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In this paper I study how a model of stochastic fictitious play gives rise to
switches between equilibria similar to stochastic evolutionary models, and charac-
terize the long run behavior of the game. I focus on a model in which agents’ payoffs
are subject to random shocks and they discount past observations exponentially.
I analyze the behavior of agents’ beliefs as the discount rate on past information
becomes small but the payoff shock variance remains fixed. I show that agents
tend to be drawn toward an equilibrium, but occasionally the stochastic shocks
lead agents to endogenously shift between equilibria. I then calculate the invariant
distribution of players’ beliefs, and use it to determine the most likely outcome
observed in long run. Our application shows that by making some slight changes
to a standard learning model, I can derive an equilibrium selection criterion similar
to stochastic evolutionary models but with some important differences.

1. INTRODUCTION

Numerous economic models have multiple equilibria, which immediately raises the
question of how to characterize outcomes or to select among equilibria. In this pa-
per I develop methods to characterize the long run behavior of discrete time models
with multiple stable equilibria. This allows me to characterize the distribution over
equilibria and to determine which among many possible equilibria is most likely to be
observed in the long run. This is a problem which has long been studied in evolution-
ary game theory, but here I show how equilibrium selection may result from a model
of individual agent learning.

This paper follows much of the recent literature in viewing the equilibrium of a game
as resulting from a process of learning by agents. Since many games have multiple
Nash equilibria, a common question is which equilibria would be likely outcomes of
an adaptive process. For example, models of learning have sought to determine which
equilibria are stable under a specified learning process. However, this criterion is
not sufficient to determine which equilibrium is the most plausible in models where
there are multiple stable equilibria. In contrast, evolutionary models starting with
the seminal work of Foster and Young (1990), Kandori, Mailath, and Rob (1993)
and Young (1993) among others, have sought to determine which equilibria are stable
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outcomes of a long run process of evolution in which occasional random shocks perturb
agents’ decisions. These models have provided sharp characterizations of the most
likely equilibrium observed in the long run, which is often unique, although it typically
depends on the details of the adjustment and perturbation process.

This paper provides a partial synthesis of the lines of research on learning and
long run equilibrium selection. I analyze the well-known stochastic fictitious play
learning model in which agents’ payoffs are subject to random shocks. I study a variant
of the model in which agents learn by placing a constant weight or “gain” on new
information, and so discount past observations exponentially. I analyze the behavior
of agents’ beliefs as this discount rate gets small, but the shock variance is bounded
away from zero. I provide conditions which insure that agents’ beliefs converge to a
stable equilibrium in a distributional sense. However the persistence of randomness
and the nonvanishing weight on new information leads agents to continually revise
their beliefs, and leads to occasional transitions between equilibria. This allows me to
determine a stationary distribution of agents’ beliefs which asymptotically places all
of its mass on a unique long run equilibrium.

A main contribution of this paper is the development of applicable methods to
analyze the long run behavior of discrete-time continuous-state models with multiple
equilibria. In particular, I use techniques from large deviation theory to analyze the
rare events in which agents escape from a stable equilibrium. These methods allow me
to characterize transitions between equilibria by solving deterministic dynamic control
problems. I discuss below some related known results for continuous time models and
models with discrete state spaces. However, as many economic models are naturally
cast in discrete time and have continuous state spaces, our results may be more broadly
applicable beyond the specific model we consider here. Toward this end, I formulate
the key theoretical results in general terms, and then show how they specialize in the
case of fictitious play.

Similar large deviation methods have been recently studied by Sandholm and
Staudigl (2016) who study a closely related dynamic. They focus on large popula-
tion and small noise limits of a noisy best response model where agents are matched
from finite population. Their general approach is similar to mine, but the analysis
differs. I focus on games with a fixed number of players and fixed noise, taking a
limit in the (fixed) gain in the learning algorithm. In Williams (2018) I take a similar
approach in models with a unique equilibrium.

My model of learning in games is a variation on the stochastic fictitious play model
which was introduced and first analyzed by Fudenberg and Kreps (1993). Stochastic
fictitious play (SFP) introduces random shocks to players’ payoffs in the spirit of
the purification results of Harsanyi (1973) to the original (deterministic) fictitious
play model of Brown (1951) and Robinson (1951). In the first part of the paper I
consider the stability of equilibria under learning. In previous analyses of this model,
Fudenberg and Kreps (1993) showed that in games with a unique Nash equilibrium in
mixed strategies, play under this learning scheme converges to the Nash equilibrium.
Kaniovski and Young (1995) extended these results to a general class of 2× 2 games,
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and Benaim and Hirsch (1999a) further determined convergence criteria for a class of
two action games with N players, with the most general results provided by Hofbauer
and Sandholm (2002). Some related results have been shown by Hofbauer and Hopkins
(2000) and Benaim (2000) who provide conditions for global convergence in certain
classes of games. I summarize and apply these stability results to our discounted
stochastic fictitious play model for two-player multi-action games.1 As an example
of stability analysis, I prove a conjecture by Fudenberg and Kreps (1993) about the
stability of the Shapley (1964) game, showing that the unique Nash equilibrium is
unstable for small noise.

After establishing stability of equilibria, I turn to the long run behavior of the
adaptive system induced by the players’ beliefs and actions. Under constant gain
learning the weight on current observations is always nonzero, and thus the ongoing
exogenous shocks insure that there is persistent randomness in the system. Although
agents’ beliefs converge to a stable equilibrium in a distributional sense, occasional
sequences of shocks lead agents to change their strategy choices and can induce occa-
sional “escapes” from a stable equilibrium. I formulate a deterministic control problem
that provides the (probabilistic) rate of transition between equilibria. Following Frei-
dlin and Wentzell (1999), I then calculate the stationary distribution of beliefs over
equilibria, and show that typically this distribution is asymptotically concentrated on
a unique equilibrium. Thus as time evolves the system will tend to spend most of
its time within a neighborhood of a particular equilibrium, which in the literature
following Kandori, Mailath, and Rob (1993) and Young (1993) has been called the
long run or stochastically stable equilibrium. For general games, I provide expressions
which must be evaluated numerically in order to determine the stochastically stable
run equilibrium. However for the important special case of 2× 2 symmetric games, I
establish that the long run equilibrium is the risk dominant equilibrium. As I discuss
below, this result agrees with many in the literature. However for larger games my
results differ from existing criteria, as I show in an example below.

In addition to the papers already discussed, there is a long literature with similar
aims and approaches. As noted above, there are related results for discrete-state-
space models such as Kandori, Mailath, and Rob (1993) and especially Young (1993).
These papers consider the dynamics in which “mutations” or mistakes perturb agents’
choices and use arguments similar to those in this paper to characterize stochastic
stability. Here I consider a discrete time model with a continuous state space.2 Aside
from this technical difference, there is a difference in focus. Rather than perturbing
agents’ decisions directly, I assume that there are shocks to agents’ payoffs.3 This

1In a related model, Ellison and Fudenberg (2000) considered the local stability of equilibria in 3×3 games.
Their notion of purification differs from our specification of stochastic shocks, and their development is in
continuous time.

2Foster and Young (1990) and Fudenberg and Harris (1992) present continuous-time continuous-state evo-
lutionary models which use techniques similar to this paper.

3Myatt and Wallace (2004) also consider equilibrium selection in a 2 × 2 model with stochastic payoff
shocks. They consider a different adjustment dynamic in which each period only one agent drawn from a
population can revise his strategy. As discussed above, Sandholm and Staudigl (2016) also consider perturbed
payoffs.
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exogenous randomness interacts with agents’ learning rules, and may lead them to
switch strategies. The fact that agents’ choice is directed, instead of being completely
random, changes the probabilities that low payoff actions are played. This leads to
some differences in long run equilibrium selection. In addition, most of the results in
literature considered limits as the stochastic perturbations decrease to zero. In my
model, the environment remains fully stochastic in the limit which may be more nat-
ural for many economic models which are fundamentally stochastic. In formulating
this type of limit, my results are broadly similar to Binmore, Samuelson, and Vaughn
(1995) and Boylan (1995). In addition to Sandholm and Staudigl, the paper clos-
est to my results, although in a somewhat different setting, is Benaim and Weibull
(2003). Our large deviation results are formally similar, but their paper analyzes large
population limits and considers a rather different adjustment process.

Related studies of convergence, but not stochastic stability, have recently been
based on models with stochastic choice using weaker informational requirements. For
example, Leslie and Collins (2006) study convergence in a model where beliefs are
subject to a general perturbation sequence, with stochastic fictitious play as a special
case. They also study a simpler payoff-based approach, where agents only observe
their own payoffs and not their opponents’ actions. Cominetti, Melo, and Sorin (2010)
study a related payoff-based process where agents only form estimates of payoffs of
each action and make perturbed choice based on their estimates. Bravo (2016) modifies
this approach to weight more heavily actions which have been played more frequently,
which is similar to our discounting of past observations.

The rest of the paper is organized as follows. In the next section I present the model
of stochastic fictitious play. In Section 3, I analyze the convergence of the beliefs,
applying results from stochastic approximation theory and analyzing some examples
fictitious play. In Section 4, I turn to analyzing the escape problem and characterize
stochastic stability in a general framework. First I present the results from large
deviation theory which allow one to compute the rates of escape from the different
equilibria. These results provide a characterization of the stationary distribution of
beliefs, and therefore determine the long run equilibrium. In Section 5, I analyze the
stochastic fictitious play model and determine the stochastically stable equilibrium in
some example games. Section 6 concludes. Technical assumptions and proofs of some
results are collected in Appendix A.

