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Abstract

This paper introduces a model of preferences in which, given beliefs about uncertain
outcomes, an individual evaluates an action using a quantile of the induced distribution.
The choice rule of Quantile Maximization unifies maxmin and maxmax as maximizing
the lowest and the highest quantiles of beliefs distributions, respectively, and generalizes
them to any intermediate quantile.
Taking preferences over acts as a primitive, we axiomatize Quantile Maximization in

a Savage setting. We derive probability measure(s) representing subjective beliefs, and a
unique quantile that is maximized by implied preferences over probability distributions.
The probability measure is unique for all quantiles other than the extreme, for which a
set of capacities is derived. The result also provides a novel characterization of prob-
abilistic sophistication that demonstrates that neither monotonicity nor the continuity
axioms assumed in the literature are essential to probabilistic sophistication. We further
axiomatize all quantiles with respect to capacities. We characterize risk preferences of
quantile maximizers and discuss how the distinct from the Expected Utility properties
of the model, robustness and ordinality, can be useful in studying choice behavior and
problems of resource allocation, treatment effects, and robust economic policy design.
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1 Introduction

This paper examines choice behavior of an individual choosing among uncertain alternatives

who selects the one with the highest quantile of the utility distribution. For example, she

might be maximizing median utility, as opposed to mean utility, as she would if she were an

Expected Utility maximizer. More generally, she might be comparing alternatives through

some other quantile that corresponds to any given number between 0 and 1.

Although largely ignored in decision theory, quantiles have been widely used in many

applied areas of economics:

• One of the most popular tools of risk management in finance, insurance, and banking is
Value-at-Risk (VaR), defined as a quantile of the distribution of losses. VaR has become an

industry standard, and its use is encouraged by the Federal Reserve Bank and the Securities

and Exchange Commission, and the Bank for International Settlements.1

• In econometrics, quantiles have been used in techniques of robust estimation (LAD),
providing an alternative to classical mean-based estimators, which are sensitive to large

errors. Quantile regression (Koenker and Bassett [1978a]) is also becoming increasingly

popular in optimal allocation design and evaluations of the effects of social policies or

treatment effects by allowing distributional targeting and explicit analysis of distributional

consequences. (Chamberlain [1994], Buchinsky [1995], Koenker and Hallock [2001] provide

comprehensive surveys. See also Bhattacharya [2007], Chernozhukov, Imbens and Newey

[2007], Chesher [2003].)

• In public economics, quantiles have been applied in measurement (e.g., population-
based poverty lines), scenario-based analysis, used as order statistics, etc.

To which properties of quantiles then can one attribute their comparative advantage

over moments, such as mean and variance? Two key characteristics of quantiles, robustness

and ordinality, have proven to be attractive among practitioners: Quantile-based techniques

are robust to fat tails, which are often met in practice, and offer predictions not driven by

outliers. More pragmatically, quantiles enable policy making that is precautionary and

at the same time does not require assumptions about the extreme tails of distributions,

about which often little is known in practice (e.g., income distributions). Unlike tools based

on mean or standard deviation, quantiles do not require that there exist moments of any

order, which is a problem for example in non-life insurance, finance and income studies.

In risk analysis, quantiles allow focusing on downside risk instead of the requirement to

treat positive and negative deviations symmetrically, as forced by standard deviation. In

1Although used since the beginning of the 19th century, VaR became popular among trading institu-
tions during the 1990s with the influential report on derivatives practices of the Group of 30 in 1993, the
RiskMetrics service launched by JP Morgan in 1994 to promote the use of VaR, and the market risk capital
requirements set for banks by the Basel Committee on Banking Supervision in 1995. For more on the
history of Value at Risk, its applications, and ongoing theoretical as well as econometric research that it
has spurred, see VaR’s Web site: http://www.GloriaMundi.org.
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terms of ordinality, quantiles are well suited to the econometric analysis of nonlinear models,

unlike techniques based on expectations. Quantiles have the advantage of not requiring any

parametric assumptions about utilities, so they can deal with the behavior of agents whose

preferences are not known or a group of agents with heterogenous preferences (e.g., in curve-

based grading schemes, agency problems, expert recommendations). In such environments,

cardinal representations of choice behavior may not be appropriate and thus should not affect

policy recommendations. Quantile Maximization does complement the existing models of

choice under uncertainty, virtually all of which imply the use of cardinal properties of utility

functions over outcomes.

To our knowledge, apart from the work of Manski (1988) and a recent contribution by

Chambers (2007), on which we elaborate below, quantiles have not been studied in choice

theory. There are two famous exceptions: maxmin and maxmax. Decision makers selecting

an alternative with the highest minimal or maximal payoff can be viewed as maximizing

the lowest or the highest quantile, respectively. It is worth emphasizing that Quantile

Maximization nests these two choice rules and it does so in a non-trivial way. Maxmax and

especially maxmin have been applied in game theory, robust control, individual and social

choice, bargaining, voting, and other areas in economics. These criteria have, however, been

commonly criticized for basing the choice on what may be extreme and unlikely outcomes.

Indeed, maxmin agents would not invest, would not drive, and so on.

Admittedly, many choice rules, including the Expected Utility itself, can model less

extreme choice behavior. Surprisingly, there is no model that captures more moderate

prefernces while preserving the qualitative properties of maxmin and maxmax that Ex-

pected Utility does not exhibit, such as ordinality and robustness. Perhaps the closest

related concept is the α-maxmin rule, defined as a convex combination of the minimal

and the maximal payoffs with the fixed weights α and 1 − α (Hurwicz [1951], Arrow and

Hurwicz [1972]).2 The α-maxmin decision rule is, however, not ordinal. Furthermore, like

maxmin and maxmax, α-maxmin loses the entire information contained in the prior except

for its support. Incidentally, Quantile Maximization offers a family of ordinal and robust

criteria intermediate between maxmin and maxmax. Quantiles do preserve ordinality, and

compared to the extreme maxmin and maxmax, quantiles incorporate richer (outcome and

probability) information from uncertain alternatives faced by an agent, additionally gaining

the attribute of robustness. Further, as this paper establishes, there is a sense in which

Quantile Maximization is a unique ordinal rule.

2α-maxmin was introduced in a context of “complete ignorance” and subsequently applied also to decision
problems under uncertainty. Maxmin and maxmax are useful decision criteria in settings where an analyst
has no probabilistic information about events. Nonetheless, such information is often available, especially
about part of the domain, which is all that quantiles require. Our Theorem 3 demonstrates how quantiles
admit imprecise information, represented by the multiplicity of beliefs, ensuring local accuracy around a
unique quantile.
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This paper formalizes the concept of Quantile Maximization in choice-theoretic language

to provide a foundation for both its practice and the application in economic theory, and to

study its implications for decision making.

Results. We model an individual choosing between uncertain alternatives who evaluates

each alternative by the τ th-quantile of the implied distributions, and selects the alternative

with the highest quantile payoff. Thus, under Quantile Maximization, a decision maker

is characterized by a scalar τ ∈ [0, 1]; subjective beliefs over events π; and a rank order
over outcomes. The central theoretical contributions of the paper are the axiomatization

of Quantile Maximization (with respect to probabilities and capacities) and a novel charac-

terization of probabilistic sophistication. As a by-product, our results axiomatize maxmin

and maxmax under uncertainty. To the best of our knowledge, we are the first to derive

and characterize the implied beliefs of agents who choose according to maxmin or -max.3

We next describe the main results.

We provide an exact characterization of the model by jointly axiomatizing Quantile

Maximization and subjective probabilities in a Savage setting. That is, taking preferences

over Savage-style acts (maps from states to outcomes) as a primitive, we find conditions

that are necessary and sufficient for those preferences to admit a quantile representation.

We derive probability measure(s) representing subjective beliefs, an ordinally unique utility

index and a unique quantile that is maximized by induced preferences over probability

distributions. The axiomatization uncovers an important difference in how beliefs enter the

preferences of the extreme and the intermediate quantiles: For all values of τ strictly between

0 and 1, the probability measure derived to represent subjective beliefs is unique (and also

convex-ranged and finitely additive). For the extreme values of τ , equal to 0 or 1, we

derive a set of nonatomic measures that are monotone, but not necessarily finitely additive

(capacities). This is intuitive: Choices of 0- or 1-maximizers do not depend on beliefs, just

on their support; hence, these are consistent with any measure that assigns strictly positive

(and less than one) values to the same outcomes. That beliefs of the extreme-τ maximizers

satisfy additional properties is behaviorally interesting: While it might seem that agents

choosing according to maxmin or maxmax can only distinguish between null and non-null

events, our results reveal that the agents can “see” more. In particular, the property of

monotonicity with respect to events related by strict set inclusion implies that maxmin and

-max agents can also compare events nested in that sense.

We characterize Quantile Maximization with five conditions. Our central axiom that

leads to existence and uniqueness of τ is a new monotonicity condition. The key implication

3The maxmin in uncertain settings discussed here should be distinguished from the maxmin over multiple
priors, axiomatized by Gilboa and Schmeidler (1989) to study choice behavior under ambiguity.

3



of this axiom is that for any act, there exists an event, called a pivotal event, such that

exchanging outcomes outside of this event in a way that preserves their rank with respect to

the outcome on the pivotal event does not affect preferences over acts. Intuitively, after we

derive beliefs, the axiom will imply that the induced lottery preferences remain unaffected by

changing parts of the cumulative distributions below and above some quantile. We dub this

axiom Pivotal Monotonicity, P3Q. Compared to Savage (1954), our set of conditions retains

P1 (Ordering) and P5 (Nondegeneracy). We drop all his remaining axioms, including P2 (the

Sure-Thing Principle) and P3 (Eventwise Monotonicity). Savage’s P4 (Weak Comparative

Probability) is in fact implied by our axioms, but dispensing with P2 requires adding an

additional condition that ensures additivity of derived probability measures. This is achieved

by the axiom that provides the likelihood judgment, derived from preferences over acts, with

a weak-order structure. We call the conditionComparative Probability (P4Q). Finally, due to

ordinality, the Archimedean axiom typically employed in a Savage setting, P6 (Small Event

Continuity), is too strong for our model, as it implies mixture continuity.4 We weaken P6

just enough to retain its implications for the nonatomicity of probability measures and to

ensure that the quantile is left continuous (Event Continuity, P6Q). In summary, our three

new conditions characterize the monotonicity-substitution (P3Q) and the continuity (P6Q)

properties of quantile maximizer’s preferences and the additivity (P4Q) of their beliefs.

While Pivotal Monotonicity seems suggestive of how the quantile may be obtained by

comparing probability distributions (when probabilities are derived), the axiom does not

say that the pivotal event is unique in a given act, or how pivotal events relate across acts.

Nonetheless, the main challenge in axiomatizing Quantile Maximization was to derive a

probability-measure representation for subjective beliefs. We could not directly use either

Savage’s (1954) or other arguments in the literature: Derivation of probabilities typically

involves defining a likelihood relation — a binary relation on events — induced from the

preference relation on acts (“separation of probabilities from preferences”). According to

the commonly used definition (employed by Savage, and earlier by Ramsey [1931] and de

Finetti [1937]), event E is assessed as more likely than event F if, for any pair of outcomes x

and y, where x is strictly preferred to y, an individual strictly prefers betting on x when E

occurs than when F occurs. In the quantile model, however, the likelihood relation generates

only two equivalence classes on the entire collection of events: All events are judged either

equally likely to the null set or to the whole state space. (For example, think of a median

maximizer comparing events with probabilities 0.7 and 0.9.) Even if there is a probability

measure that represents the beliefs of τ -maximizers, the likelihood relation will not allow

one to recover it from a data set as rich as recording all choices in all decision problems.

Nonetheless, we show that the information contained in preferences over acts suffices for

recovering probability measures. Our approach is to construct a sub-collection of “small”

4See, e.g., Grant (1995, Step 3 in the proof of Theorem II).
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events and define a new likelihood relation, which although incomplete on the whole collec-

tion, is still complete on the sub-collection of “small” events. We use the new relation to

construct a unique, finitely additive and convex-ranged measure that represents beliefs of

the agent about events in that sub-collection. We then uniquely extend the derived measure

to the remaining events which, as we show, can be partitioned into “small” events. As hinted

above, the preferences of 0- and 1-maximizers5 depend on, and hence reveal, less structure

about the primitive on acts than do those of individuals with τ ∈ (0, 1). In constructing the
measure, the difference arises in the ability to strictly rank disjoint non-null events. While

we show that this is possible for the class of preferences leading to τ ∈ (0, 1), for τ = 0

or τ = 1 the rankings of acts are invariant to swapping outcomes on any disjoint non-null

events. For τ = 0 and τ = 1, we derive a set of capacities.

Finally, we show that when our new Comparative Probability axiom is dropped, the

remaining four conditions provide a new axiomatization of Quantile Maximization with

respect to capacities — for all quantiles, not just extreme ones. Thus, curiously, the role of

the new axiom is only to ensure additivity of the probability measure (cf. P4 in Savage

[1954], P4∗ in Machina and Schmeidler [1992], and P4CE in Grant [1995]).

Axiomatization contributes in two ways to the growing body of literature on probabilistic

sophistication that was initiated by Machina and Schmeidler (1992). The goal of this line of

research is to understand when choices of a decision maker are consistent with that person’s

having beliefs that conform to a probability measure, without restricting the actual decision

rule to be an Expected-Utility or other functional form. Nonetheless, with the exception

of the recent result by Chew and Sagi (2006), the existing derivations impose continuity or

monotonicity conditions on the representation functional, thus narrowing down the class of

preferences.

In fact, the continuity condition prevalent in the literature (Savage’s P6) cannot hold in

the model presented in this paper. The reason is that P6 implies mixture continuity of the

representation functional, which cannot be satisfied by an ordinal representation, such as

Quantile Maximization. Our result thus identifies a class of preferences disjoint from those

studied in the literature for which the characterizations of probabilistic sophistications based

on P6 cannot be used.

As an illustrative example, consider a median maximizer. Her choices violate all axioms

in Machina and Schmeidler, except P1 (Ordering), P4 (Weak Comparative Likelihood)

and P5 (Nondegeneracy) and all axioms in Grant (1995) except for P1 and P5’. Thus

the median maximizer would not be probabilistically sophisticated according to these two

characterizations.
5Clearly, uniquely pinning down a number τ ∈ [0, 1] can be accomplished only after the measure repre-

sentation of beliefs is derived. The maxmin and -max agents are identified by a condition on preferences,
formally defined in Section 4.
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Chew and Sagi (2006) established probabilistic sophistication without continuity or

monotonicity. We do use the weakest, in the sense made precise in Section 7, notion of

monotonicity of risk preferences (weak stochastic dominance). However, as with Savage’s

P3, our monotonicity axiom only enters into the derivation of a probability measure to show

that non-null events are judged more likely than is the empty set. This is exactly how Chew

and Sagi (2006) used their weakening of P3.6

Another related concern about the developments in probabilistic sophistication, which

has not been emphasized thus far, is that (through mixture continuity) these results impose

restrictions on the set of outcomes from which acts are defined. Admittedly, the existence

of subjective beliefs about events should not depend on the properties of the set of out-

comes. Our proof neither assumes nor implies any conditions placed on the outcome set.

Consequently, unlike Machina and Schmeidler’s (1992) and Grant’s (1995), our results can

be used to show that individuals without well defined utility functions (e.g., lexicographic

agents) can also be probabilistically sophisticated.

Applications. From an empirical perspective, being free from parametric assumptions

and moment restrictions, Quantile Maximization can be a useful tool in applications. We

show that despite its ordinality property, the model admits an elegant characterization of

risk attitudes: τ itself provides a comparative measure and a complete ranking of attitudes

toward risk, ranging from extreme risk aversion (τ = 0) to extreme risk loving (τ = 1).

The model allows an analyst to study risk attitudes without having first to characterize the

concavity of utilities from the data. To formulate policy recommendations, it suffices to

recover a unique parameter (τ) to pin down the entire preference ordering over acts. The

number τ is a counterpart of the convexity of the Bernoulli utility function in expectation-

based models.

From a modeling perspective, Quantile Maximization provides a tractable framework to

study choice behavior formally in environments where robustness to the assumptions about

utility functions is a concern, or where cardinal representations will be unduly restrictive or

inappropriate; for example, when choice variables are categorical, when a policy maker has

little knowledge about agents’ preferences or seeks a rule that can apply to a population with

heterogenous preferences.7 Furthermore, quantiles can address designing optimal policies in

resource allocation problems where no redistribution of outcomes — such as survival rates

after a surgery, or test-scores — is possible. In Section 7.5, we discuss specific settings in

6Furthermore, how to establish probabilistic sophistication (without monotonicity and continuity) by
directly defining a likelihood relation, rather than inducing it indirectly via an exchangeability relation,
remains an open question.

7Since the policy maker has no information about the utility function over outcomes (as in the former
example), or the rule will apply to potentially all utilities over outcomes (as in the latter one), an ordinal
framework is suitable. As mentioned above, we show that within the class of such (ordinal and probabilis-
tically sophisticated) rules, Quantile Maximization is a unique criterion that respects any monotonicity.
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which the distinct theoretical properties of the quantile model — robustness to appropriate

changes in distributions and ordinality — are desirable.

Related Literature. The maxmin choice rule has been formally studied by Roy (1952,

safety first rule), Milnor (1954), Rawls (1971, justice as fairness theory), Maskin (1979),

Barbera and Jackson (1988), Cohen (1992, security level), Segal and Sobel (2002), and

others. Studies that formalize maxmax include those of Cohen (1992, potential level), Segal

and Sobel (2002), and Yildiz (2007, wishful thinking). This paper complements these results

by characterizing exactly what maxmin- and -max entail regarding an agent’s beliefs about

the likelihood of events.

Ordinal representations of preferences have been advocated by Börgers (1993, pure-

strategy dominance), Chambers (2007) and earlier by Manski (1988, quantile utility model,

utility mass model). Manski was the first to draw attention to the decision-theoretic at-

tributes of Quantile Maximization and examine risk preferences of quantile maximizers, and

one of the first to illustrate the appeal of quantile-based techinques in applied economics.

Interested in the class of functions restricted only by appropriate monotonicity and ordinal

covariance, Chambers (2007) demonstrated that these properties characterize generalized

quantiles. Thereby, he axiomatized quantile-based functionals, taking as a primitive the

real-valued bounded measurable functions, and provided several characterization results

that illuminated the relation among the functionals, commonly used in applications, that

satisfy the two defining conditions. We should also mention that in the field of Artificial

Intelligence, the ordinal approach to modeling choice has been increasingly popular over the

past decade. The goal is to develop decision rules that can be implemented by information

systems, such as recommender systems that require less information about utilities and

beliefs (qualitative decision theory). Some of the decision criteria already proposed can be

interpreted as modeling preferences that are intermediate between maxmin and maxmax.

(See for example, Boutilier [1994], Dubois et al. [2000], Dubois et al. [2002] and references

therein.)8

Structure of the Paper. This paper proceeds as follows: Section 2 presents the model

of Quantile Maximization and characterizes its properties. Section 3 states our axioms, and

Section 4 provides the main results, namely the representation theorem and a characteriza-

8The idea of modeling preferences intermediate between maxmin and maxmax is not new. Apart from α-
maxmin, Cohen and Jaffray (1980) characterized decision criteria under complete ignorance, demonstrating
that only extreme outcomes can have first-order effects. Other related models involve a combination of
Expected Utility and maxmin (Gilboa [1988], Jaffray [1988], Cohen [1992]) or, like neo-additive capacities
by Chateauneuf, Eichberger and Grant (2006), place a fixed weight on the extreme outcomes and apply
Expected Utility on the outcomes in between. These concepts were intended to explain deviations from
Expected Utility, and they still rely on the expected-utility operator. As a result, the rules behave very
differently than the original maxmin and maxmax.
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tion of probabilistic sophistication. Section 5 outlines the proofs of the two central results.

Section 6 relates the axiomatization and our characterization of probabilistic sophistication

to the literature. Section 7 examines properties of risk preferences and discusses applica-

tions of the model. Finally, Section 8 offers concluding remarks. All proofs, unless otherwise

noted in the text, appear in the Appendices.

2 The Quantile Maximization Model

Let S = {..., s, ...} denote a set of states of the world, and let X = {..., x, y, ...} be an
arbitrary set of outcomes. An individual chooses among finite-outcome acts,9 maps from

states to outcomes. F = {..., f, g, ...} is the set of all such acts. The set of events E = 2S =
{..., E, F, ...} is the set of all subsets of S. A collection {S, X , E , F} defines the Savagean
model of purely subjective uncertainty. An individual is characterized by a binary relation

over acts in F , which will be defined as a preference relation and taken to be the primitive
of the model. As will become clear in the sequel, it is essential to work with the strict binary

relation Â. Indifference and weak preference will be defined as usual (here and for all strict
binary relations throughout): f ∼ g ⇔ f ¨ g and f ⊀ g, f % g ⇔ f Â g or f ∼ g. Let Âx

denote the preference relation over certain outcomes, X , obtained as a restriction of Â to

constant acts. We say that event E is null if for any two acts, f, g which differ only on E,

we have f ∼ g.

