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Abstract

Several episodes in recent years have highlighted the problem of managers subject-

ing their firms to large risks. We develop a dynamic moral hazard model where a

manager’s diversion of funds is indistinguishable from random shocks. In addition, the

manager takes unobservable actions which yield certain current payoffs, but expose the

firm to large negative shocks. We show that standard pay-for-performance contracts,

which are typically beneficial under moral hazard, may lead the manager to take on

excess risk. We then characterize the optimal contract taking into account incentive

provision and risk management. We solve two examples. One is explicitly solvable and

in it the contract can be implemented with simple instruments. The owner gives the

manager a constant salary payment and allows him to manage the ex-dividend assets

of the firm, but imposes a “clawback” fee in the event of large negative shocks. The

second example shows that it may sometimes be optimal for the owner to forgo risk

management and allow the manager to take excess risk.

1 Introduction

“I accumulated this trading position and concealed it for the purpose of aug-

menting my reputation at Goldman and increasing my performance-based com-

pensation.”

Matthew Taylor, ex-trader for Goldman Sachs convicted of wire fraud, quoted in

Bray and Baer [2013]

∗Financial support from the National Science Foundation is gratefully acknowledged.
†Contact: nmwilliams@wisc.edu
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In December 2007, after having lost most of his accumulated profits for the year and

facing a significant reduction in his annual bonus, Matthew Taylor of Goldman Sachs placed

an $8.3 billion bet on S&P 500 futures. To conceal the trade from his supervisors, Mr.

Taylor made false entries that appeared to take the opposite side of the position. The

hidden trade went bad, and cost Goldman $118.4 million to unwind (Bray and Baer [2013]).

Mr. Taylor was not alone in this practice, as there have been many other episodes in recent

years where managers and traders have engaged in actions that have subjected their firms

to large potential losses. As emphasized by Rajan [2011], one prominent aspect of the

2008 financial crisis was that firms like AIG sold billions of dollars credit default swaps on

mortgage bonds and other asset backed securities. While the housing market was healthy,

the firms pocketed the fees from the sale of the swaps, but once the downturn began they

incurred heavy losses. Although some of this activity was observable and known, at least

part of it was unobservable and hidden from shareholders, regulators, and even upper-level

management. As Rajan [2011] states, “After all the profits from such [risk taking] activities

would look a lot healthier if no one knew the risks they were taking. Accordingly, Citibank’s

off-balance sheet conduits, holding an enormous quantity of asset-backed securities funded

with short-term debt were hidden from all but the most careful analysis.” Both regulators

and shareholders were surprised once the actual extent of liabilities was uncovered.

In this paper we study the incentive to manage risk, and show how it interacts with

performance-based contracts. Classic moral hazard problems in economics and corporate

finance generally focus on hidden actions: managers can shirk and not put forth effort, or

they may be able to divert resources from the firm for their own private benefit. Such

agency frictions motivate performance-based pay contracts, which align the incentives of

owners and managers. However in situations like those described above, managers may be

able to take on excess risk which is unobservable to firm owners, for example by loading up

on tail risk by making futures bets or selling insurance against unlikely events. The firm

owners would observe the increased cash flows from the insurance or risk premiums, which

they would interpret as good firm performance, worthy of reward for the managers. But the

owners would be unaware of the scale of potential future losses. We develop a model which

incorporates this tension between performance pay and risk taking. We show how owners

can provide incentives to discourage excess risk, but also that it may sometimes be optimal

for owners to forgo risk management and let managers gamble the firm’s assets.

In our model an owner hires a manger to manage her firm’s assets over an infinite time

horizon, and both parties are risk averse. Moral hazard arises because the manager could

divert the firm’s resources for his own consumption, and this behavior is indistinguishable

from random cash-flow shocks. In addition, the manager can take unobservable actions which

yield risk-free current payoffs, but expose the firm’s assets to large risks. We model this as
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the manager controlling the arrival rate of a jump process which has a negative impact on

the firm’s capital when it occurs. The firm’s overall exposure to the shock has a zero mean,

so the occasional large negative shock is offset by a positive flow income.1

Suppose that the manager were to increase the arrival rate of the shock, making large

losses more likely, but this was unobservable to shareholders. Prior to arrival of a negative

shock, the shareholders would observe the cash inflow resulting from the risk compensation.

However the shareholders would attribute these flows to good firm performance, and thus

would reward the manager. We illustrate the hazards of pay-for-performance contracts in the

presence of hidden risk, a channel which was emphasized by Rajan [2011]. A contract which

is optimal for the standard moral hazard friction of preventing diversion, but ignores the

risk-taking incentives, will closely tie the manager’s compensation to the firm’s performance,

and so may induce him to take on excess risk.

An optimal contract must balance the incentives to alleviate the moral hazard friction

and to manage risk, and we show that in some cases the owner optimally gives up on

risk management. It may be too costly for the owner to provide sufficient incentives for

the manager to take prudent actions, so instead the owner focuses on preventing resource

diversion. Rather than being a failure of corporate management, it thus may be a feature of

optimal contracts that managers subject their firms to excess risks, an undesirable outcome

in the absence of private information frictions.

After laying out the general model, we solve for the optimal contracts with moral hazard

and risk management under two different parametric specifications. In the first case, we

assume the owner and the manager have exponential preferences, which allows us to obtain

explicit solutions for the optimal contracts. The risk management policy is time invariant

in this case, with the contract implementing either high or low risk for all time, dependent

on the parameters. We show that high risk is optimal if the firm’s growth prospects are

low, or if the owner is sufficiently less risk averse than the manager. We also show how the

optimal contract can be implemented with some simple instruments. In particular, the owner

gives the manager a constant salary payment and access to an account which represents the

cumulation of his bonus or deferred compensation, and the balance on this account increases

with the firm’s assets. To provide incentives to manage risk, the contract also features a

“clawback” provision in which the manager loses part of his deferred compensation in the

event of a negative jump shock. Similar clawback provisions have been proposed by federal

regulators and have been implemented in some financial institutions.

While exponential preferences are useful in obtaining explicit solutions, they imply con-

1Selling insurance would be more directly modeled as controlling the impact of a shock, rather than

the arrival rate. However once a shock hits, the manager’s actions would be revealed. Our formulation is

mathematically similar, but preserves private information.
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stant risk management incentives. Our second illustration studies risk dynamics in a tractable

environment, assuming that the owner and the manager have logarithmic preferences. An

important determinant of the optimal risk management policy in this case is the manager’s

“share” in the firm, which is roughly equal to the ratio of the net present value of the man-

ager’s compensation to the firm’s total future cash flows. This share is the key endogenous

variable whose evolution governs the dynamics of the contract. As his share increases, the

manager’s interests are more aligned with the firm’s, the pay-performance sensitivity re-

quired to deter diversion decreases, and the tension between incentive provision and risk

management is weakened. We show that the contract is divided into three regions. When

the manager’s share is low, the owner gives up risk management as the manager’s incentive

to divert resources is strong. For intermediate share levels, the contract balances incentive

provision and risk management, and the manager is induced to take the low risk. When

the share is sufficiently high, there is no tension between the two objectives, as with the

appropriate levels of pay-performance sensitivity, the manager voluntarily chooses low risk.

Under an optimal contract, the manager’s share tends to decrease over time, pushing the

firm into the high risk region. Smaller firms also tend to have higher risk, as the manager’s

share increases with the firm’s assets.

In the previous literature, the most closely related paper is DeMarzo et al. [2014] which

also studies a dynamic agency model with hidden cash-flow diversion and hidden risk taking.

While our motivation and general approach is similar, there are some important differences.

In their model, the firm is liquidated and the contract is terminated exogenously when a

negative jump shock hits. By contrast, in our model jumps are recurrent. This allows us

to study the endogenous consequences of negative jumps, with the punishments upon their

occurrence being chosen as part of the contract. As we noted, this has important implications

for the design of the “clawback” features of contracts, like those used in practice. In addition,

in their model both the principal and the agent are risk neutral, as they are in the related

papers by Rochet and Roger [2016] and Wong [2018].2 By contrast, we consider potentially

differing levels of risk aversion, and thus rationalize ongoing dividends and a salary payment

as part of a pay package. Our model allows us to study the effect of risk preferences on

the optimal risk taking policy, and also allows the accumulation of the assets which have

persistent effects on firms’ cash flows. Therefore our framework help us understand the

interaction between firm dynamics and risk management.

More broadly, our paper is related to several strands of research. In static environments,

several papers study risk-taking behavior with information frictions, including Jensen and

2Wong [2018] also highlights that excess risk may be optimal when the manager’s stake in the firm is

sufficiently small, which is similar to our results. Feng and Westerfield [2018] consider a related model where

the agent has control over variability of cash flows in addition to moral hazard.
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Meckling [1976], Diamond [1998], Palomino [2003], and Biais and Casamatta [1999]. An

advantage of our dynamic model is the ability to study the time series properties of the

optimal risk management policy and the implied firm dynamics, showing how incentives

and outcomes under the contract evolve over time. In a dynamic setting, Biais et al. [2010]

develop a similar model where a risk-neutral manager can take unobservable effort to prevent

large losses. In their model, the moral hazard problem is one-dimensional, focusing on the

manager’s hidden effort, and thus doesn’t feature the tension between incentives which is

our focus. In terms of technique, this paper belongs to the growing literature on continuous

time dynamic contract design which includes Sannikov [2008], DeMarzo and Sannikov [2006],

Williams [2011, 2008], and our previous paper Li and Williams [2022], as well as those cited

above. By casting the model in continuous time, we utilize powerful tools in stochastic

control to characterize incentive compatible contracts in a relatively complex environment.

The remainder of the paper is arranged as follows: in Section 2 we introduce the basic

setup; in Section 3 we characterize the optimal contracts in the general case; in Section 4 we

consider the case exponential preferences which allow us to derive an explicit solution of the

optimal contract and its implementation; in Section 5 we focus on the case with logarithmic

preferences and risk management dynamics; Section 6 concludes.

