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Decentralized Exchange†

By Semyon Malamud and Marzena Rostek*

Most assets are traded in multiple interconnected trading venues. 
This paper develops an equilibrium model of decentralized markets 
that accommodates general market structures with coexisting 
exchanges. Decentralized markets can allocate risk among traders 
with different risk preferences more efficiently, thus realizing gains 
from trade that cannot be reproduced in centralized markets. Market 
decentralization always increases price impact. Yet, markets in which 
assets are traded in multiple exchanges, whether they are disjoint or 
intermediated, can give higher welfare than the centralized market 
with the same traders and assets. In decentralized markets, demand 
substitutability across assets is endogenous and heterogeneous 
among traders. (JEL D43, D44, D85, G11, G12)

In classical economic theory, markets are centralized. All units are exchanged 
through a single market clearing at the terms of trade that apply to all agents equally. 
In today’s markets, essentially all financial assets are traded in multiple coexisting 
and interconnected trading venues. Trade away from centralized exchanges is com-
mon not only for assets and goods with heterogeneous units such as real estate, 
but also for homogeneous assets. Indeed, most bonds (government, municipal, and 
corporate) are traded over the counter, as are currencies, loans, and (more recently) 
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stocks.1 In fact, the past two decades have seen new types of marketplaces that offer 
different types of market clearing—direct matching with an intermediary, trading in 
a dealer network, or an electronic centralized exchange—to institutional and retail 
investors. This paper examines the potential for a decentralized market to create 
gains from trade. What are the economic mechanisms in decentralized markets that 
have no centralized market counterparts?

The growing literature on decentralized trading emphasizes important frictions 
that are associated with decentralization of trade, such as search, counterparty risk, 
or asymmetric information. With “decentralization” introduced as a friction in a 
competitive model, a typical result argues that the absence of frictions would cor-
respond to maximal welfare. To understand the potential for welfare gains with 
decentralized trading, we consider markets with any number of strategic traders and 
divisible assets. The sole assumption of the centralized market model that we relax 
is that a single market clearing determines all agents’ allocations. Namely, the mar-
ket consists of exchanges, each defined by the subset of agents who trade there and 
the subset of assets traded, each with a separate market-clearing price. A market is 
centralized if there is a single exchange for all traders and assets and decentralized 
otherwise. Traders can participate in many exchanges in which the same or dif-
ferent assets may be traded. This accommodates market structures with coexisting 
exchanges, including centralized markets and empirically common market struc-
tures with private exchanges (with restricted participation), public exchanges, and 
intermediation. Preferences and assets are described by constant absolute risk aver-
sion (CARA) utilities and Gaussian payoffs. Gains from trade come from risk shar-
ing: endowments (which are agents’ private information and are independent) and 
risk preferences are heterogeneous. Each exchange operates as a (uniform-price) 
double auction, and agents submit demand and supply schedules in the exchanges 
in which they participate. Thus, the model is a decentralized market counterpart of 
double auction models in the tradition of Kyle (1989), Vives (2011), and the capital 
asset pricing model (CAPM). This permits a direct comparison of predictions for 
centralized and decentralized markets.

Why might a decentralized market be more efficient? In markets with strategic 
traders, the Pareto efficiency result of the First Welfare Theorem does not apply: 
even if the total number of traders is large, traders in decentralized markets gener-
ally have a strictly positive price impact in the exchanges where they participate. In 
any market, centralized or decentralized, equilibrium allocations of each trader is a 
combination of his initial endowment and an aggregate risk portfolio (which cor-
responds to risk nondiversifiable in equilibrium). Our starting observation is that in 
noncompetitive centralized markets, unless all traders’ risk preferences are symmet-
ric, the aggregate risk portfolio that all traders trade toward differs from the efficient 
portfolio (which maximizes the total utility over feasible allocations, is independent 

1 In the US equity market, the NYSE executes less than one-quarter of the volume in its listed stocks; the 
remaining volume is created in over 10 public exchanges, more than 30 private exchanges (liquidity pools), and 
over 200 broker-dealer networks. Over the past few years, trading in private exchanges has grown by more than 
50 percent in the US and has more than doubled in Europe (Schapiro 2010). Similarly, while prior to 2007, equity 
markets in Europe were characterized by dominant exchanges in each domestic market, the Markets in Financial 
Instruments Directive (MiFID) in 2007 created more than 200 new trading venues in which equities, bonds, and 
even derivatives are traded. As of 2012, these alternative venues accounted for at least 30 percent of total equity 
turnover. Duffie (2012) provides an overview. 
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of the market structure, and corresponds to risk nondiversifiable in the market, or 
systematic risk). In addition, the centralized market allocates risk in a particular 
way: relatively less risk-averse agents face a more inelastic residual supply and 
hence have larger price impact. Thus, less risk-averse agents will be reluctant to 
trade, and highly risk-averse traders will retain a large fraction of their endowment 
risk in equilibrium. This suggests that the efficiency of the centralized market allo-
cation depends on the distribution of endowments among agents with different risk 
preferences. This further suggests that, to increase welfare, a decentralized market 
would have to reallocate systematic risk toward less risk-averse agents. We show 
that a decentralized market can increase the total welfare compared to the central-
ized market. In fact, simply breaking up the centralized market to create disjoint 
exchanges can increase welfare.

We present the following main results. First, when a market becomes more decen-
tralized—some agents trade with fewer other traders or trade fewer assets—traders’ 
price impacts weakly increase in any exchange and are thus lowest in the central-
ized market. This holds regardless of the asset structure in the more decentralized 
market. Furthermore, a general complementarity holds: any change in the market 
structure that lowers price impact “locally” in an exchange lowers price impact in all 
other exchanges as long as they are indirectly connected. For instance, creating new 
private exchanges, in which participation is restricted, weakly improves liquidity in 
the market.2

Second, although the centralized market minimizes price impact for all traders, a 
decentralized market with the same traders and assets may give higher total welfare. 
The key is that decentralized trading changes the agents’ ability to diversify: since 
their participation in the exchanges differs, agents trade distinct components of the 
aggregate risk portfolio. Given that the centralized market aggregate risk portfolio is 
generally inefficient, utility can increase despite the higher price impact. Moreover, 
traders’ equilibrium price impacts are no longer linked to risk preferences in the 
particular way in which they are with centralized trading. Essentially, by allowing 
heterogeneous access to traders and assets, a decentralized market can allocate risk 
among traders whose risk preferences differ more efficiently.

Our results imply that restricting trader participation, while increasing all traders’ 
price impacts, may increase welfare. In particular, under conditions, the fact that 
trading is noncompetitive makes the case for various forms of market decentral-
ization recently implemented or debated: breaking up exchanges and asset decon-
solidation (such as ring-fencing of investment banking units and swaps push-out 
required by the Dodd-Frank Act and MiFID, demerger, or specialization in trading 
certain assets) may increase welfare;3 moving an asset from centralized to OTC 
clearing and intermediation may increase welfare.

2 One expects that this holds more generally when new exchanges do not affect too much inference about values 
in the existing exchanges. The creation of new exchanges has increased competition and substantially decreased 
liquidity costs in the US stock market. Similar decreases in trading costs occurred in Canada, Europe, and Asia, 
where different regulatory environments allowed electronic exchanges to develop earlier than those in the United 
States (Knight Capital Group 2010; Angel, Harris, and Spatt 2011; and O’Hara and Ye 2011). 

3 In practice, markets are decentralized (in our sense) also because different participants trade different assets—
by choice or regulation. Even large financial institutions typically participate in only a few trading venues and trade 
a small subset of existing securities: e.g., pension funds cannot trade many types of derivatives, banks are allowed to 
hold but not trade loans, and most hedge funds have a clear specialization in trading a limited number of securities. 
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When should one expect a decentralized market to increase efficiency? We 
show that when all traders’ risk aversions are symmetric, the centralized market 
maximizes welfare among all market structures. This holds regardless of the distri-
bution of initial endowment risk. With sufficiently heterogeneous risk preferences, 
the welfare-maximizing market structure is decentralized for some endowment dis-
tributions, particularly those for which the lowest risk aversion agents hold large 
nondiversified endowments initially. More precisely, what matters is not the endow-
ment shocks per se but how the inefficient part of endowments, and hence the need 
to trade, is distributed across traders. Welfare gains from decentralization exist even 
if the number of traders is arbitrarily large. Sufficient heterogeneity in risk prefer-
ence needs to hold only for a few market participants, and endowments need not 
become more extreme as the market grows.

Underlying certain decentralized market effects that have no centralized mar-
ket counterparts is that when trading is decentralized, demand substitutability for 
assets (i.e., demand Jacobian) is endogenous and generally differs among trad-
ers. Namely, we show that in centralized markets, all traders’ equilibrium price 
impacts are always proportional to the assets’ fundamental covariance. The factor 
of proportionality depends on the trader’s risk aversion, with less risk-averse trad-
ers having greater price impact. In contrast, when the market is decentralized, the 
within- and across-exchange price impact induced by others’ behavior depends 
on who participates in each exchange and which assets are traded so that price 
impact is generally not proportional to fundamental risk. This nonproportionality 
of incentives in risk implies that demand substitutability for the same assets is 
heterogeneous among traders who participate in different exchanges. In contrast, 
in centralized markets, agents’ demand substitutability always corresponds to the 
assets’ fundamental payoff substitutability and hence is the same for all traders. 
The endogenous demand substitutability creates incentives for agents to special-
ize in trading different assets—as specialist intermediaries or non-intermediating 
dealers—and may increase welfare in the Pareto sense, even without affecting 
aggregate risk. Specifically, by changing who trades which assets without neces-
sarily changing who trades with whom, decentralizing a market may allow for a 
reduction in idiosyncratic risk, whose changes do not affect the risk that is nondi-
versifiable in equilibrium.

The methods we introduce will be useful to other researchers studying games 
and general equilibrium on networks and hypergraphs. A hypergraph generalizes a 
graph by allowing an edge to connect any number of nodes, beyond just two (e.g., 
Berge 1973). Relative to the existing literature on games on networks, such games 
allow applications with strategies that have multiple dimensions over actions 
and attributes. The model allows equilibrium analysis of traditional industrial 
organization questions (market power, competition, pricing, product and market 
design, mergers) in decentralized markets. Let us note that decentralized market 
games are not (super- or sub-)modular, and results that have been established for 
modular games do not allow us to draw conclusions about welfare in decentral-
ized markets. We characterize the comparative statics of equilibrium and welfare 
with respect to preferences, assets, and market structure for decentralized mar-
kets with arbitrary market structures, multiple assets, and any number of strategic  
agents.
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Related Literature.—This paper is part of the growing literature on decentralized 
markets. Most modern models are based on graphs, random or fixed. The random 
search and matching approach assumes that trade occurs in large markets among 
a continuum of traders, in which centralized trading would be efficient (e.g., Gale 
1986a, b; Duffie, Gârleanu, and Pedersen 2005; Vayanos and Weill 2008; Weill 
2008; Duffie, Malamud, and Manso 2009, 2014; Lagos and Rocheteau 2009; Lagos, 
Rocheteau, and Weill 2011; Afonso and Lagos 2012; Hugonnier, Lester, and Weill 
2014; Atkeson, Eisfeldt, and Weill 2015). Empirically, while some markets are best 
described by random meetings among traders who are small relative to the mar-
ket, in others (e.g., dealer networks or interbank systems) relationships are not ran-
dom4 and are dominated by large institutional investors, who have price impact. 
Dealing with price impact often serves as a primary motivation to create an OTC 
exchange.5 Thus, the fact that agents are nonnegligible in trading matters for why 
markets are decentralized. This paper considers markets with any number of trad-
ers, all of whom are strategic. Allowing (not assuming) noncompetitive behavior is 
central to our predictions and turns out to be important for thinking about certain 
implications of decentralized trading. We take the market structure (who trades with 
whom) as given and, in this sense, are closer to the strand of literature that views 
agents as interacting on a fixed network (e.g., Kranton and Minehart 2001; Gale and 
Kariv 2007; Blume et al. 2009; Gofman 2011; Manea 2011; Nava 2015; Condorelli, 
Galeotti, and Renou 2017; Choi, Galeotti, and Goyal 2017; Babus and Kondor 2016; 
Elliott 2015; Rahi and Zigrand 2013; Bramoullé, Kranton, and D’Amours 2014). 
Like the random matching models, the existing networks literature largely views 
decentralization as a restriction on the efficiency of trade.

In addition, just as the standard equilibrium theory is based on a single market clear-
ing for all traders and assets, the existing literature on decentralized trading makes the 
opposite assumption that all transactions are bilateral.6 We study networked markets 
with coexisting exchanges (i.e., hypergraphs). A model which accommodates market 
structures described by hypergraphs is not essential to our welfare results. It allows 
studying equilibrium in any market structures “between” centralized and bilateral 
trading in which groups of traders interact. During the past two decades, transactions 
occurring outside open exchanges have largely shifted to “auctions” (market clearing 
via aggregation of multiple demands and supplies) introduced for large institutional 
traders, dealers and retail investors. Moving beyond bilateral links also enables one 
to examine when a decentralized market can behave like the centralized market, why, 
and the conditions under which equilibrium behavior differs.

4 It is well documented that dealers or brokers trade via an established network structure and that trading rela-
tionships exist between banks. An average bank trades with a small number of counterparties, and most banks 
form stable relationships with at least one lending counterparty; e.g., the US Federal Funds market (Bech and 
Atalay 2010; Afonso, Kovner, and Schoar 2013), interbank markets (Craig and von Peter 2014; Cocco, Gomes, and 
Martins 2009), and US municipal bonds market (Li and Schürhoff 2012). 

5 For example, Biais, Bisière, and Spatt (2010); Knight Capital Group (2010); Angel, Harris, and Spatt (2011). 
Biais and Green (2007) attribute the historical shift in the US municipal and corporate bond markets toward OTC 
trading to the increased importance of institutional investors. 

6 Corominas-Bosch (2004) and Elliott (2011) allow for multilateral bargaining with search. Some models (see 
Duffie, Gârleanu, and Pedersen 2005; Lagos and Rocheteau 2009; and Lagos, Rocheteau, and Weill 2011) assume 
that trade can only happen through special intermediaries (dealers) who provide liquidity. Rahi and Zigrand (2013) 
study trade of price-taking investors intermediated by arbitrageurs. 
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Finally, both random and fixed graph models typically derive the terms of trade 
from bargaining (e.g., take-it-or-leave-it offers) or posted prices and have efficient 
surplus sharing on each link. In our model, trade occurs through the uniform-price 
double auction in which agents submit demand or supply schedules (equivalently 
and in practice, combinations of limit and market orders) in the exchanges where 
they participate. The uniform-price market clearing is a precise analog of the 
market clearing in centralized market models—in general equilibrium and their 
game-theoretic counterpart of games in demand and supply functions. As we show, 
traders have nonnegligible price impact—the behavior of prices and allocations dif-
fers from that in trading environments with efficient risk sharing per link.

I.  A Decentralized Market Model

Market: Traders, Assets, and Exchanges.—Consider a market with ​I​ traders who 
trade ​K​ risky assets in ​N​ exchanges. Each exchange has separate clearing prices. We 
index agents by ​i​ , assets by ​k​ , and exchanges by ​n​. An exchange ​n  ∈  N​ is identified 
by the subset of agents ​I(n)  ⊆  I​ who trade there and the subset of assets traded ​
K(n)  ⊆  K​. The set of exchanges ​  = ​ {(I(n), K(n))}​n​​​ , which we take as a prim-
itive, represents the market structure. Thus, ​​ is a nonempty subset of the power 
set of ​I × K​, which, together with the set of agents ​I​ and assets ​K​, corresponds to 
a hypergraph.7 Agents can participate in many different types of trading venues for 
possibly nondisjoint subsets of traders (e.g., a public exchange, in which all trad-
ers participate; a private exchange, which restricts participation to a subset of trad-
ers; and intermediation). We assume that at least three agents participate in every 
exchange: ​I(n)  >  2​ for all ​n​.8

The ​K​ risky assets have jointly normally distributed payoffs ​R  ∼   (d, Σ)​ with 
positive definite covariance ​Σ​; a riskless asset with a zero interest rate (a numéraire) 
is also available. Each trader ​i​ maximizes the expected CARA utility function ​
E[−exp (−​α​i​​ (−​q​ i​ T​p + ​(​q​ i​ 0​ + ​q​ i​​)​​ T​R))]​, where ​​α​i​​​ is agent ​i​’s absolute risk aver-
sion, ​​q​ i​ 0​​ is his endowment vector of risky assets, ​​q​ i​​​ is ​i​’s vector of trades of risky 
assets, and ​p​ denotes the vector of prices. Endowments are (independent) private 
information. Using the fact that asset payoffs ​​R​ i​​​ are normally distributed, we have ​ 
E[−exp (−​α​i​​ (−​q​ i​ T​ p + ​(​q​ i​ 0​ + ​q​ i​​)​​ T​ R))]  =  − exp (−​α​i​​ ​U​ i​​ (​q​ i​​))​ with

(1)	​ ​U​ i​​ (​q​ i​​)  = ​ d​​ T​(​q​ i​ 0​ + ​q​ i​​) − ​ ​α​i​​ __ 
2
 ​ ​​(​q​ i​ 0​ + ​q​ i​​)​​​ 

T
​ Σ​(​q​ i​ 0​ + ​q​ i​​)​ − ​p​​ T​​q​ i​​,​

and hence, equivalently, trader ​i​ maximizes the quasilinear-quadratic utility func-
tion (1).

In the analysis, we treat assets traded in different exchanges as different assets. 
That is, we do not impose a priori that identical assets (in the sense of ​ (d, Σ)​) 

7 A hypergraph is defined as a pair ​(X, E  )​, where ​X​ is a set of elements called nodes and ​E​ is a set of nonempty 
subsets of ​X​ called (hyper-)edges. In our model, ​X  =  (I, K  )​ and an edge ​(I(n), K(n))​ represents exchange ​n​ with ​
I(n)​ agents and ​K(n)​ assets. 

8 As is well known, in centralized markets with two traders, a linear equilibrium with trade does not exist with 
independent private values (e.g., Kyle 1989). With negatively correlated values, equilibrium exists for any number 
of traders (Rostek and Weretka 2015b). 
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will trade at the same prices in different exchanges.9 Thus, we treat a market with ​
K​ assets traded in ​N​ exchanges ​​{ (I(n), K(n))}​n​​​ as a market with ​​∑ ​n​   ​​K(n)​ (replicas 
of) assets and a ​(​∑ ​n​   ​​K(n)) × (​∑ ​n​   ​​K(n))​ positive semidefinite covariance matrix ​V​, 
induced by covariance ​Σ​ and the set of exchanges. This paper studies how the fact 
that exchanges are interlinked, through traders or assets, affects market behavior. 
Covariace matrix ​V​ describes the interconnectedness among the exchanges via trad-
ers and assets. We use capital bold notation for objects defined directly in a decen-
tralized market.

