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Abstract. We infer determinants of Latin American hyperinflations and stabi-

lizations by using the method of maximum likelihood to estimate a hidden Markov

model that assigns roles both to fundamentals in the form of government deficits

that are financed by money creation and to destabilizing expectations dynamics

that can occasionally divorce inflation from fundamentals. Levels and conditional

volatilities of monetized deficits drove most hyperinflations and stabilizations, with

a notable exception in Peru where a cosmetic reform of the type emphasized by

Marcet and Nicolini (2003) seems to have been at work.

Perhaps the simple rational expectations assumption is at fault here,

for it is difficult to believe that economic agents in the hyperinflations

understood the dynamic processes in which they were participating

without undergoing some learning process that would be the equivalent

of adaptive expectations.
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I. Introduction

This paper formulates a nonlinear stochastic model of inflation, inflationary ex-

pectations, and money-creation-financed deficits and uses the implied density for

the history of inflation to extract maximum likelihood parameter estimates for data

from Peru, Argentina, Bolivia, Brazil, and Chile. The model extends earlier hy-

perinflation models of Sargent and Wallace (1987), Marcet and Sargent (1989), and

Marcet and Nicolini (2003) in ways that allow us to distinguish such possible causes

and cures of hyperinflations as persistent reforms and transitory shocks to seigniorage-

financed fiscal deficits; explosions in inflationary expectations that are divorced from

fiscal fundamentals; and monetary reforms that we call cosmetic because they do

not alter fiscal fundamentals. Because each of those earlier papers assumed constant

deficits, they were not designed to discriminate among these alternative causes and

cures of big inflations.

We construct a hidden Markov model that features a demand function for money

inspired by Cagan (1956), a budget constraint that determines the rate at which

a government prints money, a stochastic money-financed deficit whose conditional

mean and volatility are governed by a finite state Markov chain, and an adaptive

scheme for the public’s expected rate of inflation that allows occasional deviations

from rational expectations that help to explain features of the data that a strict

rational expectations version of the model cannot.1 We trust our monthly series on

inflation but lack trustworthy monthly or quarterly data on GDP and the money

supply that would allow us to compute high-frequency seigniorage flows. Therefore,

to estimate the model’s free parameters, we form the density of a history of inflation,

view it as a likelihood, and maximize it with respect to the parameters. For each

country, we then form a joint density for the inflation and seigniorage histories at

the maximum likelihood parameter estimates and use it to calculate a density for the

seigniorage history conditional on the inflation history. As one of several validation

exercises, we compare this seigniorage density with the annual seigniorage rate data

available to us.

Our econometric model yields the following key empirical findings.

(1) There is strong evidence that cosmetic reforms along the lines of Marcet and Nicolini

(2003) brought down hyperinflation in Peru, although fundamental fiscal re-

forms eventually occurred to sustain low inflation later in the sample.

(2) In Bolivia, movements in fiscal fundamentals both instigated and ended hy-

perinflation. This is an important finding because (i) destabilizing expectation

effects play no role in generating hyperinflation and (ii) recurrent hyperinfla-

tions were caused only by regime changes in fundamentals. Thus, in Bolivia

there seemed to be no divorce of inflationary expectations from fundamentals.

(3) In Chile, changes in shock variances influenced the birth and death of hyper-

inflations, not cosmetic reforms.

1Elliott, Aggoun, and Moore (1995) is a good reference about hidden Markov models.



SOUTH AMERICAN INFLATION 3

(4) Data for Brazil and Argentina tell mixed stories. In both countries, cosmetic

reforms played roles in temporarily lowering inflation rates, but they were all

eventually followed by fundamental reforms.

Thus, our maximum-likelihood estimates enable us to disentangle forces that started

and ended different episodes of hyperinflation.

The rest of the paper is organized as follows. Section II describes in detail the

stochastic specification of monetized deficits that we use to extended the models

of Sargent and Wallace (1987), Marcet and Sargent (1989), and Marcet and Nicolini

(2003) in ways that have a better chance of explaining time series that include episodes

of both low and high inflation. Section III generalizes the notion of self-confirming

equilibria in ways that we use to define escapes and cosmetic reforms in section IV.

Section V then defines the likelihood function. Section VI indicates how higher mo-

ments of the inflation data that are partly driven by the hidden Markov states allow us

to identify parameters from data on inflation alone. Then section VII describes tech-

nical details underlying our maximum-likelihood estimation procedure. Section VIII

reports maximum likelihood estimates and uses them to interpret inflation histories

for our five countries. Section IX compares conditional self-confirming equilibria to

rational expectations equilibria computed at our maximum likelihood parameter esti-

mates and argues that they are close. Section X reports a variety of robustness checks

while section XI makes concluding observations. Five appendixes contain technical

details and descriptions of our data.

II. Model

II.1. Money demand, government budget constraint, deficit. The money de-

mand equation and government budget constraint are:2

Mt

Pt
=

1

γ
− λ

γ

P e
t+1

Pt
, (1)

Mt = θMt−1 + dt(mt, vt)Pt (2)

where Pt is the price level at time t; Mt is nominal balances as a percent of output

at time t; P e
t+1 is the time t public’s expectation of the price level at time t + 1,

and dt(mt, vt) is the part of the government’s real deficit that must be covered by

printing money. Here 0 < λ < 1, 0 < θ < 1, γ > 0. Equation (1) asserts that the

demand for real balances varies inversely with the public’s expected rate of inflation
P e

t+1

Pt
. Equation (2) asserts that the growth of nominal balances per unit of output

equals dt, the part of the government deficit that is monetized. Here the parameter θ

adjusts both for growth in real output and possibly any direct taxes on cash balances.

We use the term seigniorage to denote the money-financed government deficit. We

2For an interpretation of this money-demand equation as a saving decision in a general equilibrium

model, see Marimon and Sunder (1993), Marcet and Nicolini (2003), and Ljungqvist and Sargent

(2004). The government budget constraint equation (2) was used by Friedman (1948) and Fischer

(1982), among many others.
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assume that it is exogenous and governed by a hidden Markov process

dt(mt, vt) = d̄(mt) + ηdt(st), (3)

Pr(mt+1 = i|mt = j) = qm, ij, i, j = 1, ..., mh, (4)

Pr(vt+1 = i|vt = j) = qv, ij, i, j = 1, ..., vh. (5)

Here st ≡
(

mt vt

)

is a Markov state, as in Hamilton (1989) and Sclove (1983), that

we the econometricians do not observe; and ηdt(st) is an i.i.d. random shock. We

assume that log dt(mt, vt) is normally distributed with mean log d̄(mt) and variance

σd(vt)
2. This distribution implies that d̄(mt) is both the geometric mean and the

median of dt(mt, vt) and that ηd t(st) has the following probability density function:

pd (η|st) =











exp

[

− [log (d̄(mt)+η)−log d̄(mt)]
2

2σ2
d
(vt)

]

√
2πσd(vt)(d̄(mt)+η)

if η > −d̄(mt)

0 if η ≤ −d̄(mt)

. (6)

The log-normal distribution of dt makes seigniorage positive and captures the skew-

ness of the inflation distribution observed in the data. In our empirical work, we

experimented with other distributions that allow for negative seigniorage (e.g., the

normal distribution), but these did not improve the model’s fit.

The Markov component mt governs the mean seignorage while the component vt

governs the volatility of the random shock ηdt(st). We use the conventions that the mt

index runs from high seigniorage to low seigniorage and that the vt index runs from

high volatility to low volatility. We index hidden states in this way to be consistent

with our emphasis on the impact of fiscal reforms as policy switches from a first regime

(high seigniorage) to a second regime (low seigniorage), although we also discuss cases

where fiscal policy switches from the second regime to the first regime as in Section

III below.

Each column of each transition probability matrix Qℓ = [qℓ, ij ] for ℓ = m, v sums to

1. The Markov chains (Qm, Qv) induce a chain on the composite state st =
(

mt vt

)

with transition matrix Q = Qm ⊗ Qv.
3 The total number of states is h = mh × vh.

The Markov-switching structure contributes flexibility that allows our model to fit

both high and low inflation episodes. When we discuss the theoretical mechanism

displayed in figure 1 and our empirical findings in section VIII, we shall indicate

some extensive interactions among the Markov states mt, the seignorage shocks ηdt,

and agents’ expectations βt.

II.2. Expectations.

II.2.1. Rational expectations equilibrium. The pieces introduced so far, namely equa-

tions (1) (2), (3), (4), and (5) are sufficient to define rational expectations equilibria

that pin down P e
t+1 as the mathematical expectation EtPt+1 taken with respect to the

joint probability distribution over sequence of outcomes induced by these equations.

3We have also considered cases where mt and vt are not independent, but the fit of these versions

of the model is much worse. See Section X for a detailed discussion.
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%tomedit As we discuss in section IX, these equilibria are useful benchmarks, but

our paper focuses on an alternative expectation formation mechanism.

II.2.2. Learning with constant gain. Let

πe
t+1 ≡ P e

t+1/Pt = βt.

As our baseline specification, we follow Marcet and Sargent (1989) and Marcet and Nicolini

(2003) and assume that the public updates belief βt by using a constant-gain algo-

rithm:

βt = βt−1 + ε(πt−1 − βt−1), (7)

where 0 < ε << 1 and πt is the gross inflation rate at time t, defined as

πt = Pt/Pt−1.

Specification (7) is consistent with a growing literature in macroeconomics that

uses calibration or econometric techniques to compare time series data with models in

which some agents use constant-gain learning algorithms to form their beliefs. Other

examples are the calibration study of big inflations by Marcet and Nicolini (2003) and

the econometric studies of models of Phillips curves and monetary policies by Chung

(1990), Sargent (1999), Sargent, Williams, and Zha (2006b), and Carboni and Ellison

(2007),4 and of the term structure of interest rates by Piazzesi and Schneider (2006).

II.2.3. Learning with state-dependent gains. While for most of this paper we retain the

constant gain specification, in section X we report some results with two alternative

learning rules. Keeping the same notation, we suppose agents have a mh×1 vector of

beliefs βt whose mth component evolves according to one of the following two learning

mechanisms:

βt,m = βt−1,m + Pr(m|πt−1, φ) εm (πt−1 − βt−1,m) , (8)

or

βt,m = βt−1,m + εm (πt−1 − βt−1,m) , (9)

where m = 1, . . . , mh. The learning rule (8) implies that the current gain depends

on the probability of being in state m, given the previous data, while the learning

rule (9) does not have this dependence. It is important to note that the rule (8) does

not nest the constant-gain learning rule (7), but the rule (9) includes the constant-

gain rule as a special case by simply restricting εm = ε for all m. At time t, βt

equals βt,mt
, where mt is a realized mean-seigniorage state. These specifications can

allow agents to discount past data more rapidly during high inflation episodes and

are computationally feasible because they allow us to write the likelihood recursively.