2 The Model

At date zero, a firm’s owner (the principal) hires a manager to oversee the assets yt of the

firm. Out of the asset stock, the owner pays himself a dividend dt which he consumes, and he

pays the manager ct. The manager can secretly adjust his compensation by Δt by diverting

the firm’s assets for his own consumption. The assets yt yield pre-consumption expected

gains of μ(yt) and are subject to continuous stochastic shocks following a Brownian motion

Wt. In addition, the firm’s assets are subject to occasional large negative shocks, which we

depict using a jump process with arrival rate λt. To ensure that the jump shocks are mean

zero, we assume that they are compensated at a rate λt each instant. We define the counting

process {Nt} indicating the arrivals of the shocks so that dNt = 1 if a shock hits at t, and is

zero otherwise. For simplicity we assume all large shocks are of unit size, and when a shock

hits a deterministic amount φ(yt) of assets are destroyed. We assume that the manager can

control the arrival rate λt, and thus the shocks can represent potentially risky projects that

the manager can undertake. The firm collects the premium λtφ(yt) each instant, at the cost

of possible losses of φ(yt).
3 For simplicity we assume that the risk level λt can take on two

3Once a jump shock hits, the size of the loss is observable, so potential moral hazard in controlling losses

could be eliminated with sufficient punishment. Fixing the loss sizes but controlling their likelihood preserves

the private information.
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values λ < λ. Thus the firm’s assets follow:

dyt = [μ(yt)− dt − ct −Δt]dt+ σ(yt)dWt − φ(yt) (−λtdt+ dNt) .

The term −λtdt+dNt gives the impact of the compensated jump shocks, and is an increment

of a martingale.

The level of the assets yt and the cumulative realizations of the large shocks Nt are publicly

observable, but the manager’s diversion Δt and chosen risk level λt are private information.

Thus moral hazard arises and the owner needs to offer a contract which induces the manager

to not divert and to take appropriate risk. Much of the contracting literature focuses on

the diversion friction, which is also similar to hidden effort. We show how this standard

friction interacts with the hidden risk choice. At date zero, the owner offers the manager a

contract which, for each date t, pays him ct, provides a dividend dt, suggests that Δt ≡ 0,

and suggests a risk level λt. Given a contract, the manager solves:

max
â∈A

E â,p

[∫ ∞

0

e−ρtu(ct + Δ̂t)dt

]
. (1)

Here, u is the manager’s utility function, ρ > 0 is the rate of time preference, pt = (dt, ct) is

the principal’s choice vector with p the entire process {pt}, and ât = (Δ̂t, λ̂t) is the manager’s

choice vector with â the entire process {ât}. A is the set of all feasible choice processes â and

E â,p is the expectation operator induced by the processes â and p. Let {Ft}t∈[0,∞) be the

suitable augmentation of the filtration generated by the processes {yt, Nt}, which represents

the public history. We require that ât be Ft–predictable, meaning that the manager makes

his decisions about Δt and λt before the realization of the shocks at t.

Given the monitoring structure of our model, the manager is able to adjust his con-

sumption from the suggested level to any level by diverting the firm’s resources. So, for any

contract inducing the manager’s choice â =
(
Δ̂, λ̂

)
and paying a compensation plan ĉ, we

could define an equivalent contract without diversion by choosing compensation plan c such

that ct = ĉt + Δ̂t and the manager’s choice a such that at =
(
0, λ̂t

)
. Hence, we can focus

on the contracts under which Δt = 0 for all t without loss of generality. Therefore, in our

model, a contract is incentive compatible if â = a = (0, λ) is indeed the manager’s optimal

choice.

Given the owner’s policy p and manager’s action a, we define the manager’s promised

utility as:

qt ≡ Ea,p

[∫ ∞

t

e−ρtu(ct +Δt)dt|Ft

]
for t ∈ [0,∞].

As in Sannikov [2008] and Li and Williams [2022], a martingale representation theorem gives

the following law of motion of q.
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Proposition 1 Given the policy p and action a, there exist two {Ft}-predictable and square-

integrable process,
{
γW
t , γN

t

}
satisfying:

dqt = [ρqt − u(ct +Δt)]dt+ γW
t σ(yt)dW

a
t − γN

t dMλ
t (2)

where:

W a
t ≡

∫ t

0

1

σ (ys)
[dys − (μ (ys)− ds − cs −Δs + φ(ys)λs) ds− φ (ys) dNs]

Mλ
s ≡

∫ t

0

[−λsds+ dNs] ,

which are martingales under the policies a and p.

Proof. See Appendix A.

Here γW
t denotes the sensitivity of promised utility to the Brownian motion shocks and

γN
t measures the sensitivity to the jumps. To gain insight on manager’s incentives, note that

we can re-write (2) as:

dqt = [ρqt − u(ct +Δt)]dt+ γW
t [dyt − (μ(yt)− dt − ct −Δt + φ(yt)λt) dt− φ(yt)dNt]

−γN
t [−λtdt+ dNt].

The following proposition shows that incentive compatible contracts are characterized by two

local optimality conditions, which come from optimizing the drift of promised utility with

respect to Δt and λt, and evaluating the result at Δt = 0. This is simply another way of

stating that given the contract, the incentive constraints capture the agent’s instantaneous

first order conditions.

Proposition 2 [Incentive compatibility] A contract (a, p) is incentive compatible if and only

if for any t ∈ [0,∞):

u′ (ct) = γW
t , (3)

and:

λt =

⎧⎨
⎩λ if φ (yt) γ

W
t ≤ γN

t

λ̄ if φ (yt) γ
W
t > γN

t .
(4)

Proof. See Appendix B.

The first incentive constraint, which is analogous to those in Sannikov [2008], Williams

[2008, 2011], links the manager’s consumption to variations in his promised utility. Since

u′ > 0 we have γW
t > 0, so promised utility increases with the Brownian increments dWt.

This is the usual pay-for-performance channel to provide incentives under moral hazard.

The second incentive constraint is similar to that in Li and Williams [2022], and determines
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the choice of the risk level. Notice that γN
t is the size of the punishment in utility terms

when a negative jump shock is realized. While choosing λ̄ increases the frequency of such a

punishment, it also makes the manager’s performance appear better because the jump risk

is compensated. Thus the incentive constraint (4) captures the tradeoff in the risk choice

between greater asset flows due to the jump compensation and more frequent punishment

with negative shocks.

The more closely the manager’s pay is tied to firm performance through γW
t , the greater

will be the manager’s gains from them jump-risk compensation, and so the stronger would

be his incentives to take riskier actions. This helps explain why standard performance-based

contracts, which do not account for the manager’s control over risk, provide incentives for

riskier actions. Incentive compatibility thus requires that greater pay-performance sensitivity

must be accompanied by a larger punishment when a jump shock hits.

3 Optimal Contracts

We now turn to the owner’s choice of an optimal contract. We suppose that the owner is risk

averse, with instantaneous utility function v(d) and the same discount rate ρ as the agent.

Thus she chooses a contract (a, p) to maximize:

max
a,p

Ea,p

[∫ ∞

0

e−ρtv(dt)dt

]
, (5)

subject to delivering a specified level q0 of utility to the manager (a participation constraint),

and to the contract (a, p) being incentive compatible.

We successively consider three different information structures. First, we study full in-

formation, where the manager’s consumption and risk choices are observable. This provides

an efficient benchmark to evaluate the other cases. Then we consider moral hazard, where

the manager’s consumption is unobservable, but the owner views the risk level as fixed and

not under the control of the manager. This isolates the effect of moral hazard in diversion, a

friction commonly studied in the contracting literature. Here we also show that if the owner

does not account for the manager’s risk choice, then the manager may take on excess risk.

Finally, we turn to moral hazard in diversion and risk management.

3.1 Full Information

Under full information, the owner can directly control diversion and risk, so we only require

that the contract deliver the utility promise q0. By varying this level we can trace out the

Pareto frontier between the owner and the manager. Thus the owner’s problem is:

max
{ct,dt,λt,γW

t ,γN
t }

Ea,p

[∫ ∞

0

e−ρtv(dt)dt

]
,
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with (q0, y0) given and:

dyt = [μ(yt)− dt − ct + λtφ(yt)]dt+ σ(yt)dW
a
t − φ(yt)dNt,

dqt =
[
ρqt − u(ct) + λtγ

N
t

]
dt+ γW

t σ(yt)dW
a
t − γN

t dNt.

We denote the owner’s value function JF under full information, JM under moral hazard

in diversion, and JR under moral hazard in effort and risk. The owner’s Hamilton-Jacobi-

Bellman (HJB) equation under full information can be written:

ρJF (y, q) = max
c,d,λ,γN ,γW

{
v(d)+ JF

y (y, q) [μ(y)− c− d+ λφ(y)]+ JF
q (y, q)

[
ρq − u(c) + λγN

]

+
1

2
σ(y)2

[
JF
yy(y, q) + 2γWJF

yq(y, q) + (γW )2JF
qq(y, q)

]
+λ[JF (y−φ(y), q−γN )−JF (y, q)]

}

Note that the objective is linear in λ and the terms multiplying it are:

JF
y (y, q)φ(y) + JF

q (y, q)γ
N + JF (y − φ(y), q − γN)− JF (y, q).

This sum is negative when JF is concave, in which case the owner will want to implement

the lower risk level, λ = λ. The first-order conditions for the other choice variables are:

v′(d) = JF
y (y, q),

JF
q (y, q)u

′(c) = −JF
y (y, q),

γW = −JF
yq(y, q)/J

F
qq(y, q),

JF
q (y, q) = JF

q (y − φ(y), q − γN).

Solving these equations and the HJB equation gives the optimal contract. Below we show

how to do so under two different parametric specifications.

