The Multiple Regression Model

The multiple regression model extends the single variable regression model
of Chapter 4 to include additional variables as regressors. This model permics
estimating the effect on Y, of changing one varjable (X,;) while holding the
other regressors (X,;, X, and so forth) constant. -

Thé multiple regression model is
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interpreted similarly.

The intercept B, is the expected value of Y when all the X's equal zero. The

intercept can be thought of as the coefficient on a regressor, X, that equals
one for all i.
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1. u; has conditional mean zero given X;,, X,, . . ., X, that is,
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2. (X Xoiv -, Xpp Y), i=1,.. ., nare independently and identically dis- Concept
tributed (1.1.d.) draws from their joint distribution; 5.4

3. (X Xair - - - Xpr ;) have nonzero finite fourth moments; and

4. there is no perfect multicollinearity.

The R? and R? tell you whether the regressors are good at predicting, or
“explaining,” the values of the dependent variable in the sample of data on hand.
If the R? (or R?) is neatly one, then the regressors produce good predictions of
the dependent variable in that sample, in the sense that the variance of the OLS
residual is small compared to the variance of the dependent variable. If the R2 Concept
(or RY) is nearly zero, the opposite is true. 5.8

The R* and R? do NOT tell you whether: '

Onmitted variable bias is the bias in the OLS estimator that arises when one or

) ) ) o o more included regressors are correlated with an omitted variable. For omitted
1. an included variable is statistically significant; . . : .

Ke variable bias to arise, two things must be true:
2. the regressors are a true cause of the movements in the dependent variable; y
\ . . . . 1. at least one of the included regressors must be correlated with the omitte
3. there is omitted variable bias; or Concept . & d

variable; and

4. you have chosen the most appropriate set of regressors. 5.9

2. the omitted variable must be a determinant of the dependent variable, Y.
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10.2

Instrumental Variables
Regression

Instrumental variables (IV) regression is a general way to obrtain a
conststent estimator of the unknown coefficients of the population regression
function when the regressor, X, is correlated with the error term, u. To
understand how [V regression works, think of the variation in X as having two
parts: one part that, for whatever reason, s correlated with u (this is the part
that causes the problems), and a second part that is uncorrelated wich . If you
had information that allowed you to isolate the second part, then you could
focus on those variations in X that are uncorrelated with 4 and disregard the
variattons in X that bias the OLS estignntes. This is, in fact, what [V regression
does. The information about the movements in X that are uncorrelated with u
is gleaned from one or more additional variables, called instrumental
variables or simply instruments. Instramental variables regression uses these
addicional variables as tools or “instruments” to isolate the movements in X
that are uncorrelated with «, which in turn permit consistent estimation of

the regression coefficients.

Two Stage Least Squares

with multiple instrumental variables is computed in two stages:

(Zy; ..., Z,;) and the included exogenous variables (W, ..., W) using
OLS. Compute the predicted values from this regression; call these X,
Repeat this for all the endogenous regressors Xy, .. ., Xy, thereby com-
puting the predicted values X, . . ., X,

2. Second-stage regression: Regress ¥; on the predicted values of the
endogenous variables (X, . . ., )h.,-) and the included exogenous variables
(Wi - - - W) using OLS. The TSLS estimators 41555, . BIsLs

estimators from the second-stage regression.

In practice, the two stages are done automatically within TSLS estimation com-

mands in modern econometric software.

The TSLS estimator in the general 1V regression model in Equation (10.12)

1. First-stage regression(s): Regress X,; on the instrumental variables
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A set of m instruments Z;,, . .

to be valid:

The Two Condition

The General Instrumental Variables
Regression Model and Terminology

The general IV regression model is
+ Bt u,  (10.12)

Y=y + B X + + B Xy + B +

i=1,...,n where:

Y, is the dependent variable;

u; is the error term, which represents measurement error and/or omitted

factors;

» X, ..., X, are k endogenous regressors, which are potentially correlated
with ;;

« W, ..., W are rincluded exogenous regressors, which are uncorrelated
with u; '

= B0, By, - - ., B, are unknown regression coefficients;

= Zy, ..., Z,; are m instrumental variables.

The coefficients are overidentified if there are more instruments than endoge-
nous regressors (m > k); they are underidentified if m < k; and they are exactly
identified if m = k. Estimation of the IV regression model requires exact iden-
tification or overidentification.

., Z,,; must satisfy the following two conditions

1. Instrument Relevance Key

» In general, let X;; be the predicted value of X); from the population regres-
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sion of Xj; on the instruments {(Z's) and the included exogenous regressors 10.3
(W), and let 1" denote a regressor that takes on the value “1” for all obser-

vations (its coefficient is the intercept). Then ()A(; X W,.... W, 1)

are not perfectly multicollinear.

w [f there is only one X, then at least one Z must enter the population regres-
sion of X on the Z's and the W',

2. Instrument Exogeneity

The instruments are uncorrelated with the error term, that is,

corr(Z,,1;) = 0, ..., corr(Z,

1) = 0.
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