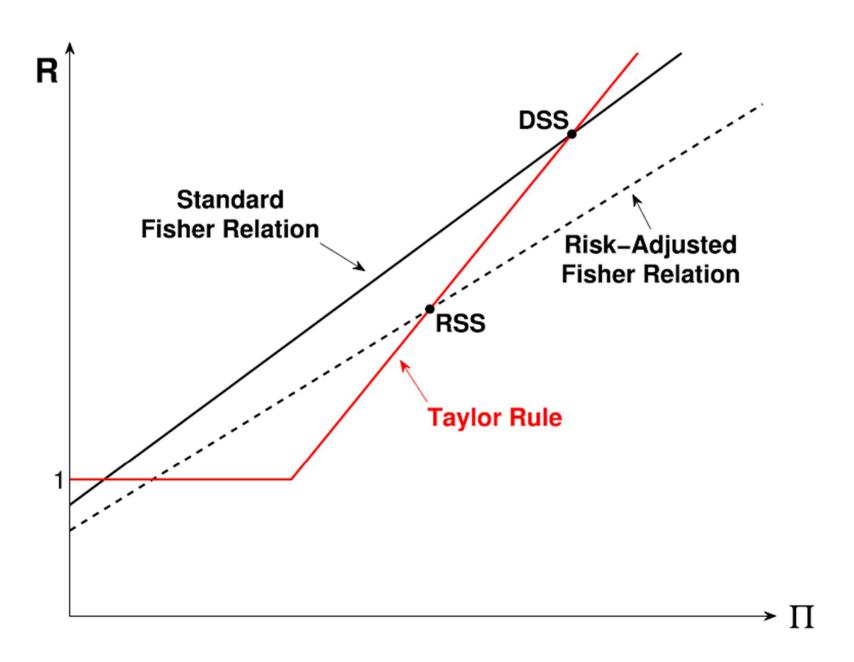
Many

Interaction of Uncertainty and the ELB

- Uncertainty in a fundamental-driven liquidity trap
 - Basu and Bundick (2017), Nakata (2017), etc.
- Risky steady state of the target equilibrium in the NK model
 - Hills, Nakata, and Schmidt (2019), Nakata and Schmidt (2019)
 - An explanation of below-target inflation in the U.S. in the second half of 2010s
- Our paper: Risky steady state of the deflationary equilibrium

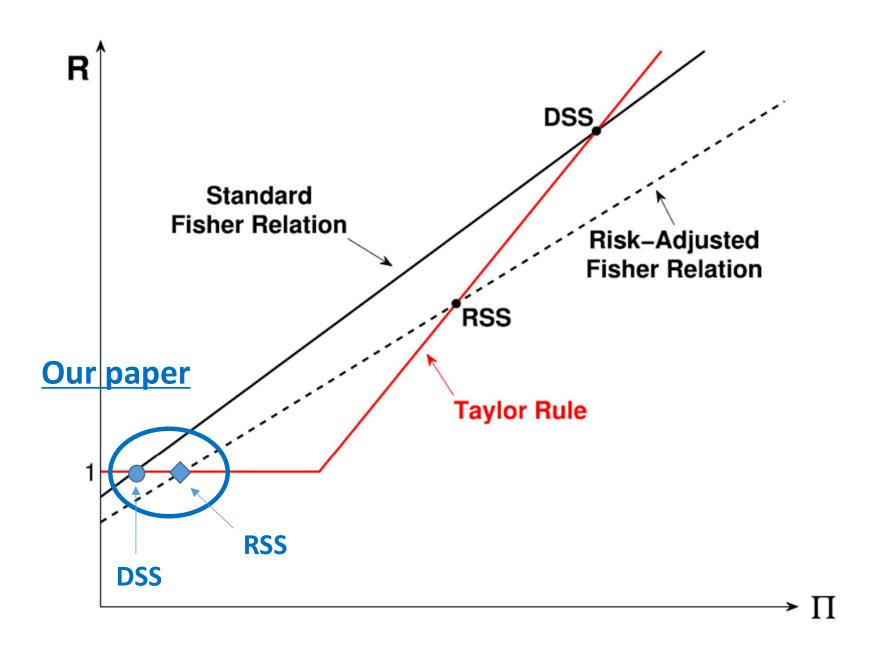
Illustrative figure (from Hills et al. (2019))

T.S. Hills, T. Nakata and S. Schmidt/European Economic Review 120 (2019) 103321



Illustrative figure (from Hills et al. (2019))

T.S. Hills, T. Nakata and S. Schmidt/European Economic Review 120 (2019) 103321



<u>Outline</u>

Theory

Empirics

Log-linearized NK model with an interest-rate lower bound

- ...and with a natural-rate shock.
 - For analytical results: Three-state and i.i.d.
 - For numerical results: AR(1) process.