To solve the PDE comprising the HJB equation, we need boundary conditions which are

provided by Pareto frontier considerations. First, note that for any level of assets y there is

a maximal amount of promised utility q(y) that the owner can provide the manager. This

can be found by setting dt ≡ 0 and maximizing the manager’s utility:

ρq̄(y) = max
c

{
u(c) + q̄′(y) [μ(y)− c+ λφ(y)] +

1

2
σ(y)2q̄′′(y) + λ[q̄(y − φ(y)) − q̄(y)]

}
.

This provides the owner with his minimal value J = v(0)/ρ, so we have the boundary

condition JF (y, q̄(y)) = J . Similarly, if the owner gave no consumption to the manager, he

would deliver the minimal utility q = u(0)/ρ and obtain the value J̄(y) which solves:

ρJ̄(y) = max
d

{
v(d) + J̄ ′(y) [μ(y)− d+ λφ(y)] +

1

2
σ(y)2J̄ ′′(y) + λ[J̄(y − φ(y))− J̄(y)]

}
.

Thus we have the other boundary condition JF (y, q) = J̄(y).
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3.2 Moral Hazard with Uncontrolled Risk

Now we suppose that the owner cannot observe the manager’s consumption and treats the

risk level as fixed at λ, outside the control of the manager. This is a standard moral hazard

problem, where by structuring payments appropriately the owner can ensure that the man-

ager does not divert resources. This requires that the owner tie the manager’s compensation

to his promised utility (and the firm’s assets), via the incentive constraint (3). Imposing

this, the owner’s HJB equation can be written:

ρJM (y, q) = max
c,d,γN

{
v(d) + JM

y (y, q)[μ(y)− c− d+ λφ(y)] + JM
q (y, q)

[
ρq − u(c) + λγN

]
+
1

2
σ(y)2

[
JM
yy (y, q) + 2u′(c)JM

yq (y, q) + (u′(c))2JM
qq (y, q)

]
+λ[JM(y − φ(y), q − γN)− JM(y, q)]

}
. (6)

The first-order conditions are now:

v′(d) = JM
y (y, q), (7)

JM
q (y, q)u′(c) = −JM

y (y, q) + σ(y)2u′′(c)[JM
yq (y, q) + u′(c)JM

qq (y, q)]

JM
q (y, q) = JM

q (y − φ(y), q − γN).

Relative to full information, we now see that private information makes the asset volatility

σ(y) affect the manager’s consumption. This reflects the need to tie pay to performance

to provide incentives. Furthermore, even though the jump shock is observable and the

owner does not consider the manager’s risk taking incentives, under the optimal contract

the manager’s consumption will still respond to the jumps. This reflect both risk sharing

and “paying for luck” as in Li [2016]. The contract responds to observable shocks to lessen

the cost of providing incentives and to share risk between the risk averse manager and

owner. We also have one of the same boundary conditions as above, since when the manager

effectively owns the assets and attains his maximal utility, the private information is of no

consequence. Thus JM(y, q̄(y)) = J . The other boundary condition no longer holds, as the

manager’s maximal utility is not attainable with an incentive compatible contract.

Given the choice, the manager may now choose excess risk. Suppose that the owner

treats risk as being fixed at λ and designs a contract taking into account the moral hazard

friction. But the owner does not observe the actual level of risk chosen by the manager.

Facing this contract, the manager will in fact choose the high risk λ if:

φ(y)γW − γN = φ(y)u′(c)− γN > 0. (8)

If the contract does not sufficiently punish the manager be cutting his utility promise when

the jump shock hits, with γN ≤ φ(y)u′(c), then the manager will take on more risk than
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the contract recommends and will choose λ = λ. This is a bad outcome for the owner,

whose preferences over risk are the same as under full information, as there is no interaction

between the manager’s consumption and the risk level. Thus the owner (typically) prefers

low risk, but the manager may have an incentive to choose high risk.

There is also a tension between the pay-for-performance aspect of the contract and the

incentive to take on risk. In order to provide incentives for the manager to not divert re-

sources, the owner makes the manager’s promised utility co-vary positively with the firm’s

performance as γW = u′(c) > 0. But a larger γW makes (8) more likely to hold, so the man-

ager will choose the high risk. Greater rewards for good performance give the manager the

incentive to increase the risk that the firm faces. The risk is compensated, so it is a gamble

of assets with zero expected return. But the owner will view the risk compensation as reflect-

ing better performance of the firm, and so will reward the manager. This is similar to the

dynamic described by Rajan [2011], where prior to the financial crisis pay-for-performance

contracts exacerbated the incentive for managers to load up on tail risk. The immediate risk

compensation meant higher managerial rewards, but increased the risk of large firm losses.

We next describe how to manage such risks.

3.3 Moral Hazard in Risk Management

We next suppose that the owner cannot observe the manager’s consumption, but now he

recognizes that the risk level λ is a hidden action of the manager. Above we showed that

under full information it was always optimal for the owner (as long as his value function

was concave) to implement the low risk level. However that need not be true with private

information, as the owner must trade off the costs of providing incentives to discourage

diversion with those to manage risk. Even though the owner would prefer lower risk if he

could impose it directly, private information may make it too costly, and so he may let the

manager choose the higher risk level.

Based on these considerations, we split the state space into a region L where the low-

risk choice λ is implemented and H where λ is. For (y, q) ∈ H, the owner’s value function

JR satisfies the same HJB equation (6) and related optimality conditions with λ = λ. For

(y, q) ∈ L, the owner must satisfy the second incentive constraint in (4) above. We now

(tentatively) assume that this constraint binds for λ, which implies:

γN = φ(y)γW = φ(y)u′(c).
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Thus the choice of γN is now constrained and the owner’s HJB equation can be written:

ρJR(y, q) = max
c,d

{
v(d) + JR

y (y, q)[μ(y)− c− d+ λφ(y)] + JR
q (y, q) [ρq − u(c) + λφ(y)u′(c)]+

+
1

2
σ(y)2

[
JR
yy(y, q) + 2u′(c)JR

yq(y, q) + (u′(c))2JR
qq(y, q)

]
+λ[JR(y − φ(y), q − φ(y)u′(c))− JR(y, q)]

}
(9)

The first-order conditions are now:

v′(d) = JR
y (y, q),

JR
q (y, q)u

′(c) = −JR
y (y, q) + σ(y)2u′′(c)[JR

yq(y, q) + u′(c)JR
qq(y, q)]

+λφ(y)u′′(c)[JR
q (y, q)− JR

q (y − φ(y), q − φ(y)u′(c))]. (10)

Relative to uncontrolled risk, the risk management incentives now make the risk level λ

affect the manager’s consumption. Because of this, the owner’s objective is no longer linear

in λ, and simple concavity considerations do not determine the owner’s optimal risk choice.

Instead the risk level influences the manager’s consumption, which through the moral hazard

channel affects the volatility of his promised utility. This additional risk dependence may

increase the owner’s costs, and in some regions of the state space may lead the owner to

prefer allowing the manager to choose the high risk level. When it becomes too costly to

deter both diversion and risk taking, the owner may let the manager gamble.

In addition to the owner’s preferences, we need to consider the manager’s incentives.

Clearly if the manager has no incentive to take excess risk, then the incentive constraint is

slack and the owner need not alter the moral hazard contract with risk fixed at the low level.

Therefore we define the region R as that in which facing the contract which treats the risk

level as fixed at λ the manager would have an incentive to choose the risky action λ, and S
where instead the manager would choose the safe action λ. That is, R is the region where

as in (8) the manager’s incentive constraint is violated for the contract which presumes that

the risk is fixed at a low level. Then over the state space we have: JR(y, q) satisfies (6) with

λ for (y, q) ∈ S; satisfies (9) for (y, q) ∈ L ∩R; and satisfies (6) with λ̄ for (y, q) ∈ H ∩R.

4 An Explicitly Solvable Case

We now turn to our first example. In this section we explicitly solve for the optimal contract

when both the owner and the manager have exponential preferences, and the assets follow a

linear evolution with constant diffusion and constant losses when the jump shock hits. That

is, we assume the following functional forms:

u(c) = − exp(−θAc), v(d) = − exp(−θP d), μ(y) = μy, σ(y) = σ, φ(y) = φ.
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Our results here are similar to those in Williams [2011] and Li and Williams [2022]. Under

this specification, for each information structure the owner’s value function has the form:

J i(y, q) = J i exp(−θPμy)(−q)−θP/θA , i = F,M,R,

where J i is a constant which differs in each case. The policy functions also have the same

form in each case. Note that J i(y, q) is concave, so absent risk management considerations,

the owner will implement the low risk level.

4.1 Full Information

Using the functional forms and JF (y, q), the optimal policies under full information are:

dF = − log(−μJF )

θP
+ μy +

1

θA
log(−q)

cF = − 1

θA
log(−μq)

γW,F = − θAθP
θA + θP

μq ≡ γ̄W,Fq

γN,F =

[
1− exp

(
θAθP

θA + θP
μφ

)]
q ≡ γ̄N,F q,

where we use the superscript F to distinguish these policies from those below. The con-

sumption of both the owner and manager are linear in the log of promised utility, and both

the utility adjustment terms are proportional to the level of promised utility. These utility

terms here represent risk-sharing, so they naturally depend on both risk aversion levels θA

and θP . From the HJB equation, the constant term JF solves:

μ log
(−μJF

)
= μ− ρ+

θP
θA

(−ρ+ μ− μ logμ− λγ̄N,F
)− θPμλφ

+
1

2
σ2θ2Pμ

2 θA
θA + θP

+ λ
[
exp(θPμφ)

(
1− γ̄N,F

)−θP /θA − 1
]
.

