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This paper introduces a model of preferences, in which, given beliefs about uncertain outcomes,
an individual evaluates an action by a quantile of the induced distribution. The choice rule of Quantile
Maximization unifies maxmin and maxmax as maximizing the lowest and the highest quantiles of
beliefs distributions, respectively, and offers a family of less extreme preferences. Taking preferences
over acts as a primitive, we axiomatize Quantile Maximization in a Savage setting. Our axiomatization
also provides a novel derivation of subjective beliefs, which demonstrates that neither the monotonicity
nor the continuity conditions assumed in the literature are essential for probabilistic sophistication. We
characterize preferences of quantile maximizers towards downside risk. We discuss how the distinct
properties of the model, robustness and ordinality, can be useful in studying choice behaviour for
categorical variables and in economic policy design. We also offer applications to poll design and
insurance problems.

1. INTRODUCTION

This paper examines the choice behaviour of an individual who, when selecting among
uncertain alternatives, chooses the one with the highest quantile of the utility distribution. For
example, she might be maximizing median utility, as opposed to mean utility, as she would if
she were an Expected Utility maximizer. More generally, she might be comparing alternatives
through some other quantile that corresponds to any given number between O and 1.
Although largely ignored in decision theory, quantile-based decision criteria have long
been influential in economic policy design. Most prominently, quantiles have been used in
scenario-based analysis and as order statistics. Quantile-based decision rules have also been
common in resource allocation programs and in the design of treatment effects, as they permit
distributional targeting and explicit analysis of distributional consequences. Policy decision
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making and forecasting have further benefitted from techniques of robust estimation (Least
Absolute Deviations method; Koenker and Bassett, 1978), where quantiles have provided an
alternative to classical mean-based estimators, which are sensitive to large errors.

To which properties of quantile-based decision criteria can one attribute their normative
appeal over those based on moments, such as the mean? Two key characteristics of
quantiles—robustness and ordinality—have proven attractive among practitioners. Quantile-
based techniques are robust to fat tails, which are often encountered in practice and offer
predictions not driven by outliers. More pragmatically, unlike tools that are based on the mean,
quantiles do not require that there exist moments of any order, which is a problem, for example,
in non-life insurance, finance and income studies. In terms of ordinality, quantiles have the
advantage of not requiring any parametric assumptions about utilities.

To our knowledge, apart from the work of Manski (1988) and a recent contribution by
Chambers (2007) on which we elaborate below, quantiles have not been studied in choice
theory. There are two famous exceptions: maxmin and maxmax. Decision makers who select
an alternative that offers the highest minimal or maximal payoff can be viewed as maximizing
the lowest or the highest quantile, respectively.! Maxmax, and especially maxmin, have been
applied in game theory, robust control, individual and social choice, bargaining, voting and
other areas of economics. These criteria have, however, been commonly criticized for basing
choice on what may be extreme and unlikely outcomes. Indeed, maxmin agents would not
invest, would not drive, and so on. Surprisingly, there appears to be no model that captures
more moderate preferences” while preserving the qualitative properties of maxmin and maxmax
that the Expected Utility does not exhibit, such as ordinality and robustness. Compared to
the extreme maxmin and maxmax, the family of quantile-based criteria incorporates richer
information (in terms of outcome and probability) from the uncertain alternatives faced by an
agent, thus additionally gaining the attribute of robustness.

One important class of decision problems with which Quantile Maximization (but not
Expected Utility) can formally deal is that where the alternatives involve categorical, sometimes
referred to as qualitative, variables. Many economic and social variables are categorical
(e.g., careers, the A—F grading scheme, qualities in online ratings). What makes modelling
challenging in this case is that the outcomes are informative only up to their rank—and not
distance. O’Neill (2001) surveys the difficulties involved in formalizing choice behaviour for
categorical variables.) Stated somewhat informally, applying the Expected Utility would require
taking an integral and, hence, assigning real (utility) numbers to categorical values. Since the
possible (and, in this setting, arbitrary) utility assignments admit functional forms as diverse
as concave and convex, the prediction about choice behaviour would then derive from the
assignment rather than ordinal rankings themselves. By offering a tractable technique that

1. Maxmin was formally analysed by Roy (1952, safety first rule), Milnor (1954), Rawls (1971, justice as
fairness theory), Maskin (1979), Barbera and Jackson (1988), Cohen (1992, security level), and Segal and Sobel
(2002). Formalizations of maxmax include Cohen (1992, potential level), Segal and Sobel (2002), and Yildiz (2007,
wishful thinking). The maxmin in uncertain settings should be distinguished from that in ambiguous environments
studied by Gilboa and Schmeidler (1989), where maxmin is taken over expected utilities, each being evaluated by a
different prior.

2. Perhaps the closest concept is «-maxmin, defined as a convex combination of the minimal and the maximal
payoffs with fixed weights « and 1 — «. (The rule was introduced by Hurwicz (1951), and by Arrow and Hurwicz
(1972) in a context of “complete ignorance” and subsequently applied also to decision problems under uncertainty.)
The o-maxmin rule is, however, not ordinal. Furthermore, like maxmin and maxmax, o-maxmin loses the entire
information contained in the prior except for its support. Maxmin and maxmax are useful decision criteria in settings
where an analyst has no probabilistic information about events. Nonetheless, such information is often available,
especially about part of the domain, which is all that quantiles require.
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respects these rankings, Quantile Maximization complements the existing models of choice
under uncertainty, virtually all of which imply the use of cardinal properties of utility functions
over outcomes. For the same reason, Quantile Maximization does not capture preference for
diversification and should not be used in decision problems in which the outcome spread is a
concern (see Section 6.1).

Alternatively, even if cardinal information about outcomes is available to an agent, she
might want to make a choice that is robust to her own utility. Quantile Maximization
thus contributes to the literature on robustifying economic and policy design, which has
primarily focused on relaxing the assumption that decision makers know—or act as if they
knew—the true probability distribution (e.g., Hansen and Sargent (2007) applying the model of
Gilboa and Schmeidler (1989), Klibanoff, Marinacci and Mukerji (2005), and Maccheroni,
Marinacci and Rustichini (2006)). The quantile model permits a less explored robustness
test that involves relaxing the assumption that decision makers have cardinal as well as
ordinal rankings of outcomes, or that cardinal, parametric assumptions about utilities do affect
decisions. Likewise, the model can be applied by decision makers who explicitly seek a rule
that can apply to a population with heterogeneous preferences and are willing to assume only
that people prefer more to less (e.g., distributional targeting in resource allocations, expert
recommendations).

1.1. Results

This paper formalizes the concept of Quantile Maximization in choice-theoretic language to
understand its implications for decision making and provide a foundation both for its practice
and for its applications in economic theory. The central theoretical contribution of the paper is
to provide the complete behavioural characterization of an agent who, when choosing between
uncertain alternatives, evaluates each alternative by the 7-th quantile of the implied distributions
and selects the one with the highest quantile payoff. Thus, a decision maker is characterized by
a scalar t € [0, 1], subjective beliefs over events &, and a rank order over outcomes. Taking
preferences over Savage-style acts (maps from states to outcomes) as a primitive, we jointly
axiomatize Quantile Maximization and subjective probabilities with five intuitive conditions.
We next describe the main results.

First, the axiomatization is revealing about how quantile maximizers code information about
uncertain alternatives. As our central axiom asserts, Quantile Maximization implies that, for
any act (uncertain alternative), there exists an event, called a pivotal event, such that exchanging
outcomes outside of this event in a way that preserves their rank with respect to the outcome on
the pivotal event does not affect preferences over acts. The agent thus assesses the realization
of the uncertain alternative via a “typical” consequence (scenario); for the purpose of making
the choice, it suffices that she categorizes the remaining outcomes as worse or better—with
Quantile Maximization, the choice will be robust to the actual realization of these consequences.
Crucially, which event the agent considers typical (pivotal) is determined by her preferences.
After we derive beliefs, we show that there is a formal sense in which the selection of the
scenario considered typical by the agent is governed by her attitude toward downside risk. The
model admits an elegant characterization of risk attitudes: t itself provides a measure and a
complete ranking of risk attitudes, ranging from extreme downside risk aversion (r = 0) to
extreme downside risk tolerance (t = 1).

Furthermore, the axiomatization uncovers an important difference in how beliefs enter the
preferences of the extreme and the intermediate quantiles. For all values of t strictly between
0 and 1, the derived probability measure that represents subjective beliefs is unique (and
also convex-ranged and finitely additive). For the extreme values of 7, equal to 0 or 1, we
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derive a set of non-atomic measures that are monotone but not necessarily finitely additive
(capacities). This is intuitive: choices of 0- or 1-maximizers do not depend on beliefs, just on
their support; hence, these are consistent with any measure that assigns strictly positive (and
less than one) values to the same outcomes. As a by-product, our results axiomatize maxmin
and maxmax under uncertainty. While these two rules have been studied extensively, to the
best of our knowledge, we are the first to derive and characterize the implied beliefs of maxmin
Or maxmax agents.

Apart from providing the model with an identification result regarding the uniqueness of
7 and beliefs, the axiomatization also yields a set of testable predictions for the model (and,
notably, for the additivity of beliefs), which are helpful in understanding the relation between
Quantile Maximization and other axiomatic models of preferences.

Perhaps the key implication of the characterization of beliefs is that, despite comparing acts
through a single quantile, quantile maximizers are probabilistically sophisticated (in the sense of
Machina and Schmeidler, 1992) in that they behave as if they had a probability measure in mind
(which is also unique for t € (0, 1)). The result and the novel technique we have developed to
derive a probability measure from preferences are of independent interest, since an analyst can
derive the beliefs of a decision maker without having to deal with a numerical representation of
preferences. One direct use of the technique (which is constructive) might be for quantile-based
expectations in survey research (see, e.g., the work of Manski and co-authors), as it permits
separating the implications of the elicited predictions from those of the decision rule itself. We
hope that the derived testable conditions and, in particular, the implied test for additivity of
beliefs will direct more economic attention to quantile-based decision criteria. The technique
and characterization of beliefs also contribute to the literature on probabilistic sophistication.
The goal of that research is to understand when choices of an agent are consistent with her
having beliefs that conform to a probability measure without restricting the actual decision
rule to an Expected-Utility or other functional form. Yet, the existing alternatives to Savage’s
derivation of beliefs (Machina and Schmeidler, 1992; Grant, 1995) rely on conditions on
preferences that are too restrictive for the quantile model; for instance, a median maximizer
would not be probabilistically sophisticated according to these characterizations.® In addition,
unlike these results, our technique can be used to derive beliefs for lexicographic agents and
in decision problems that involve categorical variables. Moreover, our results demonstrate that
the commonly used formal definitions of probabilistic sophistication admit preferences that
intuitively should not be regarded as being based on probabilistic beliefs.

The main technical contribution of this paper is a new derivation of subjective probabilities
that represent agents’ beliefs. In axiomatizing expectation-based models, the derivation of
beliefs is typically a quick step, as the proof of Savage (1954) can be readily applied. We
could not, however, directly use either Savage’s or other arguments in the literature: derivation
of probabilities involves defining a likelihood relation—a binary relation on events—induced
from the preference relation on acts. In the quantile model, the commonly used likelihood
relation* generates only two equivalence classes on the entire collection of events: all events
are judged to be either equally likely to the null set or to the whole state space. Hence, even if
there is a probability measure that represents the beliefs of r-maximizers, the relation would not
allow an analyst to recover it from data as rich as recording all choices in all decision problems.

3. Her choices violate all axioms in Machina and Schmeidler, except P1 (Ordering), P4 (Weak Comparative
Likelihood), and P5 (Non-degeneracy) and all axioms in Grant except P1 and P5.

