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Large institutional investors dominate many financial markets. This paper develops a
consumption-based model of markets in which all institutional traders recognize their
impact on prices. Bilateral (buyer and seller) market power changes efficiency and arbitrage
properties of equilibrium. Predictions match temporary and permanent price effects of
supply shocks, order breakup, limits to arbitrage, nonneutrality of trading frequency, and
real effects of shocks and announcements in periods other than event dates. Maximizing
welfare and stabilizing liquidity through disclosure of information about fundamentals
presents a trade-off. Equilibrium representation as “trading against price impact” provides
a link with the industry’s practice. (JEL E21, G12, L13)

Since trade-level data first became available two-and-a-half decades ago, it
has been well understood that, in many contemporaneous markets, trade is
dominated by a relatively small group of large, institutional investors whose
positions move prices, thereby adversely affecting their terms of trade. Trading
costs associated with price impact are first order and exceed all explicit trading
costs, such as commission, brokerage, and order-processing fees. Techniques
to estimate price impact are widespread in the financial industry and are
available to both individual and institutional investors (e.g., software designed
by Citigroup, EQ International, ITG, MCI Barra, and OptiMark). In financial
jargon, markets in which individual trades are large relative to average daily
volume, and hence impact prices, are known as thin markets.1
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1 An increase in institutional participation in the stock market over recent decades (a trend that has continued since
World War II) has been extensively documented. Ownership of all outstanding financial assets in the United States
rose from 6.1% in 1950 to 50.6% in 2009. Of the total market value of U.S. common stocks of $1.4 trillion in 1980,
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This paper presents a dynamic equilibrium model of asset pricing, trade, and
consumption in which all traders correctly recognize their price impact. We
study a market with I strategic investors who trade risky assets. The market
operates as the (repeated) standard double auction in which traders submit (net)
demand schedules (or limit and market orders; i.e., the uniform-price auction;
e.g., Kyle 1989; Vayanos 1999; Vives 2011), variants of which are used in
practice in many markets. Relaxing price taking in trader optimization is the
sole departure from the competitive framework. To delineate how the presence
of price impact affects financial markets, we adopt preferences and assets from
the classic CARA-Normal setting in an infinite horizon model; the competitive
infinite-horizon consumption-trade framework obtains if traders are price takers
in equilibrium.

Over the past decade, a large body of research has emerged to explain price
behavior that is broadly interpreted as temporary departures of prices from
their fundamental values as a reaction of prices to exogenous shocks in supply
(or demand).2 The AFA Presidential Address by Duffie (2010) provides an
extensive overview. A typical price behavior exhibits a significant price change
on the event date, followed by a partial reversal of the change in subsequent
periods. Thus, apart from the permanent effect, the price dynamics feature a
temporary component (also known as “long-run and short-run,” “mispricing,”
or “asset price overshooting”). Estimation software used in the financial
industry routinely distinguishes between the “permanent” and “temporary”
price-impact effects of trades. Notably, even when a supply shock has been
publicly preannounced, the temporary price drop below the long-run level still
occurs and moreover takes place on the actual event date, not on the date of
the announcement.3 From a theoretical point of view, the price behavior is

institutions held $473 billion (34%). By 2010, the total market value of common stocks had increased to $17.1
trillion and institutions had increased their holdings to $11.5 trillion (67%). Even in markets as deep as NYSE,
a typical institutional package would represent more than 60% of the average daily trading volume, if traded
at once. Institutional investors (e.g., hedge funds, mutual and pension funds, and investment banks) dominate
trading in traditional, public exchanges, as well as alternative trading venues, such as intradealer markets and dark
pools (e.g., Holthausen, Leftwich, and Mayers 1987; Chan and Lakonishok 1993, 1995; Keim and Madhavan
1995, 1996, 1998; Biais, Bisière, and Spatt 2010; Blume and Keim 2012; www.nysedata.com/factbook).

2 Forced liquidations, issuance of new debt, selling initial public offerings (IPOs), stock inclusions into or deletions
from S&P 500 and other market indices, index weight changes, and fire sales are among the shocks examined
by numerous studies for various securities. Index funds invest a constant fraction of wealth in the companies
included in an index, regardless of the performance of an asset; therefore, an index weight change induces a
demand shock that is not associated with new information about the fundamental value of an asset. Rather, weight
changes are bureaucratic decisions, and data on ownership used for reweighting are publicly available prior to
events.

3 Preannounced weight changes in stock market indices have a significant price effect on the day of inclusion
observed for stocks and currencies or foreign equity. Such natural experiments facilitate controlling for the
informational component of the price change. Newman and Rierson (2004) find that new bond issuance in the
European telecommunication sector increased the yield spreads of other firms in the sector. The effect was
transitory, significant, and peaked on the day of issuance, not on the day of announcement. Lou, Yan, and Zhang
(2013) show that Treasury security prices in the secondary market decrease significantly during the few days prior
to Treasury auctions and recover shortly thereafter, despite the time and size of each auction being announced
in advance. The authors argue that the price effects are significant even in very liquid markets. Duffie (2010),
Gromb and Vayanos (2010), and Lou, Yan, and Zhang (2013) review the evidence.
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striking: trade announcements and trade-induced price effects are separated in
time, and anticipated price changes are observed. In the standard competitive
model, these features of price behavior are ruled out by no-arbitrage, which ties
the equilibrium price to the fundamental value; any effects of announcements
of future trades are reflected in price fully upon the announcement.

Price making changes some of the central equilibrium properties, relative to
the competitive model. This paper develops the implications of noncompetitive
trading for price behavior, nonneutrality of trading frequencies, and the impact
of public information disclosure:

We show that any unanticipated exogenous supply shock in thin markets
has two effects on prices – fundamental and liquidity – which differ in origin,
timing, persistence, and dynamics. The fundamental effect, which is permanent,
reflects the change in the average market holdings (aggregate risk) and is present
also in markets with price-taking traders. In a thin market, the fundamental
effect is amplified by a temporary liquidity effect, which results from traders’
order reduction in response to price impact (and occurs even when information
is symmetric). Furthermore, market thinness introduces a time separation of
announcements and trade-induced price effects, which are observed in periods
other than those during which information about the shock becomes available.
While price exhibits the permanent effect upon the announcement of the shock,
the liquidity effect always occurs at the moment of trade. If anticipated, the
liquidity effect of the shock results in an additional temporary effect, which is
present in all periods between the announcement and the supply shock event,
attaining the maximum at the moment of trade. In contrast to competitive
markets, preannouncing the shock affects the distribution of consumption and
wealth: anticipated supply shocks redistribute wealth toward buyers, whereas
demand shocks redistribute toward sellers.

Our model decouples the frequency of trade and asset payments by allowing
for multiple trading rounds between the payments of assets. Equating the
frequencies of trade and dividend payments would be without loss with price-
taking investors. In contrast, trade frequencies impact the performance of
thin markets.4 While order breakup (“slow trading”)per se also has been
demonstrated in other studies of thin markets,5 by allowing trade to take place
more frequently than dividend payments, we show that a higher frequency
of trading improves market performance: absent nontrivial transaction costs,
large investors take every opportunity to break up their orders more finely,
thus lowering the total price impact costs, even if their beliefs do not
change (i.e., with perfect foresight) and without asymmetric information,

4 Dividends of risky assets are typically paid semiannually or annually, whereas trading opportunities in financial
markets are clearly more frequent.

5 Like us, Vayanos (1999) shows order breakup as an equilibrium strategy with all traders optimizing dynamically.
The literature that derives the optimal trade execution is also related; it treats the quantity to trade as exogenously
given and calibrates numerical solutions (reviewed in Gârleanu and Pedersen 2013).
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inference effects, or shocks to endowments or information occurring throughout
trading. Investors’ market power thus creates trading volume even in the
absence of price changes.6 The key mechanism in thin markets is that
(anticipation of) market thinness/competitiveness in future rounds induces
market thinness/competitiveness in earlier rounds, regardless of the number
of traders and risk aversion.7

Finally, in competitive markets, given full diversification accomplished
within the first round, market performance is invariant to releasing public
information dynamically. For thin markets, we present a positive result: for
any Gaussian dynamic multiasset information structure, postponing releases
of information increases consumption and ex ante welfare, as it improves
diversification before the risks are resolved. However, the welfare-maximizing
disclosure introduces episodes of low market liquidity.Thus, in thin markets, the
objectives of stabilizing liquidity and maximizing welfare through disclosure
involve a trade-off. The mechanism through which public information impacts
welfare and expected returns, absent of private information, is new and contrasts
with competitive markets.8

This paper is part of a large literature on noncompetitive trading. The
noncompetitive models can be grouped around two ideas, depending on where
the primary source of price impact is attributed: a finite number of risk
averse liquidity providers (i.e., decreasing primitive marginal utility or limited
risk-bearing capacity) or frictions. One insight from our analysis is that the
implications of price impact we report arise jointly on the equilibrium path
solely as a result of the departure from the assumption of price taking in trader
optimization, in an otherwise classical setting, for centralized markets with
fully rational forward-looking agents without asymmetric information, search,
cost, financial constraints, bounded rationality, or capital mobility frictions (the
Handbook chapter by Vayanos and Wang 2013 provides a recent review of the

6 This complements the predictions of the models of volume that are derived from asymmetric information or
heterogeneous beliefs (see, e.g., the review by Bond, Edmans, and Goldstein 2012; Eyster, Rabin, and Vayanos
2013). Indeed, in thin markets, liquidity becomes available over time.

7 As an additional insight from allowing higher trade-to-payment frequency, the optimality of order breakup in
dynamic markets does not follow directly from the optimality of order reduction by large traders in one-shot
markets (e.g., Kyle 1989; Vives 2011).

8 The mechanism through which public information impacts welfare and expected returns, absent of private
information, is new and contrasts with competitive markets. The question of the welfare effects of public
information releases about fundamentals (e.g., central bank transparency) has received renewed attention in
the literature. A major finding has been that when agents have private information, releases can be welfare
reducing because of a coordination motive among agents (payoff externalities among agents, e.g., Morris and
Shin 2002 or learning externalities, e.g., Amador and Weill 2010). By contrast, in thin markets, the effects of
releasing information about fundamentals are ambiguous, even in the absence of private information. A policy
objective that takes into account both traders’welfare and market liquidity (e.g., volatility or welfare of occasional
traders) of public releases of fundamental information involves a trade-off, and a policy of partial disclosure may
be optimal. This is consistent with Angeletos and Pavan (2007), who, in a competitive setting, argue that the
frictions that create a gap between equilibrium and first-best are more important than coordination in determining
the welfare effects of public information.
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liquidity models). We assume away price-taking investors, whose presence does
not affect the qualitative properties of equilibrium with price-making investors.

In the literature that attributes price impact to traders’ limited risk-bearing
capacity, apart from the classic contribution of Kyle (1989), in which the
primary source of price impact is risk aversion (asymmetric information being
the derivative), our model is the closest to Vayanos (1999), who introduced
the infinite horizon model of double-auction with noncompetitive traders and
no noise traders or agents who do not fully optimize dynamically. To the
double-auction framework of noncompetitive trading, we add (1) analysis of
supply shocks in thin markets along with analysis of announcements of shocks
or fundamentals and (2) separation of trade and asset payment frequencies,
which also allows the incorporation of (3) general information structures for
fundamentals (dividends). Each extension reveals a new economic mechanism
present in the thin markets but not in the competitive markets. Respectively,
(1) Vayanos’ (1999) model incorporates exclusively endowment shocks, and
equilibrium price always coincides with the fundamental value;9 thus, the
model does not generate new predictions about price behavior in response
to supply shocks, relative to a model with price takers (i.e., existence and
characterization of the transitory price effect and the real effects of shock
announcements). (2) Vayanos (1999) assumes, as does the standard competitive
setup, that both trade and asset payments occur once in each period; thus, price
impact and trading are stationary. Not imposing equal frequency of trade and
asset payments reveals thin-market implications of nonstationary equilibrium
dynamics of prices and liquidity, consumption-savings behavior, and welfare.
Let us note that the dynamic equilibrium in our model directly gives rise to
the representation of a market as a sequence of short- and long-run demands,
commonly used in empirical studies of supply shocks (e.g., those following
Greenwood 2005).10 (3) We offer a new result on the welfare-optimal disclosure
of public information about fundamentals and the welfare-stability trade-off of
announcements. Additionally, we provide implications of the cross-asset price
impact.

9 The fundamental value (equal to the average marginal utility) varies over time in Vayanos’s model, due to
endowment shocks, but the price path never departs from it. The key behind the distinct effects of supply and
endowment shocks is whether or not the new supply needs to be absorbed by the liquidity providers through
trading or whether it directly alters their holdings. If the former, but not the latter, is the case, the temporary
liquidity effect is present, due to price impact. Endowment shocks do not result in temporary price effects, despite
the nonnegligible price impacts.

10 Recent contributions by Gârleanu and Pedersen (2013) and Kyle, Obzihaeva, and Wang (2013) present
(stationary) dynamic double auction models (respectively, with exogenous transaction costs and overconfidence)
in continuous time, which formalizes that, mathematically, equilibrium with noncompetitive trading can be
seen as equilibrium in flows of trades with target portfolios being diffusions. In game-theoretic terms, our
characterization of equilibrium as a sequence of (nonstationary) short-run demands (trades) captures that each
trader best responds by choosing a flow, given his residual market flow, which is determined by the flows
submitted by others. Accordingly, our characterization of nonstationary equilibrium cannot exploit a recursive
structure for trade and instead tackles trade sequences.
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An early strand of literature on price impact attributed to risk aversion builds
monopoly/Cournot-type models of one-sided market power with I ≥1 large
investors who trade with a fringe of price-taking traders (e.g., Ho and Stoll
1981; Grossman and Miller 1988; Vayanos 2001; Brunnermeier and Pedersen
2005; DeMarzo and Urošević 2006, extended by Urošević 2005). We show that
the equilibrium implications of bilateral market power (i.e., of both buying and
selling traders) differ markedly from markets with one-sided market power
or with price-taking traders who optimize dynamically. Unless information
happens to be revealed contemporaneously with the shocks’occurrence, shocks
only have permanent and no transitory effects and price impact – and hence the
liquidity effect of shocks – only depends on contemporaneous uncertainty. With
bilateral market power, price impact in any given round depends on future and
current uncertainty about asset payoffs; thus, bilateral price impact introduces
a time separation between information disclosure and its effects. Bilateral price
impact describes well markets in which large traders provide liquidity for and
effectively trade with one another.

In our analysis, price impact does not result from asymmetric information,
as we seek a source of market thinness that also would be present in perfect-
foresight environments, as suggested by the data.11 Some predictions also could
be generated by persistent asymmetric information or systematic behavioral
biases (e.g., beliefs heterogeneity). Market thinness contributes as follows: (1)
it creates trading volume; the new prediction in thin markets is that agents trade
even in the absence of price changes (ft. 2 and 3); (2) public information impacts
welfare through slow trading – a new mechanism, relative to the literature
on public disclosure in the presence of private information (ft. 8); (3) higher
frequency of trading improves market performance even with perfect foresight,
which contrasts with the arguments recently put forward in the literature based
on asymmetric information and learning (Sections 4 and 6).

The double-auction model in demand schedules is the workhorse of the
literature that was developed following Kyle (1989) and Vayanos (1999). We
introduce an alternative representation of trading in the demand game that is
consistent with the financial industry’s practice. Namely, the Nash equilibrium
can be represented as a result of optimization according to “trading against price
impact function” by anonymous investors whose information about the market
is summarized by their price impact (Kyle’s lambda), which they correctly
estimate. The equivalent representation result, which applies to other analyses
of thin markets based on the demand game (e.g., Vayanos 1999; Gârleanu and
Pedersen 2013; Kyle, Obzihaeva, and Wang 2013; Du and Zhu 2014), offers

11 In addition to evidence on preannounced shocks, large institutional investors do not outperform fixed benchmark
portfolios, which would be the case if they had superior information about asset fundamentals. Furthermore, for
the average trade value, price impacts in downstairs markets do not differ significantly from those in upstairs
markets, which are more transparent and less susceptible to informational asymmetries (e.g., Madhavan and
Cheng 1997). Thus, in certain types of markets, price impact need not be mainly driven by the asymmetry of
information.
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a link with a typical practitioners’ model used in the price-impact estimation
software in the financial industry, which adopts the perspective of an agent
who trades against a residual market, represented as an exogenously given
price impact function, the functional form of which is motivated empirically.12

Moreover, the alternative formulation can be useful to other researchers
working on thin markets, as it is more tractable, allows the accommodation
of rich information structures (public and private information, see Vives 2011;
Rostek and Weretka 2012), relates double-auction and industry techniques,
and has a dual game-theoretic (Nash in demands) and general-equilibrium
representation of thin markets, thereby also permitting a mapping of the
predictions to the standard competitive model. These results apply to all models
based on the demand game.13 Equilibrium representation in terms of “trading
against price impact function” coincides in the CARA-Normal setting with
the linear equilibrium (robust to uncertainty or noise; Kyle 1989; Vayanos
1999) used essentially in all of the literature based on the demand game,
but it also allows researchers to extend the existing theory of thin markets
and calibration of temporary and permanent price impact models beyond the
CARA-Normal settings to nonlinear schedules, which the linear equilibrium
cannot. The modeling contribution of the paper is relevant beyond financial
markets for modeling durable good bilateral oligopoly with divisible goods
like assets.