2. DISCOUNTED STOCHASTIC FICTITIOUS PLAY

In this section I briefly present the model of discounted stochastic fictitious play
(SFP). Under discounted SFP, instead of averaging evenly over the past observation
of their opponent’s play, agents discount past observations and put more weight on
more recent ones. Throughout we restrict our attention to two player games in which
the payoffs to each player are subject to stochastic shocks.4 The game is repeated

4Hofbauer and Sandholm (2002) show that the same dynamics can result with deterministic perturbations.
However the stochastic nature is important for our characterization of long run equilibria.



STOCHASTIC STABILITY IN DISCOUNTED STOCHASTIC FICTITIOUS PLAY 5

a possibly infinite number of times, but at each round each player treats the game
as static and myopically chooses a pure strategy best response. (The only dynamics
come through the evolution of beliefs.) The assumption of myopia can be motivated
either by assuming bounded rationality or as a result of random matching of players
from a large population.

For simplicity I focus on two player games where each player has the choice of N
actions. Extensions to games with differing action spaces is straightforward, and the
techniques could be adapted to more players as well. Before an agent decides which
action to select, he observes a stochastic shock to his payoffs that is not observable
to his opponent. Formally, we assume player 1’s payoffs are ai,j + e1i,t when he plays
i and player 2 plays j, for i, j = 1, .., N . Here ai,j represents the mean payoff and
e1i,t is a mean zero random variable which is common to the player’s action (note that

it does not depend on j.) Analogously, player 2’s payoffs are given by bi,j + e2i,t, so

that the payoff bi-matrix has entries (ai,j + e1i,t, bj,i+ e2j,t). Player 1 assesses probability
θ2,i,t that player 2 plays action i at date t, with θ1,i,t defined analogously. Define the
(N × 1) vectors ai = (ai,1, ..., ai,N)

′ and θ2,t = (θ2,1,t, ..., θ2,N,t)
′, again with the obvious

analogues bj and θ1,t. For simplicity we assume:

Assumption 2.1. The shocks eij,t have the common continuous distribution func-
tion F , and are independent across actions, across agents, and over time:
ei1,t⊥ei2,t, e

1
j,t⊥e2j,t, e

i
j,t⊥eij,s, for i, j = 1, 2, t, s > 0, i ̸= j, t ̸= s.

We focus on the two special cases in which the errors are normally distributed with
mean zero and variance σ2 so that F (x) = Φ(x

σ
), and when the errors have a type-II

extreme value distribution with parameter λ, in which case F (x) = exp(− exp(−λx−
γ)). Here γ is the Euler-Mascheroni constant which insures that the mean is zero. Note
that as σ → 0 and λ → ∞ the shock distributions become more concentrated around
zero. As we will see, these two distributions give rise to probit and logit decision rules,
respectively. Some of our results hold for more general shock distributions, but these
cases are the most commonly used and they allow us to obtain explicit results.

At each date, each player plays a myopic pure strategy best response based on
his current beliefs, and then updates his beliefs about the other player’s behavior
based on his observations. Since the shocks have continuous distributions, there is
(almost surely) no loss in generality in considering only pure strategies, and so we use
“strategy” and “action” synonymously throughout. Thus, at date t, player 1 chooses
action i if it yields the highest subjectively expected payoff:

θ2,t · ai + e1i,t ≥ max
j ̸=i

{
θ2,t · aj + e1j,t

}
. (1)

(Any tie-breaking rule will suffice for the zero probability event that there are multiple
maximal actions.) Then each player observes the opponent’s action, and the players’
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beliefs are updated according to the following learning rule:

θ1,i,t+1 = θ1,i,t + ε
[
1{Player 1 plays i} − θ1,i,t

]
θ2,j,t+1 = θ2,j,t + ε

[
1{Player 2 plays j} − θ2,j,t

]
, (2)

where 1{x} is an indicator function for the outcome x and ε is the “gain” which de-
termines the weight on current observations relative to the past. Our discounted
SFP model assumes that ε is a constant, and hence it is known as a “constant gain”
algorithm.

Previous analyses of stochastic fictitious play have focused on the case were ε de-
creases over time as 1/t.5 With this gain setting, the learning algorithm is just a proce-
dure for recursively estimating the empirical distribution of the opponent’s strategies.
Underlying this specification of the learning rule is the assumption that each agent
believes that his opponent is drawing his strategy choices from a fixed distribution.
As an agent gains more observations, he refines his estimates of this fixed underly-
ing distribution. Since he considers the opponent’s strategy distribution to be time
invariant, all draws from this distribution are weighted equally.

In the discounted case, the gain is constant, and each player recognizes the possibil-
ity that the other player’s beliefs may change over time, so observations are discounted
at an exponential rate. This implies that recent observations are given more weight
in estimation. This seems reasonable in our model because both agents are learning,
so that their strategies are not drawn from a fixed distribution. Due to this non-
stationarity of the system, a discounted algorithm may be more appropriate. The
particular discounted rule is only optimal in some special cases, but it is clear that
in nonstationary environments, discounted rules may outperform rules which weight
observations equally. Moreover, a discounted specification was used by Cheung and
Friedman (1997) in their empirical analysis of experimental data on learning in games.
Their typical estimated discount rates were much less than one, and thus were consis-
tent with relatively large settings of the gain ε. In the context of a different learning
model, Sarin and Vahid (1999) also used a similar discounted specification under the
assumption that agents did not know whether the environment was stationary. By
placing a constant weight on current observations relative to the past, the discounted
learning rule allows beliefs to react to the persistent randomness in the system, and
this leads to the characterization of stochastic stability.

3. STABILITY AND CONVERGENCE

In this section, I begin analysis of the agents’ beliefs by characterizing the sense
in which beliefs converge and identifying the limit sets. First, I state some general
convergence results from stochastic approximation theory, due to Kushner and Yin
(1997) and Benaim (1999), which are relevant for the current model. In particular,
I show that the limiting behavior of the learning rule is governed by a differential

5However, as was pointed out by Ellison and Fudenberg (2000), the stability conditions are identical in this
case and in our discounted model.
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equation. I then summarize known results on convergence, and consider two example
games.

3.1. Convergence Results

In this section I summarize the existing results on the convergence of our discounted
stochastic fictitious play learning rule. I apply results on two action games due to
Fudenberg and Kreps (1993) for games with a unique mixed equilibrium, and Kaniovski
and Young (1995) and Benaim and Hirsch (1999a) for the general case. I also include
some special cases of larger games due to Hofbauer and Hopkins (2000) for zero sum
and “partnership” games, and Benaim and Hirsch (1999b) and Benaim (2000) for
“cooperative” games.

I first rewrite the learning rule above in a more abstract form. First I stack the
beliefs of both players into a vector θ, all the shocks into a vector e and the “update”
terms into a function b. Then we can write the learning rule as:

θt+1 = θt + εb(θt, et). (3)

Assumption A1 above restricts the error process et to be i.i.d. This could be weakened
to allow for some forms of temporal dependence at a cost of complexity. I find it useful
in the analysis to split b into its expected and martingale difference components:

b (θt) = Eb(θt, et),

vt = b(θt, et)− b (θt) .

Thus we have the alternate form of (3):

θt+1 = θt + εb (θt) + εvt. (4)

In Appendix A.1 I provide details on the calculation of b in my setting.
The convergence theorems below show that the limit behavior of (4) can be char-

acterized by a differential equation. I now provide some heuristic motivation for the
results. Note that we can re-write (4) as:

θt+1 − θt
ε

= b (θt) + vt. (5)

On the left side of (5), we have the difference between consecutive estimates, normal-
ized by the gain. We can then think about embedding the discrete time process onto
a continuous time scale, interpolating between the discrete observations and letting ε
be the time between observations. Thus the estimates are θt and θt+1 are ε units of
time apart, so that the left side of (5) is a finite-difference approximation of a time
derivative. As ε → 0, this approximation will converge to the true time derivative.
Turning to the right side of (5), the first term is a constant function of θt, while the
second term is the martingale difference between the new information in the latest
observation and its expectation. For small gain ε, agents average more evenly over
the past, and so this difference is likely to be small. In particular, below we apply a
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law of large numbers to ensure that vt → 0 as ε → 0. Together, these results imply
that as ε → 0, the dynamics of agents’ beliefs in (4) converge to the trajectories of the
differential equation:

.

θ= b (θ) . (6)

The same ODE characterizes the limits of the standard, un-discounted SFP learn-
ing rule which has been studied in the literature. However the asymptotic results
are different. In the standard case, the gain is not constant but shrinks to zero as
t → ∞. Thus we take the limit along a sequence of iterations, and so for large t
we can approximate the behavior of beliefs by the differential equation (6). In the
discounted case, the gain is fixed along a given sequence as t increases. Therefore we
look across sequences of iterations, each of which is indexed by a strictly positive gain.
To emphasize this dependence I now add the superscript and denote the belief vector
θεt . These different limits also lead to different convergence notions. In the usual case,
beliefs typically converge with probability one, while in the discounted case they only
converge weakly.