Define the set of simple (finite-outcome) probability distributions over the outcomes

(lotteries):

P0(X ) =
(
P = (x1, p1, ..., xN , pN)

¯̄̄̄
¯ X
n=1,...,N

pn = 1, xn ∈ X , pn ≥ 0, N ∈ N++
)
. (1)

Finally, δx denotes the degenerate lottery P = (x, 1).

Let π stand for a probability measure on E , and let u be a utility over outcomes u :
X → R. For each act, π induces a probability distribution over payoffs, referred to as a
lottery. For an act f , Πf denotes the induced cumulative probability distribution of utility

Πf(z) = π[s ∈ S|u(f(s)) ≤ z, z ∈ R]. Then, for a fixed act f and τ ∈ (0, 1], the τ th quantile
of the distribution of the random variable u(x) is a (generalized) inverse of the cumulative

distribution at τ . The generalized inverse is defined as the smallest value z, such that the

probability that a random variable will be less than z is not smaller than τ :

Qτ(Πf) = inf{z ∈ R|π[u(f(s)) ≤ z]≥τ}, (2)

9An act f is said to be finite-outcome if its outcome set f(S) = {f(s)|s ∈ S} is finite.

8



while for τ = 0, the quantile is defined as10

Q0(Πf) = sup{z ∈ R|π[u(f(s)) ≤ z]≤0}. (3)

Definition 1 A decision maker is said to be a τ -quantile maximizer if there exists a unique
τ ∈ [0, 1], a probability measure π on E and utility u over outcomes in X , such that for all
f, g ∈ F,

f Â g ⇔ Qτ(Πf) > Qτ(Πg). (4)

By analogy with the Expected Utility, where the mean is a single statistic evaluating a

distribution, when choosing among lotteries, a τ -maximizer assesses the value of each lottery

by the τ th quantile realization. Notice that, although in general a correspondence, generically

in payoffs, the set of optimal choices is a singleton.

The quantile model nests two choice rules famous in the literature of choice under risk:

maxmin and maxmax. A decision maker choosing according to maxmin picks the act with

the highest minimal payoff:

f Â g ⇔ min
{x∈f(S)|π(x)>0}

u(x) > min
{x∈g(S)|π(x)>0}

u(x). (5)

Maxmax dictates selection of the act with the highest maximal payoff:

f Â g ⇔ max
{x∈f(S)|π(x)>0}

u(x) > max
{x∈g(S)|π(x)>0}

u(x). (6)

That the maxmin and maxmax decision makers are, respectively, the 0- and 1-quantile

maximizers follows from

Q0(Πf) = min
{x∈f(S)|π(x)>0}

u(x), Q1(Πf) = min
{x∈f(S)|π(x)>0}

u(x). (7)

Quantile Maximization can thus be viewed as a generalization of those extreme choice rules

to any intermediate quantile. While the main focus of the paper will be on finite-outcome

acts, in Example 1, we illustrate the relation between maxmin, maxmax and Quantile

Maximization using infinite-outcome acts.

Example 1 Consider an individual who is facing a choice between two acts, f and g. Let π
be the probability measure that represents the agent’s beliefs. The cdf’s induced by the acts,

f and g, and measure π are plotted in Figure 1. The 0-quantile maximizer would choose f ,

the 1-quantile maximizer would be indifferent, and the median- (τ = 0.5) maximizer would

10Cf. Denneberg (1994). Clearly, the separate formulation for τ = 0 merely ensures that the inverse is in
the support; otherwise, the definition is conceptually the same as in the case of τ ∈ (0, 1] in that it picks
the smallest value z (from the support of a given lottery), such that the probability that a realization will
be less than z is at least 0.

9



prefer g.

Figure 1. Distributions induced by acts in Example 1
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3 Axioms

Consider the following five axioms on Â. The numbering is Savage’s, the names of his
conditions are adapted from Machina and Schmeidler (1992), and the superscript “Q” (for

"Quantile") is added to new axioms. The precise relationship of these axioms with those of

Savage is presented at the end of the section.11

AXIOM P1 (ORDERING): The relation Â is a weak order.

This standard condition defines Â as a preference relation. To state the next axiom, for a
fixed act f ∈ F and event E, such that f−1(x) = E for some x ∈ f(S), we define the unions
of events which by f are assigned outcomes strictly more and strictly less preferred to x,

respectively:12

Efx+ = {s ∈ S|f(s) Â x}, (8)

Efx− = {s ∈ S|f(s) ≺ x}. (9)

Note that since the acts are finite-ranged, every act induces a natural partition of the state

space S, which is the coarsest partition with respect to which it is measurable. The event
E is an element of such a partition. Let the function gx+ be any mapping gx+ : Efx+ → X
with gx+(s) % x, for all s ∈ Efx+ and similarly, let gx− be any mapping gx− : Efx− → X
with gx−(s) - x, for all s ∈ Efx−.

11In addition, the axioms are compared with other conditions in the literature in Section 6.
12For notational clarity, we assume (w.l.o.g.) that the set {y ∈ f (S) |y ∼ x, f (E) = x} is a singleton.

Alternatively, the unions (8) and (9) could be defined with respect to f−1
Ã S

x∈f(S)
y

¯̄̄̄
¯ y ∼ x

!
for some

x ∈ f (S).
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AXIOM P3Q (PIVOTAL MONOTONICITY): For any act f ∈ F, there exists a
non-null event E, such that f−1(x) = E for some x ∈ f(S), and for any outcome y, and

subacts gx+, gx−, gy+, and gy− :⎡⎢⎣ gx+ if Efx+

x if E

gx− if Efx−

⎤⎥⎦ %
⎡⎢⎣ gy+ if Efx+

y if E

gy− if Efx−

⎤⎥⎦⇔ x % y. (10)

Before we explain the roles this axiom serves, we first interpret the following key implication:

For an act f ∈ F , event E, such that f−1(x) = E for some x ∈ f(S), and all subacts
gx+, gx−, gy+, and gy− define

fE =

⎡⎢⎣ gx+ if Efx+

x if E

gx− if Efx−

⎤⎥⎦ ; (11)

It follows from P3Q that for any act f ∈ F , there exists a non-null event Ef , such that

f−1(x) = E for some x ∈ f(S), and for all subacts gx+, gx−, gy+, and gy−:

f ∼ fE. (12)

The last condition states that for a given act, there exists an event, which will be called

a pivotal event, such that changing outcomes outside of that event in a (weakly) rank-

preserving way does not affect preferences over acts — a form of separability. Crucially,

what are held fixed during the transformation are the events assigned to outcomes which in

the original act f are either strictly preferred or strictly less preferred to x, the outcome on

the pivotal event. These events are fixed in the sense that after the transformation they will

still map to outcomes preferred or less preferred, respectively, to x, with a weak preference

permitted.13 The measurability requirement that the act f be constant for the pivotal event

ensures that the conditions (10) and (12) are non-trivial. (Otherwise, the state space could

be taken as pivotal for any act.) This axiom will be the key to guaranteeing the existence

and uniqueness of a number τ ∈ [0, 1]. Intuitively, it implies that the induced preferences
over lotteries will not change by replacing parts of the cumulative probability distributions

below and above some quantile.

As its name suggests, P3Q also provides preferences over acts with an appropriate, local

notion of monotonicity. It states that replacing an outcome y on the pivotal event by a

13Or, for each act f ∈ S, the state space can be partitioned into three event classes: one mapping to
outcome(s) to which the act as a whole is indifferent, one mapping to outcomes strictly less preferred to
these, and one mapping to outcomes strictly more preferred. The axiom asserts that replacing the outcomes
within these three classes (i.e., preserving the ranking of outcomes across classes) leaves the agent indifferent.

11



(weakly) preferred outcome x always leads to a (weakly) preferred act. It is noteworthy

that it suffices that the preference be monotonic on the pivotal event only; the axioms

jointly allow for extending the monotonicity to the whole collection of events E .
In addition, together with other axioms, Pivotal Monotonicity will imply that how an

outcome in an act is assessed by a decision maker depends only on the likelihood of the

event to which the outcome is assigned, and not on the event itself; that is, that the utility

over outcomes, u(x), is event independent. In a similar manner, in the presence of other

axioms, P3Q will render the property of being pivotal state-independent.14 This will set

up a relation between pivotal events across acts, on which Pivotal Monotonicity as such is

silent.

AXIOM P4Q (COMPARATIVE PROBABILITY): For all pairs of disjoint events E

and F , outcomes x∗ Â x, and subacts g and h,⎡⎢⎣ x∗ if s ∈ E

x if s ∈ F

g if s /∈ E ∪ F

⎤⎥⎦ Â
⎡⎢⎣ x∗ if s ∈ F

x if s ∈ E

g if s /∈ E ∪ F

⎤⎥⎦⇒
⎡⎢⎣ x∗ if s ∈ E

x if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ %
⎡⎢⎣ x∗ if s ∈ F

x if s ∈ E

h if s /∈ F ∪ F

⎤⎥⎦ .
(13)

P4Q asserts that replacing outcomes on the common subact mapping from (E ∪ F )c does not
strictly reverse the likelihood ranking of events E and F . It implies that adding a common

complement event to either E or F will not strictly reverse the likelihood ranking between

them. This, in turn, will ensure that the “more likely than” relation over events, to be

induced from preferences over acts, is a weak order,15 and it will provide its representation

with a finitely additive form. Notice that the axiom has no effect in the cases leading to τ

equal to 0 or 1; that it does not imply Savage’s P4; and that no events are required to be

non-null.

AXIOM P5 (NONDEGENERACY): There exist acts f and g, such that f Â g.

This is the familiar non-triviality condition. By requiring that the individual not be in-

different among all outcomes, P5 assures that both the preference relation and the derived

14Formally, after we define a likelihood relation, we establish that exchanging outcomes between equally
likely events will not alter agent’s preferences (Lemma 3).
15We record the following interesting feature of preferences in the quantile model: Unlike in Savage, it

is the monotonicity axiom, P3Q, that together with P1, induces the standard likelihood relation, defined
below in (22). P4Q gives the weak-order structure to a new likelihood relation this paper constructs for
the quantile model (Section 5), which uses more information contained in preferences Â. The role of P4Q
in defining the new likelihood relation is less direct compared to the role played by P4 in Savage (1954) in
the sense that is only required to hold for pairs of acts mapping events E and F to (the same) outcomes
x∗ Â x.
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likelihood relation are well-defined (in particular, non-reflexive) weak orders. It also permits

establishing the uniqueness of a probability-measure representation of beliefs.

Before we state the final axiom, we introduce conditions that identify two interesting

classes of preferences.

(L, “lowest”): For any act f ∈ F , the pivotal event maps to an outcome from the least

preferred equivalence class w.r.t. Âx in the outcome set {x ∈ X|x ∈ f(S)}.
(14)

(H, “highest”): For any act f ∈ F , the pivotal event maps to an outcome from the most

preferred equivalence class w.r.t. Âx in the outcome set {x ∈ X|x ∈ f(S)}.
(15)

Intuitively, these preferences will lead to τ = 0 and τ = 1, respectively.

Definition 2 A preference relation over acts F, Â, satisfying P3Q, is called extreme if
either (L) or (H) holds. It is called non-extreme if neither (L) nor (H) is satisfied.

Let us define two continuity properties that will be used in the final axiom.

(P6Q∗) For all events E,F ∈ E, if for any pair of outcomes x Â y,"
x if s /∈ E

y if s ∈ E

#
≺
"
x if s /∈ F

y if s ∈ F

#
, (16)

then there exists a finite partition {G1, ..., GN} of S, such that, for all n = 1, ..., N ,"
x if s /∈ E

y if s ∈ E

#
≺
"
x if s /∈ F ∪Gn

y if s ∈ F ∪Gn

#
. (17)

(P6Q∗) For all events E,F ∈ E, if for any pair of outcomes x Â y,"
x if s ∈ E

y if s /∈ E

#
Â
"
x if s ∈ F

y if s /∈ F

#
, (18)

then there exists a finite partition {H1, ...,HM} of S, such that, for all m = 1, ...,M ,"
x if s ∈ E

y if s /∈ E

#
Â
"
x if s ∈ F ∪Hm

y if s /∈ F ∪Hm

#
. (19)

AXIOM P6Q (EVENT CONTINUITY): The relation Â satisfies P6Q∗ for all pairs of

events in E if Â is non-extreme or (H) holds; Â satisfies P6Q∗ for all pairs of events in E
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if (L) holds or for a pair of a null event and any event E in E if Â is non-extreme.

For the non-extreme preferences, the main force of this Archimedean axiom comes from

the implication that the state space is infinite. Furthermore, it ensures that the quantile

in the representation is left-continuous. Being formulated in terms of two-outcome acts, it

has no further implications for risk preferences (i.e., the restriction of the implied lottery

preferences to constant lotteries).

Discussion. How “far” is Pivotal Monotonicity from the quantile representation? We

note that the axiom does not require that the pivotal event is unique in a given act; and,

therefore, it does not say how to relate pivotal events across acts. More importantly, the

unique number τ in the unit interval [0, 1] can only be pinned down after the measure

representation for beliefs is derived; and it is constructing the measure(s) that requires the

most work. Alternatively, we now demonstrate that, given the remaining axioms, another

condition could be used in place of Pivotal Monotonicity. Lemma 1 establishes a remarkable

property of the preferences Â: For any pair of acts, replacing the outcomes in their ranges
in a weakly rank-preserving (w.r.t. Âx) way, does not affect the agent’s preferences over

these acts.

Consider act f ∈ F , such that for some disjoint events E and F , f−1(E) = x∗ and

f−1(F ) = x. Define gx∗+ as a mapping S → X , such that gx∗+(S) % x∗, gx∗−,x+ as a

mapping, such that x∗ % gx∗−,x+(S) % x, and gx− as a mapping, such that x % gx−(S).

Lemma 1 Assume Weak Order (P1), Pivotal Monotonicity (P3Q) and Nondegeneracy
(P5). For all events E and F , all pairs of outcomes x∗ Â x and y∗ Â y, and all sub-

acts gx∗+, gx∗−,x+, gx−, hy∗+, hy∗−,y+, and hy−,⎡⎢⎢⎢⎢⎢⎢⎣
gx∗+ if s ∈ G1

x∗ if s ∈ E

gx∗−,x+ if s ∈ G2

x if s ∈ F

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎢⎢⎢⎣

gx∗+ if s ∈ G1

x∗ if s ∈ F

gx∗−,x+ if s ∈ G2

x if s ∈ E

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦⇒
⎡⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ E

hy∗−,y+ if s ∈ G2

y if s ∈ F

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ F

hy∗−,y+ if s ∈ G2

y if s ∈ E

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ .
(20)

Crucially, in the presence of Weak Order (P1) and Nondegeneracy (P5), condition (20)

is equivalent to P3Q; underlying this equivalence (established in Lemma 8 in Appendix 1A)

is the ordinal nature of the model. Quantile Maximization could, thus, be axiomatized with

condition (20) replacing Pivotal Monotonicity. We choose to work with Pivotal Monotonicity

for expositional purposes and to facilitate comparisons with other models of choice.

One other consequence of property (20) is worth highlighting. The condition will allow

inducing a likelihood relation over events, which it implicitly defines. Because of Lemma 1
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the quantifiers in P4Q can be considerably weakened compared to Savage’s P4.

Relation to Savage’s (1954) axioms. The only conditions that Quantile Maximization

literally shares with the Subjective Expected Utility are the P1 (Ordering) and Nondegen-

eracy (P5). Compared to Savage, we drop the Sure-Thing Principle (P2) and weaken the

continuity (P6, Small-Event Continuity) axiom of preferences. Our condition leading to the

derived likelihood relation and the one driving the monotonicity of preferences are indepen-

dent from their Savage’s counterparts (respectively: P4, Weak Comparative Probability,

and P3, Eventwise Monotonicity).

Not surprisingly, P2 (the Sure-Thing Principle) is too strong for Quantile Maximiza-

tion.16 Similarly to P3 (Eventwise Monotonicity), P2 fails when a change in the common

subact affects how other outcomes rank w.r.t. Âx in an act’s outcome set. Precisely, what

fails is the quantification “for all subacts,” which our new axiom, P3Q (Pivotal Monotonic-

ity), weakens together with yet another quantifier in P3: “for all events.” In the presence of

other axioms, P2 still holds in the restricted class of acts, even after the second relaxation

of quantifiers, but it has no independent implications (cf. Lemma 1). This weakening of P2

does not, however, preserve the structure in preferences that was used in the Subjective Ex-

pected Utility model to obtain additivity of the probability measure. To recover additivity,

we strengthen P4 (Weak Comparative Probability) to P4Q (Comparative Probability).

The Archimedean axiom of the Subjective Expected Utility theory, P6 (Small-Event

Continuity), does not hold under Quantile Maximization. To see why, fix τ = 1 and a pair

of acts f Â g. Then, taking x Â f(S), gives

f ≺
"
x if s ∈ En

g if s /∈ En

#
(21)

for an arbitrary event En.17 The original P6 ensures both that no consequence is infinitely

desirable or undesirable, as well as that the derived probability measure is nonatomic.

Crucially, what τ -maximization violates is the former but not the latter. We weaken the

axiom P6 to P6Q (Event Continuity) so that it retains only the continuity implications for

probabilities.

16For example, consider three equally likely events E1, E2 and E3. A median maximizer (τ = 0.5) prefers

act

⎡⎣ 3 if E1
2 if E2
0 if E3

⎤⎦ to act
⎡⎣ 4 if E1
1 if E2
0 if E3

⎤⎦, but she prefers
⎡⎣ 5 if E3
4 if E1
1 if E2

⎤⎦ to
⎡⎣ 5 if E3
3 if E1
2 if E2

⎤⎦.
17Analogous counter-examples can be constructed for any number τ ∈ [0, 1]. We provide a sketch of

the argument, completion of which relies on results proved in the sequel. For an intermediate value of τ ,
τ ∈ (0, 1), take an act f and let E be its pivotal event such that f(E) = x and π(E ∪ Ef−) = τ . On
a nonnull subevent of E, Ê, which exists by P6Q, replace x with z Â x to obtain the preference reversal

f ≺
∙
z if s ∈ Ê

g if s /∈ Ê

¸
.

15



We close this section by remarking that the conditions (P6Q∗) and (P6Q
∗
) can be in-

terpreted in terms of likelihood relations — we will use that interpretation in the sequel.

Although the definition of likelihood we adopt to construct probabilities differs from the

commonly used one (see Section 5), the standard definition, implicitly employed in P6Q,

still allows us to retrieve useful information from preferences. Formally, as proposed by

Ramsey (1931) and adopted by Savage (1954), the likelihood relation Â∗, a binary relation
on E , is defined through Savage’s P4 (Appendix 1), implied by our P1 and P4Q:

E Â∗ F if for all x Â y,

"
x if s ∈ E

y if s 6∈ E

#
Â
"
x if s ∈ F

y if s 6∈ F

#
. (22)

We also employ the following definition, which differs from Â∗ in that it maps the events
E and F , whose likelihood is being compared, to the less preferred outcome:

E Â∗ F if for all x Â y,

"
x if s 6∈ E

y if s ∈ E

#
≺
"
x if s 6∈ F

y if s ∈ F

#
. (23)

Given these definitions, conditions P6Q∗ and P6Q
∗
can be restated as follows:

(P6Q∗, restated): For all events E,F ∈ E, if E Â∗ F , then there exists a finite partition
{G1, ..., GN} of S such that, for all n = 1, ..., N , E Â∗ F ∪Gn.

(P6Q∗, restated): For all events E,F ∈ E, if E Â∗ F , then there exists a finite partition
{H1, ..., HM} of S such that, for all m = 1, ...,M , E Â∗ F ∪Hm.

In all cases leading to τ ∈ (0, 1], the relation Â∗ will be central to deriving measure-
representations for beliefs. The reason for altering the relation from the commonly used Â∗
to Â∗ is that Â∗ would yield right-continuity of the quantile representation functional. We
follow the convention in the literature and define (and derive) quantiles as left-continuous.

The distinctive formulation of the condition in P6Q for the subclass (L) of the extreme
preferences is due to the fact that, in this case, P6Q∗ fails. (Section 5 clarifies this point.)

