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their new fonns of politics through struggle. In the process, they forged new rela- . 
tionships to national centres of power. 

NOTES 

1. Manchester masters contested, for example, any rights of free labourers to form unions 
and to strike. In common with their fellows elsewhere in Britain and North America, they 
advocated individual-te-individual contracts as the basis of employment (see Steinfeld 
2001). 

2. For technical details and closely related research, see Munger (1979, 198Ia,b); Schweitzer 
(1979); Schweitzer and Shumons (! 981); Tilly and Schweitzer (1982); Steinberg (! 999a,b). 

3. A full 38% of the catalogue's 6884 contentious gatherings from 1828 to 1834 occurred 
in Middlesex, a proportion inflated by London-centred sources, yet still indicative of 
London's primordial place in national politics. 

4. The category Constable brings together different varieties of regularly established local 
police; Middlesex attacks of crowds on constables in 1828-31 consisted largely of resist­
ance to Robert Peers New Police. 

5. Many workers participated in formations here classified as Crowds, but we persist in 
using the names our sources assigned to fonnations rather than second-guessing the 
sources. We treat the assertion and attribution of public names as consequential political 
acts, expressions of political identities (see Jenson 1993; Tilly I 998a,b ). 
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Networks, Diffusion, and Cycles of 
Collective Action 

Pamela E. Oliver and Daniel J. Myers 

This chapter shows how different 'network' arguments about how protest spreads 
imply quite different underlying mechanisms that in turn produce different diffu­
sion processes. There is considerable ambiguity about the relationships among 
networks, diffusion, and action cycles and the way these can be identified in 
empirical data. We thus both seek to unpack the 'network' concept into different 
kinds of processes, and then show how these different network processes affect 
the diffusion processes we are studying. We sketch out some fonnal models to 
capture some of these distinctions. 

This chapter extends recent work (Oliver and Myers forthcoming) that develops 
diffusion models of protest cycles, and focuses on discussing links between net­
work concepts and diffusion concepts in understanding protest cycles. We con­
ceive of social movements as diffuse action fields in which actions affect other 
actions and the action repertoires of the different actors coevolve through time and 
through interaction with each other. Movement activists and regimes engage in 
strategic interactions, each responding to the actions of the other. Different organ­
izations within a movement respond to the actions of others, as successful tactical 
innovations and movement frames diffuse to new organizations. News media 
cover or fail to cover particular protests, and thus encourage or discourage future 
protests. Each of these processes affects the others, in a complex, multifaceted set 
of interactions. Over time, the action set of each actor evolves in response to the 
actions of the others and, thus, the whole field is one large coevolving environ­
ment in which the characteristics and actions of any actor is constrained and influ­
enced by the characteristics and actions of all other actors in the environment. 

One central concern about understanding diffusion and networks in protest 
waves is that we do not actually have straightforward data about the underlying 
social networks or mobilization processes. Protest event data usually just contain 
records of the timing and location of events along with some (often incomplete) 
infonnation about the participants in the event, their forms of action, and their 
stated claims or other rhetoric (McAdam 1982; Olzak 1992; Kriesi ef al. 1995; 
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Tilly 1995a-d). Rarely, if ever, will the data contain information on the social 
relationships or communication processes that were involved in organizing and 
mobilizing that event. Lacking this kind of data, we want to know whether differ­
ent patterns of social organization will give rise to different patterns in protest 
event data, and how what we already know about how protests get organized 
might influence our analysis of protest event data. 

After a brief review of the interplay between diffusion concepts and network 
effects, we develop some important distinctions among different processes often 
lumped together as 'network effects'. We then develop preliminary models for 
three empirically important network processes in movements: the flow of informa­
tion, the flow of influence, and the construction of joint action. All of these models 
are built on a core modelling 'engine' which we explain. Our models of informa­
tion flow are most complex, as we stress on the importance of two kinds of net­
works: broadcast networks, and node-to-node networks. Finally, we show how the 
models we are constructing are capable of representing the strength of network ties, 
not just their presence or absence, and of permitting network ties themselves to 
evolve and be dependent on other processes. 

DISAGGREGATING PROTEST WAVES TO GET AT 
MECHANISMS OF DIFFUSION 

The ideas of cycles of protest, diffusion, and network effects are often discussed 
without making clear distinctions among them. Diffusion is the process whereby 
past events make future events more likely. In 'classic' diffusion models, there is 
a transmission of some innovation between people, and it is impossible to have 
any diffusion without SOme kind of contact or network tie between individuals. 
But this equation between networks and diffusion arises because of the assump­
tion of permanent and irreversible 'adoption' in classic diffusion models, an 
assumption that is inappropriate for the diffusion of collective action (Myers dnd 
Oliver 2000; Oliver and Myers forthcommg). IndlVlduals and groups or popula­
tions can and do protests or riot on multiple occasions, and the performance of an 
action by an individual or group often makes a repetition of that action more 
likely. One could insist on using the word 'diffusion' only when demonstrably dif­
ferent people are protesting or rioting, but this definition is problematic for at least 
two reasons. First, empirical data on protest events almost never contain sufficient 
detail to distinguish clearly between new actors and repeaters. If repeated events 
ofthe same type occur in the same geographic area (e.g. riots), the rioters are quite 
likely a mixture of previous and new participants. Available data generally provide 
only numerical counts of numbers of participants and perhaps the names of a few 
key leaders. They would never provide sufficient detail to track exactly how many 
new people are entering a form of action and where they came from. Data oftha! 
level of detail are only available in detailed case studies of well-structured events, 

Networks, Dijfosion, and Cycles of Collective Action 175 

not in data across a large number of events or more amorphous events. The second 
reason is theoretical. The reinforcement process, whereby an actor's own actions 
and its consequences influence that actor's future actions, is theoretically almost 
identical to a diffusion process, whereby one actor's actions and their consequences 
influence other actors' future actions. Most of the same processes and factors are 
involved in the repetition of actions by the same actors and the adoption of actions 
by new actors. Either way, the 'diffusion' effects of an action are mediated by 
whether the action is repressed, whether it gets media coverage, whether it affects 
policy, and so forth. The only difference is that actors presumably know about their 
own actions and its immediate consequences, while others cannot be affected hy a 
group's actions uuless they know about them. Only the 'network processes' them­
selves are different between self-reinforcement and diffusion to other actors. 
Because protest is a repeatable, reversible action, diffusion models of protest must 
focus on the spread of actions, not the spread of actors (Myers 1996, 1997,2001). 

An additional distinction needs to be made between diffusion and cycles. 
Diffusion processes tend to generate waves or cycles of events, but not all waves 
of events arise from diffusion processes. Waves of protest can also arise from 
rhythms and from common responses to external events. A major event such as a 
disaster or an act of war may trigger independent responses in many locales. 
Rhythms are what the term 'cycle' most often means in other contexts, periodic 
rhythms of physical or social life that structure time. The ordinary rhythms oflife 
structure protest just as they structure any other activity, so that protest generally 
occurs when people are awake and around the constraints of work, school, and 
political schedules. Beyond these quotidian rhythms are the rhythms of protest 
itself There is a recovery or regrouping interval after most actions before a group 
is ready to act again. At a minimum, people must eat and sleep. Big events such as 
marches on Washington necessarily require relatively long intervals between them 
for organizing the logistics. Ritualized protests are often held at regular intervals. 
The presence of rhythms and external shocks does not, however, mean that diffu­
sion processes are absent. Empirical research has often demonstrated diffusion 
processes in the spread of information about a major event (Shibutani 1966) and 
Myers (1996) fouud clear evidence of diffusion effects within the 'long hot sum­
mers' of the 1960s riots and after the assassination of Martin Luther King, Jr. 