4. According to the commonly used definition (employed by Savage and earlier by Ramsey and de Finetti),
event E is assessed as more likely than event F if, for any pair of outcomes x and y, where x is strictly preferred to
y, an individual strictly prefers betting on x when E occurs than when F occurs.
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1.2. Other related literature

Ordinal representations of preferences have been advocated by Borgers (1993, pure-strategy
dominance), Chambers (2007, 2009), and earlier by Manski (1988, quantile utility and utility
mass models). Roberts (1980) introduced the idea of rank-dictatorship in social decision
making, which thus does not involve probabilities. Manski was the first to draw attention to the
decision-theoretic attributes of Quantile Maximization and examine risk preferences of quantile
maximizers. The result by Chambers (2009) provided a compelling motivation for studying
quantile decision criteria. Suppose one is interested in applying an ordinal decision criterion
that should not violate weak first-order stochastic dominance. Chambers (2009) showed that,
in the class of all such ordinal and weakly monotonic rules, quantiles are an essentially unique
decision criterion. Working with the real-valued bounded measurable functions, Chambers
(2007) provided several results that illuminated the relation among the functionals satisfying
the two conditions. Interestingly, thanks to mild informational requirements, the ordinal and, in
particular, fully qualitative (i.e., in terms of outcomes and probabilities) approach to modelling
choice has become increasingly popular in the area of artificial intelligence over the past decade
(see, e.g., Boutilier (1994), Dubois et al. (2000, 2002) and references therein). The primary
difference here is that Quantile Maximization is based on probabilistic reasoning.

1.3. Structure of the paper

Section 2 presents the model of Quantile Maximization. Section 3 states our axioms, and
Section 4 provides the main results, namely, the representation theorem and a characterization
of probabilistic sophistication. Section 5 outlines the key steps in the proof. Section 6 examines
the properties of risk preferences and discusses the applications of the model. Section 7 offers
concluding remarks. All proofs appear in the Appendices.

2. THE QUANTILE MAXIMIZATION MODEL

Let S denote a set of states of the world s € S, and let A’ be an arbitrary set of outcomes
x,y € X. An individual chooses among simple acts f : S — X,3 which map from states to
outcomes. F is the set of all such acts. The set of events £ = 25, with typical elements E and
F, is the set of all subsets of S. A collection {S, X, &, F} defines the Savagean model of purely
subjective uncertainty. An individual is characterized by a binary relation over acts in F, >,
which will be defined as a strict preference relation and taken to be the primitive of the model.
Let >, denote the preference relation over certain outcomes, X, obtained as a restriction of
> to constant acts. Say that event E is null if, for any two acts, f and g, which differ only
on E, we have f ~ g. Let Py(X) denote the set of simple probability distributions over the
outcomes (lotteries). Finally, §, stands for the degenerate lottery P = (x, 1).

Let 7 denote a probability measure on &, and let u be a utility over outcomes u : X — R.
For each act, w induces a probability distribution over payoffs, referred to as a lottery. For
an act f, I1; denotes the induced cumulative probability distribution of utility IT;(z) =
w[s € Slu(f(s)) <z, z€R]. Then, for a fixed act f and t € (0, 1], the t-th quantile of the
distribution of the random variable u(x) is a (generalized) inverse of the cumulative distribution
at t. The generalized inverse is defined as the smallest value z, such that the probability that
a random variable will be less than z is not smaller than t:

Q'(Iy) =inf{z € R|x[u(f(s)) <z] = 7}, ey

5. An act f is simple if its outcome set f(S) = {f(s)|s € S} is finite.
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while for t = 0, the quantile is defined as?

Q%) = sup{z € R|w[u(f(s)) < z] <0} )

Definition 1. A decision maker is said to be a t-quantile maximizer if there exists a
unique 7 € [0, 1], a probability measure 7 on &, and utility # over outcomes in &, such that
for all f, g € F,

=g« Q°(I1y) > Q" (Ty). 3)

By analogy with the Expected Utility, where the mean is a single statistic via which a
distribution is evaluated, when choosing among lotteries a r-maximizer assesses the value
of each lottery by the t-th quantile realization. We will show that, although generally a
correspondence, generically in payoffs the set of optimal choices is a singleton.

The quantile model nests two choice rules famous in the literature of choice under risk:
maxmin and maxmax. A decision maker choosing according to maxmin picks the act with the
highest minimal payoff:

g% min u(x) > min u(x). 4)
{xe f(S)|m(x)>0} {xeg(S)|m (x)>0}

Maxmax dictates selection of the act with the highest maximal payoff:

f>g< max u(x) > max u(x). (5)
{xef(S)m(x)>0} {xeg(S)|m (x)>0}

That the maxmin and maxmax decision makers are, respectively, the 0- and 1-quantile maxi-
mizers follows from Q°(IT ;) = minjye f(s)jx(x)>0y #(x) and Q1 (IT7) = Maxye £(S)x(x)=0} U (X).
Quantile Maximization can thus be viewed as a generalization of those extreme choice rules to
any intermediate quantile. While the focus of the paper will be on simple acts, in the example
below, it is convenient to illustrate the relation between maxmin, maxmax and Quantile Max-
imization using infinite-outcome acts.

Example. Consider an individual who is facing a choice between two acts, f and g. Let w
be the probability measure that represents the agent’s beliefs. The cdf’s induced by acts f and
g and the measure 1 are plotted in Figure 1. The 0-quantile maximizer would choose f, the
1-quantile maximizer would be indifferent, and the median (t = 0.5) maximizer would prefer g.

3. AXIOMS

Consider the following five axioms on >. The numbering is Savage’s, the names of his
conditions are adapted from Machina and Schmeidler (1992), and the superscript “¢” (for
“Quantile”) is added to new axioms.

Axiom P1 (Ordering). Relation > is a weak order.

This standard condition defines > as a preference relation. To state the next axiom, for a
fixed act f € F and event E, such that f~!(x) = E for some x € f(S), we define the unions

6. Clearly, definitions (1) and (2) are conceptually the same: The quantile operator picks the smallest value
z (from the support of a lottery induced by act f and probability 7, given utility u), such that the probability of
a realization that yields utility less than z is at least 7. The separate formulation for T = 0 merely ensures that the
inverse operator maps to an element from the support of IT, (given u).
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FIGURE 1

Distributions induced by acts in the example

of events which by f are assigned outcomes strictly more and strictly less preferred to x,
respectively:’

Ef, ={s €SIf(s) > x}, (6)
E;, ={s€S|f(s) <x} @)

Since the acts are finite-ranged, every act induces a natural partition of the state space S, which
is the coarsest partition with respect to which it is measurable. The event E is an element of such

a partition. Let the function g;” be any mapping g7 : E;{X — X with g (s) ZZ x, forall s €

E}"x, and similarly, let g~ be any mapping g : E, — X with g7 (s) T x, forall s € E, ..
Axiom P32 (Pivotal Monotonicity). For any act f € F, there exists a non-null event E, such
that f~'(x) = E for some x € X, and for any outcome y, and subacts g, g0, g;r, and gy :

gl if E}:X g if E;x
x if E = yit E &S Xy (8)
g, if E,, gy if E,,

Before we explain the roles that this axiom serves, we first interpret the following key
implication: for any act f € JF, there exists a non-null event E, such that f~!'(x) = E for
some x € X, and:

gl if E}:x
f~ x if E . 9)
g, if E;X

By P1, (9) holds for all subacts g/, g, g;r, and g;. Condition (9) states that for a given act,
there exists an event, which will be called a pivotal event, such that changing outcomes outside

7. For notational clarity, we assume (w.l.o.g.) that the set {y € f(S)|y ~x, f(E) =x} is a singleton.
Alternatively, the events (6) and (7) could be defined with respect to f~! (Uye S yly ~ x) for some x € f(S).
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of that event in a (weakly) rank-preserving way does not affect preferences over acts—a form
of separability. Crucially, what are held fixed during the transformation are the events assigned
to outcomes, which in the original act f are either strictly preferred or strictly less preferred
to x, the outcome on the pivotal event. After the transformation, these events will still map
to outcomes preferred or less preferred, respectively, to x, with a weak preference permitted.
The measurability requirement that the act f be constant for the pivotal event ensures that the
conditions (8) and (9) are non-trivial; otherwise, the state space could be taken as pivotal for
any act.

The behavioural implications of Pivotal Monotonicity are threefold. First, the axiom features
a “pick a typical outcome and discard the tails” behaviour, and will be the key to guaranteeing
the existence and uniqueness of a number t € [0, 1]. Consequently, for a quantile maximizer,
the certainty equivalent of any lottery will always be one of the outcomes in the support.
This is in stark contrast to the Expected Utility and other cardinal models. Second, as its
name suggests, P3¢ also provides preferences over acts with an appropriate, local notion of
monotonicity. It states that replacing an outcome y on the pivotal event by a (weakly) preferred
outcome x always leads to a (weakly) preferred act. Worth noting is that it suffices that the
preference be monotonic on the pivotal event only; the axioms jointly allow for extending the
monotonicity to the whole collection of events £. Finally, in the presence of Ordering (P1) and
Non-degeneracy (P5), Pivotal Monotonicity is equivalent to the following property: for any
pair of acts, replacing the outcomes in their ranges in a weakly rank-preserving way (w.r.t. >,)
leaves intact the agent’s preferences over these acts (Lemma 3, Appendix A.1). Underlying
this equivalence is the ordinal nature of the model.

Notice that Pivotal Monotonicity does not require that the pivotal event be unique in a
given act; therefore, it does not say how to relate pivotal events across acts. Together with other
axioms, P3¢ will render the property of being pivotal state-independent (Lemma 6, Appendix
A.4). This will set up a relation between pivotal events across acts. More importantly, the unique
number 7 in the unit interval [0, 1] can only be pinned down after the measure representation
for beliefs is derived, and it is largely the mildness of Pivotal Monotonicity that renders
constructing the measure(s) the most challenging part of the characterization.

Axiom P4¢ (Comparative Probability). For all pairs of disjoint events E and F, outcomes
x* > x, and subacts g and h,

x*ifseE x*ifseF x*ifs e E x*ifseF
xifseF > xifs e E = xifseF = xifs € E . (10)
gifs¢ EUF gifs¢ EUF hifts¢ EUF hifs¢ FUF

P4€ asserts that replacing the common subact mapping from (E U F)¢ does not strictly
reverse the likelihood ranking of events E and F. It implies that adding a common complement
event to either E or F will not strictly reverse the likelihood ranking between them. In turn,
this will provide the representation of the “more likely than” relation over events, to be induced
from preferences over acts, with a finitely additive form. Remarkably, the behavioural content
of Comparative Probability is precisely the additivity of the beliefs representation of quantile
maximizers: a decision maker whose preferences satisfy all axioms but P4 can be viewed as
a quantile maximizer with respect to capacities. Hence, P4¢ provides a testable condition for
whether the expectations of quantile maximizers are probabilistic (additive). The significance of
this question has re-emerged in research eliciting expectations from survey respondents (see,
e.g., the presidential address by Manski, 2004) as well as via the literature on probabilistic
sophistication. Notice that the axiom has no effect in the cases leading to t equal to O or 1;
that it does not imply Savage’s P4; and that no events are required to be non-null.
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Axiom P5 (Non-Degeneracy). There exist acts f and g, such that f > g.

This is the familiar non-triviality condition. By requiring that the individual not be
indifferent among all outcomes, P5 assures that both the preference relation and the derived
likelihood relation are well-defined (in particular, non-reflexive) weak orders. It also permits
establishing the uniqueness of a probability-measure representation of beliefs.

Before we state the final axiom, we introduce conditions that identify two important classes
of preferences. Intuitively, these preferences will lead to t = 0 and 7 = 1, respectively.

(L, “lowest”):  For any act f € F, the pivotal event maps to an outcome from the least
preferred equivalence class w.r.t. >, in the outcome set {x € X]x € f(S)}.

(H, “highest”): For any act f € F, the pivotal event maps to an outcome from the most
preferred equivalence class w.r.t. > in the outcome set {x € X|x € f(S)}.

Definition 2. A preference relation over acts F, >, satisfying P32, is called extreme if
either (L) or (H) holds. It is called non-extreme if neither (L) nor (H) is satisfied.

Let us define two continuity properties that will be used in the final axiom.
(P69+) For all events E, F € &, if for any pair of outcomes x >y,

xifs¢ E xifs ¢ F
|:yifseE]<|:yifseF:|’ an

then there exists a finite partition {G1, ..., Gy} of S, such that, foralln =1, ..., N,

xifs ¢ E xifs ¢ FUG,
[yifseE}<|:yifseFUGn] 12)

(P62") For all events E, F € &, if for any pair of outcomes x > v,
xifseE xifseF
|:yifs¢E]>[yifs¢Fi|’ (13)
then there exists a finite partition {Hy, ..., Hy} of S, such that, for allm =1, ..., M,

xifseE xifse FUH, (14)
yifs¢E yvifs¢ FUH, |’

Axiom P6¢ (Event Continuity). Relation > satisfies P69+ for all pairs of events in € if > is
non-extreme or (H) holds; > satisfies P62" Jor all pairs of events in £ if (L) holds or for a pair
of a null event and any event E in & if > is non-extreme.