4 Axiomatic Foundations of Quantile Maximization

4.1 Probabilistic Sophistication

This section presents the first of two central theorems of the paper. The result shows

that quantile maximizers’ preferences Â over uncertain alternatives are consistent with

them having a subjective probability distribution over the states in S, thereby establishing
probabilistic sophistication. Since the seminal paper by Machina and Schmeilder (1992),
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a formal definition of probabilistic sophistication, a property of preferences over acts, has

been evolving. We adopt the following conceptualization:18 Fix a probability measure π

on the set of events E . Each act f ∈ F can be mapped to a lottery in P0(X ) in a natural
way, through the mapping f → π ◦ f−1. We say a decision maker (or, the relation Â)
is probabilistically sophisticated if she is indifferent between two acts that induce identical

probability distributions over outcomes. Formally, for all P,Q in P0(X ), and all f, g in F ,¡
P = Q, π ◦ f−1 = P, π ◦ g−1 = Q

¢⇒ f ∼ g. (24)

In passing, we define a mapping from acts in F to lotteries in P0(X ) using a fixed (pos-
sibly non-additive) measure λ. For an act f ∈ F , rank the outcomes in f ’s outcome set

f(S) w.r.t. Â: x1 - x2 - ... - xN for some N ∈ N++; next, map the correspond-
ing events E1, E2, ..., EN to numbers p1, p2, ..., pN in [0, 1] according to: p1 = λ(E1) and

pn = λ
¡S

m≤nEm

¢ − λ
¡S

m0≤n−1Em0
¢
for n ∈ {2, ..., N}. As Pn≤N pn = 1, the mapping

f → λ◦f−1 uniquely yields a lottery P ∈ P0(X ). Further, given the mapping f → λ◦f−1, a
non-additive measure λ (uniquely) implies a cumulative probability distribution for a given

act f ∈ F , denoted by Λf . Theorem 1 characterizes subjective beliefs about the likelihood

of events for individuals whose preferences over acts satisfy P1, P3Q, P4Q, P5, P6Q.

Theorem 1 Suppose a preference relation Â over F satisfies P1 (Ordering), P3Q (Piv-

otal Monotonicity), P4Q (Comparative Probability), P5 (Nondegeneracy), and P6Q (Event

Continuity). Then,

A. There exists a unique, finitely additive, convex-ranged probability measure π with

respect to which the relation Â is probabilistically sophisticated if and only if it is not extreme.
B. If the relation Â is extreme, there exists a set of nonatomic capacities Λ(E) on E,

such that the condition (24) holds for any capacity λ ∈ Λ(E).

The result reveals two interesting behavioral characteristics of beliefs underlying the

choice of quantile maximizers. Theorem 1 first unveils that beliefs enter differently into

the decision-making of agents with extreme versus non-extreme preferences. The theorem

identifies a condition on preferences that satisfy axioms P1, P3Q, P4Q, P5, P6Q under

which quantile maximizers, like expected utility maximizers, behave as if they based their

choice on a unique probability measure. This is the case as long as their preferences are not

extreme. The result further asserts that the beliefs of maxmin and -max agents although

not additive are nonetheless monotone with respect to event inclusion, and the agents can

hence distinguish among such events whenever the event differences are nonnull. Thus, the

choices of maxmin and -max decision makers reflect more from their beliefs than merely

whether events (and their complements in S) are null or not. In Section 5, we explain at
18It was first formalized by Grant (1995). Chew and Sagi (2006) have employed it to provide the most

general characterization of probabilistic sophistication to date.

17



preference level what engenders the differences in the properties of the probability mea-

sures representing beliefs of individuals with the non-extreme compared to the extreme

preferences.

Discussion. Theorem 1 has two more general implications for modeling probabilistic

sophistication as such. First, the qualitatively different properties of beliefs of extreme

and non-extreme quantile maximizers (additivity, uniqueness, and convex-rangedness) in-

vite a question about whether the definition of probabilistic sophistication should not be

strengthened. Note carefully that for agents with the the extreme preferences, condition

(24), increasingly used in the literature to define probabilistically sophisticated agents, is

satisfied even if each act being compared is evaluated through a different (and non-additive)

measure in Λ(E).19 Furthermore, we establish that the preferences of the extreme-quantile
maximizers remain intact whenever outcomes are exchanged between arbitrary disjoint non-

null events, and not only equally likely events (Section 5). Should probabilistic sophistication

permit that? Perhaps, its definition ought to require both additivity and uniqueness of the

measure representing beliefs?20

Second, as we discuss in the next section, nothing in the conditions imposed on pref-

erences Â over acts in F in Theorem 1 implies that there is a real-valued utility index

providing them with a numerical representation. This is in stark contrast with the expected

utility model, and indeed, with any cardinal one. Formally, the presence of P6-like axiom

imposes a restriction on the set of outcomes X (Â-denseness of a countable subset) which,
19In fact, the preferences of extreme (as well as not) quantile maximizers also satisfy a stronger version

of probabilistic sophistication: Define a preference relation over lotteries, %P , induced from the underlying
preferences over acts %:

If π ◦ f−1 = P, π ◦ g−1 = Q for some f, g ∈ F , then (f % g ⇒ P %P Q) . (25)

Then, % is probabilistically sophisticated if there exists a measure µ on the set of events, inducing a relation
%P over lotteries, such that for all P,Q in P0(X ), and all f, g in F¡

P %P Q, µ ◦ f−1 = P, µ ◦ g−1 = Q
¢⇒ f % g. (26)

This characteristic of preferences over acts % entails that they can be recovered from the knowledge of µ
and lottery preferences %P alone. It is straightforward to show that the stronger definition is equivalent
with (24) if the relation Â is a weak order and π is convex-ranged (so that the mapping from F to P0(X ) is
onto), which is the case in our model for non-extreme preferences Â. The above formulation was proposed
by Grant (1995), who also demanded uniqueness of µ.
Although the choices of agents with extreme preferences are consistent with a set of beliefs, Λ(E), one can

recover the agents’ entire preference relation over all acts, even with measures that are not only not additive
but also not convex-ranged. The knowledge of (one measure from) that set and the lottery preferences
suffices (see Appendix 1C).
20Even though additivity has no bite for the beliefs of maxmin and -max individuals, there does exist an

additive measure representing their beliefs. If condition (24) was adopted to define probabilistic sophistica-
tion with the additional requirement that π be unique, the extreme preferences (and only these preferences
in the quantile model) would not be probabilistically sophisticated. While established in Machina and
Schmeidler’s (1992) and Chew and Sagi’s (2006) results, uniqueness is not required in their definitions of
probabilistic sophistication.
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along with a weak-order structure, is then equivalent to the existence of a real-valued index

on the set X (Debreu (1954)). Our derivation of beliefs does not impose any conditions

on the outcome set. Instead, we can derive a real-valued probability measure (and a real

number τ ∈ [0, 1]) without having a numerical representation of preferences. One benefit
offered by our technique (presented in Section 5) is that it can be used to characterize beliefs

of agents without well-defined utility functions. Unlike Machina and Schmeidler (1992) or

Grant (1995), we can, for example, derive beliefs for lexicographic agents.21

4.2 Representation Results

Quantile Maximization with Respect to Probabilities. We now present the sec-

ond main result of the paper, a complete characterization of choice behavior of quantile

maximizers. Theorem 2 states that the preferences of a quantile maximizer satisfy axioms

P1, P3Q, P4Q, P5, and P6Q, and conversely, an individual whose preferences conform to

those axioms can be viewed as a quantile maximizer.

As noted in the previous section, one novel aspect of our axiomatization is that the

axioms do not impose any structure on the set of outcomes X . To assure that the repre-
sentation is numerical, in the next two theorems, we add the condition that X contains a

countable Â-order dense subset.22 Without it, Theorems 2 and 3 could be re-cast in terms
of quantiles of distributions of outcomes x rather then payoffs u(x): the axioms are neces-

sary and sufficient for there to exist a unique number τ in [0, 1] and probability measure(s)

representing beliefs that guide the behavior of a quantile maximizer.

Theorem 2 Consider a preference relation Â over F. The following are equivalent:
(1) Â satisfies: P1 (Ordering), P3Q (Pivotal Monotonicity), P4Q (Comparative

Probability), P5 (Nondegeneracy), and P6Q (Event Continuity).

(2) There exist:

(i) a unique number τ ∈ [0, 1];
(ii) a probability measure π for τ ∈ (0, 1) and a set of capacities Λ (E) for τ ∈ {0, 1},

21It might be worthwhile putting our results and the weakening of Savage’s P6 in perspective. Motivated
by an observation that Savage’s (1954) derivation of subjective probabilities depends on axioms that lead to
an expected-utility functional, Machina and Schmeidler (1992) characterized an individual whose choice is
based on probabilistic beliefs, but does not necessarily comply with the Expected Utility hypothesis. Grant
(1995) observed that Machina and Schmeidler’s definition and proof still restrict a class of preferences
by requiring that the induced lottery preferences satisfy continuity and monotonicity properties (mixture
continuity and monotonicity with respect to stochastic dominance). Grant (1995) postulated that the notion
of probabilistic sophistication as such should be dissociated from extraneous properties of the induced lottery
preferences, and hence of the utility representation of preferences. Nevertheless, although Grant’s (1995)
derivation drops Savage’s monotonicity, it does use a weaker continuity property (two-outcome mixture
continuity). He concludes: “Ideally then, it would be nice to characterize probabilistically sophisticated
preferences without requiring the induced risk preferences to exhibit any specific properties save perhaps
some form of continuity ...” (p.177). Our characterization of probabilistic sophistication achieves that. In
fact, the represenation functional cannot be mixture continuous in an ordinal model like ours.
22Natural examples include X being finite, countably infinite, X = R.
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as characterized in Theorem 1;

(iii) a utility function on X , u, which represents Âx, where u is unique up to

strictly increasing transformations;

such that the relation Â over acts can be represented by the preference functional
V(f) : F → R given by

V(f) = Qτ(Πf) if τ ∈ (0, 1); (27)

V(f) = Qτ(Λf) for any λ ∈ Λ (E) if τ ∈ {0, 1}. (28)

The choice mechanism is thus decomposed into two factors: τ which is assured to be unique,

and a probability measure, unique for all τ ∈ (0, 1); a set of monotone measures represents
beliefs held by quantile maximizers with τ = 0 or τ = 1.

Quantile Maximization with Respect to Capacities. In the characterization of

preferences through Theorems 1 and 2, the additivity axiom (Comparative Probability,

P4Q) has no implications for the derived representation of beliefs of maxmin and -max

decision makers. The next theorem establishes that when P4Q is dispensed with, one can

still uniquely pin down a number τ ∈ [0, 1] and that, for any such τ , agent’s beliefs can

then be represented by capacities. Thus, the remaining four conditions axiomatize Quantile

Maximization with respect to non-additive measures. A decision maker chooses as if she

were evaluating an act f ∈ F by Qτ (Λf) for some λ ∈ Λ(E), with Λ(E) being the set of
representing capacities.23 ,24

Theorem 3 Consider a preference relation Â over F. The following are equivalent:
(1) Â satisfies: P1 (Ordering), P3Q (Pivotal Monotonicity), P5 (Nondegeneracy),

and P6Q (Event Continuity).

(2) There exist:

(i) a unique number τ ∈ [0, 1];
(ii) a set of nonatomic capacities Λ(E) on E;
(iii) a utility function on X , u, which represents Âx, where u is unique up to

strictly increasing transformations;

such that the relation Â over acts can be represented by the preference functional
VC(f) : F → R given by

VC(f) = Qτ (Λf) for any λ ∈ Λ(E). (29)

23Since we prove it through a different argument, the result is not stated as a direct corollary of Theorem
2.
24For τ ∈ (0, 1) the number τ and the set Λ (E) are unique as a pair.
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Again, note that condition (24) holds, even if each act being compared is evaluated

through a different (and non-additive) measure in Λ(E). The earlier discussion questioning
the aptness of (24) to capture probabilistic sophistication thus extends to all τ -maximizers,

τ ∈ [0, 1].

5 Sketch of the Proofs of Theorems 1 and 2

This section lays out in detail our axiomatization of subjective probabilities and Quantile

Maximization (Theorems 1 and 2). Our goal is to separate beliefs from preferences, thus

establishing probabilistic sophistication and, after we derive a measure-representation for

these beliefs, to separate a quantile from probability distributions.

The proof proceeds as follows: The first step (Theorem 1) is to separate beliefs from

preferences over F , Â. Formally, that step involves deriving the likelihood ranking revealed
by the preference relationÂ, and showing that it can be represented by a probability measure
π on E . This part is the heart of the proof. Next (Theorem 2), we demonstrate that there

exists a unique number τ in the unit interval [0, 1], such that an individual is indifferent

between two acts, f and g, if and only if she is indifferent between the τ th- quantile outcomes

of the cumulative probability distributions induced by π and the acts f , g. To make the

constructed representation of the relation Â on F numerical, we further derive (a family of)
utility functions u over certain outcomes. Finally, we establish that axioms P1, P3Q, P4Q,

P5, and P6Q on the relation Â, shown to be sufficient for obtaining the representation, are
also necessary. The proof sketch presented here focuses on the sufficiency part.

Probability Measures. We begin by explaining why Savage’s (1954) construction cannot

be directly used in the Quantile Maximization model. (Section 7 clarifies why Machina and

Schmeilder’s [1992] and Grant’s [1995] derivations cannot be applied either.) Thereby, we

identify the central difficulty in constructing a probability measure in the present setting.

Briefly, in order to derive a probability measure representation for beliefs under the

Expected Utility model, Savage proceeded as follows:25 He first defined a likelihood relation

— the binary relation Â∗ over events in E, formulated in (22) — induced from preferences

Â over acts in F . Savage then showed that axioms P1-P6, satisfied by the binary relation
over acts, imply conditions on the likelihood relation that are necessary and sufficient for

the likelihood relation to admit a unique probability-measure that (i) represents it and (ii)

is convex-ranged.26 These conditions are:

25The description follows Fishburn’s (1970) exposition of Savage’s result.
26Respectively, (i) E Â∗ F if and only if π(E) > π(F ), for any E,F ∈ E, and (ii) for any E ∈ E, and

any ρ ∈ [0, 1], there is G ⊆ E, such that π(G) = ρ · π(E). While equivalent to nonatomicity for countably
additive measures, convex-rangedness is stronger for finitely additive measures, which are derived in this
paper. (See Bhaskara Rao and Bhaskara Rao [1983], Ch. 5.)
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A1 ∅ 6Â∗ E.
A2 S Â∗ ∅.
A3 Â∗ is a weak order.
A4 (E ∩G = F ∩G = ∅)⇒ (E Â∗ F ⇔ E ∪G Â∗ F ∪G).
A5 P6Q∗.

In the Quantile Maximization model, however, the relation Â∗ does not satisfy the
above set of axioms. Specifically, what fails for all τ ∈ (0, 1) is axiom A4, which is key to

establishing the additivity of the probability measure. For τ ∈ {0, 1}, A4 is vacuous under
the relation Â∗. In addition, A5 fails for τ ∈ (0, 1], but this problem disappears when our

Eventwise Continuity (P6Q) is used instead.

A5’ P6Q

What underlies the failure of A4 is that the commonly used likelihood relation Â∗ does
not discriminate well between events from E , as we now make precise. Consider a median
maximizer (τ = 0.5), and suppose that there does exist a probability measure, π, that

represents her beliefs. Suppose further that she compares events E and F , such that π(E) =

0.3 and π(F ) = 0.2. Given the measure π, each act in the definition of Â∗, (22), induces
a probability distribution. When the median maximizer compares these distributions, she

ranks them as indifferent. Yet what this means in terms of the relation Â∗ is that the
decision maker ranks events E and F as equally likely. In general, under τ -maximization,

the relation Â∗ ranks as equally likely all pairs of events with probabilities either both
smaller than 1 − τ or both greater than 1 − τ 27; for τ = 1 (τ = 0), the likelihood of no

events both being more likely than ∅ (less likely than S) can be ranked strictly by Â∗. The
following lemma demonstrates how crude the relation Â∗ is: There are only two equivalence
classes in the collection E under ∼∗; all events in E are ranked as either equally likely to the
null set ∅ or to the state space S.

Lemma 2 E Â∗ ∅⇔ E ∼∗ S; E ≺∗ S ⇔ E ∼∗ ∅.

Therefore, even if there is a probability measure that represents the beliefs of a quan-

tile maximizer, the relation Â∗ will not allow us to recover that measure from a data set

containing all choices among acts in all possible subsets of F .
27Comparing events E,F ∈ E through the likelihood ranking of their complements, as well as directly

(which already imposes some additivity), would still render “equally likely” all events E and F with prob-
abilities π(E) and π(F ) either both smaller than min{τ , 1 − τ}, or both greater than max{τ , 1 − τ}, or
both greater than min{τ , 1 − τ} and smaller than max{τ , 1 − τ}. That such double comparison would be
consistent follows from Lemma 6 in Appendix 1.
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Nonetheless, we show that the structure embedded in the preference relation over acts

Â is rich enough to reveal the relative likelihoods of events that can be provided with a

probability measure representation. Our approach is to construct a sub-collection of “small”

events, E∗∗ ⊂ E , and define a new binary relation on events, Â∗∗, which although incomplete
on E , is complete on the sub-collection E∗∗. We then derive a unique, convex-ranged, and
additive measure that represents a decision maker’s beliefs about the relative likelihoods of

events in E∗∗. Next, we build up from E∗∗ to construct a likelihood relation that is complete
and satisfies A1-A5’ on the whole collection of events E . Finally, we use the new likelihood
relation to uniquely extend the measure derived on E∗∗ to the collection E as well as to derive
a unique number τ . As explained below, in the cases leading to τ ∈ {0, 1}, the information
contained in Â does not suffice to permit all these steps.
The sub-collection of “small” events, E∗∗ ⊂ E , is defined to contain all events that are

ranked by the relation Â∗ as less likely than their complements:

E∗∗ ≡ {E ∈ E|Ec Â∗ E}. (30)

Why this construction is helpful and the make-up of events that the sub-collection consists

of will become clear after we specify a likelihood relation. On the collection E∗∗, we define
a new binary relation Â∗∗:

Definition 3 Let E,F ∈ E∗∗.

E Â∗∗ F if E ∪G Â∗ F ∪G for some event G ∈ E, such that (E ∪ F ) ∩G = ∅. (31)

The idea behind the new likelihood relation Â∗∗ is as follows: The events that can be
strictly ranked by Â∗∗ are “small” in the sense that there exists an event G in their common
complement, such that the unions E ∪ G and F ∪ G can be strictly ranked by Â∗. Back
to our earlier example, in which a median maximizer compares events E and F , such that

π(E) = 0.3 and π(F ) = 0.2, we ask how will the relation Â∗∗ rank these events? Take an
event G disjoint with both E and F and such that π (G) = 0.25. Adding G to events E and

F will enlarge the magnitudes of probabilities in an additive way (which is to be established)

and, thereby, switch the evaluation of the distribution induced by act [x if s /∈ E ∪ G; y

if s ∈ E ∪ G] in the definition of Â∗, (23), from outcome x to y28, while maintaining the

evaluation of the distribution induced by [x if s /∈ F ∪G; y if s ∈ F ∪G]) is unchanged at
x.
28The earlier example referred to the (standard) relation Â∗, whereas the new likelihood Â∗∗ builds on

the relation Â∗. The change merely ensures left-continuity of the quantile representation to-be-derived.
Yet, the logic behind the refined relation Â∗∗ is intact. (Clearly, we could have stated the first example
using Â∗.)
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For the relation Â∗∗ to be well-defined, we need to show that an event G in (31) exists,

and that there cannot be any other event G0 for which the ranking is reversed. That is, for

all E,F ∈ E∗∗, if E Â∗∗ F , then F ¨∗∗ E. Lemma 7 (in Appendix 1A) establishes the

latter. Explaining why the former is true will also clarify the moniker “small”: It is key to

show that collection E∗∗ consists of all (and only of) the events, such that for any E,F ∈ E∗∗
there exists G ⊆ (E ∪ F )c for which

E ∪G Â∗ F ∪G or E ∪G ≺∗ F ∪G or E ∪G ∼∗ F ∪G ∼∗ S. (32)

(32) establishes the sense in which events in E∗∗ can be compared through their complements
by the relation Â∗∗. In particular, the sub-collection E∗∗ does not contain events for which
E∪G ∼∗ F ∪G ∼∗ ∅ for all events G ⊆ (E∪F )c.29 Why this holds can be understood when
we further characterize collection E∗∗. We demonstrate that E∗∗ is equal to the equivalence
class that contains events that are ranked equally likely to the null set ∅ by one of the

relations Â∗ or Â∗.

E∗∗ = {E ∈ E|E ∼∗ ∅} or E∗∗ = {E ∈ E|E ∼∗ ∅}, (33)

where “or” is meant exclusively. In hindsight, after the measure and τ are pinned down,

one can show that the former corresponds to the representation with τ < 0.5 while the

latter corresponds to one with τ ≥ 0.5. Whether relation Â∗ or Â∗ is used is determined
endogenously by a condition on preferences Â, one that requires that the event G in (31)

exists. More precisely, we establish that if there is at least one event E, such that E ∼∗
Ec ∼∗ ∅, then all events F in the equivalence class generated by ∅ under Â∗ are such that
F ≺∗ F c, and hence do satisfy the defining condition for the collection E∗∗, (30). Otherwise,
all events in the equivalence class generated by ∅ under Â∗ satisfy the condition.30 Thus,
(32) holds, as desired.

In summary, we construct a collection of events E∗∗ and a likelihood relation Â∗∗, which
is not only complete on E∗∗ (though not on E\E∗∗), but can also rank (all) events in collec-
tion E∗∗ via their complements, in the sense of (32). The relations Â∗ and Â∗ should be
interpreted as helpful in retrieving information from preferences in the construction of the

collection E∗∗. It is the relation Â∗∗ that represents the likelihood ranking of events of a
quantile maximizer.