A trader ​i​ who participates in a subset of all exchanges ​N(i)  ⊆  N​ maximizes

(2)	​ ​U​ i​​ (​q​ i​​)  = ​ d​ N(i)​ T ​ (​q​ i​ 0​ + ​q​ i​​) − ​ ​α​i​​ __ 
2
 ​ ​​(​q​ i​ 0​ + ​q​ i​​)​​​ 

T
​ ​V​N(i)​​​(​q​ i​ 0​ + ​q​ i​​)​ − ​( ​p​ N(i)​​)​​ T​ ​q​ i​​,​

where ​​V​N(i)​​​ is the submatrix of the covariance matrix ​V​ , which corresponds to the 
assets traded by agent ​i​ in exchanges ​N(i)​, ​​d​ N(i)​​​ is the subvector of the expected 
payoff vector ​d​ , ​​q​ i​ 0​  ∈ ​ 핉​​ N(i)​​ and ​​q​ i​​  ∈ ​ 핉​​ N(i)​​ have the dimension of ​​핉​​ N(i)​​ given by  
​​∑ n∈N(i)​ 

  ​​  K(n)​,10 and ​​p​ N(i)​​  = ​ (  ​p​ j​​)​j∈N(i)​​​ denotes the vector of prices in exchanges ​N(i).​ 
Market structure ​​{(I(n), K(n))}​n​​​ is equivalently described by trader participation in 
the exchanges ​​{N(i)}​i​​​ , given agents ​I​ and assets ​K​.

Example 1 (Centralized and Decentralized Markets): 

	 (i)	 The centralized market with multiple assets: All agents ​I​ trade assets ​K​ in one 
exchange; ​N  =  { (I, K)}​ , and ​V  =  Σ​.

	 (ii)	 A decentralized market for one asset: All agents ​I​ trade the same asset ​1​ with 
a variance ​Σ  = ​ σ​​ 2​​; ​N  =  ∪ ​{(I(ℓ), 1)}​ℓ​​​ ; and the covariance matrix ​V​ is sin-
gular and has rank 1, ​V  = ​ σ​​ 2​ 1​ where ​1​ is a matrix with all elements equal 
to 1.

	 (iii)	 Private exchanges: In addition to the public exchange for ​K′  ⊆  K​ assets, 
defined analogously to (i), there are ​L​ private exchanges (e.g., liquidity pools) 
in which only subsets of agents can trade different subsets of assets. There 
are ​L​ (possibly nondisjoint) subsets ​I(1), … , I(L)  ⊂  I​ of agents, each trad-
ing in exchange ​l  ∈  L​; ​N  =  {(I, K′ )} ∪ ​{(I(ℓ), K(ℓ))}​ℓ​​​ with ​K′ + ​∑ ℓ​   ​​ K(ℓ)​ 
assets. Essentially all existing financial assets—most notably currencies, 
fixed income instruments (e.g., government and corporate bonds), and all 
derivatives—are traded in market structures that can be described as multiple 
interconnected private exchanges.

Agents can participate in many different types of trading venues for possibly 
non-disjoint subsets of traders (e.g., a centralized exchange, a dealer network, 

9 For a discussion of arbitrage, see footnote 21. 
10 We will be referring to the risky part of endowments, because this is the part that matters for the results. 

With ​K​ assets, the actual dimension of the endowment vector is ​K​. We use notation ​​핉​​ N(i)​​ to represent that the same 
asset can be traded in many exchanges: replicas of the same asset traded in different exchanges correspond to dif-
ferent coordinates, and the split of a given asset’s endowments among the exchanges where it is traded is arbitrary. 
Equilibrium allocations do not depend on the split of the endowment across exchanges. 
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liquidity pools); there can be intermediation between traders in different types of 
trading venues. 

Given the quasilinearity of the utility functions in cash (the numéraire), total wel-
fare can be compared across market structures through the sum of the utilities ​(2)​ 
evaluated at the corresponding equilibrium allocations. Quasilinearity and market 
clearing imply that total welfare does not depend on prices,

(3)	​ ​∑ 
i
​ ​​ ​U​ i​​ (​q​ i​​)  = ​ ∑ 

i
​ ​​ ​d​​ T​​q​ i​ 0​ − ​∑ 

i
​ ​​ ​ ​α​i​​ __ 

2
 ​ ​​(​q​ i​ 0​ + ​q​ i​​)​​​ 

T
​ ​V​N(i)​​​(​q​ i​ 0​ + ​q​ i​​)​. ​

It is clear that cash transfers exist for which one market Pareto dominates another if 
and only if the sum of equilibrium utilities is larger in the former.

Decentralized Double Auction.—Each exchange ​n​ operates as the standard 
uniform-price double auction for traders ​i  ∈  I(n)​ (e.g., Kyle 1989; Vives 2011; 
CAPM). Trader ​i​ submits a (net) demand schedule ​​q​ i​​ ( ​p​ N(i)​​) : ​핉​​ N(i)​  → ​ 핉​​ N(i)​​ , which 
specifies demanded quantities of assets in the exchanges in which he participates; 
the demand is strictly downward-sloping in each exchange. The market clears 
simultaneously in all exchanges as ​​∑ i​ 

  ​​ ​​q – ​​i​​ ( ​p​ N(i)​ ∗ ​ )  =  0,​ where ​​​q – ​​i​​ ( ​p​ N(i)​ ∗ ​ ) : ​핉​​ N​ → ​핉​​ N​ ​is 
defined as equal to ​​q​ i​​​ on ​N(i)​ and 0 on other exchanges ​N \N(i)​. This market-clearing 
condition defines the equilibrium price vector ​​p​​ ∗​​; trader ​i​ receives ​​q​ i​​  ≡ ​ q​ i​​ ( ​p​ N(i)​ ∗ ​ )​ 
and pays ​​p​ N(i)​ ∗ ​  · ​q​ i​​  = ​ p​​ ∗​ · ​​q – ​​i​​​. All traders are strategic; in particular, there are no 
noise traders.

Equilibrium.—We study the Bayesian Nash equilibrium in linear bid schedules 
(hereafter, equilibrium). With divisible goods, equilibrium is invariant to the dis-
tribution of independent private uncertainty.11 Equilibrium with strategic traders 
in any market structure, centralized or decentralized, can be characterized through 
two conditions which correspond to individual optimization and market clearing 
(Proposition 1 and Theorem 1).

II.  Equilibrium in Centralized versus Decentralized Markets

In this section, we compare how centralized and decentralized markets allocate 
risk. We begin with centralized trading to separate the changes relative to the com-
petitive equilibrium due to noncompetitiveness itself versus market decentraliza-
tion. The characterization of equilibrium for heterogeneous risk aversion—which, 
to the best of our knowledge, is new as is the uniqueness of the linear equilibrium 

11 Equilibrium schedules are optimal even if traders learn the independent value endowments ​​q​ i​ 0​​ (or equiva-
lently, stochastic marginal utility intercepts, ​​d ̃ ​  =  d − αΣ ​​q ̃ ​​ i​ 0​​) of all other agents. The key to this ex post prop-
erty of Bayesian Nash equilibrium is that permitting pointwise optimization—for each price—equilibrium 
demand schedules are optimal for any distribution of independent private information and are independent 
of agents’ expectations about others’ endowments. Equilibrium is linear if schedules have the functional form 
of ​​q​ i​​ ( · )  = ​ α​0​​ + ​α​i, q​​ ​q​ i​ 0​ + ​α​i, p​​ p​. Strategies are not restricted to linear schedules; rather, it is optimal for a trader 
to submit a linear demand given that others do. The approach of analyzing the symmetric linear equilibrium is 
common in centralized market models (e.g., Kyle 1989; Vayanos 1999; Vives 2011). Our analysis does not assume 
equilibrium symmetry. 
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for many assets (divisible goods) in Proposition 1—is the key to the welfare effects 
of centralized and decentralized trading.

A. Equilibrium and Allocation of Risk in Centralized Markets

Suppose that all traders participate in a single exchange: ​N(i)  =  N  =  {(I, K)}​ 
and ​​V​N(i)​​  =  Σ  =  V​ for all ​i  ∈  I​ (Example 1 (i)). In equilibrium, the (net) demand 
schedule of trader ​i​ equalizes his marginal utility with his marginal payment for 
each price,

(4)	​ d − ​α​i​​Σ​(​q​ i​ 0​ + ​q​ i​​)​  =  p + ​Λ​i​​ ​q​ i​​, ​

where ​​Λ​i​​​ measures the price impact of trader ​i​ in the exchanges in which he par-
ticipates (i.e., “Kyle’s lambda”). Here, ​​Λ​i​​​ is the ​K × K​ Jacobian matrix of the 
inverse residual supply of trader ​i​ , which is defined by aggregation through the 
market clearing of the schedules submitted by other traders, ​​{​q​ j​​ ( p) : ​ 핉​​ K​  → ​ 핉​​ K​ }​j≠i​​​. 
The inverse of price impact is a common measure of liquidity: the lower the price 
impact, the smaller the price concession a trader needs to accept to trade, the more 
liquid the market. It follows from ​(4)​ that if trader ​i​ knew his price impact ​​Λ​i​​​ , which 
is endogenous, he could determine his demand by equalizing his marginal utility 
and marginal payment pointwise. Let ​​q​ i​​​( · , ​Λ​i​​)​ : ​​​핉​​ K​  → ​ 핉​​ K​​ be the schedule defined 
by pointwise optimization ​(4)​ for all prices ​p​ by trader ​i​, given his assumed price 
impact ​​Λ​i​​​ ,

(5)	​ ​q​ i​​ ( p, ​Λ​i​​)  = ​ (​α​i​​ Σ + ​Λ​i​​)​​ −1​(d − p − ​α​i​​ Σ​q​ i​ 0​).​

Equilibrium price impacts ​​{​Λ​i​​}​i​​​ can now be determined by market clearing. Namely, 
the equilibrium condition requires that the price impact assumed by trader ​i​ in his 
pointwise optimization ​(5)​ is equal to the actual slope of his inverse residual supply, 
resulting from the aggregation of the other traders’ submitted schedules. Proposition 
1 shows that the system for equilibrium price impacts can be solved explicitly.

Proposition 1 (Centralized Market Equilibrium): A profile of demand schedules 
and price impacts ​​{​q​ i​​ ( · , ​Λ​i​​), ​Λ​i​​}​i​​​ is an equilibrium in a centralized market if and 
only if

	 (i)	 each trader ​i​ submits schedule ​(5)​, given his price impact ​​Λ​i​​​ ,

	 (ii)	 trader ​i​’s price impact is

	 (6)	​ ​Λ​i​​  = ​​ (​∑ j≠i​   ​​ ​ (​α​j​​ Σ + ​Λ​j​​)​​ −1​)​​​ 
−1

​,    i  =  1, … , I.​

Furthermore,

	 (iii)	 Equilibrium exists and is unique;

	 (iv)	 Trader ​i​’s price impact ​​Λ​i​​​ is proportional to the covariance matrix ​Σ​ ;
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	 (7)	​ ​Λ​i​​  = ​ β​i​​ ​α​i​​ Σ    with  ​  β​i​​  = ​   2  ______________   
​α​i​​ b − 2 + ​√ 

_______
 ​(​α​i​​ b)​​ 2​ + 4 ​
 ​, ​

		  where ​b  ∈ ​ 핉​+​​​ is the unique positive solution to  

​​∑ j​ 
  ​​ ​(​α​j​​ b + 2 + ​√ 

_______
 ​(​α​j​​ b)​​ 2​ + 4 ​)​​ −1

​  =  1/2​. ​​Λ​i​​​ is monotone decreasing in ​​α​i​​.​

Conditions (i) and (ii) jointly provide an equivalent representation of Nash equilib-
rium in schedules: (i) traders optimize given their assumed price impacts, (ii) which 
are correct. Analyzing price impact directly will be useful for understanding the 
implications of noncompetitive behavior.12 Using (5), trader ​i​ submits the schedule

(8)	​ ​q​ i​​ ( p)  = ​ γ​i​​ ​(​α​i​​ Σ)​​ −1​ (d − p − ​α​i​​ Σ​q​ i​ 0​).​

With positive price impact ​​Λ​i​​  >  0​ , trader ​i​ demands (or sells) less (​​γ​i​​  <  1​) than 
if he had submitted his competitive schedule; ​​γ​i​​  ≡ ​   1 ____ 

1 + ​β​i​​
 ​​ is the trader’s noncom-

petitive demand reduction relative to his competitive demand ​(​γ​i​​  =  1)​ and ​​β​i​​​ can 
be interpreted as price impact per unit of risk. That is, as ​I  →  ∞​ , then ​​Λ​i​​  →  0​ for 
all ​i​ , and the competitive limit bid coincides with the inverse marginal utility, given 
the quasilinearity of the utility function. Panel A of Figure 1 illustrates. It depicts 
the best response net demand of trader ​i​ given his price impact ​​Λ​i​​  >  0​ relative to 
his marginal utility. For prices such that ​​q​ i​​  >  0​ , trader ​i​ is a buyer; for prices such 
that ​​q​ i​​  <  0​ , he is a seller.

The central message of this paper is that, given the set of traders and assets, 
the centralized market may be inefficient in allocating risk relative to a decentral-
ized market structure. Corollary 1 characterizes how centralized markets allocate 
risk and is the starting point for understanding why decentralized markets might be 
more efficient. Let ​γ  ≡  (​γ​i​​)​ and ​​q​​ 0​  ≡  (​q​ i​ 0​)​ be the vectors composed of ​​γ​i​​​ and ​​q​ i​ 0​​,  
respectively.

Corollary 1 (Centralized Market Allocations and Prices): Let ​​α – ​  ≡ ​  1 _ I ​ ​ 
​∑ j​   ​​ ​γ​j​​ ___ 
​∑ j​   ​​ ​ 

​γ​j​​ __ ​α​j​​ ​
 ​​ and 

(9)	​​ q​​ ∗​​  ≡ ​​​
(

​∑ 
j
​ 
 

 ​​ ​ 
​γ​j​​

 __ ​α​j​​ ​)
​​​ 
−1

​​​ ​∑ 
j
​ 
 

 ​​​​ ​ γ​j​​​​​ q​ j​ 
0​​  = ​​ α – ​​​​∑ 

j
​ 
 

 ​​​​ ​ q​ j​ 
0​​ + ​​​

(
​∑ 

j
​ 
 

 ​​ ​ 
​γ​j​​

 __ ​α​j​​ ​)
​​​ 
−1

​​I cov(γ, ​​q​​ 0​​). 

Equilibrium trade and allocation of agent ​i​ are, respectively, 

(10)	​​ q​ i​​​  = ​​ γ​​ i​​(​​α​ i​ −1​​​​q​​ ∗​​ − ​​q​ i​ 
0​​)    and  ​​  q​ i​​​ + ​​q​ i​ 

0​​  = ​​ γ​i​​​​​α​ i​ −1​​​​q​​ ∗​​ + (1 − ​​γ​i​​​)​​q​ i​ 
0​​, 

and the vector of market-clearing prices is given by ​p  =  d − Σ​q​​ ∗​​.

12 For symmetric risk aversion, equilibrium from Proposition 1 coincides with that in Rostek and Weretka 
(2015a), which coincides with Kyle (1989, without nonstrategic traders and assuming independent values), Vayanos 
(1999), and Vives (2011). For a nonstrategic characterization of equilibrium in a general equilibrium setting (i.e., in 
terms of price and quantity levels, rather than demand functions), see Weretka (2011). Rostek and Weretka (2015a) 
introduce the Nash equilibrium representation and the equivalence result in Proposition 1 for centralized market 
games by formulating conditions on demand schedules and price impacts. 
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In the competitive centralized market, equilibrium allocation coincides with the 
efficient allocation, which maximizes total welfare ​(3)​ over the set of all feasible 
allocations ​{​{​q​ i​​}​i​​  :  ​∑ i​   ​​ ​q​ i​​  = ​ ∑ i​   ​​ ​q​ i​ 0​ }​ , or equivalently, minimizes the total utility loss 
due to risk exposure, and is given by

(11)	​ ​q​ i​ ∗∗​  = ​ α​ i​ −1​ ​q​​ ∗∗​,    where ​q​​ ∗∗​  = ​ ​(​∑ 
j
​ ​​ ​α​ j​ −1​)​​​ 

−1
​ ​∑ 

j
​ ​​ ​q​ j​ 0​.​

When traders have price impact, each trader’s allocation is a combination of 
endowment risk ​​q​ i​ 0​​ and portfolio ​​q​​ ∗​​, which is common to all traders. The equilibrium 
allocation differs from the competitive one in two ways. First, a trader retains a frac-
tion ​​γ​i​​​ of his initial endowment ​​q​ i​ 0​​. While ​​γ​i​​​ can be characterized in terms of primi-
tives, it is useful to relate it to price impact (using ​​γ​i​​  ≡  (1/(1 + ​β​i​​))​ and equation 
(7)): the smaller a trader’s price impact, the closer ​​γ​i​​​ is to 1, the less of his initial 
endowment the trader retains in equilibrium. Second, the common portfolio ​​q​​ ∗​​ that 
gets allocated to all agents differs from the efficient portfolio, unless traders risk 
preferences ​​{​α​i​​}​i​​​ are symmetric (then, ​​γ​i​​  = ​  I − 2 ___ I − 1 ​​ for all ​i​). Equilibrium noncompet-
itiveness gives rise to a discrepancy between systematic risk ​Σ​q​​ ∗∗​​, which is defined 
by (11), independent of the market structure and represents risk nondiversifiable in 
the market, and the risk that is nondiversifiable in equilibrium, which we refer to as 
aggregate risk.

Definition 1 (Aggregate Risk): Aggregate risk ​d − p​ represents the risk that is 
not diversified in equilibrium and corresponds to the risk premium in prices relative 
to the mean return ​d​. In the centralized market, ​​q​​ ∗​​ is the aggregate risk portfolio: ​
d − p = Σ​q​​ ∗​​.

