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This paper develops a simple model in which adaptive learning by investors
leads to recurrent booms and busts in asset prices. The model captures aspects
of Minsky’s “financial instability hypothesis” in which periods of tranquility lead
investors to increase their estimates of expected returns and reduce their estimates
of return volatility. The changes of beliefs drive up asset prices and hence realized
returns. However once agents invest a significant fraction of their wealth in stocks,
the economy becomes fragile and so small negative shocks can lead to large declines
in prices. I show how this process recurs over time, and discuss the features of the
model which drive the boom-bust cycles in asset prices.

The first theorem of the financial instability hypothesis is that the economy has financing regimes
under which it is stable, and financing regimes in which it is unstable.

The second theorem of the financial instability hypothesis is that over periods of prolonged pros-
perity, the economy transits from financial relations that make for a stable system to financial relations
that make for an unstable system.

Hyman Minsky, 1992

Many of Minsky’s colleagues regarded his “financial-instability hypothesis,” which he first devel-
oped in the nineteen-sixties as radical, if not crackpot. Today with the subprime crisis on the verge
of metamorphosing into a recession, references to it have become commonplace.

John Cassidy, The New Yorker, Feb. 8, 2008

1. INTRODUCTION
1.1. Overview

The financial crisis of 2008 led to a wealth of recent research on the causes and
consequences of financial and credit market fluctuations. While the literature has
branched off in a number of different directions, one result of the crisis has been that
ideas which had fallen out of fashion or have not been fully developed have begun
to be re-examined. One particular theory which has received renewed attention in
both the popular press and the academic literature following the crisis is Hyman
Minksy’s financial instability hypothesis (see Minsky, 1975, 1986, 1992). This theory,
which describes a cycle of expanding and contracting credit driven by changes in
expectations and risk assessments, has garnered renewed interest following the crisis.
In this paper I develop a simple model with adaptive learning generates recurrent,

*1 thank Fernando Alvarez, Gadi Barlevy, Marco Bassetto, Jeff Campbell, Cristina De Nardi, George
Evans, Cars Hommes, Bruce McGough, and Anton Nakov for helpful comments.
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endogenous fluctuations in credit market conditions and asset prices characteristic of
episodes of financial instability.

In particular, this paper formalizes and rationalizes certain parts of the content and
intuition of Minsky’s financial instability hypothesis. Minsky developed his theory
initially in his 1975 book on Keynes, expanding on in it in much of his later work,
and Minsky’s framework was used to explain asset price bubbles and crashes in the
classic book of Kindleberger (1978). Briefly, the narrative of the financial instability
hypothesis begins with a period of growth, perhaps in the aftermath of a relatively
recent crisis. Investors are rather conservative based on this past experience, but a
string of good investment outcomes leads them to revise down their risk estimates
and increase their expectations of future returns. In turn, they then take on more
leverage, which lenders are willing to supply because they too share the more optimistic
assessments. As the growth of credit expands, prices of risky assets increase, and
investors find that even speculative investments are profitable. Eventually, the growth
of demand for credit leads to highly levered positions which can be difficult to sustain
if there is an increase in the cost of debt service.! As investors sell assets to finance
their debt, asset prices begin to fall, making more of their debt-financed investments
become unprofitable. This leads to more selling, and thus further exacerbates the
downward asset price spiral.

While this story has intuitive appeal, relatively little work has been done within
mainstream (neoclassical) economics to formalize and incorporate the insights of this
hypothesis, apart from the relatively small related literature which is discussed below.
Perhaps a central reason why the financial instability hypothesis has not been more
widely studied is that it relies on temporary changes in investor sentiment, a concept
which is difficult to address in a rational expectations model. On the other hand,
if agents only have bounded rationality and update their beliefs over time as they
observe more data, then the current state of beliefs and expectations changes over
time and can have an independent influence on economic outcomes. In particular,
I show how sequences of temporary exogenous shocks can interact with the adaptive
learning process, and lead to large swings in asset positions, with corresponding booms
and busts in asset prices.

I study a simple model where agents can invest in either borrow or lend at fixed
rate of return, or they can purchase a risky stock which provides a claim on a dividend
process. While actual returns are determined in the equilibrium of the model, I assume
that investors believe that the risky asset returns are stochastic and i.i.d., but do not
know the mean or variance of the returns. They form estimates of the expected returns
and return volatility based on their observations of past asset returns, and then update
these estimates adaptively over time. If agents had rational expectations and knew
the asset return distribution, returns would indeed be i.i.d. with a constant mean
and variance. The key to the model is the positive feedback that results from the
way agents’ beliefs about returns affect their demand for risky assets, and hence the

"Minsky emphasized how increased demand for credit can drive up interest rates and so increase the costs
of high leverage. In this paper interest rates are constant, so this channel is shut down. Instead, we show
how negative return realizations provide agents with less income to service their debt.
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equilibrium asset prices, which in turn affect future beliefs. This feedback is locally
stable, so that there is tendency for agents’ beliefs to converge to the constant expected
return rational expectations equilibrium. However I show that there are occasional
but repeated episodes of relative instability, which are characterized by an increase in
the price of the risky asset, followed by a rapid stock market crash.

In particular, I show how a sequence of positive shocks to dividends can lead agents
to believe that mean returns have increased and the variability of returns has fallen.
In response, investors increase their demand for stocks, selling off some of their bond
holdings in order to increase their position in risky assets. As the asset demand in-
creases, the new inflow of funds further drives up the realized prices of risky assets.
Agents then observe these higher realized returns, which further increase their esti-
mates of expected returns, and hence lead them to demand even more risky assets.
This process resembles an asset price bubble, where expectations of higher returns
lead, at least temporarily, to higher realized returns and prices rapidly increase. Thus
agents’ beliefs “escape” from the constant rate of return equilibrium, as the changes
in their estimates (higher mean and lower variance) are self-reinforcing and generate
a large increase in stock prices.