For the non-extreme preferences, the main force of this Archimedean axiom comes from the
implication that the state space is infinite. Moreover, it ensures that the quantile in the represen-
tation is left-continuous. Formulated in terms of two-outcome acts, it has no further implications
for risk preferences (i.e., the restriction of the implied lottery preferences to constant lotteries).

3.1. A useful interpretation

The conditions (P62+) and (P6Q*) can be interpreted in terms of likelihood relations—we will
use that interpretation in the sequel. Although the definition of likelihood that we employ to
construct probabilities differs from the standard one (see Section 5), the standard definition,
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which is used implicitly in P62, still allows us to retrieve useful information from preferences.
Formally, the likelihood relation adopted by Savage (1954), a binary relation >* on &, is
defined through Savage’s P4, implied by our P1 and P39:

xifseEi| |:xifseFi|

yvifs & E yifs & F as)

E =* F if for all x > y, |:
We also employ the following definition, which differs from >* in that it maps the events
E and F, whose likelihood is being compared, to the less preferred outcome:

. xifs ¢ E xifseF
E>*F1ff0ranx>y’|:yifseEi|<|:yifseFi|' (16)

With these definitions, conditions P62+ and P62" can be restated appropriately. In all cases
leading to t € (0, 1], measure-representations for beliefs will be derived using relation >,.
The reason for altering the relation from the commonly used >* to >, is that >* would
yield right-continuity of the quantile representation functional. We follow the convention in
the literature and define (and derive) quantiles as left-continuous. The distinctive formulation
of the condition in P62 for the subclass (L) of the extreme preferences is due to the fact that
P62+ fails in this case.

4. AXIOMATIC FOUNDATIONS OF QUANTILE MAXIMIZATION
4.1. Probabilistic sophistication

This section presents the first of two central theorems of the paper. The result shows that
quantile maximizers’ preferences > over uncertain alternatives are consistent with them having
a subjective probability distribution over the states in S, thereby establishing probabilistic
sophistication. Since the seminal paper by Machina and Schmeilder (1992), a formal definition
of probabilistic sophistication has been evolving. We adopt the following conceptualization,
which was first proposed by Grant (1995) and also used in a general result by Chew and Sagi
(2006): fix a probability measure 7 on the set of events £ Each act f € F can be mapped
to a lottery in Py(X) in a natural way, through the mapping f — mof~!. We say a decision
maker (or, relation >) is probabilistically sophisticated if she is indifferent between two acts
that induce identical probability distributions over outcomes. Formally, for all lotteries P, Q
in Py(X), and all acts f, g in F,

(P=Q,nof '=P g ' =Q)= f~g. (17)

In passing, we define a mapping from acts in F to lotteries in Py(X) using a fixed (possibly
non-additive) measure A. For an act f € F, rank the outcomes in f’s outcome set f(S)
w.ort. > x; 3x2 3 --- 3 xy, N € Np; next, map the corresponding events Eq, E, ..., Ey
to numbers pi, p2,..., py in [0, 1] according to: p; = A(E;) and p, = X(Umq E,.) —
MU,pp_y Em) for n€{2,...,N}. As Y, _y pn = 1, the mapping f — Aof~! uniquely
yields a lottery P € Py(X). With the mapping f — Ao f~!, a non-additive measure A (uniquely)
implies a cumulative probability distribution for a given act f € F, denoted by A ;. Theorem 1
characterizes subjective beliefs about the likelihood of events for individuals whose preferences
over acts satisfy axioms P1-P6<.

Theorem 1. Suppose a preference relation > over F satisfies P1, P32, P42, PS5, and P69.
Then,
A. There exists a unique, finitely additive, convex-ranged probability measure 7w with respect
to which relation > is probabilistically sophisticated if and only if it is not extreme.
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B. If relation > is extreme, there exists a set of non-atomic capacities A(E) on &, such that
the condition (17) holds for any capacity A € A(E).

The result reveals two interesting behavioural characteristics of beliefs underlying the
choice of quantile maximizers. Theorem 1 first unveils that beliefs enter differently into the
decision making of agents with extreme versus non-extreme preferences. The result identifies
the condition on preferences that satisfy axioms P1-P6¢ under which quantile maximizers,
like expected utility maximizers, behave as if they based their choice on a unique probability
measure. This is the case as long as their preferences are not extreme. The theorem further
asserts that the beliefs of maxmin and maxmax agents, although not additive, are nonetheless
monotone with respect to event inclusion, and the agents can hence distinguish among such
events whenever the event differences are non-null. Thus, the choices of maxmin and maxmax
decision makers reflect more of their beliefs than merely whether events (and their complements
in S) are null or not.

Discussion. Theorem 1 has two general implications for modelling probabilistic sophis-
tication. First, the qualitatively different properties of beliefs of extreme and non-extreme
quantile maximizers (additivity, uniqueness, and convex-rangedness) invite a question about
whether the definition of probabilistic sophistication should not be strengthened. Note carefully
that for the extreme preferences, condition (17), which is increasingly used in the literature
to define probabilistically sophisticated agents, is satisfied even if each act being compared
is evaluated through a different (and non-additive) measure in A (). Furthermore, we estab-
lish that the preferences of the extreme-quantile maximizers remain intact whenever outcomes
are exchanged between arbitrary disjoint non-null events, and not only between equally likely
events (Lemma 6). Should probabilistic sophistication permit that? Perhaps, its definition ought
to require both the additivity and uniqueness of the measure representing beliefs.®

In fact, similar arguments apply to a stronger version of probabilistic sophistication, which
is satisfied by the preferences of extreme (as well as not) T-maximizers: define a relation over
lotteries, ~ p, induced from the underlying preferences over acts 77,

If rof ' = P, mog™ ! = Q forsome f,g € F, then (f =g = P =p Q). (18)

Then, - is probabilistically sophisticated if there exists a measure u on the set of events,

inducing a relation 7Zp over lotteries, such that for all lotteries P, Q in Py(X), and all acts
figinF

(PzpQ pof '=P pg'=0)= frg (19)

The stronger definition is equivalent with (17) if > is a weak order and 7 is convex-ranged,
which is the case in our model for non-extreme >. The property entails that preferences 2~ can
be recovered from the knowledge of n and lottery preferences - p alone. The condition can
also be attributed to Grant (1995), who, in addition, demanded uniqueness of 1. In the quantile
model, although the choices of extreme-preferences agents are consistent with a set of beliefs,
one can recover the agents’ entire preference relation over all acts, even with measures that are

8. Even though additivity has no bite for the beliefs of maxmin and maxmax individuals, there exists an
additive measure representing their beliefs. If condition (17) was adopted to define probabilistic sophistication with
the additional requirement that = be unique, the extreme preferences (and only these preferences in the quantile model)
would not be probabilistically sophisticated. As established in the results by Machina and Schmeidler and Chew and
Sagi, uniqueness was not required in their definitions of probabilistic sophistication.

© 2009 The Review of Economic Studies Limited



350 REVIEW OF ECONOMIC STUDIES

not only not additive but also are not convex-ranged. The knowledge of (one measure from)
that set and the lottery preferences suffices.

Second, a concern about the developments in probabilistic sophistication, which has not
been emphasized thus far, is that (through mixture continuity) these results restrict the set of
outcomes from which acts are defined. Formally, the presence of a P6-like axiom imposes a
restriction on the set of outcomes X (>--denseness of a countable subset), which, along with
a weak-order structure, is then equivalent to the existence of a real-valued index on the set X
(Debreu, 1954). Ideally, the existence of subjective beliefs should not hinge on the properties
of the set of outcomes; for instance, the restriction excludes categorical variables. Theorem 1
neither assumes nor implies any conditions for that set, or that there is a real-valued utility
index providing them with a numerical representation. Instead, we can derive a real-valued
probability measure (and a real number 7 € [0, 1]) without having a numerical representation
of preferences. One benefit offered by our technique (outlined in Section 5) is that, unlike the
results of Machina and Schmeidler or Grant, it can be used to derive beliefs for lexicographic
agents and for decision problems that involve categorical variables.

In a recent beautiful result, Chew and Sagi (2006) established probabilistic sophistication
under the weakest conditions to date. The result can be applied to derive beliefs in our model
(though not for the extreme-t maximizers), but doing so requires using an exchangeability
rather than a likelihood relation. In Appendix 3, we explain the relative merits of both techniques
of deriving beliefs. Identifying the minimal sufficient conditions that establish probabilistic
sophistication by defining a likelihood relation (as, e.g., in Machina and Schmeidler, Grant,
and this paper) rather than inducing it indirectly via exchangeability remains an open
question.

4.2. Representation result

We now present a complete characterization of choice behaviour in Quantile Maximization.
The second main result of the paper states that the preferences of a quantile maximizer satisfy
axioms P1-P69, and conversely, an individual whose preferences conform to those axioms
can be viewed as a quantile maximizer.

Theorem 2. Let X contain a countable >-order dense subset. Consider a preference
relation > over F. The following are equivalent:

(1) > satisfies: PI, P32, P42, PS5, and P69.
(2) There exist:

(i) a unique number T € [0, 1];
(ii) a probability measure 7 for T € (0, 1) and a set of capacities A(E) for T € {0, 1},
as characterized in Theorem 1;
(iii) an ordinal utility function u : X — R that represents >.;

such that the relation > over acts can be represented by the preference functional
V(f) : F— R given by
V(f) = Q" (My) if t € (0, 1); (20)
V(f) = Q" (Ay) for any » € A(E) if T € {0, 1}. 21

The choice mechanism is thus decomposed into two factors: t which is assured to be unique,
and a probability measure, unique for all 7 € (0, 1); a set of monotone measures represents
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beliefs held by quantile maximizers with t =0 or v = 1. Index u is only ordinal, that is,
unique modulo strictly increasing transformations.

In the characterization of preferences through Theorems 1 and 2, Comparative Probability
has no implications for the derived representation of beliefs of maxmin and maxmax decision
makers. When P4¢ is dispensed with, one can still uniquely pin down a number 7 € [0, 1]
and, for any such 7, an agent’s beliefs can then be represented by capacities (see Rostek,
2006). The significance of that is twofold. First and remarkably, the sole implication of P4 is
additivity of the beliefs representation of quantile maximizers. The remaining four conditions
axiomatize Quantile Maximization with respect to non-additive measures; P4¢ provides a test
of additivity of the beliefs representation. Second, condition (17) would hold even if each act
being compared is evaluated by a different (and non-additive) measure. The earlier discussion
questioning the aptness of (17) to capture probabilistic sophistication thus extends to all t-
maximizers, T € [0, 1].

As noted in Section 4.1, one novel aspect of our axiomatization is that the axioms do
not impose any structure on the set of outcomes X. Given that > is a weak order, due to
the ordinality property of the quantile-maximization representation, the utility on outcomes,
u, depends exclusively on how the decision maker perceives the structure of the set X (e.g.,
whether or not the outcomes are categorical). The >-order denseness condition’ is added to
assure that the representation is numerical. Without it, Theorem 2 could be recast in terms
of quantiles of distributions of outcomes x rather than payoffs u(x). The construction of the
numerical representation for > does not depend on the existence of the best and worst outcomes;
again, ordinality provides the reason.