Under the contract, the firm’s assets yt and the manager’s promised utility qt follow

jump-diffusion processes with constant coefficients (arithmetic and geometric, respectively):

dyt =

[
log(−μJF )

θP
+ λφ

]
dt+ σdWt − φdNt,

dqt/qt =
[
ρ− μ+ λγ̄N,F

]
dt + σγ̄W,FdWt − γ̄N,FdNt.

The optimal policies are similar in the cases below, resulting in a similar asset and promised

utility evolution as well.
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4.2 Moral Hazard with Uncontrolled Risk

Under moral hazard with uncontrolled risk, the optimal policy functions for d and γN are

the same as under full information, apart from changing the constant in d to JM :

dM = − log(−μJM )

θP
+ μy +

1

θA
log(−q)

γN,M =

[
1− exp

(
θAθP

θA + θP
μφ

)]
q ≡ γ̄N,Mq

To find the optimal policy for the agent’s consumption cM , it is useful to define c̄M by:

− exp(−θAc
M) = c̄Mq.

Thus c̄M gives the proportion of promised utility q that is delivered by current consumption

cM . Since q < 0 increases in the consumption rate c̄M are associated with reductions in the

level of consumption cM . Under full information the consumption rate is μ, but under moral

hazard c̄M is determined implicitly by:

c̄M = μ+ σ2θAc̄
M(θPμ− (θP + θA)c̄

M), (11)

and we have the following result.

Lemma 1 There exists a unique optimal c̄M which is strictly positive and is given by:

c̄M =
−1 + σ2θAθPμ+

√
(σ2θAθPμ− 1)2 + 4μσ2θA (θP + θA)

2σ2θA (θP + θA)

In addition γW,M ≥ γW,F .

Proof. See Appendix C.

From (11), notice that as σ → 0 the information friction vanishes, and c̄M → μ as

under full information. However moral hazard adds two additional terms in (11) which are

proportional to the asset volatility. As θP → 0 the owner becomes closer to risk neutral and

the first of these term vanishes, so we’re left with:

c̄M = μ− σ2θ2A
(
c̄M

)2
.

To provide incentives, the manager must face a more volatile utility process. Thus to deliver

a given utility promise q requires greater consumption (lower c̄M) as compensation. The

manager’s risk aversion θA governs how much his consumption rate is reduced with private

information. For θP > 0, the additional terms in (11) capture the co-insurance component

of the contract, linking the utilities of the owner and the manager.
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From the incentive constraint, we have:

γW,M = −θAc̄
Mq,

while under full information we have:

γW,F = −θA
θP

θA + θP
μq.

So under moral hazard, the risk sharing term θP
θA+θP

in the utility adjustment vanishes, as

the incentive constraint ties the manager’s promised utility to only his own consumption.

This pushes toward increasing the sensitivity γW,M of promised utility to shocks under moral

hazard. However, the agent’s consumption rate is also reduced to c̄M rather than μ, which

tends to work in the opposite direction. Lemma 1 shows that the first term dominates,

so that the agent’s promised utility is more responsive to shocks under moral hazard than

under full information. This is as we would expect: in order to provide incentives to not

divert assets for consumption, the owner must make the manager’s promised utility more

responsive to firm performance. Finally, the constant term JM solves:

μ log(−μJM ) = μ− ρ+
θP
θA

(−ρ+ c̄M − μ log c̄M − λγ̄N,M
)− θPμλφ

+
1

2
σ2θP

(
θPμ

2 − 2θP c̄
Mμ+ (θP + θA)

(
c̄M

)2)
+λ

[
exp(θPμφ)(1− γ̄N,M)−θP /θA − 1

]
As discussed above, the manager may have an incentive to take high risk actions when

faced with the moral hazard contract which treats risk as fixed. The conditions when this is

optimal are described in the following lemma.

Lemma 2 The manager has an incentive to choose the higher level of risk under the optimal

contract with moral hazard and uncontrolled risk if and only if:

c̄M ≥ −1

φθA
γ̄N,M =

1

φθA

[
exp

(
θAθP

θP + θA
μφ

)
− 1

]
≡ c̄M0 . (12)

This result defines the region R where the manager has the incentive to take the riskier

action. Note that the condition depends only on parameters, so the region R either covers

the whole (y, q) space or is empty. For example, when the owner’s risk aversion θP is small

enough, the condition holds and the manager takes the riskier action. This is detrimental to

the owner, as he prefers the low risk action, as formally shown in the following proposition.

Proposition 3 If risk-taking is not controlled by the manager, the owner always prefers the

low risk action.
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Proof. From the HJB equation, if the owner were allowed to choose the optimal risk level

he would solve:

λM = arg min
λ̃∈{λ,λ̄}

λ̃

[
−θP
θA

γ̄N,M − θPμφ+ exp (θPμφ)
(
1− γ̄N,M

)− θP
θA − 1

]

= arg min
λ̃∈{λ,λ̄}

λ̃

[
exp

(
θP θA

θA + θP
μφ

)
−

(
1 +

θP θA
θA + θP

μφ

)]
.

Since θP θA
θA+θP

μφ > 0, we have:

exp

(
θP θA

θA + θP
μφ

)
−

(
1 +

θP θA
θA + θP

μφ

)
> 0.

Therefore the owner prefers the low risk level and λM = λ.

These results provide parametric examples of the conditions discussed in Section 3 above.

When θP is small, the owner is close to risk neutral. Therefore he will absorb more of the jump

risk, and thus γ̄N,M will be close to zero. Since the manager then is relatively insured against

losses, he benefits from choosing the higher risk λ and earning the greater risk compensation,

as Lemma 2 shows. The owner would interpret this as better firm performance, and would

reward the manager. As Proposition 3 shows, the higher risk and increased likelihood of

large losses is excessive from the owner’s viewpoint.

4.3 Moral Hazard in Risk Management

We now turn to the risk management case where the owner accounts for the manager’s

endogenous choice of risk. OnH, the owner’s value function is the same as in the uncontrolled

case above with λ = λ̄. Even though the owner would prefer the low risk level if he were

able to control it, the information frictions make it too costly to do so. On L∩R the owner

implements the low risk and γN is incentive-constrained. The form of the optimal policy for

d is again unchanged, apart from the constant which is now JR:

dR = − log(−μJR)

θP
+ μy +

1

θA
log(−q).

We again define the consumption rate so c̄Rq = − exp(−θAc
R), where now c̄R solves:

c̄R = μ+σ2θAc̄
R(θPμ−(θP+θA)c̄

R)−λθAφc̄
R
[
1− exp (θPμφ) (1 + φθAc̄

R)−(θP+θA)/θA
]
. (13)

As above, the second term in this expression captures the moral hazard and risk sharing

components associated with the Brownian shocks. The additional terms following λ tie the

manager’s consumption to the likelihood of jump shocks, capturing the incentive to manage

risk.
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The sensitivity of promised utility is again determined by the incentive constraint:

γW,R = −θAc̄
Rq.

For risk management, we normalize γN = γ̄N,Rq and the incentive constraint gives:

γ̄N,R = −φθAc̄
R.

Then note that as θP → 0 from (13) we have:

c̄R = μ+ θ2A
(
c̄R

)2 [
σ2 − λ

φ

1− γ̄N,R

]
.

Relative to moral hazard alone, this adds the final term reflecting risk management, which

compares the ratio of the loss from the negative shock (φ) to the promised utility remaining

after the shock (1− γ̄N,R). The constant term JR then solves:

μ log(−μJR) = μ− ρ+
θP
θA

(−ρ+ c̄R − μ log c̄R − λγ̄N,R
)− θPμλφ

+
1

2
σ2θP

(
θPμ

2 − 2θP c̄
Rμ+ (θP + θA)

(
c̄R
)2)

+λ
[
exp(θPμφ)(1− γ̄N,R)−θP /θA − 1

]
.

The following result compares the contracts under moral hazard and risk management,

noting that on the safe region S, the policies are the same.

Proposition 4 If (12) is satisfied then (y, q) ∈ R and solutions of c̄R and γ̄N,R exist with

c̄R ≤ c̄M and γ̄N,R ≤ γ̄N,M ; otherwise (y, q) ∈ S and c̄R = c̄M and γ̄N,R = γ̄N,M .

Proof. See Appendix D.

When the risk management constraint binds, the manager’s consumption rate is lower

than under moral hazard alone, which in turn is lower than under full information. Recalling

that the level of consumption varies negatively with the consumption rate, we see that

consumption increases with more severe information frictions. To provide incentives, these

frictions require that the manager’s pay respond more to shocks. To deliver the same utility

q with a more volatile pay stream thus requires higher average pay. The promised utility

responses also differ depending on the source of the information friction. Recalling that

q < 0, under risk management the manager’s promised utility is more sensitive to jump

shocks (γ̄N,Rq ≥ γ̄N,Mq) and less sensitive to the Brownian shocks (γW,R ≤ γW,M) than

under moral hazard (with uncontrolled risk).

These results agree with our discussion above. The usual pay-for-performance channel in

the contract comes through γW , and larger sensitivities increase the incentive for the manager

to take more risk to gain the risk compensation. So lowering γW under risk management
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Parameter Value Parameter Value

μ 0.10 θA 1.00

σ 0.16 θP 1.00

φ 0.50 ρ 0.04

λ̄ 0.90 λ 0.10

Table 1: Benchmark parameter values

lessens this temptation. At the same time, increasing the sensitivity to the jump shock γN

ensures that the manager will face a larger utility loss if a negative jump shock hits. This

also gives the manager less incentive to take high risk actions.

We now consider whether it is worthwhile for the owner to provide incentives for the

manager to implement low risk. We showed above that the regions R and S summarizing

the manager’s incentives cover the whole state space for (y, q), dependent only on parameters.