However once agents’ positions in stocks increase sufficiently, the economy becomes
rather fragile. In particular, once agents invest nearly all of their wealth in stocks,
or possibly even borrow to increase their leverage, then small changes in portfolio
choices have very large impacts on prices. I show that in the model booms can end
due to three distinct mechanisms: negative shocks, binding constraints, and increased
subjective volatility. Due to the relative fragility, any accumulation of negative shocks,
which leads to decreases in estimates of the mean of returns, will lead to a reduction
in the portfolio share of stocks, and a sizeable fall in prices. In addition, the model
incorporates borrowing constraints which are necessary to ensure that an equilibrium
exists. When leverage gets too high, these constraints may bind and restrict the flow
of funds into the risky asset, and so stock prices will increase less than agents expected.
Alternatively, if the risky asset prices increase rapidly enough, agents will increase their
estimate of return volatility at the same time that they increase their expectations of
future returns. The subjective increased volatility may dominate the increased mean,
and lead agents to cut their portfolio share of risky assets. Any or all of these three
scenarios will lead to a reduction in asset prices.

After observing asset prices trending upward during the boom, the reduction in
prices will also be accompanied by an increase in the volatility estimate, which leads
to a further reduction in the demand for stocks. Thus once the inflow of funds to risky
assets slows, so does the growth of prices. As agents revise their estimates and seek
to sell off stocks, this outflow of funds leads to puts more downward pressure on asset
prices, until they stabilize at a lower level. I show how this process, resembling aspects
of a financial crisis, repeats over time. I use analytic methods I have developed in
Williams (2001, 2014) to characterize the “escape dynamics” which drive this process.
These methods allow me to show how the expected interval between crises and the
severity of the asset boom and subsequent crash depend on the features of the model.



4 NOAH WILLIAMS

1.2. Related Literature

As discussed above, there has been relatively little work formalizing or utilizing the
ideas which Minsky developed in a series of papers Minsky (1975, 1986, 1989, 1992).
While Kindleberger (1978) used the financial instability hypothesis to great effect as an
organizing principle in his classic study of asset pricing bubbles, he did not formally
model the mechanism. Other references include Taylor and O’Connell (1985), who
develop a version of a traditional Keynesian model which incorporates a Minsky-style
crisis, and Sethi (1992) who studies a learning model where the financial instability
can result from switches between multiple equilibria. In a similar spirit to this paper,
Friedman and Laibson (1989) lay out a portfolio choice model with learning which they
use to interpret their empirical evidence of extraordinary market volatility. However
our approaches are different, as they focus solely on the implications of learning for
agents’ beliefs and choices given observed asset price data. By contrast, I study a
dynamic equilibrium model where agents’ choices determine the equilibrium prices.

In recent years, a number of authors have also focused on debt and leverage dynam-
ics as causes of large fluctuations. Eggertsson and Krugman (2012) develop a modified
New Keynesian model where changes in borrowing constraints can lead to a Minsky-
style crisis of deleveraging. Similarly, Boz and Mendoza (2014) study a learning model
with exogenous regime switches in borrowing constraints, where agents learn the du-
ration of the borrowing regime. Beliefs over-react to initial realizations upon a switch
in regimes, which leads to an amplification of boom-bust cycles. Finally, Jin (2014)
studies a model where agents misperceive the likelihood of crash risk, which can gen-
erate movements in leverage and magnifications of fundamental shocks. In contrast
to these papers, I focus on asset price dynamics where the deleveraging effects occur
endogenously due to an accumulation of small shock realizations and changes in be-
liefs. All of the dynamics are driven by beliefs and the single fundamental process of
dividend realizations.

Perhaps the most extensive analysis of the financial instability hypothesis has been
in the Post-Keynesian literature, including Keen (1995). While this literature has
analyzed some interesting dynamics, the authors typically posit relations between
variables rather than deriving them as equilibrium outcomes resulting from choices of
optimizing agents. Unlike such previous formalizations of Minsky’s ideas, I use a rela-
tively standard economic model, the classic Lucas (1978) asset pricing model. My only
significant departure is that I do not assume that agents have rational expectations,
but rather assume that they form forecasts of future events using simple statistical
rules which they update over time.

My research draws on the literature of adaptive learning in macroeconomics. This
literature has typically focused on the question of whether adaptive agents, who base
their actions on simple learning rules, could eventually learn a rational expectations
equilibrium. This provides a foundation for rational expectations models, and limits
focus to equilibria which are “learnable.” Evans and Honkapohja (2001) provide an
excellent overview of this literature. But rather than focus on eventual limit points,
in this paper I show how the learning process itself can have important effects on
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outcomes. Previous papers considering the impact of learning on asset prices include
Timmermann (1993), and especially Adam, Marcet, and Nicolini (AMN) (2009), and
Branch and Evans (2011). AMN use a very similar asset pricing model and focus
on how learning can lead to increased volatility in prices and price-dividend ratios.
Branch and Evans (2011) also consider agents who learn about risk and returns, but
their setting is fairly different. Neither consider portfolio choice and the resulting debt
dynamics which are crucial to my model and to Minsky’s story.