Other state-dependent gain specifications, such as a version of (7) with a scalar belief

βt but with a switching εmt
, are computationally infeasible because they do not allow

us to represent the likelihood function recursively.

4These papers all use models descended from one proposed and simulated by Sims (1988).
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II.3. Further restrictions on expectations. By using (1),(2), and (7), we obtain

the following formula for equilibrium inflation:

πt =
θ(1 − λβt−1)

1 − λβt − dt(st)
, (10)

provided that both the numerator and denominator are positive. Thus, beliefs βt−1

and βt must evidently satisfy the following inequalities:

1 − λβt−1 > 0, (11)

1 − λβt − dt(st) > δθ(1 − λβt−1). (12)

Condition (11) ensures that both the price level and money stock in the last period

are positive. Given this restriction on βt−1, condition (12) ensures that both the price

level and money stock in the current period are positive as well. Furthermore, it

imposes a small value δ > 0 to bound the denominator of (10) away from zero so

that inflation is bounded above by 1/δ. This bound is necessary for the existence of

a self-confirming equilibrium, as will be explained in Appendix C.

We have thus far included nothing in our specification to guarantee that beliefs βt

will respect restrictions (11) and (12). Next we turn to explaining why we need to

impose some additional restrictions to insure that they are satisfied, and to motivate

the restrictions that we choose.

III. Mean dynamics toward self-confirming equilibria

To complete our specification, we use objects that are associated with differ-

ent notions of a self-confirming equilibrium (SCE), following Sargent (1999) and

Cho, Williams, and Sargent (2002). These are useful reference points that help us

make precise the senses in which agents’ beliefs are consistent with the inflation out-

comes that they observe.

Definition III.1. An unconditional SCE is a probability distribution over inflation

histories πT and a β that satisfy Eπt − β = 0.

Definition III.2. For each m ∈ {1, . . . , mh}, a fixed-m SCE is a probability distri-

bution over inflation histories πT and a β(m) that satisfy

E[πt|mt = m ∀t] − β(m) = 0.

Definition III.3. For each m ∈ {1, . . . , mh} and v ∈ {1, . . . , vh} a, fixed-m-v SCE

is a probability distribution over inflation histories πT and a β(m, v) that satisfy

E[πt|mt = m, vt = v ∀t] − β(m, v) = 0.

Self-confirming equilibria and conditional self-confirming equilibria pertain are de-

fined in terms of orthogonality conditions that govern βt in large samples as the gain

ε → 0. An unconditional SCE states that agents’ beliefs β are correct uncondition-

ally: β is the unconditional expectation of π (which itself is a function of β). In

this paper, we focus more on fixed-m SCEs, which better characterize time paths of



SOUTH AMERICAN INFLATION 7

β

β̇

β∗
1(1) β∗

2(1)β∗
1(2) β∗

2(2)
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b

Figure 1. Conditional mean dynamics, fixed-m SCEs, and cosmetic

and fundamental reforms.

beliefs. A fixed-m SCE is just an unconditional SCE that is computed on the as-

sumption that the seignorage state mt will always be m. This assumption is of course

false, but when m is persistent, it serves as a good, useful approximation. In Section

IX, we also discuss a particular set of fixed-m-v SCEs and relate them to determinis-

tic steady-state equilibria. There we also show that the beliefs in the fixed-m SCEs

approximate rational expectations equilibrium beliefs.

Our definitions of SCEs hold for fixed β, while the learning rule (7) describes

how agents’ beliefs βt adjust so that the orthogonality conditions are approximately

satisfied. By averaging appropriately, we can describe the typical behavior of the sto-

chastic process for beliefs by a deterministic differential equation. In particular, the

orthogonality condition in definition III.1 is associated with mean dynamics β̇ = G(β)

that describe the average dynamic behavior of βt as ε → 0. Similarly, the orthog-

onality condition in definition III.1 is associated with conditional mean dynamics

β̇ = Ĝ(β, m) that describe the average dynamic behavior of βt as ε → 0 and as the

seignorage state m becomes increasingly persistent. SCEs and conditional SCEs are

the rest points of G and Ĝ(m), respectively. The fact that our estimates of the transi-

tion matrix Qm make the hidden states very persistent renders the conditional mean

dynamics especially interesting to us. Appendix C defines mean dynamics, describes

how to compute the functions G and Ĝ(m) and their rest points, and makes precise

the sense in which mean dynamics govern the behavior of βt in our stochastic system.

Figure 1 depicts typical Ĝ(β, m) functions. In section VIII, we shall plot the

corresponding Ĝ functions associated with our maximum likelihood estimates for five

countries. For each m, there are two conditional SCEs, a low-inflation β∗
1(m) and a

high inflation β∗
2(m). Evidently, (i) β∗

1(m) is a stable fixed point of the conditional

mean dynamics, (ii) β∗
2(m) is an unstable fixed point, and (iii) β∗

2(m) marks the

edge of the domain of attraction of the stable SCE. When βt exceeds β∗
2(m), the
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conditional mean dynamics propel both beliefs and inflation upward, making βt on

average grow without bound and eventually imperilling conditions (11) and (12).

Furthermore, figure 1 shows that when m switches from the low (second) to the high

(first) seignorage state (recall our convention that d̄(2) < d̄(1)), the stable SCE shifts

up: β∗
1(2) < β∗

1(1). Increases in seignorage are associated with increases in expected

inflation. With this increase, the domain of attraction of the stable SCE also shrinks,

as β∗
2(2) > β∗

2(1). Thus, not only does greater seignorage lead to higher average

inflation, but there is also a greater chance of rapid increases in inflation after beliefs

enter the unstable region. Later, we shall use the conditional mean dynamics to

interpret the causes and cures of inflation in five countries. Figure 1 also illustrates

two of the types of reforms that can arrest explosive inflation paths, which we now

discuss.

IV. Escapes and Reforms

In this section, we add features to our model that become active when βt > β∗
2(m),

a situation that the section III as identified as one in which on average both inflation

and expectations of inflation threaten to increase beyond points where the model

breaks down because either (11) or(12) is violated. We adopt the following language:

Definition IV.1. An escape (from the domain of attraction of a stable conditional

SCE) is said to occur when βt > β∗
2(m).

Definition IV.2. A reform is called for whenever without the reform, condition (11)

or(12) would be violated so long as the hidden state m were to remain unchanged.

Definition IV.3. A fundamental reform occurs when the exogenous seignorage state

m jumps to make (11) and (12) satisfied at the initial βt−1.

Definition IV.4. A cosmetic reform occurs when (1) a reform is called for, (2) m

remains unchanged, and (3) πt and perhaps βt is reset according to rules defined in

Definition IV.6 or IV.7 below.

Figure 1 illustrates how two types of reforms can lead to lower inflation. A fun-

damental reform comes from a switch in the seignorage state. After the switch, the

belief β is now in the domain of attraction of the low SCE β∗
1(2). A credible cosmetic

reform that resets inflation and beliefs is shown by a jump in β from a high level

down to β∗
1(1). Because the economy remains in a high seignorage state, a repetition

of a high inflation episode is more likely to reoccur after a cosmetic reform.

For given levels of expectations βt, βt−1, values of seignorage shocks ηdt that con-

tribute to escapes can be defined in terms of the following two critical levels:5

ω t(mt) = 1 − λβt −
θ(1 − λβt−1)

β∗
2(mt)

− d̄(mt), (13)

ωt(mt) = 1 − λβt − δθ(1 − λβt−1) − d̄(mt), (14)

5If β∗

2
(mt) does not exist, we replace this term in (13) by πmax

SS
defined in (A4).



SOUTH AMERICAN INFLATION 9

By using (10) it can be shown that ω t(mt) is the value of the shock ηdt that leaves

πt = β∗
2(mt).

6 Thus, because they imply that πt > β∗
2(m) via the adaptive mechanism

(7), values of ηdt > ω t(mt) contribute to pushing βt outside the domain of attraction

of the stable fixed-m SCE β∗
1(mt). By using (12), we can deduce that ωt(mt) is a

value of the shock ηdt(st) that puts πt equal to its upper bound δ−1. This discussion

leads to the following.

Definition IV.5. A realization of ηdt is said to be escape-provoking if ηdt ∈ [ω t(mt), ω t(mt)].

Conditional on the current-period state being s0 = (m0, v0) , the probability that

an escape-provoking event occurs or continues is Fd(ωt(m0)|s0)−Fd(ωt(m0)|s0), where

Fd(x|s0) is the cumulative density function of ηdt(s0) evaluated at the value x, con-

structed from the pdf in (6). In other words, this is the probability that the inflation

rate is greater than β∗
2(m0) but remains less than the level δ−1 that would prompt

the reform. The probability that an escape-provoking event occurs at time t, given

the t − 1 observable data set, is

ι{βt−1 < 1/λ}
h
∑

s0=1

[

Pr (st = s0|Πt−1, φ) (Fd(ωt(m0)|s0) − Fd(ωt(m0)|s0))
]

, (15)

where ι(A) is an indicator function returning 1 if the event A occurs and 0 otherwise.

Given βt−1, if βt−1 ≥ 1/λ, a reform is called for with probability one; otherwise, the

price level or money stock would continue to be negative even at time t. If βt−1 < 1/λ,

values of ηdt > ωt(mt) cause the model to break down if both βt and πt are left alone.

In this case, we impose a cosmetic reform. Conditional on being in state s0, the

probability that a cosmetic reform at time t occurs is 1 − Fd(ωt(m0)|s0), which is

evidently the probability that the seignorage shock exceeds the level that sets the

inflation rate to its upper bound of δ−1 and prompts the reform. Specifically, the

probability of a cosmetic reform at time t, given the t − 1 data set, is:

ι{βt−1 ≥ 1/λ} + ι{βt−1 < 1/λ}
h
∑

s0=1

[

Pr (st = s0|Πt−1, φ) [1 − Fd(ωt(m0)|s0)]
]

. (16)

We now give precise definitions of two types of cosmetic reforms. Both types are

used in our estimation and each proves important in different cases.