Now comes an important difference between the extreme and not extreme preferences. In

deriving the measure representation, it is essential that disjoint non-null subsets of the state

29This also ensures that the relation ∼∗∗ is meaningful.
30Observe that the collection E∗∗, defined as {E ∈ E|Ec Â∗ E}, coincides with {E ∈ E|Ec Â∗ E}, by the

definitions of Â∗ and Â∗ in (22) and (23).

24



space can be strictly ranked. This cannot be assured when preferences are extreme. For

that case, we show that a decision maker’s preferences over acts only depend on (and thus

can only reveal) whether an event is null, or it is the state space or nested in another event,

all up to differences on null sub-events. Therefore, when preferences are extreme, there

cannot exist an event in the common complement of any two disjoint non-null events, so

that they can be strictly ranked by ∼∗∗. Thus, intuitively, while all τ -maximizers, τ ∈ [0, 1],
can compare nested events, these are the only events that can be strictly ranked by 0- and

1-maximizers. It is at this point that the derivation of beliefs for τ = 0 and τ = 1 departs

from the general proof. Specifically, we establish the following invariance properties of the

extreme and non-extreme preferences:

Lemma 3
A. If the binary relation over acts, Â, is not extreme, then for all events E,F ∈ E∗∗,

such that E ∼∗∗ F , and all acts h ∈ F,⎡⎢⎣ x if s ∈ E

y if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ ∼
⎡⎢⎣ x if s ∈ F

y if s ∈ E

h if s /∈ E ∪ F

⎤⎥⎦ . (34)

B. If the binary relation over acts, Â, is extreme, then for all non-null events E,F ∈ E∗∗,
E ∩ F = ∅, and all acts h ∈ F,⎡⎢⎣ x if s ∈ E

y if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ ∼
⎡⎢⎣ x if s ∈ F

y if s ∈ E

h if s /∈ E ∪ F

⎤⎥⎦ . (35)

That is, decision makers with the non-extreme preferences are indifferent to exchang-

ing outcomes on events equally likely according to ∼∗∗. Individuals whose preferences are
extreme are indifferent to exchanging outcomes on disjoint, non-null events.

Furthermore, for the extreme preferences, it is essential to combine strict likelihood

judgments from Â∗ and Â∗, since in that case, it is the extended definition that makes it
possible to distinguish the likelihoods of ∅, S and events E, which differ from ∅ and S
on a non-null set. The combined judgment,31 demonstrated to be consistent in Lemma 6

(Appendix 1A), states that E is more likely than F if for all x Â y,"
x if s /∈ E

y if s ∈ E

#
≺
"
x if s /∈ F

y if s ∈ F

#
or

"
x if s ∈ F

y if s /∈ F

#
≺
"
x if s ∈ E

y if s /∈ E

#
. (36)

31Using definitions (22) and (23), (36) can be re-stated as: E is more likely than F if E Â∗ F or E Â∗ F .
One could employ that definition for all preferences, extreme and not extreme. As we explain above, this is
not necessary to characterize beliefs fully for non-extreme relation Â on F , for which a combined judgment
would generate three equivalence classes on E .
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For the non-extreme preferences, we show that axioms A1, A3, A4 and A5’ hold on

E∗∗∪E , where E = {E ∈ E|@F nonnull: E\F ∈ E\E∗∗},32 to derive a unique, finitely additive
and convex-ranged probability measure. Intuitively, collection E∗∗∪E contains events whose
probabilities will not be greater than min{τ , 1− τ}. We next show that any event from the
complement of sub-collection E∗∗∪E in E can be partitioned into events from E∗∗. Using the
properties of the measure derived on E∗∗ ∪ E , we then uniquely extend the measure to all
events in E . Turning to the extreme preferences, since they only distinguish between ∅, S
and pairs of nested events, up to differences on null sub-events, any (normalized) measure

that respects monotonicity w.r.t. events will still represent the same preferences. Therefore,

an extreme preference Â on F is consistent with a set of measures that are nonatomic but

not necessarily finitely additive.

Quantile. Having derived the probability measures, we recover from preferences a unique

number τ ∈ [0, 1] that corresponds to the quantile being maximized. The following result,
which relies on Lemma 3, provides the key assertion:

Lemma 4 In the coarsest measurable partition of the state space S induced by act f ∈ F,
there is a unique pivotal event.

With the derived measures, we can map the set of acts F onto the set of simple lotteries,
P0(X ), through the mapping defined in Section 4.1. Then, to establish the existence and
uniqueness of τ for the non-extreme preferences, we construct a sequence of equi-partitions

of S (finite partitions whose elements are equally likely) with 2N elements. In the (N +1)th
partition, each element of the N th partition is split into 2 equally likely elements. Next, we

construct a collection of events that associates with each N ∈ N++ an event
S

l=1,...,n(N)

F 2N

l ,

such that33

"
x if s ∈ S
y if s /∈ S

#
∼ ... ∼

⎡⎢⎣ x if s /∈ S
l=1,...,n(N)−1

F 2N

l

y if s ∈ S
l=1,...,n(N)−1

F 2N

l

⎤⎥⎦ Â
⎡⎢⎣ x if s /∈ S

l=1,...,n(N)

F 2N

l

y if s ∈ S
l=1,...,n(N)

F 2N

l

⎤⎥⎦ ∼ ... ∼
"
x if s /∈ S
y if s ∈ S

#
.

(37)

We then obtain τ ∈ (0, 1) by approximating it with the probabilities of the union of the
pivotal events

( S
l=1,...,n(N)

F 2N

l

)
N∈N++

.

Utilities. Given that Â is a weak order (P1), due to the ordinality property of the

quantile-maximization representation, the utility on outcomes, u, depends exclusively on

32Adding E assures that there are events in E∗∗ that serve the role of the state space in an appropriate
counterpart of A2.
33A corollary of Lemma 4 is used to establish that there is a unique n(N) ∈ ©1, ..., 2Nª for which (37)

holds.
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the properties of the set X . The assumption that X contains a countable Â-dense sub-
set (employed only in the final step) can be used, together with the weak order, to apply

Debreu’s (1954) theorem and derive a real-valued utility index on X . We note that con-
struction of the numerical representation functional for Â does not depend on the existence
of the best and worst outcomes — again, the reason is ordinality.

6 Related Literature

In this section, we relate our results to the literature on probabilistic sophistication: Machina

and Schmeidler (1992), Grant (1995) and a recent contribution by Chew and Sagi (2006).

This comparison serves two purposes. First, it elaborates on why the new approach to

axiomatizing beliefs of quantile maximizers is required, and second, it elucidates the distinct

properties of the quantile model.

Machina and Schmeidler (1992, hereafter MS). Setting as their goal the liberation

of the derivation of subjective probability in the Savage world from the Expected Utility

hypothesis, MS drop P2 (the Sure-Thing Principle). Dispensing with P2, however, removes

more than the Marschak-Samuelson independence, associated with an expected-utility func-

tional. As mentioned above, Savage used P2 to obtain additivity of the probability measure.

To restore additivity, MS strengthen P4 (Weak Comparative Probability, to Strong Com-

parative Probability, P4∗), otherwise, using Savage’s axioms.

The preferences of the quantile maximizers do not satisfy P4∗.34 Overall, our set of

conditions shares with those of MS merely P1 and P5. The functional form in the repre-

sentation theorem of MS is mixture continuous and monotonic with respect to first-order

stochastic dominance. While encompassing many functional forms, the conditions on the

relation Â underlying these properties of the representation functional are crucially used

in the derivation of probabilities. Our proof does not rely on any form of mixture conti-

nuity and monotonicity with respect to stochastic dominance holds only weakly (i.e., strict

first-order stochastic dominance implies only a weak preference over distributions). Even

more, mixture continuity and the stronger version of monotonicity do not hold in an ordinal

model.

MS can essentially use Savage’s (1954) derivation of probability, as they observe that

although in general P2 fails in their case, it does hold for two-outcome acts. Since all axioms

of Savage hold for such gambles, it follows from Savage’s theorem that there exists a unique,

finitely additive and convex-ranged probability measure. MS then apply P4∗ to extend the

34The following example illustrates that for P4∗. Let τ = 1
3 , π(E) =

1
3 + ε, π(F ) = 1

3 − ε, π(G) = 1
3 .

Then

⎡⎣ 2 if E
1 if F
5 if G

⎤⎦ Â
⎡⎣ 1 if E
2 if F
5if G

⎤⎦ but

⎡⎣ 2 if E
1 if F
0 if G

⎤⎦ ∼
⎡⎣ 1 if E
2 if F
0 if G

⎤⎦.
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measure to the set of all acts.

Grant (1995). With a novel interpretation of probabilistic sophistication, Grant (1995)

obtains a derivation of probabilities without P2 and P3 (Eventwise Monotonicity). After

relaxing the latter condition, two-outcome gambles cannot be used to infer the relative

likelihood of events. (The ranking of constant acts need not agree with the conditional

ranking of two outcomes.) Still, with a modification of P3 to Conditional Upper or Lower

Eventwise Monotonicity (P3CU , P3CL), the conditional preference between two outcomes

can be used to draw an inference about the likelihood of events from the preference over

conditional gambles that involve these two outcomes. This identifies a set of acts on which

the hypotheses of MS (1992, Theorem 1) hold; hence a probability-measure representation

can be obtained. The measure is then extended through continuity of preferences (P6†) to

the whole state space.

Our lottery preferences need not satisfy either of Grant’s (1995) two-outcome mixture

continuity35 or conditional monotonicity.

Chew and Sagi (2006, hereafter CS). The beautiful approach proposed recently by

Chew and Sagi (2006) is based on the notion of exchangeability. Two events are said to be

exchangeable if the agent is always indifferent to permuting the payoffs assigned to these

events.

Definition 4 For any pair of disjoint events E,F ∈ E , E is exchangeable with F if, for

any outcomes x, y ∈ X , and any act f ∈ F,⎡⎢⎣ x if s ∈ E

y if s ∈ F

f if s /∈ E ∪ F

⎤⎥⎦ ∼
⎡⎢⎣ y if s ∈ E

x if s ∈ F

f if s /∈ E ∪ F

⎤⎥⎦ . (38)

The relation of exchangeable events is then used to define the comparability relation, %C.

Definition 5 For any events E, F ∈ E , E %C F whenever E\F contains a sub-event G

that is exchangeable with F\E.

Intuitively, exchangeability carries the meaning of “equal likelihood,” while comparability

35V : P0(X)→ R is said to be mixture continuous for two-outcome sub-lotteries if for any pair of outcomes
x, y in X , any γ ∈ (0, 1], and any pair of lotteries P, Q, the sets {λ ∈ [0, 1]| V (γ(λδx+(1−λ)δy)+(1−γ)P ) >
V (Q)} and {λ ∈ [0, 1]| V (Q) > V (γ(λδx + (1− λ)δy) + (1− γ)P )} are open.
With a slight abuse of notation, we will denote by P a lottery in P0(X ) and the corresponding to it

cumulative probability distribution.
ÂP is mixture continuous for two-outcome sub-lotteries if for all pairs of outcomes x, y in X , all γ ∈

(0, 1], and distributions P, Q in P0(X ), the sets {λ ∈ [0, 1]| γ(λδx + (1 − λ)δy) + (1 − γ)P ÂP Q} and
{λ ∈ [0, 1]| Q ÂP γ(λδx + (1− λ)δy) + (1− γ)P} are open.
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conveys “greater likelihood.” CS do find a set of axioms on those relations, so they can yield

a likelihood relation that can be provided with a probability-measure representation.

While CS’s Theorem 1 can also be used in our model,36 it remains an open question

how to derive beliefs without monotonicity and continuity of preferences without resorting

to the exchangeability relation, but rather by directly defining a strict likelihood relation

from preferences (as, e.g., in Machina and Schmeidler [1992], Grant [1995], and this paper).

Why would such an argument be attractive? First, the link between the likelihood that CS

construct and preferences over acts is only through the definition of exchangeable events,

a pre-notion of “equally likely.” In particular, completeness of the comparability relation

(pre-notion of “more likely than”) is assumed (via an axiom), and transitivity is proven

without any recourse to the strict relation over acts, Â. By contrast, in the direct-likelihood
method, the strict “more-likely-than” relation is revealed by preferences over acts, from

which it inherits its properties. Second, as CS point out, assuming independently from

preferences over acts that the exchangeability-based likelihood is well defined might not be

warranted. They illustrate this point using the example of “Machina’s Mother” (Machina

[1989]). The direct-likelihood relation, combined with the small-event approach used in the

present paper, is (by construction) immune from that.37

7 Induced Lottery Preferences

This section takes an applied look at the quantile model. We show that Quantile Maximiza-

tion stands out among ordinal choice rules that satisfy first order stochastic dominance as a

unique such rule (Section 7.2); characterize risk attitudes of Quantile Maximizers (Section

7.3); in the context of an insurance problem, illustrate how the distinct properties of the

model might be appealing in applied work (Section 7.4); and discuss in which applications

the model might be attractive (Section 7.5). To elucidate the comparison of how the Subjec-

tive Expected Utility and Quantile Maximization perform in applications, we first delineate

the differences in continuity and monotonicity properties of the induced lottery preferences

between the two models (Section 7.1).

7.1 Properties of Lottery Preferences

Using Theorem 1, each act in F can be mapped to a lottery in P0(X ) via the mapping
f → π ◦ f−1. Consider the preference relation %P over lotteries in P0(X ), as defined in
Section 4.1.

36For non-extreme preferences, their axioms A, C and N follow from P1, P3Q, P4Q, P5, and P6Q.
37For a derivation of beliefs in the “Machina’s Mother” example through the direct-likelihood method,

please e-mail the author.
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(Lack of) Continuity. The implied lottery preferences of quantile maximizers are not

mixture continuous,38 not even for 2-outcome lotteries (as the lottery preferences are in

Grant [1995]). Mixture continuity, typically implied by P6-like axiom, is too strong for an

ordinal model, such as Quantile Maximization. Our weakening of P6 removes any continuity

of mixture lotteries from risk preferences.

Monotonicity. Strong monotonicity with respect to first-order stochastic dominance

(FOSD)39 need not hold under Quantile Maximization. To characterize the appropriate

monotonicity property for the lottery preferences, it is useful to find the analogs of axioms

P1-P6Q for lotteries, that is, for the case of a known and unique probability. We only

need to look for the counterpart of Pivotal Monotonicity (P3Q), which we call Rankwise

Monotonicity. For a fixed lottery P ∈ P0(X ) and outcome x, which belongs to the support
of P , x ∈supp{P}, define the sums:

Px+ =
X

{n|xnÂP x}
pn, Px− =

X
{m|xm≺P x}

pm (40)

and letQx+ andQx− be any sublotteries on Px+ and Px− with supports, such that supp{Qx+} %P

x and supp{Qx+} -P x, respectively. The intuition behind the condition we state next is

similar to that of P3Q.40

P3Q (RANKWISE MONOTONICITY): For any simple lottery P ∈ P0(X ), there
is an outcome x ∈supp{P}, such that for all outcomes x, y, and λ ∈ (0, 1], there exists
38V : P0(X) → R is said to be mixture continuous if for any lotteries P, Q and R in P0(X ), the sets

{λ ∈ [0, 1]| V (λP + (1− λ)Q) > V (R)} and {λ ∈ [0, 1]| V (R) > V (λP + (1− λ)P )} are open.
ÂP ismixture continuous if for all distributions P, Q and R in P0(X ), the sets {λ ∈ [0, 1]| λP+(1−λ)Q ÂP

R} and {λ ∈ [0, 1]| R ÂP λP + (1− λ)Q} are open.
39For an arbitrary outcome set X , given a complete preorder over outcomes %x, P = (x1, p1; ...;xN , pN )

weakly first order stochastically dominates Q = (y1, q1; ...; yM , qM ) with respect to %x ifX
{m|x%xxm}

qm ≥
X

{n|x%xxn}
pn for all x ∈ X (39)

and if, in addition, (39) holds with strict inequality for some y ∈ X , then P strongly first order stochastically
dominates Q with respect to %x.
It is said that %P is weakly (strictly) monotonic with respect to FOSD if P %P (ÂP )Q whenever P

strongly stochastically dominates Q.
40As shown in Appendix 4, Rankwise Monotonicity implies that for all simple lotteries P ∈ P0(X ), there

is an outcome x ∈supp{P}, such that for any outcome y, and sub-lotteries Qx−, Qx+, Qy−, Qy+:

x %x y ⇔ (Qx−, Px−, ; x, px; Qx+, Px+) %P (Qy−, Px−; y, px; Qy+, Px+) . (41)

Cf. The Ordinal Independence axiom in Green and Jullien (1988) and Irrelevance Axiom in Segal (1989).
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γ ∈ [0, 1], such that

x %x y ⇔ γ(1−λ)Qx−+λδx+(1−γ)(1−λ)Qx+ %P γ(1−λ)Qy−+λδy+(1−γ)(1−λ)Qy+.

(42)

Say that (LP ) holds if any lottery P ∈ P0(X ) is indifferent to the least preferred out-
come in its support; that (HP ) holds if any lottery P ∈ P0(X ) is indifferent to the most
preferred outcome in its support; that ÂP is extreme if either (LP ) or (HP ) is satisfied. The

counterpart of Event Continuity (P6Q) reads:

P6Q (LEFT-CONTINUITY) If ÂP is non-extreme, then there exists an interval

[γ0, γ00) ⊆ [0, 1], such that (42) is satisfied for all γ ∈ [γ0, γ00). If (LP ) holds, then (42)
is satisfied if and only if γ = 0, and if (HP ) holds, then (42), is satisfied if and only if

γ = 1.

It should be intuitive that the left-closedness of the interval of parameter γ will imply

the left-continuity of the quantile representation for ÂP . Formally, the following equivalence

obtains:41

Proposition 1 Assume P1 (Ordering) and P5 (Nondegeneracy), and that Â is probabilis-
tically sophisticated with respect to π. Then,

(i) Â satisfies P3Q if and only if ÂP exhibits P3Q;

(ii) Â satisfies P3Q and P6Q if and only if ÂP exhibits P3Q and P6Q.

By P1 and P5 denote the straightforward counterparts of weak order (P1) and nonde-

generacy (P5) defined in Section 3 for the binary relationÂP . For a given lottery P ∈ P0(X )
and utility on outcomes u, let Qτ(P ) be the τ th quantile of the cumulative probability dis-

41This characterization parallels the result of Grant, Kajii and Polak (1992), who established the equiv-
alence between the monotonicity axiom of Savage (P3) and the condition (Axiom of Degenerate Indepen-
dence):
For all simple lotteries P ∈ P0(X ), outcomes x, y and α ∈ (0, 1),

x %x y ⇔ αδx + (1− α)P %P αδy + (1− α)P.

This axiom states that moving a probability mass from one outcome to another is weakly preferred
(according to the induced lottery preferences) if and only if the second outcome is preferred to the first.
Quantile Maximization requires that this holds only for outcomes on pivotal events.
Given that, for the restricted (compared to P3) class of sub-acts and events in condition P3Q, the

implications of Savage’s P2 and P3 are equivalent, it is interesting to identify the substitution property of
the induced lottery preferences that they jointly engender. Clearly, the induced lottery preferences need not
obey the Independence Axiom. Since P3 fails, the lottery preferences need not exhibit ADI — the substitution
axiom of Grant, Kajii and Polak (1992). Incidentally, failure of the latter provides one way to show that
strict monotonicity w.r.t. first-order stochastic dominance does not hold in the quantile model; %P respects
ADI if and only if it satisfies first-order stochastic dominance. (See, for example, Grant [1995].)
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tribution corresponding to P .42 The following Corollary of Theorem 2 axiomatizes Quantile

Maximization under risk.

Corollary 1 A binary relation on the set of lotteries P0(X ) satisfies P1 (Ordering), P3Q

(Rankwise Monotonicity), P5 (Nondegeneracy), and P6 (Left-Continuity) if and only if

there exists a unique number τ ∈ [0, 1] and a function u : X → R, such that the relation
ÂP over simple probability distributions can be represented by the preference functional W :

P0(X )→ R given by
W (P ) = Qτ(P ). (43)

where u is unique up to strictly increasing transformations.

7.2 Quantile Maximization As a Unique Ordinal Choice Rule

We now build on Corollary 1 to demonstrate that although by itself monotonicity with

respect to first-order stochastic dominance does not imply Quantile Maximization, assuming

P1, P5 and P6Q, it is, however, equivalent to Rankwise Monotonicity if one also requires

that the following condition of Ordinal Invariance holds: Write each distribution R ∈
P0(X ) as a pair of ordered vectors of outcomes and probabilities (xR,pR); for all pairs
P,Q ∈ P0(X ),

(xP ,pP ) %P (xQ,pQ)⇔ (φ ◦ xP ,pP ) %P (φ ◦ xQ,pQ) (44)

for any mapping φ : X → X , such that if x Âx y then φ ◦x Âx φ ◦ y, where φ◦xR is defined
element by element.