In my model, as discussed above there is a general tendency for beliefs to fluctuate
around the limiting rational expectations equilibrium. However the interesting feature
of the model is that it gives rise to occasional episodes in which beliefs “escape” from
the limit, as this drives the boom-bust cycles. Sargent (1999) introduced the study of
such escape dynamics in macroeconomics, and jointly and solely I have analyzed these
dynamics theoretically in previous work such as Cho, Williams, and Sargent (2002),
and Williams (2001, 2014). In general terms, the basic mechanism is that agents
occasionally misperceive an accumulation of random stochastic shocks as reflecting a
change in the economic environment. This causes them to change their behavior, and
so leads to outcomes which reinforce their perceptions. These endogenous dynamics
lead agents’ beliefs to escape from the limit. However the shifts are only temporary
and agents are again drawn toward the limit point. This pattern of convergence
and escape leads to recurrent episodes in which there are large changes in outcomes.
Sargent, Williams, and Zha (2006, 2008) have estimated empirical models to show
how these dynamics can explain the history of inflation in the United States and the
experience of recurrent hyperinflations in Latin America. In this paper, I show how
the escape dynamics can lead to recurrent episodes of financial instability.

2. THE MODEL AND RATIONAL EXPECTATIONS EQUILIBRIUM
2.1. The Model

The model is a simple variation on a standard Lucas (1978) type consumption-based
model. One difference with a standard setup is that I study a small open economy
version of the model, where agents can borrow and lend at a constant risk-free world
interest rate. This is a simple way of introducing (net) borrowing and lending while
retaining the simplicity of the representative agent approach. Clearly, modeling the
supply of loanable funds and endogenizing interest rates would be an important topic
for future work. In my model, there are two assets, stocks denoted S; which trade
at the price P;, and bonds B; that have a constant one-period return R. There is
unit supply of stock (at most): S; < 1. Unlike most “closed-economy” versions of
the model, I assume that agents can borrow and lend freely at a fixed return R, and
the foreign investors have “deep pockets” so that there is no constraint on the supply
of funds. Thus I take R as exogenous, making the domestic holdings of bonds B;
endogenous. The driving stochastic process is an exogenous dividend stream D; which
accrues to stockholders. For simplicity I assume that dividend growth is log-normal:

log D1y =log Dy +d+ oWiiy
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where d > 0 is the constant mean rate of dividend growth, ¢ > 0 is its standard
deviation, and W, is an i.i.d. Gaussian shock.

The agents have identical standard time separable power utility over consumption
C; with parameter v and discount factor . Agents choose how much to consume each
period, and given their current portfolio they decide what their holdings of stocks and
bonds should be for the next period. Thus the agent’s problem is to solve:

subject to the budget constraint:
P,S;+ By + Cy = (P;+ Dy)Si—1 + RB; 1. (1)

Defining the gross return on stocks as Z, = (P, + D;)/P,_1, the optimality conditions
lead to the standard Euler equations:

C," = BRE, [C 1], (2)
Ot_w = PE; [Ct_ﬂZtJrl} . (3)

In order to ensure that an equilibrium exists, below I impose a portfolio or leverage
constraint, limiting the fraction of wealth that the agent can invest in the risky asset.
Thus in general the Euler equations are inequalities, with (2)-(3) holding when the
leverage constraint does not bind.

2.2. Rational Expectations Equilibrium

I now solve for a rational expectations equilibrium with zero debt, which serves as
an important reference point in the analysis. In equilibrium S; = 1, so the aggregate
resource constraint is:

Ct - Dt + RBt_l - Bt.

That is, total consumption is equal to dividends plus the net borrowing from abroad
(after accounting for interest costs). For an arbitrary interest rate R, the economy
may run a current account surplus or deficit, but if R is set at its closed economy
equilibrium level then the current account will balance. In this case the equilibrium
in this model matches that in a standard closed economy model with bonds in zero
net supply.

The simple structure of our economy, with power utility and log-normal growth,
allows us to completely solve for the zero debt equilibrium.? In particular, in equi-
librium consumption is equal to dividends: C; = D,, and the price-dividend ratio on
stocks is constant:

B = 4D,
d = | feﬁﬁ’ where: 0 = exp((1 —v)d + 0.5(1 — v%)0?)

2Adam, Marcet, and Nicolini (2009) do this as well, and focus on learning in a zero debt environment.
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The rate of return on bonds and stocks are respectively given by:

log R = —log(B) + vd — 0.50%~?, (4)
144
log Z; = log (%) +d+ oW,
= log R+ 0.50%(2y — 1) + o W,. (5)

Even though directly solving for the equilibrium is straightforward in this environ-
ment, it will be useful for later reference to describe the agent’s decision rules. For
this, we define the agent’s wealth X; as the right side of the budget constraint (1):

Xt - RBt_l + (Pt + Dt)St—l-

Also, define v; as the share of the agent’s post-consumption wealth that is invested at
date t in stocks:

PtSt
Xt - Ct
Then the agent’s decision rules in the rational expectations equilibrium can be written:

Vs =

1
= —X,
Cr =1 +6°1
o Elog(Z;) — log(R) _q
! 0.502(2y — 1)

That is, agents consume a constant fraction of their wealth and invest a constant
fraction of their post-consumption wealth in stocks. These decision rules are just
the same as in the classic paper of Hakansson (1970) (which itself is a discrete time
version of the model of Merton (1973)). This equivalence is natural, as Hakansson
(1970) studied consumption and portfolio choice problems in an environment with i.i.d.
returns, and in our environment the rational expectations equilibrium stock returns
Zy are i.i.d. as can be seen in equation (5) above. Of course, the zero-debt equilibrium
returns are also determined so that the agent always invests all his wealth in stocks.