<u>Model</u>

$$y_{t} = Ey_{t+1} - \sigma \left(i_{t} - E\pi_{t+1} - (r^* + \delta_{t})\right)$$

$$\pi_t = \kappa y_t + \beta E \pi_{t+1}$$

$$i_t = \max \left[0, r^* + \varphi_{\pi} \pi_t\right]$$

- \bullet y_t : output
- \bullet π_t : inflation
- i_t : policy rate
- r*: steady-state natural rate
- \bullet δ_t : a shock to the natural rate
- $\bullet \ \phi_{\pi} > 1$

$$\delta_{\rm H}=c$$
, $\delta_{\rm M}=0$, $\delta_{\rm L}=-c$

$$\begin{aligned} & \text{Prob}(\delta_t = \delta_H) = \frac{1 - p_M}{2} \\ & \text{Prob}(\delta_t = \delta_M) = p_M \\ & \text{Prob}(\delta_t = \delta_L) = \frac{1 - p_M}{2} \end{aligned}$$

- \bullet c ≥ 0
 - c = 0 is no-uncertainty case.
- $0 < p_{M} < 1$

- Let $\{y(\cdot), \pi(\cdot), \text{ and } i(\cdot)\}$ be the set of time-invariant policy functions for output, inflation, and the policy rate, respectively, satisfying EE, PC, and the Taylor rule.
- We call $\{y(\cdot), \pi(\cdot), \text{ and } i(\cdot)\}$ "an equilibrium."
- In the model with a three-state shock, an equilibrium is characterized by
 - \bullet y_H, y_M, y_L
 - \bullet π_H , π_M , π_L
 - \bullet i_H, i_M, i_L

- A Risky Steady States (RSS) of the model is given by $\{y_M, \pi_M, \text{ and } i_M\}$.
 - ...because $\delta_{\rm M}=0$.

• A Deterministic Steady States (DSS) of the model is given by $\{y_M, \pi_M, \text{ and } i_M\}$ under $\mathbf{c} = \mathbf{0}$.

- Provided that c is sufficiently small, there are two equilibria.
 - We call one with higher inflation as the target equilibrium.
 - We call one with lower inflation as the deflationary equilibrium.
- DSS and RSS for each of the two equilibria
 - One DSS and one RSS associated with the target equilibrium (focus of Hills et al. (2019)).
 - One DSS and one RSS associated with the deflationary equilibrium (focus of this paper).

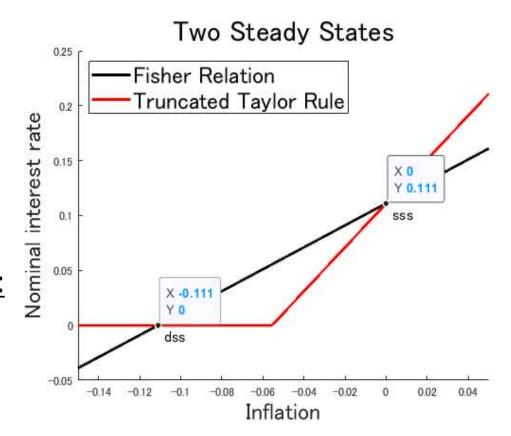
DSS (Deterministic Steady State) of Two Equilibria

DSS of the Targeted Equilibrium:

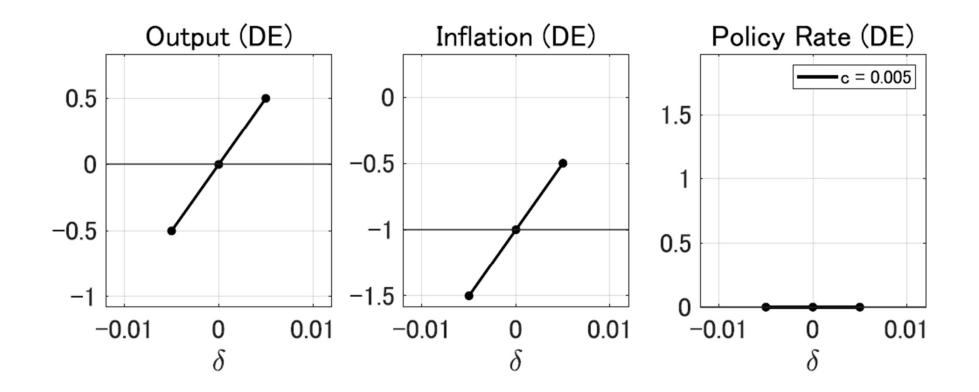
- $\pi_{ss} = 0$, $i_{ss} = r^* > 0$
- ELB does not bind.

DSS of the Deflationary Equilibrium:

- $\pi = -r^*$, $i_{ss} = 0$
- ELB binds.

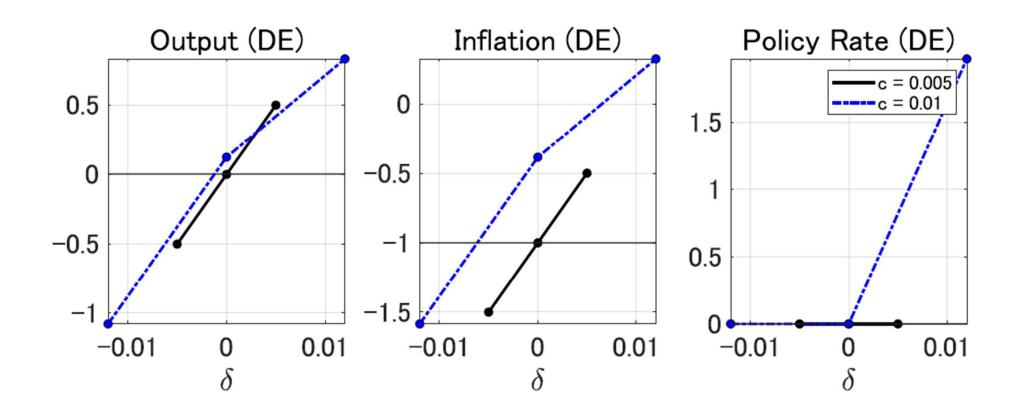


<u>Deflationary Equilibrium with Low Uncertainty</u>



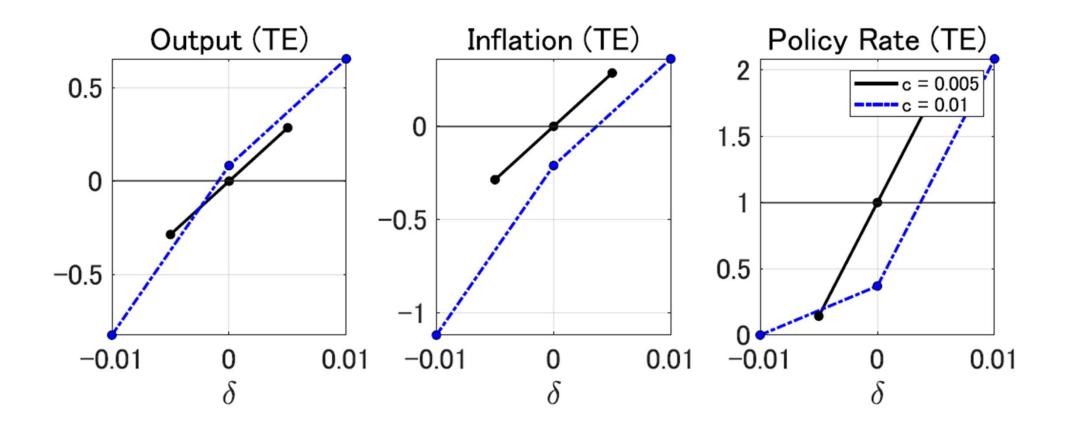
- For sufficiently small c, RSS inflation is the same as DSS inflation.
 - Key: The distributions of future y and π are symmetric, because ELB binds in all three states.
 - Thus, Certainty Equivalence holds.