Finally, we need to recognize the importance of diffusion processes nested 
within other diffusion processes. Long multi-year protest waves are the accumu­
lation of smaller protest waves arising from particular campaigns and the smaller­
scale diffusion processes that occur within them. McAdam (1983) showed that the 
bursts of activity in the civil rights movement followed tactical innovations. The 
diffusion of collective action across national boundaries also shows evidence of 
waves within waves, a general wave of mobilization that transcended national 
bouudaries, and nation-specific waves (Kriesi et al. 1995). Similarly, a broad 
social movement is always made up of smaller campaigns in particular localities 
or involving particular issues. These smaller campaigns usually aris.e either from 
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a burst of repeated actions by one group or in one locality, or the diffusion of a 
particular movement issue, frame, or tactic between groups or localities. The tenn 
'network' is often used in both cases, but in the former, it tends to refer empirically 
to the existing social and political ties within a community that permit a set of 
people to act in concert, while in the latter, it refers empirically to communication 
channels through which information is spread between different local networks. 

Specifying these nested diffusion processes is theoretically critical, as it is clear 
that big protest waves are built from smaller campaigns that have their own logics, 
while influencing each other in the larger wave. These campaigns implicate net­
work processes. A wide variety of network forms are involved in campaigns. 
The most basic is a series of events around the same issue involving the same peo­
ple in a single locale. If no new people are brought in, this is a simple case of 
repetitive action by the same actors, a pure ~reinforcement model' process, in 
which the conseqnences of earlier actions influence the rate of subsequent actions 
by these same people, but there is no interpersonal diffusion process involved. 
However, if these events become larger over time, then we would say that some 
kind of between-person diffusion has occurred. Of course, even if the number of 
participants stays constant, there could well have been turnover in the parti­
cipants. We have developed an approach that is capable of being modified to cap­
ture these waves within waves, but we will not be developing such modifications 
in the scope of this chapter. 

SPECIFYING NETWORK EFFECTS 

As we dig into the mechanisms of diffusion, it is important to specify the very dif­
ferent kinds of 'network' relations that are involved in different kinds of diffusion. 
A very wide range of specific phenomena has been lumped together under the ..-/ 
rubric of 'network effects' or 'social ties'. If we are going to understand the role 
of network effects in diffusion, we need to unpack the concept. There are at least 
three distinct (althongh related) processes that occur through network ties: com­
munication, influence, and joint action. The relation among these three processes 
is somewhat hierarchical. A communication tie provides a basis for disseminating 
information that something has occurred. An influence tie provides a basis for one 
actor to affect the opinions or actions of another actor; influence requires commun­
ication but involves additional social processes beyond mere commlmication. 
Joint action may be considered an extreme case of influence, in which initially 
separate actors come to make joint decisions and act in concert. Influence requires 
communication, but not all conununication entails influence. Joint action requires 
both communication and influence. It is important to recognize the concept of 
joint action because empirically researchers may not be able to distinguish multi-
ple acts from concerted joint actions. Many protest event series exhibit huge 
'spikes' in which a very big action 'suddenly' occurs or many different actors 
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'suddenly' engage in the same kind of action at the same time, and these spikes 
cannot possibly be modelled with standard diffusion models. However, we will 
show that a model of 'hidden organizing' outside the view of the data collectors 
can quite readily model such spikes. This chapter will provide detailed discussion 
of some of the issues involved in each of these three kinds of processes, and out­
line some approaches to formal modelling of each. In each case, we will give spe­
cial attention to the question of how the process might be reflected in observed 
empirical data on protests. However, before moving to these three sections, it is 
important to consider some other distinctions and dimensions among network 
processes. 

Dimensions of Proximity or Connection 

Information and influence flow through social networks. But there are different 
ways in which actors can be 'connected'. There are at least three dimensions to 
network proximity that are relevant to the study of social movements: spatial, 
organizational, and other social. These may be expected to play different roles in 
protest and social movements. 

Spatial/social: Movement actions are space-bound: people often congregate in 
the same place at the same time to act in concert. Riots and 'spontaneous' protests 
most often diffuse spatially: individuals become aware of the riot or protest because 
they are near it. However, there is no 'pure' space, and space itself is always socially 
organized. Neighbourhoods are usually segregated by class, ethnicity, or race, and 
are often segregated by political orientation, so that different 'kinds' of people are 
found in different kinds of public spaces. Social etiquette rules about class or eth­
nicity or gender, as well as language differences may create communication barri­
ers that are the practical equivalent of great distances. A wide variety of routine 
social structures can create network ties. For example, Oberschall (1989) shows 
that early sit-ins in North Carolina after the first Greensboro sit-in diffused as 
black colleges played basketball games against each other. The mass media also 
have a decided spatial component. Mass media have clear geographic and lin­
guistic catchments. Although there is 'national' news, which is usually broadly 
available! that 'national' news always has a bias toward events occurring near the 
site of publication or broadcast (Mueller 1997; Myers and Caniglia 2000). Myers 
(20000) found for example that although large riots diffused nationally, presum­
ably by way of national news coverage, smaller riots diffused within the bound­
aries of television broadcast ranges. Prior to electronic conununication, collective 
disturbances diffused along transportation routes and took longer to diffuse (Rude 
1964; Hobsbawm and Rude 1968; Charlesworth 1979; Myers 2000b). 

Movement/organizational: Even within spaces, the participants in particular 
actions usually have additional ties to each other beyond mere proximity. Between 
spaces, actions may be coordinated through political/movement ties between 
movement organizations. Local chapters of the same national organization would 
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be expected to have high political ties. Different organizations with similar polit­
ical/movement goals would tend to have positive ties, although they would also 
have some elements of competition between them. There obviously has to be some 
actual mechanism of communication between spatially dispersed elements of the 
same organization, such as organization newsletters, or telephone calls or e-mail 
among members. But these actual mechanisms of communication are most often 
invisible to the protest events researcher, who merely notes that events were 
organized in five different cities by local chapters ofthe same organization. 

Relational/social: Movement organizations may have ties to nonmembers 
through their members' 'other' social relationships and memberships. These other 
ties include kinship and friendship, attendance at the same school, membership in 
the same recreational club or religious congregation, employment at the same 
workplace, or membership in some secondary association that has no direct rela­
tion to the movement. In many cases, these' other' ties become the basis for recruit­
ment into a movement organization or its actions, as well as for increased support 
for the movement's opinions (Ohlemacher 1996). Movements whose members 
have social connections to the larger society through many different social ties are 
likely to be better able to mobilize support than those that lack such ties. However, 
as we consider infiuence models below, it will become apparent that these external 
ties can have both 'positive' and 'negative' effects on movement mobilization. 

In the work that follows, we will not be able to explore the effects of these 
different kinds of proximity, but have set up general schemes that should be able 
to capture the structures that the different kinds of relations would imply. 

Sizes of Networks and Numbers of Actors 

Ifwe are looking at the total numbers of participants in collective action, we often 
conceive of the network diffusion as reaching down to individual people. But it is 
well established that most people enter protest movements as parts of relatively 
cohesive groups, and that whole groups make decisions together about whether to 
participate in particular actions. This means that it is often most reasonable to 
think of the 'actors' as groups, not individuals. But when this is so, we will then 
also want to be able to consider the 'size' of each of these actors, which is the 
number of people it mobilizes. Although capturing this complexity in its totality 
is beyond the scope of this chapter, we will discuss how our models can be modi­
fied to deal with group size issues. 