In competitive markets, aggregate and systematic risk coincide and depend on 
the aggregate endowment ​​∑ j​ 

  ​​ ​q​ j​ 0​​ alone. In noncompetitive markets, aggregate risk 
is a function of equilibrium price impact. This is intuitive: what constitutes risk 

p p

q q1q1

λ1λ1

q

d − αi Σqi 
0

αi Σ + Λi αi Σ 

d − αi Σqi 
0

Split

Split

Panel A. Optimal demand schedule Panel B. Example 2

Figure 1
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that is nondiversifiable in equilibrium depends on price impact. A smaller ​​γ​i​​​ lowers 
the contribution of agent ​i​’s endowment to aggregate risk and equilibrium prices. 
In equation (9), ​​α – ​​ is the counterpart of aggregate risk aversion in the competitive 
market.

Example 2 shows that breaking up the centralized market into disjoint exchanges 
can increase welfare. It builds directly on and illustrates Corollary 1.

Example 2 (Splitting the Market Can Increase Welfare): Consider a market for 
one asset with variance ​​σ​​ 2​  =  1​ and three classes of agents of equal size ​M  ≥  3,​ 
with risk aversion ​​α​i​​​ in each class ​i  =  1, 2, 3​. If all agents’ endowments were effi-
cient, they would not trade (this holds for any market structure, Corollary 2), and 
adding or subtracting the efficient allocation would not change the conclusions. 
Therefore, without loss of generality, we may conveniently assume that the aggre-
gate endowment ​​∑ i​ 

  ​​ ​q​ i​ 0​​ is 0, and hence, by (11), ​​q​ i​ ∗∗​  =  0​ for all ​i​.
Suppose that each agent of classes ​1​ and ​2​ is endowed with ​−q​ and ​q​ units of the 

asset, respectively, while class ​3​ has an endowment of 0, and ​​α​1​​  < ​ α​2​​  ≤ ​ α​3​​​. It is 
easy to see that the efficient allocation would have each agent of class ​2​ sell ​q​ units 
to class ​1,​ and agents of class ​3​ would not trade, since they are already holding their 
efficient allocation.

However, in the noncompetitive centralized market, class ​3​ agents do trade 
in equilibrium, despite their efficient initial allocation, because the aggregate 
portfolio differs from the efficient one: ​​α​2​​  > ​ α​1​​​ implies ​​γ​2​​  > ​ γ​1​​​; hence by 
(9), ​​q​​ ∗​  >  0.​ Price is below its competitive level, which makes it optimal for agents 
of class ​3​ to hold ​​q​ 3​ 0​ + ​q​ 3​​  = ​ γ​3​​ ​α​ 3​ −1​ ​q​​ ∗​  >  0​. The other classes do not diversify 
fully: ​​q​ i​ 0​ + ​q​ i​​  =  (1 − ​γ​i​​) ​q​ i​ 0​ + ​γ​i​​ ​α​ i​ −1​ ​q​​ ∗​,  i  =  1, 2​.

Consider next a decentralized market created by breaking up the centralized mar-
ket into two exchanges, one for classes ​1​ and ​2​ and the other for class ​3​. In the 
second exchange, since class ​3​ agents have identical endowments, they do not trade, 
which is efficient; ​​q​ 3​ 0​ + ​q​ 3​ 

Split​  =  0.​ In the first exchange, price impact increases 
strictly for all traders; we will show that an increase in price impact is a general 
result of decentralization (Theorem 2). However, having excluded class ​3​ agents, 
the relative price impacts (and weights ​​{​γ​i​​}​i​​​) change so that the aggregate risk 
increases: denoting the aggregate risk portfolio in the first exchange by ​​q​​ ∗, Split, 1​​,  
we have ​​q​​ ∗, Split, 1​  ≡ ​​ (​∑ j∈1​   ​​ ​ 

​γ​j​​ __ ​α​j​​ ​)​​​ 
−1

​ ​∑ j∈1​   ​​ ​ γ​j​​ ​q​ j​ 0​  > ​ q​​ ∗​​. With sufficient heterogeneity 

in initial endowments (for any risk aversion), the increase is such that by buying 
a smaller fraction (due to the larger price impact) of the larger aggregate portfolio 
class ​1​ traders attain an allocation closer to the efficient allocation of 0 than in the 
centralized market; in equilibrium, ​0  > ​ q​ 1​ 0​ + ​q​ 1​ 

Split,1​  > ​ q​ 1​ 0​ + ​q​ 1​​.​ Moreover, com-
pared to the centralized market, the inefficiency is concentrated among class ​1​ and ​2​ 
traders. Given the concavity of utility, with sufficient heterogeneity in endowments, 
the total welfare increases (online Appendix D provides details).

Panel B of Figure 1 illustrates the corresponding shifts in demand and residual 
supply of class 1. In the centralized market, the residual supply of a class 1 agent 
aggregates the net demands of all other agents; in the split market, it aggregates the 
net demands of all other traders excluding class ​3​. In response to their larger price 
impact in the split market, ​​λ​1​​  < ​ λ​ 1​ 

Split​​ , class ​1​ agents reduce their net demands for all 
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prices. However, the residual supply of class 1 shifts having excluded class 3 agents 
from the exchange and class 1 agents buy more in the split market: ​​q​ 1​ 

Split​  > ​ q​ 1​​​.
Heterogeneity in risk aversions is crucial: with symmetric risk preferences, aggre-

gate risk would be the same in the two market structures. While allocation would 
not be efficient due to price impact, we will show that when this is the only type of 
inefficiency, the centralized market is still the second best (Proposition 3). However, 
this need not be the case when some traders do not trade monotonically toward the 
efficient allocation, as this example illustrates: if some agents’ initial endowments 
are close to efficient, in the centralized market they will trade inefficiently (class ​3​); 
conversely, if some agents’ initial endowments are highly inefficient and their risk 
aversion is low (price impact is high), they will trade too little relative to what a 
decentralized market allows (class ​1​). ​​

The result of Example 2 is striking. In centralized competitive markets, remov-
ing agents from the market cannot improve welfare for other agents; the competi-
tive allocation is in the core. Equation (9) provides the first key observation: unless 
agents’ risk preferences ​​{​α​i​​}​i​​​ are symmetric or agents’ price impacts are 0 (​​γ​i​​  =  1​ 
for all ​i​), the aggregate risk portfolio ​​q​​ ∗​​ differs from the efficient portfolio ​​q​​ ∗∗​​ , which 
is independent of the market structure. In particular, aggregate risk depends on the 
joint distribution of endowment risk ​​{​q​ i​ 0​}​i​​​ and risk preferences (equilibrium price 
impact ​​{​γ​i​​}​i​​​) rather than on the aggregate endowment alone.

The second main observation is that the centralized market allocates risk in a 
particular way. Namely, in the centralized market, less risk-averse agents have 
greater price impact: if ​​α​1​​  <  ⋯  < ​ α​I​​​ , then ​​Λ​1​​  >  ⋯  > ​ Λ​I​​​; less risk-averse 
agents face a more risk-averse residual market, and therefore a less elastic residual 
supply (cf. equation (6)). Since less risk-averse agents will be reluctant to buy (or 
sell), equilibrium prices will be low (or high), and if their endowment happens to 
significantly differ from their efficient allocation, other agents will retain a large 
fraction of their nondiversified risk. Thus, in noncompetitive markets, the efficiency 
of the centralized market allocation depends on the joint distribution of initial 
endowments and risk preferences. This also suggests that a decentralized market can 
be more efficient than the centralized market if it reallocates risk so that more risk-
averse agents attain allocation closer to the efficient one. We will next characterize 
how in a decentralized market, equilibrium price impact and the aggregate portfolio 
depend on the market structure.

B. Equilibrium and Allocation of Risk in Decentralized Markets

Theorem 1 shows that conditions analogous to those in Proposition 1 characterize 
equilibrium in the general model of decentralized markets. Consider the optimiza-
tion problem (2) of a trader ​i​ who submits a demand schedule in exchanges ​N(i)​, in 
which he participates,

​(12)	 ​q​ i​​ ( ​p​ N(i)​​, ​Λ​i​​)  = ​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​ −1​ (​d​ N(i)​​ − ​p​ N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​).​

Recall that ​V​ is the covariance matrix of all assets traded on all exchanges and  
​​V​N(i)​​​ is its submatrix with rows and columns from exchanges ​N(i)  ⊆  N.​ In analogy 
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to (5), trader ​i​’s demand equalizes his marginal utility and marginal payment, 
which depends on his price impact ​​Λ​i​​​ in the exchanges in which he participates: 

the ​N(i) × N(i)​ Jacobian matrix ​​Λ​i​​  = ​ (​ 
∂ ​(​p​ 1​​, …, ​p​ N(i)​​)​  ___________  

∂ ​(​q​ i,1​​, …, ​q​ i, N(i)​​)​
 ​)​  = ​​ (​ ∂ ​p​ ℓ​​ ____ ∂ ​q​ i, k​​

 ​)​​
k,ℓ

​​.​ Entry ​(k, ℓ)​ 
represents the price change of asset ​ℓ​ that results from a marginal increase in the 
demanded quantity of asset ​k​.

In equilibrium, trader ​i​’s price impact ​​Λ​i​​​ must equal the slope of his residual inverse 
supply, which is defined by aggregation through market clearing of the schedules 
submitted by other traders, ​​{​q​ j​​ ( ​p​ N( j)​​) : ​핉​​ N( j)​  → ​ 핉​​ N( j)​}​j≠i​​​. In a decentralized mar-
ket, traders’ price impacts are of different dimensionality, correspond to different 
assets, and in general are not independent across exchanges, so the market-clearing 
condition cannot be written exchange-by-exchange. To apply market clearing to all 
assets in all exchanges, we use the procedure of lifting, which restores common 
dimensionality. For a given subset ​N(i)  ⊆  N​ , decompose ​​핉​​ N​  = ​ 핉​​ N(i)​ ⊕ ​핉​​ N \N(i)​​ 
as a direct sum of two subspaces corresponding to coordinates that agent ​i​ trades 
and those that he does not trade, where ​​핉​​ N​​ is the space of asset holdings of dimen-
sion ​​∑ n∈N​   ​​  K(n)​. Any symmetric matrix ​A​ can be decomposed into a block form

(13)	​ A  = ​ (​ 
​A​ i, i​​​ 

​A​ i,−i​​​ 
​A​ i,−i​ T ​

​ 
​A​ −i,−i​​

​)​,​

where ​​A​ i, i​​  = ​ A​ N(i)​​​ acts on subspace ​​핉​​ N(i)​​, ​​A​ −i,−i​​  = ​ A​ N \N(i)​​​ acts on the complemen-

tary subspace ​​핉​​ N \N(i)​​ , and ​​A​ i,−i​​​ is a rectangular block.

Definition 2 (Lifting): For any matrix ​​A ​i, i​​  ∈ ​ 핉​​ N(i)×N(i)​​ , let ​​​A 
–
 ​​i, i​​​ denote the lifted 

matrix which acts on ​​핉​​ N​​ , and with a slight abuse of notation, let ​​​A 
–
 ​​ i, i​ −1​​ denote its 

inverse:13

(14)	​​​ A 
–
 ​​i, i​​  ≡ ​ (​​A​ i, i​​​  0​ 

0
​ 

0
​)​,  ​​  A 

–
 ​​ i, i​ −1​  ≡ ​ (​​A​ i, i​ −1​​  0​ 

0
​ 

0
​)​.​

In what follows, for simplicity of notation, we use ​​​q – ​​i​​  ∈ ​ 핉​​ N​​ and ​​​q – ​​ i​ 0​  ∈ ​ 핉​​ N​​ to also 
denote the vectors ​​q​ i​​  ∈ ​ 핉​​ N(i)​​ and ​​q​ i​ 0​  ∈ ​ 핉​​ N(i)​​ “completed” by zeros in their ​​핉​​ N \N(i)​​ 
coordinates. In this notation, we can write the lifted demand schedule of agent ​i​ 
as ​​​q – ​​i​​ ( ​p​ N(i)​​)  = ​ (​α​j​​ ​​V 

–
 ​​N( j)​​ + ​​Λ 

–
 ​​j​​)​​ −1​(d − p − ​α​i​​ V ​​q – ​​ i​ 0​).​

Treating assets traded in different exchanges as distinct assets and dealing with 
aggregation through lifting allows us to characterize equilibria in any decentralized 
market by two conditions: (i) each trader submits a schedule that equalizes his mar-
ginal utility and marginal payment given his price impact (i.e., submits ​​q​ i​​​( · , ​Λ​i​​)​​), 
and (ii) the price impact ​​Λ​i​​​ in ​​q​ i​​​( · , ​Λ​i​​)​​ is correct (i.e., it equals the slope of the resid-
ual supply resulting from the aggregation of other traders’ schedules, projected on 
the assets relevant for trader ​i​). Recall that for two symmetric matrices ​A, B,​ matrix ​
A​ is larger than ​B​ in the positive semidefinite order if ​A − B​ is positive semidefinite; 
we write ​A  ≥  B.​

13 ​​A​ i, i​ −1​​ is the Moore-Penrose pseudoinverse (Penrose 1955) of ​​A​ i, i​​​ if ​​A​ i, i​​​ is not invertible. 
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Theorem 1 (Decentralized Market Equilibrium): A profile of demand schedules 
and price impacts ​​{​q​ i​​ ( · , ​Λ​i​​), ​Λ​i​​}​i​​​ is an equilibrium in a decentralized market with 
trader participation ​​{ N(i )}​i​​​ if and only if 

	 (i)	 each trader ​i​ submits schedule (12), given his price impact, 

	 (ii)	 ​i​’s price impact ( projected on the exchanges ​N(i)​ where he participates, after 
lifting) is 

	 (15)	​​ Λ​i​​​  = ​​​
(

​​(​∑ 
j≠i

​ 
 
 ​​ (​α​j​​​​V 

–
 ​​N( j)​​ + ​​Λ 

–
 ​​j​​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​​,    i  ∈  I. 

Furthermore,

	 (iii)	 Equilibrium exists and is locally unique, generically in risk aversions and the 
covariance matrix.14

	 (iv)	 For any decentralized market, the set of equilibrium price impact tuples has 
unique maximal and minimal elements in the sense of the positive semidefi-
nite order. Equilibrium price impacts are positive semidefinite. If the covari-
ance matrix ​​V​N(i)​​​ is invertible for any ​i​ , price impacts are positive definite.15

Although covariances ​​V​N( j)​​​ and price impacts ​​Λ​j​​​ are for “local” exchanges, when 
lifted, the same aggregation condition (6) as in the centralized market applies. 
Theorem 1 thus allows a direct comparison of equilibrium in decentralized and cen-
tralized markets. In contrast to centralized markets, price impacts are generally not 
proportional to the fundamental covariance matrix. In fact, ​​Λ​i​​​ is not proportional 
to ​​V​N(i)​​​ for generic ​​V​N(i)​​​. The positive semidefiniteness of price impact is implied by 
equilibrium. By (15), if price impact were not positive semidefinite, ​​α​j​​ ​V​N( j)​​ + ​Λ​j​​​ 
would not be either for some ​j​.16 Then, for some portfolio ​y​ ,  ​​y​​ T​ (​α​j​​ ​V​N( j)​​ + ​Λ​j​​)y  <  0​ 
and buying an infinite amount of ​y​ would be optimal.

The double auction game—centralized and decentralized—can be equivalently 
seen as a game in which agents choose their demand slope ​​S​ i​​  ≡ ​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​ −1​​.  
Since these demand slopes are positive semi-definite, we can study them using the 
positive semi-definite order extended to tuples and say that one tuple is larger than 
another one if it is larger coordinate by coordinate. In the centralized market, the 
set of slope tuples ​​{​S​ i​​}​i​​​ is a lattice; this follows from the proportionality of price 
impact in the covariance so that ​​(​α​i​​ Σ + ​Λ​i​​)​​ −1​  = ​ γ​i​​ ​(​α​i​​ Σ)​​ −1​​ and hence the order 
coincides with the natural order on ​​핉​​ I​.​ In decentralized markets, since the set of 
symmetric matrices is not a lattice with respect to the positive semidefinite order,17 

14 That is, for almost every positive definite matrix with respect to the measure induced by the Lebesgue mea-
sure on the set of positive definite matrices. 

15 Induced by the covariance matrix ​Σ​ and trader participation ​​{N(i)}​i​​​ , ​​V​N(i)​​​ can be singular only if agent ​i​ can 
trade the same asset in different exchanges. In this case, agents are indifferent about which exchange to trade in and 
so (replicas of) assets trade at the same prices. 

16 Indeed, if ​​α​j​​ ​V​N( j)​​ + ​Λ​j​​​ is positive semidefinite for each ​j,​ then so is ​​(​α​j​​ ​V​N( j)​​ + ​Λ​j​​)​​ −1​​ (because inversion 
preserves positive semi-definiteness), and hence so is also the right-hand side of (15). 

17 It is generally not possible to define the greatest lower bound and the least upper bound for a bounded set of 

positive semidefinite matrices. For example, consider ​A  = ​ (​1​  0​ 
0
​ 

2
​)​ and B = ​(​1​  1​ 

1
​ 

2
​)​​. Note that both ​A ≱ B​ and ​
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Tarski’s fixed point theorem cannot be applied to prove the existence of equilibrium 
and comparative statics. Nevertheless, we show that the price impact of each agent 
is monotone increasing (in this order) in the price impacts of others; standard argu-
ments then give existence. Exploiting properties of positive definite matrices and 
refining the iterative procedure allows us then to prove existence of unique maximal 
and minimal elements in the set of equilibria.18 We show that for any equilibrium in 
a less decentralized market, there is an equilibrium in the more decentralized market 
that has a larger price impact. All statements about more decentralized markets in 
Theorem 2 hold for any such equilibrium in these markets. In the sequel, we refer to 
either the minimal or maximal equilibria, which are unique.19

Let us remark that if a trader who knows his own utility knows his own price impact 
in the exchanges in which he participates, then by Theorem 1, his strategy ​​q​ i​​ ( · , ​Λ​i​​)​ 
would not be altered by knowledge of the market structure ​​{N(i)​}​i​​​ ​​​ , the terms of trade 
in exchanges ​N \N(i)​, or even the submitted schedules or preferences of the traders 
in ​N \N(i)​. Despite the potential complexity of the trading environment, through the 
fixed-point condition (15), price impact ​​Λ​i​​​ is the sufficient statistic for the optimality 
of trader ​i​’s schedule in exchanges ​N(i)​, given the schedules of all traders ​j  ≠  i​ in all 
exchanges ​n  ∈  N​ (i.e., ​​Λ​i​​  ∈ ​ 핉​​ N(i)×N(i)​​ is sufficient for ​​{​q​ j​​ ( · ) : ​핉​​ N( j)​  → ​ 핉​​ N( j)​}​j≠i​​​).  
Thus, the opacity of decentralized markets is without loss of generality for 
equilibrium in trading environments with independent private values.