The basis for our convergence results are provided by the following theorem con-
densed from results of Kushner and Yin (1997) and Benaim (1999). In Appendix A.2
we list the necessary assumptions for the theorem, along with more details about the
continuous time interpolation leading to (6). The theorem ensures the convergence of
the algorithms to an invariant set of the ODE (6). We emphasize the asymptotics by
including a superscript ε on the parameters when the gain is ε.

Theorem 3.1. Under Assumptions A.1 in Appendix A.2, as ε → 0, {θεt} converges
weakly to a process that satisfies (6). Define the tail of the belief sequence by a shift qε
with εqε → ∞ as ε → 0. Then {θεt}∞qε converges weakly to a limit set of (6).

The convergence theorems show agents’ beliefs converge to a limit set of the ODE
(6), but there may be many such sets. In particular, when there are multiple stable
equilibria which are limits of the learning rule, the convergence results do not distin-
guish among them. However since the same stability criteria apply in the discounted
and un-discounted cases, we can use results from the literature which establish global
convergence to a limit point in some special games. We call an equilibrium point
θ = (θ1, θ2) of the ODE linearly stable if the real parts of all the eigenvalues of the

Jacobian matrix of the belief dynamic ODE ∂b
∂θ
(θ) are strictly negative. A point is

linearly unstable if at least one eigenvalue has strictly positive real part. We denote
the set of linearly stable points by Θ. The following result summarizes known results
from the literature.

Theorem 3.2. The limit sets of the ODE (A.1) consist of points θ ∈ Θ if:

1. the game is 2× 2,
2. the game is zero sum,
3. the game is a partnership game: the payoff matrices (A = [ai,j, B = bj,i]) satisfy:

x · Ay = y ·Bx for all x and y, or
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4. the game is cooperative: all off-diagonal elements of the Jacobian matrix of the

belief dynamic ODE ∂b(θ)
∂θ

are nonnegative.

Therefore the tail {θεt}∞qε of the belief sequence converges weakly to a point in Θ as
ε → 0 and εqε → ∞.

Proof. Part 1 follows from Fudenberg and Kreps (1993) for a unique mixed equi-
librium and Kaniovski and Young (1995) for the general case. (See also Benaim and
Hirsch (1999a).) Parts 2 and 3 follow from Hofbauer and Hopkins (2000). Part 4 fol-
lows from Benaim and Hirsch (1999b) and Benaim (2000). The conclusions then follow

from Theorem 3.1.

In the special cases covered by Theorem 3.2, the learning algorithm will converge
globally to a linearly stable point. In games that do not satisfy these conditions, there
still is positive probability of convergence to a linearly stable point under some addi-
tional recurrence conditions, or convergence may at least be assured from appropriate
initial conditions. A converse result (see Benaim and Hirsch (1999a)) also can be
used to show that beliefs will not converge to an equilibrium point which is linearly
unstable. In Section 4 below, we show how infrequent transitions between equilibria
can lead to a particular stable equilibrium being the most likely outcome observed in
the long run. But first we turn to two examples of stability analysis in the next sec-
tion. The first illustrates the possibility of multiple stable equilibria, and the second
examines the well-known Shapley (1964) game.

3.2. Stability Examples
3.2.1. A 2× 2 Coordination Game

This example illustrates the possibility of multiple stable equilibria by examining
a simple coordination game.

Example 3.1. Let the mean payoffs of a 2× 2 coordination game be given by:

Player 2
1 2

Player 1 1 3,3 2,0
2 0,2 4,4

With normal shocks, the ODEs governing convergence are then:

.

θi = Φ

(
5θj − 2

σ

)
− θi, i ̸= j, i = 1, 2, (7)

where Φ is the standard normal cumulative distribution function. Figure 1 shows the
rest points for the ODE for this game (the logit case is very similar). The figure plots
Φ from the ODE (7), so that equilibria are given by the intersections of Φ with the
45-degree line, and the stable equilibria are points where Φ intersects the line from
above. For relatively large values of σ, the figure shows there is only one equilibrium,
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FIGURE 1. Stable rest points for a symmetric coordination game.

but as σ → 0 there are three equilibria: two stable points in the neighborhood of the
pure strategy Nash equilibria (at 0 and 1), and one unstable point in the neighborhood
of the mixed strategy equilibrium (at 2/5 in this case). Thus Theorem 3.2 roughly
implies that the tail of the belief sequence will converge to (a neighborhood of) one of
the pure strategy equilibria, but it is silent on which of these outcomes to expect. We
revisit this example below, where we show that one of the equilibria is more likely to
be observed in the long run.

3.2.2. The Shapley (1964) Game

In this section, we use basic stability analysis of (A.1) in order to formally prove
a conjecture of Fudenberg and Kreps’s (1993) about the Shapley (1964) game. In
discussing extensions of their results on 2 × 2 games, Fudenberg and Kreps (1993)
stated that, “We suspect, however, that convergence cannot be guaranteed for general
augmented games; we conjecture that an augmented version of Shapley’s example will
provide the desired counterexample, but we have not verified this.” In this section we
verify that the stochastic counterpart to Shapley’s example is unstable if the shocks
are small enough. Similar results for different games have been shown by Ellison and
Fudenberg (2000) and Benaim and Hirsch (1999a).

Example 3.2. The payoffs in the Shapley game are given by the following:

Player 2
1 2 3

1 1,0 0,0 0,1
Player 1 2 0,1 1,0 0,0

3 0,0 0,1 1,0
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This game has a unique Nash equilibrium in which each player symmetrically plays
all three actions with equal probabilities. In this deterministic game, Shapley (1964)
proved that the fictitious play beliefs converge to a limit cycle in the three dimensional
simplex. For the stochastic version of the game, we augment the payoffs by introducing
the i.i.d. shocks as above. As we noted after Theorem 3.2, to show that an equilibrium
is unstable it suffices to show that at least one the eigenvalues of ∂B

∂θ
has positive real

part. The following theorem, with proof in the appendix, summarizes our results.

Theorem 3.3. In the normal case, for σ < 0.0821 and in the logit case for λ > 6
the unique mixed equilibrium θi =

(
1
3
, 1
3
, 1
3

)
, i = 1, 2 in Example 3.2 is unstable.

The calculations in the theorem also make clear that for large enough shocks, the
equilibrium will be (at least) locally stable. While the result may not be surprising,
it is interesting to note that the required noise in this example is not very large.
For example, in the normal case the ratio of the mean payoff to the shock standard
deviation is 0.333/0.0821 = 4.06. Thus this is not a case of the noise simply swamping
the mean payoff, as the “z-statistic” is highly significant. Thus it is possible that in
games with stochastically perturbed payoffs players can learn to play equilibria, even
when convergence fails in their deterministic counterparts.

4. ESCAPE AND STOCHASTIC STABILITY

In the previous section we provided conditions ensuring that agents’ beliefs con-
verge to a stable equilibrium. But we noted that convergence analysis alone can not
determine which of many stable equilibria will be most likely to be observed. In this
section we answer this question by characterizing the invariant distribution of beliefs
in the constant gain case, showing that the limit distribution typically places point
mass on a single stochastically stable (or long run) equilibrium. Asymptotically as
the gain decreases (across sequences) agents’ beliefs tend to spend most of their time
within a small neighborhood of the stochastically equilibrium. We develop the results
in this section at a general level, as they may be applicable to many different discrete
time models of multiple equilibria and continuous state variables. This contrasts with
the results in the literature which have focused on continuous time models (Foster
and Young (1990), Fudenberg and Harris (1992)), or discrete state models (Kandori,
Mailath, and Rob (1993), Young (1993)). As many economic models are naturally
formulated in discrete time, our results have broad potential applications. In the next
section we then apply our results to the stochastic fictitious play model.

On average, agents are drawn to a stable equilibrium, but occasional sequences of
exogenous shocks may alter their assessments and cause them to change their strate-
gies. This can cause the beliefs to “escape” from a stable equilibrium. These escape
dynamics drive our characterization of stochastic stability. In our analysis below, we
compute the probabilities that beliefs escape from one equilibrium to another, and
therefore we determine a Markov chain over the set of stable equilibria. The invariant
distribution of this chain determines the long run equilibrium.

Our characterization of stochastic stability relies on the discounted or constant
gain nature of the learning rule. If, as in typical fictitious play specifications, the gain
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FIGURE 2. Simulated time paths from a coordination game under decreasing (LS) and constant gain
(CG) learning.

decreased over time like 1/t (which we call least squares, or LS) then beliefs would
tend to converge along a given sequence as time evolves. Thus the probability that the
beliefs escape a stable equilibrium would go to zero along the sequence, so that there
would not be sufficient “mixing” to determine a unique limit distribution. The outcome
of the in that case would therefore be highly dependent on the initial condition and
the particular realizations of shocks, and thus be difficult to characterize. However in
with a constant gain case, we showed above that there is (weak) convergence in beliefs
across sequences. This means that along any given trajectory of beliefs with a fixed
gain setting, the probability that beliefs escape a given equilibrium remains nonzero.
Thus we are able to deduce a stationary distribution that characterizes beliefs and is
independent of the initial condition and specific shock realizations.