Proposition 2 Assume P1 (Ordering), P5 (Nondegeneracy), and P6Q (Left-Continuity)

hold. The following axioms are equivalent for a binary relation on the set of lotteries P0(X ),
ÂP :

(1) P3Q (Rankwise Monotonicity);

(2) Weak monotonicity with respect to FOSD and Ordinal Invariance.

The implication of Proposition 2 is threefold. First, it provides an equivalent to Corollary

1 characterization of our model in risk settings. Second, it justifies Quantile Maximization

as a unique ordinal decision rule (that is, a rule satisfying ordinal invariance). Alterna-

tively, what can perhaps be more directly seen from the equivalence established jointly by

Lemmas 1 and 8, Quantile Maximization is the unique ordinal decision rule in the class of

42Again, to assure that the representation is real-valued, we assume that X contains a countable Âx-dense
subset.
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probabilistically sophisticated43 rules for uncertain environments.44 Finally, Proposition 2

shows that the notion of monotonicity we used in deriving probabilities is, in a sense, the

weakest monotonicity property. While monotonicity w.r.t. FOSD is not a tight notion of

monotonicity in that it is not equivalent to Rankwise Monotonicity, a local version of it

which compares τ th quantiles exclusively is tight in the presence of other axioms.45

7.3 Risk Attitudes

In applications, one would like to be able to characterize the attitudes of the quantile

maximizers toward risk. Clearly, in the quantile model, characterization of risk attitudes

through concavity of utility functions is no longer available. Do quantile maximizers then

exhibit any consistent attitudes towards risk?46 We now show that the model admits a

notion of comparative risk attitude that also permits a complete ranking of agents. One

needs two definitions: Risk and risk attitude. Say that distribution P ∈ Po (X ) ismore risky
than distribution Q ∈ Po (X ) if Q crosses P from below; that is, there exists u(x) ∈ R, such
that (i) Q(u(y)) ≤ P (u(y)) for all y, such that u(y) < u(x) and (ii) Q(u(y)) ≥ P (u(y)) for

all y, such that u(y) > u(x). Consider the class of all pairs of distributions with the single-

crossing property, SC = {(P,Q) ∈ Po (X )×Po (X ) : Q crosses P from below}. Individual 1
is more risk averse than individual 2 if, for all pairs of distributions (P,Q) ∈ SC, whenever
2 weakly prefers a less risky distribution, so does 1.

With these two definitions, one can show that τ itself provides a measure of risk attitude.

Proposition 3 In the Quantile Maximization model, τ 0 < τ if and only if τ 0-maximizer is

weakly more risk averse than the τ -maximizer.

43And satisfying the weakest monotonicity for distributions (defined for a given τ th quantile and a fixed
τ ∈ [0, 1]).
44To aid intuition, we note the relation to results in social choice literature, which our axiomatization

yields as a special case. Corollary 1 generalizes the model of rank-dictatorship (Gevers [1979]), also known
as positional dictatorship (Roberts [1980]), which predicts that the person with the kth level of wealth in
a society will be a dictator. The social-choice result, which obtains here for the uniform distribution, also
characterizes choice behavior based on the ranking of outcome vectors (e.g., order statistics). Our result for
risk settings can be usefully interpreted for classes of citizens, ranked according to wealth.
45Even if the two distributions P and Q coincide only at one quantile and P first-order stochastically

dominates Q otherwise, it may be that Q ∼P P .
46Using a model-free definition, one can still ask how a quantile maximizer chooses between a lottery

P ∈ Po (X ) and the expected return from this lottery:

P
Âe≺
Z

xPπ(x)dx. (45)

Except in the extreme cases, τ = 0 (risk aversion) and τ = 1 (risk loving), quantile maximizers do not
exhibit any global (i.e., for all lotteries P ) risk attitude in the above sense. For example, consider a half-half
bet between outcomes 1 and 3 versus a certain outcome of 2. All τ -maximizers with τ ≤ 1

2 will strictly
prefer the gamble’s average face value of 2, while those with τ > 1

2 will choose to gamble. However, when
probabilities are modified to 1

3 on 1 and
2
3 on 3, all quantile maximizers with τ ∈ (13 ; 12 ] will switch to

preferring the gamble.
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Thus, the lower τ , the weakly more risk averse the decision maker is, with maxmin being

the most and maxmax — the least risk averse. Proposition 3 suggests two ways in which the

model studied in the present paper contributes to the description of choice behavior. First,

maxmin agents have been commonly, though informally, referred to as cautious (e.g., in

game theory). With the general quantile representation, the intuited notion of cautiousness

can be formalized as a risk attitude.47 Second, maxmin and maxmax have alternatively

been interpreted as representing extreme optimism and pessimism. The quantile model also

admits more moderate levels of optimism and pessimism.

It is worth emphasizing that, in the present model, risk attitudes can be analyzed even if

outcomes are not measurable on an interval scale (as they are, e.g., for categorical variables).

Indeed, the above definitions of risk and risk aversion do not impose any such assumptions

on the set X .

To provide a unified interpretation of risk attitudes for Quantile Maximization and the

Expected Utility models, we will invoke a result familiar in econometrics. Doing so will also

elucidate where the qualitative differences between the two models originate. Consider an

individual who is choosing between two lotteries. It is useful to think about this individual as

trying to assess (or, to estimate) the outcome of each lottery and then to choose the preferred

lottery based on those estimates. We can then draw an analogy between the Expected

Utility and Quantile Maximization in decision theory, and the Least-Squares (mean based)

estimation and the Quantile Regression in econometrics. As is well known (see e.g. Koenker

[2005, Ch. 1]), just as the least-squares estimator can be obtained by minimizing the loss

function defined as a sum of squared errors, the median minimizes the sum of absolute errors.

This evaluation can be extended to any quantile, by weighting mispredictions appropriately.

In evaluating a given distribution P , the τ th quantile solves the minimization problem for the

loss function that assigns the weight of τ to overpredictions and (1−τ) to underpredictions.
The agent’s resulting prediction about (or, estimation of) the realization from the lottery

47Proposition 3 is also in Manski (1988), who did not, however, have in mind the connection to maxmin
and maxmax. Manski (1988) also defined two other measures that can be readily used to compare agent
risk attitudes. These measures parallel the concepts used for the Subjective Expected Utility and have very
simple expressions in the Quantile Maximization model: The τ -certainty equivalent of P , CEτ (P ), is the
amount of money for which a decision maker is indifferent between lottery P and CEτ (P ) with certainty.
Clearly, the τ -certainty equivalent is the quantile outcome,

CEτ (P ) = Qτ (P ). (46)

For any fixed amount of money x ∈ R and distribution P ∈ P0(X ), Manski (1988) defines a risk premium
as the value µP (x, τ) ∈ R solving

u(x− µP (x, τ)) = Qτ (P ). (47)

Letting u(x) = x, we have that the unique and finite risk premium is equal to µP (x, τ) = x−Qτ (P ).
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is given by

(1− τ)

u(x∗)Z
−∞

[u(x∗)− u(x)]dP (x) + τ

∞Z
u(x∗)

[u(x)− u(x∗)]dP (x). (48)

An asymmetric weighting function is depicted in Figure 2. The case of symmetric piecewise

linear value function corresponds to the median.

Figure 2. A weighting function for the loss function (48)

 

|u(x)-u(x*)|

τ-1 

τ

When predicting the realization of a given lottery, the lower the agent’s τ , the more that

agent cares about the lower-tail outcomes relative to the upper-tail outcomes; hence, the

more the individual is concerned about underpredictions relative to overpredictions, and the

more cautious she is.

That the quantile solves the minimization of an absolute rather than a quadratic loss

function makes it less affected by outliers. This characteristic of quantiles has been explored

in econometrics using robust estimation. Mean-based estimators, such as OLS, are very

sensitive to large errors and to asymmetric distributions that are often met in practice. A

popular alternative estimator, which is more robust, is based on the median or quantile

(Least Absolute Deviations, or LAD, method; Koenker and Bassett [1978b]).

7.4 Quantile Maximization in Practice

Using an insurance problem as an example, we point to several features of the model that

might be attractive in applied work. Consider a quantile maximizer that chooses among

alternative insurance plans, say, car, travel or medical insurance. The insurance company

offers the following menu: The individual will choose the amount of money up to which she

wants to be fully insured, C ∈ R++. Any losses up to C will be covered in full; for losses

exceeding C, the individual will receive C. Thus, the family of menus offered can be written
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as {C,P (C)}C∈R++, where C is the maximum coverage and P (C) is the price for a contract
with the maximal coverage of C. Let P 0(C) > 0.

The Expected Utility requires that in order to choose optimally, the insuree must know

all (insurable) levels of losses and their respective probabilities. Instead, we assume that the

agent compares, say, the median levels of the distributions of wealth (e.g. “I am a median

driver and I will incur a median level of losses”). Let π be the (subjective) distribution of

losses. A τ -maximizer, τ ∈ [0, 1], solves

max
{C,C(P )}

Qτ (R) , (49)

whereR is the (cumulative distribution of) the random variableR =W−L(d)+C(d)−P (C),
W - the agent’s wealth level, d - the damage variable distributed according to π, L(d) - the

level of loss incurred, C(d) - the coverage provided by the contract. If the insurance company

charges the fair price,48 our model predicts that a τ -maximizer will insure up to the (1− τ)th

level of losses, τ ∈ [0, 1]. Thus, more risk averse individuals will choose higher levels of full
coverage. The “full insurance” prediction parallels the one yielded by the Expected Utility

framework. This is not, however, the present section’s punchline.

Think about the insurance company taking the Quantile Maximization model to data.

Unlike using the Expected Utility, with the quantile model: (1) There is no need to make

any parametric assumptions about the client’s utility function. (2) To compare agent risk

attitudes, one does not have to first recover the concavity of utility function from data.

As shown in Section (7.3), the model allows for the analyzing of attitudes toward risk

even though the utilities need not be continuous, let alone concave. (3) To make policy

recommendations based on the quantile model, recovering a unique parameter τ suffices

to pin down the entire preference ordering ÂP over lotteries in P0(X ). This should be
compared to recovering the cardinal Bernoulli utility function — in principle, an infinitely

dimensional object. (4) Finally, the quantile model is robust to fat tails and works well

with distributions that do not possess finite moments, a circumstance often encountered in

non-life insurance.

7.5 Applications

“No theory exists to show that VaR is the appropriate measure upon which to build optimal

decision rules.” Schachter (1997, p. 19) As an application, our axiomatization provides the

foundations for decision making based on Value-at-Risk. The present paper also suggests

that VaR can serve not only as a measure of risk, but also as a (comparative) risk attitude.

In this section, we revisit the central and distinct features of the quantile choice rule —

48The result holds for a wide range of prices and is robust to the assumption of “fair” price (equal to
expected coverage).
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robustness and ordinality — to illustrate how Quantile Maximization can complement and

extend the class of applications of Expected Utility, or cardinal models more generally.

• Single-Event Decision Making: Consider an agent who is selecting a particular
cancer treatment. By contrast to repeated decisions, such as adhering to a weight-loss pro-

gram or maintaining smoking abstinence, the decision about medical treatment involves no

opportunity for revisions: the choice is one-time.49 That decision making differs qualita-

tively between one-time as opposed to repeated problems has been recognized in the medical

sciences (and acknowledged by NIH) and artificial intelligence (see, e.g., review in Dubois

et al. [2000], Dubois et al. [2002]). When the choice among uncertain alternatives (e.g.,

treatments) is made only once, using an expectation-based evaluation may not appear suit-

able for at least two reasons. First, since only a single outcome (e.g., survival rate) will be

experienced, no compensation through averaging that comes from repetition will actually

take place. Second, one-time decisions involve little opportunity for learning. Therefore, in-

dividuals may not have enough precise information about the potential extreme realizations,

or may not know their preferences sufficiently well enough to be able to quantify them.50

Many decisions of economic interest are made once or at most infrequently: choosing a

retirement program, making a career choice, purchasing a durable good, selecting (life, car,

travel or medical) insurance, to mention just a few.

• Agency Problems/Expert Recommendations: Consider a principal delegating
a task, for which the realization is risky, to an agent or a group of agents. Since the task is

hard to monitor, the principal aims to set a standard of performance that is independent of

agent’s(s’) idiosyncratic preferences for money — either because of a lack of such knowledge in

the case of a single agent or because of heterogeneity of risk preferences in the case of multiple

agents. The quantile model similarly addresses such concerns in expert recommendations

(e.g., advising customers on an optimal investment or insurance).

• Robust Policy Choice: The literature on robustifying economic and policy design
has focused on relaxing the assumption that decision makers know or act as if they know the

true probability distribution (e.g., Hansen and Sargent [2004] applying the model of Gilboa

and Schmeidler [1989], Klibanoff, Marinacci and Mukerji [2005]). Another and less explored

robustness test involves relaxing the assumption that decision makers have cardinal (as well

as ordinal) rankings of outcomes; or that cardinal, parametric assumptions about utilities

49Again, the standard expectation-based framework presupposes that an agent knows all of the possible
outcomes and their respective probabilities. This arguably assumes a lot on the part of decision makers,
considering the costs and benefits of alternative prevention methods (e.g., genetic testing, clinical trials) or
treatments (e.g, surgery, chemotherapy, radiotherapy). In the model proposed in this paper, an individual
would only need to assess his accident chances relative to the population; e.g., “I am of median health, and
hence I anticipate that median-level statistics (e.g., risk rates, survival rates) will apply to me.”
50In decision-theoretic terms, the individuals may not be able to relate outcomes from different equiva-

lence classes beyond ranking them (e.g., in the sense of a concatenation condition). Using the robustness
interpretation, the agents might want to make a decision based on a criterion that is robust to their own
utility (over money).
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do affect decisions.51

• Scenario-Based Analysis: One prominent example of the existing applications
of Quantile Maximization is choosing according to the “worst case scenario” (often occurs

in policy design). This is typically justified by arguments that support precautionary pol-

icy (e.g., the “worst-case scenario” rule in the Environmental Protection Agency and the

Department of Justice; the Precautionary Principle in the European Commission’s food

and agricultural biotechnology policy; and Walsh [2004] in the context of monetary pol-

icy). Critics have argued that such an extreme criterion places too much importance to

outcomes that may be very unlikely. Moreover, while the “worst case scenario” is a natural

criterion for when no information about probabilities can be obtained, that information is

often available. The quantile representation studied in this paper generalizes the best- (and

worst-)case scenario analysis to intermediate scenarios.52

• Categorical Variables: Many economic and social variables are categorical (e.g.
jobs, the A-F grading scheme, qualities in online ratings). Applying a cardinal-utility model

to studying choice for categorical variables imposes measurability on an interval scale (as well

as a concatenation condition on preferences) — thereby denying the defining characteristic of

such variables. Quantile Maximization offers an alternative that respects that characteristic

and provides well defined risk measures.53

8 Concluding Remarks

For some applications, it may be desirable to extend the model proposed in this paper to

more than one quantile. In particular, a choice rule may depend on the “focal” worst-, best-,

and typical- case scenarios; or, only a range of quantiles that are higher or lower than some

51Another advantage brought by ordinality in the policy context is that the decisions are independent
from how the policy maker values money.
52In the policy context, distributional consequences of policies are of interest much beyond just average

statistics. Quantiles have been used to assess social policies and treatment effects, to compare unemployment
duration and distributions of wages, etc. Their use in formal empirical studies has been spurred by Quantile
Regression (Koenker and Bassett [1978a]), in which the classical least squares estimation of conditional mean
is replaced by an estimation of conditional quantile functions.
53As another example, sometimes information is naturally or optimally given in the comparative rather

than the absolute form; e.g., when information must be conveyed, but restricting an expert’s incentive
to exaggerate in absolute statements is desired. Rubinstein (1996) notes that comparative statements are
relatively more common in natural language. He justifies the optimality of such statements by formalizing
their three properties: The ability to indicate elements of the set, e.g., by means of order; the ability to
accurately convey information; and the easiness by which a comparative statement can communicate the
content to others.
Chakraborty and Harbaugh (2007) demonstrated that comparative cheap-talk statements can be credible

when absolute statements are not (e.g., a professor ranking students for a prospective employer; a seller
auctioning goods; an analyst’s claims about the likely returns to a stock might not be credible, but the state-
ment that one stock is better than another might be). In the context of multi-object auction, Chakraborty,
Gupta, and Harbaugh (2002) show that a seller’s incentive to lie may be diminished or eliminated when
only comparative and not absolute statements are allowed.
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threshold may be of interest. For instance, a policy may be targeted for a specific range of

income distribution, school attainment, test performance, etc.

Another direction one could pursue would be to model Quantile Maximization with

multiple priors. One compelling motivation comes from the recent interest in formalizing

robustness concerns to address model uncertainty. The novelty here would be twofold: The

multiple-prior model would allow for heterogenous ambiguity attitudes, nesting Gilboa and

Schmeidler’s (1989) maxmin as a special case. It would, thus, address the criticism of

extremeness raised against the seminal multiple-prior maxmin (e.g., Sims [2001], Svensson

[2007]).54 Moreover, ordinality of the multiple-prior quantile model with respect to the

second-order beliefs would ensure that the choice does not depend on a policy-maker utility

function over the possible models, thereby, complementing recent contributions to modelling

ambiguity (e.g., Smooth Model by Klibanoff, Mukerjii and Marinacci [2005]; Variational

Preferences by Maccheroni, Marinacci and Rustichini [2006]).

54The extremeness of maxmin raises additional concerns in the context of multiple priors. For example,
Svensson (2007) argues that “the worst possible model is on the boundary of a feasible set of models, and
hence depends crucially on the assumed feasible set of models. If the worst possible model somehow ended
up in the interior of the feasible set of models, one could perhaps argue that the outcome is less sensitive
to the assumptions about the feasible set of models” (p. 7).
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Note: Appendices 1, 2 and 3 contain proofs of Theorems 1, 2, and 3, respectively, with auxiliary

lemmas. Appendix 4 provides proofs of other results.

Appendix 1: Proof of Theorem 1

In part 1A, we establish several auxiliary results that will be frequently used throughout the

proof. Part 1B presents the proof for the non-extreme preferences (definition 2). Although

the general line of the proof is essentially the same for the extreme preferences, the derived

properties of the relation over acts are distinct and, therefore, the representation results

require that alternative arguments be employed. In order to highlight the differences, we

present the proof for the extreme preferences separately in part 1C. Part 1D contains the

proofs of Lemmas 3 and 4.

1A. Auxiliary Results

The lemmas in this section characterize the binary relations Â∗, Â∗, and Â∗∗ over events
in E (defined in (22), (23) and (36), respectively) used in the paper. P5 ensures that the
relations are nontrivial.

Lemma 5 E Â∗ F ⇔ (S ∼∗ E and F ∼∗ ∅); E Â∗ F ⇔ (S ∼∗ E and F ∼∗ ∅).

Proof. Since the arguments for %∗ and %∗ are symmetric, we only prove the assertion
for %∗. Let E Â∗ F , that is by definition (23) and P5,

f =

"
x if s 6∈ E

y if s ∈ E

#
≺
"
x if s 6∈ F

y if s ∈ F

#
= g, for all x Â y. (50)

Then, it must be that event E is pivotal for act f and F c — for g. By P3Q,

f ∼ y ∼
"
x if s 6∈ S
y if s ∈ S

#
and g ∼ x ∼

"
x if s ∈ S
y if s 6∈ S

#
. (51)

That is, by the definition of %∗, P1 and P4Q, S ∼∗ E and F ∼∗ ∅.
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For the converse, assume S ∼∗ E, F ∼∗ ∅. Using the definition of Â∗ in (23) and P5,
for all x Â y "

x if s 6∈ E

y if s ∈ E

# "
x if s 6∈ F

y if s ∈ F

#
o o"

x if s 6∈ S
y if s ∈ S

# "
x if s ∈ S
y if s 6∈ S

#
o o
y ≺ x

(52)

Then, by P1, P4Q and (23), E Â∗ F , as desired.

Lemma 2 in Section 5 is a direct corollary of Lemma 5:

Lemma 2 E Â∗ ∅⇔ E ∼∗ S; E ≺∗ S ⇔ E ∼∗ ∅; E Â∗ ∅⇔ E ∼∗ S; E ≺∗ S ⇔ E ∼∗
∅.

The next result establishes consistency between the relations %∗ and %∗.

Lemma 6 E Â∗ F ⇒ E ⊀∗ F ; E Â∗ F ⇒ E ⊀∗ F .

Proof. There are three relevant cases to the proof of the assertion about the relation
%∗:
If E and F are disjoint: The result follows by P4Q and Lemma 1.