3. EQUILIBRIUM FOR ARBITRARY BELIEFS
3.1. Self-Confirming Equilibrium

As a bridge to study the adaptive learning model, I first analyze the consequences
of agents having arbitrary (but fixed) beliefs. As mentioned above, and discussed
in more detail below, I now impose a leverage constraint v; < v. In order to solve
their consumption and portfolio decisions, agents do not necessarily need to know the
process for dividends or to understand the determinants of equilibrium prices. All they
need is to have a forecast of the distribution of expected returns on stocks. Therefore,
I now suppose that agents choose decision rules for consumption and their portfolio
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allocations assuming that risky asset returns are i.i.d lognormally distributed, with
mean m and standard deviation s. We have already seen that in the (zero-debt)
rational expectations equilibrium returns are indeed i.i.d. with mean g and standard
deviation o, where:

u = Elog(Z;) = log <1T+5) +d.

Thus if m = p and s = o the returns are indeed i.i.d., so agents’ beliefs are correct
and the outcomes of the economy are the same as under rational expectations.

Following Sargent (1999), I adopt the notion of a self-confirming equilibrium to
describe such a situation.> In a self-confirming equilibrium (SCE), agents optimize
given their beliefs and their beliefs are correct along the equilibrium path, but may
be incorrect for events not observed in equilibrium. Therefore (m,s) = (u,0) is a
self-confirming equilibrium in this model, and in fact is the unique SCE. When m # p
and/or s # o then equilibrium returns are not i.i.d., as they depend on the aggregate
asset positions, as I show below. In such cases, agents beliefs are incorrect, as they
fail to account for the serial correlations in returns. Nonetheless, one can still solve
for an equilibrium in such an environment, as I now do.

Note that the uniqueness result holds for self-confirming equilibrium defined in a
strong sense. That is, part of the specification of agents’ beliefs is that returns are
i.i.d. Previous papers, such as Cho, Williams, and Sargent (2002) and Williams (2014),
have used a weaker version of self-confirming equilibrium, which simply requires that
agents’ expectations (but not their full belief specification) be correct in equilibrium.
In the setting of this paper, it is possible for there to be multiple (m,s) values that
are consistent with the implied equilibrium mean and standard deviation of returns,
but only one of these will have i.i.d. returns.

3.2. Equilibrium for Arbitrary Beliefs

As we noted above, the solutions of agents’ decision rules for the consumption
and portfolio choice problem with i.i.d. returns follows from Hakansson (1970).% In
particular, the decision rules with arbitrary beliefs (m, s) have the same form as before:
Cy = ¢(m,s)Xy, and vy = v(m,s). That is, agents consume a constant fraction of
their wealth X; and invest a constant fraction of their post-consumption wealth in
stocks, where the fractions depend on their perceptions of stock returns. However
now with arbitrary (m, s) and nonzero bond holdings, there are not explicit solutions
for the constants ¢ and v. Instead, the decision rules are determined implicitly by
the following expressions. The optimal portfolio fraction v(m,s) solves the static
maximization problem:

Uu(om, 5)) = ma / G J?ft B b (am, s). (6)

3The self-confirming equilibrium concept originally arose in game theory. See Fudenberg and Levine (1998)
for more discussion. Sargent (1999) formulated the concept in a parametric form for adaptive learning models.

4Hakansson (1970) did not impose a portfolio constraint, but it straightforward to show that his results
extend to constraints of the form v < w.
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FIGURE 1. Agents’ optimal portfolio decision rules v(m,s). The left panel plots v(m, s) versus m for
different levels of s, while the right panel plots v(m, s) versus s for different levels of m

where F'(+;m,s) is the lognormal cdf with parameters m and s. Then the optimal
fraction of wealth to consume c¢(m, s) is:

2=

e(m, ) = 1 = [BU(v(m, ))(1 — ) (7)

Figure 1 plots the agent’s optimal decision rule for the portfolio share v(m, s)
versus the expected return m and the perceived volatility s. The figure imposes the
portfolio constraint v(m, s) < T, which is discussed in more detail below. The figure
clearly shows that, as expected, the optimal fraction invested in stocks is increasing
in expected returns and decreasing in volatility. Moreover, even though there are
not explicit expressions for the optimal decision rules, the figure shows that v(m, s)
increases in nearly linear manner in m (up to the constraint) and increases nearly
linearly in 1/s%, just as in the rational expectations decision rules. For some of our
simulation results below, we find it useful to thus approximate v(m, s) by the following:

1 m
v(m, s) ~ vy + Vi + vom + Vs

Although not exact, this provides a very good approximation to the optimal decision
rules.

With the agents’ decision rules, it is rather easy to solve for an equilibrium. First,
note that the value of the stock holdings at date ¢ is:

PS, = (1 - )uX, = (1 — W(RBi_y + Si_1(P, + D,)),

where we suppress the dependence of ¢ and v on the beliefs (m, s). Therefore the stock
price must satisfy:

(1 — C)’U(RBt_l + St—lDt)

B - St — (1 — C)USt_l

(8)




10 NOAH WILLIAMS

Imposing the equilibrium conditions that the agent holds the entire supply of stocks,
S; = S;_1 = 1, we then have the equilibrium price:

(1—-c)

Pt:l—(l—c)v

(RBt_l + Dt) = (5*(RBt_1 + Dt), (9)

as long as this expression is well defined. We return to this issue and impose restrictions
which insure that the equilibrium price is well-defined in the next section.