Definition IV.6. (A cosmetic reform that resets inflation but leaves beliefs un-

touched.) Whenever βt−1 ≥ 1/λ so that (11) is violated or whenever ηdt(st) > ωt(mt)

so that and (12) is violated, we simply reset inflation to the low deterministic rational-

expectations-equilibrium inflation rate π∗
1(mt) (computed in appendix A) plus some

noise ηπ t(mt):

πt = π∗
t (mt) ≡ π∗

1(mt) + ηπ t(mt). (17)

6When we use the state-dependent learning rules then the realized βt−1 depends on mt−1 and

thus we must consider ωt(mt, mt−1) and ω(mt, mt−1) explicitly.
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Ideally, we would have liked to reset inflation to the low SCE inflation rate. The

reason that we choose the low REE inflation rate instead is entirely practical: the

SCEs are difficult to compute, while the REEs are easy and the lower REE approxi-

mates the lower SCE well. As shown in Section IX, the low steady state REE inflation

rate is close to the low SCE rate with the low value of m (average-seigniorage state)

and the low value of v (volatility state). It is computationally inexpensive to calcu-

late π∗
1(mt) according to Proposition 1 in Appendix A. The noise term ηπ t(mt) is

modelled as an i.i.d. random shock such that

0 < π∗
t (mt) < 1/δ.

The probability density of the noise ηπ t(mt) takes the following particular form:

pπ (ηπ|mt) =



















exp

[

−
[log (π∗

1(mt)+ηπ)−log π∗

1(mt)]
2

2σ2
π

]

√
2πσπ(π∗

1(mt)+ηπ)Φ((−log(δ)−log(π∗

1(mt))/σπ)

if −π∗
1(mt) < ηπ < 1/δ − π∗

1(mt)

0 otherwise

, (18)

where Φ(x) is again the standard normal cdf of x with the convention that log(0) =

−∞ and Φ(−∞) = 0. This truncated distribution ensures that inflation is below the

upper bound 1/δ and maintains the skewness property of the inflation distribution.

In our empirical work, we again experimented with other distributional forms, but

they did not improve the model’s fit.

Definition IV.7. (A cosmetic reform with inflation and beliefs both reinitialized.) If

condition (12) would otherwise be violated, then we reset βt = πt as well as resetting

πt = π∗
t (mt) ≡ π∗

1(mt) + ηπ t(mt).

Remark IV.8. The cosmetic reforms of Marcet and Nicolini (2003) did not reset beliefs

βt. Resetting beliefs helps fit the data in some cases. A cosmetic reform of the

definition IV.6 type can be said to be a less credible reform because while inflation is

brought down, high beliefs still linger and will be brought down only if π stays low

long enough to lower them through adaption. A cosmetic reform of the definition IV.7

type can be interpreted as a more credible reform because beliefs adjust immediately.

In our empirical work, we find cases, like Peru, where definition IV.7 cosmetic reforms

improve the model’s fit much relative to definition IV.6 reforms. For other cases, the

data seem to favor definition IV.6 reforms.

In summary, our cosmetic reforms are crude devices designed to mimic various

things that Latin American governments did in the 1980s to arrest inflation “on the

cheap” without tackling fiscal deficits.7
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Table 1. Parameters and their meanings

Parameter(s) Feature

λ demand for money

ε adaptation rate

d̄(m) log seignorage mean

σ(v) log seignorage std

σπ reform std

Qm m- transition matrix

Qv v-transition matrix

V. The Likelihood function

We fix the parameters (θ, δ) in estimation. Denote the remaining free parameters of

the model as φ =
[

λ d̄(m) σd(v) σπ ε vec(Qm) vec(Qv)
]

, where m = 1, . . . , mh

and v = 1, . . . , vh. For convenience, table 1 contains a reminder of the meanings of

these parameters. Let zt denote the history [z1, . . . , zt]. Given a parameter vector, the

model induces a joint density p(πT , mT , vT , dT , MT , βT |φ), where we set β0 = π0 and

we set the probability for the initial unobservable state s0 as described in appendix

B. We take the initial observable π0 as given. The initial value M0 is a function

of β0 and d0 has no effect on the likelihood so long as π0 is given. We take the

marginal density p(πT |φ) as our likelihood function and compute the estimator φ̂ =

argmaxφp(πT |φ). We make inferences about seignorage from the conditional density

p(dT |πT , φ̂). Appendix B describes details.

VI. Identification

The density p(πT |φ) allows us to infer all of the parameters in φ from a record of

inflation rates πT . Here we indicate how the following three important features of the

inflation times series contain important identifying information:

• the level of (log) inflation in a high-seigniorage state;

• the changing patterns of conditional volatilities of inflation rates;

• the skewness of inflation rates.

We illustrate what drives identification by drawing from p(πT |φ), i.e., by simulat-

ing the model, for two artificial settings of the parameter vector φ. In Economy 1,

the discounting parameter λ is 0.30 and the median seigniorage rate, d̄(m), is 0.10

in the first state (high-seigniorage) and 0.01 in the second state (low-seigniorage).

In Economy 2, λ = 0.89, d̄(1) = 0.003 and d̄(2) = 0.002. All other parameters are

held fixed across the two economies at the values σd(1) = σd(2) = 0.67, σπ = 0.1,

ε = 0.025, qm,11 = 0.99, and qm,22 = 0.99. Figure 2 reports time series of inflation

7Examples of cosmetic monetary reforms are exchange rate pegs, direct price controls,

and new currency introductions. See Dornbusch (1985) for a contemporary discussion and

Marcet and Nicolini (2003) for a discussion, as well as our discussions in section VIII.
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Figure 2. Simulated inflation data with σd(1) = σd(2) = 0.67, σπ =

0.1, and ε = 0.025 for both economies. Top panel (Economy 1): λ = .3,

d̄(1) = 0.1 and d̄(2) = 0.01. Bottom panel (Economy 2): λ = 0.89,

d̄(1) = 0.003 and d̄(2) = 0.002. The dotted lines represent the fixed-m

SCEs and the dashed lines represent the evolution of log βt. In the

shaded areas, the economies are in the high seignorage state (m = 1).

generated with the same starting value for inflation (but with the initial fifty obser-

vations thrown away) and with identical draws of seigniorage level mt and identical

draws of standardized normal random variables being multiplied by σd(vt) to generate

seigniorage sequences for the two economies (see equation (6)). In addition to infla-

tion, the figure plots the fixed-m SCEs using dotted lines and beliefs βt using dashed

lines. Notice that for Economy 2, the high and low SCEs are virtually identical in the

high-seigniorage state. That makes escape-provoking events very likely when beliefs

approach the higher SCE β∗
2(m), as they do in the figure. But for Economy 1, a

substantial gap between SCEs in the high-seigniorage state makes escape-provoking

events less likely, even though inflation rates are much higher. The sample paths

are such that escapes occur for neither economy, since βt < β∗
2(m) always for both

economies. Thus, along the sample paths shown, there are no cosmetic reforms for

either economy. Instead, when inflation falls, it is either due to seignorage shocks
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(in the form of ηdt) or shifts in m. As we shall see from the parameter values and

interpretations reported in Section VII, Economy 1 resembles Bolivia and Economy

2 resembles Chile.

We now focus on the high-seigniorage state marked by the shaded area in Figure 2.

Although the patterns of the inflation series are similar for both economies, inflation

in Economy 1 is much higher than in Economy 2 and the volatility pattern differs.

The magnitude of inflation and the volatility pattern are both determined by the

values of λ and d̄(1). The low discount parameter λ = 0.30 means that the steady

state maximum seigniorage rate is 0.21. Since the maximum seigniorage rate is twice

as large as d̄(1) = 0.10, the domain of attraction to the low SCE inflation rate is

large, lowering the probability of escape-provoking shocks ηdt. This is indicated by

the wide gap between the two SCEs in the shaded area in the top panel of Figure 2.

Consequently, Economy 1 is one in which cosmetic reforms are likely to play little role

in generating recurrent hyperinflations. Instead, shifts in the hidden Markov process

governing seignorage are the main force contributing to big reductions in inflation.

In Economy 2, the high discount parameter λ = 0.89 leads to a much lower average

level of inflation than in Economy 1 (note that the scale in the bottom panel of Figure

2 is much smaller than that in the top panel). This high parameter value implies that

the steady state maximum seigniorage rate is 0.0038. Because this maximum is only

27% higher than the median seigniorage rate d̄(1) = 0.003, the probability of escape-

provoking events is much higher than in Economy 1. This enlarges the scope for

expectations β to have a role that is divorced from fluctuations in “fundamentals”(i.e.,

seignorage). Escapes from the domain of attraction of β∗
1(1) (here approximately equal

to β∗
2(1)) are more likely to occur in Economy 2, though none actually occur in the

sample path depicted in the bottom panel of Figure 2. Instead, as in Economy 1,

hyperinflations are driven solely by shocks ηdt to seigniorage. Thus, the sample path

displayed for Economy 2 depicts another case where cosmetic reforms like those of

Marcet and Nicolini (2003) play no role in generating recurrent hyperinflations: the

equilibrium conditions (11) and (12) are satisfied along the particular high-inflation

sample path displayed.

The gain parameter, ε, has important effects on the volatility and skewness of

inflation and the likelihood of cosmetic reforms. In Economy 2, for example, if we

increase ε from 0.025 to 0.04, the beliefs will quickly exceed the higher SCE β∗
2(1)

and cosmetic reforms will take place. Consequently, log inflation can jump up to as

high as 3.5 and jump down to as low as −1.5. Unless we observe such a skewed and

volatile inflation series, the estimated gain is likely to be much smaller than 0.04 and

thus cosmetic reforms are unlikely to happen. In some countries, however, cosmetic

reforms play a crucial role as we shall see in section VIII.

In summary, the overall magnitude, the volatility pattern, and the skewness of

inflation enable one to infer the underlying parameters such as λ, d̄(m), and ε. For

the purpose of illustration, in this section we have held all other parameters are

fixed. These other parameters have also have important effects, especially on higher

moments of inflation. We turn to these in the next section.
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VII. Estimation

VII.1. Estimation procedure. In estimation we use the monthly CPI inflation for

each country published in the International Financial Statistics. These data sets are

relatively reliable and have samples long enough to span episodes of both hyperin-

flation and low inflation. The long sample makes it reasonable to use the Schwarz

criterion to measure the fit of our parsimonious model. The sample period is 1957:02–

2005:04 for Argentina, Bolivia, Chile, and Peru and 1980:01–2005:04 for Brazil.