As an illustration of these issues, Figure 2 plots some simulated time paths from
the coordination game in Example 3.1. Recall there are two linearly stable equilibria
which are in neighborhoods of the symmetric pure strategy profiles. In the top panel,
we plot two separate time paths of beliefs in the decreasing gain (LS) case, which start
at the same initial value (which we set at the unstable mixed equilibrium) but converge
to the two different stable equilibria. In the bottom panel, we plot a single time path
in the constant gain (CG) case (again initialized at the unstable equilibrium), in which
the beliefs are first drawn toward one of the equilibria and then escape to the other.
The figure illustrates the difficulty in characterizing outcomes in the LS case and is
suggestive of the possibility of characterizing stochastic stability in the CG case, which
we pursue in this section.

In particular, we use techniques from large deviation theory to analyze the escape
problem and calculate the stationary distribution. Our convergence theorems above
suggest that the tail of beliefs tend to converge to a limit set. Therefore if we consider
any event in which the beliefs start at a limit point and get arbitrarily far from it, that
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the event must have a probability converging to zero. However, as we have seen in
Figure 2, for nonzero gain settings we do observe infrequent events where the beliefs
move a substantial distance from a limit point. In this section we first establish a large
deviation principle, due to Kushner and Yin (1997), which shows that the probability
of these “escape” events decreases exponentially in the gain size and characterizes this
rate of decrease. We then adapt results from Freidlin and Wentzell (1999) which use
the large deviation principle to calculate an invariant distribution of beliefs. Finally
we discuss how to implement the large deviation principle and calculate the stationary
distribution, and therefore determine the stochastically stable equilibrium.

4.1. A Large Deviation Principle
In this section, we present a large deviation principle due to Kushner and Yin

(1997), which draws on results by Dupuis and Kushner (1985, 1989). We present the
theorem here using the general notation of Section 3.1 above, and in Section 5 below we
show how to implement this general setup in the fictitious play model. In this section
we assume that there is at least one point θ which is a limit set for the ODE (6).
The theorem provides upper and lower bounds on probability of observing an event in
which agents’ beliefs are arbitrarily far from a limit point. In particular, the theorem
shows that once agents’ beliefs are in the neighborhood of a stable equilibrium they
remain there for an exponentially increasing period of time. In the next section we
use this theorem to characterize the transition probabilities between equilibria, which
then allows us to compute the invariant distribution of beliefs.

We now define some terminology and then develop some of the functions which are
needed in statement of the theorem. Recall that Θ is the set of stable limit points.

Definition 4.1. Fix an ε > 0, a time horizon n̄ < ∞ (which may depend on ε),
and a compact set D with non-empty interior containing a stable limit point: θ̄ ∈ D
for some θ̄ ∈ Θ. Let θε(t), t ∈ [0, n̄ε] be the piecewise linear interpolation of {θεt}.

1. An escape path from D is a sequence {θεn}n̄n=0 solving (3) such that θε0 = θ̄ and
θεm /∈ D for some m ≤ n̄. Let Γε(D, n̄) be the set of escape paths.

2. For any sequence {θεn}n̄n=0 solving (3) with θ0 = θ̄, define the (first) escape time
from D as:

τ ε({θεn}) = ε inf {m : θεm /∈ D} ∈ R ∪ {∞}.

For small gains, any path {θεn} that starts near a stable limit will spend an increasing
fraction of time near it, and if noise pushes it away, it tends to be drawn back. An
escape path is a sequence of beliefs with exits a set D before the terminal date n̄.
The key results characterize bounds on the probability of escape and the the rate of
increase of the escape times, which we use to characterize the distribution over stable
equilibria.

In the theorem to follow, we characterize escapes by solving a cost minimization
problem, and the functions that we develop now are the elements of that problem.
First, the main function in our analysis is given by:

H(θ, α) = logE exp ⟨α, b(θ, et)⟩ (8)

=
⟨
α, b(θ)

⟩
+ logE exp ⟨α, vt⟩ ,
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where ⟨·, ·⟩denotes an inner product and the second equality uses equation (4). This
function is simply the logarithm of the moment generating function of the b(θ, et)
process, which is known as the cumulant generating function. Then we take the
Legendre transform of H :

L(θ, β) = sup
α

[⟨α, β⟩ −H(θ, α)] . (9)

In the theorem that follows, L plays the role of an the instantaneous cost function,
which “charges” paths that deviate from the stable point. With the flow cost L, we
define a cumulative cost S for time paths x =(x(s))T0 :

S(T,x) =

∫ T

0

L(x(s),
·
x (s))ds.

The H function is the Hamiltonian from a cost minimization problem and the mini-
mized cost function provides an estimate of the convergence rate. We spell out this
Hamiltonian interpretation of H more fully in Section 4.3 below.

We now state our large deviation theorem, which is a known result from Kushner
and Yin (1997). Let Bx be the set of continuous functions on a finite horizon [0, T ]
taking values in the set D with initial condition x. Recall that for a set Bx, B0

x denotes
is interior while Bx denotes its closure. We analyze escapes on a fixed continuous time
horizon T < ∞, and set n̄ = T/ε. Thus n̄ → ∞ as ε → 0. The large deviation
principle is given in the following theorem. The necessary assumptions are collected
in Assumptions A.2 in Appendix A, along with a brief discussion of a proof.

Theorem 4.1. Assume that Assumptions A.2 in Appendix A hold, that the gain
ε > 0 is constant, and that the shocks et are i.i.d. Let θε(s) be the piecewise linear
interpolation of {θεt}. Then for a set D as in Definition 4.1 and for T < ∞:

− inf
x∈B0

x

S(T,x) ≤ lim inf
ε→0

ε logP (θε(·)∈Bx ∥θε(0) = x) (10)

≤ lim sup
ε→0

ε logP (θε(·)∈Bx ∥θε(0) = x)

≤ − inf
x∈Bx

S(T,x).

The theorem shows that there is exponential decay (as ε → 0) in the probability
that beliefs will be far from a limit point. If the S function is continuous in the size
of the escape set, then the limits in (10) exist and the inequalities become equalities.
For example, if we define:

S = inf x : x(0) = θ,
x(s) /∈ D for some s < T


S(s,x), (11)

from (10) we have that:

P (θε(s) /∈ D for some 0 < s ≤ T
∥∥θε(0) = θ ) = o

(
exp(−1

ε
S)

)
.
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In addition, if we let τ ε be the time of first escape from the set D, (10) implies that
there exists some c0 such that for small ε:

Eτ ε ≈ c0 exp(
1

ε
S). (12)

Thus the mean escape times increase exponentially in 1
ε
as ε → 0. In the next section

we use (10) to calculate the transition probabilities between stable equilibria, which
leads to a characterization of the asymptotic invariant distribution.

4.2. The Invariant Distribution and Stochastic Stability
In this subsection we adapt a theorem from Freidlin and Wentzell (1999), henceforth

FW, to characterize the invariant distribution of beliefs. FW analyzed models of
continuous time diffusions with small noise statistics. Although our development is
in discrete time, the large deviation principle of the previous section allows us to
extend the FW results to our present model. Kandori, Mailath, and Rob (1993) and
Young (1993) similarly adapted the FW analysis for discrete-time, discrete state space
models. (We focus on Young’s work which is more general and closer to our analysis.)
The model of this paper covers the intermediate case in which time is discrete but
the state space is continuous, and thus it is not surprising that the FW/Young results
extend to this case.

In the previous section we stated a large deviation principle for paths which start
near a stable equilibrium and escape a set containing the equilibrium. In this section,
we modify this analysis slightly to calculate the probability of transition between
equilibria. Specifically, we now assume that there are K distinct stable equilibria that
are the only limit sets of the ODE (18), as in the case of Theorem 3.2. Thus we

have: Θ =
{
θ
1
, ..., θ

K
}
. Then to deduce the asymptotic stationary distribution of the

learning process, we can restrict our attention to this finite state space. Similar to the
function S in (11) above, we define the following minimized cost function for paths

connecting the stable equilibria θ
i
and θ

j
:

Vij = inf
x : x(0) = θ

i
,

x(T ) = θ
j
for some T < ∞,

x(s) ̸= θ
k
, k ̸= i, j for s ∈ (0, T )



S(T,x). (13)

Above we showed that the asymptotic probability of escape was determined by the
function S, and FW show (Lemma 6.2.1) that the asymptotic transition probabilities
of the Markov chain on Θ are determined by V . Thus the invariant distribution of
beliefs can be computed from these transition probabilities, as we now establish. First,
following FW (p.177) and analogous to Young (1993), we define the following.

Definition 4.2. For a subset ω ⊂ Θ, a graph consisting of arrows θ
m → θ

n(
θ
m ∈ Θ \ ω, θn ∈ Θ, n ̸= m

)
is called a ω-graph if it satisfies the following:

(i) every point θ
m ∈ Θ \ ω is the initial point of exactly one arrow,

(ii) there are no closed cycles in the graph.
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We denote the set of ω-graphs by G(ω), and define the following function:

Wi = min
g∈G

(
θ
i
) ∑
(θm→θ

n)∈g

Vmn. (14)

In words, this function looks at the sum of the costs V of transitions between equilibria

along all graphs anchored at θ
i
and chooses the minimizing graph. When there are only

two stable equilibria, there is a single graph for each equilibrium and thus Wi = Vji. In
cases with more stable equilibria, the number of graphs proliferates and the calculation
of W becomes slightly more complex. (See Young (1993) for an example.)