5. SKETCH OF THE PROOF

In the proof sketch, we focus on the heart of the axiomatization, which involves separating
beliefs from preferences over F, >, that is, establishing probabilistic sophistication. We begin
by explaining why Savage’s (1954) construction cannot be used directly in the Quantile
Maximization model. Briefly, in order to derive a probability measure representation for beliefs
under the Expected Utility model, Savage first defined a likelihood relation—the binary relation
>* over events in &, formulated in (15)—induced from preferences > over acts in F; Savage then
showed that axioms P1-P6, satisfied by the binary relation over acts, imply conditions on the
likelihood relation that are necessary and sufficient for the likelihood relation to admit a unique
probability measure that (i) represents it, and (ii) is convex-ranged.!® These conditions are:
Al O #* E; A2 S >* ;A3 =" isaweak order; Ad (ENG=FNG=9)= (E>*F &
EUG =* FUG); A5 P62". In the quantile model, however, relation >* does not satisfy the
above set of axioms. What fails for all € (0, 1) is axiom A4, which is critical to establishing
the additivity of the probability measure. For t € {0, 1}, A4 is vacuous under relation >*. In
addition, A5 fails for T € (0, 1], but this problem disappears when our Event Continuity (P6<)
is used instead: A5’ P69,

What underlies the failure of A4 is that the commonly used likelihood relation >* does
not discriminate well between events from &, as we now make precise. Consider a median
maximizer (t = 0.5), and suppose that there does exist a probability measure, 77, that represents
her beliefs. Suppose further that she compares events E and F, such that w(E) = 0.3 and

9. Natural examples include X" being finite, countably infinite, X' = R.

10. (i) E =" F if and only if 7w (E) > 7 (F), for all E, F € &, (ii) For any E € &, and any p € [0, 1], there is
G C E, such that 7 (G) = p - 7 (E). Equivalent to non-atomicity for countably additive measures, convex-rangedness
is stronger for finitely additive measures. (e.g., Bhaskara Rao and Bhaskara Rao, 1983, Ch. 5).
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7w (F) = 0.2. Given the measure m, each act in the definition of >*, (15), induces a probability
distribution. When the median maximizer compares these distributions, she ranks them as
indifferent. What this means in terms of relation >* is that the decision maker ranks events
E and F as equally likely. In general, under r-maximization, relation >* ranks as equally
likely all pairs of events with probabilities either both smaller than 1 — t or both greater than
1 —t; for r = 1 (r = 0), the likelihood of no events both being more likely than & (less likely
than S) can be ranked strictly by >*. Lemma 1 demonstrates the crudeness of relation >*. It
generates only two equivalence classes in the collection &; all events are ranked as either being
equally likely to the null set or to the state space.

Lemmal. E>*0 & E~S E<*S& E~* @

Therefore, even if there is a probability measure that represents the beliefs of a quantile
maximizer, relation >* will not allow us to recover that measure from a data-set containing
all choices among acts in all possible subsets of F. Nonetheless, we show that the structure
embedded in the preference relation over acts > is rich enough to reveal the relative likelihoods
of events that can be represented by a probability measure. Our approach is to construct a
sub-collection of “small” events, &, C &, and define a new binary relation on events, >,
which although incomplete on &, is complete on the sub-collection. We then derive a unique,
convex-ranged and additive measure that represents a decision maker’s beliefs about the relative
likelihoods of events in &, UE, where € = {E € E|PF non-null: E\F € &E\&,}. Adding £
assures that there are events that serve the role of S in an appropriate counterpart of A2.
Intuitively, collection &,, UE contains events whose probabilities will not be greater than
min{z, 1 — t}. Next, we show that any event from the complement of sub-collection &, U Ein
& can be partitioned into events from &,,. Appealing to the properties of the measure derived
on &, U &, we then uniquely extend the measure to all events in £ and use it to derive a unique
number 7. As explained below, in the cases leading to 7 € {0, 1}, the information contained in
> does not suffice to permit all these steps.

The sub-collection of “small” events, £, C &, is defined to contain all events that are
ranked by relation >, as less likely than their complements:

£ =|E € E|E° =, E). (22)

The reason why this construction is helpful, and the make-up of events that comprise the
sub-collection, will become clear after we specify a likelihood relation on the collection &,.

Definition 3. Let E, F € E,s.
E >, FifEUG >, FUG for some event G €&, suchthat (FEUF)NG =a@. (23)

The idea behind the new likelihood relation >, is as follows. The events that can be
ranked strictly by >, are “small” in the sense that there exists an event G in their common
complement, such that the unions EU G and F UG can be ranked strictly by >,. In our
example in which a 0.5-maximizer compares events E and F, such that 7(E) = 0.3 and
m(F) =0.2, how will relation >, rank these events? Take an event G disjoint with both
E and F, and such that w(G) = 0.25. Roughly, adding G to events E and F will enlarge
the magnitudes of probabilities in an additive way (which is to be established) and, thereby,
switch the evaluation of the distribution induced by act [x if s ¢ EUG; y if s € EUG] in
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the definition of >, (16), from outcome x to y,11 while maintaining the evaluation of the
distribution induced by [x if s ¢ FUG; y if s € F UG] at x.

For relation >, to be well-defined, we need to show that event G in (23) exists, and that
there is no other event G’ for which the ranking is reversed. That is, for all E, F € &,,, if
E >, F, then F #,, E. Lemma 5 (Appendix A.l) establishes the latter. Explaining why
the former is true will also clarify the moniker “small”: it is key to show that collection &,
consists of all (and only) the events, such that for any E, F € &,, there exists G C (E U F)©
for which

EUG>, FUGorEUG =<, FUGorEUG ~, FUG ~, S. (24)

Condition (24) establishes the sense in which events in &, can be compared through their
complements by relation >,,. In particular, the sub-collection &,, does not contain events for
which EUG ~, FUG ~, @ for all events G C (E U F)“. Why this holds can be understood
when we further demonstrate that &, is equal to the equivalence class containing events ranked
equally likely to the null set by one of relations >, or >*, where “or” is meant exclusively:

o ={E € E|E ~, DY or Euy = {E € E|IE ~* O). (25)

In hindsight, after the measure and 7 are pinned down, we show that the former corresponds to
the representation with 7 < 0.5 while the latter corresponds to one with ¢ > 0.5. Relations >*
and >, should be seen as helpful in retrieving information from preferences in the construction
of collection &,; it is relation >, that represents the likelihood ranking of events of a quantile
maximizer.

In deriving the measure representation, it is essential that disjoint non-null subsets of the
state space can be ranked strictly. This cannot be assured when preferences are extreme. For
that case, we show that a decision maker’s preferences over acts depend only on (and thus can
only reveal) whether an event is null, or it is the state space, or nested in another event, all up
to differences on null sub-events. Therefore, when preferences are extreme, there cannot exist
an event in the common complement of any two disjoint non-null events, so that they can be
ranked strictly by ~... Hence, while all r-maximizers can compare nested events, these are
the only events that can be ranked strictly by 0- and 1-maximizers. It is at this point that the
derivation of beliefs for T € {0, 1} departs from the general proof.

6. QUANTILE MAXIMIZATION IN APPLICATIONS

In applications, one would like to be able to characterize the attitudes of the quantile maximizers
toward risk. Unlike the Expected Utility, characterizing risk attitudes through concavity of
utility functions is clearly not available. Do quantile maximizers then exhibit any consistent
attitudes towards risk? In Section 6.1, we show that the quantile model admits a notion of
comparative risk attitude. Sections 6.2 and 6.3 offer two stylized applications that illustrate
the striking properties of quantiles and encourage their more in-depth treatment. Here, we
should mention other applications. Mylovanov and Zapechelnyuk (2007) examine information
transmission with expert recommendations and use the quantile decision rule to characterize
the cost-minimizing contracts. Bhattacharya (2009) studies the optimal peer assignment and
applies quantiles as an objective function of a designer.

11. The earlier example referred to the relation >*, whereas the new likelihood >, builds on the relation > .
The change merely ensures left-continuity of the quantile representation to be derived. The logic is intact.
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6.1. Quantifying risk attitudes of quantile maximizers

In identifying the notions of risk and risk attitudes suitable for Quantile Maximization, it
may be worthwhile to comment on the critique of the usefulness of the Value-at-Risk (VaR)
as a measure of riskiness by Artzner et al. (1999), who pointed out that VaR is not sub-
additive. It might seem that VaR, which is defined as a quantile of the distribution of losses,
is an example of Quantile Maximization; however, VaR is typically used by practitioners as a
restriction of the domain of choice in the usual mean-maximization program. By appealing
to violations of sub-additivity, Artzner et al. (1999) essentially argued that VaR is not a
rich enough measure of risk to capture the risk considerations of mean-maximizers; in
particular, VaR does not induce preference for diversification, which is embedded in sub-
additivity. Clearly, quantile maximizers’ assessment of the relative riskiness of gambles does
not depend on whether or not these gambles offer diversification opportunities. Therefore,
Quantile Maximization should not be used in decision problems in which the outcome spread
is a concern.

The (mean-preserving) spread captures just one specific risk consideration, and we now
argue that quantile maximizers are instead concerned with downside risk, which is, incidentally,
an essential concept in practical risk management. Moreover, defining riskiness in terms of
mean-preserving spread or sub-additivity may not be feasible in environments where the
quantile model, but not the Expected Utility model, can be applied—a suitable notion of
riskiness must be well-defined for non-numerical outcomes and settings where a mean need
not exist. Say that distribution Q € P,(X) crosses distribution P € P,(X) from below if there
exists x € X, such that (i) Q(y) < P(y) for all y, such that y < x and (ii)) Q(y) > P(y)
for all y, such that y > x. Consider the class of all pairs of distributions with the single-
crossing property, SC = {(P, Q) € P,(X) x P,(X) : Q crosses P from below}. For any pair
(P, Q) in S&C, there exists an outcome x such that P(y < z) > Q(y < z) for all z X x, and
P(y >z) > Q(y > z) for all z 2z x; we will say that P involves more downside risk than
O with respect to x. Intuitively, this comparative notion allows ranking the attractiveness
of distributions by comparing the likelihood of losses with respect to outcome x. Say
that individual A is more risk-averse than individual B if, for all pairs of distributions
(P, Q) € SC, whenever B weakly prefers a distribution which involves less downside risk,
so does A.

Observation. In the Quantile Maximization model, t < t' if and only if a T-maximizer is weakly
more averse toward downside risk than a t'-maximizer.'?

Thus, the lower 7, the weakly more averse with respect to downside risk the decision
maker is, with maxmin being the most risk-averse and maxmax the most risk-tolerant. This
characterization suggests two ways in which the model studied in the present paper contributes
to the description of choice behaviour. On the conceptual side, maxmin agents have been
commonly, though informally, referred to as cautious (e.g., in game theory); with the general
quantile representation, the intuited notion of cautiousness can be linked to an agent’s attitude
toward an objective property of gambles: downside risk. More on the practical side, T can
serve as a comparative measure or as an index of risk aversion for one agent. The measure is
“global” in three ways: (i) it is defined for large as well as small gambles; (ii) it is independent

12. This result also appears in Manski (1988), who additionally defined counterparts of a risk premium and a
certainty equivalent for the quantile model. The novelty here is characterization in terms of downside and upside risk,
and the connection to maxmin and maxmax.
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of wealth; (iii) it permits a complete ranking of agents with respect to their risk attitudes. All
of these properties are in sharp contrast to those in the Expected Utility model.

The single-crossing condition admits for all quantiles a more symmetric definition of
riskiness in terms of downside risk and upside chance, that is, losses as well as gains. Then,
a lower-t agent protects herself more often against downside risk and takes upside chances
less often than a higher-t agent does. More formally, this holds for any measure on decision
problems.

6.2. Application 1: Poll design

This section demonstrates how the robustness and ordinality of quantiles might be useful
in practice. In the context of a public-good problem with incomplete information, we also
argue how quantiles can (and why they should) be employed in designing voting schemes
that allow individuals to express the intensity of their preferences, as opposed to restricting
them to making “yes/no” choices. Consider a utilitarian policy maker (he) who wishes to
build a highway network in an area populated by N citizens. Let the possible density of
the network lie in [0, 1], where O stands for “no highways” and 1 corresponds to “the
maximal highway density permitted by ownership structure”. The citizens differ in their
preference intensity over different network densities, and each citizen’s intensity is her
private information. The policy maker designs a poll asking the citizens: how dense a
highway network would you prefer? Suppose that, prior to conducting the poll, the planner
chooses whether to implement the demand for highway density based on the mean or the
median reported preference intensity. After he chooses between the mean and the median,
he will then (credibly) announce that the policy will be implemented based on the selected
statistic. The central question we will consider is the following: based on which statistic
of the distribution of citizens’ reports should the policy maker decide about the highway
density?

Each citizen n has a utility u,(g) = 6,9 — %qz, where ¢ is the density of the highway
network to be chosen by the planner, common for all n, and 6, is the citizen’s preference
intensity; the intensities are i.i.d., each being drawn from the uniform distribution F on [0, 1],
and the distribution is commonly known. Hence, the citizen’s n demand for highway density
is equal to ¢* = 6,. Being utilitarian, the policy maker wishes to find the value for ¢ that
maximizes U = ), u,(q). Given the agents’ demands, the planner’s optimal program gives
>, 0, —q* =0. Knowing the average preference intensity % >, 0, would thus suffice to
maximize the planner’s objective function. Instead, the policy maker knows only the distribution
of preference intensities F.