By Theorem 1, analysis of the equilibrium properties effectively reduces to study-
ing the properties of the solution to the fixed point system (15) for price impacts. We 
illustrate the properties of this system with the following example.

Example 3 (Equilibrium Price Impacts): Consider a market with two exchanges 
for one asset and three classes of agents, with ​​M​ i​​​ agents in each class ​i  =  1, 2, 3​. 
Agents of class ​1​ trade only in exchange ​1,​ agents of class ​3​ trade only in exchange ​
2,​ and the agent of class ​2​ (​​M​ 2​​  =  1​) trades in both exchanges. Price impacts ​​Λ​1​​​ 
and ​​Λ​3​​​ are scalars, while ​​Λ​2​​​ is a matrix. The lifted price impacts and the covariance 
matrix for the market are given by

	​​​ Λ 
–
 ​​1​​  =  ​(​​Λ​1​​​  0​ 

0
​ 

0
​)​,      ​​Λ 

–
 ​​3​​  =  ​(​0​  0​ 

0
​  ​Λ​3​​

​)​,      ​​Λ 
–
 ​​2​​  =  ​Λ​2​​  =  ​(​​Λ​ 2​ 11​​  ​Λ​ 2​ 12​​ 

​Λ​ 2​ 21​
​ 

​Λ​ 2​ 22​
​)​,       V  =  ​(​​σ​​ 2​​  ​σ​​ 2​​ 

​σ​​ 2​
​ 

​σ​​ 2​
​)​ ,​

A ≰ B​ hold, because the positive semidefinite order is incomplete. By definition, matrix ​C  = ​ (​a​  c​ c​  b​)​​ is the least 

upper bound of ​A​ and ​B​ if ​C  ≥  A​, ​C  ≥  B​ , and any other matrix ​C​′ satisfying ​C′  ≥  A,  C′  ≥  B​ also satisfies ​
C′  ≥  C​. However, ​C  ≥  A​ and ​C  ≥  B​ is equivalent to ​a  >  1,  b  >  2, (a − 1)(b − 2)  ≥  max {​c​​ 2​, ​(c − 1)​​ 2​ }​. 
Clearly, one can decrease ​a​ and increase ​b​ without violating these inequalities, which implies that ​C​ cannot be the 
least upper bound. Separately from the absence of the lattice order on strategies, an agent’s utility differences are, in 
general, not monotone in the changes of strategies by others—the decentralized-market game is not supermodular. 

18 While Theorem 1 only establishes the existence of an equilibrium, we conjecture that equilibrium is glob-
ally unique. This is true in all of the examples in the paper and is confirmed by extensive numerical simulations. 
Equilibrium, defined as ​​{ ​q​ i​​ ( · , ​Λ​i​​), ​Λ​i​​}​i​​​ , is locally unique for generic parameters (this is a consequence of real ana-
lyticity of the equilibrium system; see, for example, Hugonnier, Malamud, and Trubowitz 2012). 

19 Let us relate our uniqueness results in Proposition 1 and Theorem 1 to that in Lambert, Ostrovsky, and Panov 
(2016), who consider a (centralized) game in which strategies are quantities (market orders). We analyze games in 
demand and supply functions. In that paper, there is a single asset and a single liquidity provider; thus, there is a 
scalar price impact, the same for all agents, and this one number solves a quadratic equation that has a unique posi-
tive solution, hence the unique equilibrium. By contrast, we have multiple assets, multiple exchanges, and multiple 
heterogeneous price impacts that are matrices and solve a system of nonlinear equations. 
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where ​​σ​​ 2​​ is the asset variance, and the fixed point system is

(16)  ​​  Λ​1​​  = ​​ (​​((​M​ 1​​ − 1)​(​​Λ 
–
 ​​1​​ + ​α​1​​ ​​V 

–
 ​​11​​)​​ −1​ + ​(​Λ​2​​ + ​α​2​​ V)​​ −1​

	  + ​M​ 3​​ ​(​​Λ 
–
 ​​3​​ + ​α​3​​ ​​V –

 ​​22​​)​​ −1​)​​​ −1
​)​​

11
​​,

	​ Λ​3​​  = ​​ (​​(​M​ 1​​ ​(​​Λ 
–
 ​​1​​ + ​α​1​​ ​​V 

–
 ​​11​​)​​ −1​ + ​(​Λ​2​​ + ​α​2​​ V)​​ −1​

	  + (​M​ 3​​ − 1)​(​​Λ 
–
 ​​3​​ + ​α​3​​ ​​V 

–
 ​​22​​)​​ −1​)​​​ −1

​)​​
22

​​,

	​ Λ​2​​  = ​​ (​M​ 1​​ ​(​​Λ 
–
 ​​1​​ + ​α​1​​ ​​V 

–
 ​​11​​)​​ −1​ + ​M​ 3​​ ​(​​Λ 

–
 ​​3​​ + ​α​3​​ ​​V 

–
 ​​22​​)​​ −1​)​​​ −1

​.​

We can rewrite the equation for ​​Λ​2​​​ as follows: by the definition of lifting,

(17)	​ ​Λ​2​​  = ​ (​
​M​ 1​ −1​(​Λ​1​​ + ​α​1​​ ​V​11​​)​ 

0
​  

0
​ 

​M​ 3​ −1​(​Λ​3​​ + ​α​3​​ ​V​11​​) 
​)​.​

We will show (Theorem 2) that equilibrium price impacts of traders in both 
exchanges decrease when the number of traders increases in exchange ​1​ or the con-
nected exchange ​2​ , or their risk aversion decreases: the less risk-averse the traders 
of class ​1​ are and the larger their number ​​M​ 1​​​, the more liquidity they provide to class ​
2,​ lowering ​​Λ​2​​,​ and in turn, the more liquidity the trader of class ​2​ provides to class ​
3,​ lowering ​​Λ​3​​​. ​​

The interdependence among price impacts is anticipated by Theorem 1. In general, 
the equilibrium price impact of trader ​i​ in exchanges ​N(i)​ depends, and positively 
so, not only on the price impacts of other traders in exchanges ​N(i)​ but also on the 
price impacts of the traders in all other exchanges ​N \N(i)​ (in the same connected 
component), including those with whom he is linked only through counterparties 
(e.g., classes ​1​ and ​3​ in Example 3). More generally, a trader’s price impact in a 
decentralized market also depends on the price impacts of the traders in exchanges 
in which his counterparties do not participate.

Example 3 also shows that even if the total number of traders is large, when 
trading is decentralized, traders generally have nonnegligible price impact in the 
exchanges in which they participate. In general, when agents have access to a per-
fectly liquid exchange ​n​, they will have strictly positive price impact in the other 
exchanges ​N(i)\{n}​ in which they participate.

Corollary 2 characterizes equilibrium trades and prices in decentralized markets. 
Corollary 4 in online Appendix D explicitly characterizes allocations for markets 
with one asset.

Corollary 2 (Decentralized Market Allocations and Prices): Let 

(18)	​​ Q​​ ∗​​  = ​​​ (​∑ 
j
​ 
 
 ​​ (​α​j​​​​V 

–
 ​​N( j)​​ + ​​Λ 

–
 ​​j​​​)​​ −1​)​​​ 

−1
​​​​∑ 

j
​ 
 
 ​​​​ ​​ Γ –

 ​​j​​​​​ q​ j​ 0​​,
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and ​​Γ​i​​  ≡ ​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​ −1​ ​α​i​​ ​V​N(i)​​​. The equilibrium allocation of agent ​i​ is 

(19)	​​ q​ i​​​ + ​​q​ i​ 0​​  =  (​​α​i​​​​​V​N(i)​​​ + ​​Λ​i​​​​​)​​ −1​​​​Q​ N(i)​ ∗ ​​  + (Id − ​​Γ​i​​​)​​q​ i​ 0​​, 

and the vector of market-clearing prices is given by ​p  =  d − ​Q​​ ∗​​. If the initial allo-
cation is efficient, ​​q​ i​ 0​  = ​ q​ i​ ∗∗​​ for all ​i​ , then there is no trade.

As in the noncompetitive centralized market equilibrium, each trader is exposed 
to endowment and aggregate risks. The term ​​Q​​ ∗​​ is the decentralized market coun-
terpart of the aggregate risk ​Σ​q​​ ∗​​; it represents the risk premium ​d − p  = ​ Q​​ ∗​​ in 
prices and is defined by market clearing applied to all traders’ demands.20,21 Like 
​Σ​q​​ ∗​,​ ​​Q​​ ∗​​ is also in risk units; unlike ​Σ​q​​ ∗​​, ​​Q​​ ∗​​ is not separable in the covariance. In 
addition to the effects brought by noncompetitiveness itself (​​Λ​i​​  >  0​)—i.e., allo-
cation retains endowment risk, aggregate and systematic risk differ—decentralized 
trading makes both the risk nondiversifiable in equilibrium ​​Q​​ ∗​​ and a trader’s equi-
librium demand reduction ​Id − ​Γ​i​​​ depend on the market structure. Namely, both 
are a function of asset covariance, and ​​Q​​ ∗​​ also depends on distribution of endow-
ments across exchanges. As a result, the quantity of aggregate risk allocated to a 
trader in the exchanges in which he participates generally depends on the prefer-
ences of agents and the covariance of assets from all exchanges. We should note that 
the dependence of risk ​​Q​ N(i)​ ∗ ​ ​ and weight ​Id − ​Γ​i​​​ on the covariances in exchanges ​
N \N(i)​ as well as ​N(i)​ arises in a decentralized market because price impact ​​Λ​i​​​ is no 
longer proportional to covariance ​​V​N(i)​​​. Example 4 illustrates how the properties of 
aggregate risk differ in decentralized and centralized markets.

Example 4 (Aggregate Risk): Consider the market from Example 2, and sup-
pose that one of the agents of class ​1​ , denoted by ​1d​ (a dealer), can trade in both 
exchanges ​1​ and ​2.​ The market is then less decentralized than the split market (cf. 
Definition 3), and agent ​1d​ serves as an intermediary between class ​2​ , class ​3,​ and 
other agents of class ​1.​ Using Example 3, the price impact of trader ​1d​ is diagonal,

	​ ​Λ​1d​​  = ​​ (​
(M − 1) ​(​Λ​1​​ + ​α​1​​)​​ −1​ + M ​(​Λ​2​​ + ​α​2​​)​​ −1​

​ 
0
​   

0
​ 

M ​(​Λ​3​​ + ​α​3​​)​​ −1​
​)​​​ 

−1

​.​

20 The linearity of equilibrium prices in endowments leads us to interpret Corollary 2 in CAPM terms. A decen-
tralized market CAPM holds, even with strategic traders whose price impact is nonnegligible. In each exchange, 
expectations of asset payoffs lie on a security-market line defined by an agent-specific portfolio. With many assets, 
agents diversify risk through different (and multiple) funds, which depend on their participation in exchanges. See 
Malamud and Rostek (2016) for a decentralized market CAPM. 

21 Malamud and Rostek (2016) show that when exchanges are linked by one trader, prices of the same asset 
generally differ; with two or more common participating traders, price impacts, and prices for the same asset 
equalize between exchanges and are generically noncompetitive. In turn, the presence of one (or many) trader(s) 
who can engage in pure riskless arbitrage would not affect the main conclusions. In fact, this often is not possible, 
for instance, in dealer-intermediated markets. Even if an arbitrageur could place buying and selling orders in two 
exchanges, in a noncompetitive market, he would have price impact. A large enough round-trip order would change 
prices and result in strictly negative profits. That is, in contrast to competitive markets, profits from arbitrage are 
not infinite, but bounded. Thus, unlike the competitive model, sufficient fixed entry costs can discourage outside 
investors from arbitraging the liquidity effect. In practice, entry costs involve not only explicit trading costs but also 
costs associated with learning and monitoring the characteristics of particular stocks. 
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As in Example 2, we assume that class ​1​ agents are endowed with ​− q​ units of the 
asset, class ​2​ agents are endowed with ​q​ units, and agents of class ​3​ have zero initial 
endowment. Then,22

	​ ​∑ 
j
​ ​​ ​​Γ –

 ​​j​​ ​q​ j​ 0​  = ​ (​(M​  Γ​2​​ − (M − 1) ​Γ​1​​)q​  
0
  ​)​ + ​Γ​1d​​​(​

−q/2
​ 

−q/2
​)​,​

and Corollary 2 implies that the aggregate risk is given by

 ​​ Q​​ ∗​  =  ​(​​Q​ 1​ ∗​​ 
​Q​ 2​ ∗​

​)​  =  ​​
(

​(​
(M  −  1)​(​Λ​1​​  +  ​α​1​​)​​ −1​  +  M​(​Λ​2​​  +  ​α​2​​)​​  −1​

​ 
0
​   

0
​ 

M ​(​Λ​3​​  +  ​α​3​​)​​ −1​
​)​

	 + ​(​Λ​1d​​ + ​α​1​​ V)​​ −1​
)

​​​ 
−1

​

	         ×  ​(​(​(M​Γ​2​​  −  (M  −  1)​Γ​1​​)q​ 
0
  ​)​  +  ​Γ​1d​​​(​

−q/2
​ 

−q/2
​)​)​,    where 

	 V  =  ​(​​σ​​ 2​​  ​σ​​ 2​​ 
​σ​​ 2​

​ 
​σ​​ 2​

​)​.​

Observe that (i) the aggregate risk is common to all traders in a given exchange ​
n  =  1, 2​; however, (ii) ​​Q​ n​ ∗​​ is a weighted average of the endowments of all agents in 
the market (in a connected component of the graph on exchanges). In addition, (iii) 
since the exchange-specific coordinates ​​Q​ 1​ ∗​ , ​Q​ 2​ ∗​​ of the aggregate risk vector generally 
differ, the same asset trades at different prices in different exchanges. In particular, 
(iv) in contrast to the centralized market (Definition ​(1)​), the aggregate risk is not 
separable in the covariance ​V​ due to the nonproportionality of price impact to ​V​ in 
decentralized markets; contrary to the standard CAPM, the risk premium cannot be 
written as ​V​Q ̃ ​​ for some vector ​​Q ̃ ​​  — otherwise, prices of identical assets would be 
equal across exchanges. Indeed, if ​V  =  1,​ all coordinates of ​V​Q ̃ ​​ are equal.23

The equilibrium allocation of risk in this intermediated market is given by

(20) ​​ q​ 1​ 0​ + ​q​ 1​​  = ​ (​Λ​1​​ + ​α​1​​)​​ −1​ ​Q​ 1​ ∗​ − (1 − ​Γ​1​​)q,

	​ q​ 2​ 0​ + ​q​ 2​​  = ​ (​Λ​2​​ + ​α​2​​)​​ −1​ ​Q​ 1​ ∗​ + (1 − ​Γ​2​​)q, 

	​ q​ 3​ 0​ + ​q​ 3​​  = ​ (​Λ​3​​ + ​α​3​​)​​ −1​ ​Q​ 2​ ∗​,

	​ q​ 1d​ 0 ​ + ​q​ 1d​​  =  (1, 1) · ​(​(​Λ​1d​​ + ​α​1​​ V)​​ −1​​(​​Q​ 1​ ∗​​ 
​Q​ 2​ ∗​

​)​ + (Id − ​Γ​1d​​)​(​
−q/2

​ 
−q/2

​)​)​,​

22 The split of endowment ​− q​ of trader ​1d​ across the two exchanges can be arbitrary, because endowment 
affects only the marginal utility for the first unit, which is the same in both exchanges (equation (12)). 

23 ​​Q​ N(i)​ ∗ ​ ​ and ​​Q​ n​ ∗​​ represent how aggregate risk ​​Q​​ ∗​​ affects a trader or an exchange, respectively. In the presence of 
shocks, these trader-specific and exchange-specific risks can be seen as measuring systemic risk, various formaliza-
tions of which in the literature share its dependence on equilibrium and position in the network. 
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where the multiplication by ​(1, 1)​ in the last line sums the holdings of agent ​1d​ in 
exchanges ​1​ and ​2.​ The intermediary trades both components ​​Q​ 1​ ∗​,  ​Q​ 2​ ∗​​ of aggregate 
risk, whereas all other traders buy or sell its distinct components. ​​

It follows from Corollary 2 that decentralized trading changes agents’ ability 
to diversify in two ways (cf. Proposition 1): aggregate risk (prices) changes, since 
agents now acquire exchange-dependent components of ​​Q​​ ∗​​ , which may make it 
optimal for some to trade closer to their efficient allocation; and equally risk-averse 
agents with identical endowments need not diversify in the same way. In Example 2, 
the component of aggregate risk for class ​1​ (the natural buyers) increases, thus low-
ering prices, which leads class ​1​ to buy more, while the natural sellers (classes ​2​ and ​
3​) sell less. Additionally, classes ​2​ and ​3​ do not equalize their equilibrium allocation 
of aggregate risk ​​γ​i​​ ​α​ i​ −1​ ​q​​ Split, n​, n  =  1, 2​ , as they would in the centralized market.

III.  Market Decentralization: Price Impact and Welfare

Before we analyze how market decentralization affects welfare, we first examine 
how it affects traders’ price impacts. Let us make precise how market structures and 
price impacts are ranked.

Definition 3 (More Decentralized Than): Fix the set of traders and assets ​
(I, K )​. Consider two markets with the sets of exchanges ​  = ​ {(I(n), K(n))}​n​​​ and ​
′  = ​ {(I(n′  ), K(n′  ))}​n′​​​. We say that the market ​′​ is more decentralized than  if 
for any exchange ​n′​ in ​′​, there exists an exchange ​n​ in ​​​​ such that ​I(n′ )  ⊆  I(n)​ 
and ​K(n′ )  ⊆  K(n)​.