There are no reliable or even available data on GDP, money, and the government

deficit in many hyperinflation countries even on a quarterly basis because of “poorly

developed statistical systems” (Bruno and Fischer, 1990). However, as discussed in

Section VI, we are able to estimate the structural parameters through the inflation

likelihood derived in appendix B. As discussed in section V, we fix some parameters

that here take the values β0 = π0, θ = 0.99, and δ = 0.01. The value of θ is consistent

with economic growth and some cash taxes. The value of δ implies that monthly

inflation rates are bounded by 10, 000%, while Marcet and Nicolini (2003) set the

bound at 5, 000%. Although we do not use them in estimation, we do have annual

data on seignorage that are described in appendix E. As discussed below, we compare

them with the distribution of seignorage levels predicted by the model. In Section X,

we discuss some exercises with the limited quarterly seignorage data we were able to

obtain.

The long samples make the likelihoods of inflation well shaped around their global

peaks. There are local peaks but often the likelihood values there are very small rela-

tive to the maximum likelihood (ML) value. Nonetheless, if one chooses a bad starting

point to search for the ML estimate, the numerical search algorithm is likely to stall

at a local peak. Thus, obtaining the maximum likelihood estimates (MLEs) proves

to be an unusually challenging task. The optimization method we use combines the

block-wise BFGS algorithm developed by Sims, Waggoner, and Zha (forthcoming)

and various constrained optimization routines contained in the commercial IMSL

package. The block-wise BFGS algorithm, following the idea of Gibbs sampling and

EM algorithm, breaks the set of model parameters into subsets and uses Christopher

A. Sims’s csminwel program to maximize the likelihood of one set of the model’s

parameters conditional on the other sets. Maximization is iterated at each subset

until it converges. Then the optimization iterates between the block-wise BFGS al-

gorithm and the IMSL routines until it converges. The convergence criterion is the

square root of machine epsilon.

Thus far we have described the optimization process for only one starting point. We

begin with a grid of 300 starting points; after convergence, we perturb each maximum

point in both small and large steps to generate additional 200 new starting points

and restart the optimization process again; the MLEs attain the highest likelihood
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Table 2. Log likelihood adjusted by the Schwarz criterion

Constant (1 × 1) Best-fit Best-fit AR(2) log posterior odds

Argentina 980.9 (df=8) 1275.4 1346.1 (df=0) -70.7

Bolivia 1248.1 (df=8) 1540.0 1547.2 (df=0) -7.1

Brazil 510.7 (df=9) 814.6 853.6 (df=-1) -39.0

Chile 1422.3 (df=8) 1745.9 1721.7 (df=0) 24.14

Peru 1378.1 (df=8) 1711.7 1658.7 (df=0) 52.8

value.8 The other converged points typically have much lower likelihood values by at

least a magnitude of hundreds of log values.

VIII. Findings

In this section, we present and interpret our main empirical results with the constant-

gain learning rule. Results for state-dependent gains are discussed later in Section

X. Before going through the analysis country by country, we look at how best-fitting

models are determined and how some key parameters vary across countries.

VIII.1. Fits. Since our theoretical model is highly restricted, one would not expect its

fit to approach that of a standard autoregressive (AR) model, let alone a time-varying

AR model. In previous work with models related to ours, such as Marcet and Nicolini

(2003), only particular moments or correlations implied by the model were typically

reported and compared to the data. By contrast, we evaluate the fits of our models

for all five countries by comparing various versions of our theoretical model with one

another and also with fits attained with flexible, unrestricted statistical models.

For each country we have tried more than two dozen versions of our theoretical

model and of the unrestricted atheoretical models. Among other things, we varied

the number of Markov states and their interdependence and considered alternative

specifications for distributions of the shocks ηdt. If the number of states is 3 for mt

and 2 for v2t, we call it a 3 × 2 model. By the Schwarz criterion (SC) or Bayesian

information criterion, the 2 × 3 version of the model fits best for Argentina, Bolivia,

and Chile and the 3 × 2 version is the best for Brazil and Peru; all other versions

including the 1 × 1 constant-parameter model fit worse. With the 3-state case, we

follow Sims, Waggoner, and Zha (forthcoming) and restrict the probability transition

matrix to be of the following form:




χ1 (1 − χ2)/2 0

1 − χ1 χ2 1 − χ3

0 (1 − χ2)/2 χ3



 ,

where χj’s are free parameters to be estimated.

8The csminwel program can be found on http://sims.princeton.edu/yftp/optimize/.

For each country, the whole optimization process is completed in 5-10 days on a cluster of 14

dual-processors, using the parallel and grid computing package called STAMPEDE provided to us

by the Computing College of Georgia Institute of Technology.
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Table 2 reports the log likelihood (adjusted by the Schwarz criterion) of the best-

fitting theoretical model for each country, the constant-parameter theoretical model

of Marcet and Nicolini (2003) where there are no state-dependent parameters, and

the best-fitting unrestricted regime-switching AR model. The constant-parameter

model fits poorly for every country. For all five countries, the best-fitting atheoretical

model is the 2 × 2 hidden Markov AR(2) model that allows the two states driving

coefficients to be independent of the two states driving shock variances. We use our

best-fitting theoretical model as a baseline for comparison. The notation “df” stands

for degrees of freedom in relation to the baseline model. The last column reports the

posterior odds of the best-fitting economic model relative to the best-fitting statistical

model. The table shows that our model fits worse than the best fitting atheoretical

model for Argentina, Bolivia, and Brazil, but better for Chile and Peru.

However, even in countries such as Argentina and Brazil, where our model fits

worse overall, the discrepancy is largely driven by the superior performance of the

statistical models in the non-hyperinflation episodes. For the periods of hyperin-

flation, our model does much better than the atheoretical statistical models (see

Sargent, Williams, and Zha (2006a) for detailed evidence). We prefer to evaluate our

model not by fit alone but in terms of the economic interpretations of hyperinflations

and stabilizations that it enables. We now discuss these.

VIII.2. Parameter patterns. Table 3 reports the maximum likelihood estimates of

our model for Peru, Argentina, Bolivia, Brazil, and Chile.9 There are interesting cross-

country differences in the important discounting or elasticity parameter λ in equation

(1) and the gain parameter ε that controls the rate at which past observations are

discounted in the expectations scheme (7). Bolivia has the lowest λ and the highest

ε, indicating that it discounted future money creation rates the most through a low

elasticity of the demand for money with respect to expected inflation, while it also

discounted past rates of inflation the most through a high gain in the expectations

scheme. Comparing Bolivia’s (λ, ε) with Chile’s shows expected inflation to be more

important in the demand for money and expectations to discount past observations

much less in Chile.

In general, as discussed in Section VI, the smaller λ is, the less likely it is that

an escape will take place because the domain of attraction of the low SCE inflation

rate is larger. Once β is in the escape region, a large value of ε tends to accelerate

increases in both inflation and beliefs β. An informative example is Brazil where

both λ and ε are large. For Argentina, Chile, and Peru, the value of λ is even

larger and consequently the escape-provoking probabilities are quite high during the

hyperinflation period. For Bolivia, the value of λ is quite low. Thus, even though its

estimated gain is higher than those in the other countries, the domain of attraction

of the low SCE is large enough to prevent the escape event from occurring during

9The estimated standard errors of these estimates are reported in Sargent, Williams, and Zha

(2006a). They are small. We do not report them in this version to save space.
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Table 3. Estimates of φ from best-fit models for all five countries

Parameters Peru Argentina Bolivia Brazil Chile

λ 0.740 0.730 0.307 0.613 0.875

d̄(1) 0.0129 0.0165 0.0752 0.0481 0.00317

d̄(2) 0.0052 0.0040 0.0105 0.0234 0.00175

d̄(3) 0.0033 * * 0.0060 *

σd(1) 2.538 9.615 18.87 0.355 4.926

σd(2) 0.312 0.675 0.756 0.092 2.298

σd(3) * 0.264 3.252 * 0.435

σπ 0.063 0.060 0.308 0.101 0.094

ε 0.069 0.023 0.232 0.189 0.025

qm,11 0.9943 0.9789 0.9629 0.9845 0.9869

qm,22 0.9626 0.9838 0.9959 0.9732 0.9930

qm,33 0.9650 * * 1.0000 *

qv,11 0.3016 0.4395 0.3344 0.9344 0.7627

qv,22 0.9547 0.9260 0.8180 0.9031 0.9310

qv,33 * 0.9713 0.8513 * 0.9131

Note: The symbol * means “not applicable.”

the hyperinflation period. We return to these observations in our country-by-country

analysis below.

VIII.3. Peru (cosmetic reforms). Figure 3 uses our maximum likelihood estimate

φ̂, as reported in Table 3, and the implied joint distribution p(πT , mT , vT , dT , MT , βT |φ̂)

to interpret inflation episodes in Peru. First, for φ̂, we use procedures described in

appendix C to construct the conditional mean dynamics Ĝ(β, m) for the hidden d̄(m)

states, m = 1, . . . , mh. The top left panel depicts the functions β̇ = Ĝ(β, m) discussed

above, with the zeros being the fixed-m SCEs. We projected the fixed-m SCEs as hor-

izontal dotted lines into the top right panel, which plots our estimates of the public’s

inflation beliefs βt that are implied by the initial β0, our estimate of ε, and πT .

The second panel from the top on the right shows bars that are seigniorage rates

constructed from annual data as well as 0.16, 0.5, and 0.84 probability quantiles for

dt for the estimated density p(dT |πT , φ̂) (see Appendix E for details about how these

numbers are computed in the data and the model). The dashed lines in the graph

contain two-thirds of the probability distribution of simulated annual seignorage from

our model; the solid line labelled “Model” represents the median of simulated annual

seignorage.

The third panel from the top records probabilities of two events that we have

computed from the joint density p(πT , dT |φ̂). The thick solid line, denoted “L & M

Seignorage” is the probability that the median-seigniorage state m is in either the low
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Figure 3. Peru.
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or the medium state as a function of time. The dashed line is the probability that an

escape-provoking event will occur next period, computed as described in section IV

above. Finally, the bottom panel shows the actual inflation history πT and the history

of one-step ahead estimates produced by our model evaluated at φ̂, conditioning on

earlier inflation rates.

Now turning to what these plots say about Peru, we see in he third panel that

throughout the 1960s and most of the 1970s, Peru had low or middle d̄(m) states.

The average seignorage does not vary substantially across these states, as the second

panel shows that the median prediction is relatively flat, which roughly matches the

annual seignorage data. Expected inflation was relatively low throughout this period

(top panel), remaining near the conditional SCEs that are at 0.016 and 0.029 for the

low and medium states, and the actual inflation rate was relatively low and stable

as well (bottom panel). However, around 1978 Peru entered into a high-seigniorage

state (third panel) that persisted until 1993. This is confirmed by the persistently

high seignorage revenues shown in the second panel. But inflation did not accelerate

immediately. Rather, beliefs drifted upward throughout the 1980s to the stable con-

ditional SCE in the high state (top panel) and inflation climbed slowly along with it

(bottom panel).