Finally, let µε be the invariant measure of the beliefs {θεn}. Then we have the
following theorem which identifies the long run equilibrium. It follows directly from
Theorem 6.4.1 of FW, with our Theorem 4.1 replacing FW Theorem 5.3.2. All of the
supporting lemmas required in the proof of the theorem can be seen to hold in the
current model.

Theorem 4.2. Assume that the conditions of Theorem 4.1 above hold, and that
limit sets of the ODE A.1 are a finite set Θ of stable equilibria. Then for any γ > 0
there exists a ρ > 0 such that the µε-measure of the ρ-neighborhood of the equilibrium

θ
i
is between:

exp

(
−ε

(
Wi −min

j
Wj ± γ

))
for sufficiently small ε.

The theorem implies that as ε → 0 the invariant measure of beliefs µε is concen-
trated in a small neighborhood of the equilibria that attain the minimum of W . If the
minimum is attained at a unique equilibrium, then the invariant distribution asymp-
totically places all of its mass within a small neighborhood of this equilibrium. These
results justify the following definition.

Definition 4.3. A stochastically stable equilibrium is a stable equilibrium
θ that satisfies θ ∈ argminj Wj and so is in the support of the invariant distribution
µε as ε → 0.

Thus, a stochastically stable (or long run) equilibrium is an outcome that is likely to
be observed in the long run evolution of the system. In particular, if there is a unique
stochastically stable equilibrium, then as the gain ε decreases we expect to observe the
agents’ beliefs spending an increasing fraction of time within a small neighborhood of
it. Starting from an arbitrary initial point, by Theorem 3.1 we know that the beliefs
are drawn to one of the stable equilibria. However as time passes, by Theorem 4.1
we know that there is a nonzero probability that the beliefs will eventually escape
this equilibrium and be drawn to another. As this process continues through time,
Theorem 4.2 establishes that the beliefs eventually spend most of the time near the
stochastically stable equilibrium. It is in this sense that stochastic stability provides a
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selection criterion for models with multiple stable equilibria. In order to characterize
the stochastically stable equilibrium, we then need to determine the escape paths that
lead from one equilibrium to another. In Theorem 4.1, and in the definition of V
in (13) above, we saw that the escape paths solve control problems, and in the next
section we further characterize the solutions to these control problems.

4.3. Characterizing the Long Run Equilibrium
Following Fleming and Soner (1993), we can find an analytical expression for the

differential equations that characterize the dominant escape paths between equilibria,
which requires one further assumption.

Assumption 4.2. L is strictly convex in β and obeys a superlinear growth condition:

L(θ, β)

|β|
→ ∞ as |β| → ∞.

Under this assumption, we can characterize the solution of the calculus of variations
problem for the escape problem as the solution to appropriate differential equations.
This is just an application of Pontryagin’s maximum principle, with the resulting first
order conditions and adjoint equations. Notice that H and L are convex duals, so that
similar to (9) we have:

H(θ, α) = sup
β

[⟨α, β⟩ − L(θ, β)] .

The cost minimization problem which characterizes an escape path between equi-
libria and determines the value Vij can then be written:

V j(x) = inf
x

∫ T

0

L(x(s),
·
x (s))ds (15)

s.t. x(0) = x, x(T ) = θ
j
for some T < ∞. (16)

Then Vij = V j(θ
i
). The Hamiltonian for this problem with state x, co-state λ, and

control
·
x is:

−H(x, λ) = inf
·
x

{
L(x,

·
x) + λ· ·

x
}
= −H(x, a), (17)

where a = −λ. Thus we see that the Hamiltonian is the H function that we defined
above. Further, by taking the appropriate derivatives of the Hamiltonian we see that
the dominant escape path can be found as the solution to the differential equations:

.
x (s) = Hα(x(s), a(s)) (18)
.
a (s) = −Hθ(x(s), a(s)),

subject to the boundary conditions (16).
Alternatively, following Fleming and Soner (1993) we can characterize the solution

of the cost-minimization problem (15)-(16) by dynamic programming methods.6 If we

6See also Dembo and Zeitouni (1998), Exercise 5.7.36.
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let V j
x (x) = ∂V j(x)/∂x, we have that the value function V j(x) satisfies the following

Hamilton-Jacobi partial differential equation:

H(x,−V j
x (x)) = 0, (19)

where we’ve used (17).
We can solve the key cost minimization problem (15)-(16) using either the PDE

characterization in (19) or the ODE characterization in (18). In some special cases, the
PDE characterization leads to explicit analytic results, as we show below. However for
general multidimensional games, we must rely on numerical solutions, and the ODE
characterization is easier to implement numerically. To see this, note that we can
solve (18) as a two-point boundary problem with the given initial condition for x and

a terminal condition x(T0) = θ
j
for some T0. This solution gives an escape path from

θ
i
to θ

j
. In other words, adapting notation, by solving the boundary value problem

we obtain a path that allows us to calculate:

Vij(T0) = inf{
x: x(0)=θ

i
, x(T0)=θ

j
}
∫ T0

0

L(x(s),
.
x (s))ds.

In order to find the most likely escape path, we minimize this function over T < ∞:

Vij = inf
T<∞

Vij(T ). (20)

Thus we have determined the asymptotic transition probabilities between equilibria.
By using these values to calculate the W function as in (14), we can then determine
the invariant distribution and find the stochastically stable equilibrium. In the special
case where there are two stable equilibria, we have already seen that the W function
reduces to V . We collect these results in the following corollary.

Corollary 4.1. Suppose there are two stable equilibria: Θ =
{
θ
1
, θ

2
}
. Then θ

1

is the stochastically stable equilibrium if V12 > V21, where Vij =
∫ T

0
L(x(s),

.
x (s))ds, L

is defined in (8) and (9), x(t) solves (18) subject to (16), and T is the minimizer in
(20).

5. STOCHASTIC STABILITY IN FICTITIOUS PLAY

In this section we apply the results of the previous section to the model of stochastic
fictitious play. First we derive some of the key functions in the 2× 2 case and indicate
how to extend the results to higher dimensions. Under stochastic fictitious play, the
cost function L simplifies and has a natural interpretation. Then we establish that in
2×2 symmetric games the stochastically stable equilibrium is the risk dominant equi-
librium. Finally, we turn to some illustrations of our results via numerical calculations
and simulations. We first illustrate the main theorem of this section on the coordina-
tion game from Example 3.1. Here we see that it is extremely difficult to switch from
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the risk dominant equilibrium to the other. Then we turn to a 3 × 3 coordination
game due to Young (1993), where our results differ from that paper. The persistent
stochastic nature of our model causes one of the equilibria to become unstable, which
changes the nature of stochastic stability.

5.1. Application to Fictitious Play
Here we specialize the results of the previous section by explicitly deriving the

key functions in the fictitious play model. We first focus on the 2 × 2 case with
two stable equilibria and then discuss extensions to larger dimensions. Due to the
discrete nature of the learning algorithm in (2), the H function is rather simple to
compute. Let θ = (θ1, θ2)

′ and as in Appendix A.1, define G1(θ2, i) as the probability
that player 1 plays action i with similar notation for player 2. As we only keep track
of a single probability for each agent, we use the notation G1(θ2) = G1(θ2, 1) and
G2(θ1) = G2(θ2, 1). By the independence of the eij,t we have that:

H(θ, α) = logE exp
(
α1

(
1{Player 1 plays 1} − θ1

))
+

logE exp
(
α2

(
1{Player 2 plays 1} − θ2

))
= − (α1θ1 + α2θ2) + log

[
1 + (exp (α1)− 1)G1(θ2)

]
(21)

+ log
[
1 + (exp (α2)− 1)G2(θ1)

]
.

Next, recall that the relative entropy of the discrete distribution p with respect to
the discrete distribution q is defined as:

I(p, q) =
N∑
i=1

pi log
pi
qi
.

Further, recall that I is nonnegative and equal to zero only when p = q. Then using
(9) and (21) we see that L takes the form:

L(θ, β) = I(β1 + θ1, G
1(θ2)) + I(β2 + θ2, G

2(θ1)). (22)

Recall that the “cumulative cost” S of a potential path from one equilibrium to another
is measured by the integral of L(θ, θ̇) along the path. The properties of the entropy
function ensure that the instantaneous cost is zero only along paths which follow the
ODEs (18) governing convergence. Therefore to escape an equilibrium requires the
beliefs to overcome the force pushing them back toward the equilibrium, which entails
a cost. Further, the most likely escape paths are those paths between stable equilibria
that minimize the cumulative relative entropy between what an agent believes and
what his opponent believes about him.

To find the most likely escape path, we then solve the control problem (15) for
each of the two equilibrium transitions. Corollary 4.1 implies the stochastically stable

equilibrium is the equilibrium θ
i
with the larger value of Vij. By Theorem 4.1 above,

the value of −Vij provides an estimate of the log probability that the beliefs will escape

from θ
i
to θ

j
, and so the stochastically stable equilibrium is the equilibrium with the

lower escape probability.
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In the next section we use the PDE characterization in (19) to deduce that in sym-
metric 2× 2 games the stochastically stable equilibrium is the risk dominant equilib-
rium. However to obtain quantitative results on the speed of equilibrium transitions,
we can solve the problem using the ODE characterization in (18). The differential
equations which determine the evolution of the states and co-states along the escape
path are then given by:

.