1. Model of Thin Markets

This section describes the market structure, trade and consumption problem
and introduces an alternative formulation of equilibrium.

1.1 Market
I ≥3 traders trade assets to maximize the expected CARA utility function from
consumption,

U =−E
∑∞

t=1
βt exp

(−αci
t

)
, (1)

where ci
t is trader i’s consumption in period t =1,2,...,∞, α is the absolute

risk-aversion and β is the discount factor. The traders are interpreted as liquidity

12 For example,Almgren and Chriss (2000);Almgren et al. (2005) implemented by Citigroup; Huberman and Stanzl
(2004); see also a recent contribution by Gârleanu and Pedersen (2013); for a review of market impact models,
see, for example, www.eqimpact.com/main.asp?models. While these models focus on single-agent optimization,
they are closely related to the general equilibrium literature on price impact (see, e.g., an overview by Hart 1985),
which considers an exchange economy with the same optimization assumption as ours; each agent trades against
a residual supply with an exogenously given price impact function. Relative to the model of Gârleanu and
Pedersen (2013) with exogenous transaction costs, deriving price impact from the equilibrium strategies of other
traders allows us to link the equilibrium dynamics of temporary and permanent cost components to the traders’
endogenously time-varying risk-bearing capacity and dynamic information structure for fundamentals.

13 The demand game is canonical in the finance literature (e.g., Kyle 1989; Vayanos 1999). In industrial organization,
the game of Nash in demands (or supplies) was introduced for an oligopolistic industry by Grossman (1981) and
was further developed by Klemperer and Meyer (1989).
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(∙)

Figure 1
Timing of the model
Notes: Within each period t , the timing is as follows: Traders enter the period with holdings of the riskless and
risky assets wi

t−1,θ i
t−1. Then, they trade for T rounds, after which assets pay r,dt on wi

t ,θ
i
t . Finally, traders

choose consumption and period t +1 begins. Value function VT (·) is derived after trade before dividends are paid.

providers, that is, financial intermediaries who stand ready to buy and sell assets.
There are two investment opportunities: a storable consumption good with
return r per period (a riskless asset) and a risky asset that pays a random dividend
dt in terms of the consumption good; dt follows a random walk, dt =dt−1 +δt ,
δt ∼N

(
0,σ 2

)
. Each trader i is initially endowed with

(
wi

0,θ
i
0

)
of the riskless and

risky asset, respectively. Risky endowments θ i
0 differ across traders and gains to

trade in financial markets come from risk sharing. The standard infinite-horizon
CARA-Normal framework for competitive (deep) markets is encompassed (as
the number of traders grows, I →∞).

The timing in each period is as follows (Figure 1). Traders enter period t

with the stocks of riskless consumption good wi
t−1 and risky asset shares θ i

t−1.
Agents trade the risky asset for T ≥1 rounds indexed by l =1,...,T , after which
the risky asset pays dividend dt on the posttrade holdings θ i

t and the riskless
holdings wi

t give interest r . Finally, traders choose consumption ci
t .

14 Let

γ ≡1− 1

I −1
∈ (0,1) (2)

be an index of market depth. The portfolio held by all traders evaluated in
per capita terms, θ̄ ≡ (1/I )

∑
i∈I θ i

0, defines the average holdings. Given the
identical risk aversion, holdings θ i

t = θ̄ for all i and t are the unique Pareto
efficient allocation of risky assets.

In each trading round l =1,...,T of period t , financial markets operate as the
uniform-price mechanism (i.e., the demand submission game; e.g., Kyle 1989).
Each trader i submits a downward-sloping (net) demand schedule �i

t,l (·) that

14 The assumption that consumption is less frequent than trade or information disclosure is not essential for our
results. Instead, the new effects of market thinness arise from decoupling the frequencies of trade and disclosure
of information about dividends (fundamentals). As a modeling insight, imposing that trade and asset payments
are equally frequent, while neutral in competitive markets, rules out nontrivial equilibrium dynamics of prices
and liquidity, welfare, and allocation with price-making traders.

For the information structure in which no information is revealed between dividend payments (as in the first
part of the paper), the assumed utility functions over consumption plans can be rationalized by the value functions
derived from maximizing utility in continuous time; equilibria are the same. With information disclosure (as in
the second part), consumption becomes a random process; still, the implications of price impact are expected to
hold qualitatively, given the unambiguous reduction of consumption, relative to competitive trading.
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specifies demanded quantity of risky assets for every price pt,l (e.g., a profile
of limit and stop orders). The aggregate net demand determines the market-
clearing price p∗

t,l ,
∑

i∈I �i
t,l(p

∗
t,l)=0, and trader i receives �i∗

t,l ≡�i
t,l(p

∗
t,l)

shares of risky asset and pays p∗
t,l�

i∗
t,l in the consumption good. We study

an equilibrium in linear15 demands, and the solution concept is the (robust)
subgame perfect Nash equilibrium (hereafter, equilibrium). Throughout, ∗
denotes equilibrium. While price impact measures market thinness, its inverse
is a measure of market liquidity. All proofs are presented in the Appendix.

1.2 Equilibrium: Trade and consumption problem
In the first part of the paper, we characterize the (nonstationary) trade problem
during period t . No information disclosure about dividends or other events occur
throughout trading rounds l =1 to T . In Appendix A we show that equilibrium
trading decisions within each period t maximize a quasilinear-quadratic utility
that depends on holdings of riskless and risky asset (w,θ ) after the last round
T , before assets pay,

VT (w,θ )=w+ āθ − 1

2
ᾱσ 2θ2. (3)

The mean-variance utility (3) is a monotone transformation of the value
function in the infinite horizon problem (see Equation (A.41)). In Section
2.4, we determine endogenous parameters ā and ᾱ in terms of primitives of
the infinite horizon model by solving the (stationary) consumption problem.
Marginal utility ∂VT /∂θ is downward sloping and reflects traders’ aversion to
dividend risk, given the equilibrium trade and consumption in the future periods.
Coefficient ᾱ>0 measures effective risk aversion at T . The fundamental value
of a risky asset, defined as the marginal utility at the diversified (average)
holdings, θ i

t = θ̄ , is

v̄t (θ̄ )≡ ∂VT (θ̄ )

∂θ
= ā−ᾱσ 2θ̄ . (4)

The fundamental value coincides with the price in a competitive model (i.e., the
model with I traders with utilities (3), who are, by assumption, price takers). Its
component −ᾱσ 2θ̄ captures the reduction in asset value due to aggregate risk
in θ̄ (see Section 2.4). Vl (w,θ ) denotes the quasilinear-quadratic value function
in round l obtained by solving for equilibrium trade in rounds l+1 through T ,
given the quasilinear-quadratic utility (3).

1.3 Trading against price impact
As is well known, the multiplicity of equilibria in games with demands or
supplies as strategies makes modeling strategic behavior challenging, even in a

15 For example, Kyle (1989); Vayanos (1999). Trader strategies are not restricted to linear bids. Rather, we analyze
the equilibrium in which it is optimal for a trader to submit a linear demand, given that others do.
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static setting. As is standard in the literature, we focus on the linear equilibrium,
which is robust to adding uncertainty in trade (e.g., Klemperer and Meyer 1989;
Vayanos 1999), which is unique. A profile of demand functions {�i

t,l(·)}Ii=1 is
a (robust) Nash equilibrium in round l if {�i

t,l(·)}i=1 is a Nash equilibrium that
is robust to adding noise in demand at l, where noise is independent across
agents.16

In this paper, we use an alternative (equivalent) representation of trading
behavior in the demand game, which links equilibrium in a double auction
with practitioners’ representation of trading and markets, is more tractable,
and applies to the existing models based on the demand game. In a game with
demands or supplies as strategies, it is useful to conceptualize a trader as trading
against a residual market. From the perspective of trader i, in each round l, the
demand schedules of traders j 	= i and the market-clearing condition define
a residual supply faced by i with slope λi

l , which measures price impact of
trader i. Lemma 1 shows that equilibrium (prices and trades) in a (dynamic)
double auction can then be characterized by two conditions on traders’ demand
schedules and price impacts: (i) each trader submits a demand schedule that
equalizes his marginal utility and the marginal payment, given his assumed
price impact, and (ii) the price impact assumed by each trader is correct (i.e.,
it equals the slope of the residual inverse supply defined by aggregation of the
schedules submitted by other traders). Consider the first-order condition for
trader i who assumes that his price impact is λi

l . By equalizing, for each price
pt,l , his round−l marginal utility with marginal payment (or revenue) given
the assumed λi

l ,

∂V i
l (θ i

t,l−1 +�i
t,l)

∂θ i
t,l

=pt,l +λi
l�

i
t,l , (5)

the trader can then construct his schedule of quantities demanded for each price
(Figure 2). Let �i

t,l

(·,λi
l

)
be trader i’s demand optimal given his assumed price

impact λi
l , defined by condition (5) for all prices.

Lemma 1 (Trading against price impact). A profile of demand schedules
and price impacts {�i

t,l

(·,λi
l

)
,λi

l }Ii=1 is a (robust) Nash equilibrium in round
l if, and only if,

(i) each i ∈I submits the demand schedule �i
t,l

(·,λi
l

)
given his assumed

price impact, such that

(ii) λi
l =−(

∑
j 	=i(∂�

j

t,l(·,λj

l )/∂p))−1.

16 Aprofile of demand functions {�i
t,l

(·)}I,T
i=1,l=1 is a (robust) subgame perfect Nash equilibrium if, for any l =1,...,T

and any subgame starting at l, {�i
t,l′ (·)}i=1,l′≥l is a Nash equilibrium that is robust to adding noise in demand

at l, where noise is additive and independent across agents and rounds. Treating negligible noise uncertainty as
part of the description of the game, “robust” can be dropped from “robust Nash.”
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Figure 2
Best response demand given price impact and demand reduction
Notes: A trader faces a residual supply whose slope measures his price impact. In a robust Nash Equilibrium,
for each realization of the residual supply (1,2,3 in the figure), a trader finds the quantity for which his marginal
utility is equal to his marginal payment. The collection of such optimal points defines the best response demand
schedule, given the price impact assumed by the trader.

Note that the only information any trader i needs to respond optimally to all
prices – not just the equilibrium price – and to arbitrary bids of others – and
not just the equilibrium bids – is, apart from his own marginal utility, his own
price impact λi

l . In particular, no information about the number, let alone the
utility functions, identities, or trading strategies of other traders, is required.
Appendix C shows that the model of behavior based on the demand game has
a dual game-theoretic and general-equilibrium representation; this establishes
a relation between competitive and noncompetitive predictions (both strategic
and general-equilibrium based on rational-expectations).

By capturing “trading against price impact” (slope taking behavior), the
alternative characterization of equilibrium in a double auction in Lemma 1 fits
the practice of institutional traders who estimate their price impact functions
treated as sufficient statistics for the payoff-relevant information about the
residual market against which they each trade. This paper determines price
impact functions as part of a Nash equilibrium, through a fixed-point condition
(ii). The linear-in-trade, possibly time-dependent, price impact function is the
predominant assumption among practitioners (the “quadratic cost model”). Our
model predictions are consistent with the stylized facts about the functional
form of the empirical price impact functions and price effects of trades
(propositions 1 and 3).17 For an overview, see, for example,Almgren and Chriss
(2000) and Almgren et al. (2005), whose models are the basis of Citigroup’s
Best Execution Consulting Services software, or the Handbook chapter by
Vayanos and Wang (2013).

17 Let us observe that the empirically documented concavity of price impact function (as a function of trade size)
is implied by our characterization of dynamic equilibrium in a model with nonstationary price impact in which
larger trades are associated with smaller price impact.
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In the quadratic utility (CARA-Normal) setting, the price impact is
independent of the equilibrium quantity. The selection of Nash equilibrium
defined by conditions (i) and (ii) exists outside of quadratic utilities, unlike the
selection of a linear (robust or Bayesian) Nash equilibrium (used, e.g., by Kyle
1989; Vayanos 1999). It thus can be used to extend the predictions from this
paper to a more general theory of thin markets, with quasilinear asymmetric
utilities and nonlinear bid schedules.18

2. Model Predictions

2.1 One-round market (l=T)
From Equation (3) and the first-order condition (5), ā−ᾱσ 2(θ i

t,T −1 +�i
t,T )=

pt,l +λi
T �i

t,T , trader i’s best-response schedule given his assumed price impact
λi

T is given by

�i
t,T (·,λi

T )= (λi
T + ᾱσ 2)−1(ā−ᾱσ 2θ i

t,T −1 −pt,T ). (6)

Given the profile of demands submitted by traders j 	= i, {�j

t,T

(
·,λj

T

)
}j 	=i , with

slopes ∂�
j

t,T (p)/∂p=−(λj

T + ᾱσ 2)−1, the equilibrium price impact of trader i

is by lemma 1 characterized as

λi
T =

⎛
⎝∑

j 	=i

(
λ

j

T + ᾱσ 2
)−1

⎞
⎠−1

. (7)

By the equilibrium symmetry, λi
T =λ

j

T ≡λT , and the unique solution to (7) gives
the equilibrium price impact at T ,19

λ∗
T =

1−γ

γ
ᾱσ 2 >0. (8)

Given the finite number of trading partners (γ <1) and effective risk aversion
(ᾱ>0), in equilibrium, each trader faces an imperfectly elastic residual supply.
Thus, price-taking behavior does not satisfy equilibrium conditions. Equation
(7) captures that a trader’s price impact results from the decreasing marginal

18 Weretka (2011) applies lemma 1. The key insight from lemma 1 is the game-theoretic definition: formulating
fixed-point conditions on bid functions and slopes (or slope functions) rather than on levels (prices, trades, and
price impacts, as in a general equilibrium) gives a game-theoretic solution concept that refines the multiplicity
of (subgame perfect) Nash equilibria. The selection comes from the requirement that traders respond optimally
to all prices, which refines the demand slopes and pins down the price impacts. (See Appendix C.)

19 In the symmetric model, λi
l

=−(1−γ )(∂�i
t,l

(·)/∂p)−1, as by the symmetry of equilibrium, bid slopes coincide,

∂�i
l
(p)/∂p=∂�

j
l

(p)/∂p for all j 	= i, and hence the system of I harmonic-mean conditions on price impacts

{λi
l

=−(
∑

j 	=i (∂�
j
t,l

(·)/∂p))−1}I
i=1 becomes λi

l
=λ

j
l

=λl =−(1/(I −1))(∂�i
t,l

(·)/∂p)−1. The nonexistence of
equilibrium with two traders is standard (e.g., Kyle 1989; Klemperer and Meyer 1989 with a vertical demand;
Vayanos 1999). Alternatively, the outcome for markets with two traders can be interpreted as an equilibrium in
which price impacts are infinite, in which case no trade is optimal.
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utility of other traders (ᾱ>0); buying or selling affects a trader’s (decreasing)
marginal utility. Price impact of an agent’s trade corresponds to the price
concessions required by the other agents to trade and for the market to clear.
Price impact strictly decreases in the number of traders I (market depth γ ). In
a larger market, the effect of any agent’s trade on the average marginal utility
of other traders (and, hence, price) weakens, as other traders absorb smaller
fractions of the trades.

In response to price impact, each trader reduces his trade relative to the
competitive trade – he demands less for any price (cf. Figure 2),

�i∗
t,T (·,λi∗

T )=γ
(
ᾱσ 2

)−1
(ā−ᾱσ 2θ i

t,T −1 −pt,T )︸ ︷︷ ︸
Competitive demand schedule

. (9)

Geometrically, the equilibrium bid is a rotation of marginal utility around
the zero-trade point. With identical risk aversion, buyers and sellers reduce
demands and supplies by the same factor γ and, consequently, thin markets
clear at the price that would also clear the market with price takers, equal to
the average marginal utility (and the fundamental value),20 p∗

t,T = v̄t (θ̄ ).