Implementing a quantile rather than the mean preference intensity leads to higher expected
welfare and is thus preferred by the policy maker even if he is utilitarian. This happens because
being ordinal and robust to changes at the tails, a quantile-based poll design is immune to
manipulation.!® To see that, suppose the mean report is to be implemented. Then, each citizen
n will pick a report g, such that %(q; + %(N —1)) =6,, or 0, or 1. For example, the agent
with lower-than-mean intensity optimally manipulates her reported demand ¢, by adjusting
it downwards just enough so that it does not lower the expected sample average below her
true demand ¢,,. The optimal (Bayesian Nash) report of agent n under the mean-based policy

13. T would like to thank Marek Weretka for encouraging me to think about the implications of the robustness
of quantiles to manipulation.
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(depicted in Figure 2A) is then
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Manipulation bias, measured by |6, — g, |, becomes stronger in larger groups, as a larger
individual misreport is required to adjust the expected average. Policies targeting the mean
demand are thus susceptible to manipulation.'* By contrast, if the planner commits to
implementing the median report, it is optimal for the agents to reveal their true valuations;
the median is determined by the ranks of reports above and below, and it is invariant to under-
or over-reporting given the rank. It is clear why a citizen weakly prefers to respond truthfully
to the median-based policy. Crucially, in the event that the citizen’s report turns out to be the
median of the empirical distribution, she strictly prefers not to misreport.

(26)
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Observation. Under the mean-based policy, all types other than mean intensities misreport their
true demands. Under the median-based policy, truthful revealing is a weakly dominant strategy
and the policy maker can thus recover the entire empirical distribution of valuations.

This observation extends to all quantiles. In principle, which quantile the planner picks
depends on how he is willing to trade off the downside and upside risk of the empirical
distribution (as explained in Section 6.1). Since the planner is utilitarian, the relevant welfare
counterpart for the mean is the median. It is easy to see that neither the mean-based nor the
median-based policy is welfare-superior state-by-state; the mean induces misreporting, and the
median does not reflect the planner’s objective function. Strikingly, the mean can encourage a
policy that is strictly lower (or higher) than all citizens’ preferred demands. This happens if the
intensities lie in (0, %(1 — %)) (or in (%(1 + %), 1)). Quantiles ensure that the policy is between
the minimal and the maximal desired demand. How do welfare losses for the mean-based and
the quantile-based policies compare ex ante? Using numerical simulations, we find:

Observation. The median-based policy leads to strictly higher expected welfare than the mean-
based policy. This happens for all population sizes.

The welfare gap is larger for smaller groups (Figure 2B). Clearly, given the symmetry of
distribution F', expected welfare converges to the first-best welfare when N increases; however,
observe from the Bayesian best response (20) that, in large populations, even though consistent,
the mean report aggregates information crudely, as if recording only “yes/no” votes and losing
all information about preference intensities, which happens endogenously. Remarkably, the
median-based policy will reflect and implement the median preference intensity. The numerical
simulations further suggest that the welfare distribution induced by the mean has fatter tails
and a lower perfect score (which is the mode in both cases). In fact, the numerical simulations
indicate that the median dominates the mean not only in terms of expected welfare but also in the
strong sense of First-Order Stochastic Dominance applied to the resulting welfare distributions.

14. Of course, a clever policy maker would try to infer the true demands from the reports using the agents’
optimal strategies, but the agents would then adjust their reports accordingly. Here, the primary purpose is to illustrate
the properties of quantiles and means; therefore, we abstract away from the strategic interaction between the agents
and the policy maker by assuming he can commit to the announced policy. In any case, if the planner tried to deduce
the true valuations from the reports, he would not recover all intensities with the mean-based policy.
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FIGURE 2

A. Report (26); B. Expected welfare relative to first-best
Notes: Panel B is based on numerical simulations for a sample size of 1 million, for each N.

It follows that the median-based policy is more attractive than the mean-based one for a larger
class of the policy maker’s decision criteria than utilitarian. This holds, for example, for any
risk preference of the planner, or when the planner is concerned with the variance of the
induced welfare distribution as well as its mean.

One implication of our analysis is that allowing citizens to express their preference intensity
rather than merely making binary choices leads to higher expected welfare. The idea that the
option selected through voting should reflect the strength of voters’ preference extends beyond
the public-good setting to electoral competition, jury voting, eliciting expectations, etc., and it
is worthy of further exploration.
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6.3. Application 2: Medicare Plan D

This section applies Quantile Maximization to a prescription drug insurance problem. The
application is intended both as a concrete illustration of the model and of the aversion to
downside and upside risk, as well as being suggestive of the model’s potential in applied work.
Medicare Part D is a US federal drug benefit programme administered by private insurance
plans, which has been in effect since 1 January 2006. The standard benefit structure requires
payment of a $265 deductible. The beneficiary then pays 25% of the cost of a covered
prescription drug, up to an initial coverage limit of $2400. Once the limit is reached, the
beneficiary is subject to another deductible, known as the coverage gap (or the “Donut Hole”),
in which they must pay the full cost of medicine. Partial insurance is also provided when
total out-of-pocket expenses on formulary drugs for the year, including the deductible and
co-insurance, exceed a specified limit. Insurance providers offer their own variations of the
standard benefit that may eliminate the deductible phase or extend the Initial Coverage limit.
The premiums for the enhanced plans are appropriately adjusted.

Consider a stylized model of Medicare Part D in which insurance companies offer a menu
of insurance plans to a population of quantile maximizers with heterogeneous t’s. For the sake
of illustration, we assume that agents face the same distribution of losses, which is uniform on
[0, 1]. The typical contract offered is (I/C, a; P(IC, «)), where IC is the initial coverage limit,
« is the fraction of co-insurance for which the insurer is responsible up to /C, and P(IC, «)
is the deductible; catastrophic coverage is normalized to 1. The benefit structure is depicted in
Figure 3A. The potential menu of contracts can be viewed as the square [0, 1] x [0, 1], with
each point being a contract. When o = 1 (and only then) full insurance is available. Assuming
competitive insurers, all agents are offered contracts at the fair price (i.e., the expected loss to
the beneficiary is zero).

The familiar prediction of the Expected Utility model asserts that, whenever a contract with
a =1 is available, all individuals with a concave utility function over money will choose it to
equalize expected wealth across states. Notably, even if all contracts with any (or all) o < 1
are available, according to the Expected Utility model, all individuals will insure and they all
will choose the maximal /C. Instead, Quantile Maximization predicts that an individual will
insure a typical state as opposed to all states. Consequently, according to the quantile model,
heterogeneity in contract choice will be observed and types will separate (cf. Figure 3B).

Observation. Ceteris paribus, (i) lower-t-maximizers will select contracts with a weakly higher
initial coverage I C; and (ii) a weakly higher coinsurance «.

The key differences in the choice behaviour underlying the Expected Utility and
Quantile Maximization can be summarized by four testable predictions. Under the Quantile
Maximization hypothesis: (1) Even if full insurance is available, no individuals but T = 0 will
choose to fully insure and some will choose not to insure at all. (2) The separation of types
through the contract choice is weakly monotonic in t: individuals that are more cautious will
choose to insure more. (3) Consider a restriction of the menu {(/C, o; P(1C))}icef0.1],0€[0.1]
such that all contracts are offered at the same price so that the beneficiaries can trade off
the initial coverage /C and co-insurance «. Then, more cautious agents will prefer to insure
against downside risk by selecting the plan with a smaller donut hole and accept the upside
risk of paying co-insurance for low expenses (i.e., up to /C); the higher-t agents will, instead,
choose to cover smaller amounts of co-insurance for low expenses and tolerate downside risk.
(4) The contract selection by higher-t (lower-t) agents—and their willingness to pay—is not
sensitive to moderate alterations of the co-insurance o (initial coverage I C). These predictions
are independent of wealth (as long as the wealth is non-stochastic). Finally, it is worth pointing
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A. The benefit structure; B. Distributions of expenses with variable /C and o = 0.9

out the difference in the reasoning that is implicit in the mean and the quantile utility models.
The Expected Utility requires that, in order to choose optimally, the beneficiary must know all
(insurable) levels of losses and their respective probabilities. Instead, Quantile Maximization
proposes that the agent compare, say, the median levels of the distributions of wealth (“I am
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of median health, and I expect to incur a median level of losses”). The agent needs only local
information about the loss distribution, relevant to his risk group.

Interestingly, the full-insurance prediction of the Expected Utility model for all individuals
with concave utility functions over money coincides with the behaviour implied by the “worst-
case scenario”, which recommends minimizing the donut hole, irrespective of how skewed
the distribution of expenses is towards low values. Quantile Maximization predicts the choice
of more moderate insurance plans for all but the most extreme types. Observe also that the
equilibrium price of a Medicare Plan D contract P(/C, ) is proportional in co-insurance o
and concave in /C. This implies that, in equilibrium, the per-dollar-of-loss cost of a contract
will be lower for agents who are more cautious (and insure more).

It is also worth contrasting the data requirements behind the Expected Utility and the
Quantile Maximization models. To this end, consider in turn the insurance company taking the
Quantile Maximization model to data. Unlike using the Expected Utility, in the quantile model:
(1) There is no need to make any parametric assumptions about the client’s utility function.
(2) To compare agent risk attitudes, one does not have to first recover the concavity of utility
function from data; the model allows for the analysis of attitudes toward risk even though the
utilities need not be continuous, let alone concave; and risk attitudes can be studied even if
outcomes are not measurable on an interval scale (as they are, e.g., for categorical variables).
(3) To make policy recommendations based on the quantile model, it suffices to recover a
unique parameter t; this pins down the entire preference ordering >p over lotteries in Py(X)
(cf. recovering the cardinal Bernoulli utility function—in principle, an infinitely dimensional
object). (4) The quantile model is robust to fat tails and works well with distributions that do
not possess finite moments, a circumstance often encountered in non-life insurance.

7. CONCLUDING REMARKS

The model suggests several projects for future work. In light of the increasing concerns with
model misspecification (e.g., Hansen and Sargent, 2007), an important and natural direction to
take would be to permit model uncertainty by studying quantile maximization with multiple
priors where the set of priors is endogenously determined. Under appropriate assumptions,
for the O-th quantile, the framework would yield the multiple-prior maxmin by Gilboa and
Schmeidler (1989).

For some applications, it may be desirable to extend the model proposed in this paper
to more than one quantile."> In particular, a choice rule may depend on the “focal” worst-,
best-, and typical-case scenarios; or, a range of quantiles that are higher or lower than some
threshold may be of interest. For instance, a policy may be targeted at a specific range of
income distribution, school attainment, test performance, etc.

From an empirical perspective, free from parametric assumptions and moment restrictions,
Quantile Maximization can be an appealing tool in applications. We have already suggested
how our results could be useful for measuring expectations in survey research and we have
described the comparative advantages of Quantile Maximization (with respect to the Expected
Utility) in studying choice over categorical variables, robust economic policy design, and
problems of resource allocation and treatment effects. For such applications, Bhattacharya
(2009) develops identification and estimation methods for optimal policy design (rather than
just policy evaluation). He shows that almost all the insights from mean-maximization carry
over to quantile-maximization even if the quantile objective function, unlike the mean problem,

15. I would like to thank Bernard Salani¢ and Aldo Rustichini for (independently) making this suggestion.
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is non-linear in the allocation probabilities. The methods are applicable to randomized and
non-randomized settings.

APPENDIX A. PROOF OF THEOREM 1

In Section A.1, we establish several auxiliary results that will be frequently used throughout. Section A.2 presents
the proof for the non-extreme preferences. Although the general logic of the proof is essentially the same for the
extreme preferences, the derived properties of the relation over acts are distinct and, therefore, the representation
results require that alternative arguments be employed. To highlight the differences, we present the proof for the
extreme preferences separately in Section A.3. Section A.4 proves Lemmas 6 and 7.

A.1. Auxiliary results

The lemmas in this section characterize the binary relations >*, >, and >, over events in &£ (defined in (15), (16)
and (23), respectively).

Lemma2. E >, F& (S~ Eand F ~, @); E>*F & (S~* E and F ~* ©).