Network Structures and Collective Action 

Network theorists have devoted a fair amount of attention to measuring and cat­
egorizing qualitative differences in network structures, as well as quantifying the 
position of anyone actor in a qualitatively-defined network (Knoke and Kuklinski 
1982; Wasserman and Faust 1995). The same number of ties in a network has 
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different effects depending upon their distribution, so that star-like structures in 
which one central person has links to other actors who have no links to each other 
are, for example, quite different from circles in which each actor has exactly two 
ties to other actors and all actors are connected. Similarly, cliques can be defined 
within larger networks. Unless one wants to stay at the level of the case study, 
however, it is difficult to use these concepts in the study ofthe diffusion of collect­
ive action across a large and complex population. Instead we need to have sum­
mary measures of a movement group's network ties. In this chapter, we will give 
some simple examples of how structural effects can be incorporated, hut will not 
pursue this dimension in any depth. 

The Basic Model 

In this model, each actor has a probability Pk of acting at each time period. The 
number of people who actually act at each time period varies stochastically 
around the mean Ph where N is the number of actors. Each actor's Pk may change 
across time as a function of the past actions of themselves or others. Elsewhere 
(Oliver and Myers 2001), we explore the question of the form of the underlying 
model for the diffusion of collective action. Plausible models for mobilization 
cycles that go up and down are not straightforward. Collective action always 
declines, and the question is whether this should be specified as arising from a 
natural tendency within actors that occurs regardless of outside influences, or 
whether it is a process of outside factors such as repression. Addressing these 
questions is beyond the scope of this chapter. Here, we will simplify the individ­
ual decision model and focus only on the upswing or accelerative phase (Oliver et 
al. 1985) of a protest cycle, where the feedback effect from others' actions is 
entirely positive. This underlying model does not produce event distributions that 
look like real protest cycles, which always come down again, but it will give us a 
basis for evaluating network effects. 

Models in this chapter are developed using the Stella simulation programme 
from High Performance Systems, Inc.' The program has a graphical interface to 
represent differential equations. An appealing feature of Stella is that it generates 
a list of the equations implied by the graphical connections.2 The programme cau 
handle one- or two-dimensional arrays with sizes constrained only by the capacity 
of the computer. The acting probability and other characteristics of each actor are 
captured by one-dimensional arrays, while network links and inter-actor influ­
ences are captured by two-dimensional arrays. The programme accepts hot links 
to inputs and outputs, so it is possible to set up a who-to-whom matrix of network 
linkages in a spreadsheet that can be read by the programme. All of the models in 
this chapter could readily be programmed in some other way, but we have found 
Stella to be a very useful development tool as it hugely reduces the ratio of pro­
gramming to thinking in the process of model development. 
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For analysis, we have set up several fixed network configurations as well as 
a random network controlled by a random number generator and can choose 
between network configurations with a user-controlled switch. For this chapter, 
the arrays are fixed at size 10, which is large enough to show some of the effects 
of random variations, but small enough to be manageable in a development phase. 
Substantively, an N this small could be understood as actions in different cities or 
by different groups in a movement. Representing a city of a million inhabitants as 
a matrix would tax our computer systems and be unlikely to be informative. The 
more reasonable way to proceed for representing large populations is to conceive 
them as subgroups with varying sizes, where the group's size is another variable 
in the model. Such an extension is beyond the scope of this chapter. 

Baseline Model with No Communication 

For baseline comparisons, we begin with a group of N actors who have no aware­
ness of each other. Each group may randomly emit an action. We tally the plot of 
all actions. Initially, we have all actors with the same low probability. Because 
actors do not influence each other, this probability does not change. Because of its 
random component, each iteration of this model produces a slightly different out­
come plot. Figure 8.1 shows plots of the baseline model for a system of 10 actors. 
Even though there is a constant probability of action, because it is a random 
model, there are varying numbers of actors at any given time, and the frequency 
plot exhibits a spiky sawtooth form with waves typical of protest event plots. The 
cumulative count, however, shows a different story: in a purely random model 
with a constant probability, the total rises essentially linearly with time. We will be 
using the total counts across five periods in subsequent models because they damp 
out some of the random variations of one-period counts. These five-period counts 
are roughly equivalent to the kinds of patterns you would get if you aggregate 
daily event counts to weeks, or weekly counts to months. This is shown in the bot­
tom panel of Fig. 8.1. Note that this purely random process generates cycles and 
even small diffusion-like S-curves in the cumulative count. 

To model information diffusion effects, we have to provide some specification 
of how one actor's probability of acting is affected by the actions of others. Here, 
we will assume that the tendency to repeat this action is a function of how many 
others are doing it. Although verbal theorists can relax into vague discussions of 
positive effects, and even quantitative empirical researchers can just specify a 
regression coefficient on the lag of prior action, when we write a mathematical 
model, we have to say exactly how we think people respond to others' actions, and 
this is not at all clear from empirical research. Shall we assume that others' actions 
always increase our own probabilities, no matter what? And, if so, in what func­
tional form? Linearly in a power relationship? With rising and then falling mar­
ginal returns? Or should we assume that actors respond not to the absolute level of 
others' actions, but to whether it is increasing or not? The former assumption, that 
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actors respond to the level of others' actions, would arise if there is an accelerat­
ing production function or if actors' behaviour is principally determined by infiu­
ence or imitation processes. However, in the long run, such models produce 
unanimous action in which everyone is protesting with certainty forever, some­
thing that never happens. The latter assumption, that actors respond positively to 
the increases in others' actions, and negatively to decreases, would arise from an 
S-shaped production function that first rises then falls, which seems consistent 
with an underlying process in which initial action obtains benefits, but there are 
declining marginal returns to action after it has been at a given level for some 
time. Our initial work with this second model indicates that, while interesting, it 
produces volatile results that are very sensitive to initial conditions, which makes 
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it unsuitable as a platform for investigating network effects3 For this reason, in 
this chapter we use models employing the assumption that actors respond to the 
level of prior action. 

The model we use assumes that actors respond to the total level of others' action 
in a diffusion-like fashion. The basic elements of this model are: P, = probability of 
acting at time t; n = number of actors-a random process determines whether each 
actor actually acts on a given trial; rk(l) = recent total number of actions across all 
actors within the past k trials, at time t; and k = the number of trials considered. 