If F ⊂ E (symmetric for E ⊂ F ): DefineH = E\F and letH be non-null. The assertion

will be implied if we show that it cannot be the case that E ≺∗ F or E ≺∗ F . Suppose
E ≺∗ F . Using the definition of Â∗ and Lemma 1,⎡⎢⎣ x if s 6∈ E

y if s ∈ H

y if s ∈ F

⎤⎥⎦ ∼by P3Q

"
x if s 6∈ F

y if s ∈ F

#
≺
"
x if s 6∈ E

y if s ∈ E

#
=

⎡⎢⎣ x if s 6∈ E

y if s ∈ H

y if s ∈ F

⎤⎥⎦ . (53)

Contradiction to P1. Hence, if F ⊂ E, then F -∗ E and F -∗ E.
If F\E 6= ∅, E\F 6= ∅ and F ∩ E 6= ∅: Define I = F ∩ E. The result follows by P4Q

applied to events F\E and E\F , and Lemma 1.
An analogous argument can be provided for the relation %∗.

An important corollary of Lemma 6 is the following result:

Lemma 7 If E ∼∗ F and there is a non-null event G ⊆ (E∪F )c, such that E∪G Â∗ F∪G,
then there is no event G0 ⊆ (E ∪ F )c, such that E ∪G0 ≺∗ F ∪G0.
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Lemma 1 establishes an important property of preferences that will be key to defining a

likelihood relation over events. Following it Lemma 8 demonstrates that, assuming P1 and

P5, the condition from Lemma 1 is not only necessary but also sufficient for P3Q and could

replace the latter throughout the axiomatization.

Lemma 1 Assume Weak Order (P1), Pivotal Monotonicity (P3Q) and Nondegeneracy
(P5). For all events E and F , all pairs of outcomes x∗ Â x and y∗ Â y, and all subacts

gx∗+, gx∗−,x+, gx−, hy∗+, hy∗−,y+, and hy−,⎡⎢⎢⎢⎢⎢⎢⎣
gx∗+ if s ∈ G1

x∗ if s ∈ E

gx∗−,x+ if s ∈ G2

x if s ∈ F

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎢⎢⎢⎣

gx∗+ if s ∈ G1

x∗ if s ∈ F

gx∗−,x+ if s ∈ G2

x if s ∈ E

gx− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦⇒
⎡⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ E

hy∗−,y+ if s ∈ G2

y if s ∈ F

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ Â
⎡⎢⎢⎢⎢⎢⎢⎣

hy∗+ if s ∈ G1

y∗ if s ∈ F

hy∗−,y+ if s ∈ G2

y if s ∈ E

hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ .
(54)

Proof. Let x∗ Â x and y∗ Â y. Assume P1, P3Q and P5, and that the left hand side

of (54) holds; call the preferred act f and the less preferred act f 0 . Using P3Q, the pivotal

events for acts f and f 0 could be, respectively, E and E, or E and G2, or G2 and E, or G2

and G2.

Consider the first pair of pivotal events, E and E. We will prove that the implication in

(54) must be satisfied. If the set of outcomes X consists of two nonindifferent events, the

implication (54) is vacuous; we will separately consider the cases in which the outcome set

consists of three and (at least) four pairwise nonindifferent outcomes.

Suppose X = {x, y, z} and let (w.l.o.g.) x Â y Â z. The following six cases need to be

analyzed:

x∗ and x in the left-hand-side inequality in (54) equal to: x, y x, z y, z

y∗ and y in the right-hand-side inequality in (54) equal to: x, z or y, z x, y or y, z x, y or x, z

We will argue for the two pairs in the first column. Consider the implication (54), taking

outcomes x, y for the left-hand-side implication and x, z for the right-hand-side one. Let

G1 ∪G2 ∪G3 be null (w.l.o.g.). Then,"
x if s ∈ E

y if s ∈ F

#
Â

"
x if s ∈ F

y if s ∈ E

#
oBy P3Q gBy P3Q"

x if s ∈ E

z if s ∈ F

# "
x if s ∈ F

z if s ∈ E

# (55)
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and that (54) holds follows by P1. Now consider the pairs x, y and y, z. Applying P3Q to

event E"
x if s ∈ E

y if s ∈ F

#
ÂBy P3Q

"
y if s ∈ E

y if s ∈ F

#
∼By P3Q

"
y if s ∈ E

z if s ∈ F

#
∼By P3Q

"
y if s ∈ E

y if s ∈ F

#
(56)

and to event E"
x if s ∈ F

y if s ∈ E

#
∼By P3Q

"
y if s ∈ F

y if s ∈ E

#
ÂBy P3Q

"
y if s ∈ F

z if s ∈ E

#
∼By P3Q

"
z if s ∈ F

z if s ∈ E

#
,

(57)

the implication in (54) follows by P1 and y Â z.

The argument is analogous for the remaining pairs of pivotal events and is, therefore,

omitted.

Now let the outcome set consist of (at least) four outcomes x, y, z, w, such that x Â y Â
z Â w. Having proved that (54) holds for all three-outcome sets, it suffices to consider the

cases in which the outcome sets mapped from events E and F , respectively, are disjoint.

For example, to prove

f =

"
x if s ∈ E

y if s ∈ F

#
Â
"
x if s ∈ F

y if s ∈ E

#
= f 0 ⇒

"
z if s ∈ E

w if s ∈ F

#
Â
"

z if s ∈ F

w if s ∈ E

#
, (58)

one can apply P3Q to acts f and f 0 separately, mimicking the logic of (56) and (57).

Analogous arguments apply to the remaining cases.

Lemma 8 Assume Weak Order (P1) and Nondegeneracy (P5). The property established
in Lemma 1 implies Pivotal Monotonicity (P3Q).

Proof. The proof restricts attention to the assertion that involves strict inequalities
in P3Q. Assume P1, P5 and that the condition shown in Lemma 1 holds. Consider an

act f ∈ F and the coarsest partition with respect to which it is measurable. Let E be a

non-null event in that partition and let x∗ be the outcome to which it maps. Write f as

[gx∗+,H1;x
∗, E; gx∗−,H2], where H1 ∪H2 = Ec. Suppose that

f =

⎡⎢⎣ gx∗+ if s ∈ H1

x∗ if s ∈ E

gx∗− if s ∈ H2

⎤⎥⎦ Â
⎡⎢⎣ gx+ if s ∈ H1

x if s ∈ E

gx− if s ∈ H2

⎤⎥⎦ = f 0. (59)

By Lemma 1, (59) holds for any subacts on events H1 and H2 that weakly preserve the

ranking with respect to x∗ and x. In particular, it must be that x∗ Â x, and thus the “if”

part of P3Q is established. That there exists a non-null event E, such that (59) holds is

implied by the definition of nullness and P5.
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Take again the act f and its coarsest measurable partition. Let x∗ be the outcome on a

non-null event E in the partition. For an outcome x ≺ x∗ (it exists by P5), construct an act

f 0 from (59), such that gx∗+ = gx+ and gx∗− = gx−. It follows from the definition of nullness

and P5 that the coarsest measurable partition of f must contain at least one such event E

for which, in addition, the strict inequality from (59) holds. The “only if” implication of

P3Q then obtains through Lemma 1.

1B. Proof of Theorem 1 for Non-extreme Preferences

Proof. Assume that preferences are not extreme (definition 2).
The proof consists of a series of steps. Step 1 demonstrates that Â∗ and Â∗ are weak

orders. Step 2 characterizes the set of equivalence classes of E under ∼∗ and ∼∗. They are
used in Step 3 to derive a subset of E , E∗∗, on which a new and complete likelihood relation
is defined, Â∗∗. Step 4 verifies that axioms A1, A3, A4 and A5’ hold on E∗∗, which is
then employed in Step 5 to derive a unique, convex-ranged and finitely additive probability-

measure representation of Â∗∗ on E∗∗, π̃. Next, Step 6 constructs a likelihood relation which
is complete on the entire set of events, E , and shows that measure π̃ on E∗∗ uniquely extends
to E ; we call the extended measure π. Finally, Step 7 establishes that Â is probabilistically
sophisticated w.r.t. π. We will repeatedly invoke Lemma 1 without mentioning; it assures

that the likelihood relations used in the axiomatization can be defined as revealed from

preferences over acts.

Step 1 (Â∗ AND Â∗ ARE WEAK ORDERS):
1. We prove that Â∗ is a weak order. Asymmetry is implied by the definition of Â∗ (23),

P1 and P5. To show negative transitivity, suppose E ¨∗ F and F ¨∗ G. With x Â y (P5),

(23) and Lemma 1 give"
x if s 6∈ E

y if s ∈ E

#
⊀

"
x if s 6∈ F

y if s ∈ F

#
and

"
x if s 6∈ F

y if s ∈ F

#
⊀

"
x if s 6∈ G

y if s ∈ G

#
. (60)

Then, P1 yields "
x if s 6∈ E

y if s ∈ E

#
⊀

"
x if s 6∈ G

y if s ∈ G

#
, (61)

hence E ¨∗ G. A symmetric argument proves that Â∗ is a weak order.
2. S Â∗ ∅ and S Â∗ ∅. Suppose otherwise, then the definitions of Â and Â∗ lead to a

contradiction.

Step 2 (CHARACTERIZATION OF EQUIVALENCE CLASSES OF E UNDER ∼∗
AND ∼∗):
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1. Since Â∗ on E is a weak order, ∼∗ is an equivalence relation. By Lemma 5, there are
only two equivalence classes on E under ∼∗: E|∼∗∅ = {F ∈ E|F ∼∗ ∅} and E|∼∗S ={F ∈
E|F ∼∗ S}. Similarly, there are only two equivalence classes on E under ∼∗: E|∼∗∅ = {F ∈
E|F ∼∗ ∅} and E|∼∗S ={F ∈ E|F ∼∗ S}.
2. That the sets E|∼∗∅, E|∼∗S and E|∼∗∅, E|∼∗S all contain non-null events, follows from

the assumption of the non-extreme preferences.

Step 3 (CONSTRUCTION OF E∗∗):
1. Define E∗∗ = {Ē ∈ E|Ē ≺∗ Ēc}. Fix E ∈ E∗∗. Then, by P3Q, for any F ∈ E∗∗ disjoint

(w.l.o.g.) with E (and hence such that F ⊂ Ec), there exists G ⊆ (E ∪ F )c, such that

F ∪G Â∗ ∅. Since the above is true for disjoint E and F , hence for any E,F ∈ E∗∗ there
exists G ⊆ (E∪F )c, such that E∪G Â∗ F ∪G or E∪G ≺∗ F ∪G or E∪G ∼∗ F ∪G ∼∗ S.
2. We prove that either E∗∗ = E|∼∗∅ or E∗∗ = E|∼∗∅. Assume first that there exists an

event E ∈ E|∼∗∅, such that E ∼∗ Ec∼∗∅. Consider an event F ∈ E|∼∗∅. We will show that
for all such events F , F ∼∗ ∅. By the definitions of Â∗ and Â∗ and Lemma 2, F c Â∗ ∅.
Using the definitions of Â∗ and Â∗ again, F ≺∗ E and F ≺∗ Ec. Then, by Lemma 6,

F -∗ E and F -∗ Ec. Since Â∗ is a weak order (Step 1), it follows that F c Â∗ F ∼∗ ∅.
The event F ∈ E|∼∗∅ was picked arbitrarily, and hence, E∗∗ = E|∼∗∅.
Furthermore, if there is no E ∈ E|∼∗∅ for which E ∼∗ Ec∼∗∅, then E∗∗ = E|∼∗∅.
3. On the collection E∗∗, define a binary relation over events, Â∗∗, as in definition 3.
4. By Step 2.2, and axioms P6Q∗ and P6Q

∗
, E∗∗ and the relation Â∗∗ are nondegenerate.

Step 4 (AXIOMS A1, A3, A4, A5’ HOLD ON E∗∗): Let E,F,H ∈ E∗∗.
(A1) Consider E ∼∗ ∅. By an argument analogous to the one in Lemma 6, there cannot
exist an event G ⊆ Ec, such that

f =

"
x if s 6∈ E ∪G
y if s ∈ E ∪G

#
Â
"
x if s 6∈ G

y if s ∈ G

#
= g. (62)

Hence E 6≺∗∗ ∅. If E is null, then for all G0 ⊆ Ec

"
x if s 6∈ E ∪G0

y if s ∈ E ∪G0

#
∼
"
x if s 6∈ G0

y if s ∈ G0

#
. (63)

Again, E 6≺∗∗ ∅.
(A3) By Lemma 7, Â∗∗ is asymmetric. Condition (i) in negative transitivity follows from
the transitivity of ∼∗ (E,F,H ∈ E∗∗). Suppose that:
(1) There does not exist G ⊆ Ec ∩ F c non-null, such that E ∪G Â∗ F ∪G; and
(2) There does not exist G0 ⊆ F c ∩Hc non-null, such that F ∪G0 Â∗ H ∪G0.

We need to show that for no G” ⊆ Ec ∩Hc non-null, E ∪G” Â∗ H ∪G”.
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Observe that (1) can be extended to all subsets of F c: for all G ⊆ F c,"
x if s 6∈ E ∪G
y if s ∈ E ∪G

#
%
"
x if s 6∈ F ∪G
y if s ∈ F ∪G

#
. (64)

Similarly, for all G0 ⊆ Hc,"
x if s 6∈ F ∪G0

y if s ∈ F ∪G0

#
%
"
x if s 6∈ H ∪G0

y if s ∈ H ∪G0

#
. (65)

Thus, for all G00 ⊆ F c ∩Hc (where F c ∩Hc 6= ∅ by Step 3.1),"
x if s 6∈ E ∪G
y if s ∈ E ∪G

#
%
"
x if s 6∈ H ∪G
y if s ∈ H ∪G

#
. (66)

Applying the above argument again, (66) holds for all G00 ⊆ Hc, and hence for all

G00 ⊆ Ec ∩Hc. By P1, P5, Lemma 1 and Step 3.1, this proves the assertion.

(A4) Assume E ∩H = F ∩H = ∅, E ∪H,F ∪H ∈ E∗∗, and x Â y.

(⇐) Assume that there is event G ⊆ Ec ∩F c ∩Hc, such that E ∪H ∪G Â∗ F ∪H ∪G.
Taking G0 = G ∪H immediately gives event G0 non-null, such that E ∪G0 Â∗ F ∪G0.

(⇒) Assume now that there is event G00 ⊆ Ec ∩ F c, such that E ∪ G00 Â∗ F ∪ G00. By

Lemma 7, E ∪ H ∪ G000 %∗ F ∪ H ∪ G000 for all G000 ⊆ Ec ∩ F c ∩ Hc. It suffices to show

that it is not the case that for all G000 ⊆ Ec ∩ F c ∩Hc, E ∪H ∪G000 ∼∗ F ∪H ∪G000 (note

that, by Step 3.1, Ec∩F c∩Hc is nonempty and there exists G̃ ⊆ Ec∩F c∩Hc for which E

∪H ∪ G̃ ∼∗ S, or F ∪H ∪ G̃ ∼∗ S, or both). Suppose than that E ∪H ∪G00 ¨∗ F ∪H ∪G00,

for otherwise the assertion is delivered. Since, by assumption of E ∪ G00 Â∗ F ∪ G00 and

Lemma 5, E ∪G00 ∼∗ S, we have that E ∪H ∪G00 ∼∗ F ∪H ∪G00 ∼∗ S. Observe that, by
P6Q∗, event H can be partitioned into two non-null events H1 and H2 such that"
x if s 6∈ F ∪G00 ∪H1

y if s ∈ F ∪G00 ∪H1

#
Â
"
x if s 6∈ F ∪G00 ∪H
y if s ∈ F ∪G00 ∪H

#
∼
"
x if s 6∈ E ∪G00 ∪H
y if s ∈ E ∪G00 ∪H

#
∼
"
x if s 6∈ E ∪G00

y if s ∈ E ∪G00

#
(67)

Using P6Q and non-nullness of H1 and H2, there is a subset of G00, G̃, such that"
x if s 6∈ F ∪ G̃ ∪H
y if s ∈ F ∪ G̃ ∪H

#
Â
"
x if s 6∈ F ∪G00 ∪H
y if s ∈ F ∪G00 ∪H

#
∼
"
x if s 6∈ E ∪ G̃ ∪H
y if s ∈ E ∪ G̃ ∪H

#
. (68)

(A5’) It follows by P6Q and the definition of Â∗.

Step 5 (DERIVATION OF π ON E∗∗):
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1. Axioms A1, A3, A4, and A5’ hold for all subsets of E∗∗. Define a sub-collection
of events, E , by E = {E ∈ E|@F non-null: E\F ∈ E\E∗∗}. By construction, for any event
E ∈ E , E Â∗ ∅ if E∗∗ = E|∼∗∅ and E Â∗ ∅ if E|∼∗∅. Call the latter property A2’, a
counterpart of Savage’s A2 (See Section 5). We will argue that using A1, A2’, A3, A4 and

A5’, Fishburn’s (1970, Ch.14) proof can be applied to construct a unique, finitely additive

and convex-ranged probability measure π̃ that represents the likelihood relation Â∗∗ on the
collection E∗∗ ∪ E . For any event E ∈ E , set π̃(E) = τ if E∗∗ = E|∼∗∅ and set π̃(E) = 1− τ

if E∗∗ = E|∼∗∅. We need to show that Fishburn’s argument delivers the desired result when
the collection E is replaced by E∗∗ ∪ E (with E serving the role of S).
2. Take an event E ∈ E and let EE be the collection of all of its subsets. Applied to the

relation Â∗∗ and the collection EE, Fishburn’s result yields a unique, finitely additive and
convex-ranged probability measure π̃ that represents Â∗∗ on EE. By Step 5.1, the measure
π̃ on EE is normalized to τ if the collection E∗∗, which induced E , is equal to E|∼∗∅ and to
1− τ if that collection is equal to E|∼∗∅.
3. Using that Â∗∗ is well defined on all of E∗∗, we extend the measure π̃ to the remaining

events in E∗∗ ∪ E as follows: For an event F in
¡E∗∗ ∪ E¢ \EE, let

π̃(F ) =

(
π(H) if F ∈ E∗∗, where H ∈ EE and H ∼∗∗ F ;
π(E) if F ∈ E . (69)

For the extension (69), to be well defined, we need to show that for any event F ∈ E∗∗ there
exists an event H as specified in (69). This follows by convex-rangedness of π̃ on EE and De-
breu (1954) (Â∗∗ is a weak order and, by Step 4 (A5’), the collection

¡E∗∗ ∪ E¢ \EE contains
a countable Â∗∗-dense subset). Thus, one can map all equivalence classes in

¡E∗∗ ∪ E¢ \EE
to those in EE.
4. We finally demonstrate that the extension of the measure π̃ to all events in E∗∗ ∪ E ,

normalized as in Step 5.1, is unique, and preserves finite additivity and convex-rangedness.

Consider an event F ∈ ¡E∗∗ ∪ E¢ \EE and its two partitions:55 {F1, ..., FM} and {H1, ...,HN}.
Let {I1, ..., IL} be the coarsest common refinement of those partitions. Uniqueness of sum-
mations

P
n=1,...,M

π̃(Fm) and
P

m=1,...,N

π̃(Hn) follows immediately from their each being equal

to
P

l=1,...,L

π̃(Il) =
P

l=1,...,L

π̃(El) where, for every l ∈ {1, ..., L}, Il ∼∗∗ El ∈ EE, and since each
event is finitely decomposed, π̃ is finitely additive on E∗∗∪E . To see that it is convex-ranged,
for any ρ ∈ [0, 1] and F ∈ E∗∗ ∪ E , observe that ρ · π̃(F ) = ρ · π̃(H) = π̃(H 0), where we

used that there is an event H, such that F ∼∗∗ H ∈ EE and that, by convex-rangedness of
π̃ on EE, there is a sub-event H 0 ⊆ H, such that π̃(H 0) = ρ · π̃(H). It remains to show that
π̃(H 0) = π̃(F 0) for some F 0 ⊆ F ∈ ¡E∗∗ ∪ E¢ \EE. To this end, apply P6Q to construct a par-
tition of S, {G1, ..., GK}, every event k ∈ {1, ..., K} of which is such that π̃ (Gk) ≤ π̃ (E).

55Such finite partitions exist by P6Q∗ applied to S if E ∈ E∗∗, and applied directly to E if E ∈ E.

47



On each of these events, Fisburn’s theorem generates a measure with desired properties.

Normalizing measures of events Gk according to (69) completes the argument.

