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Optimal Allocation

While the golden rule gives the maximal amount of steady
state consumption, in general it is not optimal.
If households are impatient (β < 1) then they value current
consumption more than future consumption. So the timing
of consumption matters.
So now let’s consider the optimal allocation:

max
{ct,kt}

∞∑
t=0

βtU(ct)

subject to: ct = F (kt)− kt+1 + (1− δ)kt, ∀t, k0 given
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Characterizing the Optimal Allocation

Form the Lagrangian with multipliers {λt} on the
constraints:

L = max
{ct,kt}

∞∑
t=0

(
βtU(ct) + λt[F (kt)− kt+1 + (1− δ)kt − ct]

)
First order conditions for any ct, and for kt+1, t > 0:

βtU ′(ct) = λt

−λt + λt+1[F ′(kt+1) + 1− δ] = 0.

Combine the two optimality conditions to get:

U ′(ct) = βU ′(ct+1)[F ′(kt+1) + 1− δ]

This is known as an Euler equation and is a key
condition for optimality in dynamic models.
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Optimal Steady State

Look for a steady state of the optimal allocation.

U ′(c∗) = βU ′(c∗)[F ′(k∗) + 1− δ]

Or, recalling that β = 1/(1 + θ):

F ′(k∗) = 1
β

+ δ − 1 = δ + θ

From the previous expression we also have:

c∗ = F (k∗)− δk∗

The optimal steady state is only equal to the golden rule if
θ = 0. And since F ′′(k) < 0 we have:

F ′(k#) = δ < δ + θ = F ′(k∗), ⇒ k# > k∗
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An Example

Now work out a parametric example, using standard
functional forms. Cobb-Douglas production:

y = zkα

For preferences, set:

U(c) = c1−σ − 1
1− σ

For σ > 0. Interpret σ = 1 as U(c) = log c.
These imply the Euler equation:

c−σt = βc−σt+1[1 + αzkα−1
t+1 − δ] = βc−σt+1Rt+1

For these preferences σ gives the curvature and so governs
how the household trades off consumption over time.
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Intertemporal Elasticity of Substitution

Define intertemporal elasticity of substitution IES as:

IES =
d ct+1

ct

dRt+1

Rt+1
ct+1
ct

=
d log

(
ct+1
ct

)
d logRt+1

Then for these preferences we have:

c−σt = βc−σt+1Rt+1

⇒
(
ct+1
ct

)σ
= βRt+1

⇒ ct+1
ct

= β
1
σR

1
σ
t+1

⇒ log
(
ct+1
ct

)
= 1

σ
log β + 1

σ
log(Rt+1)

⇒ IES = 1
σ
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Steady State in the Example

Recall the Euler equation:

c−σt = βc−σt+1[1 + αzkα−1
t+1 − δ]

Steady state:

F ′(k∗) = zα(k∗)α−1 = δ + θ

⇒ k∗ =
(

αz

δ + θ

) 1
1−α

Then we get consumption:

c∗ = z(k∗)α − δk∗

= z

(
αz

δ + θ

) α
1−α
− δ

(
αz

δ + θ

) 1
1−α
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Comparative Statics

Steady state capital stock determined by:

F ′(k∗) = δ + θ

Consumption c∗ increasing in k∗ (since below golden rule
level).
If δ ↑, then k∗ ↓ so c∗ ↓ .
If total factor productivity ↑ then k∗ ↑, so c∗ ↑.
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Dynamics of the Model

We have analyzed the basic model of optimal growth and
studied the behavior of the model in the steady state.
Now will analyze the dynamics of the model.
The model is nonlinear and in general does not allow for a
complete, explicit solution in general.
However we can analyze the qualitative dynamics by
analyzing a phase diagram summarizing the key
equations of the model.
This will allow us to analyze both the short-run and
long-run effects of changes in exogenous variables. For
example, to see how the economy responds to a change in
technology.
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Qualitative Dynamics

We will analyze the joint dynamics of {ct, kt}. In any
period t, kt is given and ct is chosen optimally (as is kt+1).
The key equations of the model are:

U ′(ct) = βU ′(ct+1)[F ′(kt+1) + 1− δ]
kt+1 = (1− δ)kt + F (kt)− ct

We’ll use the first to determine the dynamics of c, the
second the dynamics of k.
In steady state, ∆ct+1 = ct+1 − ct = 0, and

F ′(k∗) = δ + θ

If k < k∗, then F ′(k) > F ′(k∗), so to satisfy Euler equation
we need U ′(ct+1) < U ′(ct) and so ct+1 > ct. Similarly if
k > k∗, ∆c < 0.
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Dynamics of Capital and Phase Diagram

A key equation of the model is:

kt+1 = (1− δ)kt + F (kt)− ct

In steady state, ∆kt+1 = kt+1 − kt = 0, and

c = F (k)− δk

If ct < F (kt)− δkt then it > δkt, so ∆kt+1 > 0. Similarly if
ct > F (kt)− δkt then ∆kt+1 < 0.
Putting together the dynamics of c with the dynamics of k
gives the phase diagram
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The Saddle Path

From the phase diagram we can see the dynamics of
{kt, ct} from any initial (k0, c0).
But given k0 the dynamics from an arbitrary c0 will not
converge to the steady state.
In general either ct or kt will go to zero. These are not part
of an optimal solution.
However given k0 there is a unique value of c0 such that
the economy converges to the steady state. This is the
saddle path.
The optimal solution will be on the saddle path, as c0 is a
function of k0 and will be chosen so that the economy is
stable and converges to the steady state.
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Comparative Dynamics

With the phase diagram, we can determine how an
exogenous change affects ct and kt both over time and in
the long run.
Suppose, for example, that households became less patient,
so θ increases and β falls. What would happen
immediately and in the long run?
Recall the dynamics:

∆c = 0 : F ′(k∗) = δ + θ

this curve shifts to the left, so steady state k∗ would fall
And for capital,

∆k = 0 : c = F (k)− δk

this curve is unaffected.
In the long run, kt and ct will fall. When the change in θ
happens ct will jump up to the new saddle path.
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k 

Phase diagram: An increase in the discount rate (θ).  
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δ+θ’ 

k* 
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δ+θ 
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k’ 
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When households become more impatient, they increase

consumption, and save less. In the short run this leads to more
consumption. But in the long run, the lower investment will
lead to an reduction in capital and hence consumption.
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Improvement in Technology

If total factor productivity increases, we already have seen
that in steady state k∗ ↑, so c∗ ↑. But what happens along
the transition?
Recall the dynamics:

∆c = 0 : zF ′(k∗) = δ + θ

this curve shifts to the right
And for capital,

∆k = 0 : c = zF (k)− δk

this curve shifts up
In the long run (k∗, c∗) increase. But the effect in the short
run depends on the slope of the saddle path, which in turn
depends on how willing the household is to substitute over
time.
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Slope of the Saddle Path

If the household is relatively impatient (low β, high θ),
and is unwilling to substitute over time (low IES), then it
will want to smooth consumption over time and value early
periods highly. Then ct will increase and the economy will
slowly move to the steady state. c0 will increase.
If the household is relatively patient (high β, low θ), and
is willing to substitute over time (high IES), then it will
forgo current consumption, invest more, and get to the
steady state more quickly. c0 may fall.
In both cases, kt increases each period until it reaches the
steady state. In the long run ct increases, but in the
short-run it may increase or decrease.
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Phase diagram: An increase in total factor productivity (z), 
with a flatter saddle path (low IES, high discount rate)
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Phase diagram: An increase in total factor productivity (z), 
with a steep saddle path (high IES, low discount rate)
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