The algorithm for changing the probability of action as a function of past 
actions is 

where Wj is a weighting coefficient on the feedback term. Actors simply respond 
to the total of others' actions, which means that 'full information' is assumed so 
that there are no network effects. This simple model produces an S-shaped growth 
in the probability until a probability of 1.0 is reached, when it stabilizes with 
everyone acting. The weighting factor determines how quickly this happens; if the 
weighting factor is small enough relative to the time span of the model, the prob­
abilities may remain essentially unchanged for the duration of the model. The 
distribution of current action exhibits random variation around an S-shaped rise 
until unanimous action is reached; unanimous action is an absorbing state. The 
cumulative distribution is S-shaped until unanimity is reached, and thenceforth 
rises linearly. In Fig. 8.2 we show examples of the effect offeedback from others' 
actions in this algorithm. The plot of cumulative protests clearly shows the 
S-shaped growth pattern diagnostic of a diffusion process in the first phase, until 
unanimous action is achieved, and then it becomes a linear curve like any other 
constant-probability model. We have parameterized the baseline model so that it 
has a low level of action if there is no feedback and a relatively rapid rise toward 
unanimity if there is 100 per cent feedback through all possible uetwork ties. This 
will give us a backdrop against which to consider the effects of various network 
constructs. The upper panel shows the current action rate as well as the cumulat­
ive event count and the probability for a homogenous group in which everyone's 
initial probability is 5 per cent and the feedback weight is 0.005. The lower panel 
provides two variants of the initial probability of action. In the homogene.ous case, 
all actors begin with a 5 per cent probability of acting; in the heterogeneous case, 
actor I has a 40 per cent chance of acting, while the other nine actors each have a 
I per cent chance. The average probability is about the same in the two cases. The 
lower panel compares the homogeneous and heterogeneous cases for the full feed­
back and zero feedback models. When there is no feedback, the heterogeneous 
group has slightly more action, due to the one high-probability actor. When there 
is full feedback, the heterogeneous group reaches unanimous action a little more 
slowly than the homogeneous group. 
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INFORMATION FLOWS 

When ideas or actions are diffusing between actors, the 'thing' that is transmitted 
is information. Broadly speaking, there are two types of networks through which 
information may flow, node-to-node and broadcast. Node-to-node paths are the 
kind usually implied by the use ofthe term 'network'. Actor A communicates with 
actor B, who communicates with actor C, and so forth. Many network analysts 
examine the efficiency of communication across node-to-node networks with dif­
ferent properties, such as overall density of ties, the tendency to cliquing, or the 
extent to which communication is channelled through a few key actors. By con­
trast, a broadcast network involves a single communication source that is directly 
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received by a very large number of people. In our era, this is the mass media. But 
previous eras also had broadcast communication on a smaller scale, in the fonn of 
town criers and travelling messengers. 

Although hard-core network analysis focuses on the effects of network struc­
ture and chains of indirect ties (Knoke and Kuklinski 1982; Wasserman and Faust 
1995), any 'network' analysis of communication in protest waves in the modern 
era is sterile ifit does not treat the mass media. Large numbers of people who oth­
erwise have no connection at all can be 'connected' by their responses to a com­
mon news or entertainment source. When the actions of one group are covered in 
the mass media, communication effects can spread as far as the media are broad­
cast, without prior connection between the actors. Myers (1996, 2000a) shows 
that large riots that received national television coverage increased riot propensi­
ties nationally, while smaller riots increased riot propensities within their local 
television catchment areas. Protest event data based on newspapers, especially if 
it is drawn from a single 'national' news source, is, by definition, data on the 
events that can be assumed to have been communicated to a broad population. 

But, of course, the news media are not unbiased samplers of events. They are 
rather intentional actors who select news stories for· reasonably well-defined 
reasons, and it is well established that the size and disruptiveness of an event 
increase its probabilities of news coverage, as does the proximity of the event to the 
news organization (Snyder and Kelly 1977; McCarthy et al. 1996; Mueller 1997; 
Myers and Caniglia 2000). More recent research also suggests that news media 
cover some kinds of issues much more than others (Oliver and Myers 1999; Oliver 
and Maney 2000). The media themselves are subject to diffusion processes, both 
within one news organization, and between them. If a news organization has 
already published several stories about a particular issue, it is less likely to publish 
another because it is not 'news,' although there is some evidence that for at least· 
some issues, the recent publication of one article about an issue will raise the prob­
ability of another article about the same issue, as the news organization follows the 
'story'. Between news organizations, once one outlet picks upa story, other outlets 
may pick it up. If enough outlets begin to cover the story, it becomes news, and the 
media will begin actively seeking more stories on the same theme. The result is the 
'media attention cycle' which has been shown to under-represent movements at 
the beginnings and ends of their cycles, and over-represent them in the middle, when 
the issue is 'hot' (Downs 1972; Cancian and Ross 1981; McCarthy ef al. 1996). 

Even though the mass media play a central role in our era, node-to-node 
networks are also important. Social ties between groups increase and deepen 
information flows beyond the infonnation presented in the mass media, as posited 
in the classic 'two step' model for media influence on attitudes. Social influence 
appears to flow principally through social connections, not the mass media, so that 
we expect infonnation coming only through news sources to be much less effect­
ive in changing opinions and orienting people toward action than infonnation 
coming through social ties. 
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In the real world, patterns of diffusion and the ways diffusion uses different 
networks are messy, to say the least. In fact, the different kinds of networks pat­
terns not only operate at the same time, but also are affected by one another. 
Recently, a number of scholars studying media coverage of protest and demon­
strations have noted that larger events are more likely to get media coverage-and 
more of it (Snyder and Kelly 1977; McCarthy ef al. 1996; Mueller 1997; Oliver 
and Myers 1999; Myers and Caniglia 2000; Oliver and Maney 2000). This means 
that the larger a protest group's local network is and the stronger the ties in that 
network, the larger its events will be and the more press coverage it will receive. 

When the press covers a protest event, the protest issue and tactic are projected 
to other potential actors thereby invoking a completely different kind of network. 
In this way, recruitment through personal networks can piggyback on media cov­
erage. Even if activists in one city have no direct communicative ties with activists 
in a second, they may be inspired to invoke their local network to produce an imit­
ative event once they hear about the first event through the mass media. Thus the 
media operates directly through its distribution network to mobilize additional 
individuals to join existing protest groups and it can also invoke networks indir­
ectly by mobilizing a node in a different activist network that will activate its local 
network. 

Other carriers of diffusing protest also interact with local networks and the 
media to reinforce and extend their influence. For example, some protest has been 
tied to travelling activists who give speeches or engage in direct attempts to organ­
ize. These activists do not just wander aimlessly, but select targets based partially 
on the likelihood that their efforts will be successful-as indicated by some level 
of local organization which has the network ties to support the protest activity. 
Indeed, these activists may even be called upon by existing organization to come 
and help rally the troops. Furthennore, media coverage of the speeches and meet­
ings helps to draw new recruits into the fold of potential activists and the ensuing 
actions give the media more to report. 

The messages delivered to individuals by their personal contacts and by the 
media can also reinforce each other during the critical time when the individual is 
presented with an opportunity to decide whether or not to act (Oliver 1989). If, 
when approached by a friend or colleague and asked to act in support of civil 
rights, and the recruit has recently been watching the news about church burnings, 
that recruit may be more likely to respond to the personal network. The import­
ance of the cycles of influence among distinct kinds of networks cannot be 
ignored. 

When infonnation is not carried by the mass media, node-to-node network ties 
detennine the targets of action, flows of resources, and flows of infonnation. 
Spatial, organizational, or relational ties between actors may permit them to know 
about infonnation not carried in the mass media. Chains of direct ties can indir­
ectly link actors with others who are quite distant from them and lead to the wide­
spread diffusion of information. When indirect ties are involved, it is possible to 
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track the diffusion over time through successive circles of influence or along well­
defined physical paths. Crowd actions in the past have diffused across time from a 
point of origin along major transportation routes (e.g. Rude 1964: 25; Shibutani 
1966: 103-6). Individuals received communication about developing riots (Singer 
1968) and sit-in campaigns (Morris 1984) by direct communication from prior 
acquaintances. Announcements at church services spread the word about the 
Montgomery bus boycott (Morris 1984). Activists encounter new ideologies and 
tactics at conferences with other activists (Rothman and Oliver 1999). Such 
effects are especially noticeable in prior centuries (Charlesworth 1979), or in the 
earliest phases of more recent movements. Once action has begun and receives 
mass media coverage, it becomes difficult to empirically assess the basis of com­
munication and influence flows without directly asking each actor involved, and 
even when asked, actors may have been subject to multiple sources of relatively 
redundant information. 