θi = Hαi
(θ, α) = −θi +

exp (αi)G
i (θj)

1 + (exp (αi)− 1)Gi (θj)
(23)

.
αj = −Hθj(θ, α) = αj −

(exp (αi)− 1)
∂Gi(θj)

∂θj

1 + (exp (αi)− 1)Gi (θj)
,

for i, j = 1, 2, i ̸= j. We solve these differential equations subject to the boundary
conditions (16).

In order to characterize stochastic stability in larger games, we simply extend this
analysis. In these cases the PDE generally characterization becomes more difficult, so
we use the ODE characterization to obtain numerical results. The calculation of the
H function is straightforward, and simply involves replacing Gi(θ) by its multidimen-
sional counterpart in an extension of (21). The differential equations that characterize
the escape paths are also the obvious corollaries of (23), with the complications that
the derivatives of the Gi are more difficult to evaluate, and that the Hθ derivatives
have additional cross-effect terms.

5.2. Stochastic Stability in Symmetric 2 × 2 Games
In this section we analyze the important special case of symmetric 2×2 games. Here

we show that the stochastically stable equilibrium is the risk dominant equilibrium.
As we discuss below, this result is the same as several other evolutionary selection
criteria in the literature. However in Section 5.4, we show that this equivalence does
not necessarily extend beyond the 2× 2 case.

We now suppose that the payoff matrices A and B are identical, which clearly
implies that player’s beliefs are driven by identical dynamics. Therefore, since the
equilibria are symmetric, we can focus on a single state variable θ = θ1 = θ2, driven by
the function G(θ) = G1(θ) = G2(θ). We consider the only relevant case where there

are three (perturbed) equilibria, two stable (θ
1
, θ

2
) and one unstable (θ̃). Without loss

of generality, we suppose that the equilibria can be ordered as:

0 ≤ θ
2
< θ̃ <

1

2
< θ

1 ≤ 1. (24)

Therefore θ
1
is the risk-dominant equilibrium and correspondingly has the larger basin

of attraction. From (A.1) we see that if we initialize the mean dynamics at θ < θ̃, we

get θ(t) → θ
2
and vice versa.

The main theorem of this section is based on the analysis of the cost minimization
problem (15) and its PDE characterization (19). In the special case of this section,
by using (21), the PDE (19) determining the value functions V 1 and V 2 reduces to a
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system of differential equations:

−V j
x (x)x = log

[
1 +

(
exp

(
−V j

x (x)
)
− 1

)
G(x)

]
, j = 1, 2. (25)

Even in this relatively simple setting, it is typically not possible to determine an
analytic solution for this equation (25). However we can use it to establish properties of
the two solutions. The proof of the following theorem relies on showing that derivative
of V 1(x) is uniformly greater than V 2(x) over the relevant regions defined by (24).

When coupled with the larger basin of attraction of θ
1
, by Corollary 4.1 this implies

that θ
1
is the stochastically stable equilibrium. The proof is given in Appendix A.5.

Theorem 5.1. In symmetric 2 × 2 games, the stochastically stable equilibrium is
the risk dominant equilibrium.

Our results in this section agree with the equilibrium selection criteria in Young
(1993) and Kandori, Mailath, and Rob (1993). In fact our analysis agrees with all of the
selection criteria discussed by Kim (1996). The different criteria have different dynamic
adjustment processes, but in each case the risk dominant equilibrium has the largest
basin of attraction. In the discrete state models of Young and KMR, mutations are of a
fixed size. Therefore a larger basin means that more needed mutations to escape to the
equilibrium, which means that escape is less likely. In our setting, payoff perturbations
are of varying size, so there is a trade-off between receiving a few large shocks and an
accumulation of small shocks. Thus although we cannot simply count mutations, the
same intuition results. To escape from the risk dominant equilibrium requires a “more
unlikely” string of perturbations. Kim (1996) showed that the equivalence between
different selection criteria in the 2×2 case does not extend to multi-player games, and
we show below that for larger two player games the criteria differ. But first we give a
quantitative illustration of our results.

5.3. A 2 × 2 Example: A Coordination Game
As an example, we return to the symmetric coordination game from Example 3.1

above. As above, we focus on the cases when the shocks are normally distributed with
standard deviation σ or have extreme value distribution with parameter λ. The three
rest points and escape probabilities for the two stable equilibria with different settings
of σ and λ are given in Table 1 below. The limit points in the table are rounded to 4
digits, and are not exactly zero or one as the perturbations ensure they remain fully
mixed.

From the table, we first see that (as in Figure 1) as the variance of the shocks
decreases, the rest points become closer to the Nash equilibria. We also see that, in

accord with Theorem 5.1, the log escape probability is much lower at θ
2
than θ

1
, and

thus θ
2
is the stochastically stable equilibrium. This means that if agents start out

coordinating on action 1, which is the Pareto-inferior equilibrium, then the probability
that they will switch to the Pareto optimal equilibrium decays rapidly to zero as the
gain decreases. In contrast, although the probability of switching from the Pareto
superior equilibrium to the inferior one also declines to zero, for any given nonzero
gain setting there is a much greater chance of switching in this direction. Thus we
expect that, in the long run, the equilibrium in which both players play action 1 with
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TABLE 1.

Long run equilibrium in a 2× 2 coordination game.

Model Rest Points −Log Prob.

θ
1
i1 θ̃i1 θ

2
i1 V12 V21

σ = 1.0 0.033 0.288 0.998 0.279 3.712

σ = 0.7 0.002 0.344 1 1.432 6.699

σ = 0.5 0 0.366 1 3.168 11.681

λ = 5 0 0.381 1 2.023 5.729

λ = 10 0 0.391 1 4.515 11.663

λ = 20 0 0.396 1 9.280 22.296
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FIGURE 3. Long run evolution of beliefs in a 2× 2 coordination game.

probability near one will be observed much more frequently than the other stable
equilibrium.

We illustrate the evolution of beliefs in Figure 3, which shows a histogram of beliefs
from 1000 samples from the normal case with σ = 1. Each sample was initialized
at the unstable equilibrium and was run for 5000 time periods. Just as our analysis
suggests, the beliefs are initially drawn to a neighborhood of one of the pure strategy

equilibria. After 100 periods, the samples are nearly equally divided between θ
1
and

θ
2
. However as time goes by, the beliefs eventually escape θ

1
and are drawn to θ

2
,

which they have a very low probability of escaping. By the time we reach period 5000

nearly the entire mass of the distribution is concentrated near θ
2
. Thus in the long run

evolution of the game, we see that the beliefs eventually converge to the stochastically
stable equilibrium and stay there for an increasingly long period of time.

5.4. Long Run Equilibrium in a 3 × 3 Game
We next present an example that illustrates a difference between our model and

Young’s (1993) selection criteria. In this example, Young’s criterion selects a Pareto
inferior (and non-risk-dominant) equilibrium in a coordination game, while our cri-
terion selects the Pareto optimal (and risk dominant) equilibrium. Young’s criterion
supports its choice by transitions through a third coordination equilibrium that yields
the lowest payoffs, but in our model this equilibrium is very seldom visited. In fact,
when the payoff shocks are large enough (but still relatively small in magnitude), this
worst equilibrium disappears. For small enough shocks, the equilibrium emerges but
has a very small basin of attraction. We find that it is difficult to escape to this
equilibrium and very easy to escape from it. The difference between the two models,
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as we discuss further below, deals with the nature of the perturbations. Rather than
“mutations” causing agents to randomly choose an action, agents in our model choose
the best action based on the realizations of their perturbed payoffs. Thus in order to
play an action with a low expected payoff, an agent must observe a sequence of large
shocks which make that action look more favorable. The dependence of the perturbed
choice probabilities on the payoffs drives the difference in the results.

Our analysis in this section is necessarily numerical. Unlike our analysis of stability
above, we cannot provide precise analytic characterizations of the equilibria and their
stability. In those examples, the expected payoffs of all strategies were symmetric,
which greatly simplified the analysis. In this section, we will examine games whose
strategies have different mean payoffs. We can still determine analytically the set of
equilibria in the limit as the noise goes to zero, but for any strictly positive shock
variance we must determine the perturbed equilibria and their stability properties
numerically.7 Furthermore, unlike the previous example, the game that we analyze
here does not fall into the subset of games covered by Theorem 3.2. Thus we cannot
be assured that the limit sets of the ODE consist only of stable points. However
numerical analysis of the differential equation suggests that this is so (see Figure 4
below), and so we proceed under this assumption. We now turn to computing the long
run equilibrium in an example coordination game due to Young (1993).

Example 5.1. Let the expected payoffs in a 3× 3 coordination game be given by:

Player 2
1 2 3

1 6,6 0,5 0,0
Player 1 2 5,0 7,7 5,5

3 0,0 5,5 8,8

In the augmented form of this game, it is easy to show that in the limit as the
noise gets small, all of the coordination equilibria are stable. This holds for both the
normal and logit cases. Therefore for small enough shocks, the set of stable equilibria
are near the pure strategy coordination equilibria:

Θ =
{
θ
1
, θ

2
, θ

3
}
, where θ

1

i ≈ (1, 0, 0) , θ
2

i ≈ (0, 1, 0) , θ
3

i ≈ (0, 0, 1) .