Proof. Let E >, F, that is by definition (16) and PS5,

| xifsgE xifsgF |
'f_[yifseE:|<|:yifseF:|_g’f0raux>y' (A1)

Then, it must be that event E is pivotal for act f and F¢—for g. By P32,

xifsgS xifseS
Sy [yifseS]andg x [yifs¢8]' (A2)
That is, by the definition of *-,, P1 and P4¢, S~, E and F ~, @. For the converse, assume S ~, E, F ~, @.
Using the definition of >, in (16) and PS5, for all x > y
xifs g E xifsgS xifs¢gF xifseS
|:yifs€E:| [yifseS y and yifseF yifsgS * (A3)

Then, by P1, P42 and (16), E >, F, as desired. The argument is symmetric for =*.||
Lemma 1 in Section 5 is a direct corollary of Lemma 2:

Lemmal. E>, 0 E~S E<.SE~ E>*0E~S E<*S& E~ Q.

Lemma 3 establishes a useful property of the preferences >: For any pair of acts, replacing the outcomes in their
ranges in a weakly rank-preserving (w.r.t. >,) way, does not affect the agent’s preferences over these acts. Quantile
Maximization could, in fact, be axiomatized with condition (A4), which, in the presence of P1 and P35, is equivalent to
Pivotal Monotonicity; the proof is straightforward and omitted here. Consider act f € F, such that for some disjoint
events £ and F, f~'(E) = x* and f~!(F) = x. Define g7, as a mapping S — X, such that g%, (S) Z x*, g, | as
a mapping, such that x* - g;*;(S) 2 x, and g as a mapping, such that x 27 g7 (S).

Lemma 3. Assume Weak Order (P1), Pivotal Monotonicity (P3) and Non-degeneracy (PS5). For all events E

and F, all pairs of outcomes x* > x and y* >y, and all subacts g;*, g;* ;" 8¢ h;*, h;* ;*' and h‘_,,

gk ifs € Gy gh ifs € Gy his ifs € Gy his ifs € Gy

x*ifseE x*ifseF yiifse E yiifseF

g TifseGy | >| gu.TifseGy | = | huTifseGy |>]| hy,<7ifseGy |. (A4
xifseF xifseE (yl:fSEF ’ yifseE

gy ifs € Gs gy ifs € Gs hy ifs € Gs hy ifs € G3
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The condition (A4) will allow inducing a likelihood relation over events, which it implicitly defines. Because of
Lemma 3 the quantifiers in P42 can be considerably weakened compared to Savage’s P4. Lemma 4 asserts consistency
between relations 7, and 22*, an important corollary of which is Lemma 5.

Lemmad. E >, F = E A" F;E>"F=FE £, F.

Proof. There are three relevant cases to the proof of the assertion for relation —,:

If E and F are disjoint: The result follows by P42 and Lemma 3.

If F C E: Define H = E\F and let H be non-null. The assertion will be implied if we show that it cannot be
that E <* F or E <, F. Suppose E <, F. Using the definition of >, and Lemma 3,

xifs ¢ E xifs¢F xifs¢E xifs ¢ E
yifse H ~py P30 yifseF < yvifseE =| yifseH |. (AS)
yifseF ’ ’ yifseF

A contradiction to P1. Hence, if FF C E, then F 3, E and F Z* E. The argument is symmetric for £ C F.
If F\E # @, E\F # @ and FNE # @: Let I = F N E. The result follows by P4¢ applied to events F\E and
E\F, and Lemma 3. An analogous argument holds for relation =—*.||

Lemma 5. [f E ~, F and there is a non-null event G C (E U F)¢, such that EU G >, F U G, then there is no
event G' C (E U F)¢, such that EUG' <, FUG'.

A.2. Proof of Theorem 1 for non-extreme preferences

Proof.  Assume that > is not extreme. Step | of the proof demonstrates that >, and >* are weak orders. Step 2
characterizes the equivalence classes of £ under ~, and ~*. They are used in Step 3 to derive a subset of &, &,
on which a new and complete likelihood relation is defined, >,,. Step 4 verifies that axioms Al, A3, A4 and A5
(specified in Section 5) hold on &,., which is then employed in Step 5 to derive a unique, convex-ranged and finitely
additive probability-measure representation of >, on &, 7. Step 6 constructs a likelihood relation which is complete
on the entire set of events, £, and shows that measure 77 on &, uniquely extends to & we call the extended measure
m. Finally, Step 7 establishes that > is probabilistically sophisticated w.r.t. 7. We will invoke Lemma 3 without
mentioning.

Step 1 (>, and >* are weak orders). The argument is provided for >,.
1. Asymmetry of >, is implied by (16), P1 and P5. To show negative transitivity, suppose E %, F and F . G.
With x > y (P5), (16) and Lemma 3 give (A6), and P1 then yields (A7)

xifs¢E xifsgF xifsgF xifsgG
|:yifseE]%[yifseF]and[yifseF ~ yifseG |’ (A6)
xifs€E xifs€G

[yifseE]yé[yifseG],andhenceE;l*G. (A7)

2. 8>, @ and S >=* @. Otherwise, the definitions of > and >, lead to a contradiction.

Step 2 (Characterization of equivalence classes of &). Since >, on £ is a weak order, ~, is an equivalence
relation. By Lemma 2, there are only two equivalence classes on & under ~,: &<,z = {F € &|F ~, @} and
El~ys ={F € &E|F ~, S}. Similarly, there are only two equivalence classes on £ under ~*: £| x5 = {F € &E|F ~* &}
and &|.xg ={F € E|F ~* S}. That the sets &|~,z, £|~,s and |4, E|xg all contain non-null events, follows from
the assumption of the non-extreme preferences.

Step 3 (Construction of £,.). 1. Define &,, = {E € £|E <, E}. Fix E € £,,. Then, by P32, for any F € &,, disjoint
(w.l.o.g.) with E (and hence such that F C E¢), there exists G C (E U F)¢, such that F U G >, . Since the above
is true for disjoint E and F, hence for any E, F € &,, there exists G C (E U F)¢, such that EUG >, FUG or
EUG<, FUGorEUG ~, FUG ~, S.

2. We prove that either &, = &|~,z or . = &|xy. Assume first that there exists an event E € £|~, o, such that
E ~, E‘~,@. Consider F € &|..x5. We will show that, for all such events F, F ~, &. By the definitions of >, and
>* and Lemma 1, F¢ >, @, F <* E and F <* E¢. Then, by Lemma 4, F X, E and F =, E°. Since >, is a weak
order, it follows that F¢ >, F ~, &. The event F € £|.x, was picked arbitrarily, and hence, &, = &| 4. If there
isno E € &|.,z for which E ~, E°~, 0, then &, = &|~, 5.
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3. On the collection &,,, define a binary relation over events, >, as in definition 3.
4. By Step 2.2, and axioms P62+ and P6Q*, &y« and relation >, are non-degenerate.

Step 4 (Axioms Al, A3, A4, A5 hold on &.,). Let E, F, H € &,,.
(A1) Fix E ~, @. By an argument analogous to the one in Lemma 4, there is no event G € E°, such that

| xifsEEUG xifs¢G |
‘f_[yifseEuG]>|:yifs€G:|_g' (A8)

Hence E 4., @. If E is null, then again E #£,, &, as for all G’ C E©

xifs¢g EUG’ xifs ¢ G
|:yifs€EUG’:| [yifseG’ ’ (A9)

(A3) By Lemma 5, >, is asymmetric. Condition (i) in negative transitivity follows from the transitivity of ~,
(E, F, H € &,). Suppose that (1) there is no G € E° N F€¢ non-null, such that E UG >, F U G; and (2) there is no
G’ C F°N H¢ non-null, such that F UG’ =, H U G’. We need to demonstrate that for no G” C E¢ N H¢ non-null,
EUG” =, HUG”. Observe that (1) extends to all subsets of F¢: for all G C F¢ and all G’ C H¢,

xifs¢EUG || xifs¢FUG and xifs g FUG’ . xifsg HUG' (A10)
yifse EUG |~ | yifse FUG yifse FUG'" |~ | yifse HUG'
ifs¢ EUG xifs¢g HUG
" c ¢ c X1 -
Thus, for all G” C F ﬂH,[ yifse EUG ]N[ Vifse HUG ], (A11)

(F°N H® # @& by Step 3.1). Applying the above argument again, (A11) holds for all G” € H¢, and hence for all
G" C E°N HC. By P1, P5, Lemma 3 and Step 3.1, this proves the assertion.
(Ad4) Assume ENH =FNH=9, EUH, FUH € &,,, and x > y.

(<) Assume that there is event G € ECN F°N H¢, such that EUH UG >, FUH UG. Taking G' = GUH
immediately gives event G’ non-null, such that EU G’ >, FUG'.

(=) Assume now that there is event G” C E“N F¢, such that EUG"” =, FUG”. By Lemma 5, EU
HUG" -, FUHUG"” for all G C E°NF°N HC. It suffices to show that it is not the case that for all
G" CE‘NF‘NH‘, E UHUG"” ~, FUHUG"” (note that, by Step 3.1, EN F°N H is non-empty and
there exists G € E°N F¢ N HS for which E UHUG ~, S, or FUHUG ~, S, or both). Suppose then that E
UH UG” %, FUH UG", for otherwise the assertion is delivered. Since, by assumption of £ U G” >, F U G” and
Lemma 2, EUG” ~, S, we have that EUHUG"” ~, FUHUG" ~, S. Observe that, by P62%, event H can be
partitioned into two non-null events H; and H, such that

|:xifs¢FUG”UH1 i| |:xifs§ZFuG”uH ]~|: xifs¢g EUG"UH :|~|: xifxg’EUG”]

yifs e FUG"UH, yifse FUG"UH yifse EUG"UH yifse EUG”
(A12)
Using P6€ and non-nullness of H; and Ha, there is a subset of G”, G, such that
xifs¢g FUGUH [ xifsgFUG'UH ] xifsg EUGUH (AL3)
yifse FUGUH yifse FUG"UH yifse EUGUH |

(AS’) It follows by P62 and the definition of >,.

Step 5 (Derivation of 7 on &,,). 1. Axioms Al, A3, A4, and A5’ hold for all subsets of &,,. Define a sub-collection of
events, &, by E= {E € E|F non-null: E\F € &\, ). By construction, for any event E € EE >y Bif Epu = Elye
and E >, @ if £|.x4. Call the latter property A2’, a counterpart of Savage’s A2 (see Section 5). We will argue that
using Al, A2', A3, A4 and A5/, Fishburn’s (1970, Ch.14) proof can be applied to construct a unique, finitely additive
and convex-ranged probability measure 7 that represents the likelihood relation > on the collection &,, U &. For any
event E € &, set #(E) =T if £ = El~yz and set T(E) = 1 — 7 if £ = E|xy. We need to show that Fishburn’s
argument delivers the desired result when the collection £ is replaced by &, U & (with € serving the role of S).

2. Take an event E € € and let £z be the collection of all of its subsets. Applied to relation >,, and collection
&, Fishburn’s result yields a unique, finitely additive and convex-ranged probability measure 7 that represents >,
on £g. By Step 5.1, the measure 7 on & is normalized to t if the collection .., which induced &, is equal to £|~, o
and to 1 — 7 if that collection is equal to &| .
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3. Using that >, is well deﬁged on all of &,,, we extend the measure 77 to the remaining events in &, U £ as
follows. For an event F in (&, U E)\Ek, let

- w(H) if F € &, where H € £g and H ~,, F;
”(F)_{ 7(E)if F e & Al
For the extension (A14) to be well defined, we need to show that for any event F € &,, there exists an event H as
specified in (A14). This follows by convex-rangedness of 7 on £ and Debreu (1954) (>, is a weak order and, by
Step 4 (A5'), the collection (€, U z')\SE contains a countable >,.-dense subset). Thus, one can map all equivalence
classes in (Ey U E)\sE to those in Eg.

4. We demonstrate that the extension 7 to & UE, normalized as in Step 5.1, is unique, and preserves finite
additivity and convex-rangedness. Consider an event F € (&, UE’)\SE and its two partitions: {Fj, ..., Fy} and
{Hi,...,Hy}. Let {I,, ..., I} be the coarsest common refinement of those partitions. Such finite partitions exist by
P62+ applied to S if E € &,,, and applied directly to E if E € £ Uniqueness of summations >
Y m=1...n 7T (Hy) follows immediately from their each being equal to ) ,_; ;7)) =) ;_,
everyl € {1, ..., L}, I ~« E; € Eg, and since each event is finitely decomposed, 7 is finitely additive on &, U E Tt
is convex-ranged, as for any p € [0, 1] and F € &, U E p-7(F)=p-7(H) =7 (H'), where we used that there is
an event H, such that F ~,, H € & and that, by convex-rangedness of 7 on &g, there is a sub-event H' C H, such
that 7(H') = p - 7 (H). It remains to show that 7 (H') = 7 (F’) for some F' C F € (€, U E)\Ek. To this end, apply
P62 to construct a partition of S, {Gy, ..., Gk}, every event k € {1, ..., K} of which is such that 7(Gy) < 7(E).
On each of these events, Fisburn’s theorem generates a measure with the desired properties. Normalize measures on
events Gy according to (A14).