Modelling Network Ties with No Media Coverage 

Suppose we have a taboo issue that the news media refuse to cover. Or, perhaps, 
instead of being 'taboo,' it is one of those positive and uplifting kinds of action 
which lack news value because it is not conflict-oriented and not linked to institu­
tional politics (Oliver and Myers 1999; Oliver and Maney 2000). To add network 
effects to the baseline model we create a who-to-whom network matrix with entries 
that are zeroes or ones. A matrix with all 1'8 is the 'everyone affects everyone' 
model and produces the same results as a model in which people's actions are 
affected by totals. Conversely, a matrix with all O's produces the same result as the 
independent probabilities model. Because the underlying model is a growth model, 
where there is no decline, if actors are influenced by others' actions (or their own) 
there is a gradual increase in the probability of action and, thus, in the average level 
of total action, but the rate at which the action increases is a function of the density 
of communication. Between the 'full infonnation' model and the 'no information' 
model lay the models in which there are some counections between actors. 
Theoretically, it is important to specify whether the diagonals are 1 s or Os, that is, 
whether people increase their action as a function of their own actions as well as of 
others' actions, but exploring these subtleties is beyond the scope of this chapter.4 

This model can be used to assess the effects of varying network structures. 
Because it is stochastic, even for exactly the same determinate who-to-whom rela­
tionship matrix, there will be different results on each iteration of the model, 
depending on random fluctuations in exactly who acts when. We may use Stella's 
ability to use a seed for the random number generator to flx this process and com­
pare network structures. Figure 8.3 compares one random and three fixed struc­
tures including a 'star' network in which all ties are through actor, a cliqued 
network in which all ties are within cliques (1, 2, 3 vs. 4, 5, 6 vs. 7, 8, 9,10), and 
a bridged cliqued network in which there is an additional tie between 3 and 4, and 
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FIG. 8.3. Comparison of different patterns of network ties in the diffusion of action/or 
heterogeneous and homogeneous groups 

between 6 and 7. In this model, different random networks vary widely in their 
results, and the variability of results due to network ties is even greater when the 
initial probability distribution is heterogeneous. The particular random network in 
this figure is slightly more effective than the bridged clique network, which in turn 
is slightly more effective than the fully cliqued network. The 'star' network in this 
example fares little better than no feedback at all: this arises because the non-stars 
only have infonnation about one actor's actions and so the total level of action is 
too small to lead to much increase through feedback. In an influence model, 
shown later, a star can have a much bigger impact on action. 

This approach can be readily generalized to much larger network matrices (e.g. 
100 X 100), but these are quite difficult to analyse without prior theory of what 
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kinds of structures are relevant or interesting. Obviously, the approach of using a 
full matrix of who-to-whom ties becomes computationally impossible with very 
large groups such as the tens or huudreds of thousands in city populations, and 
seems most appropriate for modelling the relationships between groups. 

Modelling Protest and the Media 

Protesters generally seek news coverage as the mechanism for having influence on 
a wider public and the authorities. Protests that receive no news coverage are often 
construed as failures. Protests that receive news coverage are likely to be invigor­
ated, and activists are likely to prolong their activism and emit more total protests 
if they have received news coverage. But, of course, the news media do not cover 
all protests that occur, and their coverage is dependent on the amount of protest. 
There are 'media attention cycles,' which are diffusion cycles: .news media tend to 
ignore a protest campaign in its small initial phases and then, when they do begin 
to cover it, there is a flurry of coverage for a while until it becomes 'old news,' and 
then coverage dies down again. 

Adding media effects into a model requires specifYing how the media work. 
This is a complex problem, which will need to be the subject of a separate analy­
sis. We need to consider both how the media affect protest, and how protest affects 
the media. In this chapter, we will assume that the media are simply a channel of 
commuuication, so news coverage of events affects protest by conveying to actors 
information about the protest rates of others. This means that we will assume that 
media coverage acts just like full feedback or network commuuication, in terms of 
the algorithm for the effect of others' actions on an actor's probability of acting. In 
terms of the relation between protest and the probability that the protest receives 
news coverage, there is some information from recent empirical work. We know 
that there are issue attention cycles that may be functions of factors exogenous 
protest, or may be set off by protest; an issue attention cycle raises the probability 
that an event will be covered. In addition, we know that the probability of an event 
being covered increases with its size, and recent large events may draw a higher 
rate of coverage to immediately subsequent events. There are also 'news hole' 
effects, so that there is a limit on the amouut of action that can be reported on one 
day. Myers and Caniglia (2000) found, for example, that the New York Times 
uuder-reported riots at the peak of a riot cycle: even though they reported that 
there was a lot of rioting going on, any particular riot was less likely to be men­
tioned when there were many riots bappening. 

In this chapter, we cannot provide a full analysis, but illustrate a possible 
approach to such a problem by showing the effects of several kinds of media fac­
tors separately. We begin by showing the effect of a flat percentage of news cover­
age on the rate of 'adoption' of action compared to full information. Figure 8.4 
shows the rate of action diffusion with news coverage at a constant 50 and 20 per 
cent probability as compared with the full information model (equivalent to 
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FIG. 8.4. Media coverage asflat percentage provides communication, which promotes 
event diffUSion. There is little difference between heterogeneous and homogeneous groups. 

100 per cent probability of news coverage). In this initial model, the specification 
is that the news media has a single probability of news coverage. If it 'covers' 
action at all, it covers all the action that is occurring on that rouud. A more detailed 
specification would say that the media could be differentially sensitive to different 
actors, so that actors could have different probabilities of coverage or that differ­
ent proportions of those acting on a rouud could be covered. That would yield dif­
ferent patterns of results. 

Figure 8.5 shows how the diffusion of action is affected when the probability of 
news coverage is not a flat percentage, but increases with the size of the action, for 
example, the number of actors. The 'functional' relation is parameterized so that 
actions involving all ten actors have a 50 per cent rate of coverage, while the prob­
ability for smaller actions is proportionately smaller. This dependence of news 
coverage on event size markedly slows the spread of action. 

In most research, newspapers are the source of data and thus only news cover­
age of action is empirically observable. Figure 8.6 shows both action and news 
coverage of action when the probability of news coverage is a constant 50 per cent 
(upper panel), and when the probability of news coverage is 50 per cent for the 
largest actions (involving all ten actors) but is proportionately lower for smaller 
actions. Two patterns are clear is these figures. First, if the probability news cov­
erage is proportional to the size of the events, diffusion is delayed relative to a 
constant probability of coverage, because the earlier smaller events (involving just 
one or two actors) are less likely to get news coverage. Additionally, the apparent 
level of protest from news coverage is even lower than the actual level, due to the 
lower probability of coverage. Second, note that the cycles of news stories differ 
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markedly from the cycles of action. This is especially true when the probability of 
coverage is a function of event size. But even after action has reached unanimity, 
random fluctuations in news coverage give the appearance of protest cycles where 
there are none. However, in both these cases, news coverage does successfully 
track the difference between high-action and low-action periods. 

There is substantial reason to believe that the news media's probability of 
covering protest is often determined not by the characteristics of the protest, but 
by external events or political cycles (Oliver and Maney 2000). In Fig. 8.7, the 
probability of news coverage is exogenously determined as a sine function, that is, 
a wave that goes up and down independently of protest levels. As before, past 
news coverage of protest raises future protesting. In this example, there is an early 
news cycle that helps to spark a diffusion process. Then the news coverage dies 
down while the protest is still rising. Coverage comes and goes again later when 
action is unanimous. Because very often the news coverage of protest is the only 
'data' we have about protest, it is very important to recognize how easy it is for 
news cycles to be unrelated to protest cycles, and it is obviously important to do 
a more detailed study of how protest and news coverage relate to each other. 