In the zero-debt rational expectations equilibrium, stock prices are driven entirely
by dividends and the price-dividend ratio is constant. Now, as agents can take either
long or short positions in bonds, the total demand for stocks depends on the asset
positions and this is reflected in prices and returns. In particular, stock returns are
now given by:

7 Pi+D;  §RBy1+ (14 6%)D;
TP, 6*(RB,_y + Dy_1)

When B;_1 = B;_» = 0 this reduces to the rational expectations expression, with
returns driven by dividend growth. But in general, agents’ bond positions from the
previous period B;_; affect their wealth X, in period t through interest payments
received (or made if B;_y < 0), and thus their demand for current stock purchases.
Therefore prices and returns are in general correlated over time, and depend on the
composite factor RB;_1 + D;.

The dependence of stock prices and expected stock returns on beliefs is illustrated
in Figure 2. The top row of panels shows the log of the stock price P, while the
bottom row shows the log of the expected stock return E;Z;,;. The left column
of panels shows the values versus the perceived mean return m for different levels
of the perceived volatility s, while the right shows the values versus the perceived
standard deviation s for different levels of the perceived mean m. The plot assumes
By = B;_y = 0 and D; = 1, so that E;D;;; = exp(d + .50%). As would expected,
returns are decreasing in m and increasing in s. Increases in the perceived mean
or decreases in the perceived volatility of stocks lead to an increase in the portfolio
share v, which bids up their prices, and lowers expected future returns. However,
current realized returns are higher due to the increase in prices. In our learning model
below, agents compare their perceptions to realized returns, and thus increases in the
perceived mean return can be self-sustaining.

3.3. Price Determination and Borrowing Constraints

In this model stock prices are very sensitive to the portfolio share in risky assets.
This is particularly true for v near or greater than one, because as agents almost all
of their funds in stocks, or even borrow invest more, the price increases dramatically.
This effect is illustrated in Figure 3, which plots the pricing function term 0* as a
function of the portfolio share v. The figure illustrates what (9) makes clear, namely
that as v — ﬁ the stock price P, blows up as 6* — oo. Thus there are equilibria with
debt and v > 1, but there is an overall limit on how much leverage the economy can
sustain. Moreover, as will become important later, stock prices are very sensitive to
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FIGURE 2. The effects of beliefs (m, s) on expected returns E;Z;y1. The left panel plots E;Z:41 versus
m for different levels of s, while the right panel plots F:Z; 11 versus s for different levels of m
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FIGURE 3. The pricing function 6* versus the portfolio share v. The SCE level of v = 1 is shown with
*, while the dotted line is maximal level v = 1/(1 — ¢).

changes in the portfolio share near the SCE (and rational expectations) value of v = 1.
Very small changes in portfolio positions lead to large changes in stock prices. Note
that this discussion has assumed ¢ is constant, but as equation (7) makes clear, the
optimal consumption varies with v. Thus the plot actually shows the pricing function
0*(v) with ¢ = ¢(v).

However there is an additional complication which also is exacerbated as agents
borrow in order to invest in the risky asset. When agents enter the period in debt,
there is always a chance that the realization of this period’s dividend may be less than
the total value of their debt. That is, when B;_; < 0 there is positive probability
that RB;_1 + D; < 0. This means that the agents would not be able to repay the
principal and interest out of flows without selling off their risky asset holdings (which in
equilibrium must be fixed at unity). This is a situation which Minsky (1986) refers to
as “speculative finance,” where agents would typically need to roll over their liabilities,
and thus the stock of debt would increase. Minsky emphasizes how this can lead to
fragility of the financial system, as balance sheets become very sensitive to fluctuations
in principal. Minsky (1986) also discusses a further stage of “Ponzi finance,” where
agents cannot even repay interest on their (longer term) debt and so would need to sell
off assets. In our setting with one-period debt, principal must be repaid each period,
so these the speculative and Ponzi stages merge. That is, if RB;_1 + D; < 0 agents
would want to sell off their stock holdings in order to repay their debt. However in our
representative agent environment, they cannot actually sell off stocks in equilibrium
as they must hold the entire unit supply. Thus this need for liquidity puts extreme
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downward pressure on prices, and in fact would drive the price of stocks to zero. As
(9) shows, the stock price is P, =0 at RB;_1 + D; = 0 and P, would nonsensically go
negative if RB;_1 + D; < 0.

Rather than ruling out leverage and debt altogether, we impose a borrowing con-
straint of the form:

¢
B, > — 5D, (10)

where ¢ governs the tightness of the constraint. This constraint does not entirely rule
out the possibility of RB;_1 + D; < 0, which is difficult to achieve since it entails a
restriction between choices made in the previous period and the current period’s shock
realizations. Nonetheless, the constraint (10) can make it very unlikely that the key
restriction is violated. For example, since D, = D,_;e?tWt by setting ¢ = e?737 we
can ensure that the restriction is only violated with probability 0.0013. For the very
small probability events when the restriction is violated, we assume that the supply
of assets S; is cut enough to ensure a positive price. The stock price in such periods
is then determined by (8) with the restricted S; < 1. One interpretation of such
interventions, which were not encountered in our simulations below, would be that
outside forces such as the government intervene and buy up the excess shares in order
to support the market. However once the market recovers, the government unloads
its share holdings and we again have S; = 1. We emphasize that such events were not
observed in our simulations below.