But being in the high seignorage state made Peru vulnerable to a sequence of

positive shocks ηdt that would threaten to send expectations βt above the escape

threshold β∗
2 . In the late 1980s expected inflation increased rapidly, traversing into

the region that prompted a large and rapid escape, as indicated in the belief dynamics

in the top panel and the sharp increase in the escape-provoking probability in the third

panel. Inflation itself increased even more dramatically (bottom panel), triggering a

credible cosmetic reform as in definition IV.7 in which both inflation and beliefs are

reset. For our constant-gain learning models, Peru is the only country in our data set

for which our model asserts that such a double-barrelled cosmetic reform certainly

occurred. (For learning with state-dependent gains, we find another case where the

data favor such a double-barrelled cosmetic reforms.) We interpret the resetting of

β as indicating that to the public the cosmetic reform is credible in the sense that

the public believed it to be effective in cutting future inflation rates. Consequently,

expected and actual inflation jumped down dramatically in 1992. Moreover, this

cosmetic reform seemed to have been successful. Consistent with the high-seigniorage

SCE around 0.08, inflation remained relatively low and stable throughout the rest of

the sample (bottom panel), even though the economy remained in the high average

seignorage state for a considerable time. Interestingly, the run-up in inflation followed

the problems with price controls and the nationalization of banks in 1987. The

stabilization occurred when President Fujimori took office in 1991. Evidence of a

fiscal reform is absent until around 1994, when the probability assigned to the low or

medium seignorage state increased nearly to one (third panel). Thus, Peru seems to

be a case where unorthodox cosmetic reforms along the lines of Marcet and Nicolini

(2003) were successful in vanquishing hyperinflation.
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VIII.4. Argentina (fundamental reforms). In figure 4 we plot the same five pan-

els for Argentina. Comparing βt in the top right panel with the probabilities in the

third panel down shows that throughout the 1960s up until 1975 the economy was

repeatedly in the low seignorage state, the probability of an escape-provoking event

was very low, and expected inflation hovered around the low conditional SCE. The

low probability for the low seignorage state in the third panel on the right shows that

after 1975 up until 1991, Argentina lived with a chronically high d̄(m). The second

panel from the top shows that our model predicts higher and more volatile seignorage

throughout this period, and this is largely confirmed in the annual seignorage data.

Throughout this period, expected inflation drifted higher and higher (as shown in the

first panel on the right), first tending toward the stable conditional SCE around 0.1

associated with the high m state, then going even higher. The bottom panel shows

that actual inflation drifted upward during this period, with spikes of very high infla-

tion in 1976 and 1984, driven largely by the shocks to seignorage. Again, looking at

the third panel, the probability of an escape-provoking event becomes large when β

approaches and finally exceeds that higher fixed point near 0.2 in 1989 and 1990. As

expected inflation increased rapidly in 1990 actual inflation (as shown in the bottom

panel) increased even more rapidly, leading to a dramatic hyperinflationary episode.

The SCE dynamics conditional on high d̄(m) indicate that if Argentina had been

lucky enough to avoid sequences of adverse shocks that drove β substantially above

the stable rest point near 0.1, it could have avoided the kind of big inflation associated

with an escape. Our estimates say that it was actually lucky in this way until the late

1980s, when the escape-provoking event probability escalated and an escape occurred.

From 1991-1992, the inflation fell rapidly as shown in the bottom panel. Our model

attributes this stabilization to switches in the Markov states governing the mean and

volatility of seignorage, which remained in a lower and less volatile state for most of the

rest of the sample. Again, this is confirmed by the second panel, which shows lower

seignorage throughout the later 1990s, apart from a period of volatility associated

with the crisis in 2002. This change in the state m shifted the conditional dynamics

curve Ĝ(β, m) (in the top left panel) in a way that pushed expected inflation rapidly

downward, with beliefs (in the top right panel) heading toward the lower conditional

SCE once again. Although the change in the seignorage state m and the decline

in the actual inflation rate occurred relatively quickly, the small estimated gain ε

made expected inflation fall gradually throughout the last years of the sample. Thus,

our results suggest that the convertibility plan in 1991 was successful not because

it pegged the exchange rate, but because it was backed up by a fiscal reform that

persistently lowered seignorage. In section X, we show how some of our results for

Argentina are altered when we consider a state-dependent learning rule.

VIII.5. Bolivia (fiscal determination). Our results for Bolivia tell a substantially

different story. Our estimates suggest that the escape dynamics played no role in

Bolivia. The most striking thing about the conditional dynamics in the top left panel

of figure 5 is how spread out the conditional SCEs are in each seignorage state m.
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Figure 5. Bolivia.
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As noted above, the spread between these SCEs is heavily influenced by the money

demand elasticity parameter λ, whose estimated value in Bolivia is quite low. Thus,

the stable conditional SCEs are near zero and 0.2 in the low and high m states,

respectively, but the high SCEs that mark the edge of the domain of attraction are

both over 1.0. As the top right panel shows, the beliefs βt never get into the region

where the unstable dynamics take over. This is confirmed by the third panel of

the figure, which shows that the escape-provoking event probabilities are very small

throughout the entire sample, so small that it is hard to detect by eye.

Since the learning dynamics play very little part in Bolivia, our model suggests that

the dynamics of inflation in this country are almost entirely driven by the dynamics

of seignorage revenue. As shown in the third panel, our estimates indicate that a

switch to the high d̄(m) state m took place around 1982, a view that is confirmed

by the seignorage data shown in the second panel. Throughout most of the sample

our model predicts a low and relatively stable level of seignorage, with a large and

volatile period in the mid-1980s, and this is essentially what the data show. With this

switch to a higher m state, expected inflation increases (top panel) and the country

experiences a hyperinflation (bottom panel) driven both by the higher mean infla-

tion and large shocks (notice the relatively large discrepancy between the predicted

and actual inflation in this period). However, after the 1985 “shock therapy” reforms

were implemented, the economy switched back to the low and more stable seignorage

states (third panel), actual seignorage is lower and more stable (second panel), ex-

pected inflation falls back down toward the lower stable conditional SCE (top panel),

and actual inflation is stabilized at a low level (bottom panel). This country thus

illustrates the importance of allowing the data to determine the causes of hyperinfla-

tion, whether due to learning dynamics or largely driven by fundamentals. Bolivia is

a prime example of the importance of the fiscal determination of hyperinflation.

VIII.6. Brazil (cosmetic reforms followed by fundamental reforms). Brazil,

as shown in figure 6, presents an interesting case study with two main episodes of

hyperinflation that appear to have been ended by different means. First note that

in the top left panel the low seignorage state has a conditional SCE near zero, the

medium state’s SCE is near 0.06, but the high d̄(m) conditional dynamics curve has

no fixed points. We interpret this as asserting that when the economy is in this state,

expected inflation is likely to increase steadily and an escape will occur unless the

country is lucky enough to have a sequence of negative shocks that push it far enough

below that high conditional mean.

Our estimates suggest that from 1980-1985 the economy was in the medium seignor-

age state, as evidenced by the state probabilities in the third panel down and the

predictions and actual levels of seignorage in the second panel. Throughout this pe-

riod, expected inflation was near the medium d̄(m) SCE (top right panel) and actual

inflation was moderately high but relatively stable (bottom panel). However, between

1985 and 1987 the economy shifted to the high seignorage state, remaining there un-

til 1994. Again, this is clear from the state probabilities in the third panel and the
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Figure 6. Brazil.
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seignorage predictions and data in the second panel. Once the economy entered this

state, the unstable learning dynamics kicked in. The escape-provoking event proba-

bilities in the third panel rose repeatedly after 1985, remaining mostly near one after

1987 up until 1994, and there was high and volatile seignorage during this period.

Expected inflation increased rapidly from 1987 through 1991 (top panel) and actual

inflation skyrocketed (bottom panel). In the graph, the predicted value for this first

hyperinflation is about 3 in log points. We truncate the figure at 0.7 log points in

order to make the actual and predicted inflation paths more discernible.

Actual inflation fell from its peak in 1991 (bottom panel), while the economy con-

tinued to run large deficits that necessitated money creation (second panel). Thus,

our model interprets the recurrent inflations and stabilizations before 1994 in the man-

ner of Marcet and Nicolini (2003), namely, as recurrent escapes followed by cosmetic

reforms. Unlike Peru, these reforms are instances of the less comprehensive cosmetic

reform from definition IV.6. In them, inflation is reset but not beliefs, reflecting the

incomplete credibility that the public attaches to the reform. Nonetheless, these re-

forms did succeed in lowering expected inflation sharply due to the large learning gain

(top panel). This reduction was only temporary, as expected inflation rose rapidly

again until 1994, with actual inflation rising again to another peak (bottom panel).

Our model says that the 1994 stabilization is different from the earlier cosmetic re-

forms; this time the stabilization was accompanied by a persistent reduction in the

mean and volatility of seignorage. This is evident in the lower predicted seignorage

in the second panel, which largely accords with the lower and more stable actual

levels (apart from 2002). After 1994, beliefs fell rapidly down to the low seignorage

SCE (top panel), and actual inflation remained stable at a low level (bottom panel).

Moreover, as shown in table 3, our estimates of the transition probabilities Qm suggest

that the high and medium d̄(m) states are transitory, and thus our model predicts the

sustained stable inflation that accompanies the low seignorage state. These findings

are consistent with the policy experience of Brazil, which, before adopting the stable

Real plan in 1994 that systematically reduced seigniorage, had during 1986-1990 in-

troduced a succession of plans with wage and price freezes and new currencies. Thus,

Brazil provides an interesting example of some futile cosmetic reforms ultimately

being followed by a successful sustained fiscal reform.

VIII.7. Chile (variances of fiscal shocks). In figure 7 we consider the case of

Chile, whose experience again is rather distinct from the other countries. First note

that the scale in the top panels is significantly smaller than the other countries, with

the low seignorage state having conditional SCEs near 0.03 and 0.12, and the high

state having essentially one rest point near 0.07. Thus, even the escapes in Chile are

consistent with much lower inflation rates than in Brazil. Moreover, the seignorage

levels themselves do not vary sizeably across states, as the median model prediction

in the second panel is essentially flat over the entire sample. The probabilities of the

low d̄(m) state in the third panel are relatively volatile before 1994 (as reflected by

relatively volatile inflation rates), but these do not translate into volatile predictions.
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Figure 7. Chile.