Deflationary Equilibrium with High Uncertainty



- For sufficiently large c, inflation is higher at the RSS than at the DSS.
 - Key: The distribution of future y and π are NOT symmetric anymore, because ELB binds in L and M, but not in H state.
 - Thus, Certainty Equivalence breaks down.

...in contrast to what happens in the Target Equilibrium



- For a sufficiently large c, inflation is lower at the RSS than at the DSS
 - ...a result examined in Hills et al. (2019)

<u>Understanding the results via risk-adjusted Fisher</u> Relation

• Fisher relation: Relationship b/w i_M and π_M implied by the Euler equation without uncertainty.

$$y_{M} = y_{M} - \sigma (i_{M} - \pi_{M} - r^{*})$$

$$\Rightarrow i_{M} = r^{*} + \pi_{M}$$

<u>Understanding the results via risk-adjusted Fisher</u> <u>Relation</u>

• Risk-adjusted Fisher Relation: Relationship b/w i_M and π_M implied by the Euler equation with uncertainty.

$$y_{M} = Ey - \sigma (i_{M} - E\pi - r^{*})$$

• Where is π_M ? Inside the expectation!

$$\begin{aligned} y_{M} &= p_{M} y_{M} + (1 - p_{M}) \frac{y_{H} + y_{L}}{2} \\ -\sigma \left(i_{M} - (p_{M} \pi_{M} + (1 - p_{M}) \frac{\pi_{H} + \pi_{L}}{2}) - r^{*}\right) \end{aligned}$$

$$y_{M} = [p_{M}y_{M} + (1 - p_{M})\frac{y_{H} + y_{L}}{2}]$$

$$-\sigma \left(i_{M} - [p_{M}\pi_{M} + (1 - p_{M})\frac{\pi_{H} + \pi_{L}}{2}] - r^{*}\right)$$

When c is sufficiently small, allocations are symmetric.

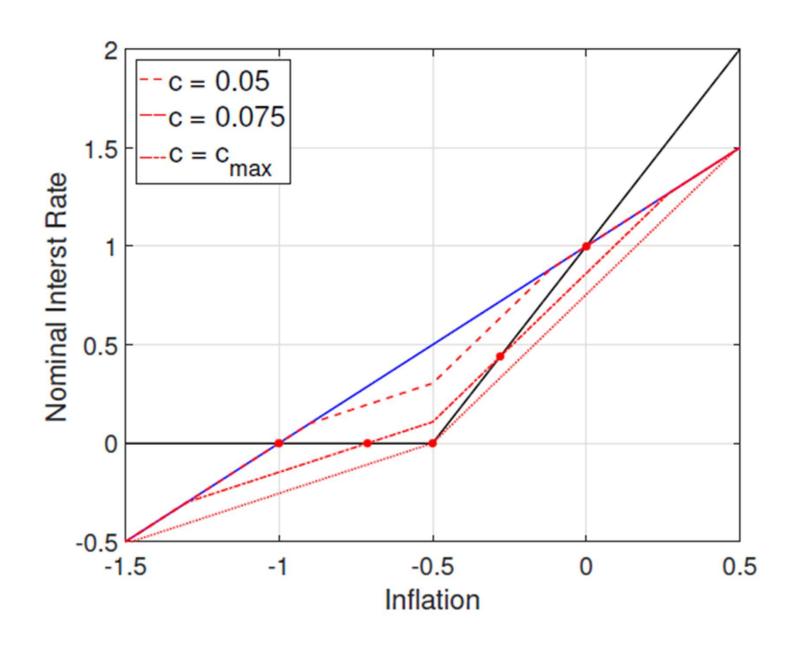
$$y_{M} = p_{M}y_{M} + (1 - p_{M})y_{M} - \sigma (i_{M} - [p_{M}\pi_{M} + (1 - p_{M})\pi_{M}] - r^{*})$$

$$\Rightarrow i_{M} = r^{*} + \pi_{M}$$

When c is sufficiently large, allocations are NOT symmetric.