Finally, note that (10) can be rewritten as a joint restriction on agents’ portfolio
choices v, which in turn implies a restriction on the consumption share ¢ by equation
(7). In particular in equilibrium (with S; = 1) we have:

B =(1-¢)(1-v)Xy=(1-¢)(1—=v)[RBi—1 + P, + D]

B (1—-0¢)(1=0)
= W(RBt_l + Dt)7

where the last equality follows from equation (9). Thus we can rewrite the borrowing
constraint (10) as:

(1—c)(1—v)>_ﬂ< D, )

1-(1—-¢)v = R\RB,1+D;)"

By equation (7) this can be written as a constraint on v alone, of the form v < 7;. For
simplicity, we impose this restriction on a period-by-period basis. That is, we assume
that agents treat v; as constant when making investment decisions, not accounting
for the endogenous future movements in constraints. The lack of foresight about
borrowing constraints is effectively another aspect of the bounded rationality that we
assume.
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4. ADAPTIVE LEARNING
4.1. Belief Dynamics

Thus far we have analyzed the determination of equilibrium prices and returns for
arbitrary fixed beliefs. We now describe how agents update their beliefs over time. We
assume that agents learn adaptively, meaning that when they form their decision rules
agents treat their beliefs as constant, but then they update their beliefs over time.
Thus agents do not take into account that they are learning and that their future
beliefs will differ from their current beliefs. The approach, which Kreps (1998) calls
“anticipated utility,” dominates the literature on adaptive learning in macroeconomics
(see Evans and Honkapohja (2001) for an overview).

The anticipated utility approach is also consistent with the some of Minsky’s dis-
cussion of the financial instability hypothesis. For example, Minsky (1975) states that,
“Financing is often based on an assumption ‘that the existing state of affairs will con-
tinue indefinitely’, but of course this assumption proves false.” In this way, Minsky
was following Keynes (1953): “The essence of this convention — though it does not,
of course, work out quite so simply — lies in assuming that the existing state of af-
fairs will continue indefinitely, except in so far as we have specific reasons to expect a

change. [...]| We know from extensive experience that this is most unlikely. The actual
results of an investment over a long term of years very seldom agree with the initial
expectation.”

In practice, this means that at each date we solve for the equilibrium prices as
above with (m,s) = (my, s;), the agents’ current estimates of the mean and standard
deviations of returns as of date t. Then after observing the realized equilibrium returns,
agents update their beliefs. Since agents simply estimate means and variances, they
update their beliefs using the simple recursive procedure:

M1 = my + e(log(Zy(my, s¢)) — my), (11)
st = s; 4 e(llog(Zi(my, s0)) — my)? — 7). (12)

Here ¢, is known as the gain, and it reflects the weight that agents place on the most
recent observations. We consider both the case where ¢, = 1/(¢ + 1) so that the gain
decreases over time with more observations, and the constant gain case where ¢; = €.
Implicit in the assumption of &, = 1/(¢ + 1) is the subjective belief that mean asset
returns and volatility are constant, so that more observations simply give more data on
the unchanging underlying parameters. Thus in this case all observations are weighted
equally, and the decay of the gain gives at least the possibility that agents’ beliefs will
eventually stabilize and converge to some constants.

On the other hand, if agents believe that the mean and variance of returns change
over time, then more recent observations would be more informative about the current
situation than observations further in the past. In such situations, constant gain
learning rules are appropriate, as they discount past observations at rate ¢, allowing
beliefs to better track the underlying moving parameters. In particular, Sargent and
Williams (2005) showed that (some) constant gain learning rules are Bayesian optimal
filters when the underlying parameters follow a random walk. The size of the gain



FINANCIAL INSTABILITY VIA ADAPTIVE LEARNING 15

¢ reflects the variance of the innovations in the random walk, which in turn governs
how quickly the parameters drift. An alternative motivation for constant gain learning
is that such learning rules are more robust to model misspecification, in the sense of
Hansen and Sargent (2008). That is, if agents are uncertain about the true process
generating the return data, they may opt to use learning rules which work well even
when their model of returns is misspecified. Evans, Honkapojha, and Williams (2010)
show that (some) constant gain learning rules are robust optimal filters. In this case
the size of the gain ¢ reflects the size of the class of potential misspecifications.

Both of these motivations for constant gain learning, tracking potential changes
and handling potential uncertainties, are reflected in further discussion of Minsky. For
example, Minsky (1989) states, “[M]odels of system performance that help form the
expectations of businessmen and bankers are affected by the recent performance of
the economy. .. The critical agents are unsure how the economy will perform, because
they are unsure of the effect of recent institutional and environmental changes.” In
this paper we mostly focus on constant gain learning rules, which capture aspects of
the financial instability hypothesis.

4.2. Analysis of Beliefs

To analyze the dynamics of agents’ beliefs, we apply some fundamental well-known
results in the learning literature. Marcet and Sargent (1989), Evans and Honkapohja
(2001), and others have applied results from the theory of stochastic approximation
to show that in the limit as the gain gets small, the evolution of beliefs can be approx-
imated by a deterministic ordinary differential equation.

The basic idea of the results is that we can rewrite the updating equation (11) as:

M1 7 M log(Zi(my, s¢)) — my.
&t

Note that the left side of the equation can be interpreted as a finite-difference ap-
proximation of a time derivative, where we let ¢; be the notional “time” between
observations. Then as ¢, — 0 the left side of the equation converges to that time
derivative. Also in this limit, we pack in more and more observations in any finite
interval of time, so we effectively average over the shock realizations. Thus as ¢; — 0,
the beliefs converge to the trajectories of the ODEs which we call (following Sargent
(1999)), the mean dynamics ODEs:

i = Ellog(Zi(m,s))] —m.
§* = Ellog(Z,(m,s)) —m]* — s°.

The same ODEs govern the limiting behavior of beliefs in both the constant and
decreasing gain cases, but the notion of convergence differs. When ¢, = 1/(¢t + 1),
the beliefs converge with probability one over time to the solution of the ordinary
differential equations. But when ¢; = ¢, the beliefs converge weakly (or in distribution)
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to the paths of the ODEs. Moreover, the converge is across sequences of beliefs, each
of which are indexed by the constant level of the gain.