Thus, our estimates suggest that the buildup and spike in inflation in the mid 1970s

(bottom panel) was caused by a sustained run of high seignorage, largely driven

by economy entering the high shock variance state. This is evident in the second
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panel, where although the median prediction remains flat in the 1970s, there is a

large tail evident in the distribution of seignorage, so that the predictive distribution

covers the increase that we observe in the data. These shocks caused beliefs to drift

upward (top panel), increasing the probability of an escape-provoking event (third

panel), and leading to the hyperinflation observed (bottom panel). The importance

of shocks in 1970s Chile is consistent with the instability that accompanied the Allende

government and the subsequent coup.

Because the buildup in inflation was largely driven by shocks to the seignorage, the

stabilization in the late 1970s is interpreted as a reduction of variance of these shocks.

Beliefs drift continually downward after 1978 (top panel), and inflation remains rela-

tively low throughout the rest of the sample (bottom panel), apart from a short-lived

spike around 1985. Cosmetic reforms play little role for Chile, as their probabilities

remain very low even during the runaway inflation period. Thus, Chile is again an

example of the importance of fiscal policy for inflation. But although fiscal reforms

play some role in bringing down hyperinflation in the 1970s, seignorage shocks are the

driving force in the conquest of Chilean inflation. After the tumult of the 1970s the

economy engaged in a more stable fiscal policy, resulting in relatively stable inflation.

IX. Comparing Steady State, SCEs, and REEs

We have examined what our estimates imply for the self-confirming and rational

expectations equilibria discussed above and defined formally in appendices C and D.

We have emphasized the parts of our story for the dynamics of hyperinflation that

require retreating from rational expectations. However, in many cases the retreat

is relatively minor. In particular, as shown in Sargent, Williams, and Zha (2006a),

the fixed-m SCEs discussed in the previous sections are close to the REE beliefs. In

most cases, the differences are well within half of a percentage point, with the largest

differences being slightly more than one percentage point. Similarly, unconditional

SCEs and REEs are very close as well. Appendix D shows that the fixed-m− v SCEs

with the low volatility states are also very close to the deterministic steady states

π∗
1(m). That justifies our use of π∗

1(m) in defining cosmetic reforms.

X. Robustness

As discussed above, we have tried many different specifications of our model that

do not fit as well as our baseline specification. Here we report one change that does

matter. We also discuss the implications of our results for quarterly seignorage data.

X.1. State-dependent gains. We re-estimate the model with both of the state-

dependent learning rules described in Section II.2.3. For countries other than Ar-

gentina, neither rule gives the model a better fit to the data than the constant-gain

rule. This is not surprising because inflation can decline drastically even when beliefs

adjust slowly, as shown in Section VI. For Argentina, however, both state-dependent

rules improve the fit significantly. The best-fit model is a 2 × 3 Markov process with
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the rule (9); the log likelihood increases to 1338.7 from 1275.4 under the constant-

gain rule, which, according to Table 3, makes the economic model’s fit competitive

with the best-fit statistical model. The elasticity parameter λ is estimated to be 0.83,

somewhat higher than the estimate in the constant-gain case. The gain for the high-

seigniorage state is estimated to 0.052, much higher than the estimated gain (0.023)

in the constant-gain case, implying that agents discount the past inflation data faster

during the high-seigniorage periods. The estimate for the gain parameter during the

low-seigniorage state is 0.013, lower than the estimate of the constant gain.

Other estimated results are plotted in Figure 8. In the left panel on the first row of

graphs, the dotted lines represent SCEs conditional on the prevailing seignorage state

m and the solid line represents the evolution of beliefs βt. In the high-seigniorage

state, the two SCEs (high and low) are the same (marked by the middle dotted line).

But in the low-seigniorage state, the high and low SCEs are far apart.

During the high-seigniorage periods, as beliefs approach the high SCE represented

by the middle dotted line, escape-provoking events become very likely. Beliefs increase

drastically after 1988, thanks to the large gain. After the largest increase of inflation

in July 1989, cosmetic reforms take place and both inflation and beliefs are reset in

August 1989. Shortly after, the second largest inflation rate occurs in March 1990

because seigniorage remains high. The high inflation rate did not last due to what

the model identifies to be favorable fiscal conditions consisting of an initially lower

volatility of fiscal shocks, followed by fundamental fiscal reforms. The left panel in

the second row of graphs shows this pattern of seigniorage rates backed out from

the estimated model. Again, these model predictions are remarkably consistent with

the data. The right panel in the first row of Figure 8 displays one-step predictions

of inflation rates, which track both hyperinflation and low inflation well. The low-

inflation data, like the high-inflation data, are crucial in helping to identify factors

that determine the rise and fall of hyperinflation.

X.2. Quarterly data on seigniorage. Because changes in prices are rapid during

a hyperinflation period, it would be informative to compare our model’s predictions

with high-frequency data on seigniorage. For many countries studied in this paper,

however, it is difficult or even impossible to find reliable quarterly data on seignior-

age. While monthly or quarterly data on nominal money is generally available, there

is little quarterly data on GDP. The International Finance Statistics (IFS), the ar-

guably most reliable data source compiled by International Monetary Fund (IMF),

has quarterly GDP data for Argentina from 1993Q1 on, Bolivia from only 1995Q1

on, and for Brazil from 1991Q1 on. We were able to obtain some more historical data

for Argentina going back to 1970Q1 from the Ministry of Economy and Production

in Argentina.10 We use this data set on GDP to compute quarterly seigniorage rates.

As shown in the right panel on the second row of Figure 8, the model’s predictions

10We are grateful to Juan Pablo Nicolini for his help on collecting an additional data set on the

quarterly Argentinean GDP series.
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Figure 8. Argentina: the estimated results from the best (2×3) model

with the state-dependent learning rule (9). The dotted lines in the left

panel on the first row of graphs represent SCEs conditional on the

prevailing seigniorage m state.

(normalized around the historical mean implied by the data), along with 68% error

bands, are consistent with the high-frequency data.
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Comparing annual seigniorage rates, used by Fischer (1982), with quarterly seignior-

age rates computed from our additional data set, one can see from Figure 8 that the

high-low patterns are quite similar, although the overall scale of quarterly rates tends

to be lower than annual rates. The pattern is what matters for our model because

the extra parameter γ is free to adjust to control the overall scale, as shown in Propo-

sition 2 in Appendix B. Moreover, it is not always true that the magnitude of annual

seigniorage rates is significantly higher than that of quarterly rates, even in high-

money-creation periods when prices change drastically. For example, we obtained

some limited quarterly data from Brazil. In 1993, the annual seignorage rate was

0.1051 while the quarterly rates ranged from 0.0763 in Q1 to 0.1274 in Q4.

Another problem relates to considerable uncertainty surrounding the quality of

quarterly data on both money and GDP. For example, using the data reported by the

Ministry of Economy and Production in Argentina, the seigniorage rate for 1989Q2 is

only 5.8%. But according to Ahumada, Canavese, Sanguinetti, and Sosa (1993) and

Ahumada, Canavese, Alvaredo, and Di Tella (2000) who use different data definitions

and sources, the quarterly rate for 1989Q2 is computed to be as high as 10.5%,

and within this quarter the maximum seigniorage rate is estimated to reach 15.7%.

Despite the dispersion in magnitude, however, the overall pattern of high and low

seigniorage rates tends to be consistent across different data frequencies and data

sources.

XI. Concluding remarks

Our empirical results identify episodes in which different causes sparked big rises

and falls in inflation. Table 4 briefly summarizes some of the key empirical patterns

contained in Figures 3- 7 from section VIII. Our model tells us that inflation can rise

because of changes in the fundamentals, whether through high seigniorage levels or

high shock variances or both, or through potentially explosive expectation dynamics

caused by “escape provoking” events. The two columns in the table sort episodes into

inflations that were driven by such escape provoking events or solely by alterations

in the fiscal fundamentals. Escapes are said to occur when inflationary expectations

escape from a state-dependent domain that attracts inflationary expectations to a

state-dependent self-confirming equilibrium pinned down by the fiscal fundamentals.

The rows of table 4 indicate three possible ways that our model tells us hyperinflation

can be stopped: a superficial monetary reform that mechanically resets inflation

without altering the seigniorage state, a fundamental fiscal reform activated by a

change in the Markov state of seigniorage level, and no reform in the seigniorage level

but a change in the conditional shock variance state.

We have used joint densities evaluated at maximum likelihood parameter values

for each country to assign episodes to appropriate boxes in the table. As a rule for

making these assignments, we categorize an episode according to whether our model

assigns high probabilities (i.e., over 60%) of an escape-provoking event or of a cosmetic

reform. In March of 1990, for example, Brazilian inflation reached its peak with a
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Table 4. Causes for the rise and fall of hyperinflation across countries

Escape-provoking Fundamentals

Cosmetic reform Brazil (87-91)

Peru (87-92)

Fundamental fiscal reform Argentina (87, 90-91) Bolivia (82-86)

Brazil (92-95)

Reform only in conditional Chile (71-78) Argentina (75-76, 76-77, 83-86)

variance, not level, of signiorage

monthly gross rate of 1.82. In the next two months, the inflation rate dropped to 1.15

then 1.07. We estimated the probability of a cosmetic monetary reform to be 67.5%

for March, 75.6% for April, and 47.8% for May. Peru is another example. In August

of 1990, the Peruvian monthly inflation rate reached 4.97, was brought down to 1.14

in September, and stayed at a relatively low level around 1.1 for a number of months

thereafter. This unusually volatile fluctuation enables us to estimate the probability

of a cosmetic reform that is only 10.8% in August but jumps to 100% in September.

Expected inflation had become so high that it rendered a cosmetic reform inevitable.

Thus, a cosmetic reform along the lines introduced by Marcet and Nicolini (2003)

generated the Peruvian stabilization.

Economic stories vary across other episodes in our sample. Our estimates indicate

that the high and volatile inflation episode in Brazil finally ended in 1994 only with a

sustained fiscal reform. For Argentina (from 1987 to 1991) and Bolivia, fiscal reforms

also played a dominant role in conquering hyperinflation. For Argentina (from 1976

to 1986) and Chile, reductions in the variance of shocks to seigniorage made essential

contributions to ending the hyperinflations.

In conclusion, our econometrics suggest that adjustments in levels and conditional

volatilities of monetized deficits seem to have stabilized inflation processes in most of

the hyperinflations, with a notable exception in Peru where a cosmetic reform of the

type emphasized by Marcet and Nicolini (2003) seems to have been at work.