Thus, a more decentralized market restricts the participation of some agents in 
trading, with respect to traders or assets. By definition, any decentralized market is 
more decentralized than the centralized market. Suppose that ​′​ is more decen-
tralized than  , and let ​​{​Λ​ i​ 

′​  }​i​​​ and ​​{​Λ​ i​ 
​ }​i​​​ be the corresponding equilibrium price 

impacts (which are symmetric and positive semidefinite, by Theorem 1). We say 
that the price impact tuple ​​{​Λ​ i​ 

​}​i​​​ is smaller than ​​{​Λ​ i​ 
′​ }​i​​​ and write ​​{​Λ​ i​ 

​ }​i​​  ≤ ​ {​Λ​ i​ 
′​ }​i​​​  

if for all ​i​ ,

	​​​ (​Λ​ i​ 
​)​​N′(i)​​  ≤ ​ Λ​ i​ 

′​.​

If price impacts are higher in the positive semidefinite order,24 the agents behave 
as if the assets they are trading are riskier. Recall that if two symmetric positive 
semidefinite matrices ​A,  B​ satisfy ​A  ≥  B​ , then the diagonal elements sat-
isfy ​​A​ ii​​  ≥ ​ B​ ii​​​ for all ​i​ (however, no implication for the ordering of the off-diagonal 
elements follows), ​​A​ N(i)​​  ≥ ​ B​ N(i)​​​ for any ​i​ , and ​​A​​ −1​  ≤ ​ B​​ −1​​.

24 One cannot generally conclude that the dealer’s price impact in exchange ​2​ is lower than in the split market: 
one can only compare the price impact in the exchanges in which the agent participates in both market structures 
(cf. Definition 4 in the online Appendix). In particular, it could happen that ​​Λ​ 1d, 22​ DM ​   > ​ λ​ 1d​ 

Split​​ if the risk aversion of 
class ​3​ agents is sufficiently low. 
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A. Price Impact in Decentralized Markets

Given a map ​Λ​ from the set of positive semi-definite covariance matrices 
into the set of positive semi-definite matrices, we say that this map is concave if  
​Λ(0.5(V + V′ ))  ≥  0.5(Λ(V) + Λ(V′ ))​ for any positive semi-definite matrices ​V, 
V′.​ Similarly, a map ​Λ​ from ​​핉​ +​ I ​​ to the set of positive semi-definite matrices is con-
cave if ​Λ(0.5(α + α′ ))  ≥  0.5(Λ(α) + Λ(α′ ))​ for any ​α, α′  ∈ ​ 핉​ +​ I ​.​

Theorem 2 (Price Impact Monotonicity and Concavity): The following is true:

	 (i)	 Fix the set of traders and assets ​(I, K )​. If ​′​ is more decentralized than ​,​ 
then ​​{​Λ​ i​ 

′​  }​i​​  ≥ ​ {​Λ​ i​ 
​}​i​​.​

	 (ii)	 The equilibrium price impact tuple ​​{​Λ​i​​ }​i​​​ is increasing and concave in risk 
aversion ​​{​α​j​​}​j​​​ and the covariance matrix ​Σ​ and is decreasing in the number 
of agents in the market.

	 (iii)	 Fix the market structure :

		  (a)  If ​N(i)  =  N( j)​ and ​​α​i​​  ≤ ​ α​j​​​ , then ​​Λ​i​​  ≥ ​ Λ​j​​ .​

		  (b)  �If ​N(i)  ⊃  N( j)​ and trader ​j​ participates in a single exchange for one 
asset, then ​​α​i​​  ≤ ​ α​j​​​ implies that the equilibrium price impact of trader ​i​ 
in exchange ​N( j)​ is larger than that of trader ​j​ ,

	​ ​(​Λ​i​​)​N( j)​​  ≥ ​ Λ​j​​ .​

Theorem 2 reports two complementarity results on how the interconnectedness 
among exchanges ​​{N(i)}​i​​​ affects a trader’s equilibrium price impact in exchanges ​
N(i)​: changes in either the market structure or the characteristics of traders or assets 
that lower any trader’s price impact in some exchange lower the price impacts of all 
traders in all directly and indirectly connected exchanges.

Part (i) of Theorem 2 considers the effect of changes in the market structure on 
equilibrium liquidity. Theorem 2 implies that creating a new exchange for a subset of 
agents which operates along with the existing exchanges always (weakly) lowers the 
price impacts (improves liquidity) in all exchanges. Indeed, if agents participate in a 
new exchange, the price impact of these agents in their existing exchanges decreases, 
which lowers the price impact of their counterparties in those exchanges, and so 
on. In turn, splitting an exchange (e.g., Example 2) always weakly increases price 
impact. Moreover, this holds for any asset structure in the new market. In general, 
price impact is monotone in both the set inclusion of traders and assets and is thus 
minimal in the centralized market. It follows from Theorem 2 that the lowest price 
impact that agents ​I​ who trade assets ​K​ can achieve occurs when all agents participate 
in all potential exchanges—a market structure equivalent to a centralized market.25 

25 Malamud and Rostek (2016) show that sufficient trader participation among exchanges suffices for liquidity 
to be as high as in the centralized market. 
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The liquidity effects of market decentralization (i.e., lowering trader participation) 
characterized by Theorem 2 hold for any number and risk aversion of traders and any 
covariance matrix of assets in the exchanges before and after the change.

Part (ii) of Theorem 2 deals with the impact of varying the primitive characteris-
tics of traders and assets. Relative to the observation that equilibrium price impacts 
are interdependent across exchanges (Theorem 1), Theorem 2 demonstrates a gen-
eral complementarity of price impacts in a decentralized market: a trader’s price 
impact in exchanges ​N(i)​ depends positively (in the sense of the positive semidefinite 
order) on the market characteristics in both exchanges ​N(i)​ and ​N \N(i)​. Intuitively, 
an agent’s price impact from increasing his trade in exchanges ​N(i)​ represents the 
price concessions required for other agents ​j  ≠  i​ in exchanges ​N(i)​ to absorb the 
trade. With decreasing marginal utility (​​α​j​​  >  0​), more risk-averse counterparties ​
j​ in exchanges ​N(i)​ demand larger price concessions to compensate for the trade’s 
impact on their own marginal utilities (cf. the first-order condition ​(4)​), thus making 
residual supply less elastic, and hence price impact larger, for all other agents in ​N(i)​.  
In addition, when trading is decentralized, the fewer and more risk-averse agent ​i​’s  
counterparties’ trading partners are in exchanges ​N \N(i)​, the larger the price impacts 
of those counterparties ​j​ in their exchanges ​N( j)​ and the larger the price concessions 
they require in exchanges ​N(i)​.

The concavity of price impact in the fundamental asset covariance contrasts 
sharply with centralized markets, where price impact is proportional to the cova-
riance (Proposition 1). The concavity holds because the riskiness of assets in an 
exchange in which trader ​i​ participates affects his incentives through the residual 
riskiness of these assets, net of the risk that can be diversified in other exchanges by ​
i​ and his counterparties. Mathematically, a Gaussian conditioning argument applies.
Denoting by ​S  ≡ ​ ∑ j​   ​​ ​(​α​j​​ ​​V 

–
 ​​N( j)​​ + ​​Λ 

–
 ​​j​​)​​ −1​​ the slope of the aggregate (net) market 

demand, the condition that price impact is the harmonic mean of (lifted) inverse 
demand slopes can be written as follows:

(21)	 ​Λ​i​​  = ​​ (​S​ −i​ −1​)​​N(i)​​  = ​​​ (​​(​​(​S​​ −1​)​​N(i)​​)​​​ −1
​ − (​α​i​​ ​V​N(i)​​ + ​Λ​i​​​)​​ −1​)​​​ 

−1
​​, 

where ​(​(​S​​ −1​​)​N(i)​​)​​ −1​  = ​ S​ i, i​​ − ​S​ i,−i​​ ​S​ −i,−i​ −1 ​ ​ S​ i,−i​ T ​ ​ , using the notation for ​S​ from (13).26 
That is, the projection that defines the residual risk of the assets traded in exchanges ​
N(i)​ is endogenous, as it depends on price impacts. Equation (21) is equivalent to

	​​ ​(​Λ​ i​ −1​ + (​α​i​​ ​V​N(i)​​ + ​Λ​i​​​)​​ −1​)​​​ 
−1

​  = ​ (​S​​ −1​)​N(i)​​,​

and since the harmonic mean function ​f (x)  =  (​x​​ −1​ + ​(v + x​)​​ −1​)​​ −1​​ is convex, its 
functional inverse is concave, hence ​​Λ​i​​​ is (weakly) concave as a function of ​​S​​ −1​​. In 
the centralized market, since ​​S​​ −1​​ is proportional to ​V  =  Σ,​ so is ​​Λ​i​​.​ In a decentral-
ized market, since price impact depends on the residual risk in ​(​(​S​​ −1​​)​N(i)​​)​​ −1​​ rather 
than the fundamental risk ​Σ​ , proportionality is absent and the concavity matters.

26 ​​S​ i, i​​ − ​S​ i,−i​​ ​S​ −i,−i​ −1 ​ ​ S​ i,−i​ T ​ ​ is a shorted operator. The proof of Theorem 2 is based on the monotonicity and concavity 
properties of the matrix harmonic mean that are derived in Anderson (1971) and Anderson and Duffin (1969) using 
the theory of shorted operators. 

applies.Denoting
applies.Denoting
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Notably, the concavity implies that lower risk (​Σ​) or lower risk aversion ​​{​α​i​​}​i​​​ play 
a greater role in the determination of a trader’s price impact than high-risk assets and 
highly risk-averse traders. Having access to such low-risk assets or low risk-averse 
traders—whether directly in one’s own exchanges ​N(i)​ or indirectly via interconnec-
tions with one’s counterparties’ exchanges ​N  \N(i)—​lowers the price impact of ​i​’s 
trades in ​N(i)​ more than access to high-risk assets or highly risk-averse traders would.

Part (iii) of Theorem 2 provides a link between price impact and the participation 
of different agents. It implies that one can make a systematic prediction about the link 
between the trader’s “position” in the market and price impact: if more connected 
agents are weakly less risk-averse, they have higher price impact. This is intuitive: 
since the price impact of each agent in a given exchange is determined by the risk 
exposure of the other agents in that exchange, the ability of the more connected trader ​i​ 
to diversify risk in exchanges ​N(i)\N( j)​ lowers his risk exposure in exchanges ​N( j)​ 
relative to trader ​j​’s exposure, and thus the price impact of ​j​ in exchanges ​N( j)​.

B. Welfare in Decentralized Markets

By Theorem 2, the centralized market minimizes price impact for all traders. 
Nevertheless, as Example 2 shows, a decentralized market can give rise to strictly 
higher welfare with the same traders and assets. To examine more systematically 
the source of the welfare gains from decentralization, we begin with a character-
ization of indirect utility as a function of price impact, substituting equilibrium 
trade ​​q​ i​​  = ​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​ −1​ (​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​ and price into agents’ utility 

function ​​U​ i​​ (​q​ i​​)  = ​ d​ N(i)​ T ​  (​q​ i​ 0​ + ​q​ i​​) − ​ ​α​i​​ __ 2 ​ ​​(​q​ i​ 0​ + ​q​ i​​)​​​ T​ ​V​N(i)​​​(​q​ i​ 0​ + ​q​ i​​)​ − ​( ​p​ N(i)​​)​​ T​ ​q​ i​​:​

(22) ​​ U​ i​ 
​(​Λ​i​​; ​q​ i​ 0​)  = ​​​​ (​q​ i​ 0​)​​​ T​ ​d​ N(i)​ T ​  − ​ 1 __ 

2
 ​ ​(​q​ i​ 0​)​​ T​ ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​  
 
  


​​  

Utility without trade

​ ​  + ​​​q​ i​ T​ ( ​ 1 __ 
2
 ​ ​α​i​​ ​V​N(i)​​ + ​Λ​i​​) ​q​ i​​  

 
 


​​  

Equilibrium surplus from trade

​ ​​.

To interpret, in any market structure—centralized or decentralized, competitive or 
noncompetitive—equilibrium utility from trade derives from the risk premium ben-
efit in the payment ​​q​ i​​ · (​d​ N(i)​ T ​  − p)  = ​ q​ i​​ · ​​Q​​ ∗​​N(i)​​​ net of the utility cost of buying 
risky assets ​− ​α​i​​ ​q​ i​ T​ ​V​N(i)​​ ​q​ i​​.​ In the competitive centralized market, ​​Q​​ ∗​  =  Σ​q​​ ∗∗​​ and 
the equilibrium utility surplus from trade is ​​q​ i​ T​ ( ​ 1 _ 2 ​ ​α​i​​ Σ)​q​ i​​  = ​ q​ i​ T​ (​α​i​​ Σ − ​ 1 _ 2 ​ ​α​i​​ Σ)​q​ i​​​. In 
a noncompetitive market, price impact exposes a trader to additional risk due to oth-
ers’ equilibrium behavior, hence the marginal equilibrium utility per unit of quantity 
traded is ​(​α​i​​ ​V​N(i)​​ + ​Λ​i​​) − ​ 1 _ 2 ​ ​α​i​​ ​V​N(i)​​​ in the surplus of equation (22).

Proposition 2 shows that the (non)proportionality of price impact in fun-
damental risk ​​V​N(i)​​​ has important implications for welfare effects of market 
decentralization. It is useful to write equilibrium trade of trader ​i​ in utility (22) 
as ​​q​ i​​  = ​ S​ i​​ (​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​, where ​​S​ i​​  ≡ ​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​ −1​​ is his demand slope 
and ​(​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​ can be interpreted as his gains from trade (given that trad-
ers have price impact):

(23)    ​​U​ i​ 
​​(​Λ​i​​; ​q​ i​ 0​)​  = ​ ​(​q​ i​ 0​)​​​ T​ ​d​ N(i)​ T ​  − ​ 1 __ 

2
 ​ ​​(​q​ i​ 0​)​​​ T​ ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​

	 + ​​(​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​​​ 
T
​ ​ϒ​i​​ (​Λ​i​​)​(​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​,​
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where matrix ​​ϒ​i​​ (​Λ​i​​)  ≡ ​ S​ i​​ − ​ 1 _ 2 ​ ​S​ i​​ ​α​i​​ ​V​N(i)​​ ​S​ i​​​ is the marginal utility per unit of risk, 
since both quantities in ​(​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​ are expressed in units of fundamental 
risk ​​α​i​​ ​V​N(i)​​​.

Proposition 2 (Marginal Equilibrium Utility): Suppose that market ​′​ is more 
decentralized than , and let ​​Λ​ i​ 

​​ and ​​Λ​ i​ 
′​​ be the corresponding price impacts. 

Then,

	 (i)	 If ​​Λ​ i​ 
​​ is proportional to ​​V​N(i)​​​ , then ​​​ϒ –

 ​​i​​ ​(​Λ​ i​ 
′​)​  ≤ ​​ ϒ –

 ​​i​​ ​(​Λ​ i​ 
​)​​;

	 (ii)	 In general, ​​​ϒ –
 ​​i​​ ​(​Λ​ i​ 

′​)​  ≰ ​​ ϒ –
 ​​i​​ ​(​Λ​ i​ 

​)​​, i.e., ​​​ϒ –
 ​​i​​ ​(​Λ​ i​ 

​)​​ need not decrease as the 
market becomes more decentralized.

Proposition 2 presents the paper’s two main implications for welfare. Using 
(23), by part (i), a necessary condition for a decentralized market to increase utility 
relative to the centralized market is that the components of the aggregate risk ​​Q​​ ∗​​ 
in ​(​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)​ must change in some exchanges so that the equilibrium 
allocation can become closer to the efficient one. Indeed, if aggregate risk is the 
same as in the centralized market, equation ​(23)​ and part (i) of Proposition 2 imply 
that every agent is better off in the centralized market. Example 2 illustrates part 
(i), in which price impact in the less decentralized market is proportional to the 
covariance, as is the case in the centralized market: the element of ​​Q​​ ∗​​ in exchange ​
1​ increases, and class ​1​ allocation increases and is more efficient; the element 
of ​​Q​​ ∗​​ in exchange ​2​ decreases, and class ​3​ allocation decreases, which is efficient. 
Section IIIC further examines this necessary condition. In turn, using (23), part (ii) 
of Proposition 2 indicates that making a decentralized market more decentralized 
might improve welfare in the Pareto sense, even if it does not affect aggregate risk. 
We will show in Example 5 that this is the case and examine the new effect in  
Section IIID.

Part (i) of Proposition 2 implies that for market decentralization to increase wel-
fare, risk sharing among traders must improve. Part (ii) implies that decentralizing 
a market can also increase welfare by improving diversification, since in a decen-
tralized market, the relative weights across assets in a trader’s equilibrium portfolio 
may differ from those in the efficient portfolio. Indeed, a risk-efficient portfo-
lio is given by ​​α​i​​ ​V​ N(i)​ −1 ​ (d − p),​ while the agent buys ​​(​Λ​i​​ + ​α​i​​ ​V​N(i)​​)​​ −1​ (d − p).​ 
If ​​Λ​i​​  = ​ α​i​​ ​β​i​​ ​V​N(i)​​​ is proportional to the fundamental covariance matrix, diver-
sification weights are efficient while risk allocation is imperfect, as the agent 
buys only a fraction ​1/(1 + ​β​i​​)​ of the efficient portfolio. However, when ​​Λ​i​​​ is 
not proportional to ​​V​N(i)​​ ,​ both risk allocation and diversification are imperfect. 
While Theorem 2 guarantees that making the market more decentralized always 
reduces the number of units of the risky assets the agents are willing to absorb 
for every price (​​Λ​ i​ 

′​  ≥ ​ Λ​ i​ 
​​), Proposition 2(ii) implies that diversification of an 

individual trader can actually become more efficient in a more decentralized mar-
ket, and the latter effect can potentially offset the former in markets with multiple 
assets. Mathematically, without proportionality, a change in the market structure 
affects how trades of correlated assets substitute in creating utility, i.e., ​​(​ϒ​i​​)​n,m​​,  
n  ≠  m​ (Example 5 gives the proof of part (ii)).
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C. When Does a Decentralized Market Increase Welfare?

At the primitive level, heterogeneity in risk preferences is central to welfare gains 
from market decentralization. Proposition 3 shows that when all traders care equally 
about risk, the centralized market maximizes total welfare for any endowment dis-
tribution, regardless of the asset structure in a decentralized market.

Proposition 3 (Welfare and Heterogeneity in Risk Aversion): If traders’ risk 
aversions ​​{​α​i​​}​i​​​ are sufficiently close, then the total welfare in the centralized market 
is strictly higher than in any decentralized market with the same traders and assets 
for any endowments: there exists ​ε  >  0​ such that total welfare in the centralized 
market is strictly higher than in a decentralized market for any endowments when-
ever ​(​max​ i​ ​ ​ ​α​i​​/​min​ i​ ​ ​ ​α​i​​)  <  1 + ε.​

Intuitively, recall that a decentralized market trade-offs larger price impact with 
the potential benefit from reallocating risk among traders with different risk pref-
erence by letting agents trade distinct components of aggregate risk. Nevertheless, 
when traders’ risk preferences are close, the benefit from reallocating risk is small. 
Differential allocation merely increases dispersion of allocations, thus reducing 
welfare.

