
Lecture 5: Complete and Incomplete Markets

Economics 714, Spring 2018

1 Implications of Complete Markets

We have the Euler equation for the asset paying a unit of consumption one period ahead

in state si:

u′(c)q(s, si) = βu′(c(si))Q(s, si)

Along the same lines, we can derive the more general expression for the agent’s opti-

mality conditions for any future date t+ j and state:

u′(ct)q
j(st, s

j) = βju′(ct+j(s
j))Qj(st, s

j)

1.1 Allowing heterogeneity

We have focused on a representative agent setting, but now suppose we allow for het-

erogeneity in preferences and endowments. There are i = 1, . . . , I consumers who have

different preferences (ui(c), βi) and endowments eit = ei(st) where
∑

i e
i(st) = st.

Note then that the same optimality condition holds for any consumer. Let’s look from

date 0:

u′i(c
i
0)q

t(s0, s
t) = βtiu

′
i(c

i
t(s

t))Qt(s0, s
t)

Since a similar expression holds for any consumer j as well, we have:

u′i(c
i
0)q

t(s0, s
t)

u′j(c
j
0)q

t(s0, st)
=
βtiu

′(cit(s
t))Qt(s0, s

t)

βtju
′
j(c

j
t(s

t))Qt(s0, st)
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or

u′i(c
i
0)

u′j(c
j
0)

=

(
βi
βj

)t
u′(cit(s

t))

u′j(c
j
t(s

t))

We can use this to derive a few simple implications:

• Therefore if βi > βj, as t → ∞ we must have
u′(cit(s

t))

u′j(c
j
t (s

t))
→ 0 and thus cjt → 0. The

same holds for any pairwise comparison, so in the long run the most patient agent

will consume the entire aggregate endowment.

• Now suppose that we have preference homogeneity βi = β and ui(c) = c1−γ

1−γ . Then

we have:

(ci0)
−γ

(cj0)
−γ

=
(cit)

−γ

(cjt)
−γ

That is, each agent’s consumption is a constant fraction of any other’s. Equivalently,

each agent consumes a constant fraction of the aggregate endowment. Thus we have

perfect risk sharing: no agent bears any idiosyncratic risk .

2 Incomplete Markets Model

2.1 Theoretical Implications

Put consumption-savings model with borrowing constraint into general equilibrium.

Only asset is risk free bond, agents face idiosyncratic (labor) income risk. Assume a

law of large numbers so no aggregate risk. A direct implication of market incompleteness

is that agents will bear idiosyncratic risk.
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max
{ct,at+1}

E0

∞∑
t=0

βtu(ct)

with a0, l0 given and subject to:

ct + at+1 = Rat + wlt

Huggett: wlt = yt, specify income directly.

Aiyagari: Representative firm, so w endogenous.

Constraints: ct ≥ 0, at ≥ a. Debt limit.

l follows Markov process w/transition function Q on L

Agent optimization with borrowing constraint gives a policy function a′ = a′(a, l),

Euler inequality:

u′(ct) ≥ βREtu
′(ct+1)

with equality if at+1 > a

Define θt = βtRtu′(ct) ≥ 0. Euler inequality: θt ≥ Etθt+1.

Theorem (Martingale Convergence) Let {Xt} be a submartingale. IfK = suptE(|Xt|) <

∞, then Xt → x with probability 1, where X is a random variable that satisfies E(|X|) ≤

K.

Here −θt is a submartingale, and suptE(| − θt|) = E(u′(c0)) <∞. So θt → θ.

Implies if βR > 1 then since limt→∞ β
tRt = +∞ then limt→∞ u

′(ct) = 0 with proba-

bility 1, so ct →∞. This implies that at →∞ if βR ≥ 1.

Same conclusions hold with more delicate argument if βR = 1.

So we have βR < 1, and thus interest rate is lower than under complete markets.
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Agents build up a stock of assets to insure against their income risk, which drives down

equilibrium interest rates.

2.2 Quantitative Implications

1. Model generates lower risk free rate than complete markets, but effect not substan-

tial.

2. Precautionary saving effect not very large

3. Model generates heterogeneity in wealth and income, but not (nearly) enough to

match US data

4. Welfare costs of borrowing constraints and market incompleteness relatively small:

self-insurance via saving able to smooth consumption relatively well.

3 Incomplete Markets with Aggregate Risk

In the Aiyagari framework, there is no aggregate risk and so we can’t discuss fluctua-

tions or risky asset returns. Krusell and Smith (1998) introduced aggregate risk into an

incomplete markets model.

Aggregate production function now has Markov productivity shock zt ∼ Qz:

Yt = ztF (Kt, Nt)

Gives usual marginal productivity conditions: w = zFN(K,N), r = zFK(K,N)− δ

Idiosyncratic labor shocks are Markov conditional on z: Q(l, dl′|z).
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Joint distribution of (l, z) is Γ.

Similar to our previous approach, we could attempt a recursive formulation in a “big

K-little k” approach for the individual agent problem:

V (a, l, z,K,N) = max
c,a′
{u(c) + βE[V (a′, l′, z′, K ′, N ′)|l, z,K,N ]}

subject to:

c+ a′ = R(z,K,N)a+ w(z,K,N)l − c

a ≥ a

(K ′, N ′) = G(z,K,N)

Problem: (z,K,N) not (in general) sufficient statistic for K ′, which depends on the

distribution of assets

Correct recursive formulation with state µ(a, l):

V (a, l, z, µ) = max
c,a′
{u(c) + βE[V (a′, l′, z′, µ′)|l, z, µ]}

subject to:

c+ a′ = R(z,K,N)a+ w(z,K,N)l − c

a ≥ a

µ′ = H(z, µ)

and then K =
∫
aµ(da, dl), N =

∫
lµ(da, dl).

Problem: infinite dimensional state µ. Also unknown law of motion H maps distribu-

tions into distributions
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Krusell and Smith approximate µ by moments, assume H is log-linear function map-

ping moments to moments. Show that to forecast w,r, essentially enough to consider law

of motion for K. “Approximate aggregation” holds in this model, and has been shown to

work in many other settings as well.
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