2.2 Dynamic equilibrium in thin markets
Consider a market in which agents can trade for T >1 rounds in each period t .
Given that there are no shocks within the period, and hence the competitive
price is constant throughout, it would be optimal for price-taking traders to sell
all of their holdings θ i

t−1 to buy θ̄ in the first trading round, l =1, and asset
allocation would be Pareto efficient. With gains to trade exhausted in the first
round, no trade would subsequently take place. By contrast, in a thin market,
agents trade slowly – the equilibrium strategy involves breaking up an order
into smaller trades in response to price impact, which is strictly positive in all
rounds.

Proposition 1 (Dynamic equilibrium). In every trading round l =1,...,T , the
equilibrium trade of trader i is

�i∗
t,l =γ (θ̄ −θ i∗

t,l−1), (10)

and price impact is

λ∗
l =

1−γ

γ
(1−γ )2(T −l)ᾱ︸ ︷︷ ︸

Effective risk aversion at l

σ 2 >0. (11)

20 The price result relies on the symmetry of utilities. Market thinness per se does not necessarily affect equilibrium
prices; yet, as we show, it alters trading, efficiency, how market prices respond to shocks, and valuation of assets
that are not traded. The price result, which stems from the bilaterally oligopolistic market structure, enables
isolation of the new mechanisms due to price impact without having to deal with additional effects due to price
changes.
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A

B

Figure 3
Risky holdings (A) and price impact (B) without shocks
Notes: The figure presents the equilibrium dynamics of risky holdings (Panel A) and price impact (Panel B) over
T trading rounds. In larger markets, the speed of trade and liquidity are greater.

In every round l, traders sell a fraction γ of (the remaining part of) their initial
holdings θ i

t,l−1 and buy γ of the average holdings θ̄ . Consequently, the risky part
of holdings is a convex combination of the initial and average holdings, θ i∗

t,l =
(1−γ )θ i∗

t,l−1 +γ θ̄ , l =1,...,T , and traders’ risky holdings are heterogeneous in
every round (Figure 3A).

With T trading rounds, idiosyncratic risk is not fully diversified. The speed
of trade, equal to γ , is independent of risk aversion ᾱ or asset riskiness σ 2:
higher effective risk aversion increases gains to trade, thus encouraging more
aggressive trading, but it also amplifies price impact, thus making interactions
less competitive and reducing the trade. With symmetric quadratic utilities,
these two effects offset exactly. Thus, even if large institutional traders are
almost risk neutral, as is often assumed in the literature, they choose to trade
slowly. This holds despite the market-clearing price being constant and equal
to the fundamental value, p∗

t,l = v̄t (θ̄ ), l =1,...,T .21 Order breakup of a block
of shares into smaller orders, which are then traded sequentially, is a common
practice among large investors. An average block in small companies amounts
to two or three times the daily trade volume, and even in the largest companies,
an average block takes up 25% of the daily volume. In our model, order breakup
(“slow trading”) is the equilibrium strategy for handling large orders in thin
markets. Table 1 presents typical figures from the NYSE.22

21 The result might seem reminiscent of predictions for the classical durable-good monopoly, but the economic
mechanism is novel. With bilateral price impact, a delay in trade is optimal despite the absence of discounting or
heterogeneous beliefs about fundamentals; this is the case in deterministic (including constant) price settings as
well as with information disclosure. Since, in response to their market power at l <T , traders reduce their orders
in that round, the outcome is not efficient and gains to trade are not exhausted. This then leads to more trade in
subsequent rounds.

22 Trade delay as a response to market power is present in other models (e.g., Vayanos 1999). There, however,
shocks to endowments or asymmetric information introduce new gains to trade in each trading round.
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Table 1
Order Breakup

1 day 2 - 3 days 4 - 6 days > 6 days

Buy 20.1% 26.7% 21.7% 31.5%
Sell 22.1% 27.2% 20.5% 30.2%

Notes: All trades of NYSE and AMEX stocks by thirty-seven investment management firms from July 1, 1986
to December 30, 1988 (October 1987 excluded). A buy/sell block is defined as successive purchases/sales of a
stock with at most a five-day break between consecutive trades. The numbers are percentages of the total volume
of trade in dollars (Chan and Lakonishok 1995, Table 1).

Thus, unlike in a competitive market, trade occurs in several rounds,
even if no new gains to trade are generated by endowment shocks and no
information about the asset dividend is revealed between rounds. In a thin
market, the equilibrium trading strategy is uniquely pinned down even without
introducing any preference for urgency. Market thinness provides an alternative
to discounting meaning to “time is money”: traders trade whenever they have
a trading opportunity.

2.3 Origins of price impact
In markets with strategic buyers and sellers, multiple trading opportunities
introduce a new source of market power. Market power in a static market (or,
at T ) results solely from the traders’ decreasing marginal utility (or, effective
risk aversion; ᾱ>0). The noncompetitiveness of dynamic markets is, in turn,
governed by a dynamic mechanism: future market thinness begets current
market thinness; this holds even in deterministic-price settings. To explain
this new mechanism, we consider the following counterfactual experiment.
Suppose the market at l =T were competitive. What would then be endogenous
price impact at T −1? Knowing that at T they can trade arbitrary amounts
without price concessions, agents would become effectively risk neutral at T −1
and would be willing to trade arbitrary amounts at the T −round price. This is
apparent in the value function: the marginal utility at T −1, ∂VT −1 (·)/∂θi ,
would be perfectly elastic and equal to the T −round price. Since, on the
equilibrium path, risk from any current trade would be fully diversified before
assets pay, utility at the time of payment would then be independent from trade
at T −1. In the absence of convexity of utility VT −1 (·) in θ i

t,T −1, the endogenous
price impact of all traders at T −1 would equal zero, even though traders are
strategic at T −1.

As shown in Section 2.2, with strategic traders, the equilibrium at T is not
competitive. Traders anticipate that, on the equilibrium path, they will only
partially diversify at T holdings resulting from (T −1)−round trades and,
consequently, will be exposed to idiosyncratic risk when assets pay. The value
function atT −1 is strictly concave in θ i

t,T −1.23 This happens even in the absence

23 This can be seen by substituting the (equilibrium) policy functions wi
t,T

=wi
t,T −1 +p∗

l,T
γ (θi

t,T −1 − θ̄ ) and θi
t,T

=

γ θ̄ +(1−γ )θi
t,T −1 in the value function in Equation (3) to obtain the quasilinear-quadratic value function at T −1

as a function of holdings at T −1.
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of any shocks between rounds. In a noncompetitive market, a fraction 1−γ >0
of the posttrade holdings at T −1, θ i

t,T −1, survives in the posttrade portfolio at
T (at the time of assets’payment) and thus the value function at T −1 is strictly
concave in θ i

t,T −1 with the effective risk aversion of (1−γ )2ᾱ; in a competitive
market, θ i

t,T = θ̄ , and the effective risk aversion at T −1 would be zero.At T −1,
and by a recursive argument, in all rounds l =1,...,T , effective risk aversion is
(1−γ )2(T −l)ᾱ>0 (cf. Equation (11)), traders’ demands �i

t,l(·) are downward
sloping, and price impacts are positive, λ∗

l .24 On the other hand, with future
trading opportunities, the impact of current trade on the risky holdings at the
moment of payment is smaller, effective risk aversion decreases with time to
asset payment T −l, and agents are willing to absorb trades of others at smaller
price concessions. When information about dividends is disclosed only after
the last trading round, the increasing over time price impact (Figure 3B) results
from the reduced diversification possibilities prior to resolution of risk. More
generally, price impact depends on how information about dividends becomes
available over the course of trading rounds and can be nonmonotone, which
we study in Section 4.

2.4 Effective risk aversion and exposure to future risk
The parameters of the value function in Equation (3), treated as fixed in the
analysis so far, are affected by market thinness. In this section, we determine
the parameters in terms of the primitives of the infinite horizon model. Traders’
effective risk aversion in the last round, ᾱ, is of particular interest; it is the
determinant of the slope of the marginal utility for a risky asset and the
equilibrium price impact.

It is useful first to consider the benchmark model of an infinitely lived agent
who chooses consumption to maximize the utility in Equation (1) and who does
not trade in financial markets and, thus, holds his initial holdings θ throughout
a lifetime. The marginal utility of the agent in autarky (A) is, in terms of
consumption good,

∂V A
T (θ )

∂θ
=

dt−1

r︸︷︷︸
āA

−
( α

r2
+

α

r

)
︸ ︷︷ ︸

ᾱA

σ 2θ. (12)

Slope ᾱA reflects the exposure of long-lived shares θ to dividend shocks in all,
current and future, periods. Its component α/r corresponds to risk associated
with current-period shock δt while α/r2 is associated with dividend risk in all
subsequent periods. Next, let us consider an infinite horizon model with agents

24 Bilateral market power is central to the thinness of dynamic markets. As a modeling remark, in the same (perfect
foresight) setting, dynamic equilibrium of the Cournot market structure is as in the competitive model: in the
Cournot model, the residual supplies of strategic traders are defined by marginal utilities of price-taking traders
who would arbitrage any price differentials between rounds. The residual supplies of strategic traders are thus
perfectly elastic at T −1, their price impacts are equal to zero and allocation is efficient.
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who have access to financial markets (competitive or thin) in which average
holdings are θ̄ . Since, if endowed with diversified holdings θ = θ̄ , strategic
agents and price takers alike choose not to trade on the equilibrium path, their
marginal utilities at θ̄ coincide with that of the agent in autarky,

∂V A
T (θ̄ )

∂θ
=

∂V CM
T (θ̄ )

∂θ
=

∂VT (θ̄ )

∂θ
≡ v̄t (θ̄ )=

dt−1

r
−
( α

r2
+

α

r

)
σ 2θ̄ , (13)

where ∂V CM
T (·)/∂θ and ∂VT (·)/∂θ stand for the marginal utility in the

competitive and the thin-market model, respectively. Thus, regardless of market
depth γ , the marginal utility of an agent who can trade in financial markets
intersects schedule ∂V A

T (·)/∂θ at (θ̄ ,v̄t (θ̄ )). A competitive agent anticipates
trading all of his initial holdings θ for the diversified holdings θ̄ at the first
opportunity to trade. Since his current holdings θ expose him to dividend risk
in period t , but not in the following periods, the trader is effectively less risk
averse than the autarky agent – the slope of his marginal utility is smaller than
in (12),

∂V CM
T (θ )

∂θ
=

dt−1

r
− α

r2
σ 2θ̄︸ ︷︷ ︸

āCM

− α

r︸︷︷︸
ᾱCM

σ 2θ. (14)

Due to slow trading, holdings of long-lived assets at t expose a trader to dividend
shocks in all future periods, with the exposure decreasing over time. Therefore,
the thin-market effective risk aversion ᾱ in Equation (3) is between those of
the competitive and autarky agents,

ᾱ =ξ
α

r2
+

α

r
. (15)

Coefficient ξ =ξ (γ,T )∈ (0,1) is derived in the proof of proposition 1. The
convexity (15) of a thin-market trader’s value function decreases in the speed
of trade γ and the number of trading opportunities T , which determine the
extent to which idiosyncratic risk can be diversified in markets, as well as
riskless interest rate r . Geometrically, the marginal utility of a thin-market
trader is a rotation of the marginal utility of an autarky agent and a competitive
agent around point (θ̄ ,v̄t (θ̄ )), approaching the latter (i.e., ξ →0) as γ →1 or
T →∞ (Figure 4). Not only does slow trading give rise to price impact within
each period t , but it also positively affects its level by increasing traders’ risk
exposure beyond t . While, in the infinite horizon model, exposure to future
risk does not alter the fundamental value, and therefore equilibrium price, it
does increase price impact in all rounds.

Mathematically, the fundamental value v̄t (·) as the mapping R→R coincides
with the marginal utility schedule of the autarky agent ∂V A

T (·)/∂θ , with domains
of ∂V A

T (·)/∂θ and v̄t (·) understood as the initial holdings and the diversified
holdings, respectively. The fundamental value reflects the value of a risky asset
given the aggregate risk in all periods, which cannot be diversified through
trade in financial markets; in an efficient allocation, traders are exposed to risk
associated with the average portfolio.
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Figure 4
Marginal utility in the infinite horizon market
Notes: In the infinite horizon model, in thin markets, the marginal utility of each trader is between the marginal
utility of the agent in autarky and the price-taking agent. The slope of the marginal utility is each determined by
exposure to idiosyncratic risk (on the equilibrium path) in the respective model.

2.5 Consumption and welfare
The slow trading resulting from market thinness has important implications for
consumption behavior and welfare. Unlike in a competitive market, the extent
of risk sharing through trading in financial markets depends on the number of
trading opportunities between asset payments as well as the market depth γ .

Proposition 2 (Consumption and welfare). Consider a trader with holdings
(wi

t ,θ
i
t ) in period t who trades in thin markets with the average holdings θ̄

and assume that the risky holdings are not fully diversified, θ i
t 	= θ̄ . The trader’s

consumption ci
t and expected lifetime utility at t strictly increase in γ and T to

their respective competitive levels.

Market thinness alters consumption and savings behavior in any market
in which traders’ holdings are not fully diversified. The increased savings
are not the standard precautionary effect of self-insurance in reaction to
uninsurable idiosyncratic risk in illiquid markets – an individual decision-
making phenomenon. Rather, the change in savings behavior results from a
general equilibrium effect: Market thinness increases savings of all traders,
including those whose initial holdings are below the average and, thus,
whose risk exposure due to slow trading is smaller than in the competitive
model. Moreover, the limited insurance possibilities do not result from market
incompleteness, but rather market thinness itself.

In a competitive market, one round suffices for traders to exhaust gains to
trade, whereas in a thin market, the number of trading opportunities T itself
has real effects – on consumption and welfare. The question arises, what does
a “trading round” represent in our model? Our model defines a trading round
not in terms of calendar time, but in terms of what the traders can accomplish.
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In short, a trading round is the time needed for one price to be formed and all
trades to take place at that price.

3. Shock Absorption in Thin Markets

A voluminous body of evidence demonstrates that exogenous shocks in asset
supply or demand result in temporary price effects present in addition to
their permanent impact on the price (see ft. 2). In the data, an unanticipated
supply shock results in an immediate and significant price drop followed by a
partial reversal of the price change in subsequent periods. Even if the shock is
preannounced, the temporary price drop below the long-run level occurs on the
actual event date and not on the date of the announcement and attains the long-
run value only in subsequent periods. The price behavior is not consistent with
the competitive model with deterministic price changes; indeed, price-taking
traders could make infinite profits. What should be observed, instead, is that –
regardless of when the shock occurs – the price adjusts to the new fundamental
value at the shock announcement and remains there.

We show that transitory departures of prices from the fundamental values are
an equilibrium response to shocks in thin markets. An unanticipated exogenous
supply or demand shock has two effects on prices: a fundamental effect, which
is permanent, and a liquidity effect, which is temporary. These two effects differ
not only in their origin and persistence, but also in timing of occurrence and
magnitude dynamics.

3.1 Transitory and permanent price effects
Consider an unanticipated one-time shock in asset supply: in round l̂, an order of
θ̂ ×I >0 shares is liquidated by an outside investor in a market with I traders;
for example, the shock is an index recomposition or an order placed by an
investor who does not monitor prices continuously is not ready to respond to
price differentials at any time. By permanently increasing per capita holdings
of risky assets in the market to θ̄ + θ̂ , the supply shock increases aggregate
risk. Accordingly, the fundamental price effect corresponds to the change in
the fundamental value to the postshock level of the average marginal utility,

�F = v̄t (θ̄ + θ̂ )− v̄t (θ̄ )=−
(

ασ 2

r2
+

ασ 2

r

)
θ̂ . (16)

Since all traders learn about the shocks in round l̂, the change (16) in the
postshock fundamental value occurs at l̂. The fundamental effect is also present
in a model with price-taking agents, as long as their mass is finite so that the
per capita shock θ̂ is not negligible.

It is the liquidity effect, which temporarily lowers the price at l̂ below
v̄t (θ̄ + θ̂ ), that is due to the noncompetitive nature of trade. Observe that in
any round, with or without the shock, on the equilibrium path, each trader
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equalizes round−l marginal utility and his marginal revenue from (payment
for) a share. This also holds on average in round l̂,

1

I

T∑
i=1

∂Vl̂(θ
i∗
t,l̂

)

∂θ i

t,l̂

= v̄t =pt,l̂ +λ∗
l̂

1

I

∑
i∈I

�i∗
t,l̂

, (17)

where v̄t ≡ v̄t (θ̄ + θ̂ ). Without the shock (i.e., θ̂ =0), the net trade (1/I )
∑

i∈I �i
t,l

is equal to zero by market clearing, and the price equals the fundamental value.
With a positive net supply of risky assets θ̂ at l̂, traders are on average buying,
and the average marginal payment (the right-hand side of (17)) exceeds the
market-clearing price by λ∗

l̂
θ̂ >0. The equilibrium price is below the average

marginal utility as in a monopsony, pt,l̂ = v̄t −λ∗
l̂
θ̂ . The liquidity effect is

proportional to price impact,

�L ≡−λ∗
l̂
θ̂ =− (1−γ )2(T −l̂)+1

γ
ᾱσ 2θ̂ . (18)

Why does the liquidity effect not persist as does the fundamental effect?
Since no other shocks occur after l̂, in all rounds l > l̂, the net trade of the
strategic traders equals zero by market clearing, and the round−l price attains
the postshock fundamental value p∗

t,l = v̄t (θ̄ + θ̂ ). Proposition 3 describes the
response of equilibrium price to a supply shock.