Similarly, the regions L and H summarizing the owner’s preferences are also only functions

of parameters. For example, L covers the entire state space if:

JR
λ (y, q) = JR exp(−θPμy)(−q)−θP/θA ≥ JM

λ
(y, q) = JM

λ
exp(−θPμy)(−q)−θP /θA

⇒ JR ≥ JM
λ
,

where JR and JM
λ

are the constants defined above. H covers the whole space if the reverse

inequality holds. Thus optimal contracts will implement the same choice of high or low risk

at every date, dependent on the parameters. We illustrate below how the key parameters

determine which risk level is implemented, which bears on the relationship between firm

characteristics and volatility.

4.4 Illustrations of the Optimal Contracts

In this subsection, we illustrate how the features of the optimal contract depend on the

parameters. We focus on variations in μ, σ, θA, θP , and φ which determine the production

technology, monitoring structure, the preferences, and the size of the jump shock. The

benchmark parameter values are listed in Table 1.

We consider the cases of full information with low risk, moral hazard with low and

high uncontrollable risks, and risk management. Table 2 summarizes the constants which

characterize the optimal contracts. The constants from the normalized firm value are listed

in the first row. The firm value is highest under full information, and decreases as the moral

hazard problem arises and the level of the risk increases. With the benchmark parameter

values, moral hazard with low risk is not incentive compatible. So risk-management is

optimal as it alleviates the efficiency loss due to the manager’s ability to secretly take on
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First best(λ) Moral Hazard (λ) Moral Hazard (λ̄) Risk Management

J i -332.43 -332.65 -334.33 -332.84

c̄i 0.10 0.0997 0.0997 0.0993

−γ̄W,i 0.0500 0.0997 0.0997 0.0993

−γ̄N,i 0.02531 0.02532 0.02532 0.04964

d̄i -3.5038 -3.5045 -3.5095 -3.5050

Table 2: Characterization of the optimal contracts
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Figure 1: Division of the subsets of the parameter space into the high (H) and low (L) risk
regions.

excess risk. The consumption rate c̄ is listed on the second row, which recall varies inversely

with the level of consumption. The manager’s compensation is the lowest in the first best

case because his utility process is the least risky. This is clear from the corresponding value

of −γ̄W which indicates the sensitivity of q with respect to the cash flow shocks. With risk

management, this sensitivity is lower, since making pay less sensitive to performance reduces

the manager’s incentive to take high risk. The sensitivity of utility to the jump shocks −γ̄N

is nearly the same under full information and moral hazard, but is much larger under risk

management in order to deter risk. Dividends increase with d̄i, the constant term in the di

function, which follows the same pattern as the firm value J .

We next illustrate the effect of some key parameters on the risk incentives. We fix the

values of other parameters and show how the regions L and H are divided over the σ-μ

and θA-θP spaces in Figure 4.4. Risk management is always optimal unless μ is very low,

approximately 1.07× 10−4, or unless the ratio of the owner’s risk-aversion coefficient to the

manager’s is low. In other words, if the firm’s profitability is relatively low or the owner

is relatively less risk averse, then allowing the manager to take high risk is optimal. The

optimal risk management policy is insensitive to σ, the volatility of the cash flows, which
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Figure 2: Comparative statics of the firm value, J̄ .

also governs the severity of the moral hazard friction. Under this specification of the model,

high risk is only optimal for a subset of parameter values. Our example below considers a

different specification where high risk eventually prevails for most firms.

We now analyze how the features of optimal contracts vary with key parameters. Figure

2 shows how the firm value changes in each case. The upper-left panel shows that there

is a non-monotonic relationship between the value and μ which is nearly the same across

the different cases. Specifically, the value decreases with μ up to a threshold level (which

is close to ρ), and increases with μ above that point.4 The firm value decreases with σ

because both the owner and the manager are risk averse. In addition, higher σ makes

monitoring more difficult, so the moral hazard friction is worse and the efficiency of the

private information contracts further decrease. The firm value increases with the manager’s

risk aversion coefficient θA, according to lower-left panel. A lower θA means a smaller risk

premium needs to be paid to deliver the same promised utility level. A larger φ means larger

losses from the jump shock, so J decreases in all cases. Choosing lower risk and imposing

risk management greatly alleviates the efficiency loss, as JR is much closer to JF than is JM
λ .

We don’t show it, but the divided rate d̄ has similar comparative statics to the firm value J .

Figure 3 shows how the negative of the consumption rate, −c̄ which varies positively

4Without uncertainty the threshold level is ρ. To understand this, assume that there is no uncertainty in

the asset return or moral hazard. If μ < ρ, the owner would front load her dividend payment and a higher μ

raises the opportunity cost of doing so due to the intertemporal substitution effect. Symmetrically, if μ > ρ,

she would delay the dividend payment, and a higher μ raises the benefit of doing so.
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Figure 3: Comparative statics of the negative of the manager’s consumption rate −c̄.

with the level of consumption c, depends on the parameters.5 A higher μ indicates better

expected growth for the firm’s assets, so a lower compensation level is needed to deliver the

promised utility, as shown in the upper-left panel. With moral hazard, higher levels of σ and

θA increase the manager’s required compensation for bearing risk due to incentive provision.

Therefore −c̄ increases, as shown in the upper-right and lower-left panels. Increases in θA also

increase the gaps between consumption rates in the different information structures. More

severe information frictions require the manager to bear more risk, which is more costly

when he is more risk averse. The lower-right panel shows that only compensation with risk

management varies with φ. Since the risk is compensated, when the potential losses φ are

larger so is the hidden benefit of high risk. To deter excess risk, the manager must then bear

more overall risk, requiring more compensation.

4.5 Implementation of the Optimal Contracts

So far we have focused on a direct implementation of the optimal contracts, where the owner

provides a history-dependent payment to the manager which provides appropriate incentives.

We now show how the optimal contracts in the moral hazard and risk management cases

can be implemented with relatively simple instruments. In particular, the manager receives

a constant salary payment s̄ each period, but also can save or borrow in an account we

5Notice that −c̄ in the case of moral hazard with uncontrollable risk is independent of the arrival rate of

the disasters, so we plot c̄M = c̄Mλ = c̄M
λ̄
.
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denote xt. We interpret this account as representing the cumulation of the manager’s bonus

or deferred compensation. This account has a constant interest rate r and requires the

manager to pay a flat fee b. Out of the firm’s assets, the owner withdraws a dividend

dt for himself, and pays the manager his salary plus the interest on his account balance.

Then the owner gives the manager the remaining assets yt, whose increments accrue to the

manager’s account. Giving the manager the entire remainder of the firm’s assets would

make the manager experience the full effect φ of losses due to negative jump shocks. While

this may deter the manager from taking excess risk, it is in general too strong a response

to optimally balance risk sharing and risk management incentives. Thus the contract also

provides insurance α which partially compensates the manager for jump risks. In the event

of a negative jump shock, the manager then loses φ − α of his deferred compensation.

This is a form of a “clawback” provision, similar to what has been proposed by federal

regulators and implemented in some financial institutions. Facing this wealth evolution, the

manager then chooses the risk level and whether to divert resources from the firm for his

own consumption, as well as whether to make additional withdrawals from his account. We

show that this combination of salary payment, deferred compensation, shares in the firm,

and clawback provisions implements the optimal contracts.

In particular, we choose the instruments so that the agent’s optimal choices agree with

those in the direct implementations of the contracts. To do so, we show that the promised

utility qt can be mapped into the manager’s account balance xt via the relationship:

xt = − 1

θAr
log(qt). (14)

Using this transformation, the optimal dividend policies dF , dM , and dR under the different

information structures derived above can all be written:

dit = d̄i + μyt − 1

θA
log(−qt)

= d̄i + μyt − rxt

where d̄i = − log(−μJ i)/θP is a constant with i = F,M,R. We now must distinguish among

the payment the manager receives from the owner, which we denote st, his diversion of

resources Δt, and his total consumption ct. With wealth xt in the account, the payment

consists of the interest payment plus the constant flow salary:

st = rxt + s̄.

Then the evolution of the firm’s assets can be written:

dyt = [μyt − st − dt + λtφ−Δt]dt + σdWt − φdNt

= [μyt − (rxt + s̄)− (d̄+ μyt − rxt) + λtφ−Δt]dt + σdWt − φdNt

= [−(s̄ + d̄) + λtφ−Δt]dt+ σdWt − φdNt.
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At any date t, the manager begins with assets xt in the account, which earn the constant

interest rate r. In addition, the account receives an inflow due to his salary s̄ and an outflow

for the flat fee b. The manager also receives the gain on the firm’s assets after payments, and

gets the additional insurance α in the event of a negative jump shock. The manager’s total

consumption ct consists of any diversion Δt from the firm’s assets plus whatever additional

amount he withdraws from the account. We write the withdrawal as ct − Δt. Altogether,

the manager’s wealth evolves as:

dxt = [rxt + s̄− b− (ct −Δt)]dt+ dyt + αdNt

= [rxt + s̄− b− (ct −Δt)− (s̄+ d̄) + λtφ−Δt]dt+ σdWt − (φ− α)dNt

= [rxt − ct + λtφ− b̄]dt + σdWt − βdNt (15)

where β = φ − α and b̄ = d̄ + b. Since the manager retains the residual assets of the

firm, the diversion Δt drops out of his wealth evolution. He only cares about his total

consumption, not whether it is financed by diverting assets from the firm or by withdrawing

from his account. Thus without loss of generality we set Δt ≡ 0, but note this does not yet

imply that the manager consumes the amount suggested by the contract. We refer to β, the

manager’s net losses due to a negative jump shock, as the “clawback”.

Facing the wealth evolution (15) with given initial wealth x, the manager chooses his

consumption and the risk level in order to maximize his utility. The HJB equation for this

problem with value V (x) can be written:

ρV (x) = max
c,λ

{
− exp(−θAc) + V ′(x)[rx− c+ λφ− b̄] +

1

2
V ′′(x)σ2 + λ[V (x− β)− V (x)]

}
.