Although the mean dynamics ODEs characterize the limiting behavior of the beliefs,
the return dynamics are sufficiently complex that we cannot express them analytically.
In particular, the moments of the log return process Z; cannot be calculated explicitly,
due to the nonlinearities in the return dynamics, along with the occasional explosive
behavior which triggers the borrowing constraints. We show how to compute the mean
dynamics numerically below. However it is clear that the self-confirming equilibrium
is an equilibrium point of the mean dynamics. That is, by setting r = 52 = 0 we can
easily see that:

m=p = Ellog(Z(u,0))]
s’ =0 = Ellog(Z(u,0)) — p?

Again, given the complexity of the mean dynamics, analyzing global stability proper-
ties is a daunting task analytically. We show some numerical results below. However
the local stability of the mean dynamics can be analyzed analytically. As in Evans
and Honkapohja (2001), the SCE is locally expectationally stable if the eigenvalues of
the Jacobian matrix of the mean dynamics have negative real parts when evaluated
at the SCE. Since the variance estimate s? is of 2nd order, it does matter for the local
stability. Thus it is enough to simply verify the local stability of the mean estimate,
and for this we simply require:

0
%E[log(Zt(m, 0'2))] . —1<0.
Tedious calculations show that we actually have:
iE[lo (Zy(m, 0?))] <0
am g\ 4t ’

m=p

and so therefore the SCE is clearly locally stable. Thus we expect that (at least) for
beliefs (my, s;) which start near (u, o) we will have convergence to the SCE.

This is, in fact, what we observe in simulations of the learning model with decreasing
gain, as Figure 4 shows. For all simulations with ¢, o< 1/(¢ + 1), of which the figure
is representative, we observe some volatility in beliefs early in the sample, but over
time they stabilize at the SCE values. Because learning is relatively slow in this model
and the effect of initial conditions take a long time to wear off, we actually set the
gain to be constant for the first 250 periods, then switch to a decresing gain. The top
two panels of the figure plot the beliefs (my, s;), with the SCE values shown as dotted
lines. Here we clearly see that after some initial volatility, beliefs converge to the
SCE values. The bottom left panel shows v;, the proportion of the agent’s portfolio
invested in stocks, while the bottom right panel shows the equilibrium price-dividend
ratio. Here we see that there are some large fluctuations in portfolios early in the
sample, which correspond to rather significant fluctuations in P/D ratios. However
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FIGURE 4. Representative simulation with decreasing gain ¢; o< 1/(¢t + 1). The top left panel plots
me, the top right plots s¢, the bottom left plots v¢, and the bottom right plots P:/D;

over time the portfolio share converges up toward unity, and the P/D ratio begins
to look like i.i.d. fluctuations around a constant mean. Thus learning may lead to
some additional variability in the early periods of any simulation, but the effects of
learning vanish over time. However with constant gain settings, no matter how small,
we observe substantial fluctuations in beliefs, which results in substantial fluctuations
asset prices. A representative sample is shown in Figure 5, which we discuss in the
next section.

5. FINANCIAL INSTABILITY AND ESCAPE DYNAMICS
5.1. Episodes of Financial Instability

When agents discount past observations, we observe substantial fluctuations in
asset prices and portfolio positions. In fact, the model with constant gain learning
exhibits the fluctuations in beliefs and prices similar to those described by Minsky in
his financial instability hypothesis. In Figure 5, we see periods of rapid increases in
the price-dividend ratio driven by an increase in the portfolio share of assets going
into stocks. But this boom period ends in a market crash characterized by a reduction
in the portfolio share of assets and a rapid decline in the price-dividend ratio.

Clearly these asset price movements are driven by substantial fluctuations in beliefs.
For example, we see expected returns increasing in the aftermath of a collapse and then
declining thereafter as the economy experiences more stable times. Once asset prices
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FIGURE 5. Representative simulation with constant gain € = 0.003. The top left panel plots m:, the
top right plots s¢, the bottom left plots v¢, and the bottom right plots P;/Ds

begin their rapid ascent, expected returns increase once again, and plummet during
the asset price collapse. Similarly agents’ expected volatility spikes up rapidly in the
periods around a crisis, then declines during more stable times, before increasing once
again as prices rise. These changes are roughly consistent with much of the narrative
of the financial instability hypothesis that we discussed above. We now provide more
detail on the mechanics of what drives the booms and busts in our model.

To focus in more detail on the mechanics of the model, we consider one single
episode of a run-up and collapse in asset prices, which is shown in Figure 6. The figure
shows a closeup on the data in Figure 5, but also shows the log gross return and a
key composite indicator, cum-interest bond holdings relative to dividends, RB;_1/D;.
By our discussion above, we expect agents’ beliefs (my, s;) to converge to the SCE,
which would also imply that the portfolio share v; should converge to one. We observe
the force of these mean dynamics in Figure 6 in the first several periods, up until
around period 300. As in Minsky’s story, this figure starts in the aftermath of a
previous collapse. Volatility estimates were high, as agents had been through a period
of large fluctuations, and thus they decline over this span. Mean estimates drift
downward early on, as returns recover quickly following a price collapse and spike
upward rapidly, then gradually drift downward. Throughout the aftermath of the
crash and the convergence back to the SCE, price-dividend ratios remain relatively low.
As volatility drifts downward and expected returns stabilize or turn upward slightly,
agents start gradually increase their share of wealth going into stocks. However around
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FIGURE 6. Detail of a simulation with constant gain ¢ = 0.003. The top left panel plots m., the top
right plots s¢, the middle left plots v¢, the middle right plots P:/Dy, the bottom left panel shows log R:, and
the bottom right panel plots RB¢—1/Dx.
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period 300 this starts to accelerate, and mean returns trend upward as agents increase
the share of their portfolios going to risky assets. As this share v, increases to near
1, bond holdings B; decline and even go slightly negative, as the bottom right panel
shows. That is, agents start to forget the past experience of rapid fluctuations, and
so they become more willing to invest in stocks. As they do, they bid up asset prices
and returns. Since agents are backward looking, these higher realized returns lead
to increases in expected returns going forward. This drives the rapid run-up in asset
prices.