Proposition 3 (Transitory and permanent price effects). Following an un-
anticipated (net) supply shock θ̂ in round l̂, equilibrium price adjusts at l̂ by
�F +�L. In round l̂+1, price reverts by �L to the postshock fundamental value
v̄t and remains at this level in all subsequent rounds.

While the magnitude of the fundamental effect �F is independent of the
timing of the shock, the liquidity effect �L depends on l̂. All of these features
of price behavior have been documented (see, e.g., reviews by Duffie 2010;
Gromb and Vayanos 2010)25 and, indeed, have motivated the methodology to
estimate price impact.26 Transaction price pressure away from the fundamental

25 Brunnermeier and Pedersen (2005) explain price overshooting in a Cournot-based model in terms of “predatory
trading.” When an investor must quickly liquidate a portfolio, other traders sell and subsequently buy back the
asset. This strategy lowers the price at which they can obtain the liquidated portfolio. The mechanism arises
due to the presence of “long-run” traders who define a downward-sloping demand, buying assets when they are
expensive and selling when assets are cheap. These traders, by assumption, do not take advantage of short-term
price differentials. If the traders were optimizing dynamically, overshooting would not arise; for otherwise, the
traders could make infinite profits by taking unbounded positions. The economic mechanism behind overshooting
present in our model is complementary in that predatory trading does not occur, because all traders have perfect
foresight and optimize dynamically. In addition, while predatory trading can result in price overshooting for
unanticipated shocks, market thinness also gives rise to delayed (anticipated) overshooting, as well as its time
dependence.

26 E.g., the program implemented by Citigroup estimates separately a permanent price impact component (“reflects
the information transmitted to the market by the buy/sell imbalance”), which is believed to be roughly independent
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A

B

Figure 5
Risky holdings (A) and price (B) with an unanticipated supply shock
Notes: The figure presents the equilibrium dynamics of risky holdings (Panel A) and price (Panel B) for an
unanticipated exogenous supply shock in round l̂.

value is observed empirically even in the most liquid markets (“premium for
immediacy”). Figure 5 depicts the time series of trade and price implied by our
model for exogenous shock θ̂ in round l̂.

Empirical research on the reaction of markets to shocks distinguishes
between short- and long-run market demand (e.g., Greenwood 2005; the
research following Shleifer 1986). The short-run (inverse) demand captures
the price reaction observed immediately after an exogenous supply shock
θ̂ , while the long-run demand specifies the price for round−l trade after
all price adjustments have taken place. Our model provides an equilibrium
microfoundation for such a reduced form representation of markets. The long-
run demand is given by the fundamental value function v̄t (θ̄ + θ̂ ) (cf. Equation
(13)). The short-run demand at l is, in turn, determined as the per capita) sum
of demand schedules submitted by strategic traders at l; that is, the inverse of
(1/I )

∑
i∈I �i

t,l (·). Its construction is depicted in Figure 6.
In the competitive model, shocks can have only a negligible effect on prices;

with price-taking traders, anticipated price differentials would create infinite
profit opportunities. Indeed, since the price path within t is deterministic,
why do strategic traders not arbitrage the price reversal between l̂ and l̂+1,
as they would in competitive models? In essence, the strategic traders are
(on average) buying the per capita shock at l̂ >0. By increasing buy orders
in that round, they would increase the price and render their equilibrium

of trade scheduling, and temporary price impact component (“reflects the price concession needed to attract
counterparts within a specified short time interval”), which is highly sensitive to trade scheduling (Almgren
et al. 2005). “The temporary impact affects only the execution price but has no effect on the “fair value” or
fundamental price. In contrast, the permanent impact directly affects the fair value of the security while having
no direct effect on the execution price. Thus we can think of the temporary impact as connected to the liquidity
cost faced by the agent ...” (Li and Almgren 2011, p.2). “The temporary impact component of cost is interpreted
as the additional premium that must be paid for execution in a finite time, above a suitably prorated fraction of
the permanent cost” (Almgren 2009, p. 1).

21

 at U
niversity of W

isconsin-M
adison L

ibraries on Septem
ber 13, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


[18:59 20/5/2015 RFS-hhv027.tex] Page: 22 1–47

The Review of Financial Studies / v 0 n 0 2015

Figure 6
Short- and long-run market demand
Notes: The long-run demand corresponds to the marginal utility of the agent in autarky. The short-run demand
is a clockwise rotation of the trader’s average (post-shock) marginal utility around θ̄ (i.e., zero average trade)
in response to price impact. The difference between the short-run and the long-run demand at the post-shock
average holdings represents the liquidity effect. On the shock date, the price moves along the short-run demand;
in subsequent rounds, only the fundamental effect is observed.

trades less attractive. The potential marginal benefit from arbitrage is exactly
offset by the marginal externality of the price increase on the units being
traded in equilibrium.27 Moreover, in contrast to competitive markets, profit
opportunities from arbitraging anticipated price differentials by outside capital
are only finite in a thin market.An unbounded position, or a round-trip involving
a purchase at l̂ of more shares than the shock θ̂ ×I sold in the next round,
results in a strictly negative profit.Thus, unlike the competitive model, sufficient
fixed entry costs can discourage outside investors from arbitraging the liquidity
effect. In practice, entry costs include not only explicit trading costs but also
costs associated with learning and monitoring characteristics of particular
stocks.28

Once one acknowledges that traders who can place large orders – and
these are the traders who determine the arbitrage properties of equilibrium
– have price impact, limits to arbitrage arise endogenously. Note that the

27 Suppose, for transparency, that traders’ holdings of risky assets are fully diversified so that their only trade is
from shock absorption. Suppose that, in round l̂ when the shock occurs, an investor increases his trade by ε

and sells the same amount in the next rounds. The round-trip trade would have a first-order benefit of the price
differential induced by the shock for each share ε, λ∗

l̂
θ̂ ×ε. At the same time, the additional demand created by

arbitrage increases the price at l̂ by λ∗
l̂
×ε, which adversely affects the terms of trade for θ̂ .

28 Mitchell, Pedersen, and Pulvino (2007) examine price behavior in the convertible bond market in 2005 and
around the collapse of LTCM in 1998, as well as merger targets in the 1987 market crash. During these events,
“natural” liquidity providers were themselves forced to liquidate their holdings, which depressed the prices
below the fundamental values, despite the fact that there was little change in the overall fundamentals. In the
convertible bond markets, the prices deviated from the fundamental values, reaching the maximum discount of
2.7% in 2005 (2.5 standard deviations from the historical average) and 4% in 1998 (four standard deviations
from the average). During the crash of 1987, the median merger arbitrage deal spreads increased to 15.1%. In
all episodes, it took several months for traders to increase their capital or for better-capitalized traders to enter.
The authors attribute the slow entry to information barriers and the costs of maintaining dormant financial and
human capital in a state of readiness when arbitrage opportunities arise.
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argument behind no-arbitrage with non-price-taking behavior differs in two
ways from that in the competitive model. First, the externality of arbitrage on
other trades introduces a difference in arbitrage possibilities between insiders
and outsiders. Secondly, profits from arbitrage are bounded for any round-trip
trade.

3.2 Time separation of trades and price effects
Many market events that involve a supply shock are publicly announced prior
to their occurrence; for example, inclusions of new stocks into a stock market
index or index weight changes typically are. In the data, preannounced shocks
have price effects not only on the day of the announcement but also during the
period between the announcement and the event date. Specifically, the transitory
price drop below the long-run level takes place on the actual event date and not
on the date of the announcement, only after which the price attains the long-run
value. In addition, the price is depressed between the announcement day and
the shock day when the transitory effect peaks. Thus, the observed price effects
cannot be attributed to any revelation of information about the fundamental
value, which should be incorporated upon the announcement. None of these is
explained by a competitive model; preannouncing the shock does not alter the
price adjustment which involves the price change to the postshock fundamental
value at the announcement at which level the price would remain subsequently,
regardless of when the shock occurs. In thin markets, trade announcements
alter price behavior in periods other than the announcement.

Consider a public announcement at l̂ that an extra supply of assets θ̂ ×I will
be available at l̂′ >l̂. Since the fundamental effect �F , given by Equation (16),
is a function of the (assumed) average holdings after round T , the adjustment to
the postshock level occurs on the announcement date. The additional liquidity
effect of shock, �L, given by Equation (18) evaluated at l̂′, takes place on the
shock date, l̂′. This holds because the liquidity effect is not driven by information
about increased aggregate risk in the market, but rather by the impact that
absorption of the extra assets has on the average marginal payment, and it is on
the event date that the net trade of strategic traders is positive. Preannouncing a
shock in a thin market thus separates the timing of the fundamental and liquidity
effects of price adjustment.

In addition to the fundamental and liquidity effects, preannouncing a shock
changes price behavior in all rounds between the shock announcement and
occurrence. Anticipation of �L temporarily depresses the price by γ�L. The
anticipation of the price drop at l̂′ lowers traders’willingness to buy the assets in
periods prior to l̂′. The price response to an announced once-and-for-all shock
is depicted in Figure 7. More generally, an anticipated sequence of shocks
{θ̂l ×I }Tl=1, with the total liquidated portfolio per capita being θ̂ ≡∑T

l=1 θ̂l , has
the following effects. As with a single shock, the fundamental value adjusts
to the new level v̄t ≡ v̄t (θ̄ + θ̂ ) upon the announcement of the sequence. The
fundamental effect is independent of how the portfolio of shocks θ̂ is partitioned
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A

B

Figure 7
Risky holdings (A) and price (B) with an anticipated supply shock
Notes: The figure presents the equilibrium dynamics of risky holdings (Panel A) and price (Panel B) for an
anticipated exogenous supply shock in round l̂.

into smaller orders. Thus, with price-taking traders, the cash obtained by
liquidating θ̂ is not affected by the partition. In a thin market, the price path,
and hence the revenue obtained from liquidation, do depend on the order of
trade sizes – unlike the permanent effect, the temporary effect is not additive.
In any round l in which θ̂l 	=0, the price departs from the fundamental value by
the current liquidity effect �L

l =−λ∗
l θ̂l . In addition, in every round between the

announcement and liquidation of the final order, the contemporaneous liquidity
effect is amplified by the fraction γ of all the subsequent liquidity effects. As a
result of two countervailing effects of anticipation, for any h>l and order θ̂h, the
impact of the cumulative price effect, γ , is the same regardless of how far in the
future the liquidity shock occurs. The farther in the future the liquidity shock
occurs, the smaller the fraction of the current round’s trade that maintains a
lower price until the shock period. On the other hand, anticipation of a liquidity
effect influences all prices between the announcement and the shock round,
which increases the weight. The lack of incentive to arbitrage deterministic
price changes in thin markets extends to anticipated events. Since the traders
are, on average, buying on each shock day, the average marginal payment –
and the fundamental value with which it coincides – exceeds the equilibrium
price.

Corollary 1 (Price behavior with anticipated shocks). For an anticipated
sequence of shocks {θ̂l ×I }Tl=1, with the total liquidated portfolio per capita
θ̂ ≡∑T

l=1 θ̂l , the equilibrium price is

p∗
t,l = v̄t +�L

l +γ

T∑
h=l+1

�L
h . (19)

In sum, just as when shocks are not anticipated, long-run prices are not
affected by how the trade is divided into smaller orders or the time at which the
trades take place. Nevertheless, the price path in a thin market is sensitive to
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the partitioning of the trade. This occurs because a future sale depresses prices
during the whole period between the announcement and the shock occurrence
and because the effects of multiple sales on prices are cumulative.

3.3 Endowment shocks
In contrast to competitive markets, in thin markets, price response to
endowment shocks differs from the response to exogenous shocks in supply.
Specifically, if the shares I × θ̂ constituted an increase in the endowments of the
strategic traders, distributed arbitrarily among the agents, then equilibrium price
dynamics would follow that of the fundamental value; only the permanent effect
but no temporary effects would be observed. Thus, with endowment shocks,
price dynamics is not affected by the timing of the shocks and a full price
adjustment occurs on the date of the shocks’ announcement. While endowment
shocks change per capita holdings, as does a supply shock of size I × θ̂ , the
net trade of liquidity providers is zero in every round, and the price impact of
buyers and sellers does not create a wedge between the equilibrium price and
the average marginal utility.

This suggests that traders who liquidate risky positions may have incentives
to bypass centralized markets by selling shares over the counter and, potentially,
avoiding the price concessions resulting from the liquidity effect on the market
price of the assets. Understanding of the price impact associated with bargaining
in over-the-counter markets would illuminate investors’ incentives to choose
to trade over the counter.

4. Disclosure of Information about Fundamentals

In the previous sections, we made a strong assumption that traders learn
all the information about dividends only after the last trading round. More
realistically, information about fundamentals becomes available to market
participants during trading. As this section shows, revelation of fundamental
information impacts welfare in thin – but not competitive – markets. To this
end, we enrich the information structure by introducing a sequence of public
noisy signals about fundamentals dt .

Let st,l be the vector of all signals observed by traders between rounds l

and l+1 of period t . The informativeness and dimensionality of signal vectors
st,l can differ across rounds l, and signals can be correlated within and across
rounds. Since, after round l =T , traders learn the realization of the current-
period dividend, we adopt the convention that δt is part of vector st,T . To
preserve tractability, and in particular the stationarity across periods, we assume
that the information structure

({st,l}Tl=1

)
, given by c.d.f. F , is the same in all

periods t and jointly Normal, and the marginal distribution of δt has zero
mean and variance σ 2 >0. Let the expectation and variance conditional on
the information (

{
st,h

}l−1
h=1 ,dt−1) available to traders in round l be El (·)≡

E(·|{st,h

}l−1
h=1 ,dt−1) and V arl(·)≡V ar(·|{st,h

}l−1
h=1 ,dt−1), respectively, so that
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σ 2
l ≡V arl(dt )−V arl+1(dt )≥0 measures the informativeness of all signals

observed between rounds l and l+1;
∑T

l=1σ
2
l =σ 2. This class of information

structures nests that from the previous sections, where st,l is uninformative for
all l <T .

With dividend information revealed during trading, the fundamental value
of the risky asset (the marginal utility of an agent who holds the diversified
holdings throughout lifetime) is random within period t ,

v̄t,l(θ̄ )≡ ∂V R
t,l(θ̄ )

∂θ
=

El(dt )

r︸ ︷︷ ︸
āR
l

−
(

α

r2
+

α
∑T

h=l σ
2
h /σ 2

r

)
︸ ︷︷ ︸

ᾱR
l

σ 2θ. (20)

Consequently, apart from dividend risk, V arl(dT ), traders face price risk
{V arl(ph)}Th=l+1 resulting from the randomness of the conditional expectations
El(dt ). With price takers, such price risk is neutral for consumption and welfare;
traders diversify idiosyncratic risk in the first round and subsequent price
variation does not alter the distributions of risky and riskless holdings. With
slow trading, the way in which traders learn about dividends affects liquidity
and welfare through price and dividend risk.

All of the thin-market mechanisms characterized in previous sections operate
in the model with the general information structure (the Appendix presents
proofs for the general information structure). In particular, for any information
structure F , dynamic equilibrium trading strategy involves the order breakup
as described by proposition 1, and price dynamics coincides with that of the
fundamental value (20) in the absence of exogenous supply shocks. Determined
by effective risk aversion – a function of dividend and price risk remaining
in subsequent rounds – price impact does depend on F . With the general
information structure, equilibrium price impact can exhibit arbitrary, potentially
nonmonotone behavior, depending on how the information about fundamentals
becomes available throughout trading. Specifically, round−l price impact
depends on the extent of the lack of diversification before price and dividend
risk is resolved – measured by the weighted informativeness of future signals,
σ 2

h , h≥ l (see Equation (A.3) and lemma 5),

λ∗
l =

1−γ

γ

(
r(1−γ )2(T −l)

1+r−(1−γ )2T

T∑
h=1

(1−γ )2h σ 2
h

σ 2

α

r2
+

T∑
h=l

(1−γ )2(h−l) σ
2
h

σ 2

α

r

)
︸ ︷︷ ︸

Effective risk aversion at l

σ 2 >0.