Step 6 (Extending 7 to &). From relation >,, on &,,, we derive a complete relation >, on .

1. We first show that all events in £\, can be partitioned into finitely many events, each of which is in &,.. We
consider the cases & = |~z and &, = &|x separately. First, assume that &, = £|~,» and consider an event
E € &|-,s. By P62+, there exists an N-partition of S, {G, ..., Gy}, such that E =, G, foralln =1,..., N. By
Lemma 2, for all n=1,...,N, G, ~, @ and, hence, GY € &,.. Write E = (j_, GY) U(E\U}_, GY), where
m € {l,..., N} is such that | J;_, G;ILV CEC Ug’;rll G;llv. By construction, for all 7 =1,...,m, G’].lV € &, while
E\U; G%V - G,’,‘ZH and hence also E\ | J; G,{:’ € &, Thus, the events in the collection £\&,, can be decomposed
into events from &,,. The proof for &, = £|.x is analogous via P62”.

2. Define a relation >, on & E >, F if there exists N-partitions of E and F, such that foralln =1,..., N,
E, >.« F,. The condition necessary (and sufficient, as demonstrated below) for the existence of such partitions can
be found using the convex-rangedness of 7 on &, U & Pick E, F ¢ &y and let {Ey, ..., Ey} and {F|, ..., Fy} be
partitions of E and F, respectively, into elements in &.,. By convex-rangedness of 7, those partitions can be made
equi-numbered and such that if »  _, y#(E,) > Y,  y7(F,), then for each n =1,..., N, 7(E,) > 7 (F,).
This also shows that if there is an N-partition of E and F, such that foralln = 1,..., N : E, >, F,, then it cannot
be for any N’-partition that for all n’ =1,..., N : E; <u F,r.

3. Define an extension of 7 to E\&,., 7, representing relation >, on the collection & For each E € E\E.x
and its finite partition {E, ..., Ex}, E, € £ forn € {l,...,N}, let 7(E) =) n T (Ey). Uniqueness, finite
additivity, and convex-rangedness of the extension obtain analogously to Step 5.4.

n=l,...,

n=I,...,

Step 7 (> Is probabilistically sophisticated w.r.t. 7). Establishing condition (17) is an application of the argument
in Machina and Schmeidler (1992, Theorem 1, Step 5). It suffices to show that the construction employed there can
be used. This follows from Lemma 6A. Given that 7 is convex-ranged, for any P € Py(X), there exists an act f € F,
such that wof~! = P. Using, in addition, that > is a weak order, the stronger version of probabilistic sophistication
(19) is also satisfied.||

A.3. Proof of Theorem 1 for extreme preferences

Proof. Each step is assigned the same number as its counterpart in the proof for the non-extreme preferences in
Appendix A.2. Some steps are left out as no longer relevant. Let >3 be a binary likelihood relation on £ defined as
follows: E >F F it E>* For E >, F.

Step 1: 7% is a weak order on £ by an argument as in Step 1, Appendix A.2, and Lemma 4.

Step 2: 1. Given Step 1, Lemma 2 defines three equivalence classes of £ under ~;: ElNig ={F € &|F ~} o},
*

5|:I‘; ={F €&S>} F >} @} and 5|~15 ={F € £|F ~} S}. Assume (H)—the case (L) is analogous. We show that
*

the equivalence classes £| s and £| _x g contain events that differ from @ and S, respectively, only on a null sub-event,

ie. ElNIg = {E € £|E is null} and 5|~IS:{F € &|F = S\H, H null}.
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Consider an arbitrary non-null event E, such that S\ E is non-null (possible by P62+*). Given (H),

xifs g E xifsgS xifseE xifsgS
|:yifer:|>|:yifseS and | Vs gE |7 yifses |P ¥ (A13)

By Lemma 3 and the definitions of >, and >*, it follows accordingly that £ <, S and E >* @. By Lemma
6B, all events that differ from each @ and S on a non-null sub-event are contained in a single equivalence class,

Elif; {G € &|G is non-null and G¢ is non-null}.
Step 3: Suppose that we wish to define a counterpart of the relation >, (definition 3), now based on relation 7%

rather than >, on the subcollection of £ containing all events E, such that E <} E¢. When either (H) or (L) holds,

X
. S . . . .
the subset of events in Slii , that could be ranked strictly by such a relation contains only nested events that differ on
*

*

non-null sub-events. For example, assuming (H), consider two events Ey, E; € EI:I‘;, such that £y C E; and E»\E|
*

is non-null. Then, by Step 2, E| ~} E; and for G = S\E»,

xifs¢g EyUG . xifs ¢S | | xifsgEUG || (A16)
yifse E;UG yifseS | | yifse E,UG |7

Lemma 3 delivers the conclusion. Since the strict ranking of E; and E; can only be achieved by adding the complement
of the nesting event E, (up to null differences), there is no event G’ for which the ranking would be reversed. The
strict relation cannot, however, be extended to non-nested events F; and F, for which F;\F, and F,\F; are non-null.
What fails is that, under (H) or (L), any event can be ranked strictly by relation >} only with the events in EIN»; S8
hence, by Step 2, there is no non-null event in the common complement of any two non-nested events that would
enable their strict comparison. Hence, there is no non-null event E, such that E <} E°€.

Step 4: Establishing that A1, A2, A3 and A5’ hold for relation >* on & is analogous to the proof for the non-extreme
relation >. To verify A4, assume ENH = FN H = @ and x > y. By Step 3, relation >} can satisfy A4 only for
nested events (with non-null set differences), which renders the argument straightforward.

Step 5: 1. Define a set function A : & — [0, 1] as follows: let A(&) =0, A(S) = 1; and whenever F C E, let
A(F) < L(E) with a strict inequality if E/F is non-null. Notice that any function A that satisfies the conditions
from Step 5.1 represents relation >3 on £ under (H) or (L): For all E € £, E > F < A(E) > A(F). Denote by A(E)
the set of all measures A that represent ~* under (H) or (L).

~k
%
2. Each measure in A (€) is non-atomic. We will prove this for (H). Fix A € A(€) and consider an event E € & Ei‘;.
*
By Steps 2 and 5.1, A(E) > 0 and A(E€) > 0. Using PS5, construct a pair of acts

xifseE xifs ¢S
[yifs¢E:|>[yifseS]' (A7)

Applying the definition of >,, E€ <, S, and by P62* event E can be partitioned into F and E\F, such that
E°UF <, 8. Both F and E\F are necessarily non-null, for otherwise E‘UF ~, S or E°U (E\F) ~, S-a
contradiction to P69*. By Step 3 and Step 5.1, A(E) > A(F) and A(E) > A(E\F) The derived measures need
not be convex-ranged; take, for example, a monotone measure ) that asmgns 22) =0, 1(S) = 1, and a maximum
of 0.9 to any event E for which S\E is non-null; A represents the relation >} on £ but it is not convex-ranged.

Step 7: Fix a (possibly non-additive) measure A € A(E). Consider lotteries P, Q € Py(X), such that P = Q and
dof~l =P, aog™! = Q for some f, g € F. Since the least preferred (w.r.t. >p) outcomes assigned some positive
probability by lotteries P and Q are identical, and equal to the least preferred (w.r.t. >) outcomes mapped from non-
null events by acts f and g, condition (17) follows for (L); and similarly for (H). As for non-extreme preferences,
the stronger version of probabilistic sophistication (19) is satisfied. ||

A.4. Proof of Lemmas 6 and 7

Lemma 6. A. If the binary relation over acts, >, is not extreme, then for all events E, F € E,, such that E ~,, F,
and all acts h € F,

xifseE xifseF
yifseF ~ yifseE . (A18)
hifs¢ EUF hifs¢ EUF
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B. If the binary relation over acts, >, is extreme, then (A18) holds for all non-null events E, F € E,,, ENF = &, and
all acts h € F.

Proof.  Assume that > is not extreme. Let 77 be the measure from Theorem 1. Take a pair of equal-probability
events E, F € &,,. Define E = E\F and F = F\E. By additivity of 7, 7 (E) = 7 (F). Consider acts

hyey if s € G hyey if s € G
xifseF xifseF xifsekE xifseE

f= yifseE =| ho, ifseGy | and g= yifseF =| he,ifseG,
hifs¢ EUF yifseE hifs¢ EUF yifseF
hy_if s € Gy hy_if s € Gy

(A19)
Using the definition of ~.,

EN**Fifforanyx>y, |:x1fs¢EUG i|’”|: xifsg FUG

= ~ c c c
yifse EUG yifse FUG ] forany G < (ESNF5.  (A20)

Lemma 3, invoked to define the likelihood relation ~,, and to reduce the cardinality of the outcome sets f(S) and
g(S) to two, implies f ~ g.|

Lemma 6B.

Proof.  Assume that (H) holds. (The argument is analogous under (L).) Pick two non-null disjoint events £’ and
F’. Consider the following acts:

xifs e F’ xifs e E’
f= yifsekE and g = yifseF’ , x>y, h(S < x. (A21)
hifs¢ E'UF' hifs ¢ E'UF'

Since event F’ is pivotal in act f, event E’ is pivotal in act g, and f ~ g, as desired. ||
For the next two results, we focus on the non-trivial case of the non-extreme preferences.

Lemma 7. In the coarsest measurable partition of the state space S induced by act f € F, there is a unique

pivotal event.

Proof. We first show that the property of being pivotal is state-independent. Next, we establish that, given the
coarsest measurable partition induced by an act, the pivotal event is unique.

1. Lemma 6A,B implies the following key assertion: Let 7= be the probability measure derived in Theorem 1.
Consider act f € F, such that E is the pivotal event of f, and for a disjoint with E event F, m(E) = n(F) and
fUE) =x = f~I(F) for some x € f(S). (Such a pair of events with 7(E) = 7 (F) and w(E) + n(F) < 1 can be
constructed by convex-rangedness of 7.) Then, swapping outcomes between events E and F yields act g, such that
g (F)=x, g (E)=f""(F)and g~ f ~x.

2. Take act f € F and let E and F be disjoint measurable events that map to non-indifferent outcomes:
fUE) =x ~y= f~I(F). Suppose these events are both pivotal to act f. Applying P3¢ twice to f and invoking
P1 yields a contradiction: for h € F, h ~ x, and h ~ y, we have

xifsek ifs € Fe
] ~bvowl £ f=| yifse€F | ~pivou F [ oy ] ~. (A22)

x~|: xifseE
hifs¢ EUF yifseF

x if s € E€

Corollary 1. Let E be the pivotal event of act f € F and f(E) = x for some x € f(S). Then,

gx+ ifs € E;X 8xt if s € E}tx gx+ ifs € E;X
either [ = xifseE > x ifs € Ey or f~ xifseE . (A23)
g—ifs€Ey, g—if s € EXUE,, 8- if s € EUE,
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APPENDIX B. PROOF OF THEOREM 2

Proof. Sufficiency: (1) = (2) Let wbe the probability measure derived for the non-extreme preferences, and
let A(E) be the set of capacities derived for the extreme preferences in Theorem 1. > p is the preference relation over
lotteries induced by the mapping f — vef~!, where v = 7 for the non-extreme and v = A € A(E) for the extreme
preferences. Step 1 of the sufficiency part establishes the existence and uniqueness of 7. Step 2 then constructs a
preference functional over probability distributions that represents > p as a left-continuous t-th quantile. Step 3 builds
on the derived functional for distributions, > p, to derive a representation for the relation over acts, >.

Step 1 (Existence and uniqueness of 7). For the extreme preferences, set ¢ =0 if (L) holds and t =1 if (H)
holds. Assume next that relation > is not extreme. We will repeatedly use that whenever F >,,, @, then for any

. . N N N N N
N € Ny, there exists a 2V-partition of F, {F}" ..., FZZN }osuch that FP° o~ o~ B2~ ~ F22N .