The value function has a form similar to our J i functions above, V (x) = v exp(−rθAx),

where v is a constant. This leads to the optimal policy function:

c(x) = − 1

θA
log (−rv) + rx,

and the risk choice is λt = λ if:

rθAβ ≥ log(1 + rθAφ),

which provides a lower bound on the clawback β, and λt = λ otherwise. Given λ, the

constant v solves:

r log (−rv) = r − ρ− θAr(λφ− b̄) +
1

2
σ2θ2Ar

2 + λ[exp(βθAr)− 1]. (16)

If we let μx denote the drift of xt from (15) above, we have:

μx = rx− c(x) + λφ− b̄

= − 1

θA
log (−rv) + λφ− b̄

=
1

θAr

(
r − ρ+

1

2
σ2θ2Ar

2 + λ[exp(βθAr)− 1]

)
,
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where the last equality uses (16).

We now show that we can choose the parameters (r, b, α, s̄) to implement the optimal

contracts under moral hazard and risk management. We have already conjectured the link

between qt and xt in (14) above. Given the form of V (x), this implies that we must have

v = −1. Under this relationship, the implementation already delivers the optimal dividend

di . Moreover, under the optimal contract,

ci = − 1

θA
log

(
c̄i
)− 1

θA
log (−q) , (17)

while under the implementation:

ci = − 1

θA
log (−rv) + rx = − 1

θA
log (r)− 1

θA
log (−q) for i = F,M,R. (18)

Therefore (17) and (18) imply that the implementation must set the interest rate the manager

faces equal to his consumption rate:

r = c̄i.

The total payments from the owner, rx+ s̄, must also match total consumption, so:

s̄ = − 1

θA
log

(
c̄i
)
for i = F,M,R.

We then need to establish the validity of the conjectured relationship between x and q

from equation (14) above. To do so, recall that in both the moral hazard and risk manage-

ment cases the incentive constraint for consumption holds:

γW,i = −θAc̄
iq,

while the loading on the jump shock satisfies γN,i = γ̄N,iq. Using these, along with the

consumption and dividend policies, we find that promised utility evolves as:

dqt = [ρ− c̄i + λγ̄N,i]qtdt− σθAc̄
iqtdWt − γ̄N,iqtdNt.

Then using the relation (14) and applying a generalized version of Ito’s lemma6, we have:

dxt =
1

θAr
[c̄i − ρ+

1

2
σ2θ2A(c̄

i)2 − λγ̄N,i]dt+ σdWt − log(1− γ̄N,i)

θAr
dNt.

Comparing with (15), the conjectured relationship between xt and qt holds as long as:

β =
log(1− γ̄N,i)

θAr
,

so α = φ − β. This setting ensures the loading on the jump shock Nt matches (15), and

also equates the drift with μx defined above. Finally, given the other parameters of the

implementation, we set the flat fee b so that v = −1, which from (16) requires:

b =
1

θAr

(
r log r + ρ− r + λγ̄N,i

)
+ λφ− d̄− 1

2
σ2θAr.

24



First best(λ) Moral Hazard (λ) Risk Management

r 0.10 0.0997 0.0993

b 0.6247 0.8257 0.5970

β 0.2500 0.2506 0.4880

s̄ 2.3026 2.3051 2.3097

Table 3: Implementation of the optimal contracts.

In Table 3, we illustrate the implementation of the optimal contracts based on the bench-

mark parameter values from above. Recall that we have r = c̄, so increases in the interest

rate imply reductions in the level of consumption. Focusing on the comparison between

the moral hazard and risk management cases, we see that in accounting for the manager’s

risk management incentives, the owner slightly reduces the interest rate r and increases the

salary payment s̄. The owner also cuts the flat fee b the manager must pay on the account.

All of these changes are associated with higher consumption by the manager, which reflects

compensation for the additional risk he must bear. This risk is seen most clearly in the

significant increase in the clawback term β under risk management, which translates to a

smaller amount of insurance α. Recalling that φ = 0.5, under full information the man-

ager and owner fully share the losses of negative jump shocks, as the manager faces a loss

of β = 0.25. Under moral hazard alone, the clawback increases slightly, as reductions in

xt make it easier for the owner to provide future incentives to deter diversion. But under

risk management, the clawback β increases substantially. To provide incentives for prudent

behavior, the manager faces a much larger share of potential losses. The clawback provision

is thus the main channel for providing risk management incentives.

While our analysis allows for comparative statics of any aspect of the implementation,

we focus here on the clawback term which is the key for risk management. Figure 4 plots

the clawback term β versus some of the parameters under moral hazard (treating risk as

uncontrollable) and risk management. As expected, the clawbacks are substantially larger

for all parameters under risk management than moral hazard. Increases in the agent’s risk

aversion θA mean that under full information the agent should face a smaller share of the

risk, which is also reflected by a reduction in the clawback under moral hazard. Also under

moral hazard, increases in the diffusion risk σ effectively worsen the information friction

governing diversion, so the clawback increases to lessen the cost of providing incentives. The

clawbacks under risk management decrease slightly with faster firm growth μ and the agent’s

risk aversion θA, but are otherwise relatively insensitive to the parameters. The clawbacks

in both contracts increase roughly proportionately with the size of the loss φ. Under moral

6See Theorem 1.14 and Example 1.15 in Øksendal and Sulem [2005]

25



0.05 0.1 0.15 0.2

μ

0.25

0.3

0.35

0.4

0.45

0.5

βM

βR

0.5 1 1.5 2

σ

0.2

0.25

0.3

0.35

0.4

0.45

0.5

βM

βR

0.5 1 1.5 2

θA

0.1

0.2

0.3

0.4

0.5

βM

βR

0.2 0.4 0.6 0.8

φ

0

0.2

0.4

0.6

0.8

1

βM

βR

Figure 4: Comparative statics of the “clawback” term β in the event of a negative jump.

hazard, the slope is roughly one-half as the risk is shared nearly evenly, while under risk

management the slope is roughly unity as the manager bears the bulk of the jump risk.

5 A Case with Variable Risk Management

While the previous example allowed us to gain insight into the nature of the contracts, it was

very special. The risk management incentives of both parties were constant, so that there

was no time variation in the jump risk. We now consider a specification with variable risk

management, where the manager’s incentives and the owner’s preferences to implement high

or low risk vary over time. Our results suggest that rather than high risk actions representing

a failure of corporate management, in some cases high risk may be optimal.

5.1 The Specification

Time variation in risk management is a generic feature of our general model, which we

illustrate with a tractable but plausible specification. We now assume that both the owner

and the manager have logarithmic preferences, and the firm’s assets follow a linear evolution

with constant expected returns, proportional diffusion risk, and proportional losses from the
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jump shock. That is, we now assume the following functional forms:

u(c) = log(c), v(d) = log(d), μ(y) = μy, σ(y) = σy, φ(y) = φy,

where we recycle some notation from above. As above, under each information structure

the owner’s value function a similar form, but here the private information cases cannot be

solved explicitly. Nonetheless, the homogeneity of this specification simplifies the solutions.

Reconsidering the boundaries of the Pareto frontier, the upper bound on the manager’s

utility now takes the form:

ρq̄(y) = max
c

{
log c + q̄′(y)[μy − c + λφy] +

1

2
σ2y2q̄′′(y) + λ[q̄((1 − φ)y) − q̄(y)]

}
.

This has the solution:

q̄(y) = log(y)/ρ+ zp

where the constant zp is given by:

zp = log(ρ)/ρ+ [μ− ρ− 1/2σ2 + λ(φ+ log(1− φ))]/ρ2.

At this bound, the manager consumes a constant fraction of assets, c = ρy and the owner’s

utility diverges as his consumption tends to zero, giving the boundary condition limq→q̄(y) J
F (y, q) =

−∞. The upper bound on the owner’s utility, which arises in the limit as q → −∞, can be

characterized in the same way:

J̄(y) = log(y)/ρ+ zp,

with the same constant zp and consumption function d = ρy.

We now define a variable z = q − log(y)/ρ which effectively indexes the location on the

Pareto frontier between the extremes of q̄ and J̄ . Intuitively, we think of z as the manager’s

“share” in the firm. A large z means that, in expectation, a larger fraction of the firm’s

future cash flows will be paid as the manager’s compensation. Thus a higher z implies that

the manager’s incentives are more aligned with the firm’s interests.7 Under each information

structure, the owner’s value function can be written:

J i(y, q) = log(y)/ρ+ gi(q − log(y)/ρ), i = F,M,R,

where gi(z) is a function which differs in each case. The boundary conditions imply:

lim
z→zp

gi(z) = −∞ for i = F,M,R, and lim
z→−∞

gF (z) = zp.

To provide the manager with the maximal utility, the owner must consume nothing. Con-

versely, providing the manager with no consumption only delivers the owner his maximal

utility under full information, as there are losses from private information.

7See Ai and Li [2015], Ai et al. [2016], and DeMarzo et al. [2012] for similar normalizations and interpre-

tations with different preferences.
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5.2 Full Information

With the form of the value function, under full information the optimality conditions imply:

dF =
1

1− g′f(z)
ρy,

cF =
−g′f (z)

1− g′f(z)
ρy

γW,F =
1

ρy

γN,F = −1

ρ
log(1− φ).

Substituting these into the HJB equation, we find that gF (z) solves:

ρgF (z) = (1− g′f(z))[ρzp − log(1− g′f(z))] + g′f(z)[ρz − log(−g′f(z))].

The solution of this first-order ODE is:

gF (z) = zp + log(1− exp(ρ(z − zp)))/ρ,

which satisfies the boundary conditions. Then we can write the value function as:

JF (y, q) = log (y exp(ρzp)− exp(ρq)) /ρ,

and the policy functions simplify to:

dF = (1− exp(ρ(z − zp)))ρy = ρy − ρ exp(ρq)

exp(ρzp)

cF = exp(ρ(z − zp))ρy =
ρ exp(ρq)

exp(ρzp)
.