INFLUENCE 

There are many network theorists working on influence models which asswne that 
people's attitudes are shaped by those of the people to whom they have network 
ties, and in particular that the degree of influence will be affected by the homo­
geneity/heterogeneity of the opinions in the networks to which one is tied. If vir­
tually al1 of one's acquaintances share the same political perspective, one's 
mobilization level or attitude extremity will be greater than if one's acquaintances 
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vary in political perspectives (Pfaff 1996; Kim and Bearman 1997; Soule 1997; 
Van Dyke 1998; Chwe 1999; Sandell 1999). This suggests that there is an inter­
esting dynamic in the way networks affect mobilization. The same factors that cre­
ate higher influence (all one's acquaintances are similar) are likely also to reduce 
the extent to which a group has network ties into nonrnovement organizations. 
Thus relatively closed, politicized networks tend to increase diffusion through 
self-reinforcement processes, while relatively open networks have more potential 
to foster diffusion through mobilizing new participants, although the force of such 
a diffusion effect is likely to be weaker. Of particular concern is whether a group 
is relatively inbred, with ties only to itself or to other movement groups, or 
whether it has ties out into the general population of people who are not already 
mobilized. For example, Ohlemacher (1996) develops the concept of the social 
relay to distinguish the networks in two communities, one in which the protesters 
were relatively isolated, and the other in which protesters had substantial ties to 
non-protest organizations in the community: the relatively isolated protesters were 
viewed as more radical and failed to generate a broad mobilization, while the 
protesters with substantial non-protest ties built a broader, less marginalized, 
mobilization. 

We may begin to model these processes by adapting Gould's (1993a,b) influ­
ence model, in which each person's probability of action is affected by the average 
of the action level of all the others to whom shelhe is tied. If there are zero network 
ties, each person's probability stays the same; if there are 100 per cent of all pos­
sible network ties, everyone's probability fairly rapidly converges to the same 
probability, with the initially higher probabilities dropping and the initially lower 
probabilities increasing. If we put a simple who-to-wbom matrix in this system, 
network ties affect the speed with which these processes occur, but not the final 
outcomes. We can see how this works by setting up a two-clique network with rad­
ically different initial values of opinions. If the cliques are completely unconnected, 
they will each reach their own equilibrium, as in the top panel of Fig. 8.8. Here, 
then, we have the gap between the isolated radical ierrorist cell, for example, and 
the larger population. The radical cell can maintain its radicalism, but at the cost of 
having no influence on the larger population. If there are any bridges between the 
networks, however, influence will 'leak' across the system and the two cliques will 
move toward each other and will ultimately reach system-wide equilibrium, as in 
the middle panel of the figure. However, the move toward equilibrium can take 
quite a while to happen and, in the mean time, there can be radical disjuncture 
between subnetworks. These two cliqued cases may be compared with the bottom 
panel, which shows how one random network fairly rapidly converges to a system­
wide equilibrium. In this particular case, it happens that one actor has no ties to 
other actors and so remains lmchanged while everyone else converges toward 
equilibrium. 

Network analysts usually treat the structure of network ties as fixed and 
unchanging. But, of course, movement actors devote a great deal of effort toward 
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creating new ties, and even the less planned forms of social interaction create new 
ties. In a formal modelling approach, it is quite feasible to make the ties them­
selves change over time in response to prior interaction. We may demonstrate this 
with a modified influence model. Instead of fixed present/absent ties, we begin 
with a who-to-whom matrix in which each entry is the probability that two actors 
will come into contact and influence each other. In this model, a matrix ofO,l net­
work ties is generated on each round probabilistically as a function of the given 
probabilities of influence. In addition, we add a feedback to these probabilities so 
that if a contact actually occurs (i.e. if there is a I in the matrix, even if it arises 
from a low probability of occurrence) that contact raises the probability of future 
contact by a given amount. To demonstrate how this model works, we set up an 
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inpnt matrix with two cliques, each of which has a 50 per cent probability ofmak­
ing contact within the clique and only a 5 per cent chance of making contact 
between cliques. As before, we give the two cliques widely different starting val­
ues on the opinion measure. As Fig. 8.9 demonstrates, this model also generates 
convergence toward an equilibrium value, although it happens more slowly and 
with random fluctuations around the trend. As the bottom panel of Fig. 8.9 indic­
ates, the average overall density of ties within the network gradually increases as 
well, approaching saturation as a limit. The irregular shape of the plot exhibits the 
influence of the cliquing. There is an initial rapid increase in the average contact 
probability arising from increases within cliques. After this phase, there is a clas­
sic S-shaped diffusion curve arising from the gradual increase in the probability 
of contact between cliques, which accelerates in the middle of the process, and 
then slows again as the network approaches saturation. 

JOINT ACTION 

An important phenomenon in any sphere of social action is that individuals come 
together to form collective actors, and smaller collective actors come together to 
form larger collective actors. When people organize themselves into groups, they 
do not show the random patterns of individuals acting independently, but very 
different patterns that arise from coordinated action. In evaluating protest event 
data, it is important to recognize that the 'actors' producing the event plots can be 
of widely different sizes and, in addition, can often be shifting around, grouping 
and regrouping themselves into temporary coalitions and alliances. No existing 
models of the diffusion of action have addressed the ways in which these patterns 
affect the observable event distributions. We cannot provide a detailed analysis of 
this problem, but we present here one example of it in the empirical data, and 
show how that kind of phenomenon can be modelled. 

Movement Networks and the Problem of Protest 'Spikes' 

The typical protest wave is more 'spiked' than standard diffusion models can pos­
sibly capture. That is, the empirical waves rise and fall much more quickly than 
can be accounted for by models of interactor transmission. One possible explana­
tion for this pattern is that much of the protest event data is drawn from media 
sources and the attention cycle bias makes the peaks of action appear more 
extreme than they are. Another reason may be the failure to account for repeated 
actions by the same actor in network models. The density of connections drives 
diffusion between actors between them. If networks were conceived as operating 
across time, the network connections to self would increase the overall density of 
connections within the population and perhaps account for some of the steepness 
of the empirical curves for protest distribution. 
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In some cases the 'spike' is generated by a major external shock that has pro­
voked a common response, without explicit coordination. When this occurs, how­
ever, the response will be something that requires relatively little coordination and 
has become a standard action form within a particular population. Identical 
actions involving complex coordination or novel tactics would not be expected to 
arise simultaneously in diverse locales simply from an external shock, without 
explicit coordination and communication through networks. The initial day of 
rioting after the assassination of Martin Luther King, Jr occurred in a context in 
which black urban populations were familiar with the 'riot' as an action form. The 
wave of protests at the beginning of the 1991 Gulf War bombings followed a 
build-up of mobilization in which it was 'understood' that everyone would protest 
if the war started. 

Pulling out diffusion effects in these cases of closely connected events requires 
thinking clearly about the nature of the event and the type of coordination 
involved. In the USA 1960s riots, there was clear evidence of diffusion of small 
riots to nearby communities within the next day or two. For major protests in 
Germany, where the demonstrations are generally held on weekends, particularly 
Saturdays, there would be a seven or more day lag for diffusion effects to occur. 
That is, there are good reasons to expect different time lags for different kinds of 
events. 