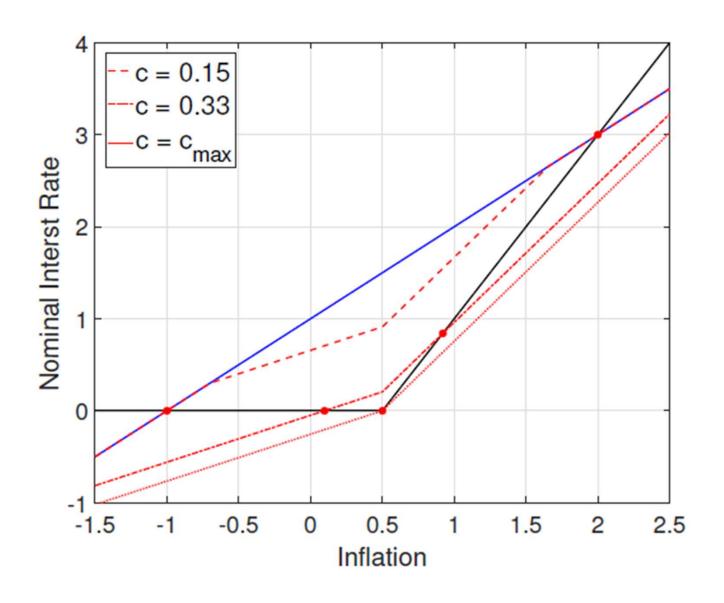
$$\begin{aligned} y_{M} &= p_{M} y_{M} + (1 - p_{M}) (y_{M} - h_{x}(\pi_{M})) \\ -\sigma \left(i_{M} - p_{M} \pi_{M} + (1 - p_{M}) (\pi_{M} - h_{\pi}(\pi_{M})) - r^{*}\right) \\ & ... \\ &\Rightarrow i_{M} = (r^{*} + \alpha_{1}) + \alpha_{2} \pi_{M} \end{aligned}$$

<u>Understanding the results via risk-adjusted Fisher</u> <u>Relation</u>



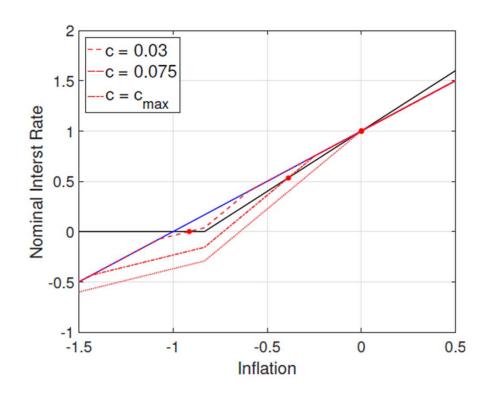
Interesting Cases

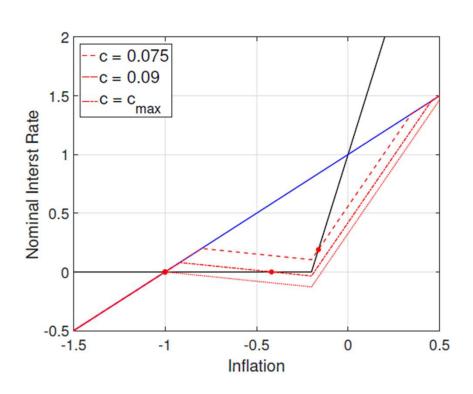
- At the RSS of the deflationary equilibrium, inflation is positive (Left)
 - (i) if the inflation target is positive, and (ii) if c is sufficiently high.



Interesting Cases

- At the RSS of the deflationary equilibrium, the interest rate is not constrained by the ELB (Left)
 - ...if the inflation coefficient in the Taylor rule is sufficiently small.