Appendix A. Steady states of deterministic model

We now report equilibria from a perfect foresight version of the model where agents

observe and condition on the seignorage state m. We work with a deterministic version

of model (1) - (5) obtained by fixing the state mt = m ∈ {1, . . . , mh} and setting

ηd t to zero for all t. Such equilibria are useful reference points in the analysis of our

stochastic adaptive model. There are two steady states associated with each m.

Proposition 1. If

d̄(m) < 1 + θλ − 2
√

θλ, (A1)
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then there exist two steady state equilibria for πt:

π∗
1(m) =

(

1 + θλ − d̄(m)
)

−
√

(

1 + θλ − d̄(m)
)2 − 4θλ

2λ
, (A2)

π∗
2(m) =

(

1 + θλ − d̄(m)
)

+
√

(

1 + θλ − d̄(m)
)2 − 4θλ

2λ
. (A3)

Proof. Sargent and Wallace (1987) show that

πt =
(

λ−1 + θ − d̄(m)λ−1
)

− θ

λ πt−1
.

In stationary equilibrium, πt = πt−1. Substituting this equality into the above equa-

tion leads to (A2) and (A3). �

We shall impose (A1) in our empirical work. Note that the maximum value that

d̄(m) can take and still have a steady state (SS) inflation rate exist is 1 + θλ− 2
√

θλ.

When d̄(m) attains this maximum value, the two SS inflation rates both equal

πmax
SS ≡

√

θ

λ
. (A4)

Proposition 1 tells us that a steady state rational expectations equilibrium (REE)

inflation rate is bounded above by 1/λ and this bound is attained when d̄ = 0.

Eckstein (1987) noted the peculiar property that among stationary rational expec-

tations equilibria, the biggest inflations occur when the budget deficit is zero. This

perverse property does not characterize our learning model with adaptive expecta-

tions specified in Section II.3. In our model, it is only the belief that is bounded by

1/λ; inflation itself can escalate beyond 1/λ up to 1/δ, because we are free to set δ

to be arbitrarily small such that λ ≥ δ.

Appendix B. The Likelihood

B.1. Normalization. The model (1)-(5) makes inflation dynamics depend on γdt(s),

where s ∈ {1, . . . , h}, and not on the individual parameters γ and dt(s) separately.

Therefore, we have

Proposition 2 (Normalization). The dynamics of πt are unchanged if both dt(s) and

1/γ are normalized by the same scale.

Proof. Let dt(s) and 1/γ be multiplied by any real scalar κ. If we redefine Pt to be

Pt/κ, the system (1)-(5) remains unaffected. The redefinition of the price level simply

means that the price index is re-based, which affects the dynamics of neither Mt nor

πt. �

The normalization is effectively a choice of units for the price level, about which

our model is silent because we deduce a joint density over inflation sequences only.

Proposition 2 explains why we deviate from the procedure of Marcet and Nicolini

(2003), who treated γ and d̄(m) as separate parameters, and who interpreted the
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calibrated value of dt as measuring monetized deficits as a share of GDP. With only

inflation data these parameters cannot be identified separately, so that re-normalizing

them in the manner of Proposition 2 gives the same equilibrium outcome.11 Therefore

we normalize γ = 1 when maximizing the likelihood function. After we have estimated

the free parameters, we re-normalize γ to match the pertinent country’s price level

for the purpose of computing estimates of dt to compare with some annual seignorage

data in section VIII. It is important to note that such normalization affects only the

mean of log dt or the median d̄(mt), but not the standard deviation of log dt.

We first derive a likelihood conditional on the hidden composite states st = [mt vt]

and then integrate over states to find the appropriate unconditional likelihood. Recall

that we have specified the distributions for ηdt and ηπt in (6) and (18). Denote

st = {s1, . . . , st},
ξd(st) = 1/σd(st),

ξπ = 1/σπ,

and again let φ be a collection of all structural parameters. We use the tilde above

ηd t(st) to indicate that η̃d t(st) is a random variable, whereas ηd t(st) is the realized

value associated with πt. The following proposition provides the key component of

the overall likelihood function.

Proposition 3. Given the pdfs (18) and (6), the conditional likelihood is

p(πt|πt−1, sT , φ) = p(πt|πt−1, st, φ)

= C1 t

|ξπ| exp
[

− ξ2
π

2

(

logπt − logπ∗
1(st)

)2
]

√
2π Φ (|ξπ|(−log(δ) − log(π∗

1(st))) πt

+ C2 t

(

θ|ξd(st)|(1 − λβt−1)√
2π [(1 − λβt)πt − θ(1 − λβt−1)] πt

exp

[

−ξ2
d(st)

2

[

log[(1 − λβt)πt − θ(1 − λβt−1)] − logπt − logd(st)
]2
]

)

,

(A5)

where

C1 t = ι {βt−1 ≥ 1/λ} + ι {βt−1 < 1/λ}
(

1 − Φ
[

|ξd(st)| (log (max[(1 − λβt) − δθ(1 − λβt−1), 0]) − logd(st))
]

)

,

C2 t = ι {βt−1 < 1/λ} ι

{

θ (1 − λ βt−1)

max (1 − λ βt, δθ(1 − λ βt−1))
< πt <

1

δ

}

.

Proof. We need to prove that
∫ 1/δ

0

p(πt|πt−1, st, φ)dπt = 1.

11For a general discussion of normalization in econometrics, see Hamilton, Waggoner, and Zha

(2007).
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One can show from (18) and (6) that the right side of equation (A5) is equivalent to

ι {βt−1 ≥ 1/λ} pπ(πt − π∗
1(st)|st) + ι {βt−1 < 1/λ}

[

ι

{

θ (1 − λβt−1)

max (1 − λβt, δθ(1 − λβt−1))
< πt <

1

δ

}

pd(ηd t(st)|st)
d ηd t(st)

d πt

+ Pr
[

η̃d t(st) ≥ ωt(st)
]

pπ(πt − π∗
1(st)|st)

]

,

where Pr[ ] is the probability that the event in the brackets occurs.

Consider the case where βt−1 < 1/λ (the other case is trivial). Denote

Lt =
θ(1 − λβt−1)

max (1 − λβt, δθ(1 − λβt−1))
.

It follows that
∫ 1/δ

0

p(πt|πt−1, st, φ)dπt

=

∫ 1/δ

Lt

pd(ηd t(st)|st)
dηd t(st)

dπt

dπt + Pr
[

η̃d t(st) > ωt(st)
]

∫ 1/δ

0

pπ(πt − π∗
1(st)|st) dπt

=

∫ ωt(st)

−d̄(st)

pd(ηd t(st)|st)d ηd t(st) + Pr
[

η̃d t(st) ≥ ωt(st)
]

= Pr
[

η̃d t(st) < ωt(st)
]

+ Pr
[

η̃d t(st) ≥ ωt(st)
]

= 1.

�

After integrating out sT , the overall likelihood is

p(πT |φ) =
T
∏

t=1

p(πt|πt−1, φ) =
T
∏

t=1

{

h
∑

st=1

[

p(πt|πt−1, st, φ) Pr(st|πt−1, φ)
]

}

, (A6)

where

Pr(st|πt−1, φ) =

h
∑

st−1=1

[

Pr(st|st−1, q)Pr(st−1|πt−1, φ)
]

. (A7)

The probability Pr(st−1|πt−1, φ) can be updated recursively. We follow Sims, Waggoner, and Zha

(forthcoming) and set

Pr(s0|π0, φ) = 1/h.

For t = 1, . . . , T , the updating procedure involves the following computation:

Pr(st|πt, φ) =
p(πt|πt−1, st, φ) Pr(st|πt−1, φ)

∑h
st=1

[

p(πt|πt−1, st, φ) Pr(st|πt−1, φ)
] . (A8)

As shown in Sims, Waggoner, and Zha (forthcoming), one can also use the above

recursive structure to compute the smoothed probability of st, Pr(st|πT , φ).
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Appendix C. Self-Confirming Equilibria and Mean Dynamics

This appendix describes how to compute the self-confirming equilibria (SCE) de-

fined in section III, as well as formally defining the mean dynamics which lead to

them.

C.1. Unconditional SCEs. Definition III.1 provides the moment condition which

an SCE must satisfy. We now formally compute it and the corresponding mean

dynamics G discussed in section III. Let:

ω(βt, βt−1) = 1 − λβt − δθ(1 − λβt−1).

Given the model and the specifications of cosmetic reforms in equation (17), we have:

πt = ι(dt(st) < ω(βt, βt−1))
θ(1 − λβt−1)

1 − λβt − dt(st)
+ ι(dt(st) ≥ ω(βt, βt−1))π

∗
t (st).

Hence, we can write the learning rule (7) as:

βt+1 = βt + εg(βt, βt−1, dt, π
∗
t ) (A9)

where

g(βt, βt−1, dt, π
∗
t ) = ι(dt < ω(βt, βt−1))

θ(1 − λβt−1)

1 − λβt − dt
+ ι(dt ≥ ω(βt, βt−1))π

∗
t (st) − βt.

We then define the following terms:

g̃(β, dt, π
∗
t ) = g(β, β, dt, π

∗
t ),

Ψs(β, b) =

∫ b−d̄(s)

0

1

1 − λβ − d̄(s) − η
dFd(η|s).

Here we abuse notation and let d̄ depend on the composite state s rather than m

alone. It follows that ω̃(β) ≡ ω(β, β) = (1− δθ)(1− λβ) and that Ψs(β, b) is finite as

b → 1 − λβ because δ in equation (12) is bounded away from zero.

Let q̄s denote the unconditional probability of the event {st = s}, as implied by

the ergodic distribution of Q. Then we can write the unconditional expectation:

G(β) ≡ E[g̃(β, dt, π
∗
t )]

=
h
∑

k=1

[

∫ ω̃(β)−d̄(k)

0

θ(1 − λβ)

1 − λβ − d̄(k) − η
dFd(η|k) + [1 − Fd (ω̃(β)|k)] π̄∗(k)

]

q̄k − β

=

h
∑

k=1

{

θ(1 − λβ)Ψk(β, ω̃(β)) +

[

1 − Φ

(

log ω̃(β) − log d̄(k)

σd(k)

)]

π̄∗(k)

}

q̄k − β

Note then from definition III.1 that an unconditional SCE is a β satisfying G(β) = 0.

Such an unconditional SCE by characterizes the limit of beliefs of the adaptive agents

under our model in a way made precise in the following result.