Other problems arise from using the news media as a data source when they are 
also one of the actors in the process. When the data source is one national news 
source, it is likely that there will be smaller regional diffusion effects that are not 
captured in the news source. What appears as a spike in the news accounts may 
simply be a failure to report the smaller events building up to and following a 
major event, and media attention cycles may exacerbate this spiking. (In sub­
sequent work with our media models, we can investigate these possibilities.) 
Myers' riot data is based on newspapers, but was compiled from a large collection 
oflocal newspapers by a clipping service and, as a consequence, had much more 
information about smaller and more localized riot waves. Nevertheless, even 
Myers' data shows greater peaking than would be predicted by most diffusion 
models, so there is clearly more work to do. 

Joint Action as a Source of Spikes 

Many spikes in protest distributions arise from joint action that has clearly been 
organized. Sometimes this organization is overt and can actually be located in news 
sources, if it is looked for. Other times it is covert. We examined two data series 
available to us, Ruud Koopman's data on new social movements' protests in 
Germany and Kelley Strawn's data on Mexican protests, and identified a large 
number of cases in which similar events occurred almost simultaneously in multi­
ple locales, often with no prior warning or build-up of action. It is obvious in most 
of these cases that there has to have been prior communication and coordination, 
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whether or not it is visible in the data sources. There is clearly some sort of network 
diffusion process operating, but something else is diffusing other than the final 
action. Instead, it is an ideology or action plan that is diffusing and the simultane­
ous coordinated action that follows is an observable expression of a different diffu­
sion process. From a diffusion modelling perspective, such 'multiple event days' 
create apparent discontinuous spikes in the flow of events. 

We have modelled a simple process that generates a 'spike'. Actors have a con­
stant low probability of emitting protest actions. But in addition, actors are organ­
izing. They are linked to other actors through their networks. Each actor has a 
probability of 'organizing' other actors (which is also assumed to be the probabil­
ity of acting at the end). Actors 'organize' only those to whom they have a network 
tie. Each receipt of organizing raises an actor's probability of participating in the 
'big event' at the appointed time, as well as of organizing other actors. (In this 
initial model, these two probabilities are treated as the same, but they could be 
readily differentiated.) But nothing 'happens' at the big event until the appointed 
day, when everyone acts at once. In this example, we assume that Actor 1 is the 
organizer and starts with a 100 per cent chance of organizing/acting, while all the 
other actors begin with a zero per cent chance of organizing/acting. Each time an 
actor receives an organizing contact, hislher probability of acting rises 1 per cent. 
At the specified time period (time = 100 in this example), each actor acts or not 
with the accumulated probability. This model produces a result that looks like 
Fig. 8.10. We have added random noise of a low probability of acting, to show how 
hidden organizing looks against a backdrop of random action. This discontinuous 
spike is the product of more gradually diffusing influence that is raising the prob­
abilities of action. Figure 8.11 shows these probabilities rising for several differ­
ent network configurations. The results in Fig. 8.11 differ dramatically ii'om each 
other: the three raudom networks have widely different results, and the c1iqued 
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FIG. 8.10. Hidden organizing, against a backdrop of random noise, Random networks 
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FIG. 8.11. The average probability which is rising in hiding varies tremendously 
with network strncture. Because of the skew in starting values, it is connection 

to Actor 1 that is especially important 

and bridged networks are different from each otber. In this model of hidden 
organizing, the 'star' model is most effective. The size of the 'big event' differs 
markedly depending on the network organizing it. 

Figure 8.12 shows how the effects of network structure can be seen in this 
process by calculating and plotting the average probability within cliques. Only 
the bridged cliques show an 'interesting' plot where tbe spread of organizing 
through tbe bridges Can be seen. Full cliques have zero probability outside the 
organizer's clique, while random networks rarely show much cliquing. In a star 
network, the average probabilities for all tbe non-stars are about tbe same. A sim­
ilar technique of examining different subgroups within a larger network could be 
used for the information and influence models, as well. It is important to note that 
tbe effects of different network structures vary greatly depending on how the net­
work 'works'. Information flows, influence flows, and hidden organizing appear 
to be impacted differently by different network structures. 

This particular specification of hidden organizing assumed tbat actors were 
building up to an appointed day, which is the appropriate model for big demon­
strations. An alternate specification would be that actors organize until they have 
mobilized a large enough critical mass, tbat is, until some size criterion is achieved; 
tbis alternate approach would seem more appropriate for tbe hidden organizing 
behind a coup or revolution. Hidden organizing mechanisms can be incorporated 
into an influence model or a communication model. In empirical cases, this behind­
the-scenes organizing is occurring simultaneously with other actions. However, it 
would be expected that actors might have limited resources, which might lead to a 
decline in other forms of action as organizing increases. Modelling this would 
require some algorithm for how actors choose between organizing and acting, 
a complexity that is beyond the scope of this article. Another issue to explore is 

Networks, Diffusion, and Cycles of Collective Action 199 

Average probability bridged cliques 

100 
--- Clique I 

i 80 
--- Clique 2 
---- Clique 3 

.g 
60 ~ 

" '" "" ~ i;l 40 > < 
20 

0 
Time 

FIG. 8.12. Probability of organizing/or a big event. Network structure can be seen in the 
average probability within cliques. Here the spread of organizing through the bridges can 

be seen. Full cliques have zero probability outside the organizers clique. Random 
networks show wide variablity in the degree of cliquing 

whether these coordinated actions foster subsequent actions via a diffusion effect, 
or whether all possible actors act in concert, and action falls off afterwards. 

DISCUSSION AND CONCLUSIONS 

The term 'network' needs to be unpacked if it is to move beyond vague heuristic 
and actually structure research into social movements. We find that attempting to 
specify network effects in formal models forces us to grapple with the difficult 
questions of exactly what we tbink these effects are and how they work, and how 
they relate to concepts of diffusion. The models we are working with in this chap­
ter are of a particular sort that is rarely attempted in sociology. We are not 
analysing empirical data and fitting regression coefficients. And we are not speci­
fying elegant deductive models and deriving their formal properties. Both of us 
have done both ofthese in other works. But in this project, we are struggling with 
what empirical data patterns actually look like, and trying to model the underlying 
processes that could be giving rise to these patterns. This chapter has sketched an 
approach to tbis problem and has shown how the flows of information, influence, 
and joint action can be modelled and how these different processes can yield 
widely different results. 

As we have worked on this problem, we have come to recognize that any empir­
ically valid model needs to have a substantial random or stochastic element. 
Random fluctuations from constant probabilities produce the kind of spiky,jagged 
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plots of event counts over time that are characteristic of empirical data. These same 
random fluctuations frequently produce 'waves' of events, especially when they are 
aggregated across a few time periods. Once we made the shift to stochastic model­
ling, we have been forced to confront the huge effect which simple random variation 
produces in our models. Even with a fixed set of network ties, random fluctuations 
in who happens to act when can produce large effects on the pace with which action 
or influence diffuses. Random variations in which actors are tied to each other in a 
network can produce even larger differences in results. Substantively, this means 
that sheer chance appears to playa large role in affecting the trajectory of a protest 
cycle. It will take some time to absorb the theoretical and empirical implications of 
this result. 