Step 6 (EXTENDING π̃ TO E): From the relation Â∗∗ on E∗∗, we derive a complete
binary relation Â∗∗∗ on E .
1. We first show that all events in E\E∗∗ can be partitioned into finitely many events,

each of which is in E∗∗. We consider the cases E∗∗ = E|∼∗∅ and E∗∗ = E|∼∗∅ separately.
First, assume that E∗∗ = E|∼∗∅ and consider an event E ∈ E|∼∗S . By P6Q∗ , there exists an
N-partition of S, {G1, ..., GN}, such that E Â∗ Gn, for all n = 1, ..., N . By Lemma 5, for all

n = 1, ..., N , Gn ∼∗ ∅ and, hence, GN
n ∈ E∗∗. Write E =

µ
mS̃
n=1

GN
ñ

¶
∪
µ
E\

mS̃
n=1

GN
ñ

¶
, where

m ∈ {1, ..., N} is such that
mS̃
n=1

GN
ñ ⊆ E ⊂

m+1S̃
n=1

GN
ñ . By construction, for all ñ = 1, ...,m,

GN
ñ ∈ E∗∗, while E\

S̃
n

GN
ñ ⊂ GN

m+1 and hence also E\
S̃
n

GN
ñ ∈ E∗∗. Thus, the events in the

collection E\E∗∗ can be decomposed into events from the collection E∗∗.
Next, assume that E∗∗ = E|∼∗∅. By P6Q∗, the state space S can be partitioned into

finitely many events {H1, ...,HM}, such that S Â∗ Hm (and hence, by Lemma 5, Hm ∼∗ ∅)
for every m = 1, ...,M . Using the argument analogous to the one for E∗∗ = E|∼∗∅, each
event in E|∼∗S can be partitioned into finitely many events in E|∼∗∅.
2. For events E and F in E , define a binary relation Â∗∗∗ as follows: E Â∗∗∗ F if there

exists N-partitions of E and F , such that for all n = 1, ..., N , En Â∗∗ Fn. The condi-

tion necessary (and, as demonstrated below, sufficient) for the existence of such partitions

can be found using the convex-rangedness of π̃ on E∗∗ ∪ E : Consider E,F /∈ E∗∗ and let
{E1, ..., EN} and {F1, ..., FN} be partitions of E and F , respectively, into elements in E∗∗.
By convex-rangedness of π̃, those partitions can be made equi-numbered and such that ifP
n=1,...,N

π̃(En) >
P

n=1,...,N

π̃(Fn), then for each n = 1, ..., N , π̃(En) > π̃(Fn). This also shows

that if there exists an N-partition of E and F , such that for all n = 1, ..., N : En Â∗∗ Fn,

then it cannot hold for any N 0-partition that for all n0 = 1, ..., N 0 : En0 ≺∗∗ Fn0.

3. We show that the probability measure π̃ can be uniquely extended to a finitely additive

and convex-ranged probability measure representing the relation Â∗∗∗ on the collection E .
Define an extension of π̃ to E\E∗∗, π: For eachE ∈ E\E∗∗ and its finite partition {E1, ..., EN},
En ∈ E∗∗ for n ∈ {1, ..., N}, let π (E) =

P
n=1,...,N

π̃(En).

Consider two partitions of a given event E ∈ E\E∗∗: {E1, ..., EN}, {F1, ..., FM}, En ∈ E∗∗
for n ∈ {1, ..., N} and Fm ∈ E∗∗ form ∈ {1, ...,M}. Let {H1, ..., HL} be the coarsest common
refinement of those partitions. Uniqueness of summations

P
n=1,...,N

π̃(En) and
P

m=1,...,M

π̃(Fm)

follows immediately from each being equal to
P

l=1,...,L

π̃(Hl), and since each event is finitely

decomposed, π is finitely additive on E . To see that it is convex-ranged, for any E ∈ E and
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ρ ∈ [0, 1], take ρ·π(E) = ρ· P
n=1,...,N

π̃(En) =
P

n=1,...,N

ρ·π̃(En) =
P

n=1,...,N

π̃(Gn) = π

µ
NS
n=1

Gn

¶
,

where we used that for each n = 1, ..., N , there is a Gn ⊆ En, such that π̃(Gn) = ρ · π̃(En).

Step 7 (Â IS PROBABILISTICALLY SOPHISTICATED W.R.T. π):

1. Establishing condition (24) is an application of the argument in Machina and Schmei-

dler (1992, Theorem 1, Step 5). It suffices to show that the construction employed there

can be used. This follows from Lemma 3A.

2. Given that π is convex-ranged, for any P ∈ P0(X ), there exists an act f ∈ F , such
that π ◦ f−1 = P . Therefore, using in addition that Â is a weak order, the stronger version
of probabilistic sophistication from Section 4.1 is also satisfied.

1C. Proof of Theorem 1 for Extreme Preferences

Assume that preferences are extreme (definition 2).

Proof. Note: To aid in contrasting the arguments with those in the proof for the non-extreme
preferences, each step is assigned the same number as its counterpart step in Appendix 1B. Some

steps are left out as no longer relevant.

Denote the binary relation defined on E in (36) by Â∗∗; that is, E Â∗∗ F if E Â∗ F or

E Â∗ F .
Step 1: By an argument as in Step 1, Appendix 1B, and Lemma 6, the relation %∗∗ is a
weak order on E .

Step 2:
1. Given that %∗∗ on E is a weak order, Lemma 5 defines three equivalence classes of E

under ∼∗∗: E|∼∗∗∅ = {F ∈ E|F ∼∗∗ ∅}, E|≺
∗∗SÂ∗∗∅ = {F ∈ E|S Â∗∗ F Â∗∗ ∅} and E|∼∗∗S ={F ∈

E|F ∼∗∗ S}.
2. We show that under (H), the equivalence classes E|∼∗∗∅ and E|∼∗∗S contain events that

differ from ∅ and S, respectively, only on a null sub-event, that is

E|∼∗∗∅ = {E ∈ E|E is null} (70)

E|∼∗∗S = {F ∈ E|F = S\H, H null}.

Consider a non-null event E, such that S\E is non-null (possible by P6Q∗). Then, given

the assumption (H),"
x if s 6∈ E

y if s ∈ E

#
Â
"
x if s 6∈ S
y if s ∈ S

#
and

"
x if s ∈ E

y if s 6∈ E

#
Â
"
x if s 6∈ S
y if s ∈ S

#
, x Â y. (71)
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By Lemma 1 and the definitions of Â∗ and Â∗, it follows accordingly that E ≺∗ S and E Â∗
∅. Since E is an arbitrary non-null event with a non-null complement, using the definition

of %∗∗, we conclude that the equivalence classes E|∼∗∗∅ and E|∼∗∗S are as characterized in (70).
The proof for the case (L) is analogous and is, therefore, omitted.
3. By Lemma 3B, all events that differ from each ∅ and S on a non-null sub-event are

ranked as equally likely by ∼∗∗ and are, thus, contained in a single equivalence class, E|≺
∗∗SÂ∗∗∅:

E|≺∗∗SÂ∗∗∅ = {G ∈ E|G is non-null and Gc is non-null} . (72)

Step 3: Suppose that we wish to define a counterpart of the binary relation Â∗∗ (definition
3), now based on the relation %∗∗ rather than Â∗, on the subset of the collection E containing
all events E, such that E ≺∗∗ Ec. When either of the assumptions (H) or (L) holds, the
subset of events in E|≺∗∗SÂ∗∗∅ that could possibly be strictly ranked through such a relation

contains only nested events that differ on non-null sub-events. For example, under (H),
consider two events E1, E2 ∈ E|≺

∗∗SÂ∗∗∅, such that E1 ⊂ E2 and E2\E1 is non-null. Then, by
Step 2, E1 ∼∗∗ E2 and for G = S\E2:"

x if s 6∈ E1 ∪G
y if s ∈ E1 ∪G

#
Â
"
x if s 6∈ S
y if s ∈ S

#
=

"
x if s 6∈ E2 ∪G
y if s ∈ E2 ∪G

#
(73)

and the conclusion obtains by Lemma 1. Observe that since the strict ranking of E1 and

E2 can only be achieved by adding the complement of the nesting event E2 (up to null

differences), there can be no event G0 for which the ranking would be reversed.

However, the strict relation cannot be extended to non-nested events F1 and F2 for

which F1\F2 and F2\F1 are non-null. What fails is that, under (H) or (L), any event can
be strictly ranked by the relation Â∗∗ only with the events in E|∼∗∗S , and hence, by Step
2, there cannot exist a non-null event in the common complement of any two non-nested

events that would enable their strict comparison. Therefore, the strict ranking cannot be

extended beyond nested events. In other words, there are no non-null events E, such that

E ≺∗∗ Ec.

Step 4: Demonstrating that A1, A2, A3 and A5 hold for the relation Â∗∗ on E can be done
through arguments analogous to those for the non-extreme relation Â. To establish A4,
assume E ∩ H = F ∩ H = ∅ and x Â y. Since by Step 3 the relation Â∗∗ can satisfy A4
only for nested events (with non-null set differences), let F ⊂ E with E/F non-null.

(⇐) For G = Ec ∩ F c ∩ Hc = Ec ∩ Hc we have E ∪ H ∪ G Â∗∗ F ∪ H ∪ G. Taking

G0 = G ∪H directly yields G0 non-null for which E ∪G0 Â∗∗ F ∪G0.

(⇒) Since F ⊂ E, forG00 = Ec∩F c = Ec we have E∪G00 Â∗∗ F∪G00. TakingG000 = G00\H
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gives G000 non-null for which E ∪G000 Â∗∗ F ∪G000.

Step 5:
1. Define a set function λ : E → [0, 1] as follows: let λ(∅) = 0, λ(S) = 1; and whenever

F ⊆ E, let λ(F ) ≤ λ(E) with a strict inequality if E/F is non-null.

2. Notice that any function λ that satisfies the conditions from Step 5.1 represents the

relation Â∗∗ on E under (H) or (L): For all E ∈ E , E Â∗∗ F ⇔ λ(E) > λ(F ). Denote by

Λ(E) the set of all measures λ that represent %∗∗ under (H) or (L).
3. Each measure λ ∈ Λ(E) is nonatomic. We will prove this for (H). Fix λ ∈ Λ(E) and

consider an event E ∈ E|≺∗∗SÂ∗∗∅. By Steps 2 and 5.1, λ(E) > 0 and λ(Ec) > 0. Using P5,

construct a pair of acts "
x if s ∈ E

y if s /∈ E

#
Â
"
x if s /∈ S
y if s ∈ S

#
. (74)

Applying the definition of Â∗, Ec ≺∗ S, and by P6Q∗ event E can be partitioned into F

and E\F , such that Ec ∪ F ≺∗ S. Both F and E\F are necessarily non-null, for otherwise

Ec ∪ F ∼∗ S or Ec ∪ (E\F ) ∼∗ S — a contradiction to P6Q∗. By Step 3 and Step 5.1,
λ(E) > λ(F ) and λ(E) > λ(E\F ). This completes the proof.56

Step 7:
1. Fix a (possibly non-additive) measure λ ∈ Λ(E). Consider two lotteries P,Q ∈ P0(X ),

such that P = Q and λ ◦ f−1 = P , λ ◦ g−1 = Q for some f, g ∈ F . Since the least preferred
(w.r.t. ÂP ) outcomes assigned some positive probability by lotteries P and Q are identical,

and equal to the least preferred (w.r.t. Â) outcomes mapped from non-null events by acts f
and g, condition (24) follows for (L). Similarly, the most preferred (w.r.t. ÂP ) outcomes in

the supports of P and Q are equal and coincide with the most preferred (w.r.t. Â) outcomes
assigned to non-null events by acts f and g. Hence, condition (24) follows for (H).
2. If λ is convex-ranged, then for any P ∈ P0(X ), there exists an act f ∈ F , such

that λ ◦ f−1 = P . Hence, using in addition that Â is a weak order, the stronger version of
probabilistic sophistication from Section 4.1 is also satisfied.

56The representing measures need not be convex-ranged. Consider a monotone measure λ̃ that assigns
λ̃(∅) = 0, λ̃(S) = 1, and a maximum of 0.9 to any event E for which S\E is non-null. That measure
represents the relation Â∗∗ on E as desired; but λ̃ is clearly not convex-ranged.
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1D. Proofs of Lemmas 3 and 4

Lemma 3A If the binary relation over acts, Â, is not extreme, then for all events E,F ∈
E∗∗, such that E ∼∗∗ F , and all acts h ∈ F ,⎡⎢⎣ x if s ∈ E

y if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ ∼
⎡⎢⎣ x if s ∈ F

y if s ∈ E

h if s /∈ E ∪ F

⎤⎥⎦ . (75)

Proof. Assume that the relation Â is not extreme. Let π be the probability measure

derived in Theorem 1. Take a pair of equal-probability events: E,F ∈ E∗∗, π(E) = π(F ).

Define eE = E\F and eF = F\E. By additivity of π, π( eE) = π( eF ). Consider acts

f =

⎡⎢⎣ x if s ∈ eF
y if s ∈ eE

h if s /∈ eE ∪ eF
⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
hx+ if s ∈ G1

x if s ∈ eF
hx−,y+ if s ∈ G2

y if s ∈ eE
hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ and g =

⎡⎢⎣ x if s ∈ eE
y if s ∈ eF

h if s /∈ eE ∪ eF
⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
hx+ if s ∈ G1

x if s ∈ eE
hx−,y+ if s ∈ G2

y if s ∈ eF
hy− if s ∈ G3

⎤⎥⎥⎥⎥⎥⎥⎦ .
(76)

Using the definition of ∼∗∗,

eE ∼∗∗ eF if for any x Â y,

"
x if s 6∈ eE ∪G
y if s ∈ eE ∪G

#
∼
"
x if s 6∈ eF ∪G
y if s ∈ eF ∪G

#
, for any G ⊆ ( eEc∩ eF c).

(77)

Lemma 1, invoked to define the likelihood relation ∼∗∗ and to reduce the cardinality of the
outcome sets f (S) and g (S) to two, implies f ∼ g.

Lemma 3B If the binary relation over acts, Â, is extreme, then for all non-null events
E,F ∈ E∗∗, E ∩ F = ∅, and all acts h ∈ F ,⎡⎢⎣ x if s ∈ E

y if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ ∼
⎡⎢⎣ x if s ∈ F

y if s ∈ E

h if s /∈ E ∪ F

⎤⎥⎦ . (78)

Proof. Pick two non-null events E0 and F 0, E0 ∩ F 0 6= ∅ and assume that (H) holds.
Consider the following acts:

f =

⎡⎢⎣ x if s ∈ F 0

y if s ∈ E0

h if s 6∈ E0 ∪ F 0

⎤⎥⎦ and g =

⎡⎢⎣ x if s ∈ E0

y if s ∈ F 0

h if s 6∈ E0 ∪ F 0

⎤⎥⎦ , x Â y, (79)

where h (S) ≺ x. Since event F 0 is pivotal in act f , event E0 is pivotal in act g, and f ∼ g,
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as desired. The argument is analogous under (L).

In the next lemma and its corollary, we only analyze the nontrivial case of the non-

extreme preferences.

Lemma 4 In the coarsest measurable partition of the state space S induced by act f ∈ F,
there is a unique pivotal event.

Proof. We first show that the property of being pivotal is state-independent. Next, we
demonstrate that the pivotal event is (2) unique to an act, given the coarsest measurable

partition induced by that act.

1. We first state the key assertion, implied by Lemma 3A,B: Let π be the probability

measure derived in Theorem 1. Consider act f ∈ F , such that E is the pivotal event

of f , and for a disjoint with E event F , π (E) = π (F ) and f−1 (E) = x ¿ f−1 (F ) for

some x ∈ f (S). (Such a pair of events with π (E) = π (F ) and π (E) + π (F ) ≤ 1 can be
constructed by convex-rangedness of π.) Then, swapping outcomes between events E and

F yields act g, such that g−1 (F ) = x, g−1 (E) = f−1 (F ) and g ∼ f ∼ x. That is, the

property of being pivotal is state-independent.

2. Take act f ∈ F and let E and F be disjoint measurable events that map to non-

indifferent outcomes: f−1 (E) = x ¿ y = f−1 (F ). Suppose these events are both pivotal to

act f . Applying P3Q twice to f and invoking P1 yields a contradiction:

x ∼
"

x if s ∈ E

x if s ∈ Ec

#
∼Pivotal E f =

⎡⎢⎣ x if s ∈ E

y if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ ∼Pivotal F " y if s ∈ F c

y if s ∈ F

#
∼ y, (80)

where h ∈ F and h ¿ x, h ¿ y.

Corollary 2 Let E be the pivotal event of act f ∈ F and f (E) = x for some x ∈ f (S).
Then,

either f =

⎡⎢⎣ gx+ if s ∈ Efx+

x if s ∈ E

gx− if s ∈ Efx−

⎤⎥⎦ Â
⎡⎢⎣ gx+ if s ∈ Efx+

x if s ∈ E1

gx− if s ∈ E2 ∪Efx−

⎤⎥⎦ or f ∼

⎡⎢⎣ gx+ if s ∈ Efx+

x if s ∈ E1

gx− if s ∈ E2 ∪Efx−

⎤⎥⎦ .
(81)

Proof. Pick an act f ∈ F , let x ∈ f (S) be the outcome on the pivotal event of f ,
E0. Using P3Q, reduce the cardinality of f (S) to two so that f = [x,E; y,Ec], E0 ⊆ E0.
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Partition event Ec into non-null events F1 and F2. Since f ∼ x, it cannot be the case that

"
x if s ∈ E

y if s /∈ E

#
≺

⎡⎢⎣ x if s ∈ E

x if s ∈ F1

y if s ∈ F2

⎤⎥⎦ or

"
x if s ∈ E

y if s /∈ E

#
≺

⎡⎢⎣ x if s ∈ E

x if s ∈ F1

x if s ∈ F2

⎤⎥⎦ . (82)

Hence, for E1 and E2, such that E1 ∪E2 = E,

"
x if s ∈ E

y if s /∈ E

#
Â

⎡⎢⎣ x if s ∈ E1

y if s ∈ E2

y if s /∈ E

⎤⎥⎦ or

"
x if s ∈ E

y if s /∈ E

#
∼

⎡⎢⎣ x if s ∈ E1

y if s ∈ E2

y if s /∈ E

⎤⎥⎦ . (83)

More can be said if the cardinality of the set of outcomes X is at least four57. Applying

P6Q, partition the pivotal event E0 of f into non-null events E0
1 and E0

2. Consider act g:⎡⎢⎢⎢⎢⎣
gx+ if s ∈ Ex+

x if s ∈ E0
1

x0 if s ∈ E0
2

gx0− if s ∈ Ex−

⎤⎥⎥⎥⎥⎦ , (84)

where x Â x0, gx+ (S) Â x and gx0− (S) ≺ x0. By P3Q, it must be that either E0
1 or E

0
2 are

pivotal in g and by Lemma 4, only one of E0
1 and E0

2 can be pivotal in (84).

57With a three-outcome X , let z Â x Â y. Take act f ∈ F and let event E be pivotal to f , with
f−1 (x) = E. Next, patrition E into E1 and E2. By P3Q and P1, it must be that

f =

⎡⎣ z if s ∈ Ex+

x if s ∈ E
y if s ∈ Ex−

⎤⎦ ∼
⎡⎣ z if s ∈ Ex+

x if s ∈ E1
y if s ∈ E2 ∪Ex−

⎤⎦ ≺
⎡⎣ z if s ∈ E1 ∪Ex+

x if s ∈ E2
y if s ∈ Ex−

⎤⎦
or

f ∼
⎡⎣ z if s ∈ E1 ∪Ex+

x if s ∈ E2
y if s ∈ Ex−

⎤⎦ Â
⎡⎣ z if s ∈ Ex+

x if s ∈ E1
y if s ∈ E2 ∪Ex−

⎤⎦ .
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Appendix 2: Proof of Theorem 2

Proof. Sufficiency: (1) ⇒ (2)

Step 1 of the sufficiency part defines a preference relation ÂP over probability distribu-

tions induced by the relation Â over acts. Step 2 establishes the existence and uniqueness
of a number τ . Step 3 then constructs a preference functional over probability distributions

that represents ÂP as a left-continuous τ th quantile. Step 4 builds on the derived preference

functional for distributions, ÂP , to derive a representation for the relation over acts, Â.
Step 1 (DERIVATION OF ÂP ):

1. Let π be the probability measure derived for the non-extreme preferences in Theorem

1. The measure π can be used to map each act f ∈ F to some probability distribution

P ∈ P0(X ) through the mapping π ◦ f−1 = P . This mapping induces a relation over

probability distributions in P0(X ), ÂP , from the relation over acts, Â, as defined in Section
4.1. Probabilistic sophistication (Step 7 of Theorem 1), convex-rangedness of π and P1

imply that the mapping from acts to simple probability distributions is onto. Hence, the

relation ÂP is asymmetric and negatively transitive, and such that for all P,Q in P0(X )
and all f, g in A, ¡

P %P Q, π ◦ f−1 = P, π ◦ g−1 = Q
¢⇔ f % g. (85)

2. For the extreme preferences, fix a measure λ ∈ Λ (E) and map acts in F to lotteries

in P0(X ) through the mapping f → λ ◦ f−1, defined in Section 4.1.

Step 2 (EXISTENCE AND UNIQUENESS OF τ):

Assume first that the relation Â is not extreme.
1. We will repeatedly use that whenever F Â∗∗∗ ∅,58 then for any N ∈ N++, there exists

a 2N -partition of F , {F 2N

1 , ..., F 2N

2N }, such that F 2N

1 ∼∗∗∗ ... ∼∗∗∗ F 2N

n ∼∗∗∗ ... ∼∗∗∗ F 2N

2N .