(21)
In a model with price takers, effective risk aversion in round l (the limit of

effective risk aversion in (21) as γ →1 equal to
σ 2
l

σ 2
α
r
) is determined exclusively

by the informativeness of the signals observed between the current and the
next round and, thus, is negligible if the next-round price risk σ 2

l /r is close
to zero. By contrast, in markets where agents trade slowly, all of the price
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risk in subsequent rounds and periods as well as dividend risk contribute
to the convexity of round−l value function, and therefore price impact.29

The contribution of price uncertainty in round h≥ l to the slope of marginal
utility in l depends on diversification possibilities between rounds l and h≥ l;
fraction (1−γ )2(h−l)+1 of trade at l will remain undiversified at h and the
weight associated with σ 2

h in (21) is exponentially decreasing in h−l. Notably,
in contrast to models with price-taking liquidity providers (e.g., Grossman
and Miller 1988), with price-making traders, exogenous supply shocks have
temporary price effects even when shocks occur at times when no information
regarding dividends is revealed, σ 2

l̂
=0.30 For any information structure, the

fundamental effect �F

l̂
of a per capita supply shock θ̂ in round l̂ reflects the

adjustment in the fundamental value (20) due to the change of average holdings
in all future rounds and periods; generically in information structure, it is
decreasing over time. The corresponding temporary liquidity effect �L

l̂
=−λ∗

l̂
θ̂

depends on price impact on the shock day, given by Equation (21), and hence
the number of trading opportunities left and information disclosure in the
contemporaneous and all future rounds.

Insofar as disclosure of information is a choice variable, which dynamic
strategy to disclose information F is best for markets? In thin markets, the
objectives of stabilizing liquidity and welfare maximization yield distinct
recommendations, which using characterization (21), we illustrate in Figures 8
and 9.

Infrequent disclosure of fundamental information, such as the information
structure from the previous sections, gives rise to temporary endogenous market
freezes – episodes with abnormally low market liquidity prior to disclosure.
That is, as long as public information is not revealed in a continuous way – a
dividend payment is an example of a discontinuous informational event – there
exist trading rounds in which market depth γ is bounded away from zero, as
T →∞, even without asymmetric information (Figure 8).31 Higher frequency

29 With full disclosure at T , σ2
l

=0 for all l <T , price-taking traders are effectively risk neutral in all rounds, except
the last. Thus, on the equilibrium path, they arbitrage away any price differential between current and subsequent
trading rounds, which makes price impacts equal to zero for all other traders. The dependence of price impact
in thin markets on future and contemporaneous uncertainty arises because of its dynamic origins, as captured by
endogenous convexification of value function (Section 2.3).

30 In the Grossman and Miller (1988) model, the assumption V ar1(E2P̄2)≡σ2
2 >0 is necessary for a round-trip trade

to have an effect on the equilibrium price. In particular, in the version of the model in which all of the information
regarding dividends is revealed after the last trading round, equilibrium prices in the first two rounds are equal
p1 =p2 (see Equation (12) in Grossman-Miller). With strategic traders, nonzero variance is not necessary for
price effects to occur. In short, the central insights from our thin-markets model are implications of slow trading
on the equilibrium path and would not be present in the Grossman-Miller model, including temporary departures
of equilibrium price from the fundamental value, real effects of announcements, the impact of future uncertainty
on current liquidity (in contrast to markets with price takers or one-sided market power, with strategic traders,
price impact is strictly positive even without any price risk), higher savings, and lower welfare.

31 The stationarity assumption requires that signal informativeness per trading round goes to zero uniformly and
so does their weighed sum. Thus, the prediction of zero price impact is an implication of the assumption that
the informativeness becomes negligible in each round. In a model in which information revelation is infrequent
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A

B

Figure 8
Infrequent information disclosure (A) and price impact (B)
Notes: The figure contrasts the signal informativeness (Panel A) and the equilibrium dynamics of price impact
(Panel B) for the benchmark information structure that reveals dividends only after the last trading round with
one in which signals of equal informativeness are observed twice per period t , after rounds T/2 and T . For both
information structures, markets become illiquid prior to disclosure. With disclosure twice per period, the price
impact attains two local maxima and is the highest at T/2.

of trade relative to asset payments, measured by T , introduces an exponential-
in-time component into equilibrium price impact, even if the number of trading
opportunities T is large so that markets are essentially competitive, except prior
to disclosure. Gradual disclosure smooths liquidity, as it lowers asset riskiness
in subsequent rounds and hence effective risk aversion.

Stabilizing market liquidity (λl =λl′ for all l,l′) requires an increasing signal
informativeness. With equally informative signals in each round, σ 2

l =σ 2/T

for all l, price impact monotonically decreases over time so that markets are
less liquid in earlier rounds (Figure 9).

Our model also offers strong normative predictions about information
disclosure, taking ex ante welfare as the objective. We say that information
structure F ′ withholds information relative to F if the residual uncertainty
V arl(dt ) associated with F ′ is not smaller than under F in each round l and is
strictly higher for some.

Proposition 4 (Information disclosure and welfare). Consider a trader with
holdings (wi

t ,θ
i
t ) in period t who trades in markets with the average holdings θ̄ .

(1) In the limit as γ →1, consumption ci
t and expected lifetime utility of

each trader at t are neutral with respect to dynamic strategies to disclose
information F .

(2) Assume γ <1. Consider information structures F and F ′, such that F ′
withholds information relative to F . Then, under F ′, consumption ci

t

(i.e., there is a finite and fixed number of times when the information is revealed), the signal informativeness,
and therefore price impact, in rounds prior to revelation is bounded away from zero and so is price impact.
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A

B

Figure 9
Information disclosure (A) and price impact (B)
Notes: The figure depicts the signal informativeness (Panel A) and the equilibrium dynamics of price impact
(Panel B) for two information structures. In the first information structure, signals of equal informativeness are
observed in each round, which gives rise to a strictly decreasing price impact. The second information structure
has an increasing signal informativeness and is the unique information structure that yields constant equilibrium
price impact.

and expected lifetime utility of each trader at t are strictly higher for all
traders whose portfolios are not fully diversified (i.e., θ i

t 	= θ̄t ).

While information withholding induces only a partial order over the
set of information structures, the model identifies the welfare-maximizing
information structure as one in which information is withheld until after
trade in the last round (studied in Section 3); this information structure is
strictly preferred by all traders to any other information structure. Information
disclosure prior to asset payments lowers the degree to which equilibrium
trading strategy enables traders to diversify idiosyncratic risk before price
uncertainty is resolved. The welfare implication of disclosure can be seen
as a thin-market counterpart of the competitive Hirshleifer effect (Hirshleifer
1971), which concerns full and no disclosure for γ →1. Namely, postponing
information helps agents realize gains to trade, given slow trading. Whereas it
would be neutral in a competitive market, maximally postponing dynamically is
optimal for welfare in a thin market. Since one expects at least one trading round
before dividends pay in a financial market setting, in this sense, Hirshleifer
effect does not affect welfare in competitive markets; by contrast, in a thin
market, it is inherent and arises endogenously because of slow trading. In
general, the objectives of maximizing welfare and smoothing liquidity through
information disclosure cannot be attained at the same time and, thus, a policy
maker necessarily faces a trade-off.32 Maximization of ex ante welfare, which
requires that releases of fundamental information are infrequent, introduces
episodes of low liquidity. Moreover, by reducing insurance opportunities,

32 With natural definitions of increasing the number of rounds, given a fixed information structure, more rounds
are welfare improving.
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early revelation of information provides additional incentives to increase
(precautionary) savings.

5. Cross-Asset Effects

We report cross-asset effects of market thinness. (The Appendix presents all
proofs for the general, multiple-asset model.) Consider an economy with N >1
assets whose dividends dt =dt−1 +δt are an N -dimensional random vector that
follows a random walk, where shocks δt are zero-mean and with variance-
covariance matrix 
, jointly Normally distributed and independent across
periods (not necessarily across assets). Information structure F admits (an
arbitrary number of) possibly correlated public signals for different assets.
The vector of the fundamental values of risky assets depends on cross-asset
correlations, v̄t,l(θ̄ )≡ 1

r
El(dt )− α

r
(
∑T

h=l
h + 1
r

)θ̄ .

• Thin market “fund separation”: In the competitive CAPM, traders invest
in a combination of the market portfolio and the riskless asset (Two-Fund
Separation Theorem). Extended to multiple risky assets, proposition 1 (with θ̄

interpreted as the market portfolio) provides the thin market counterpart. Order
breakup takes an easy-to-execute form. In every trading round l, the risky part
of the optimal portfolio is held in the initial and the average portfolios, θ i

t

and θ̄ , with the weight assigned to θ̄ monotonically increasing over time, θ i
t,l =

(1−γ )lθ i
l−1 +(1−(1−γ )l)θ̄ ; the remaining wealth is invested in the riskless

asset. Traders thus keep their wealth in endowments, market portfolio and
riskless asset. Slow trading gives rise to inefficiency, precautionary savings, and
higher consumption and lifetime utility for information structures that withhold
information.

• Cross-market price effects: They are present so long as the dividend payoffs
of stocks are not independent. For example, in a model with disclosure only
after T , 
T =
, the price impact (an N ×N matrix) is

λ∗
l =

1−γ

γ
(1−γ )2(T −l)ᾱ
. (22)

The impact of sales of assetnon price of assetm is proportional to the covariance
of the assets’ dividends. The sale of shares of one asset can exert downward
or upward pressure on the price of the other assets (e.g., Newman and Rierson
2004; Duffie 2010; Gromb and Vayanos 2010).

• Security Market Line and spillover effects: Without exogenous shocks,
expected asset returns are spanned by the riskless return and the return on the
average portfolio, as in the competitive model. In thin markets with exogenous
supply shocks, the market beta βθ̄

l is not sufficient for the expected returns
during shock episodes: On the day of the shock θ̂ , the expected returns
on any portfolio θ temporarily depart from the Line by the amount of the
liquidity effect. To illustrate, when information about dividends is revealed
after the last round, for any portfolio θ with equilibrium price pθ =θ ·p∗

t,l , let

30

 at U
niversity of W

isconsin-M
adison L

ibraries on Septem
ber 13, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


[18:59 20/5/2015 RFS-hhv027.tex] Page: 31 1–47

Dynamic Thin Markets

Rθ ≡θ ·dt/p
θ denote its per-dollar return, let Rθ̄ be the return on the average

portfolio θ̄ , and let βθ̄ be the round-specific market beta for portfolio θ . Beta

coefficients are defined in the standard way, βθ̄ ≡
(

θ

pθ ·
 θ̄

pθ̄

)
/
(

θ̄

pθ̄
·
 θ̄

pθ̄

)
and

βθ̂ ≡
(

θ

pθ ·
 θ̂

pθ̂

)
/
(

θ̂

pθ̂
·
 θ̂

pθ̂

)
. The expected returns to θ are

E(Rθ )−r =βθ̄ (E(Rθ̂ )−r)+βθ̂ (E(Rθ̂ )−r)−(βθ̄a1 +βθ̂a2)cov
(
Rθ̄ ,Rθ̂

)
︸ ︷︷ ︸

Temporary departures

,

(23)
where a1,a2 >0 are the portfolio-specific constants (proposition 5, Appendix
B).33 As observed in the data on supply shocks, when asset returns are
correlated, overshooting of a return in one asset market “spills over” to other
markets (e.g., the survey by Amihud, Mendelson, and Pedersen 2005).

• Asset valuation in thin markets: Formalizing appraisal and the fair value
of assets in thin markets is challenging, as it requires counterfactual reasoning;
assets are often transferred outside of the market or transfer is hypothetical
(e.g., a transfer of a property in the case of a divorce). Techniques used in
appraisal businesses and valuation consulting are based on heuristic methods
(e.g., Estabrook 1999); valuation specialists apply an instrument of blockage
discount, recognized by the IRS since 1937, defined as a “deduction from the
actively traded price of a stock because the block of stock to be valued is so large
relative to the volume of actual sales on the existing market that the block could
not be liquidated within a reasonable time without depressing the market price”
(Handbook of Advanced Business Valuation, p. 140). Blockage discounts are
employed not only for stocks but also for real estate, personal property (e.g.,
collections of art, antiques, and manuscripts), and charitable gifts. The discounts
typically have been estimated to range between 0% and 15%. In a competitive
market, an asset can be unambiguously priced; the cash value of a block of
shares, θ̂ ×I is determined by the currently observed market prices, θ̂ ·p∗

t,l . In
thin markets, the market price no longer reflects the actual amount of cash that
would be obtained by selling block θ̂ . Our model permits counterfactual asset
valuation in thin markets: determining the value of an asset if it were sold on
the market (even though it will not be) corresponds to how price impact is
determined in our model, through (i) optimization by all traders who correctly
recognize their price impact in equilibrium allocations as well as for additional
shares and (ii) market clearing. Let p∗

t,l̂
be the observed market price in round

33 The magnitude of the temporary departures of the expected return from the Security Market Line depends on the

return correlations of θ and θ̂ . In particular, in the model with uncorrelated returns Rθ̄ and Rθ̂ , the expected returns

are characterized completely by the two-factor model, where βθ̄ determines the long-run expected return and βθ̂

corrects for the short-run effect. More generally, temporary deviations depend on the covariance cov(Rθ̄ ,Rθ̂ ).

If the returns on portfolios θ,θ̄ , and θ̂ are positively correlated, component βθ̂ (E(Rθ̂ )−r) overestimates the
temporary departure; cf. the third term in (23).
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l̂ and let pt,l̂ be the hypothetical price that would be obtained if the block were

offered on the market in that round. The loss in value, equal to θ̂ ·(p∗
t,l̂

−pt,l̂),

where p∗
t,l̂

−pt,l̂ =λ∗
l̂
θ̂ results from the liquidity effect from proposition 3, gives

a blockage discount.

6. Discussion

This paper shows that market thinness affects consumption, savings, and utility
in any market in which traders face idiosyncratic risk. Accounting for the
very presence of price impact helps to explain temporary and permanent
price effects of shocks, limits to arbitrage, cross-market liquidity effects, the
existence of asset valuation instruments, and order breakup. Our model shows
that the frequency of trade and the information about fundamentals, along with
limited risk-bearing capacity, are key determinants of traders’ price impact
and welfare. Our analysis also provides a perspective for the predictions of
the infinite horizon models of double auction with stationary price impact
(Vayanos 1999; Kyle, Obzihaeva, and Wang 2013; Du and Zhu 2014). In trading
environments in which trade is more frequent than payments, price impact
(and hence liquidity effects of shocks) is inherently nonstationary and can be
essentially arbitrary and nonmonotone throughout trading, even if fundamental
information arrives via equally informative signals across trading rounds.
Moreover, higher frequency of trade-to-payments introduces an exponential
component into price impact.

The implications of investors’ market power are relevant to the much-
debated increase in trading frequency associated with institutional trading. The
impact of trading frequency on market performance is attracting increasing
attention of researchers and regulators.34 The literature has emphasized the
asymmetric information arguments for or against high frequency. Cramton,
Budish, and Shim (2013) advocate for frequent batch (discrete) auctions –
the mechanism studied in our paper – to improve on continuous limit-order
book design, as they transform competition on the speed on information
into competition on price. The authors assume that large orders are placed
at once, as in competitive markets; hence, our results offer complementary
insights, given the optimality of order breakup. An early contribution of
Vayanos (1999) demonstrates that when information about endowments is
private (and independent across traders), higher frequency may decrease
liquidity and lower welfare. Du and Zhu (2014) argue that with the arrival
of private (interdependent) information, low trading frequency is optimal for

34 The Security and Exchange Commission is evaluating the impact of trading frequencies to develop
recommendations concerning regulation of trading (e.g., the speech by the SEC Chair on June 5, 2014;
http://www.sec.gov/News/Speech/Detail/Speech/1370542004312).
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scheduled, but not for continuous, arrival.35 In symmetric information markets
like ours, allowing for higher trading frequency increases welfare. We show,
however, that, as long as public information does not arrive continuously
(e.g., a dividend payment is a discontinuous informational event), for some
trading rounds, market depth is bounded away from zero, even as the number
of trading rounds between asset payments grows to infinity, and even without
asymmetric information.36 Thus, in thin markets, even with arbitrary high trade
frequency, discontinuous information arrival itself introduces short episodes of
low liquidity, with an otherwise essentially negligible price impact. Given the
nonstationary component introduced in asset returns by higher-than-payments
trade frequency in thin markets, it would be worthwhile to re-evaluate the
welfare impact of the breakdown of market correlations at higher-frequency
time horizons documented by Cramton, Budish, and Shim (2013).