As we have unpacked different network processes and sought to pin them down 
so they could be modelled, we have found that the effect of 'network strocture' 
varies greatly depending upon the nature of a particular network process. This can 
be seen most extremely with the 'star' networks in which all the network ties are 
with one central actor. This structure is a severe impediment to mobilization in a 
model which assumes that actors respond to their direct information about the 
number of others who have acted recently: because all the actors except the 'star' 
know about at most one other actor's actions, they do not increase their own prob­
abilities of action to any significant degree. By contrast, the 'star' network is the 
most efficient in the 'hidden organizing' model, where it is in contact with an 
organizer that is assumed to increase the probability of behaviour, not the total 
of prior actions. It would be foolish to try to decide whether 'star' networks are 
'good' or 'bad' for mobilization. Instead, it must be recognized that the impact of 
a network structure is intimately intertwined with exactly how actors affect each 
others' behaviour. Verbal theorists have talked vaguely for years about informa­
tion flows and influence, but it is only when you actually try to pin these ideas 
down to formal representations that you realize how deeply the exact specification 
of what those relationships are influences not only the gross levels of outcomes, 
but the ways in which other factors affect outcomes. 

We have shown how several different kinds of network effects can be modelled, 
and why they are important. Our model of information flow focused on the 
assumption that actors increase their probability of acting as a function of the 
number of others they know about who have previously acted, an assumption that 
leads to a gradual rise in everyone's rate of action. 'In this model, as information 
diffuses so does action, and we showed that different network stroctures affect the 
pace with which this occurs. 

Consistent with our other research, we also devoted attention to modelling 
the effects of news coverage. This is particularly important because most often the 
data we have about protest comes from newspapers. We first show that even if 
the newspapers are completely unbiased samplers of protests, simple random fluc­
tuations in news coverage produce apparent cycles that are not present in the 
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underlying protest distribution. But, of course, newspapers are not unbiased 
samplers. We know that they respond to the size of protest and that they are subject 
to issue attention cycles that may be independent of protest. Both of these patterns 
produce additional distortions in the protest cycles in newspapers as compared to the 
underlying 'real' protest cycle. But, additionally, news coverage itself affects protest 
and changes the protest cycle. Methodologically, this helps protest researchers, 
because if news coverage increases protest, it brings the 'real' protest cycle more into 
line with news coverage of protest. However, if the causal effect of news coverage on 
protest is not recognized, researchers can draw quite erroneous conclusions about 
the effect of protest on policy debates. More detailed studies of the interplay between 
protest and news coverage must be the subjects of other analyses. 

Influence models assume that people's opinions change in the direction of those 
with whom they are in frequent contact. This assumption generates a long-term 
tendency for a population who has direct or indirect ties to each other to move 
toward one common opinion, while wholly distinct cliques move toward separate 
average opinions. We showed how network stroctures affect these processes. 
If networks are cliqued, these models provide some way of understanding the 
relationship between in-group and out-group ties in opinion formation. We also 
showed how this approach could be readily modified to make the network ties 
themselves fluid and changing, in response to contacts from others. 

The approach we offered for studying influence immediately points to a large 
number of possible extensions. Our simple models employed only symmetric 
influence ties, and an obvious extension would be to see how asymmetric influ­
ence affects these results. Empirically, populations obviously do not seem to be 
tending toward a single common opinion, and empirically it is clear that contact 
between persons of different opinions can generate polarization of opinions rather 
than convergence. Thus, even though averaging rules like the ones we used are the 
most common in formal models of influence, they do not seem to generate results 
that fit empirical patterns. We suspect that the most promising avenue to pursue 
is a model that says actors will either polarize or converge when they encounter 
each other, with the probability of doing polarization versus convergence being 
a function of the distance of their opinions from each other. 

Our model of 'hidden organizing' is not necessarily very elegant, but it calls 
attention to an important empirical phenomenon that cannot be neglected in the 
analysis of empirically observable protest waves. Protest data are much more 
spiked than standard diffusion models can accommodate. These spikes violate all 
the assumptions that undergird standard statistical regression models, as well. Too 
many scholars have been willing to run models without confronting the implica­
tions of these spikes. Yet every social movements researcher knows that 'hidden' 
organizing (i.e. organizing that is not reported in observable data sources) occurs. 
This is one example of how important it is to think about what we already know 
about movement processes as we seek to develop formal theory that speaks to 
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empirical data, and as we seek to do quantitative analyses of empirical data that 
are soundly grounded in a theoretical understanding of the underlying processes 
that give rise to observable data. 

Apart from providing an explanation for data spikes, our work on joint action 
points to the need for conceptual clarity about actors and units of analysis. Separate 
individuals come together to form groups, and once they are in groups, those 
groups act with a high level of unity. Thus protest caunot be modelled as if inde­
pendent individuals are conducting it. But, of course, the groups themselves also 
may temporarily act together with some unity, and models of independent action of 
groups will not correctly describe observable data, either. We need to fit the model 
to the type of action. The black riots of the 1960s had relatively little coordination 
between communities and relatively little organization within communities, while 
new social movement protests have a great deal of preplanning and coordination 
associated with them. We should expect to see different kinds of empirical patterns 
arising from these different kinds of actions. 

We need a middle ground between the statistical analysis of data and the devel­
opment of pure formal theory. In this project, we are in dialogue with empirical 
data, seeking to determine the kinds of processes that could produce the patterns 
we can observe. As we have repeatedly stressed, the discipline of turning theory 
into equations reveals the ambiguity and imprecision of many past discussions of 
network effects, and forces us to think more seriously and deeply about just how 
we think things work. 

NOTES 

1, Stella is identical to IThink, published by the same firm for business applications, except 
for the examples included in the manual. The models from this paper are too complex to 
be printed in this chapter, but are posted on the first author's website, along with links 
to a free downloadable save-disabled version of the Stella programme which can be used 
to read and interact with the models. The home page is www.ssc.wisc.eduJ'-oliver. 
Follow links to protest research and thence to the modelling projects. A more specific 
URL is not provided as it is likely to change over time as the web page is updated, but 
the home page URL will remain the same as long as Pamela Oliver is a professor at the 
University of Wisconsin. Note: answer 'no' to the question of whether you wish to 
reestablish links, as the links will not work properly when the files are moved from their 
original locations, and the save-disabled demo may not have the linking option enabled. 

2. However, it does not generate standard mathematical equations for some of the complex 
modelling constructs available in the programme, such as 'conveyors' and 'ovens,' which 
are useful for calculating lag effects and moving averages, nor do its equations convey 
arrays in standard mathematical notation. 

3. This algorithm for changing the probability of action as a function of past actions is 

PI = PI- 1(1 + W2(rt - 1 - rl _ 2)/n), 
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where W2 is a weighting coefficient on the lag term. If the level of action is constant, 
the difference is zero and PI = PI _ l' Otherwise, the probability increases or decreases 
proportionately to the change in the number of actions expressed as a proportion of the 
number of actors. This model is very sensitive to the weighting coefficient and exhibits 
a tipping point: below a critical value, increases cancel out decreases, and the overall 
probability oscillates around its starting value, but at the critical value, the positive effect 
of a rising number of actions can trigger a cascade leading to unanimous action. This is 
a fascinating model for a feedback process, but its very complexity makes it unsuitable 
for simple demonstrations of network effects. 

4. We might also modifY this model to make it an 'adaptive learning' model (Macy 1990, 
1993; Macy and Flache 1995) by specifying that actors' response to others' actions 
depends on whether they themselves have acted or not in the previous round. Exploring 
adaptive learning is also beyond the scope of this paper. We can say, however, that in our 
very preliminary explorations of a random~action model where the only feedback is 
from other actors' actions, adaptive learning appears to have no effect in relatively large 
groups, because the random effects cancel each other out. 