Given that axioms A1-A5’ hold on the set E , such a partition, referred to as a uniform
2N-partition of F , can be derived by applying the argument in Fishburn (1970, Ch.14.2).59

2. Fix N ∈ N++ and consider a uniform 2N -partition of the state space S and associate
with it a sequence of acts {f(n|N)}n=1,...,2N , where

f(n|N) =

⎡⎢⎣ x if s ∈ S
l=n+1,...,2N

F 2N

l

y if s ∈ S
l=1,...,n

F 2N

l

⎤⎥⎦ , n = 1, ..., 2N , x Â y. (86)

Corollary 2 can be applied recursively to the sequence of acts {f(n|N)}n=1,...,2N to es-
58The relation Â∗∗∗ is defined in Step 6.2 in the proof of Theorem 1.
59Alternatively, the convex-rangedness of π could be used directly to derive 2N -partitions.
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tablish that there is a unique n(N) ∈ ©1, ..., 2Nª for which
"
x if s ∈ S
y if s /∈ S

#
∼ ... ∼

⎡⎢⎣ x if s /∈ S
l=1,...,n(N)−1

F 2N

l

y if s ∈ S
l=1,...,n(N)−1

F 2N

l

⎤⎥⎦ Â
⎡⎢⎣ x if s /∈ S

l=1,...,n(N)

F 2N

l

y if s ∈ S
l=1,...,n(N)

F 2N

l

⎤⎥⎦ ∼ ... ∼
"
x if s /∈ S
y if s ∈ S

#
.

(87)

Now, construct a sequence of such events, one for every N ,

( S
l=1,...,n(N)

F 2N

l

)
N∈N++

. Ap-

plying Lemma 4 again, these events are nested and weakly decreasing in N . By properly

choosing a subsequence, we may define τ = limN→∞ π

Ã S
l=1,...,n(N)

F 2N

l

!
=
T
N

π

Ã S
l=1,...,n(N)

F 2N

l

!
,

τ ∈ (0, 1).
3. For the extreme preferences, set τ = 0 if (L) holds and τ = 1 if (H) holds.

Step 3 (REPRESENTATION FUNCTIONAL FOR ÂP ):

1. By P3Q, there is a one-to-one mapping between the sets of equivalence classes on the

set of acts F w.r.t. Â and the outcome set X w.r.t. Âx; that is, for all pairs of acts f, g ∈ F ,

f Â g ⇔ x Â y (88)

where x is the outcome mapping from the pivotal event by act f , while y — by act g.

Assume that preferences are not extreme. Using the derived preference relation ÂP over

simple distributions in P0(X ) and the properties of π, (88) is equivalent to

π ◦ f−1 ÂP π ◦ g−1 ⇔ δx ÂP δy. (89)

The set of equivalence classes on P0(X ) w.r.t. ÂP can thus be mapped onto the set of equiv-

alence classes on X (understood as the set of constant distributions) w.r.t. ÂP . Hence, the

certainty-equivalence mapping for distributions — each simple distribution is ÂP -indifferent

to an outcome in its support — can be used to construct a representation for the relation ÂP

on P0(X ). The latter, in turn, can then be used to provide a representation for Â on F .
If preferences are extreme, for any measure λ ∈ Λ (E), (88) is equivalent to

λ ◦ f−1 ÂP λ ◦ g−1 ⇔ δx ÂP δy. (90)

For a fixed measure λ ∈ Λ (E), define a subset of lotteries in P0(X ):

P0(X , λ) =
©
P ∈ P0(X )|P = λ ◦ f−1 for some f ∈ Fª . (91)

The set of equivalence classes on P0(X , λ) w.r.t. ÂP can now be mapped onto the set of
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equivalence classes on X . Again, the certainty-equivalence mapping for distributions can
be used to construct a representation for the relation ÂP on P0(X , λ), and back up from it

a representation for Â on F .
2. The remaining steps characterize the certainty equivalence map between lotteries and

outcomes as a (generalized) inverse of a distribution and establish that it represents the

preference relation ÂP . The unique number τ ∈ [0, 1] derived in Step 2 will be used in
defining the inverse equal to the τ th quantile of the distribution.

By Step 2, for any act f ∈ F ,

f ∼ x, where x is such that π(f(s) - x) ≥ τ (92)

and x is (one of) the least preferred outcome(s) in {y ∈ f (S) |π(f(s) - y) ≥ τ ; π (f−1 (y)) > 0}.
Further, using the definition of ÂP , P1 and P3Q, it is straightforward to show that acts that

imply indifferent τ th outcomes are indifferent.

3. We verify that the inverse to-be-defined (in Step 3.5) should be left continuous. Let τ

be the number from [0, 1], derived in Step 2. Consider the sequence of acts {f(n|N)}n=1,...,2N
constructed in Step 2.2. For any N ∈ N++, define τn = π

Ã S
l=1,...,n(N)−1

F 2N

l

!
. By properly

choosing a subsequence, we obtain τn → τ as N → ∞; and for any given N ∈ N++,
f

Ã S
l=1,...,n(N)−1

F 2N

l

!
= y and f

³
F 2N

n(N)

´
= y. Together with the fact that the sequence

of events

( S
l=1,...,n(N)

F 2N

l

)
N∈N++

used to derive τ is weakly decreasing, that gives that the

inverse to-be-defined should be left continuous.

4. For the preference functional on lotteries to be real-valued, it suffices to ensure that

there exists a real-valued utility function on outcomes, u : X → R. Given that Â on X is

a weak order (P1) and X contains a countable Â-order dense subset, a standard argument
(Debreu [1954]) delivers a real-valued utility function u(·) on X , unique up to a strictly
increasing transformation. Let UO be the set of all such functions u that represent Âx.

5. Fix utility u ∈ UO, the number τ ∈ [0, 1], the measure π for the non-extreme

preferences and the set of capacities Λ (E) for the extreme preferences. Define ν as ν = π

if ÂP is non-extreme and ν = λ if ÂP is extreme. For any P = ν ◦ f , with an outcome set
{x1, ..., xN} define V : P0(X )→ X as

V (P ) =

⎧⎪⎨⎪⎩
inf{z ∈ R|π[u(xn) ≤ z|xn ∈ f (S)]≥τ} if τ ∈ (0, 1);
sup{z ∈ R|λ[u(xn) ≤ z|xn ∈ f (S)] ≤ 0} if τ = 0;
inf{z ∈ R|λ[u(xn) ≤ z|xn ∈ f (S)]≥1} if τ = 1.

(93)

where the definition for the extreme preferences holds for all λ ∈ Λ (E).
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Step 4 (REPRESENTATION FUNCTIONAL FOR Â): We can now combine the
above steps to define a functional V : F → X that represents the relation Â on acts: By

Step 1 for all f, g ∈ F , and all P,Q ∈ P0(X ), such that P = π ◦ f and Q = π ◦ g,

f Â g ⇔ P Â Q, (94)

which by Steps 2 and 3 is equivalent to

V (f) = V (P ) > V (Q) = V (g) . (95)

That is, as desired, the preference relation Â on F can be represented by evaluating each

act f ∈ F by the τ th quantile of the distribution induced by act f and measures π for the

non-extreme and Λ (E) for the extreme preferences:

V (f) =

⎧⎪⎨⎪⎩
inf{z ∈ R|π[u(f(s)) ≤ z]≥τ} if τ ∈ (0, 1);
sup{z ∈ R|π[u(f(s)) ≤ z]≤0} if τ = 0;
inf{z ∈ R|λ[u(f(s)) ≤ z]≥1} if τ = 1.

(96)

From the analysis so far, a natural local notion of monotonicity suggests itself for the

Quantile Maximization model.

Definition 6 Fix τ ∈ [0, 1]. Given a complete preorder over outcomes %x, distribution

Q = (y1, q1; ...; yM , qM) τ -first-order stochastically dominates (τ -FOSD) distribution R =

(y1, r1; ...; yM , rM) with respect to %x if

V (Q) > V (R), (97)

where V (·) is as defined in (93).

%P is said to satisfy τ -first order stochastic dominance if P ÂP Q whenever P τ -FOSDQ

with respect to %x. Unlike FOSD, τ -FOSD gives rise to a complete ranking of distributions.

Proof. Necessity: Assume that the representation V (f) holds for Â.
(2)⇒ (1) Fix a number τ ∈ [0, 1], a measure π for τ ∈ (0, 1) and a set of capacities Λ (E)

for τ equal to 0 or 1; for the extreme quantiles, the arguments below hold for all capacities

in Λ (E). The proof assumes a given utility u ∈ UO. Showing that conditions (L) and (H)
hold for the representation with τ = 0 and τ = 1, respectively, is straightforward and is

omitted here.

P1 (ORDERING): This holds, since there is a real-valued representation of Â.
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P3Q (PIVOTAL MONOTONICITY):

(only if ) Pick an act f ∈ F . By τ -FOSD, f ∼ x for an outcome x ∈ X , such that V (f) =
x. That the event to which x is mapped by act f , f−1 (x) = E, is non-null follows from the

representation. By τ -FOSD, E is such that f ∼ [gx+ if Efx+;x if E; gx− if Efx−]. Consider

outcome y - x. Then, appealing to τ -FOSD again yields [gx+ if Efx+;x if E; gx− if Efx−] %
[gy+ if Efx+; y if E; gy− if Efx−] for any subacts gx+, gx−, gy+, and gy−, as desired.

(if ) Implied by τ -FOSD.

P4Q (COMPARATIVE PROBABILITY): Assume τ ∈ (0, 1). Pick disjoint events E
and F , outcomes x∗ Â x, and the following acts⎡⎢⎣ x∗ if s ∈ E

x if s ∈ F

g if s /∈ E ∪ F

⎤⎥⎦ Â
⎡⎢⎣ x∗ if s ∈ F

x if s ∈ E

g if s /∈ E ∪ F

⎤⎥⎦ . (98)

Define (E ∪ F )cgx− = {s ∈ S|g(s) ≺ x}. Then, for (98), τ -FOSD implies that π((E ∪ F )cgx−)+
π(F ) < τ ≤ π((E ∪ F )cgx−)+π(E), and hence, π(E) > π(F ). Reversing the above argument,

it must be that ⎡⎢⎣ x∗ if s ∈ E

x if s ∈ F

h if s /∈ E ∪ F

⎤⎥⎦ %
⎡⎢⎣ x∗ if s ∈ F

x if s ∈ E

h if s /∈ E ∪ F

⎤⎥⎦ , (99)

where (E ∪ F )chx− = {s ∈ S|h(s) ≺ x}, and we used that π((E ∪ F )chx−) + π(F ) <

π((E ∪ F )chx−) + π(E).

For τ ∈ 0, (98) can hold only if event F is null, event E is non-null and g (s) Â x

for every s ∈ (E ∪ F )c; similarly, for τ ∈ 1, (98) can hold only if event F is null, event

E is non-null and g (s) ≺ x∗ for every s ∈ (E ∪ F )c. In either case, the assertion follows
immediately.

P5 (NONDEGENERACY): This follows, since the functional V : F → R is nonconstant.
P6Q (SMALL-EVENT CONTINUITY OF %l): Let τ ∈ (0, 1). Suppose that for all
x Â y, "

x if s ∈ E

y if s 6∈ E

#
Â
"
x if s ∈ F

y if s 6∈ F

#
(100)

By the definition of the relation Â∗, E Â∗ F , and hence, given the measure π and the

definition of the relation Â∗∗∗ which it represents, π(E) > π(F ). Further, the representation

of Â implies that 1 − π(F ) ≥ τ > 1 − π(E). By nonatomicity of the measure π, we

can partition the state space S into N events {H1, ..., HN} and choose N , such that τ >

1 − π(E) + π(Hn) for all n = 1, ..., N . The definitions of Â∗ and Â∗∗∗, then, imply that
E Â∗ F ∪Hn, for all n = 1, ..., N . By a similar argument, P6Q

∗
holds for any event E ∈ E

and ∅.
For (L), (100) is only satisfied when F c is non-null and Ec is null. Then, λ(E) = 1 >
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λ (F ) for any λ ∈ Λ (E). Nonatomicity of measures λ in Λ (E) completes the proof. So does
it for (H), in which case (100) is only satisfied when E is non-null and F is null; that is,

λ(F c) = 1 > λ(Ec).

Appendix 3: Proof of Theorem 3

The necessity part ((2) ⇒ (1)) is analogous to the proof of Theorem 2, and therefore we

focus on the sufficiency part ((1)⇒ (2)) of Theorem 3. Since the proof of the result for the

extreme preferences is provided in Appendices 1 and 2, here we assume that the relation

Â is non-extreme. The numbering of (as well as the logic behind) steps follows that of the
proof of Theorem 1.

Proof. Steps 1-7 derive and characterize beliefs induced by the relation Â under axioms
P1, P3Q, P5 and P6Q. Step 8 constructs the representation functional for Â.
Steps 1-3: As in the proof of Theorem 1. However, in the absence of P4Q, Lemma 7

does not hold. More precisely, it only holds for nested events. The relation Â∗∗ is, thus, not
well defined on all of E∗∗. Therefore, we proceed differently and define a new binary relation
Â0∗∗ for nested events in E .

Definition 7 For E,F ∈ E, such that F ⊂ E,

E Â0∗∗ F if there is an event G ⊆ (E ∪ F )c = Ec, such that E ∪G Â∗ F ∪G
or if there is an event H ⊆ E ∩ F = F , such that E\H Â∗ F\H.

(101)

To argue that the relation Â0∗∗ is well-defined, we first observe that Lemma 7 does hold
for nested events in E :

For all F,E ∈ E , such that F ⊂ E, if E ∼∗ F and there is a non-null event G ⊆ (E ∪ F )c = Ec,

such that E ∪G Â∗ F ∪G, then there is no event G0 ⊆ (E ∪ F )c = Ec (∗)
for which E ∪G0 ≺∗ F ∪G0.

By an argument similar to the one used in proving Lemma 7, (∗) only has a bite for
events in E|∼∗∅: If F,E ∈ E|∼∗S and F ⊂ E, then for all G00 ⊆ Ec, F ∪G00 ∼∗ F ∪G00 ∼∗ S.
Nonetheless, one can prove the following:

For all F,E ∈ E , such that F ⊂ E, if E ∼∗ F and there is a non-null event H ⊆ E ∩ F = F ,

such that E\H Â∗ F\H, then there is no event H 0 ⊆ E ∩ F = F , such that E\H 0 ≺∗ F\H 0. (∗∗)

Again, although (∗∗), like (∗), holds for nested events in all of E , it clearly only has a bite
for events in E|∼∗S : If F,E ∈ E|∼∗∅ and F ⊂ E, then for all H 00 ⊆ F , F\H 00 ∼∗ F\H 00 ∼∗ ∅.
Furthermore, it is immediate that if F ⊂ E, E ∼∗ F and E ∪ G Â∗ F ∪ G for some
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G ⊆ (E ∪ F )c = Ec, then there is no H ⊆ E ∩ F = F , such that E\H ≺∗ F\H, and vice
versa.

Step 4: Showing that A1-A5’ hold for the relation Â0∗∗ can proceed analogously to the
proof of Theorem 1, and is therefore omitted. Observe that part “if” of A4 is non-trivial

only for events in E|∼∗∅, while part “only if” — for events in E|∼∗S .

Step 5:
1. Define a set function λ : E → [0, 1] as follows: let λ(∅) = 0, λ(S) = 1; and whenever

F ⊆ E, let λ(F ) ≤ λ(E) with a strict inequality if E/F is non-null. The function λ

is additive for nested events: If F ⊂ E, then λ(F ) + λ(E\F ) = λ(E). Notice that any

function λ that satisfies these conditions represents the relation Â0∗∗ on E : For all E,F ∈ E
with F ⊂ E, E Â0∗∗ F ⇔ λ(E) > λ(F ). Denote by Λ(E) the set of all measures λ that
represent Â0∗∗ in that sense.
2. We show that each measure λ ∈ Λ(E) is nonatomic. For events E ∈ E|∼∗S , it follows

directly from P6Q∗ that E can be partitioned into non-null events F and E\F , such that
λ (E) > λ (F ) and λ (E) > λ (E\F ). Next, pick an event H from E|∼∗∅. Using that
Hc ∈ E|∼∗S , and applying P6Q∗ to Hc and ∅, take G ∈ E|∼∗∅, such that"

x if s 6∈ H

y if s ∈ H

#
Â
"
x if s 6∈ H ∪G
y if s ∈ H ∪G

#
(102)

(that this is possible follows from the non-nullness of H.) Then, P6Q∗ implies that H can

be partitioned into non-null events F 0 and H\F 0, such that λ (H) > λ (F 0) and λ (H) >

λ (H\F 0).

Step 7: Establishing that the relation Â is probabilistically sophisticated can proceed
in a manner analogous to Step 7 of Theorem 1 for the extreme preferences.

Step 8: This final step constructs the representation functional for Â.
1. Fix a measure λ ∈ Λ(E) and map acts in F to lotteries in P0(X ) through the mapping

f → λ ◦ f−1.
2. For any act f ∈ F , the certainty equivalents of a lottery λ ◦ f−1 coincide for all

measures in Λ(E). Taking an additive measure from Λ(E), one can apply the derivation of
τ ∈ (0, 1) from the proof of Theorem 2 for the non-extreme preferences.

3. The argument constructing a left-continuous quantile functional (29) that represents

Â parallels the one for the extreme preferences and is, therefore, omitted.
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Appendix 4: Other Results

Proposition 1Assume P1 (Ordering) and P5 (Nondegeneracy), and that Â is probabilisti-
cally sophisticated with respect to π. Then,

(i) Â satisfies P3Q if and only if ÂP exhibits P3Q;

(ii) Â satisfies P3Q and P6Q if and only if ÂP exhibits P3Q and P6Q.

Proof. Assume P1 (Ordering) and P5 (Nondegeneracy), and that Â is probabilistically
sophisticated with respect to π.

(i) (P3Q ⇒ P3Q) Pick an act f ∈ F , let E be its pivotal event and let f(E) = x for

some x ∈ f(S). Assume that or any outcomes x, y, and subacts gx+, gx−, gy+, gy− :⎡⎢⎣ gx+ if s ∈ Efx+

x if s ∈ E

gx− if s ∈ Efx−

⎤⎥⎦ %
⎡⎢⎣ gy+ if s ∈ Efx+

y if s ∈ E

gy− if s ∈ Efx−

⎤⎥⎦⇔ x % y. (103)

From the proof of Theorem 1, a stronger version of probabilistic sophistication (defined in

Section 4.1) is satisfied for extreme as well not preferences. By probabilistic sophistication,

x % y ⇔ δx %P δy (104)

and

f =

⎡⎢⎣ gx+ if s ∈ Efx+

x if s ∈ E

gx− if s ∈ Efx−

⎤⎥⎦ %
⎡⎢⎣ gy+ if s ∈ Efx+

y if s ∈ E

gy− if s ∈ Efx−

⎤⎥⎦ = f 0 ⇔ (105)

⇔ π ◦ f−1 %P π ◦ f 0−1
q q

π(Efx−)Gx− + π(E)δx + π(Efx+)Gx+ π(Efx−)Gy− + π(E)δy + π(Efx+)Gy+

Since the pivotal event E is non-null, π(E) > 0. Setting π(E) = λ and π(Efx−) =

γ(1− λ) completes the proof.

(P3Q ⇒P3Q) Take a simple lottery P = [Gx−, Px−, ..., x, px, Gx+, Px+]. If Â is non-

extreme, by convex-rangedness of π, there exist events Efx−, E and Efx+, such that

π(Efx−) = Px−, π(E) = px and π(Efx+) = Px+. The assertion follows from (104) and

(105). For extreme Â, the proof is immediate.
(ii) For the non-extreme Â, the argument mimics the proof of Theorem 2 (Step 2); for

extreme Â, the proof is straightforward and is, therefore, omitted.

Proposition 2 Assume P1 (Ordering), P5 (Nondegeneracy), and P6Q (Left-Continuity)
hold. The following axioms are equivalent for a binary relation on the set of lotteries P0(X),
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ÂP :

(1) P3Q (Rankwise Monotonicity);

(2) Weak Monotonicity with respect to FOSD and Ordinal Invariance.

Proof. ((2)⇒(1)) Using Debreu’s (1954) theorem to derive utility representation for

outcomes u, as in the proof of Theorem 2, we can assume without loss of generality that

X = R. Then monotonicity with respect to FOSD implies the following: Letting xR be

the ranked outcome vector of a lottery R ∈ P0(X ), we have that for all P,Q ∈ P0(X ) if
xP ≥ xQ, then xP %P xQ. Then, the proof of the assertion is an application of the result

in Gevers (1979), with the anonymity condition implied by monotonicity with respect to

FOSD.

((1)⇒(2)) Rankwise monotonicity implies that for each distribution P there is an out-

come x, such that for any Qx− and Qx+:

P ∼ (Qx−, Px−, ; x, px; Qx+, Px+) , (106)

in particular, P ∼ x. Hence, it is straightforward that Rankwise Monotonicity implies

monotonicity with respect to FOSD and Ordinal Invariance.
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