Proposition 4 shows that when some traders’ risk preferences are sufficiently 
heterogeneous, the welfare-maximizing market structure is decentralized for some 
endowment distributions.27

Proposition 4 (Splitting the Market Can Increase Welfare): Let  
​​α​1​​  ≤ ​ α​2​​  ≤  ⋯  ≤ ​ α​I​​.​ Suppose that ​I  ≥  7​ and ​​α​I−3​​/​α​3​​​ is sufficiently large. Then, 
there exists an open set of initial endowments and a partition of the set of traders 
into two exchanges such that the total welfare in the split market is higher than that 
in the centralized market.

By Proposition 2, for welfare to increase with decentralized trading, the joint pro-
file of risk preferences and endowment risk must be such that the increase in some 
agents’ ​​Q​ N(i)​ ∗ ​ ​ is sufficiently strong to countervail the higher price impact (lower ​​{​ϒ​i​​}​i​​​).  
Welfare gains from decentralization exist for some endowment distributions even if 
the number of traders is large—the condition on the heterogeneity in risk aversion 
in Proposition 4 needs to hold only for a few lowest- and highest-risk-preference 
traders. For the same reason, for a market decentralization to increase welfare, the 
endowments need not become extreme as the number of traders grows. Propositions 
3 and 4 summarize the role of heterogeneity in primitive risk aversion as a necessary 
and sufficient condition.

27 Equilibrium exists if there are at least three traders in a market. Hence, there must be at least six traders in the 
split market. In addition, for the allocation to be sufficiently affected by the split in at least one group, that group 
must have at least four traders. One of these four agents is highly risk-averse; if there were only two agents with 
low risk aversion, the residual supply of each would be effectively determined by one other agent, thus it would 
be close to inelastic, and so their allocation would be close to their initial endowments, and hence their utility loss 
from decentralization would be high. 
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One can further ask: which joint distributions of endowments and risk aversion 
tend to make the centralized market less efficient than a decentralized market? To 
identify a joint condition on the primitives, one must account for both the inefficiency 
due to imperfect diversification of the initial endowment (​​Γ​i​​  <  Id​) and the fact that 
the equilibrium aggregate portfolio differs from the efficient one. Proposition 10 in 
online Appendix D provides two general conclusions: a market structure gives rise 
to low welfare compared to other market structures when the highest-price impact 
agents have the largest need to trade (i.e., a large (in absolute value) inefficient part 
of the endowments). Moreover, since ​​Q​​ ∗​​ assigns higher weights to the endowments 
of less risk-averse traders (cf. (19)), when traders with low risk aversion have large 
(nondiversifiable parts of) endowments, the difference between the efficient and 
equilibrium allocations for the traders with low and high risk aversion tends to be 
the largest. In particular, low risk-averse agents trade too little, and high risk-averse 
agents trade too much, as in Example 2.

Splitting the market into two disjoint exchanges in Example 2 is an extreme 
instance of market decentralization. An intermediated market may further improve 
welfare over a market with disjoint exchanges (Example 6 in online Appendix D). 
One can show that when intermediation improves welfare over the centralized 
one-asset market, a decrease in the utility of the trader who connects exchanges28 
(relative to an otherwise identical trader who does not intermediate) is a general fea-
ture of two-exchange decentralized markets. Intermediation is socially efficient but 
requires compensation. In the next section, we show that types of intermediation spe-
cific to multiple-asset markets do not require compensation to be welfare-improving.

D. Idiosyncratic Risk

In this section, we show that a change in the market structure may improve diver-
sification of idiosyncratic risk, that is, risk whose changes do not affect the risk that 
is nondiversifiable in equilibrium ​​Q​​ ∗​​. The possibility to improve welfare by chang-
ing idiosyncratic risk alone is specific to markets with multiple assets. We compare 
two decentralized markets, ​​ and ​′,​ such that ​′​ is more decentralized than . 
To isolate the role that idiosyncratic risk plays in determining welfare, suppose that 
there is no aggregate risk in either market: ​​​Q​​ ∗​​​ ​  = ​​ Q​​ ∗​​​ ′​  =  0.​29 While then the 
centralized market is best by Proposition 2(i), Proposition 5 shows that decentraliz-
ing a market may increase welfare in the Pareto sense.

Proposition 5 (Market Decentralization Can Be Pareto Improving): Consider 
two decentralized markets ​, ′​ and suppose that ​​​Q​​ ∗​​​ ​  = ​​ Q​​ ∗​​​ ′​  =  0.​ Let 
also ​​α​1​​  ≤ ​ α​2​​  ≤  ⋯  ≤ ​ α​I​​.​

28 This contrasts our welfare effects with those based on price discrimination, where the objective of the monop-
olist (here, the connecting trader) typically involves maximization of the payment alone and is not affected by 
diversification motives. 

29 Consider a subset ​J​ of traders who all have the same risk aversion and participation; ​(​α​i​​, N(i))​ is independent 
of ​i​ for all ​i  ∈  J.​ Then, all traders in ​J​ submit identical demand schedules; their aggregate (net) demand depends 
only on the aggregate endowment of ​J​ , ​​Q​ J​ 0​  = ​ ∑ i∈J​   ​​ ​ q​ i​ 0​​; and the aggregate risk ​​Q​​ ∗​​ is independent of the distribution 
of initial endowments within the class. 
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	 (i)	 If there is one asset, the total welfare is always higher in the more centralized 
market.

	 (ii)	 If there are at least two assets, ​I  ≥  5​ , and ​​α​I−1​​/​α​3​​​ is sufficiently large, then 
there exist an open set of covariance matrices, a non-empty set of endow-
ments, and two decentralized markets ​​ and ​′​ such that ​′​ is more 
decentralized than  , and for any covariance ​Σ​ in this set, each trader is 
better off in ​′.​

Result (ii) is due to the endogeneity of demand substitutability in decentralized 
markets: the nonproportionality of price impact in the fundamental covariance ​Σ​ 
implies that demand substitutability, defined by the cross-asset elements of the 
demand slope

(24)	​ ​S​ i​​  ≡ ​​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​​ −1​  = ​
(

​
​S​ j​ 11​

​ 
​S​ j​ 12​

​ 
​S​ j​ 21​

​ 
​S​ j​ 22​

​
)

​,​

is endogenous and differs from the payoff substitutability of the assets, as defined by 
the exogenous covariance ​Σ​. By definition, demand substitutes have a positive cross-
price elasticity (a higher price of one asset increases the demand for other assets), 
which corresponds to the negative off-diagonal element of the demand slope. Payoff 
substitutes correspond to positive off-diagonal elements of ​Σ​. In the centralized 
market, demand substitutability always corresponds to the fundamental substitut-
ability of the assets. This applies in decentralized markets when ​​Λ​i​​​ is proportional 
to ​​V​N(i)​​​ (e.g., the case with disjoint exchanges). More generally, decentralizing a 
market changes how assets substitute in traders’ demands. This may increase wel-
fare despite the larger price impact. Example 5 illustrates this point.

Example 5 (Endogenous Demand Substitutability and Welfare): There are two 
classes of agents, with risk aversions ​​α​i​​​ and ​​M​ i​​​ agents in each class ​i  =  1, 2​ , and 
two assets with a nonsingular covariance matrix and variances normalized to ​1​, ​

V  = ​ (​ 
1
​ 

ρ
​ ρ​ 

1
 ​)​.​ In market ​​ , agents of class ​1​ trade both assets ​1​ and ​2;​ agents 

of class ​2​ only trade asset ​2.​ Price impacts ​​Λ​1​​  ∈ ​ 핉​​ 2×2​, ​Λ​2​​  ∈  핉​ satisfy

(25) ​​ Λ​1​​  = ​​ (​(​
0
​ 

0
​  

0
​  ​M​ 2​​ ​(​Λ​2​​ + ​α​2​​)​​ −1​​)​ + (​M​ 1​​ − 1)​(​Λ​1​​ + ​α​1​​ V)​​ −1​)​​​ 

−1

​,

	​ Λ​2​​  = ​​ (​​(​(​
0
​ 

0
​  

0
​  (​M​ 2​​ − 1)​(​Λ​2​​ + ​α​2​​)​​ −1​​)​ + ​M​ 1​​ ​(​Λ​1​​ + ​α​1​​ V)​​ −1​)​​​ 

−1

​)​​
22

​​.​

Consider a more decentralized market ​′​ , in which some number ​M​ of class ​1​ 
agents trade only asset ​1​ and the remaining class members, whom we denote as ​1d​ , 
trade both assets; ​​M​ 1d​​  = ​ M​ 1​​ − M​. In terms of participation,  is characterized 
by ​{N(1)  =  { 1, 2}, N(2)  =  { 2}},​ while ​′​ is characterized by ​{N′(1 \1d )  =  {1}, 
N′(2)  =  { 2}, N′(1d )  =  {1, 2}}.​
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In market ​′,​ agents ​1d​ serve as intermediaries who trade with other agents. In 
this regard, ​′​ resembles the market structure in Examples 3 and 4, the main differ-
ences being that the two assets are not identical and intermediation is not monopo-
listic. Price impacts ​​Λ​ 1​ ′ ​ , ​Λ​ 2​ ′ ​ , ​Λ​1d​​​ are characterized by the system

    ​​    Λ​ 1​ ′ ​  = ​​ (​​
(

​(​
(M − 1)​(​Λ​ 1​ ′ ​ + ​α​1​​)​​ −1​

​ 
0
​  

0
​ 

​M​ 2​​ ​(​Λ​ 2​ ′ ​ + ​α​2​​)​​ −1​
​)​

	 + ​M​ 1d​​ ​(​Λ​1d​​ + ​α​1​​ V)​​ −1​
)

​​​ 
−1

​)​​
11

​​,

    ​    Λ​ 2​ ′ ​  = ​​ (​​
(

​(​
M​(​Λ​ 1​ ′ ​  + ​α​1​​)​​ −1​

​ 
0
​  

0
​ 

(​M​ 2​​ − 1)​(​Λ​ 2​ ′ ​  + ​α​2​​)​​ −1​
​)​

	 + ​M​ 1d​​ ​(​Λ​1d​​ + ​α​1​​ V)​​ −1​
)

​​​ 
−1

​)​​
22

​​,

    ​    Λ​1d​​  = ​​
(

​(​
M​(​Λ​ 1​ ′ ​ + ​α​1​​)​​ −1​

​ 
0
​  

0
​ 

​M​ 2​​ ​(​Λ​ 2​ ′ ​  + ​α​2​​)​​ −1​
​)​ 

	 + (​M​ 1d​​ − 1)​(​Λ​1d​​ + ​α​1​​ V)​​ −1​
)

​​​ 
−1

​.​

Suppose that the heterogeneity in risk aversions is sufficiently large, and ​ρ  >  0​. There 
are ​6​ traders in the market, ​​M​ 1​​  =  ​M​ 2​​  =  3​ and ​M  =  1,​ so that ​​M​ 1d​​ = ​ M​ 1​​  −  M  =  2​.

Class ​2​ agents as well as agents from class ​1\1d​ are worse off in the more decen-
tralized market ​′,​ regardless of their endowments. Indeed, class ​2​ agents trade 
only one asset, and hence Proposition 2(i) implies that ​​​ϒ –

 ​​ 2​ 
​  ≥ ​​ ϒ –

 ​​ 2​ 
′​.​30 Likewise, 

since agents ​1\1d​ lose the ability to diversify in the exchange for asset ​2​ , we nat-
urally expect that their price impact increases, and ​​​ϒ –

 ​​ i​ 
​  ≥ ​​ ϒ –

 ​​ i​ 
′​​, ​i  ∈  {1\1d}​;  

thus, their utility surplus decreases as well for all endowments. On the other hand, 
agents of class ​1d​ may be better off in ​′​: by Proposition 2 (ii), it is possible 
that ​​​ϒ –

 ​​ 1d​ 


 ​  ≱ ​​ ϒ –
 ​​ 1d​ 
′

 ​​ because a change in the market structure affects how trades of 
different assets substitute in creating utility, i.e., ​​(​​ϒ –

 ​​ 1d​ 
′ ​)​1, 2​​​. This can offset the with-

in-exchange effect and increase equilibrium utility for some initial endowments, as 
we show next.

By assumption, two assets are payoff substitutes (​ρ  >  0​), and hence they are 
complements in demand slopes and the utility surplus matrix; that is, ​​(​​ϒ –

 ​​ 1d​ 
′

 ​)​1, 2​​  <  0.​ 
Crucially, this surplus complementarity between assets ​1​ and ​2​ is endogenous, 
since it depends on price impact, and decreases when market ​​ becomes more 

30 Since they can only trade one asset, both ​​Λ​2​​​ and ​​V​N(2)​​​ are scalar, and hence ​​Λ​2​​​ is always proportional to ​​V​N(2)​​​. 
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decentralized: ​​(​​ϒ –
 ​​ 1d​ 
′

 ​)​1, 2​​  <  (​​​ϒ –
 ​​ 1d​ 


 ​)​1, 2​​.​ By equation (23), this lower complementarity 

can increase utility if and only if ​​​ϒ –
 ​​ 1d​ 


 ​  ≱ ​​ ϒ –
 ​​ 1d​ 
′

 ​,​ which is equivalent to

(26)	​ | ​​(​​ϒ –
 ​​ 1d​ 


 ​)​​1, 2​​ − ​​(​​ϒ –
 ​​ 1d​ 
′

 ​  )​​1, 2​​ ​|​​ 2​  > ​  ∏ 
i=1

​ 
2
  ​​ ​(​​(​​ϒ –

 ​​ 1d​ 


 ​)​​i, i​​ − ​​(​​ϒ –
 ​​ 1d​ 
′

 ​  )​​i, i​​)​,​

using that ​​​ϒ –
 ​​ 1d​ 


 ​ − ​​ϒ –
 ​​ 1d​ 
′

 ​​ is not positive semidefinite if and only if its determinant 
is negative. That is, the utility gain from the weaker complementarity (LHS) 
must exceed the loss from the higher price impact in each market (RHS of (26)). 
If ​​​ϒ –

 ​​ 1d​ 


 ​ − ​​ϒ –
 ​​ 1d​ 
′

 ​​ is sufficiently large, the total welfare increases despite the lower 
surpluses of classes ​1​ and ​2​. We used that equilibrium utility (23) allows attributing 
welfare effects of market decentralization to changes in price impact of different 
assets and exchanges.

When can one expect the welfare effect of the change in idiosyncratic risk to 
be significant? Assets must be correlated imperfectly and sufficiently strongly. It 
is clear that assets cannot be independent: if correlation ​ρ​ is close to 0, all price 
impacts and surplus matrices are almost independent (the LHS of (26) is close 
to 0), implying that all agents are worse off in the more decentralized market. 
They cannot be perfectly correlated either: if the correlation ​ρ​ is close to 1, both 
surplus matrices ​​​ϒ –

 ​​ 1d​ 


 ​,  ​​ϒ –
 ​​ 1d​ 
′

 ​​ and their difference are proportional to the (almost 
singular) matrix ​V​ , and thus the difference between the left-hand side and the right-
hand side of (26) is close to 0.

Hence, the possibility of a welfare increase by reduction of idiosyncratic risk in 
Proposition 5 is a multi-asset effect. In one-asset markets, while the asset traded 
in different exchanges can be an imperfect demand substitute, its trades are per-
fect substitutes in the utility surplus ​​ϒ​i​​​.31 Since with constant aggregate risk  
​​Q​​ ∗​​, ​(​​Q​​ ∗​​N(i)​​ − ​α​i​​ ​V​N(i)​​ ​q​ i​ 0​)  ≡ ​ X​ i​​​ is independent of market structure, Theorem  2 
implies that the risk premium benefit ​​X​ i​ T​​S​ i​​ ​X​ i​​​ in the utility surplus is monotone 
decreasing in market decentralization (demand slope ​​S​ i​​​ is always smaller in the more 
decentralized market). Thus, for the utility to increase, the cost ​0.5​α​i​​ ​X​ i​ T​ ​S​ i​​ ​V​N(i)​​ ​S​ i​​ ​X​ i​​​ 
must decrease sufficiently to offset the decrease in ​​X​ i​ T​ ​S​ i​​ ​X​ i​​.​ However, in one-asset 
markets, the second part is proportional to ​V​ , and hence singular. One can show that 
the total welfare gain from decentralization is inverse U-shaped, and for the total 
welfare surplus to be positive, ​ρ​ must be sufficiently different from 0 and 1. Then, 
there exists an open set of initial endowments such that agents of class ​1d​ are strictly 
better off in ​′​ , while other agents have zero endowments and the same utility in 
 and ​′​. That is, ​′​ weakly Pareto dominates ​.​ ​​

In the more decentralized market ​′​ , some agents of class ​1​ specialize in trad-
ing asset ​1​ and refrain from trading asset ​2.​ While such specialization unambigu-
ously increases price impact (Theorem 2), Example 5 shows that it can be Pareto 
improving, even among equally risk-averse agents. The gains from trade in the more 
decentralized market structure come from the effect of specialization to lower the 
demand substitutability of imperfectly correlated assets, which decreases the utility 

31 The (welfare-improving) decrease in surplus substitutability ​​ϒ​n, m​​​ is exactly offset by the liquidity 
decrease ​​ϒ​n, n​​​ within each exchange ​n​. 
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cost of holding correlated risky assets ​​ϒ​n, m​​,  m  ≠  n​. In fact, the same assets can turn 
from demand and utility substitutes into complements (i.e., in the sense of ​​S​ i​​​ and ​​ϒ​i​​​ , 
respectively). Changing who trades which assets without necessarily changing who 
trades with whom allows reducing idiosyncratic risk without affecting aggregate risk.

With strategic traders and heterogeneous risk preferences, both centralized and 
decentralized markets can generally be Pareto efficient (i.e., no other market struc-
ture would make some agents better off, without making others worse off), hence 
our focus on total welfare. This section shows that regulation that aims to make 
an existing market structure less decentralized, if applied without discretion, might 
have unintended consequences for utility of all agents.