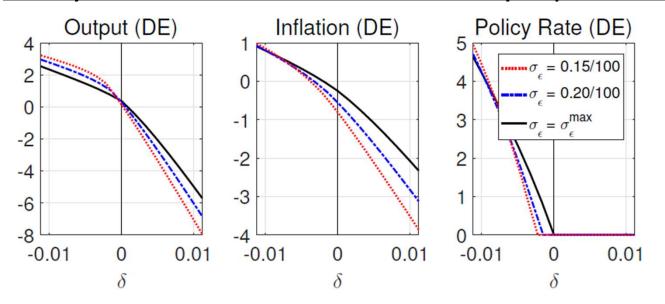




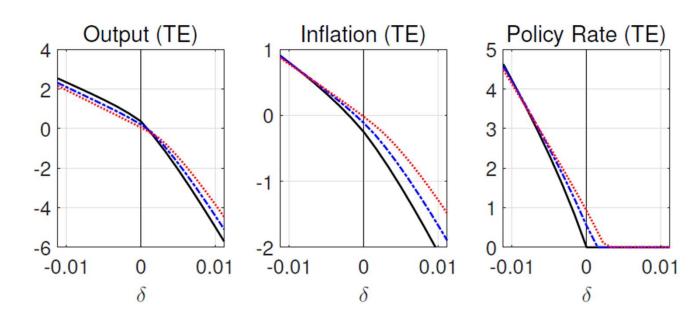
- At the RSS of the target equilibrium, the interest rate is constrained by the ELB (Right)
 - ...if the inflation coefficient in the Taylor rule is sufficiently large.

Model with AR(1)

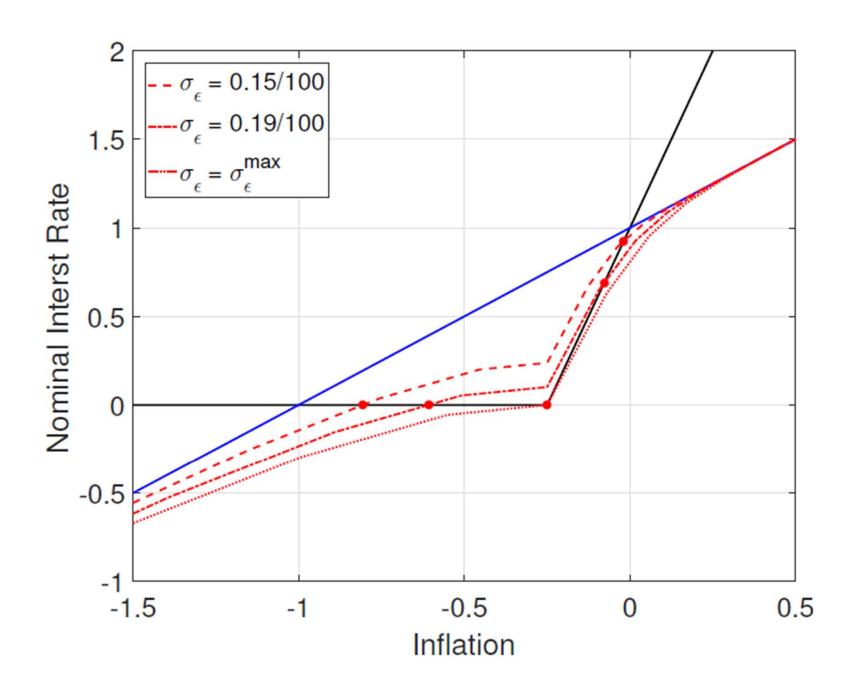
Policy functions for the Deflationary Equilibrium



Policy functions for the Target Equilibrium



Model with AR(1)