However numerical results show that for a range of strictly positive shock variances

there are only two stable equilibria, θ
2
and θ

3
. This is particularly the relevant in the

normal case. Recall that for an equilibrium, b(θ) = 0 so we take
∥∥b(θ)∥∥ as a measure

of the distance an arbitrary strategy is from being an equilibrium. For example, for
σ = 0.3 we have

∥∥b((1, 0, 0))∥∥ = 0.013,
∥∥b((0, 1, 0))∥∥ = 1.2× 10−6, and

∥∥b((0, 0, 1))∥∥ =
7.68 × 10−13. The values for the pure equilibria 2 and 3 are very small, and we were
able to find perturbed equilibria near them. However we could find no such perturbed

equilibrium θ
1
for this noise specification.

7This amounts to calculating the integrals in B
(
θ
)
and the eigenvalues of ∂B

∂θ
(θ), which are simple numeric

calculations.
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FIGURE 4. The basins of attraction of the equilibria in Example 5.1 in the logit case for different
specifications of the shocks.

For the logit case, for the parameters we considered we were able to find three
perturbed equilibria close to the pure equilibria. As an illustration, Figure 4 plots the
basins of attraction for the different equilibria in the logit case for different values of
λ. In the figure the equilibria are located at the corners of the triangle. The basins of
attraction are the shaded areas around the equilibria, which we determined by solving
the ODE (18) numerically. Here we see that for the larger value of the noise (λ = 5),

the basin of attraction of θ
1
(the shaded area in the upper left of the figure) is very

small and that it increases slightly as the noise decreases. To preview the results to

follow, the figure suggests that it should be relatively easy to escape from θ
1
, and

therefore that the results rely mainly on comparing θ
2
and θ

3
. We see below that we

obtain similar results in both the normal and logit cases, indicating that this worst
coordination equilibrium plays a relatively small role in our analysis.

We then solve the cost minimization problems as described above in order to de-
termine the stochastically stable equilibrium. In particular, we consider the normal

case in which there are only two stable equilibria (θ
2
and θ

3
), and the logit case in

which all three equilibria are stable. Table 2 summarizes our results. The table lists
the noise specifications and the log transition probabilities between each of the equi-
libria. For the normal cases, since the stochastic nature of the payoffs rules out one
of the possible equilibria, we can apply Corollary 4.1. Thus the stochastically stable
equilibrium is the one with the higher value of V and so the lower escape probabil-
ity. The table shows that the stochastically stable equilibrium in this example is the

Pareto dominant equilibrium θ
3
. For the logit cases, we must find the minimum cost

graph as in Theorem 4.2 above. From the table, it is easy to see that the minimizing

graph is anchored at θ
3
, and involves the arrows θ

1 → θ
2 → θ

3
for a total cost of

W3 = V12 + V23. Thus again we find that the stochastically stable equilibrium is the

risk dominant and Pareto optimal equilibrium θ
3
.

Similar to the 2× 2 case, we then verify these results by tracking the evolution of
beliefs over time in some simulations. In Figure 5 we plot the distribution of beliefs
from 1000 simulated time paths at different dates in the normal case with σ = 0.5.
Here we use the gain setting ε = 0.3, and initialize beliefs randomly on the simplex.
In the top panel we plot the second element θ1,2 of the belief vector, and the bottom
panel plots the distribution of third element θ1,3. We see that initially the beliefs
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TABLE 2.

Equilibrium transition rates in a 3× 3 coordination game.

Model −Log Escape Prob.

V12 V13 V21 V23 V31 V32

σ = 0.5 0 - - 2.4 - 7.4

σ = 0.3 0 - - 5.0 - 15.8

λ = 5 0.14 3.4 27.0 2.3 24.7 5.9

λ = 10 0.78 7.1 52.8 4.6 48.3 11.7
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FIGURE 5. Long run evolution of beliefs in a 3× 3 coordination game.

are drawn to one of the stable equilibria, which in our simulations initially favors θ
2
.

However over time the beliefs eventually escape this equilibrium and are drawn to the

stochastically stable equilibrium θ
3
.

As we’ve noted, in this example our selection criterion differs from Young’s and
agrees with Pareto and risk dominance criteria. It is easy to check that in this ex-

ample, the equilibrium θ
1
risk dominates the other two coordination equilibria in

pairwise comparisons, and therefore it is the risk dominant equilibrium. However,

Young’s criterion selects the equilibrium θ
2
, which relies on transitions through the

worst equilibrium θ
1
. For the normal cases we considered, the stochastic shocks ensure

that agents never converge to this coordination equilibrium with the lowest payoffs.
By ruling out this equilibrium, we are then essentially left with a 2× 2 pure coordina-
tion game, and as described above our criterion selects a risk dominant equilibrium in
such a game. The modifier essentially is important in this statement because we do
not restrict the players to only play the two strategies. However we rule out one of the
equilibria as a possible limit point, and so calculate the transitions between the two
pure strategy equilibria. In our analysis, the third strategy was never chosen along
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these transitions. For any nonzero gain, the third strategy may be chosen along the
path of play, but the frequency it is played converges to zero.

This intuition also carries over to the logit cases, where all three of the equilibria
are stable. As we saw in Figure 4, the basin of attraction of the worst coordination

equilibrium θ
1
is very small. Table 2 shows that is very easy to escape this equilibrium

and converge to θ
2
, as V12 is very low. Thus the minimum graph problem essentially

reduces to comparing V23 and V32 as in the normal case.
As discussed above, the differences between our model and the model of Young

(1993) rely on the nature of the perturbations. In Young’s paper, a perturbation or
mistake leads agents to choose a random action, with each alternative being equally

likely. Thus in his analysis of this game, the easiest way to transit from θ
3
to θ

2

is to have an opponent choose action 1 by mistake a sufficient number of times. In
our model, the perturbations hit agents’ payoffs, and agents select the best option

after observing the realizations of shocks. Starting at θ
3
, an agent assesses very low

expected payoffs to action 1 relative to action 2. Therefore extremely large shocks
are necessary for the agent to choose this action. Much more likely is the case that
action 2 becomes viewed more preferably. Thus in our model, the transitions between
equilibria are direct. The choice probabilities in our model directly reflect the payoffs,
instead of there being a chance that agents choose a completely random action. This
directed choice has important consequences for equilibrium selection.

6. CONCLUSION

In this paper we have presented a general method for analyzing models with multiple
stable equilibria, and have applied it to the stochastic fictitious play model of learning
in games. Our methods focus on individual agents, who myopically optimize based
on their beliefs. By introducing stochastic shocks to their payoffs, and assuming
that agents discount past observations when they learn, we derived criteria for long
run equilibrium selection. In particular, we showed that the stochastic nature of our
model along with the directed choice drive our results. Sufficiently large stochastic
shocks may rule out cycling that prevents convergence in some games, and thus can
lead to stability of mixed equilibria. In addition, the stochastic shocks rule out certain
equilibria which drive some of the results in the evolutionary literature. Further, the
fact that agents choose actions to maximize perturbed payoffs, instead of occasionally
choosing completely random actions, means that very large shocks are needed to play
actions with very low payoffs. This directly affects the probabilities that equilibria are
played in the long run. Therefore although our methods are related to existing results
in the learning and evolutionary game theory literature, they are based on different
principles and lead to some different results.

The main analytic results in this paper were developed at a general level, and
our methods have broad potential applications for economic models with multiple
equilibria. Many such models are naturally cast in the discrete-time continuous state
stochastic framework and can now be analyzed using our methods. The fundamental
point of our results is that in models with a multiplicity of equilibria, not all equilibria
are equal. If agents must learn the structure of the economy, then limit points of their
learning rules will be most likely observed. Even among those equilibria which are
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stable under learning, an equilibrium which is the easiest to learn and which takes the
longest time to escape will be the most likely outcome observed in the long run.

APPENDIX A

Assumptions and Proofs

A.1. CONSTRUCTING THE DIFFERENTIAL EQUATION

Here we derive the differential equation which govern the convergence of beliefs. To find the limit ODE,
we take expectations in (2), which means that we must calculate the probabilities that each player plays each
action. In the 2× 2 case, this is a simple calculation leading to a probit decision rule in the normal case and
a logit rule in the extreme value case. However in larger dimensions, the calculations become more complex.
For example, to compute the probability that player 1 chooses action i, note that the term on the right-hand
side of (1) is the (N − 1) order statistic from an independent but not identically distributed sample of size
(N − 1) . We denote this order statistic as X(θ2,t, i), to emphasize the dependence on the agent’s beliefs
(θ2,t), and the reference strategy (i in this case). The order statistics for the two players have the following
cumulative distribution functions (see David, 1970):

F 1
X(θ2,t,i)(x) =

N∏
j ̸=i

F (x− θ2,t · aj)

F 2
X(θ1,t,i)(x) =

N∏
j ̸=i

F (x− θ1,t · bj) .

Therefore the probabilities that player 1 plays action i and player 2 plays action j are respectively given by:

G1(θ2t, i) =

∫ ∞

−∞
F 1
X(θ2t,i)(x)dF (x− θ2,t · ai)

G2(θ1t, j) =

∫ ∞

−∞
F 2
X(θ1t,j)(x)dF (x− θ1,t · bj)

These expressions are rather complicated, and do not lead to explicit evaluation when the shocks are
normally distributed. However when the shocks have the extreme value distribution, it is well known that
the probability that player 1 plays action i takes the form:

G1(θ2,t, i) =
exp(λθ2,t · ai)∑N
j=1 exp(λθ2,t · aj)

.