IV.  Conclusions

The results in this paper recognize the potential for decentralized markets to increase 
welfare compared to the centralized market. This holds even with homogeneous assets 
and even if locating counterparties has a cost (which we have taken to be 0 throughout). 
We have shown that when trading is noncompetitive, the centralized market is efficient 
for all endowment distributions only if risk preferences of all market participants are 
sufficiently symmetric. Decentralized market structures may strictly dominate in total 
welfare sense when risk preferences and need to trade are sufficiently heterogeneous 
for some market participants. We identify two ways in which decentralized trading 
can enhance the role of markets in allocating risk: it may reallocate more risk to less 
risk-averse traders despite the larger price impact, by enabling agents to trade distinct 
components of aggregate risk. Additionally, by changing how the trade of correlated 
assets substitutes in creating equilibrium utility, it may allow traders to reduce idiosyn-
cratic risk, even without affecting aggregate risk.

We have taken the exchanges and available assets in decentralized markets as 
exogenous. Nevertheless, our results imply that in general, allowing agents to choose 
with whom they want to trade and which assets will not result in the centralized mar-
ket—some traders would prefer to trade separately. Our analysis also suggests that 
the study of the endogenous formation of exchanges in decentralized markets, with 
respect to welfare or other objectives, should not be separate from security design. 
In fact, the endogenously heterogeneous demand substitutability for identical assets 
traded in decentralized markets implies the existence of profit and efficiency oppor-
tunities from security design as well as specialization in trading certain assets that 
are not available in centralized markets.

Our results suggest a rich theory of the ways in which intermediation—a decen-
tralized market phenomenon—can improve efficiency and of the forms such inter-
mediation can take. We show that the introduction of strategic intermediaries may 
mitigate both inefficiency due to imperfect diversification of idiosyncratic risk and 
inefficient aggregate risk.

The centralized market theory of asymmetric information has provided argu-
ments as to why private information (e.g., adverse selection) or more information 
(e.g., information revealed through prices) may create incentives for some traders to 
trade in a separate market. When these incentives are also associated with a welfare 
increase, those results suggest additional reasons for decentralization when trade is 
motivated by not only diversification but also asymmetric information (e.g., Rostek 
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and Weretka 2015b; Babus and Kondor 2016; the lemon markets model by Akerlof 
1970 could also be interpreted this way). This paper shows that arguments based on 
risk sharing and diversification can be made for decentralization of trade, even in the 
absence of information-related reasons.

One might wonder whether the uniform-price mechanism is significant to the 
main conclusions. The starting point for identifying the possibility of welfare 
improvements is the inefficiency of (centralized or decentralized market) allocation 
due to price impact. Based on the results in the theory of games with (two-sided) 
private information, one expects inefficiency to be present in equilibrium and the 
welfare gains from market decentralization to exist for other pricing mechanisms. 
Fundamentally, these gains stem from the possibilities that decentralized trading 
creates for alignment of agents’ risk preferences and their equilibrium risk exposure 
via the market structure. One might also wonder if our conclusions based on a static 
model are useful given that most markets are dynamic. Dynamic trading changes 
incentives and motivates a separate study of welfare effects. In a dynamic model, 
traders have price impact in every trading round. The centralized market inefficiency 
and all the decentralized market effects that we identify in the static model are pres-
ent in all rounds. With gains to diversification renewed through endowment shocks, 
the static effect we identify will be first-order. Our results suggest the potential for 
welfare improvements in markets in the cross section (their market structure) as 
well as in time series.

Appendix

A. Equilibrium Characterization

Proof of proposition 1:
(i), (ii) That the equilibrium characterized by schedules and price impacts 

​​{​q​ i​​ ( · , ​Λ​i​​), ​Λ​i​​}​i​​​ is equivalent to a Bayesian Nash Equilibrium in a decentralized mar-
ket follows from Lemma 1 in Rostek and Weretka (2015a).

(iii) For uniqueness, diagonalize ​Σ​ by multiplying ​(6)​ from the left and right 
by ​​Σ​​ −1/2​​ and denote ​​​Λ ̃ ​​i​​  = ​ Σ​​ −1/2​ ​Λ​i​​ ​Σ​​ −1/2​​ ,

(27)	​ ​​Λ ̃ ​​i​​  = ​​ ( ​∑ 
j≠i

​ ​​ ​(​α​j​​ Id + ​​Λ ̃ ​​j​​)​​ 
−1​)​​​ 

−1
​,    i  ∈  I.​

One expects that any solution to this equation is of the form ​​​Λ ̃ ​​i​​  = ​ β​i​​ ​α​i​​ Id​ for 
some ​​β​i​​  >  0,    i  ∈  I​ , and consequently ​​Λ​i​​  = ​ β​i​​ ​α​i​​ Σ​. Lemma C.4 in online 
Appendix C shows that this is the case. The analytic characterization of equilibrium 
follows by Lemma D.1 in online Appendix D.

Part (iv) follows directly from the harmonic mean condition: defining ​
B  = ​ ∑ i​   ​​ ​(​Λ​i​​ + ​α​i​​ Σ)​​ −1​,​ and noting that by (iii), ​​Λ​i​​  = ​ β​i​​ ​α​i​​ Σ​ for some ​​β​i​​,​ we 
get ​B  =  b​Σ​​ −1​​ for some ​b  >  0,​ and (ii) implies ​​Λ​i​​  =  (B − ​(​Λ​i​​ + ​α​i​​ Σ​)​​ −1​)​​ −1​,​ 
which is equivalent to ​​β​i​​ ​α​i​​  =  (b − ​(​β​i​​ ​α​i​​ + ​α​i​​​)​​ −1​)​​ −1​.​ This is a quadratic equation 
for ​​β​i​​ ,​ and it has only one positive solution given by (7). Substituting ​​β​i​​​ into ​
b  = ​ ∑ i​   ​​ ​(​β​i​​ ​α​i​​ + ​α​i​​)​​ −1​,​ we get the required equation for ​b.​ ∎
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To prove Theorem 1, we will need several auxiliary results. Let ​​​​ I​​ be the set of  
​I​-tuples ​​{​Λ​i​​ }​i​​​ of positive semidefinite matrices with ​​Λ​i​​  ∈ ​ 핉​​ N(i)×N(i)​​. On this set, we 
introduce a partial order: ​​{​Λ​i​​}​i​​  ≤ ​ {​Λ​ i​ ′ ​ }​i​​​ for a pair of tuples ​​{​Λ​i​​}​i​​​ , ​​{​Λ​ i​ ′ ​ }​i​​​ if ​​Λ​i​​  ≤ ​ Λ​ i​ ′ ​​ 
for all ​i  ∈  I​. Recalling that the negative ​​X​ i​​​ of the slope of ​i​’s demand and ​i​’s price 
impact are linked through ​​X​ i​​  ≡ ​ (​α​i​​ ​V​N(i)​​ + ​Λ​i​​)​​ −1​​, we can rewrite the fixed point 
condition ​(15)​ as a fixed point condition for demand slopes as follows. Define the 
map ​G  = ​ {​G​ i​​}​i​​  : ​ ​​ I​  → ​ ​​ I​​ via

(28)	​ ​G​ i​​ (​{​X​ i​​}​i​​)  = ​​
(

​​
(

​​(​∑ 
j≠i

​ ​​ ​​X 
–
​​j​​)​​​ 

−1
​
)

​​
N(i)

​​ + ​α​i​​ ​V​N(i)​​)
​​​ 
−1

​,    i  ∈  I​.

Essentially, the decentralized market model can be seen as a game in which agents 
choose their demand slopes. Let us denote by ​​G​​ n​ (​{​Λ​i​​ }​i​​)​ the ​nth​ iteration of the best 
response map. Standard properties of the positive semidefinite order imply that ​G​ is 
monotone increasing in ​​{​X​ i​​}​i​​​.

Lemma 1: Map ​G​ is monotone increasing on ​​​​ I​​.

Let ​F  = ​ {​F​ i​​ }​i​​  : ​ ​​ I​  → ​ ​​ I​​ be the map defined by the right-hand side of (15). By 
construction, maps ​F​ and ​G​ are simple transformations of each other. It is more con-
venient analytically, however, to work directly with map ​F​; consequently, all proofs 
that follow use this map. Passing from ​F​ to ​G​ is then straightforward. The following 
result then follows from Theorem 1.

Lemma 2: A tuple of linear demand schedules with slopes ​​{​X​ i​​}​i​​​ is an equilibrium 
if and only if it is a fixed point of the best response map. That is, ​​{​X​ i​​}​i​​  =  G(​{​X​ i​​}​i​​)​.

Proposition 6 (Monotone Convergence): Pick an arbitrary starting tuple ​​{​X​ i​ 0​}​i​​​ 
such that ​​{​X​ i​ 0​}​i​​  ≤  G(​{​X​ i​ 0​}​i​​)​ ​(​{​X​ i​ 0​}​i​​  ≥  G(​{​X​ i​ 0​}​i​​)​). Then, iteration ​​G​​ n​ (​{​X​ i​ 0​}​i​​)​ is mono-
tone increasing (decreasing) in ​n​ and converges to an equilibrium tuple.

Let ​D  =  diag(z), z  ∈ ​ 핉​​ N​​ be a diagonal matrix. Multiplication of ​(15)​ by ​​D​ N(i)​​​ 
from the left and right gives the following scale invariance property of price impacts.

Lemma 3: Let ​V′  =  DVD​. Then, the map given by ​​{​Λ​i​​}​i​​  →  ​{​D​ N(i)​​​Λ​i​​ ​D​ N(i)​​}​i​​​ defines a 
one-to-one correspondence between equilibria in markets defined by ​V​ and ​V′​.

Proof of Theorem 1: 
(i), (ii) Treating assets traded in different exchanges as distinct assets and lifting 

before aggregation gives the first-order condition ​(4)​ and the system of ​I​ price impact 
harmonic mean equations. Equation ​(4)​ gives demand function ​(5)​ for each trader ​i​.  
Given the lifting procedure, that the equilibrium characterized by schedules and 
price impacts ​​{​q​ i​​ ( · , ​Λ​i​​), ​Λ​i​​}​i​​​ is equivalent to a Bayesian Nash Equilibrium in a 
decentralized market follows from Lemma 1 in Rostek and Weretka (2015a).

(iii) Existence of equilibria when ​​V​N(i)​​​ is nonsingular for any ​i​ follows from 
Proposition 6. For the general case, let ​​V​​ ε​  ≡  V + εId​ and let ​​F​​ ε​​ be the corresponding 
map. By Proposition 6, for any ​ε > 0​ , there exists an equilibrium ​​{​Λ​ i​ ε​}​i​​​ corresponding 
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to ​​V​​ ε​​. Pick a sequence ​​ε​k​​  =  1/k​ and an equilibrium ​​{​Λ​ i​ 
​ε​k​​​ }​i​​​. Since ​​F​​ ε​​ is monotone 

increasing in ​ε​, we have

	​ ​{​Λ​ i​ 
​ε​k​​​ }​i​​  = ​ F​​ ​ε​k​​​ (​{​Λ​ i​ 

​ε​k​​​ }​i​​)  ≥ ​ F​​ ​ε​k+1​​​ (​{​Λ​ i​ 
​ε​k​​​ }​i​​)​,

and hence by Proposition 6, there exists an equilibrium ​​{​Λ​ i​ 
​ε​k+1​​​ }​i​​  ≤ ​ {​Λ​ i​ 

​ε​k​​​ }​i​​​. Thus, we 
can construct a monotone decreasing sequence ​​{​Λ​ i​ 

​ε​k​​​ }​i​​​ that converges to an equilib-
rium corresponding to ​ε  =  0​.

To prove generic determinacy, let, for each ​i​ , ​​X​ i​​  ≡ ​ Λ​i​​ + ​α​i​​ ​V​N(i)​​​ , and define a 
map ​Φ  : ​ ​​ I​  → ​ ​​ I​​ via

	​ ​Φ​i​​ (​{​X​ j​​}​j​​)  = ​ X​ i​​ − ​​
(

​​(​∑ 
j≠i

​ ​​ ​X​ j​ −1​)​​​ 
−1

​
)

​​
N(i)

​​.​

The equilibrium equation can be written as ​Φ(​{​X​ j​​}​j​​)  = ​ {​α​j​​ ​V​N( j)​​}​j​​​. Let ​​Ψ​​ I​​  
be the image of the map ​V  → ​ {​α​i​​ ​V​N(i)​​}​i​​​ defined on the set of positive semidefi-
nite matrices.32 Let ​​Θ​​ I​​ be the subset of ​​​​ I​​ such that for any ​​{​X​ j​​}​j​​  ∈ ​ Θ​​ I​​, we have  
that ​Φ(​{​X​ j​​}​j​​)  = ​ {​α​j​​ ​V​N( j)​​}​j​​​ for some positive definite matrix ​V​. Subset ​​Θ​​ I​​ is an alge-
braic variety, and therefore can be represented as a finite union of irreducible alge-
braic sets that are smooth manifolds. The same is true for ​​Ψ​​ I​​. By Sard’s Theorem, 
almost every ​​{​α​i​​ ​V​N(i)​​}​i​​  ∈ ​ Ψ​​ I​​ has a regular preimage under ​Φ​; that is, equilibria are 
determinate for generic covariance matrices. The finiteness of the set of equilib-
ria follows by the standard compactness arguments and the fact that all equilibria 
belong to a compact set. 

(iv) For the positive semidefiniteness of price impacts, observe 
that ​​Λ​i​​ + ​α​i​​ ​V​N(i)​​​ must be positive semidefinite for any trader ​i​ in equilibrium. 
Suppose otherwise. The utility of agent ​i​ who acquires portfolio ​y  ∈ ​ 핉​​ N(i)​​ is given 
by ​​(​q​ i​ 0​ + y)​​ T​ d − ​y​​ T​( ​p​​ ∗​ + ​Λ​i​​ y) − 0.5 ​(​q​ i​ 0​ + y)​​ T​ ​α​i​​ ​V​N(i)​​ (​q​ i​ 0​ + y),​ where ​​p​​ ∗​​ is the 
equilibrium price vector if agent ​i​ does not trade. If ​​Λ​i​​ + ​α​i​​ ​V​N(i)​​​ were not positive 
semidefinite, then the agent could attain infinite utility; that is, if there is a ​y​ such 
that ​​y​​ T​ (​Λ​i​​ + ​α​i​​ ​V​N(i)​​)y  <  0​ , then buying an infinite amount of portfolio ​y​ gives an 
infinite utility. If ​​Λ​i​​ + ​α​i​​ ​V​N(i)​​​ is positive semidefinite for any ​i,​ then so is ​​Λ​i​​​ by (15).

Let now ​C(V)  =  diag({​V​ nn​ 
−1/2​})Vdiag({​V​ nn​ 

−1/2​})​ be the correlation matrix of 
the assets. For any exchange ​n​ and agent ​i​ , define ​​α​i,∗∗​​  ≡ ​ α​i​​ min (eig(C ​(V)​N(i)​​))​ 
and ​​α​ i​ ∗∗​  ≡ ​ α​i​​ max (eig(C ​(V)​N(i)​​))​; ​​α​i,∗∗​​​ and ​​α​ i​ ∗∗​​ can be interpreted as the bounds 
on the assets’ effective riskiness (see Section IIID). For any exchange ​n​ , define 
two constants ​​λ​∗∗​​ (n)  ≡ ​ min​ i∈I(n)​ 

​ ​  ​α​i,∗∗​​​ and ​​λ​​ ∗∗​ (n)  ≡ ​ max​ i∈I(n)​ 
​ ​  ​α​ i​ ∗∗​​. Further, 

let ​​{​Λ​ i, min​ 
0 ​ }​i​​  = ​​ {diag​​(​ 

​λ​∗∗​​ (n) ​V​nn​​ ________ 
I(n) − 2

 ​ )​​
N(i)

​​}​​
i

​​​ and ​​{​Λ​ i, max​ 
0 ​ }​i​​  = ​​ {diag ​​(​ 

​λ​​ ∗∗​ (n) ​V​nn​​ ________ 
I(n) − 2

 ​ )​​
N(i)

​​}​​
i

​​​ 

and

	​ ​{​X​ i, min​ 0 ​ }​i​​  =  {​(​α​i​​ ​V​N(i)​​ + ​Λ​ i, max​ 0 ​​ )​​ −1​}​
i
​​,  ​  {​X​ i, max​ 0 ​ }​i​​  =  {​(​α​i​​ ​V​N(i)​​ + ​Λ​ i, min​ 0 ​​ )​​ −1​}​

i
​​.​

32 Note that if some of the assets are replicas of each other, the covariance matrix ​V​ belongs to a subspace 
of ​​핉​​ N×N​.​ In this case, we apply Sard’s Theorem to the map into this subspace with respect to the induced Lebesgue 
measure. 
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A direct calculation implies that

	​ ​{​X​ i, min​ 0 ​ }​i​​  ≤  G(​{​X​ i, min​ 0 ​ }​i​​)  and  ​{​X​ i, max​ 0 ​ }​i​​  ≥  G(​{​X​ i, max​ 0 ​ }​i​​),​

and, similarly,

	​ ​{​Λ​ i, min​ 0 ​ }​i​​  ≤  F(​{​Λ​ i, min​ 0 ​ }​i​​)  and  ​{​Λ​ i, max​ 0 ​ }​i​​  ≥  F(​{​Λ​ i, max​ 0 ​ }​i​​).​

We now construct the minimal and maximal equilibria by the explicit iter-
ative procedure described in Proposition 6. To this end, recursively define 
two sequences ​​{​Λ​ i, min​ k ​ }​i​​  ∈ ​ ​​ I​​ and ​​{​Λ​ i, max​ k ​ }​i​​  ∈ ​ ​​ I​​, ​k  ≥  1​ via ​​{​Λ​ i, min​ k ​ }​i​​  
≡  F(​{​Λ​ i, min​ k−1 ​}​i​​)​ and ​​{​Λ​ i, max​ k ​ }​i​​  ≡  F(​{​Λ​ i, max​ k−1 ​ }​i​​)​. By Proposition 6, the sequence ​​{​Λ​ i, min​ k ​ }​i​​​ , ​
k  ≥  0​ , is monotone increasing, whereas ​​{​Λ​ i, max​ k ​ }​i​​, k  ≥  0,​ is monotone decreasing; 
these sequences converge to equilibria (the fixed points of map ​F​ ) that we denote 
by ​​{​Λ​i, min​​}​i​​​ and ​​{​Λ​i, max​​}​i​​​ , respectively. The corresponding demand slopes are deter-
mined via ​​{​X​ i, min​​}​i​​  =  {​(​α​i​​ ​V​N(i)​​ + ​Λ​i, max​​​)​​ −1​}​

i
​​, ​{​X​ i, max​​}​i​​  =  {​(​α​i​​ ​V​N(i)​​ + ​Λ​i, min​​ ​)​​ −1​}​

i
​​.​

Pick an arbitrary equilibrium ​​{​Λ​i​​}​i​​​. Then, for all ​i  ∈  I​ ,

(29) ​ ​Λ​i​​  = ​​
(

​​(​∑ 
j≠i

​ ​​ ​(​α​j​​ V + ​​Λ 
–
 ​​j​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​  ≤ ​​
(