Proposition 4. As ε → 0 the beliefs {βt} from (A9) converge weakly to the solution

of the ordinary differential equation (ODE):

β̇ = G(β) (A10)
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for δ > 0 and a broad class of probability distributions of ηd t(st) and ηπ t(mt) (includ-

ing those specified in (18) and (6)).

Proof. Under our assumptions about distributions and the truncation rule, this follows

from Kushner and Yin (1997). �

The ODE (A10) describes the mean dynamics G, meaning that for small gains ε,

the belief trajectories tend to track those of the ODE. Moreover as t → ∞ the ODE

(A10) converges to an SCE which is stable, i.e. which satisfies G′(β) < 0.

C.2. Conditional SCEs. As discussed in section III we are also interested in those

SCEs which assume that the seignorage state m (and possibly the volatility state v)

remain fixed for all time. Thus, we now formally define the conditional mean dynamics

Ĝ(β, m). Let q̄v,k denote the unconditional probability of the event {vt = k}, which

is an element of the ergodic distribution of Qv. Then define

Ĝ(β, m) ≡ E[g̃(β, dt(mt, vt), π
∗
t )|mt = m ∀t]

=

vh
∑

k=1

[

∫ ω̃(β)−d̄(m)

0

θ(1 − λβ)

1 − λβ − d̄(m) − η
dFd(η|[m, k])

]

q̄v,k

+

vh
∑

k=1

[

1 − Fd

(

ω̃(β) − d̄(m)|[m, k]
)]

π̄∗(m)q̄v,k − β

=

vh
∑

k=1

{

θ(1 − λβ)Ψ[m,k](β, ω̃(β)) +

[

1 − Φ

(

log ω̃(β) − log d̄(m)

σd(k)

)]

π̄∗(m)

}

q̄v,k − β.

Then the fixed-m SCEs from definition III.2 satisfy G(β(m), m) = 0. The fixed-m-

v SCEs from definition III.3 can be characterized in a similar manner. In section

IX we show that the conditional SCE beliefs give good approximations to rational

expectations beliefs under our estimated parameters.

We show how such conditional SCEs characterize beliefs by taking a two time-scale

limit in which the gain ε goes to zero but the probabilities of switching m states go

to zero at a faster rate. For simplicity, we suppose that case when mt ∈ {1, 2}. Then

note that we can write:

Etmt+1 = mt + Qm(−m, m)(3 − 2mt)

where Qm(−m, m) is the off-diagonal element of column m of Qm. Therefore we can

write the evolution of mt as:

mt+1 = mt + Qm(−m, m)(3 − 2mt) + vt+1

where Etvt+1 = 0. Now we consider a slow variation limit where Qm → I, and thus

we scale Qm(m,−m) by a small parameter α, which also implies that the martingale

difference term vt+1 inherits the scaling. Thus, we extend the system that we analyze

from (A9) to:

βt+1 = βt + εg(βt, βt−1, dt(mt, vt), π
∗
t ) (A11)

mt+1 = mt + α [Qm(−m, m)(1 − 2mt) + vt+1]
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Following Tadić and Meyn (2003) we consider the limit where ε → 0 and α → 0

but where α ≪ ǫ. In this limit, mt varies more slowly than the beliefs βt, and thus

we can effectively treat the state m as fixed.

Proposition C.1. Let ε → 0 and α → 0 such that α/ε → 0 and ε3/2/α → 0. Then

for m0 = m the beliefs {βt} from (A11) converge weakly to the solution of the ordinary

differential equation (ODE):

β̇ = Ĝ(β, m) (A12)

for δ > 0 and a broad class of probability distributions of ηd t(st) and ηπ t(st) that

include those specified in (18) and (6).

Proof. (Sketch.) This follows from Corollary 2 to Theorem 2 in Tadić and Meyn

(2003). Since they focus on convergence of the “slow” process mt as well they require

stronger stability conditions on the ODE then are necessary for our result. �

The ODE (A10) describes the conditional mean dynamics G, meaning that for

small gains ε and persistent Markov chains Qm, the belief trajectories tend to track

those of the ODE. Moreover as t → ∞ the ODE (A12) converges to a stable fixed-m

SCE, i.e. which satisfies Ĝβ(β(m), m) < 0.

Appendix D. Rational Expectations Equilibria

We now suspend the adaptive learning rule (7) and consider a subset of the rational

expectations equilibria of the model. Further, while previously we’ve assumed that

agents do not observe the seignorage state mt, we now assume that rational agents

do condition on it.

D.1. Computing equilibria. We seek stationary Markov equilibria in which infla-

tion and expected inflation are given by:

πt = π(st, mt−1, dt)

E[πt+1|mt] = E[π(st+1, mt, d̄(mt+1) + ηd,t+1(st+1))|mt]

=

mh
∑

j=1

vh
∑

k=1

∫

π([j, k], mt, d̄(j) + η)dFd(η|[j, k])q̄v,kQm(mt, j)

≡ πe(mt).

Note that we assume that the volatility state vt is unobserved and that agents’ sub-

jective distribution over this state is given by the ergodic distribution q̄v. Then going

through calculations similar to those above we have:

π(st, mt−1, dt) =
θ(1 − λπe(mt−1))

1 − λπe(mt) − dt(st)
.



SOUTH AMERICAN INFLATION 38

This only holds when the denominator is positive, so we truncate as in section IV,

giving:

π(st, mt−1, dt) =ι(dt(st) < ω(πe(mt), π
e(mt−1)))

θ(1 − λπe(mt−1))

1 − λπe(mt) − dt(st)

+ ι(dt(st) ≥ ω(πe(mt), π
e(mt−1)))π

∗
t (mt)

Letting ωij = ω(πe(j), πe(i)) and taking expectations of both sides conditional on

information at t − 1 and setting mt−1 = i yields:

πe(i) =

mh
∑

j=1

vh
∑

k=1

{

θ(1 − λπe(i))Ψ[j,k](π
e(j), ωij) +

[

1 − Φ

(

log(ωij) − log d̄(j)

σd(k)

)]

π̄∗(j)

}

q̄v,kQm(i, j).

(A13)

Thus, we have mh coupled equations determining πe(mt). Substituting this solution

into the expression for π(·) then gives the evolution of inflation under rational ex-

pectations. The equations are sufficiently complicated that an analytic solution is

not available, and hence we must look for equilibria numerically. A simple iterative

solution method for the equations consists of initializing the πe(j) on the right side

of (A13) and computing πe(i) on the left side and iterating until convergence.

We typically find that there are two conditional SCEs in each state. Loosely speak-

ing, REEs average across the conditional SCEs, taking into account the probability of

state switches. So, there are typically four REEs that switch between values close to

the conditional SCEs in each state. However, when shocks to seignorage become large

enough there may be only one conditional SCE in a state, or a conditional may fail

SCE to exist altogether. Depending on the weight that these high-shock states have

in the invariant distribution, the unconditional SCE may also fail to exist. Similarly,

there may be fewer rational expectations equilibria or none at all.

D.2. Comparing steady states, SCEs, and REEs. For each country, Table 5

reports the deterministic SS from appendix A, and fixed-m-v SCEs of the definition

III.3 type, and the low inflation REEs closest to these SCEs. We focus on the SCEs

conditional on each state m but always with the low volatility state v. These SCEs

are of particular interest because they are likely to be close to the low SS inflation

rates that we in use to defining our cosmetic reforms. The table shows that this set

of conditional SCEs are very close to the SS inflation rates, justifying the way we

define the cosmetic reforms based on the low SS inflation rates. The reported SCEs

are close to the REEs but do differ somewhat, particulary in countries other than

Brazil. This is at least partly because the REE beliefs have more mean reversion, in

that they recognize that the economy will eventually switch to another state, while

the SCEs do not.

Appendix E. Seigniorage Rates: Actual Data and Model Implications

Because we have no reliable data on real output and money on a monthly basis,

we construct a time series of annual deficits financed by money creation. Following
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Table 5. Steady State (SS) of nonstochastic model, Conditional SCEs,

and REEs: Log values of beliefs and low deterministic SS inflation rates

in each state m coupled with the low volatility state v. The symbol *

means “not applicable.”

Country SS/SCE/REE Low m and low v Medium m and low v High m and low v

Peru SS 0.0028 0.0108 0.0498

Peru SCE 0.0035 0.0120 0.0543

Peru REE 0.0183 0.0330 0.0833

Argentina SS 0.0052 * 0.0687

Argentina SCE 0.0057 * 0.0737

Argentina REE 0.0126 * 0.0768

Bolivia SS 0.0052 * 0.1115

Bolivia SCE 0.0059 * 0.1203

Bolivia REE 0.0083 * 0.1356

Brazil SS 0.0057 0.0592 0.2063

Brazil SCE 0.0057 0.0595 0.2126

Brazil REE 0.0060 0.0690 0.2123

Chile SS 0.0044 * 0.0198

Chile SCE 0.0046 * 0.0202

Chile REE 0.0393 * 0.0586

Fischer (1982), we calculate annual seigniorage rates from actual data as

dData
A, t =

MAgg
A, t − MAgg

A, t−1

Y Agg
A, t

(A14)

where the subscript “A” stands for annual and the superscript “Agg” stands for ag-

gregate. MAgg
A, t is aggregate reserve money for the year containing the month indexed

by t and Y Agg
A, t is aggregate nominal GDP in that year. For this calculation, there is

no parameter θ involved because we work directly on the aggregate data on money.

To make the simulated data from our model as close to (A14) as possible, we

compute the distribution of dA, t as follows. We first draw st from Pr(st|φ̂, πT ) and

for a given st we then draw dt(st) and compute dA, t as an average of dt(st) over the

twelve months of the year. The simulated data dA, t only approximate the actual data

dData
A, t because of the following differences. The price index data Pt used for our model

is CPI, not the GDP deflator. For the actual data, dData
A, t is calculated as a ratio of two

sums or aggregates. For the simulated data, dData
A, t is computed as a sum of monthly

money creations in percent of real output.

In our estimation, dt is arbitrarily normalized. When comparing to actual data,

we need to re-normalize it. We do so by matching the average of medians of sim-

ulated annual seignorage to the average of actual seignorage rates over the sample

for Argentina, Bolivia, Brazil, and Peru. For Chile, we use the average over the

sample excluding the hyperinflation period 1971-1975 during which large simulated
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seignorage levels are caused by a large shock variance. The effect of this relatively

large variance is shown by the skewed distribution marked by the dashed bands in the

second-row graph of Figure 7. Note that changes in shock variances have no effect on

the median of simulated seignorage.
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