Appendix

We derive equilibrium and prove results in a model that encompasses all settings analyzed in the
main body of the paper – with multiple assets, arbitrary information disclosure and an arbitrary
sequence of unanticipated or anticipated per capita shocks {θ̂l}Tl=1 (Appendices A and B). Consider
an economy with N >1 assets whose dividends dt =dt−1 +δt are an N -dimensional random vector
that follows a random walk, where shocks δt are zero-mean and with variance-covariance matrix

, jointly Normally distributed and independent across periods (not necessarily across assets). In
each trading round l, traders submit schedules �i

t,l :R
N→RN and the market-clearing price vector

p∗
t,l is determined by aggregate net demands,

∑I
i=1�i

t,l (p
∗
t,l )=0. The price impact λ∗

l is an N ×N

matrix, element (n,m) of which is the price change of asset m that results from a marginal increase
in demand for asset n. Information structure F admits (an arbitrary number of) possibly correlated
public signals for different assets. Informativeness of signals observed between rounds l and l+1
is measured by a positive semidefinite matrix 
l≡V arl (dt )−V arl+1(dt ). Information structure
F withholds information relative to F ′, if it does so for any asset portfolio θ 	=0.

35 Fuchs and Skrzypacz (Forthcoming) argue that, in the presence of adverse selection, a continuous trading design
can be improved in welfare terms by closing the market for some (small) time window followed by continuous
trading. Biais, Foucault, and Moinas (2013) show that the ability to privately acquire information leads to an
overinvestment in speed. Again, the thin-market mechanisms in this paper hold even in the absence of private
information and thus point to additional considerations. Moreover, given that demand schedules enable agents
to make choices contingent on prices, the interaction between market power and private information (and its
acquisition) can improve or hinder efficiency under greater frequencies (the results of Rostek and Weretka
(forthcoming) suggest that this depends on the type of (interdependence among traders’) private information).

36 Thus, our results point to a welfare-liquidity smoothing trade-off under symmetric information, whereas other
authors discuss a welfare-liquidity trade-off in the presence of asymmetric information.

In Vayanos (1999), as the number of trading opportunities grows large, price impact becomes zero in all
rounds. In each round, price impact is a weighted sum of signal informativeness (variance) in subsequent rounds,
with weights decaying in the time distance. The stationarity assumption requires that signal informativeness per
trading round goes to zero uniformly as the number of rounds grows to infinity and so does their weighed sum.
Thus, the prediction of zero price impact is an implication of the assumption that the informativeness becomes
negligible in each round. In a model in which information revelation is infrequent (i.e., there is a finite and fixed
number of dates when the information is revealed), the signal informativeness, and therefore price impact, in
rounds prior to disclosure, is bounded away from zero, as is price impact. (See also Figure 3.)
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Appendix A. Equilibrium in Thin Markets

Lemmas 2 and 3 characterize equilibrium in the nonstationary trade problem. Lemma 2 shows
that, without loss of generality, one can restrict attention to information structures induced by
N−dimensional signals that are conditionally independent across rounds. Lemma 3 derives
equilibrium in the nonstationary trade problem in rounds l =1,...,T of each period t , assuming
a value function after trade in round T . Lemmas 4 and 5 then determine the coefficients of the
value function in terms of primitives, and equilibrium consumption in the stationary consumption
problem across periods t =1,2,....

We say that the information structures F and F ′ with corresponding signals {st,l}Tl=1 and {s′
t,l}Tl=1,

respectively, are equivalent for dt , if the distribution of dt conditional on ({st,h}l−1
h=1,dt−1) coincides

with the distribution of dt conditional on ({s′
t,h}l−1

h=1,dt−1), in each round l =1,2,...,T . In round l,

traders observe all signal realizations up to round l−1. Recall that El (·)≡E(·|{st,h}l−1
h=1,dt−1) and

V arl (·)≡V ar(·|{st,h}l−1
h=1,dt−1). Without loss of generality, assume that the variance-covariance

matrix of the joint distribution of signals {st,h}lh=1 is positive definite for any l (i.e., there are no
redundant signals).

Lemma 2 (Simple informational strategies). For every jointly Normal information structure F

with signal vectors {st,l}Tl=1 of arbitrary dimension, for each l, there exists an equivalent for dt

information structure F ′ with signals
{
δt,l

}T
l=1 such that (1) in each round l, δt,l is a jointly Normally

distributed N -dimensional random vector with a conditional mean of zero, El (δt,h)=0 for all h≥ l,
(2) vectors δt,l are independent conditionally on information available to traders at l (i.e., for each
l, for all h,k≥ l, h 	=k, δt,h and δt,k are independent conditionally on ({st,h}l−1

h=1,dt−1)), and (3)

dt =dt−1 +
∑T

h=1δt,h.

Proof. (Lemma 2) For any
{
st,l
}T
l=1, define δt,l ≡El+1(dt )−El (dt ). Conditional on

{
st,h
}l−1
h=1 and

dt−1, by the projection theorem, dt is jointly Normally distributed and thus described completely
by the first two moments. Since El (dt )=dt−1 +

∑l−1
h=1δt,h and V arl (dt ) does not depend on

realizations of (
{
st,h
}l−1
h=1 ,dt−1), signal profile (

{
δt,h

}l−1
h=1 ,dt−1) is sufficient for (

{
st,h
}l−1
h=1 ,dt−1). On

the other hand, (
{
δt,h

}l−1
h=1 ,dt−1) can be derived from (

{
st,h

}l−1
h=1 ,dt−1). Thus, the signal profiles are

equivalent; in particular, the distributions of dt conditional on either profile have the same moments.
Moreover, (1) by the law of iterated expectations, for any h>l, El

(
δt,h

)
=El (Eh+1(dt )−Eh(dt ))=

El (dt )−El (dt )=0. Being linear functions of jointly Normally distributed signals
{
st,l
}T
l=1, for any

k and h, δt,k and δt,h are jointly Normally distributed as well; (2) since expectations {El (dt )}T +1
l=1

are conditional on nested information sets, δt,h and δt,k are conditionally independent; and (3)

since after the last trading round T , dividends are known, that is E(dt |
{
st,h
}T
l=1 ,dt−1)=dt , and

E(dt |dt−1)=dt−1 by the random walk assumption, it follows that dt =dt−1 +
∑T

h=1δt,l . �
By lemma 2, without loss of generality, we focus on simple information structures, which are

induced by signals with properties (1)-(3) from lemma 2. Hereafter, we identify signals
{
st,l
}T
l=1 with

variances {
l}Tl=1, where 
l ≡V arl (dt )−V arl+1 (dt )=V ar
(
δt,l

)
measures dividend uncertainty

resolved between rounds l and l+1 or, given lemma 2, the informativeness of signal δt,l . The
marginal distribution of δt =

∑T
l=1δt,l is Normal with variance 
 =

∑T
l=1
l . Assume the following

value function after trade at T , after assets pay and before consumption takes place,

V (wi
t ,θ

i
t ,θ̄t ,dt )=−exp(awwi

t +aθdθ i
t ·dt + θ̄t ·Aθθ̄ θ

i
t +

1

2
θi
t ·A

θ2θi
t +

1

2
θ̄t ·Aθ̄2 θ̄t +c), (A.1)

where wi
t and θi

t are the holdings of riskless and risky assets, respectively, of trader i after trade
in round T , θ̄t ≡ 1

I

∑I
i=1θi

t is the average risky portfolio after round T , aw,aθd <0 and c are
scalars, and Aθθ̄ ,Aθ2 and A

θ̄2 are N ×N symmetric matrices, where A
θ2 is positive semidefinite.
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Given value function (A.1), the fundamental value of risky assets in round l, v̄t,l ∈RN , is defined
as the marginal conditional expected utility of the risky assets in terms of the riskless asset (the
consumption good) of an agent who holds the average portfolio throughout the lifetime (see Section
2.4),

v̄t,l ≡D
θi
t
El

[
V
(
θ̄t

)]
(
∂El

[
V
(
θ̄t

)]
∂wi

t

)−1 =
aθd

aw

(dt−1 +
l−1∑
h=1

δt,h)+
a2

θd

aw

T∑
h=l


hθ̄t,h +
1

aw

(
Aθθ̄ +A

θ2
)
θ̄t .

(A.2)

Lemma 3 (Within-period equilibrium). The profile of trades �i∗
t,l =γ (θ̄t,l−1 −θi∗

t,l−1)+ θ̂l , prices

p∗
t,l = v̄t,l −λ∗

l θ̂l −γ
∑T

h=l+1λ∗
hθ̂h, and price impact matrices

λ∗
l =− 1−γ

γ

(
(1−γ )2(T −l)

aw

A
θ2 +

a2
θd

aw

T∑
h=l

(1−γ )2(h−l)
h

)
, (A.3)

for each trader i and each round l of period t , characterize the unique (robust) subgame perfect
Nash equilibrium.

By lemma 3, given θi
t,l−1, trader i’s portfolio in round l is θi∗

t,l =γ θ̄t,l−1 +(1−γ )θi∗
t,l−1 + θ̂l .

Proof. (Lemma 3) Consider the last trading round, l =T . Given trade in this round �i
t,T , the

risky portfolio at the moment of dividend payment is θi
t ≡θi

t,T =θi
t,T −1 +�i

t,T and riskless wealth

is wi
t ≡wi

t,T =wi
t,T −1 −�i

t,T ·pt,T (�i
t,T ), where pt,T (·) is the residual supply function faced by

trader i in round−T equilibrium. Define

X≡awwi
t +aθdθ i

t ·dt + θ̄t ·Aθθ̄ θ
i
t +

1

2
θi
t ·A

θ2θi
t +

1

2
θ̄t ·Aθ̄2 θ̄t +c. (A.4)

Maximization of round−T value function (A.1), VT (X)≡ET V =−exp
{
ET X+ 1

2 V arT X
}

gives
the (necessary and sufficient) N first-order conditions: For all pt,T ,

D
�i

t,T
ET X+

1

2
D

�i
t,T

V arT X=0. (A.5)

Since traders submit schedules contingent on prices pt,T , uncertainty faced by trader i when
choosing trade �i

t,T concerns only dt , and the vectors of derivatives of expected value ET X and
variance V arT X are

D
�i

t,T
ET X=−aw(pt,T +λT �i

t,T )+aθd (dt−1 +
T −1∑
h=1

δt,h)+Aθθ̄ θ̄t +A
θ2 (θi

t,T −1 +�i
t,T ), (A.6)

and D
�i

t,T
V arT X=2a2

θd
T

(
θi
t,T −1 +�t,T

)
. The first-order conditions (A.5) determine a linear

demand schedule submitted by trader i, �i
t,T (·) :RN →R

N , with slope

Dpt,T
�i

t,T (·)= (−λT +
a2

θd

aw


T +
1

aw

A
θ2 )−1. (A.7)

By lemma 1 (straightforwardly extended to economies with exogenous supply shocks), the
equilibrium price impact – the slope of a trader’s residual supply – is determined by condition
λ∗

T =(1−γ )(−Dpt,T
�i

t,T (·))−1,

λ∗
T =− 1−γ

γ

(
a2

θd

aw


T +
1

aw

A
θ2

)
. (A.8)
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The first-order conditions (A.5) averaged across all traders and the market-clearing condition
1
I

∑I
i=1�i

t,T (p∗
t,T )= θ̂T determine equilibrium prices

p∗
t,T =

aθd

aw

(dt−1 +
T −1∑
h=1

δt,h)+
1

aw

(
a2

θd
T +Aθθ̄ +A
θ2

)
θ̄t −λ∗

T θ̂T . (A.9)

Substituting equilibrium prices (A.9) into the first-order conditions (A.5) determines equilibrium
trades in the last round, �i∗

t,T =γ (θ̄t,T −1 −θi
t,T −1)+ θ̂T and i’s risky portfolio

θi∗
t =θi

t,T −1 +�i
T =γ θ̄t,T −1 +(1−γ )θi

t,T −1 + θ̂T . (A.10)

Equations (A.8), (A.9), and (A.10) prove lemma 3 for round l =T .
Consider round l <T , assuming that the assertion of lemma 3 holds for rounds h>l. In round−l

value function Vl ≡ElV =−exp(ElX+ 1
2 V arlX), X is now a function of trade in round l, �i

t,l , in
Equation (A.4). On the equilibrium path,

wi
t ≡wi

t,T =wi
t,l−1 −�i

t,l ·pt,l

(
�i

t,l

)− T∑
h=l+1

�i∗
t,h ·p∗

t,h, (A.11)

where, by lemma 3, for h>l,

p∗
t,h =

aθd

aw

(dt−1 +
h−1∑
k=1

δt,k)+
a2

θd

aw

T∑
k=h


kθ̄t,k +
1

aw

(
Aθθ̄ +A

θ2
)
θ̄t −λ∗

hθ̂h −γ

T∑
k=h+1

λ∗
k θ̂k (A.12)

and
�i∗

t,h =γ (1−γ )h−l−1(θ̄t,l −θi
t,l−1 −�i

t,l )+ θ̂h. (A.13)

Risky holdings of trader i after the last trading round, in terms of round−l trade, are

θi
t ≡θi

t,T =(1−(1−γ )T −l)θ̄t,l +(1−γ )T −l (θi
t,l−1 +�i

t,l )+
T∑

k=l+1

θ̂k . (A.14)

Maximization of round−l expectation of value function (A.1), Vl (X)≡ElV =−exp(ElX+
1
2 V arlX), gives N first-order conditions for trader i in round l: for all pt,l ,

D
�i

t,l
ElX+

1

2
D

�i
t,l

V arlX=0. (A.15)

Expectation of X conditional on round−l information is

ElX=aw(wi
t,l−1 −�i

t,l ·pt,l (·)−
T∑

h=l+1

�i∗
t,h ·El

(
p∗

t,h

)
)+aθdθ i

t ·(dt−1 +
l−1∑
k=1

δt,k) (A.16)

+ θ̄t ·Aθθ̄ θ
i
t +

1

2
θi
t ·A

θ2θi
t +

1

2
θ̄t ·Aθ̄2 θ̄t +c, (A.17)

and its derivative with respect to �i
t,l is

D
�i

t,l
ElX=−aw(pt,l +λ∗

l �
i
t,l )+aθd (1−γ )T −l (dt−1 +

l−1∑
k=1

δt,k) (A.18)

+(1−γ )T −l Aθθ̄ θ̄t +(1−γ )T −l A
θ2θi

t (A.19)

+γ

T∑
h=l+1

(1−γ )h−l−1(aθd (dt−1 +
l−1∑
k=1

δt,k)+(a2
θd

T∑
k=h


kθ̄t,k +(Aθθ̄ +A
θ2 )θ̄t )) (A.20)

−
T∑

h=l+1

γ (1−γ )h−l−1(awλ∗
hθ̂h +awγ

T∑
k=h+1

λ∗
k θ̂k). (A.21)
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Using that

γ

T∑
h=l+1

(1−γ )h−l−1 =1−(1−γ )T −l , (A.22)

T∑
h=l+1

γ (1−γ )h−l−1
T∑

k=h


kθ̄t,k =
T∑

h=l+1

(
1−(1−γ )h−l

)

hθ̄t,h, (A.23)

T∑
h=l+1

γ (1−γ )h−l−1(λ∗
hθ̂h +γ

T∑
k=h+1

λ∗
k θ̂k)=γ

T∑
h=l+1

λ∗
hθ̂h, (A.24)

gives

D
�i

t,l
ElX=−aw(pt,l +λ∗

l �
i
t,l )+aθd (dt−1 +

l−1∑
k=1

δt,k)+a2
θd

T∑
h=l+1

(1−(1−γ )h−l)
hθ̄t,h (A.25)

+Aθθ̄ θ̄t +A
θ2

((
1−(1−γ )T −l

)
θ̄t +(1−γ )T −l θ i

t

)
−awγ

T∑
h=l+1

λ∗
hθ̂h. (A.26)

Variance of X conditional on round−l information is

V arlX=V arl

(
aθd

(
T∑

h=l

θ i
t ·δt,h −

T∑
h=l+1

�i∗
t,h ·

h−1∑
k=l

δt,k

))
. (A.27)

Since
∑T

h=l+1(�i∗
t,h ·∑h−1

k=l δt,k)=
∑T −1

k=l (δt,k ·∑T
h=k+1�i∗

t,h), it follows that

V arlX=V ar

(
aθd

T∑
k=l

(
θi
t −

T∑
h=k+1

�i∗
t,h

)
·δt,k

)
=V ar(aθd

T∑
k=l

θ i
t,k ·δt,k)=a2

θd

T∑
k=l

θ i
t,k ·
hθi

t,k,

(A.28)
where the last equality uses the conditional independence of δt,k for all k≥ l. Consequently,

D
�i

t,l
V arlX=2a2

θd

T∑
h=l

(1−γ )h−l 
hθi
t,h. (A.29)

Substituting derivatives of expectations (A.26) and variance (A.29) into the first-order conditions
(A.15),

0=−aw(pt,l +λ∗
l �

i
t,l )+aθd (dt−1 +

l−1∑
h=1

δt,h)+a2
θd

T∑
h=l+1

(1−(1−γ )h−l)
hθ̄t,h (A.30)

+Aθθ̄ θ̄t +A
θ2 ((1−(1−γ )T −l)θ̄t +(1−γ )T −l θ i

t )−awγ

T∑
h=l+1

λ∗
hθ̂h +a2

θd

T∑
h=l

(1−γ )h−l 
hθi
t,h.