As in the exponential case, the manager’s consumption cF is only a (direct) function of

his promised utility q and not the firm’s assets y. The owner’s consumption is set at his

maximally desired level ρy minus the consumption he provides the manager, so the total

amount of consumption is the efficient level: cF +dF = ρy. The current promised utility thus

determines how the efficient total consumption is divided between the owner and manager.

5.3 Moral Hazard with Uncontrolled Risk

Under moral hazard with uncontrolled risk, the optimality conditions for the dividend dM

and weighting on the jump shock γN,M have the same form as above, simply substituting the
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function gM(z) for gF (z). We now normalize consumption as cM = c̄M(z)y, a form similar

to the full information case, so the incentive constraint for diversion (3) gives:

γW,M =
1

cM
=

1

c̄M(z)y
. (19)

The optimality condition for consumption from (7) then implies:

g′M(z)c̄M (z)2 +
1

ρ
(1− g′M(z))c̄M (z)3 + σ2g′′M(z)

(
1− c̄M(z)

ρ

)
= 0.

The manager’s consumption rate c̄M(z) is the maximizing root of this cubic equation. Sub-

stituting the choices into the HJB equation, the function gM(z) then solves the following

second order ODE:

ρgM(z) = − log(1− g′M(z)) + log ρ− 1 +
1− g′M(z)

ρ
[μ− c̄M(z) + λ(φ+ log(1− φ))]

+g′M(z)(ρz − log c̄M(z))− σ2

2ρ

[
1− g′M(z)− g′′M(z)

(
1

ρ
− 2

c̄M(z)
+

ρ

c̄M(z)2

)]
.

This ODE has the boundary conditions limz→zp gM(z) = −∞ and limz→−∞ g′M(z) = 0.

Unlike the previous examples, we must solve this ODE numerically.

5.4 Moral Hazard in Risk Management

Under risk management, we again normalize consumption cR = c̄R(z)y. The optimality

condition for dividends and the incentive constraint for diversion are then:

dR =
1

1− g′R(z)
ρy ≡ d̄R(z)y,

γW,R =
1

cR
=

1

c̄R(z)y
.

On H, risk management does not add any constraint and we have:

γN,R = γN,F = −1

ρ
log(1− φ),

along with the other conditions from the previous section. But on L the contract now must

satisfy the incentive constraint for risk:

γN,R =
φy

cR
=

φ

c̄R(z)
,

The optimality condition for consumption (10) then implies:

0 = g′R(z)c̄
R(z)2 +

1

ρ
c̄R(z)3 (1− g′R(z)) + σ2g′′R(z)

+λφc̄R(z)

[
g′R(z)− g′R

(
z − φ

1

c̄R(z)
− 1

ρ
log(1− φ)

)]
.
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Substituting the choices into the HJB equation, the function gR(z) solves:

ρgR(z) = log ρ− log (1− g′R(z))− 1 +
1− g′R(z)

ρ

[
μ− c̄R(z) + λφ

]
+g′R(z)

[
ρz − log c̄R(z) + λφ

1

c̄R(z)

]

−σ2

2ρ

[
(1− g′R(z))− g′′R(z)

(
1

ρ
− 2

c̄R(z)
+

ρ

c̄R(z)2

)]

+λ

[
gR

(
z − φ

1

c̄R(z)
− 1

ρ
log(1− φ)

)
− gR(z)

]
,

with the same boundary conditions as above.

In the exponential case, the contract provided constant risk management incentives. But

now the regionsR and S, where the manager’s risk incentive constraint does or does not bind,

as well as L and H, where the owner implements the low or high risk levels, are functions of

the endogenous share variable z. Under the optimal contract, the share zt follows:

dzt = μz (zt) dt+

(
1

c̄R(zt)
− 1

ρ

)
σdWt −

[
γN,R(zt) +

1

ρ
log (1− φ)

]
dNt

with

μz (z) = ρz − ln
(
c̄R(z)

)
+ λ(z)γN,R(z)− 1

ρ

(
μ− d̄R(z)− c̄R(z) + λ(z)φ+

1

2
σ2

)
.

As zt evolves over time, the contract may now transit between the different regions, and thus

switch between the high and low risk levels, as we show next.

5.5 Characterizations of the Optimal Contract

We now illustrate the dynamics of the optimal contract, using the parameter values summa-

rized in Table 4. Since the policies depend on the share variable z, we focus on that dimension

of the state space. The optimal risk policy and the related incentive constraint in the risk

management case are shown in Figure 5. The upper panel shows that the higher risk level

is optimal if and only if z is lower than a threshold level z0. That is H = {(y, q) : z < z0}.
When z increases, the manager’s share of future cash flows increases and his interest is more

aligned with the firm’s. When z is low, a stronger pay-performance sensitivity is then needed

to deter diversion. However, this has the side-effect of increasing the manager’s willingness

to take high risk, and so makes risk management more costly. In other words, the incentives

for diversion and risk are more in conflict in the low z region, so it is optimal to give up

risk management. This can be seen more clearly in the lower panel of the figure. Recall

that the manager chooses the low risk if and only if γN,R ≥ φ(y)γW,R. On H, the contract
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Parameter Value Parameter Value

μ 0.22 λ̄ 0.50

σ 0.16 λ 0.20

φ 0.50 ρ 0.04

Table 4: The parameter values for the logarithmic utility case.

-20 z0 20

Manager’s share, z

0.2

0.5

λ

-20 z0 z1 20

Manager’s share, z

4

6

8

10

12

14

γN,R

φ(y)γW,R

Figure 5: Risk management policy and the incentive compatibility conditions.

imposes very high level of the performance sensitivity φ(y)γW,R, while γN,R = γN,F , the

full information level without taking account of the manager’s risk choice. To the right of

z0, risk management is optimal and less costly. Specifically, figure shows that the incentive

constraint for risk management is binding over the interval [z0, z1] (the region L ∪ R) and

relaxed if z > z1 (the region S). On S, the manager’s incentive to divert is too weak to

influence his risk taking behavior.

The upper panel of Figure 6 plots the gi(z) functions from the firm’s value in the different

cases. Compared with gM with λ̄, the advantage of risk management increases with z, and gR

converges to gM with λ as z converges to zp. In the lower panel, we show the compensation

rates in the different cases. Consumption in the full information and moral hazard cases are

as expected, with the manager receiving the most compensation when he bears the most

risk. Consumption under risk management c̄R differs substantially from the other cases,

jumping up when z surpasses z0. To understand this, notice that the manager’s incentives
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Figure 6: The key component of the firm value and the optimal consumption rate.

to divert and take high risk decrease with the current compensation level, as shown in the

incentive constraints (19) and (8). Therefore, shifting compensation to the region with risk

management lowers the cost.

To better understand the dynamics of the risk management contract, Figure 7 plots the

drift and diffusion functions for the share variable z. The drift is negative for all z, so over

time the contract will tend toward the low z region where the firm value and the level of risk

are both higher. The diffusion rate is significantly higher in the region H (to the left of z0),

where compensation is significantly lower and stronger pay-performance-sensitivity is need

to deter diversion. So the dynamics of z suggest that, as the contract evolves over time, a

firm will ultimately move out of the region with risk management. Reductions in the firm’s

assets, whether due to a sequence of negative cash flow shocks or the large negative shocks,

will make this process happen more quickly.

The dynamics of the risk management contract are further illustrated in Figure 8, which

plots quantiles of the simulated distribution of firms over the z-space across time. For this

figure, we simulate a panel of two million firms, each of which start with z equal to zero. At

each date the figure shows the location of the quantiles of the cross-sectional distribution (in

z) of firms. We see that over time the mass of the distribution tends toward low z values,

where the moral hazard friction dominates and owners allow high risk. However there is an

upper tail that remains above the threshold level z0, and continues to impose low risk.
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Figure 7: Dynamics of the share variable z.
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Figure 9: The relationship between the share variable z and firm assets (top panel) and

growth rates (bottom panel) at different dates from a simulated panel of firms.

To gain further insight on the dynamics of firms under the risk management contract,

Figure 9 shows the relationship between the firm assets yt and the share variable zt at

different points in time. The contract is nonstationary, with firm assets growing and the

share variable declining over time. To summarize the relationship between these variables,

we take the simulated panel of firms and collect the cross-sections at years 20, 25, and

30. For each year, we divide the samples into 25 groups according to the level of z with

an equal number of samples in each group. The top panel of the figure plots the average

size of the assets yt in each group at each date as a function of average share zt, while the

bottom panel plots the average growth rate of assets (the drift of log yt). The different years

all show the same relationships, with later dates having a greater average size yt for any

zt. Firm size increases with the share variable zt, while the growth rate decreases with it.

Thus the upper tail in Figure 8 implementing low risk corresponds to larger firms, with

smaller expected growth rates. Our model also replicates the empirically observed negative

relationship between firm size and growth, which here arises due to incentive provision.
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6 Conclusion

In this paper, we have studied a dynamic agency model in which the manager can take two

hidden actions: divert resources for his own consumption, and raise his perceived perfor-

mance by exposing the firm to larger risk. We showed that the incentives to deter diversion

and that to discourage risk can conflict with each other, and optimal incentive compatible

contracts balance these objectives. With exponential preferences, we showed how the opti-

mal risk policy depends on the parameters, and developed an implementation of the contract

using some simple instruments. In particular, we showed that risk management concerns ra-

tionalize a clawback provision in contracts, where a manager is docked accumulated pay in

the event his firm suffers a large loss. With logarithmic preferences, we showed that risk

management varies over time, with most firms eventually tending toward giving up on risk

management in favor of deterring diversion.