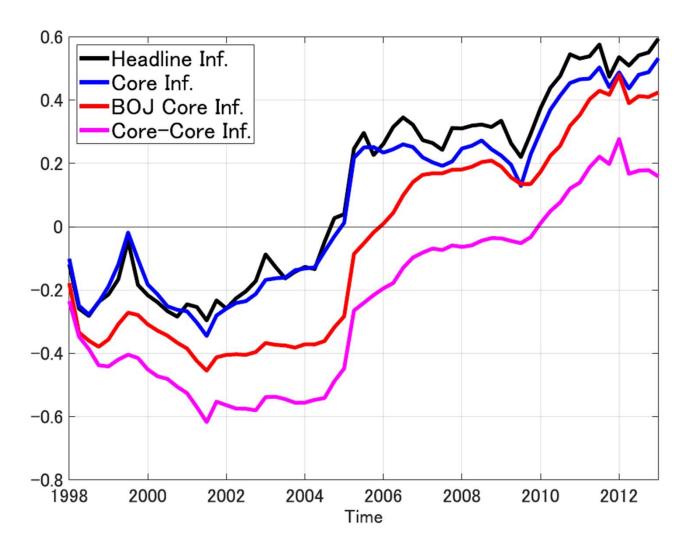


<u>Outline</u>

Theory

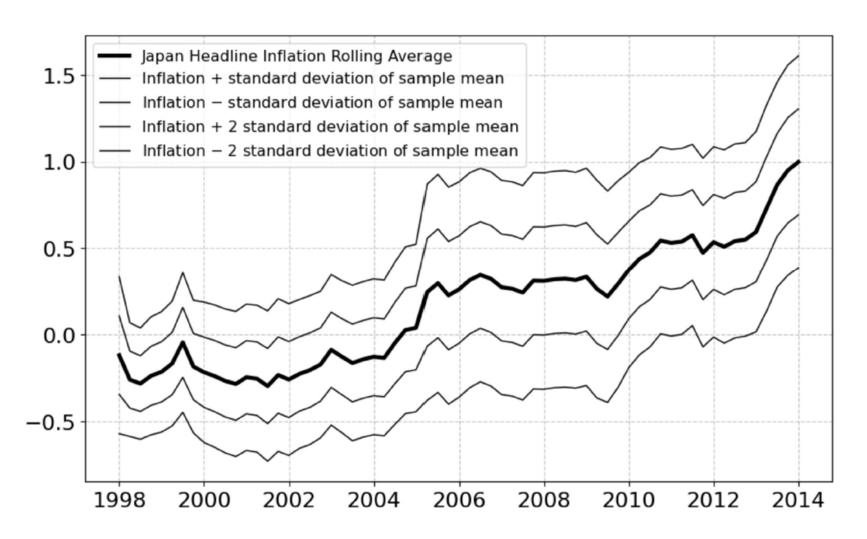
Empirics

10-yr rolling average of four measures of inflation in Japan



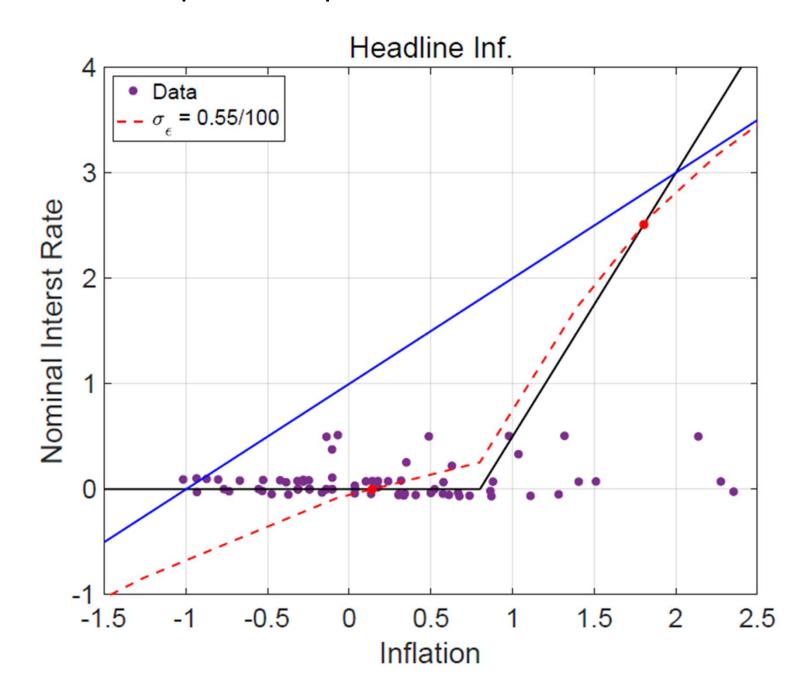
- Inflation in Japan seems to have been fluctuating around a positive rate in 2010s
 - ...even since mid-2000s if focus on headline, core, and BOJ core.

Confidence bands for the 10-yr rolling average



- ...or fluctuating around "zero or slightly positive."
 - Still, it does not look like inflation has been fluctuating around a negative rate.

 Once uncertainty is taken into account, deflationary equilibrium is consistent with Japanese experience in 2010s.



Summary

• In the deflationary equilibrium, inflation is higher at the **R**isky **S**teady **S**tate (RSS) than at the **D**eterministic **S**teady **S**tate (DSS).

 Lack of deflation in 2010s while at the lower bound is more consistent with RSS than with DSS.