(A.31)

Averaging the first-order conditions (A.30) across all traders and using market clearing
1
I

∑I
i=1�i

t,l = θ̂l determines round−l equilibrium prices

p∗
t,l =

aθd

aw

(dt−1 +
l−1∑
h=1

δt,h)+
a2

θd

aw

T∑
h=l


hθ̄t,h +
1

aw

(
Aθθ̄ +A

θ2
)
θ̄t −λ∗

l θ̂l −γ

T∑
h=l+1

λ∗
hθ̂h (A.32)

= v̄t,l −λ∗
l θ̂l −γ

T∑
h=l+1

λ∗
hθ̂h. (A.33)
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The first-order conditions (A.30) determine a linear demand schedule �i
t,l (·) :RN →R

N submitted
by trader i, the slope of which is

Dpt,l
�i

t,l (·)=

(
−λl +

(1−γ )2(T −l)

aw

A
θ2 +

a2
θd

aw

T∑
h=l

(1−γ )2(h−l)
h

)−1

. (A.34)

By lemma 1, condition λ∗
l =(1−γ )(−Dpt,l

�i
t,l (·))−1 determines the equilibrium price impact in

round l,

λ∗
l =− 1−γ

γ

1

aw

(
A

θ2 (1−γ )2(T −l) +a2
θd

T∑
h=l

(1−γ )2(h−l)
h

)
. (A.35)

Substituting (A.33) and (A.35) into (A.30) and using θ̄t,h −θi∗
t,h =(1−γ )(θ̄t,h−1 −θi∗

t,h−1) for h>l

gives equilibrium trade, �i∗
t,l =γ (θ̄t,l−1 −θi

t,l−1)+ θ̂l . It follows that risky holdings after round l are

θi∗
t,l =γ θ̄t,l−1 +(1−γ )θi

t,l−1 + θ̂l . �

Lemma 4 (Bellman Equation). Assume that the Bellman equation that defines the value function
after assets pay can be written as

V =max
cit

{−exp
(−αci

t

)−βexp
(−awci

t +Y
)}

, (A.36)

where aw <0 and Y does not depend on ci
t . Then, the value function after assets pay is given by

V =−exp

(
α

α−aw

Y

)(
exp

(
− α

α−aw

ln
α

−βaw

)
+βexp

(
− aw

α−aw

ln
α

−βaw

))
. (A.37)

Proof. (Lemma 4) The first-order condition of the Bellman equation (A.36) with respect to
consumption ci

t gives policy function

ci
t =

1

α−aw

(ln
α

−βaw

−Y ), (A.38)

which substituted into (A.36) gives the value function

V =−exp

(
α

α−aw

Y − α

α−aw

ln
α

−βaw

)
−βexp

(
α

α−aw

Y − aw

α−aw

ln
α

−βaw

)
(A.39)

=−exp

(
α

α−aw

Y

)(
exp

(
− α

α−aw

ln
α

−βaw

)
+βexp

(
− aw

α−aw

ln
α

−βaw

))
. (A.40)

�

Lemma 5 (Value function coefficients). Assume θ̂l =0 for all l in every period t . Function

V
(
wi

t ,θ
i
t ,dt ,θ̄t

)
=−exp(awwi

t +aθdθ i
t ·dt + θ̄ ·Aθθ̄ θ

i
t +

1

2
θi
t ·A

θ2θi
t +

1

2
θ̄t ·Aθ̄2 θ̄t +c), (A.41)

where aw =−αr, aθd =−α,

A
θ2 =

α2

1+r−(1−γ )2T

T∑
l=1

(1−γ )2l 
l, Aθθ̄ =
α2

r

−A

θ2 , A
θ̄2 =A

θ2 − α2

r

, (A.42)

and constant

c=
1

r
ln

(
β

1
1+r (r

r
1+r +r

− r
1+r )

)
(A.43)

characterize the value function in a (robust) subgame perfect Nash equilibrium.
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Proof. (Lemma 5) Consider value function (A.1). By the stationarity of the problem across
periods t =1,2,...,

V
(
wi

t+1,θ
i
t+1,θ̄t+1,dt+1

)
(A.44)

=−exp(awwi
t+1 +aθdθ i

t+1 ·dt+1 + θ̄t+1 ·Aθθ̄ θ
i
t+1 +

1

2
θi
t+1 ·A

θ2θi
t+1 +

1

2
θ̄t+1 ·A

θ̄2 θ̄t+1 +c). (A.45)

With θ̂l =0 for all l in every period t , θ̄t = θ̄t+1 = θ̄t+1,h and it follows from lemma 3 that, on the
equilibrium path, riskless holdings of trader i in t +1 in terms of previous-period holdings wi

t and
θi
t are

wi
t+1 =wi

t (1+r)+θi
t ·dt −ci

t −(θ̄t −θi
t )·

T∑
l=1

γ (1−γ )l−1p∗
t+1,l (A.46)

=wi−
t+1 −(θ̄t −θi

t )· aθd

aw

T∑
l=1

((1−γ )l −(1−γ )T )δt+1,l , (A.47)

where

wi−
t+1 =wi

t (1+r)−(θ̄t −θi
t )·(1−(1−γ )T )

(
aθd

aw

dt +
1

aw

(
Aθθ̄ +A

θ2
)
θ̄t

)
(A.48)

+θi
t ·dt −ct −(θ̄t −θi

t )· a2
θd

aw

T∑
l=1

(1−(1−γ )l )
lθ̄t , (A.49)

and portfolio of risky assets is

θi
t+1 =(1−γ )T θ i

t +(1−(1−γ )T )θ̄t . (A.50)

Substitute (A.46) and (A.50) into (A.44). Before taking expectations with respect to period-t
information to find the Bellman equation, separate stochastic and deterministic components of
wi

t+1, and consolidate stochastic terms δt+1,l in wi
t+1, and component θt+1 ·dt+1 in value function

(A.44) gives

aθd

T∑
l=1

((1−(1−γ )l )θ̄t +(1−γ )l θ i
t )·δt+1,l =aθd

T∑
l=1

θi
t+1,l ·δt+1,l . (A.51)

Taking expectations of (A.44) at the moment of period−t consumption choice,

EtV =−exp(awwi−
t+1 +a2

θd

1

2

T∑
l=1

θi
t+1,l ·
lθ

i
t+1,l + θ̄t ·Aθθ̄ θ

i
t+1 +

1

2
θi
t+1 ·A

θ2θi
t+1 +

1

2
θ̄t ·Aθ̄2 θ̄t +c),

(A.52)
we observe that

Y =awwi
t (1+r)−(θ̄ −θi

t )·(1−(1−γ )T )
(
Aθθ̄ +A

θ2
)
θ̄ +(aθd +aw)θi

t ·dt + (A.53)

−(θ̄ −θi
t ) ·a2

θd

T∑
l=1

(1−(1−γ )l )
lθ̄ +a2
θd

1

2

T∑
l=1

θi
t+1,l ·
lθ

i
t+1,l (A.54)

+ θ̄t+1 ·Aθθ̄ θ
i
t+1 +

1

2
θi
t+1 ·A

θ2θi
t+1 +

1

2
θ̄t+1 ·A

θ̄2 θ̄t+1 +c (A.55)

and the Bellman equation is as assumed in lemma 4 (note that quadratic terms involving cross
terms θ̄t ·dt disappear). We match the coefficients of the value function from lemma 4, Equations
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(A.37), and (A.44) via the method of undetermined coefficients. Equation aw = α
α−aw

aw (1+r)

gives aw =−αr and aθd = 1
1+r

(aθd +aw) gives aθd =−α. To find A
θ2 ,Aθ̄θ , and A

θ̄2 , we use

θi
t+1,l =(1−(1−γ )l )θ̄t +(1−γ )l θ i

t . Matching the coefficient matrices of (A.37) and (A.44), 1
2 A

θ2 =
1

1+r

(
1
2 (1−γ )2T A

θ2 + 1
2 a2

θd

∑T
l=1 (1−γ )2l 
l

)
and, hence,

A
θ2 =

α2

1+r−(1−γ )2T

T∑
l=1

(1−γ )2l 
l . (A.56)

Similarly, Aθθ̄ = 1
1+r

(Aθθ̄ +(1−(1−γ )2T )·A
θ2 +a2

θd

∑T
l=1(1−(1−γ )2l )
l ), which gives

Aθθ̄ =
α2

r
(
− r

1+r−(1−γ )2T

T∑
l=1

(1−γ )2l 
l ). (A.57)

Observe that Aθθ̄ = α2
r


−A
θ2 . Finally, 1

2 A
θ̄2 = 1

1+r
(− 1

2 (1−(1−γ )2T )A
θ2 + 1

2 A
θ̄2 +

1
2 a2

θd

∑T
l=1(1−γ )2l
l − 1

2 a2
θd
), and hence,

A
θ̄2 =−α2

r

(

−

(
r

1+r−(1−γ )2T

) T∑
l=1

(1−γ )2l 
l

)
. (A.58)

Observe that A
θ̄2 =A

θ2− α2
r


. By lemma 4,

c=
1

r
ln

(
exp

(
− α

α−aw

ln
α

−βaw

)
+βexp

{
− aw

α−aw

ln
α

−βaw

})
, (A.59)

which, given aw =−αr , yields the constant as in (A.43). �

Appendix B. Comparative Statics
Lemma 6 and propositions 2 and 4 characterize comparative statics with respect to market depth γ ,
trade frequency T and information structure, for welfare properties and the Security Market Line.

Lemma 6 (Positive definiteness). Consider information structures F and F ′ such that F ′
withholds information relative to F . Then matrix

∑T
l=1 (1−γ )2l

(

l −
′

l

)
is positive definite.

Proof. (Lemma 6) Let ≥pd denote the positive semidefinite order (i.e., A≥pd B if A−B is

positive semidefinite). Define ηl ≡
l −

′
l . Since

∑T
l=1
l =

∑T
l=1


′
l =
, for any k,

∑k
l=1ηl =

−∑T
l=k+1ηl . By the assumption that F ′ withholds information relative to F , matrix

∑k
h=1ηl is

positive semidefinite for all k and for any θ 	=0 there exists round k for which θ ·
(∑k

l=1ηl

)
θ >0.

For all k =1,...,T , matrix
k∑

l=1

(
(1−γ )2l −(1−γ )2k

)
ηl (A.60)

is positive semidefinite. For k =1, the statement is straightforward. For k≥1, assume that (A.60)
holds for all l =1,...,k.

k+1∑
l=1

(1−γ )2l ηl =
k∑

l=1

(1−γ )2l ηl +(1−γ )2(k+1)ηk+1 (A.61)

≥pd (1−γ )2k

k∑
l=1

ηl +(1−γ )2(k+1)ηk+1 (A.62)

≥pd (1−γ )2(k+1)
k∑

l=1

ηl +(1−γ )2(k+1)ηk+1 =(1−γ )2(k+1)
k+1∑
l=1

ηl (A.63)
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and (A.60) is positive semidefinite for k+1 and, by induction, for all l. Moreover,

T∑
l=k

(
(1−γ )2l −(1−γ )2k

)
ηl (A.64)

is positive semidefinite. Again, for k =T , the assertion is immediate. Assume (A.64) holds for all l

between k+1 and T . Then

T∑
l=k

(1−γ )2l ηl =
T∑

l=k+1

(1−γ )2l ηl +(1−γ )2k ηk (A.65)

≥pd (1−γ )2(k+1)
T∑

l=k+1

ηl +(1−γ )2k ηk (A.66)

≥pd (1−γ )2k

T∑
l=k+1

ηl +(1−γ )2k ηk =(1−γ )2k

T∑
l=k

ηl (A.67)

and (A.64) is positive semidefinite for k and, by induction, for all l.
Finally, for any θ 	=0 and corresponding k for which θ ·∑k

l=1ηlθ >0,

θ ·
(

k∑
l=1

(1−γ )2l ηl

)
θ ≥θ ·

(
(1−γ )2k

k∑
l=1

ηl

)
θ >θ ·

(
(1−γ )2(k+1)

k∑
l=1

ηl

)
θ (A.68)

=θ ·
(

−(1−γ )2(k+1)
T∑

l=k+1

ηh

)
θ ≥−θ ·

(
T∑

l=k+1

(1−γ )2l ηl

)
θ, (A.69)

where the first inequality is by the positive semidefiniteness result (A.60), the second inequality
holds by the assumption θ ·∑k

l=1ηlθ >0, and the last inequality holds by Equation (A.64).
Inequality (A.68) implies θ ·∑T

l=1 (1−γ )2l ηlθ >0. Since the inequality is strict for any θ 	=0,∑T
l=1 (1−γ )2l

(

l −
′

l

)
is positive definite. �

Proof. (Propositions 2 and 4) We prove the result for the general model with gradual revelation
of information and many assets. Let V and V ′ be the value function of a trader i who trades in a
market with the average holdings θ̄ , evaluated at period−t risky portfolio θi

t and riskless asset wi
t

in models characterized by (γ,T ,F ) and (γ ′,T ′,F ′), respectively. By lemma 5,

ln(−V )−ln
(−V ′)= θ̄ ·

(
A′

θ2 −A
θ2

)
θi
t +

1

2
θi
t ·
(
A

θ2 −A′
θ2

)
θi
t +

1

2
θ̄ ·
(
A

θ2 −A′
θ2

)
θ̄ (A.70)

=
1

2
(θi

t − θ̄ )·
(
A

θ2 −A′
θ2

)
(θi

t − θ̄ ). (A.71)

Observe that for a competitive model γ ′ ∼= 1, matrix A′
θ2 =0 and ln(−V )−ln

(−V ′)= 1
2 (θi

t −
θ̄ ) ·A

θ2 (θi
t − θ̄ ). Similarly, let Y and Y ′ be defined as in Equation (A.37), for the two markets. Their

difference is

Y −Y ′ =
1

2
(1+r)(θi

t − θ̄ )·
(
A

θ2 −A′
θ2

)
(θi

t − θ̄ ). (A.72)

(The number of trading opportunities per period, T ) Consider two markets characterized by
(γ,T ,F ) and (γ,T ′,F ), T ′ >T , for which F is such that all the information is revealed after

the respective last trading round. Since α2(1−γ )2T

1+r−(1−γ )2T is monotonically decreasing in T , using that

A
θ2 = α2(1−γ )2T

1+r−(1−γ )2T 
 (by lemma 5), matrix A
θ2 −A′

θ2 is positive definite. It follows from (A.71)
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and (A.72) that, for a trader with θi
t 	= θ̄ , inequalities V ′ >V and Y >Y ′ hold. Thus, any trader who

faces idiosyncratic risk has strictly higher lifetime utility and consumption for T ′ than T . Moreover,

limT →∞A
θ2 = limT →∞ α2(1−γ )2T

1+r−(1−γ )2T 
 =0, and hence by lemma 5, as T →∞, Y , consumption ct

and lifetime utility V coincide with those with price taking traders.
(Market depth, γ ) Consider two markets characterized by (γ,T ,F ) and (γ ′,T ,F ), γ ′ >γ ,

where F is an arbitrary information structure. Since
∑T

l=1 (1−γ )2l 
l >pd

∑T
l=1

(
1−γ ′)2l


l ,
matrix A

θ2 −A′
θ2 is positive definite. It follows from (A.71) and (A.72) that, for a trader with

θi
t 	= θ̄ , inequalities V ′ >V and Y >Y ′ hold. Thus, any trader who faces idiosyncratic risk has

strictly higher lifetime utility and consumption ct for γ ′ than γ . Moreover, limγ→1A
θ2 =

limγ→1
∑T

l=1 (1−γ )2l 
l =0 and, by lemma 5, Y , consumption ct and lifetime utility V coincide
with those with price taking traders.