In the discrete choice econometrics literature, this is known as a multinomial logit model. Such a specification
was used by McKelvey and Palfrey (1995) for their notion of a quantal response equilibrium. Fudenberg and
Levine (1995) also derived an identical choice rule based on deterministic perturbations of payoffs.

With these calculations, the ODEs governing convergence can be written explicitly:
.

θ1i = G1(θ2, i)− θ1,i (A.1)
.

θ2j = G2(θ1, j)− θ2,j ,

for i, j = 1, ..., N. Since agents’ beliefs are constrained to lie on the unit simplex, we can reduce the dimen-
sionality of the state space. Therefore, we define b(θ) from (18) as the (2 (N − 1)× 1) vector composed of
the right side of (A.1) for the first N − 1 elements of θ1 and θ2.

A.2. ASSUMPTIONS FOR CONVERGENCE

We first briefly describe the continuous time approximation. Recall that convergence is as ε → 0 across
sequences indexed by the gain setting. To distinguish between discrete and continuous time scales, we now
let n be the discrete time index. For the continuous time scale, let t0 = 0 and tn = nε. Let {qε} be a sequence
of nonnegative, nondecreasing integers, and define for t ≥ 0:

Zε,q(t) = ε

t/ε+qε−1∑
i=qε

b(θεi , ei),
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where the integer part of t/ε is used in the limit of the summation. Then θε(εqε + t) = θεqε + Zε,q(t) is the
right-continuous, piecewise-constant, continuous time shifted process associated with {θεn} .

The following conditions lead to the weak convergence result of Kushner and Yin (1997), Theorem 8.5.1.
Since we only consider i.i.d. shocks some of their additional assumptions are immediate.

Assumptions A.1.
(i) {θεn; ε, n} is tight.1

(ii) For each compact set Q,
{
b(θεn, en)1{θεn∈Q}; ε, n

}
is uniformly integrable.2

(iii) For each compact set Q, the sequence
{
b(θεn)1{θεn∈Q}; ε, n

}
is uniformly integrable.

(iv) There are nonempty compact sets Si that are the closures of their interiors S0
i and satisfy S0 ⊂ S0

1 ⊂
S1 ⊂ S0

2 ⊂ S2 such that all trajectories of the ODE (6) tend to S0 as t → ∞ and all trajectories starting in
S1 stay in S2. Further, the ODE (6) has a unique solution for each initial condition.

(v) The function b(θ) is continuous.

(vi) For each δ > 0, there is a compact set Aδ such that infn,ε P (υε
n ∈ Aδ) ≥ 1− δ.

The result then follows from Kushner and Yin (1997), Theorem 8.5.1, where the assumptions are easily
verified by noting that the belief sequence is bounded and that the Gi functions are continuous.

A.3. STABILITY EXAMPLE

Proof (Theorem 3.3). It is easy to verify that θ is an equilibrium point of the ODE, and we now verify

that it is linearly unstable. After much calculation, we see that the Jacobian at θ takes on the following form:

∂b

∂θ
(θ) =


−1 0 G 0
0 −1 0 G
0 G −1 0

−G −G 0 −1


where G depends on the shock distribution. Further, the four eigenvalues δ of ∂b

∂θ
(θ) solve:

(−1− δ)2 = ±G
2
.

As long as G > 2 all of the eigenvalues have strictly positive real parts, which is clearly sufficient for
instability.

In the logit case, G = λ
3
, so we require λ > 6 for instability. In the normal case, we define z = x−1/3

σ
and:

G =

∫ +∞

−∞
Φ(z)ϕ2(z)dx+

∫ +∞

−∞
Φ2(z)ϕ(z)zdx (A.2)

=

(
1 +

1

2σ

)∫ +∞

−∞
Φ2(z)ϕ(z)zdx

≡
(
1 +

1

2σ

)
Ĝ,

where Ĝ = 0.2821 is a constant independent of σ. Thus we require σ < Ĝ

2(2−Ĝ)
. Evaluating the right side nu-

merically gives the result.

1A random sequence {An} is tight if:

lim
K→∞

sup
n

P (|An| ≥ K) = 0.

2A random sequence {An} is uniformly integrable if:

lim
K→∞

sup
n

E
(
|An| 1{|An|≥K}

)
= 0.
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A.4. LARGE DEVIATIONS

The following assumptions from KY are necessary for Theorem 4.1 above.

Assumptions A.2.
KY, A6.10.1. The ODE (6) has a unique solution for each initial condition, and a point θ that is locally

(in D ) asymptotically stable. The function b(·, en) is bounded and right-continuous in θ.

KY, A6.10.4. The real-valued function H(θ, α) in (8) is continuous in (θ, α) for θ ∈ D and α in a

neighborhood Q of the origin. The α−derivative of H is continuous on Q for each fixed θ ∈ D.

Under these assumptions, Theorem 4.1 is an extension of a result in KY, as the following sketch makes
clear.

Proof (Theorem 4.1). Follows from KY, Theorem 6.10.2, with the discussion on pp.177-178 or the deriva-
tion in Dupuis and Kushner (1989) identifying the H function. The stated result in KY also requires that b be
Lipschitz continuous, but the analysis in Dupuis and Kushner (1985) shows that right-continuity and bounded-

ness are sufficient.

A.5. PROOF OF THE 2 × 2 THEOREM

Proof (Theorem 5.1). We first note a few elementary facts about the value functions V j(x) from the
minimization problem (15). Note that since L is increasing and convex, V j(x) is also increasing and convex

(in the distance from θ
j
). Further, it is clear that V j(θ̃) = 0 since the mean dynamics initialized on either

side of θ̃ converge to the closest equilibrium. Also note that even though the equilibria and dynamics are
symmetric, we could allow for asymmetric escape paths. However the convexity of L implies that such paths
would not be minimizing.

The proof uses the PDE characterization from (25), which here is simply an ODE. To conserve slightly

on notation we consider the case when θ
1
= 1 and θ

2
= 0. This clearly holds for small noise, and the more

general case only involves a change in notation. To compare the solutions, we re-orient the state space in each

case. That is, for V 1 we use the transformation x = θ̃−y and for V 2 we transform as x = θ̃+y. Therefore at

y = 0 both start at x = θ̃ and both are increasing in y. Then, using our results above, we can write solutions
as the following:

V12 = V 2(θ
1
) =

∫ 1−θ̃

0

V 2
y (y)dy,

V21 = V 1(θ
2
) =

∫ θ̃

0

V 1
y (y)dy,

where the derivatives with respect to the transformed variables y are easily deduced from the original and
the transformations.

From our results above, we have that V j
y ≥ 0 for j = 1, 2. Then since V12 involves integrating over a larger

area, if we can show V 2
y (y) ≥ V 1

y (y) for y ∈ (0, θ̃) we then have V12 > V21. This is what we now establish.
First, we use the transformations to re-write the two ODEs from (25) as:

a(y)(θ̃ + y) = log
[
1 + (exp(a(y))− 1)G(θ̃ + y)

]
(A.3)

b(y)(θ̃ − y) = log
[
1 + (exp(b(y))− 1)G(θ̃ − y)

]
where a(y) = −V 2

y (y) and b(y) = −V 1
y (y), so a, b ≤ 0. Note that (A.3) implicitly defines a, b for a given y,

and further that a(0) = b(0) = 0 and a(1 − θ̃) = 0 while b(θ̃) = 0. That is, a(y) and b(y) are non-positive,

are zero at θ̃, and b(y) hits zero before a(y). Therefore, if a(y) and b(y) do not intersect on (0, θ̃) we must
have a(y) ≤ b(y) on that interval, which would complete the proof.

To establish this via a contradiction, suppose that a(y) = b(y) for some y ∈ (0, θ̃). Then by (A.3) we
have:

1 + (exp(a(y))− 1)G(θ̃ + y) = exp

(
θ̃ + y

θ̃ − y

)[
1 + (exp(a(y))− 1)G(θ̃ − y)

]
,
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which in turn implies:

exp(a(y))− 1 =
1− exp

(
θ̃+y

θ̃−y

)
G(θ̃ + y)− exp

(
θ̃+y

θ̃−y

)
G(θ̃ − y)

. (A.4)

To insure that a(y) is non-positive and real, we require −1 ≤ exp(a(y))− 1 ≤ 0. Since we have:

θ̃ + y

θ̃ − y
≥ 1 for y ∈ (0, θ̃),

by (A.4) we then require:

G(θ̃ + y)− exp

(
θ̃ + y

θ̃ − y

)
G(θ̃ − y) ≥ 0, and

G(θ̃ + y)− exp

(
θ̃ + y

θ̃ − y

)
G(θ̃ − y) ≤ 1− exp

(
θ̃ + y

θ̃ − y

)
.

The second inequality can be re-written as:

1 +G(θ̃ + y)

1 +G(θ̃ − y)
≥ exp

(
θ̃ + y

θ̃ − y

)
. (A.5)

Now, on (0, θ̃) the left side of (A.5) takes on a value of at most 2, while the right side takes on values of at least
exp(1) > 2. Thus there is no value of y on the interval so that (A.5) holds. Therefore a(y) and b(y) do not inter-
sect on the interval, which completes the proof.
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