A variety of factors combine to end the boom and lead to the crash in asset prices.
Although in general price fluctuations depend on agent’s bond holdings, as these hold-
ings shrink, prices are driven mainly by the fluctuations in dividends D,. Therefore
once the portfolio share v, is high enough, negative shocks to dividends can have a
significant impact on the stock price. So with enough wealth concentration in stocks,
a string of negative shocks can lead to a substantial fall in asset prices.

In addition, as we have seen in Figure 3, as v; gets close to or above unity, small
changes in portfolio shares have very large impacts on prices. Thus near v, = 1 small
changes in beliefs, which lead to small reductions in v; can have a big impact on
prices. In Figure 6, we see that the volatility estimate s; drifts downward around
period 300 even as my starts to increase. However as prices begin their rapid ascent,
these (positive) return fluctuations lead to an increase in the estimated volatility of
returns, which leads to a fall in v;. Thus even when prices are still booming, agents
become more cautious about future returns and so may cut back on their holdings of
stocks.

Finally, in this simulation the borrowing constraint binds in period 304, which
means that prices are not able to increase as rapidly as they would otherwise. If
this constraint were not imposed, we would have RB;_1/D; < —1, which as we saw
above characterized Minsky’s “speculative finance” regime. However such a situation
is incompatible with equilibrium in our environment. Thus we must restrict v; in this
period. It is still above unity, so agents are borrowing in order to invest in stocks, but
they cannot borrow as much as they would like. Thus agents had been anticipating
a more rapid growth in prices, but the constraint limits this growth, which leads to a
negative return surprise. The combination of these factors: negative dividend shocks,
increases in volatility estimates, and restrictions on borrowing, are what lead to the
end of the run-up in asset prices. Although all of the factors are present here, the
borrowing constraint need not bind in order for a price collapse to occur, as we see in
some simulations below.

5.2. Escape Dynamics

[TO BE COMPLETED]

Even though beliefs tend to be drawn toward SCE, there are occasional “escapes”
away from it.

Sequences of unlikely shocks lead agents to change beliefs, in turn they change their
behavior, which then can lead to rapid further changes in beliefs and outcomes.
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FIGURE 7. Portfolio shares v: and beliefs s; vs. m; for periods surrounding asset price collapse,
e = 0.004.

Can use large deviation theory to characterize the most probable escape paths. “If
an unlikely event happens, it is very likely to happen in the most likely way.”

In Williams (2001, 2009) I have shown previously that we can analyze escapes as a
perturbation of the mean dynamics.

m = Ellog(Zi(m,s))] —m + vy,
§* = Ellog(Z;(m,s)) —m]* — s* + v,

where m(0) = p, s(0) = o, and (vy,, vs) force (m, s) to exit a neighborhood of (u, o).
The most probable escape path can be found by solving a cost minimization problem to
determine optimal (v,,,vs). The minimized value S of the cost minimization problem
determines the rate at which the escapes take place. In particular, as ¢ — 0 time to
escape 7¢ is exponential in 1/e at rate S:

7° ~ exp(—S/e)

6. QUANTITATIVE RESULTS

[TO BE COMPLETED]

Thus far we have illustrated and discussed the mechanism by which learning can
lead to financial instability. However the parameters we have used have been rather
arbitrary, just serving to illustrate the properties of the model. We now present a
calibrated version.

To calibrate the model, we use Robert Shiller’s data set on the S & P 500 prices
and dividends from 1871-2011. The empirical price-dividend ratio is shown in Figure
10. We calibrate the dividend process to match the mean and standard deviation
of monthly dividend growth rates over this sample. This gives us g = 0.001 and
o = 0.0146, which correspond to an annual mean growth rate of 1.46% with standard
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FIGURE 10. Price-dividend ratio (monthly) in US data, Shiller dataset.
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Simulated Price-Dividend Ratio, €=0.005
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FIGURE 11. Simulated time series of the price-dividend ratio for two different values of the gain e.

deviation 5.06%. We choose preference parameters 5 and v to match an annual risk
free interest rate of 1%, thus a quarterly rate of 0.25%. More precisely, we choose the
smallest whole number for v which allows us to match the interest rate and still have
B < 1. This gives us v =9, and g = 0.998.

Simulations of calibrated model: effect of gain .

Some suggestive evidence: variation of volatility estimates in the VIX

7. CONCLUSION

In this paper I have developed a simple model in which adaptive learning by in-
vestors leads to recurrent booms and busts in asset prices. The model captures as-
pects of Minsky’s “financial instability hypothesis” in which periods of tranquility lead
investors to increase their estimates of expected returns, driving up asset prices and
hence realized returns. However once agents invest a significant fraction of their wealth
in stocks, the economy becomes fragile and so small negative shocks can lead to large
declines in prices. I have shown how this process recurs over time, and which features
of the model which drive the boom-bust cycles. In particular, the speed of learning
plays a key role.
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