(Information structure, F ) Consider two markets characterized by (γ,T ,F ) and (γ,T ,F ′). For
any F ′ that withholds information relative to F , by lemma 6,

∑T
h=1 (1−γ )2h

(

l −
′

l

)
is positive

definite and, hence, matrix A
θ2 −A′

θ2 is positive definite. Thus, for a trader with θi
t 	= θ̄ , it follows

by lemma 5 that V ′ >V and Y >Y ′, and hence consumption ct and lifetime utility V are higher
under F ′. �

Proof. (Proposition 1) In the general model, assume 
l =0 for all l <T , 
T =σ 2 and zero
supply shocks, θ̂l =0, l =1,...,T . lemma 3 then gives �i∗

t,l =γ (θ̄ −θi
t,l−1). Moreover, from lemma

5, effective risk aversion is ᾱ =ξ α

r2 + α
r

, where ξ = r(1−γ )2T

1+r−(1−γ )2T ∈ (0,1). (Taking the monotone

transformation of the expectations of the value function with respect to information at T gives the
functional form as in Equation (3).) Price impact (A.3) with coefficients from lemma 5 gives price
impact (11). �

Proof. (Proposition 3) In the general model, assume
l =0 for all l <T and 
T =σ 2. Take the
sequence of shocks {0,...,θ̂

l̂
,...,0} and apply the results from Appendix A. �

Proposition 5 (Security Market Line). Consider information structures in which information is
revealed only in the last round and assume an exogenous shock θ̂ in round l. Then in this round,
the expected returns of all assets satisfy

E(Rθ )−r =βθ̄
(
E(Rθ̄ )−r

)
+βθ̂

(
E(Rθ̂ )−r

)
−(βθ̄ a1 +βθ̂ a1)cov

(
Rθ̄ ,Rθ̂

)
, (A.73)

where βθ̄ =

(
θ

pθ ·
 θ̄

pθ̄

)
/

(
θ̄

pθ̄
·
 θ̄

pθ̄

)
, βθ̂ =

(
θ

pθ ·
 θ̂

pθ̂

)
/

(
θ̂

pθ̂
·
 θ̂

pθ̂

)
and the constants are a1 ≡

r
1−γ
γ

(1−γ )2(T −l)ᾱpθ̂ and a2 ≡α 1+r
r

pθ̄ .

Proof. (Proposition 5) For information structures in which information is revealed only in the
last round, from (A.2) and lemma 5, the value of portfolio θ in round l is given by pθ =θ ·p∗

t,l =
θ ·E(dt )

r
− α

r
θ ·
θ̄ − α

r2 θ ·
θ̄ −θ ·λ∗
l θ̂ , and hence,

θ ·E (dt )

pθ
−r =α

1+r

r

θ

pθ
·
 θ̄

pθ̄
pθ̄ +r

θ

pθ
·λ∗

l

θ̂

pθ̂
pθ̂ . (A.74)

In particular, for the average and shock portfolios,

α
1+r

r

θ̄

pθ̄
·
 θ̄

pθ̄
pθ̄ =E(Rθ̄ )−r−r

θ̄

pθ̄
·λ∗

l

θ̂

pθ̂
pθ̂ (A.75)

r
θ̂

pθ̂
·λ∗

l

θ̂

pθ̂
pθ̂ =E(Rθ̂ )−r−α

1+r

r

θ̂

pθ̂
·
 θ̄

pθ̄
pθ̄ . (A.76)
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Thus,

E(Rθ )−r =βθ̄
(
E(Rθ̄ )−r

)
+βθ̂

(
E(Rθ̂ )−r

)
−βθ̄

(
r

θ̄

pθ̄
·λ∗

l

θ̂

pθ̂
pθ̂

)
−βθ̂

(
α

1+r

r

θ̂

pθ̂
·
 θ̄

pθ̄
pθ̄

)
.

(A.77)
Then Security Market Line (A.73) follows from λ∗

l = 1−γ
γ

(1−γ )2(T −l)ᾱ
. �

Appendix C. Trading against Price Impact

The proof of the first part of lemma 1 does not assume that the value function V i
l (·) is

(quasilinear-)quadratic.

Proof. (Lemma 1) Given the quasilinear value function in round l, V i
l (·), let �i

t,l

(·,λi
l

)
be trader

i’s optimal demand given his assumed price impact λi
l , defined by equalization of marginal utility

and marginal payment for all prices pt,l ,

D
�i

t,l
V i

l

(
θi
t,l−1 +�i

t,l

)
=pt,l +λi

l�
i
t,l . (A.78)

(Equation (5) in the text.)
(“if”) Fix demand schedules {�i

t,l (·,λ̃i
l )}Ii=1 submitted by all traders given their assumed

price impact λ̃i
l in round l. Assume that the slope of each trader’s residual supply, defined

by {�j

t,l (·,λ̃j

l )}j 	=i , is λ̃i
l =−(

∑
j 	=i Dpt,l

�
j

t,l (·,λ̃j

l ))−1, for each i. The market-clearing price is

determined by
∑I

i=1�i
t,l (p̃t,l ,λ̃

i
l )=0. Since for each i, demand �i

t,l (·,λ̃i
l ) satisfies condition (A.78)

for all prices pt,l , it does so for the market-clearing price p̃t,l . Given the global concavity of the

maximization problem of each trader, demand functions {�i
t,l (·,λ̃i

l )}Ii=1 are mutual best responses
at p̃t,l .

Assume that V i
l (·) is quasilinear-quadratic. With an additive perturbation in demand (e.g.,

exogenous noise), trader i’s residual supply with slope λ̃i
l has a stochastic intercept. Since, for

each i, condition (A.78) holds for all prices pt,l , it holds for each realization of the residual supply

(or noise). Hence, given the global concavity, {�j

t,l (·,λ̃j

l }Ii=1 is a Nash equilibrium with an arbitrary
additive noise and, thus, a robust Nash equilibrium.

(“only if”) Suppose that, in round l, traders submit demand functions {�i
t,l (·,λ̃i

l )}Ii=1 such that

price impact λ̃i
l 	=−(

∑
j 	=i Dpt,l

�
j

t,l (·,λ̃j

l ))−1 for some i. Then schedule �i
t,l (·,λ̃i

l ) is not a best

response to {�j

t,l (·,λ̃j

l )}j 	=i at the market-clearing price p̃t,l , defined by
∑I

i=1�i
t,l (p̃t,l ,λ̃

i
l )=0.

Assume that V i
l (·) is quasilinear-quadratic. With an additive perturbation, by the linearity of

demands, for each trader i, for almost all prices pt,l , D�i
t,l

V i
l (θi

t,l−1+�i
t,l ) 	=pt,l+λi

l�
i
t,l , where λi

l

is the slope of i’s residual supply. For any additive, absolutely continuous noise trade, the prices
for which the equality is violated have measure one and the bid that equalizes marginal utility with
marginal payment, D

�i
t,l

V i
l (θi

t,l−1+�i
t,l )=pt,l+λi

l�
i
t,l for all pt,l , gives a strictly higher utility for

measure one of noise realizations (and, hence, a strictly higher expected utility). It follows that
�i

t,l (·,λ̃i
l ) is not a robust best response and noise exists for which {�i

t,l (·,λ̃i
l )}Ii=1 is not a robust

Nash equilibrium. �

Corollary 2 shows that the (robust subgame perfect Nash) equilibrium in demand functions
{�i∗

t,l (·)}I,Ti=1,l=1 can be represented as a reduced form. For any equilibrium profile of demand

functions {�i∗
t,l (·)}I,Ti=1,l=1, let {p∗

t,l ,�
i∗
t,l ,λ

i∗
l }I,Ti=1,l=1 be an associated profile of prices, trades and

price impacts defined by conditions (i’), (ii’), and (iii’) from Section 1.3. The associated profile
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exists and is unique and, by lemma 1, is also the associated profile of {�i
t,l

(·,λi
l

)
,λi

l }I,Ti=1,l=1 with

λi
l =λ∗i

l for all i and l.

Corollary 2 (Equivalence of equilibrium representation). For a profile {�i∗
t,l (·)}I,Ti=1,l=1 that

constitutes a robust subgame perfect Nash equilibrium, the associated profile of prices, trades
and price impacts {p∗

t,l ,�
i∗
t,l ,λ

i∗
l }I,Ti=1,l=1 satisfies conditions (i’), (ii’) and (iii’). Conversely,

for any profile {p̄t,l ,�̄
i
t,l ,λ̄

i
l }I,Ti=1,l=1 that satisfies conditions (i’), (ii’) and (iii’), functions

{�i
t,l (·)≡�̄i

t,l (·,λ̄i
l )}I,Ti=1,l=1 constitute a robust subgame perfect Nash equilibrium with which

{p̄t,l ,�̄
i
t,l ,λ̄

i
l }I,Ti=1,l=1 is associated.

Proof. (Corollary 2) (Profile {p∗
t,l ,�

i∗
t,l ,λ

i∗
l }I,Ti=1,l=1 associated with equilibrium {�i∗

t,l (·)}I,Ti=1,l=1
satisfies conditions (i’), (ii’) and (iii’).) Assume that the value function Vl (·) has the functional
form as in Section 1.2. Let the profile of demand schedules {�i∗

t,l (·)}I,Ti=1,l=1 be a robust subgame

perfect Nash equilibrium. By lemma 1, demand schedules �i∗
t,l (·) can each be represented as

�i
t,l

(·,λi∗
l

)
, defined by condition (A.78) for all prices pt,l , where for each l,

{
λi∗

l

}I
i=1 is a fixed

point of the system {λi
l =−(

∑
j 	=i Dpt,l

�
j

t,l (·,λ̃j

l ))−1}Ii=1; thus, condition (iii’) holds. For conditions

(i’) and (ii’), by definition, �i∗
t,l ≡�i∗

t,l (p
∗
t,l ) and price p∗

t,l is defined as the market-clearing price∑
l �

i
t,l (p

∗
t,l )=0; hence,

∑
i �

i∗
t,l =0 for each l.

(Functions {�i
t,l (·)≡�̄i

t,l (·,λ̄i
l )}I,Ti=1,l=1 associated with {p∗

t,l ,�
i∗
t,l ,λ

i∗
l }I,Ti=1,l=1 constitute a robust

subgame perfect Nash equilibrium.) By definition.
(The value functions coincide.) In round T , the value function is the quasilinear-quadratic

utility in Equation (3). If, for an arbitrary additive distribution of noise, the equivalence holds
from l+1 to T , the value functions at l are the same, and they are given by Vl (·) (derived in
Appendix B). �

Lemma 1 suggests that the following relation between the noncompetitive and competitive
equilibria can be established in a demand game (and the Walrasian auction) when viewed as a
model of “trade given assumed price impact”. In the (robust Nash) equilibrium, (i) each trader
optimizes given his assumed price impact λi

l , that is, submits �i
t,l

(·,λi
l

)
; and (ii) for each trader

i, his assumed price impact is correct, that is, λi
l =−(

∑
j 	=i ∂�

j

t,l (·)/∂p)−1. In a Nash equilibrium,
the first-order condition in Equation (5) is required to hold only at the equilibrium price. In lemma
1, traders respond optimally given their price impact for all prices rather than just the equilibrium
price. (In the robust Nash equilibrium, traders respond optimally for each realization of the residual
supply whose intercept depends on the realization of noise trade.)37 That strengthening is embedded
in lemma 1. As is apparent from condition (ii), traders are slope takers rather than price takers;
each trader optimizes (condition (i)), assuming that his trade will not affect the slope of his residual
supply (condition (ii)), determined by the schedules of other traders. Trade will affect prices as long
as the slope is not zero. If the endogenously derived price impacts are equal to zero, the competitive
equilibrium is obtained.

Just like the competitive equilibrium is defined as a profile of prices and trades such that prices
clear markets and trades maximize utilities, one can define a non-game-theoretic counterpart of
conditions (i) and (ii) as a profile of prices, trades and price impacts such that, for all l and
i, (i’) price clears the market:

∑
i∈I �i

t,l (p
∗
t,l )=0; (ii’) trade is optimal given price impact λi∗

l :

∂V i
l (·)/∂θi

t,l =p∗
t,l +λi∗

l �i∗
t,l ; and (iii’) price impact is correct: λi∗

l =−(
∑

j 	=i ∂�
j

t,l (·)/∂p)−1, i ∈I .
This reduced form can be used in a general-equilibrium setting (in a deterministic model, see,

37 In a one-shot game, the selection through uncertainty deriving from noisy trade or independent private
endowments coincide; respectively, lemma 1, characterizes (robust) Nash and Bayesian Nash equilibrium.
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for example, Weretka (2011)38; or, as follows from the results above, in a general-equilibrium
noncompetitive and competitive rational expectations equilibrium, in a setting with uncertainty,
which may allow interdependent values (given the results of Rostek and Weretka 2012). Given the
feature of the model that each agent has mass equal to one, since the market-clearing condition is
not well defined in the limit with a continuum of traders, we characterize the limit of equilibria in
the sequence of finite auctions. By corollary 2, we can represent the (robust subgame perfect Nash)
equilibrium as the profile of demand functions {�i

t,l

(·,λi
l

)}I,Ti=1,l=1 and price impacts {λi
l }I,Ti=1,l=1 that

satisfy conditions (i) and (ii) or, equivalently, a profile of prices, trades, and price impacts for all
traders that satisfy (i’), (ii’), and (iii’), {(p∗

t,l ,�
i∗
t,l ,λ

i∗
l )}I,Ti=1,l=1.

References

Almgren, R. 2009. Execution costs. In Encyclopedia of quantitative finance. Ed. R. Cont. Hoboken, NJ: Wiley.

Almgren, R., and N. Chriss. 2000. Optimal execution of portfolio transactions. Journal of Risk 3:5–39.

Almgren, R., C. Thum, E. Hauptman, and H. Li. 2005. Equity market impact. Risk Jul:57–62.

Amador, M., and P. O. Weill. 2010. Learning from prices: Public communication and welfare. Journal of Political
Economy 118:866–907.

Amihud, Y., H. Mendelson, and L. Pedersen. 2005. Liquidity and asset prices. Foundations and Trends in Finance
1:269–364.

Angeletos, G. M., and A. Pavan. 2007. Efficient use of information and social value of information. Econometrica
75:1103–142.

Biais, B., C. Bisiere, and C. S. Spatt. 2010. Imperfect competition in financial markets: An empirical study of
Island and Nasdaq. Management Science 56:2237–50.

Biais, B., T. Foucault, and S. Moinas. 2013. Equilibrium fast trading. IDEI Working Paper 769.

38 The (one-period) general-equilibrium definition of Weretka (2011) before applying lemma 1 from this paper is
as follows:

Definition 1. A profile {(p∗,�i∗,λi∗)}i is an equilibrium if (i) Asset markets clear,
∑

i∈I �i∗ =0; (ii) For any
i, the trade �i∗ is optimal, given demand function p

p∗,�i∗,λi∗ (·); (iii) For any i, price impact λi∗ is consistent

with λ−i∗.

To endogenize price impacts, fix an arbitrary profile of price impacts of all traders but i, λ−i∗ and consider how
the market reacts to an investor’s i deviation from his equilibrium trade �i∗ to any trade �i . Any deviation �i

by trader i triggers a subequilibrium that is defined as follows:

Definition 2. Given λ−i∗, vector (p̄,�̄−i ,λ−i∗) is a subequilibrium triggered by trade �̄i if: (i) Markets clear
with the deviation, �̄i +

∑
j 	=i �̄

j =0; (ii) For any j 	= i, trade �̄j is optimal given demand functions p
p̄,�̄j ,λ∗j (·).

If every deviation �̄i of i triggers a unique subequilibrium, then trader i is effectively facing a downward sloping
residual demand pi (�̄i ), which assigns the market-clearing price to any �̄i , and the slope of which measures
i’s price impact. Consistent price impact reflects the price change needed to clear the market for any possible
deviation �̄i , given that the other traders respond optimally to market prices.

Definition 3. λi∗ is consistent with λ−i∗ if, for any deviation �̄i of i, there exists a unique subequilibrium

(p̄,�̄−i ,λ−i∗) such that p̄−p∗ =λ−i∗(�̄i −�i∗).

45

 at U
niversity of W

isconsin-M
adison L

ibraries on Septem
ber 13, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


[18:59 20/5/2015 RFS-hhv027.tex] Page: 46 1–47

The Review of Financial Studies / v 0 n 0 2015

Blume, M. E., and D. B. Keim. 2012. Institutional investors and stock market liquidity: Trends and relationships.
Working Paper.

Bond, P., A. Edmans, and I. Goldstein. 2012. The real effects of financial markets. Annual Reviews of Financial
Economics 4:339–60.

Brunnermeier, M., and L. Pedersen. 2005. Predatory trading. Journal of Finance 4:1825–63.

Chan, L., and J. Lakonishok. 1993. Institutional traders and intraday stock price behavior. Journal of Financial
Economics 33:173–99.

———. 1995. The behavior of stock price around institutional trades. Journal of Finance 50:1147–74.

Budish, E., P. Cramton, and J. Shim. 2013. The high-frequency trading arms race: Frequent batch auctions as a
market design response. Working Paper.
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