Our results suggest that the episodes documented in recent years where managers have

exposed their firms to large losses could have two different interpretations. First, as Rajan

[2011] and others have emphasized, firms may have adopted pay-for-performance contracts

to provide incentives for managers, without recognizing that these contracts would also

encourage hidden risk taking behavior. Alternatively, firms may well have considered the

risk incentives of managers, but been in a situation where deterring risk was too costly. Our

results suggest that may be a typical situation, as over time moral hazard incentives tend to

dominate risk management concerns. Rather than being a failure of corporate management,

high risk and large losses by firms may be optimal.
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Appendix

A Proof of Proposition 1

For t ∈ [0,∞), let Υt be the Ft–conditional expectation of the manager’s life-time utility

under the owners’s policy p and the manager’s action policy a. Namely

Υt ≡ Ea,p

[∫ ∞

0

e−ρsu (cs +Δs) ds|Ft

]

=

∫ t

0

e−ρsu (cs +Δs) ds+ e−ρtqt. (A.20)

Then {Υt} is a {Ft}–adapted martingale. By a martingale representation theorem8 we have:

dΥt = e−ρtγW
t dW a

t − e−ρtγN
t dMλ

t . (A.21)

Then (A.20) and (A.21) imply (2).

B Proof of Proposition 2

We need to show that (a, p), with a ≡ (0, λ), is incentive compatible if and only if for any

t ∈ [0,∞)

(0, λt) = argmax
Δ̃,λ̃

u
(
ct + Δ̃

)
− γW

t Δ̃ + γW
t φ (yt) λ̃− γN

t λ̃. (A.22)

Suppose not, so that there is another a′ = (Δ′, λ′) such that

u (ct) + γW
t φ (yt) λt − γN

t λt < u
(
ct + Δ̃

)
− γW

t Δ′
t + γW

t φ (yt) λ
′
t − γN

t λ′
t (A.23)

over a time interval with a positive measure. Let q be the manager’s promised utility process

under a. Define:

Υ̂t ≡
∫ t

0

e−ρsu (cs +Δ′
s) ds+ e−ρtqt.

So Υ̂t is the Ft–conditional expectation of the manager’s life-time utility if he acts according

to a′ from date zero and switches to a at t. Then:

e−ρtdΥ̂t = u (ct +Δ′
t) dt− ρqtdt+ dqt. (A.24)

8See Jacod and Shiryaev [2002] Chapter III, Theorem 4.34 for a generalized description of the Martingale

Representation Theorem.
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Equation (2) implies:

dqt − ρqtdt = −u (ct) dt+ γW
t σ (yt) dW

a
t − γN

t dMλ
t

and

dW a
t = dW a′

t +
1

σ (yt)
[−φ (yt) (λt − λ′

t)−Δ′
t] dt,

dMλ
t = dMλ′

t − (λt − λ′
t) dt.

Therefore, (A.24) can be rewritten as:

e−ρtdΥ̂t =
[
u (ct +Δ′

t)− u (ct)− γW
t φ (yt) (λt − λ′

t)− γW
t Δ′

t + γN
t (λt − λ′

t)
]
dt

+γW
t σ (yt) dW

a′
t − γN

t dMλ′
t . (A.25)

Notice that the last two terms on the right hand side of (A.25) are martingale increments.

Then (A.23) implies that
{
Υ̂t

}
is a sub-martingale with a negative trend over a positive

measure of time. Therefore, there is a t̄ ∈ [0,∞) such that

Ea′,p
[
Υ̂t̄

]
> Υ̂0 = q0.

Hence, adopting a′ up to t̄ and switching to a is a strictly dominant choice of the manager.

So (a, p) is not incentive compatible, and we have a contradiction.

To prove the other direction, suppose that a satisfies (3) and (4) so that:

u (ct) + γW
t φ (yt) λt − γN

t λt ≥ u
(
ct + Δ̃

)
− γW

t Δ′
t + γW

t φ (yt) λ
′
t − γN

t λ′
t

for any a′. Then
{
Υ̂t

}
is a super-martingale and:

Ea′,p
[
Υ̂∞

]
≤ Υ̂0 = q0.

So a dominates a′ and we have the desired result.

C Proof of Lemma 1

We define a function c̃(c) ≡ (−q)−1 exp (−θAc) characterizing the relationship between c̄M

and c. Notice that JM is negative and then the optimal c solves the following problem:

min
c̃

ΨM (c̃) ≡ μc̃− 1

θA
(−q)−1 (− exp (−θAc̃))− σ2θPμ (−q)−1 (exp (−θAc̃))

+
1

2
σ2 (θP + θA)

(
(−q)−1 exp (−θAc̃)

)2
.
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Notice that:

Ψ′
M (c) = μ− c̃ (c) + σ2θAθPμc̃ (c)− σ2 (θP + θA))θAc̃ (c) (A.26)

Since c̃′ (c) < 0, the first-order condition implies:

μ− c̃ (c) + σ2θAθPμc̃ (c)− σ2 (θP + θA))θAc̃ (c) = 0

and c̃ (c) must be a root of the quadratic function:

f(x) = μ+
(
σ2θAθPμ− 1

)
x− σ2 (θP + θA))θAx

2, (A.27)

which has a positive root and a negative one because f (0) = μ > 0 and the coefficient of

x2 is negative. According to the definition of c̃ (c), we must choose the positive root. So we

check the second order condition. Notice that:

Ψ′′
M (c) = f ′ (c̃ (c)) c̃′ (c)︸︷︷︸

<0

and f ′ (c̃ (c)) < 0 as c̃ (c) is the larger root of f(x), and we have the desired result.

To prove the result on the sensitivities γW , note that from the expression for c̄M in the

text we have:

(θA + θP )c̄
M = − 1

2σ2θA
+

θPμ

2
+

√
(σ2θAθPμ+ 1)2 + 4μσ2θ2A

2σ2θA

≥ − 1

2σ2θA
+

θPμ

2
+

√
(σ2θAθPμ+ 1)2

2σ2θA
= θPμ.

Therefore c̄M ≥ θP
θA+θP

μ and so:

γW,M = −θAc̄
Mq ≥ −θA

θP
θA + θP

μq = γW,F .

D Proof of Proposition 4

We only need to consider the case in which (12) is satisfied with strict inequality. As above,

we define the function c̃(c) ≡ (−q)−1 exp (−θAc) characterizing the relationship between c̄M

and c. Notice that JR is negative and then the optimal c solves the following problem:

min
c̃

ΨR (c̃) ≡ μc̃− 1

θA
(−q)−1 (− exp (−θAc̃))− σ2θPμ (−q)−1 (exp (−θAc̃))

+
1

2
σ2 (θP + θA)

(
(−q)−1 exp (−θAc̃)

)2
+λ

[
φ (−q)−1 exp (−θAc) +

1

θP
exp (θPμφ)

(
1 + φθAi (−q)−1 exp (−θAc)

)− θP
θA

]
.
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Let f(·) be the quadratic function defined in (A.27) and define the function g(·) such that:

g(x) = λθAφx

[
1− exp (θPμφ) (1 + φθAx)

− θA+θA
θA

]
.

The first order condition for the optimization above is then:

Ψ′
R (c) = f(c̃ (c))− g(c̃ (c)) = 0

or:

f
(
c̄R

)
= g

(
c̄R
)
. (A.28)

According to its definition, c̄R > 0 and we focus on the positive real line. Notice that:

lim
x↓0

f(x) > 0, lim
x→∞

f(x) = −∞, lim
x↓0

g(x) = 0, and lim
x→∞

g(x) = ∞.

Thus there must be a positive value of c̄R satisfying (A.28). We assume that there is a

unique such solution, as the extension of the argument to the case with multiple solutions

is straightforward. Since f(x) < g(x) if x ∈ (
0, c̄R

)
and f(x) > g(x) if x ∈ (

c̄R,∞)
, then

f ′ (c̄R)− g′
(
c̄R

)
< 0 and:

Ψ′′
R(c) = [f ′(c̃ (c))− g′(c̃ (c))] c̃′(c) > 0

so that the second order condition is satisfied. According to its definition:

g′(x) = λθA

[
1− exp (θPμφ) (1 + φθAx)

− θP+θA
θA

]
︸ ︷︷ ︸

≥0 if and only if g(x)≥0

+ λθAx
θP + θA

θA
exp (θPμφ) (1 + φθAx)

− θP+θA
θA

−1

︸ ︷︷ ︸
>0

.

So limx↓0 g′(x) = λθA [1− exp (θPμφ)] < 0 and then continuity implies that g(x) < 0 for

x close to zero. Furthermore, g′(x) > 0 if x ≥ 0. Therefore there is a unique solution for

g(x) = 0 which is c̄M0 defined in (12).

The fact that f(0) > 0 and the coefficient of the quadratic term of f(·) is negative implies

f(x) > 0 for all x ∈ (0, c̄M). Therefore c̄M0 < c̄M implies that f
(
c̄M0

)
> 0 = g

(
c̄M0

)
and then:

0 < c̄M0 < c̄R < c̄M .

Since:

γ̄N,R = −φθAc̄
R and γ̄N,M = −φθAc̄

M
0

the above equation implies γ̄N,R < γ̄N,M and we have the desired result.

40


	1 Introduction
	2 The Model
	3 Optimal Contracts
	3.1 Full Information
	3.2 Moral Hazard with Uncontrolled Risk
	3.3 Moral Hazard in Risk Management

	4 An Explicitly Solvable Case
	4.1 Full Information
	4.2 Moral Hazard with Uncontrolled Risk
	4.3 Moral Hazard in Risk Management
	4.4 Illustrations of the Optimal Contracts
	4.5 Implementation of the Optimal Contracts

	5 A Case with Variable Risk Management
	5.1 The Specification
	5.2 Full Information
	5.3 Moral Hazard with Uncontrolled Risk
	5.4 Moral Hazard in Risk Management
	5.5 Characterizations of the Optimal Contract

	6 Conclusion
	A Proof of Proposition 1
	B Proof of Proposition 2
	C Proof of Lemma 1
	D Proof of Proposition 4