(The relation >, is defined in Step 6.2 in the proof of Theorem 1.) Given that axioms A1-AS5" hold on the set
&, such a uniform 2N -partition of F can be derived by the argument in Fishburn (1970, Ch.14.2). Fix N € N,

consider a uniform 2V -partition of the state space S and associate with it a sequence of acts { f (n|N ), oN, where
N
xifse U F?
FIN) = I=ntl,...2N n=1,...,2Y x> y. (B1)

Corollary 1 can be applied recursively to the sequence of acts {f(n|N)},_,
n(N) € {1, ...,2"} for which

xifses wif s ¢ Uy oot F2 | [xifs @ Uieroowy F2 xifs¢S
ifses| T, N AT e N T s es| B2
b vits e U a1 Fi yifs €U am Fi J

LN o establish that there is a unique

. N .
Now, construct a sequence of such events, one for every N, {Ul:l 2V Fl2 } e Applying Lemma 7,
‘‘‘‘‘ NeNyt

Step 2 (Representation functional for >p). 1. By P32, there is a one-to-one map between the equivalence classes
on F w.r.t. > and the outcome set X’ w.r.t. >,; that is, for all pairs of acts f, g € F,

=g x>y (B3)

where x is the outcome mapping from the pivotal event by act f, while y—by act g.

Assume that preferences are not extreme. (B3) is equivalent to mof~! >p mog™! & 8, >p 8y. The set of
equivalence classes on Py(X) w.r.t. >p can thus be mapped onto the set of equivalence classes on A’ (understood as
the set of constant distributions) w.r.t. >p. Hence, the certainty-equivalence mapping for distributions (each simple
distribution is > p-indifferent to an outcome in its support) can be used to construct a representation for >p on Py (X).
The latter can be used to provide a representation for > on F.

If preferences are extreme, for any measure A € A (&), condition (B3) is equivalent to Ao f ™! >p rog™! & 8, >p
8. For a fixed measure A € A(E), define Py(X, L) = {P € Py(N)|P = Ao f~! for some f € F}, a subset of lotteries
in Py(AX). The set of equivalence classes on Py(X, 1) w.r.t. >=p can now be mapped onto the set of equivalence classes
on X. Again, the certainty-equivalence mapping for distributions can be used to construct a representation for relation
>p on Py(X, 1), and back up from it a representation for > on F.

2. The remaining steps characterize the certainty equivalence map between lotteries and outcomes as a
(generalized) inverse of a distribution and establish that it represents the preference relation >p. The unique number
7 € [0, 1] derived in Step 1 will be used in defining the inverse equal to the -th quantile of the distribution. By Step
1, for any act f € F,

f ~ x, where x is such that 7 (f(s) 2 x) > 1 (B4)

and x is (one of) the least preferred outcome(s) in {y e fSIn(f(s) Iy >1; 7(f~ ') > O}. By the definition
of >p, P1 and P32, it follows that acts implying indifferent t-th outcomes are indifferent.

3. We verify that the inverse to-be-defined (in Step 2.5) should be left continuous. Let t be the number from
[0, 1], derived in Step 1. Consider the sequence of acts {f(n|N)} ,n constructed in Step 1.2. For any N € N,

n=lI,...,
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define 7, = 7 (U, . A(N)—1 FIZN). By properly choosing a subsequence, we obtain t, — t as N — oo; and for any
given N € Ny, f(Uizr a1 F,zN) =y and f(E]z(IIVV)) = y. Together with the fact that the sequence of events
{U,=l _____ 2(N) F,ZN} used to derive 7 is weakly decreasing, that gives that the inverse to-be-defined should be

left continuous.

4. Given that > on X'is a weak order (P1) and X contains a countable >-order dense subset, a standard argument
(Debreu, 1954) delivers a real-valued utility function u#(-) on X, unique up to a strictly increasing transformation. Let
U be the set of all such functions u that represent > .

5. Fix utility u € U°, the number t € [0, 1], the measure 7 for the non-extreme preferences and the set of
capacities A (E) for the extreme preferences. Recall that v = 7 if > p is non-extreme and v = A if >p is extreme. For
any P =vof, and any 1 € A(E) if v = A, with an outcome set {x;, ..., xy} define V : Py(X) — X as

inf{z € Rlv[u(x,) < z|lx, € f(S)] > t}if t € (0, 1);
V(P) =1 sup{z € Rjv[u(x,) < z|x, € f(S)] <0} if r =0; (B5)
inf{z € Rlv[u(x,) < zlx, € f(S)] > 1}if r = 1.

Step 3 (Representation functional for >). We can now combine the above steps to define a functional V: F — X
that represents relation > on acts: For all f, g € F, and all P, Q € Py(X), such that P = 7o f and Q = mwog, we have
f > g < P> Q,which by Steps 1 and 2 is equivalent to V(f) = V(P) > V(Q) = V(g). That is, as desired, the
preference relation > on F can be represented by evaluating each act f € F by the t-th quantile of the distribution
induced by act f and measures 7 for the non-extreme and A () for the extreme preferences:

inf{z € Rjv[u(f(s)) <zl =t} if t € (0, 1);
V(f) =1 sup{z € Rjv[u(f(s)) <z] <0}if r =0; (B6)
inf{z € Rjv[u(f(s)) <z]=1}if r = 1.

Fix t € [0, 1]. Given a complete pre-order over outcomes 7, say that distribution Q = (y1,q1;...; ym.qum) T-
first-order stochastically dominates (t-FOSD) distribution R = (y1,r1;...; yu, rm) with respect to =, if V(Q) >
V(R),where V (-) is as defined in (B5). - p is said to satisfy t-first order stochastic dominance if P >~p Q whenever
P 7-FOSD Q with respect to 7Z,. 7-FOSD ranks distributions completely.

Necessity: (2) = (1) Assume that the representation V(f) holds for >. Fix a number t € [0, 1], a measure
for T € (0, 1) and a set of capacities A(E) for 7 equal to 0 or 1; for the extreme quantiles, the arguments below hold
for all capacities in A (). Fix utility u € ¢°. Showing that conditions (L) and (H) hold for the representation with
v =0 and t = 1, respectively, is straightforward and is omitted here.

P1 (Ordering). This holds, since there is a real-valued representation of >.

P3¢ (Pivotal monotonicity). (if) Implied by t-FOSD. (only if) Pick an act f € F. By t-FOSD, f ~ x for x € X,
such that V(f) = x. That the event to which x is mapped by act f, f~'(x) = E, is non-null follows from the
representation. By t-FOSD, E is such that f ~ [gj' if E}'_x; x if E; g if sz]‘ Consider outcome y = x. Then,
appealing to T-FOSD again yields g} if E; xif E; g if E; ] z [g;,r if E}'_.x; yif E; gy if E ] for any subacts
g5 g, &f, and g;, as desired.

X

P42 (Comparative probability). Assume 7 € (0, 1). Pick disjoint events E and F, outcomes x* > x, and the
following acts

x*if s e E x*ifseF
xifseF > xifseE . B7)
gifs¢ EUF gifs¢ EUF

g
F );;) + m(E), and hence, 7 (E) > m (F). Reversing the above argument, it must be that

Define (E U F)g,; = {s € S|g(s) < x}. Then, for (B7), t-FOSD implies that 7 ((EU F){{) +7(F) <t <m((EU

x*ifse E x*ifseF
xifseF = xifseE , (B8)
hifs¢ EUF hifs¢ EUF

where (E U F); = {s € S|h(s) < x}, and we used that 7 ((E U F); ) +n(F) < t((EU F); ) + n(E).
For 7 € 0, (B7) can hold only if event F is null, £ is non-null and g(s) > x for every s € (E U F)¢; similarly,

for t € 1, (B7) can hold only if event F is null, E is non-null and g(s) < x* for every s € (E U F)°.
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P5 (Nondegeneracy). This follows, since the functional V : 7 — R is non-constant.

P62 (Small-event continuity of 7). Let T € (0, 1). Suppose that for all x > y,
xifseE xifseF
|:yifs¢E]>|:yifs¢F] (B9)

By the definition of relation >*, E >* F, and hence, given the measure 7 and the definition of relation >
which it represents, w (E) > 7 (F). Further, the representation of > implies that 1 — 7 (F) > v > 1 — 7 (E). By non-

atomicity of the measure 7, we can partition the state space S into N events {Hj, ..., Hy} and choose N, such that
t>1—n(E)+n(H,) foralln =1,..., N. The definitions of >* and > .., then, imply that £ >* F U H,, for all
n=1,...,N. By a similar argument, P62” holds for any event E € £ and @.

For (L), (BY) is satisfied only when F¢ is non-null and E€ is null. Then, A(E) =1 > A(F) for any 1 € A(E).
Non-atomicity of measures in A(E) completes the proof. So does it for (H), in which case (B9) is satisfied only when
E is non-null and F is null; or, A(F°) =1 > A(E°).||

APPENDIX C. COMPARISON WITH CHEW AND SAGI (2006)

Here we contrast our technique of deriving beliefs with the one proposed recently by Chew and Sagi (2006,
hereafter “CS”). The approach used by CS is based on the notion of exchangeability. Two events are said to be
exchangeable if the agent is always indifferent to permuting the payoffs assigned to these events.

Definition 4. For any pair of disjoint events E and F, E is exchangeable with F' if, for any outcomes x and y, and
any act f,

xifseE yifseE
yifseF ~ xifseF . (CD)
fifs¢ EUF fifs¢ EUF

The relation of exchangeable events is then used to define the comparability relation, >=C.

Definition 5. For any events E and F, E ¢ F whenever E\F contains a sub-event G that is exchangeable with
F\E.

Intuitively, exchangeability carries the meaning of “equal likelihood”, whereas comparability conveys “greater
likelihood”. CS find a set of axioms on those relations, so they can yield a likelihood relation that can be provided with
a probability-measure representation. By contrast, we define a strict likelihood relation revealed from the preferences
that we study and find conditions on the likelihood relation to derive a measure representation. This raises the question
of a comparison between the two approaches, which we will refer to as exchangeability-based and direct-likelihood
(i.e., one that defines the strict likelihood relation from preferences; e.g., Machina and Schmeidler, 1992; Grant,
1995, this paper). Interested in probabilistic sophistication as such, CS accomplished the derivation of beliefs without
monotonicity and continuity of preferences by using exchangeability relation. It remains an open question as far as
how to derive beliefs without using monotonicity or continuity and without resorting to the exchangeability relation
but, instead, directly defining a strict likelihood relation from preferences. Our Theorem 1 is the first in the direct-
likelihood literature to dispose of continuity, and it uses the weakest notion of monotonicity (weak FOSD). Note that
our monotonicity axiom enters into the derivation of a measure in the quantile model only in one step, namely, to
show that non-null events are judged more likely than the empty set—this is exactly how Chew and Sagi used their
weakening of Savage’s monotonicity. Why would a direct-likelihood argument be attractive given the CS result?
One reason is that the link between the likelihood that CS construct and preferences over acts is only through the
definition of exchangeable events, a pre-notion of “equally likely”. In particular, the transitivity of the comparability
relation is proved without any recourse to the strict preference relation over acts, > and thus cannot reveal any
information about these preferences. By contrast, in the direct-likelihood method, the strict “more-likely-than” relation
is revealed by preferences over acts, from which it inherits its properties. For example, by maintaining the link between
preferences and beliefs, the direct-likelihood approach is quite revealing about what is going on in the quantile model.
The price of deriving beliefs with conditions that do not draw on the strict preference relation is that they do not
carry any behavioural content from >. In fact, as CS point out, applying the exchangeability-based approach to an
arbitrary decision-making model might not be warranted—for example, in the famous example of “Machina’s Mother”
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(Machina, 1989), the exchangeability relation fails to deliver a notion of likelihood (and, hence, also a probability
measure). The direct-likelihood approach is immune from that (by construction) and can deliver a probability-measure
representation of beliefs even in the example of “Machina’s Mother”.

In addition, CS assume (in an axiom) that exchangeable events exist. In the direct-likelihood method, it is
established that some events are judged as equally likely or exchangeable (Step 4 in the proof of Theorem 1 in
Machina and Schmeidler (1992), Claim 5a in Grant (1995), our Lemma 6A).

While the CS method could, in principle, be used for non-extreme preferences (i.e., those leading to 7 € (0, 1)),
it cannot be applied to extreme preferences. In summary, the two techniques represent two conceptually different and
complementary approaches to deriving beliefs from preferences.
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