​​(​∑ 
j≠i

​ ​​ ​(​α​ j​ ∗∗​ I​d​N(  j)​​ + ​​Λ 
–
 ​​j​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​.​

Let ​​F​ A​​​ be the map corresponding to the right-hand side of ​(29)​. Then, iterating ​​F​ A​​​ 
and using Proposition 6, arrive at the conclusion that ​​F​ A​​​ has a fixed point ​​{​Λ​ i​ ∗∗​}​i​​​ 
satisfying ​​{​Λ​i​​}​i​​  ≤ ​ {​Λ​ i​ ∗∗​}​i​​ ​. By Lemma C.4 in the online Appendix, this is the unique 
diagonal fixed point. Then, ​​Λ​ i​ ∗∗​​ is diagonal, and for any exchange ​n​, the scalar price 
impacts ​{​(​Λ​ i​ ∗∗​​)​nn​​}​i​​​ coincide with price impacts in a centralized exchange for a sin-
gle asset with variance ​1​ and risk aversion ​​α​ i​ ∗∗​​. The same iteration argument as 
above implies that these price impacts are monotone increasing in ​​α​ i​ ∗∗​​, and there-
fore, satisfy

	​ ​Λ​ i​ ∗∗​  ≤ ​   ​λ​​ ∗∗​ (n) ________ 
I(n) − 2 ​ I​d​N(i)​​,    i  ∈  I.​

Hence, by the monotonicity of map ​F​, ​​{​Λ​i​​}​i​​  = ​ F​​ n​ (​{​Λ​i​​}​i​​)  ≤ ​ F​​ n​ (​{​Λ​ i, max​ 0 ​ }​i​​)  
→ ​ {​Λ​i, max​​}​i​​​. Similarly,

​	 ​Λ​i​​  = ​​
(

​​(​∑ 
j≠i

​ ​​ ​(​α​j​​ V + ​​Λ 
–
 ​​j​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​  ≥ ​​
(

​​(​∑ 
j≠i

​ ​​ ​(​α​j,∗∗​​ I​d​N( j)​​ + ​​Λ 
–
 ​​j​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​.​

The same argument as above implies that

	​​ Λ​i∗∗​​  ≥ ​   ​λ​∗∗​​ (n) _______ 
I(n) − 2 ​ I​d​N(i)​​,    i  ∈  I,​

and the same iterative procedure completes the proof: ​​{​Λ​i​​}​i​​  = ​ F​​ n​ (​{​Λ​i​​}​i​​)  
≥ ​ F​​ n​(​{​Λ​ i, min​ 0 ​ }​i​​)  → ​ {​Λ​i, min​​}​i​​.​ ∎
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B. Comparative Statics and Welfare

Proof of theorem 2:
(i) Consider two markets which differ only in participation ​​{ N(i)}​i​​​ and ​​{N′(i)}​i​​​ , ​

N(i)′  ⊇  N(i)​ for all ​i  ∈  I​. Pick an equilibrium ​​{​Λ​i​​}​i​​​ corresponding to ​​{N′(i)}​i​​​. By 
Lemma E.2 in the online Appendix,

​​(​Λ​i​​)​N(i)​​  =  ​​
(

​​(​∑ 
j≠i

​ ​​ (​α​j​​​​ 
–
 ​​N′( j)​​ + ​​Λ 

–
 ​​j​​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​  ≤  ​​
(

​​(​∑ 
j≠i

​ ​​ (​α​j​​ ​​V 
–
 ​​N( j)​​ + ​(​​Λ 

–
 ​​j​​​)​N( j)​​)​​ −1​)​​​ 

−1
​
)

​​
N(i)

​​​

for all ​i  ∈  I​. Therefore, by Proposition 6, there exists an equilibrium ​​{​​Λ ˆ ​​i​​}​i​​​ corre-
sponding to participation ​​{ N(i)}​i​​​ and satisfying ​​{​​Λ ˆ ​​i​​}​i​​  ≥  {​(​Λ​i​​​)​N(i)​​}​i​​​; the claim follows.

(ii) Fix a parameter ​α​ and let us rewrite the equilibrium equation 
as ​​{​Λ​j​​}​j​​  =  F(​{​Λ​j​​}​j​​, α)​. By definition, for both ​α  = ​ M​ i​​​ and ​α  = ​ α​j​​​ , map ​F​ is 
monotone increasing in ​α​ in the sense of the positive semidefinite partial order.

Fix ​​α​1​​  ≤ ​ α​2​​​ and let ​​{​Λ​j​​ (​α​1​​)}​j​​​ be an equilibrium. Then

	​​ {​Λ​j​​ (​α​1​​)}​j​​  =  F(​{​Λ​j​​ (​α​1​​)}​j​​, ​α​1​​)  ≤  F(​{​​Λ 
–
 ​​j​​ (​α​1​​)}​j​​, ​α​2​​).​

By Proposition 6, there exists an equilibrium ​​{​Λ​j​​ (​α​2​​)}​j​​​ satisfying  
​​{​Λ​j​​(​α​2​​)}​j​​  ≥ ​ {​Λ​j​​ (​α​1​​)}​j​​.​

The next claims follow by a similar argument using Theorem 24 in Anderson and 
Duffin (1969).

Finally, part (iii) follows from Lemma D.3 in the online Appendix. ∎

Proof of Proposition 2:
The expression for the surplus matrix follows by direct calculation: denoting by ​·​ 

the inner product in ​​핉​​ N​,​ we observe that the equilibrium utility is given by

(30)

​​​q – ​​ i​ 0​ · d − ​​q – ​​i​​ · ( p − d ) − 0.5( ​​q – ​​ i​ 0​ + ​​q – ​​i​​) · ​α​i​​ V(​​q – ​​ i​ 0​ + ​​q – ​​i​​)

    = ​ q​ i​ 0​ · d + ​​q – ​​i​​ · (​Q​​ ∗​ − ​α​i​​ V ​​q – ​​ i​ 0​ + ​α​i​​ V ​​q – ​​ i​ 0​ ) − 0.5(​​q – ​​ i​ 0​ + ​​q – ​​i​​) · ​α​i​​ V( ​​q – ​​ i​ 0​ + ​​q – ​​i​​)

    = ​ q​ i​ 0​ · d − 0.5 ​​q – ​​ i​ 0​ · ​α​i​​ V ​​q – ​​ i​ 0​ +  ​​q – ​​i​​ · (​Q​​ ∗​ − ​α​i​​ V ​​q – ​​ i​ 0​) − 0.5 ​​q – ​​i​​ · ​α​i​​ V ​​q – ​​i​​

    = ​ q​ i​ 0​ · d − 0.5 ​​q – ​​ i​ 0​ · ​α​i​​ V ​​q – ​​ i​ 0​ + (​Q​​ ∗​ − ​α​i​​ V ​​q – ​​ i​ 0​ ) · ​(​​Λ 
–
 ​​i​​ + ​α​i​​ ​​V 

–
 ​​N(i)​​)​​ −1​ (​Q​​ ∗​ − ​α​i​​ V ​​q – ​​ i​ 0​)

	    − 0.5(​Q​​ ∗​ − ​α​i​​ V ​​q – ​​ i​ 0​)​(​​Λ 
–
 ​​i​​ + ​α​i​​ ​​V 

–
 ​​N(i)​​)​​ −1​ ​α​i​​ V ​(​​Λ 

–
 ​​i​​ + ​α​i​​ ​​V 

–
 ​​N(i)​​)​​ −1​ (​Q​​ ∗​ − ​α​i​​ V ​​q – ​​ i​ 0​),​

and the claim follows because

(31)  ​​​ϒ –
 ​​i​​ (Λ)  = ​ (​​Λ 

–
 ​​i​​ + ​α​i​​ ​​V 

–
 ​​N(i)​​)​​ −1​ −  0.5​(​​Λ 

–
 ​​i​​ + ​α​i​​ ​​V 

–
 ​​N(i)​​)​​ −1​ ​α​i​​ V ​(​​Λ 

–
 ​​i​​ + ​α​i​​ ​​V 

–
 ​​N(i)​​)​​ −1​.​
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(i) Suppose that we change a market structure ​​ to a more decentralized market 
structure ​′.​ Let ​​Λ​i​​ , ​Λ​ i​ ′ ​​ be the corresponding price impacts of agent ​i,​ and denote 
by ​X​ and ​X​′ the slopes of the demand schedules in the two market structures. It fol-
lows from Theorem 2 that ​​Λ​ i​ ′ ​  ≥ ​ (​Λ​i​​)​N′(i)​​​ , and therefore by Lemma E.2 in the online 
Appendix,

(32) ​ X = ​ (​α​i​​ ​​V 
–
 ​​N(i)​​ + ​​Λ 

–
 ​​i​​)​​ −1​ ≥  (​α​i​​ ​​V 

–
 ​​​N ′ ​(i)​​ + ​(​​Λ 

–
 ​​i​​​)​​N ′ ​(i)​​)​​ −1​ ≥ ​ (​α​i​​ ​​V 

–
 ​​N′(i)​​ + ​​Λ 

–
 ​​ i​ ′ ​ )​​ −1​ =  X′.​

Using formula (32), we can see that it suffices to show that the inequality ​
X − 0.5 ​α​i​​ X VX  ≥  X′ − 0.5 ​α​i​​  X′  VX′​ holds if ​X​ is proportional to ​V​ and ​X  ≥  X′.​ 
Let ​X  =  β ​V​​ −1​​ and let ​Y  = ​ V​​ 1/2​X′ ​ V​​ 1/2​.​ Note that ​X  ≤ ​ (​α​i​​ V)​​ −1​​ and hence ​
β  ≤ ​ α​ i​ −1​.​ Then, we have ​Y  ≤  β Id.​ Multiplying the required inequality from both 
sides by ​​V​​ 1/2​​ yields

	​ X − 0.5 ​α​i​​ X  VX  ≥  X′ − 0.5 ​α​i​​  X′ VX′  ⇔  (β − 0.5 ​α​i​​ ​β​​ 2​)Id ≥ Y − 0.5 ​α​i​​ ​Y​​ 2​,​

and the claim follows because ​f (x)  =  x − 0.5​α​i​​ ​x​​ 2​​ is monotone increasing on ​
[0, ​α​ i​ −1​].​

Part (ii) follows because by the Löwner Theorem (Donoghue 1974), the function ​
f (x)​ is not matrix monotone. ∎

Proof of Proposition 3: 
There exists a map (a matrix) ​​​​ ​​ such that the equilibrium allocation is given by

	​ ​(​q​ i​​ + ​q​ i​ 0​)​i​​  =  (​​​ ​ ​(​q​ i​ 0​​)​i​​)​i​​,​

where ​​​​ ​​ is a function of equilibrium price impacts ​​Λ​i​​ ,​ and can be written as such 
explicitly using Corollary 2. The efficiency of a given market structure in allocating 
risks is then encoded in the way the matrix ​​​​ ​​ “redistributes” endowments. For 
instance, in the centralized competitive market with a single asset,

	​​ ​​ ​ ​(​q​ i​ 0​)​i​​  = ​ (​α​ i​ −1​)​i​​ ​q​​ ∗∗​.​

That is, the image of the matrix ​​​​ ​​ is one-dimensional and coincides with the span 
of the efficient allocation ​(​α​ i​ −1​).​ Hence, ​​​​ ​​ is a projection onto the efficient allo-
cation, and it has only two eigenvalues, 1 and 0. Thus, decomposing any vector of 
endowments into the efficient and the inefficient part,

	​ ​(​q​ i​ 0​)​i​​  = ​ (​α​ i​ −1​)​i​​ ​q​​ ∗∗​ + (​(​q​ i​ 0​)​i​​ − ​q​​ ∗∗​ ​(​α​ i​ −1​)​i​​),​

the matrix ​​​​ ​​ keeps the efficient part unchanged and completely eliminates the 
inefficient part.

Denote by ​​​ 
–
 ​​i​​  ≡ ​ (​​Λ 

–
 ​​i​​ + ​α​i​​ ​​V – ​​N(i)​​)​​ −1​​ the lifted slope of agent ​i​’s demand. We have

(33)	​ (​​​ ​ ​(​q​ i​ 0​​)​i​​)​j​​  = ​ q​ j​ 0​ +  ​​ 
–
 ​​i​​​(​B​​ −1​ ​∑ 

i
​ ​​ ​​ 

–
 ​​i​​ ​α​i​​ V ​​q – ​​ i​ 0​ −  ​α​i​​ V ​​q – ​​ j​ 0​)​.​



3356 THE AMERICAN ECONOMIC REVIEW november 2017

Let ​  =  diag​(​α​i​​ V)​i​​​ and ​​​​ ​  ≡ ​ (​​ 
–
 ​​i​​ ​B​​ −1​ ​​ 

–
 ​​j​​)​ i, j=1

​ I
  ​​ and ​​​​ ​  =  diag(​​ 

–
 ​​i​​).​ Then, we 

have

	​​ ​​ ​  =  Id + ​(​​​ ​ − ​​​ ​)​​,

and equilibrium total welfare loss can be rewritten as ​​((​q​ i​ 0​))​​ T​ ​​​ ​ (​q​ i​ 0​)​, where

	​​ ​​ ​  = ​​ (​​​ ​)​​​ 
T
​ ​​​ ​  = ​ (Id + ​(​​​ ​ − ​​​ ​)​)​​(Id + ​(​​​ ​ − ​​​ ​)​ )​.​

Suppose first that all risk aversions are symmetric. For equally risk-averse traders it 
is efficient to hold equal shares of the total market portfolio; hence, the set of efficient 
allocations coincides with vectors ​(​q​ i​ 0​)​ for which ​​q​ i​ 0​​ is independent of ​i.​ Denote the 
subspace of such vectors by ​  ⊂ ​ 핉​​ K×N​.​ Then, the matrix ​​​​ ​​ keeps that subspace 
invariant in the sense that ​​​​ ​x  =  x​ for all ​x  ∈  ,​ and this holds independent 
of the market structure ​.​ Indeed, this is the case because both ​​​​ ​  =  (​​​​ ​)​​ T​​ 
and ​​ keep this subspace invariant, and hence so does ​​​​ ​  =  (​​​ ​​)​​ T​ ​​​ ​.​ The 
orthogonal complement ​​​​ ⊥​​ of  in ​​핉​​ K×N​​ coincides with the set of initial endow-
ment allocations for which the aggregate endowment is 0. Our goal is to show that 
the utility loss in a decentralized market is always higher; that is, that ​​​​ ​  ≥ ​ ​​ ∗​​.  
Denote by  the orthogonal projection on ​​​​ ⊥​.​ Then, by Corollary 1, the cen-

tralized market matrix ​​​​ ∗​​ on that subspace coincides with ​​​(​  β ___ 
1 + β ​)​​​ 

2
​ .​ That is, ​

​​​ ∗​   = ​​ (​  β ___ 
1 + β ​)​​​ 

2
​ .​ Since the matrices ​​​​ ​​ and ​​​​ ∗​​ both keep  invariant, 

it suffices to show that

	​ ​​​ ​  ≥  ​​​ ∗​  = ​​ (​  β ____ 
1 + β ​)​​​ 

2

​ .​

Denote ​  =   + (​​​ ​ − ​​​ ​).​ Then, by direct calculation, ​​​​ ​  =  ​​​ −1​​ 
and hence the required inequality takes the form

	​​ ​​ −1​  ≥ ​​ (​  β ____ 
1 + β ​)​​​ 

2

​.​

Using the fact that ​​ and ​​ and ​​ and ​​ commute and multiplying the required 
inequality by ​​​​ −1/2​​ from both sides, we conclude that we need to show that

	​ (​​​ −1/2​​​​ −1/2​​)​​ 2​  ≥ ​​ (​  β ____ 
1 + β ​)​​​ 

2

​,​

which is equivalent to ​​​​ −1/2​​​​ −1/2​  ≥ ​   β ___ 
1 + β ​ ​ assuming we can show ​

min (eig(​​​ −1/2​​​​ −1/2​ ))  ≥  0.​ That is, we need to show that all those eigenval-
ues of ​​​​ −1/2​​​​ −1/2​​ that are below ​1​ are also above ​β/(1 + β).​

Without loss of generality, we normalize the common risk aversion to be ​α  =  1.​ 
In order to determine the eigenvalues of the matrix ​​​​ −1/2​​​​ −1/2​,​ we note that they 
coincide with the eigenvalues of ​​​​ −1/2​(​​​ −1/2​​​​ −1/2​) ​​​ 1/2​  = ​ ​​ −1​  = ​ ​​ ​.​33 

33 For any invertible matrix ​​ and any matrix ​,​ the eigenvalues of ​​​​ −1​ ​ coincide with those of ​.​ 
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Fix a ​ν  ∈  핉​ and let us calculate the inverse of ​(​​​ ​ − νId).​ Our goal is to show 
that it is invertible for all ​ν​ below ​β/(1 + β).​

Writing equation ​(​​​ ​ − νId) X  =  Z​ with ​X  =  (​q​ i​ 0​)​ we get ​((1 − ν)Id − ​​Γ – ​​i​​) ​q​ i​ 0​  
+  ​​ 

–
 ​​i​​​ Q​​ ∗​  = ​ Z​ i​​​ , implying that ​​q​ i​ 0​  = ​ ((1 − ν)Id − ​​Γ – ​​i​​)​​ −1​ (​Z​ i​​ − ​​ 

–
 ​​i​​ ​Q​​ ∗​).​ Recalling the 

definition of ​​Q​​ ∗​,​ we get

	​ ​Q​​ ∗​  = ​ B​​ −1​ ​∑ 
i
​ ​​ ​​ 

–
 ​​i​​ ​α​i​​ V​​q – ​​ i​ 0​  = ​ B​​ −1​ ​∑ 

i
​ ​​ ​​ 

–
 ​​i​​ ​α​i​​ V ​​((1 − ν) Id − ​​Γ – ​​i​​)​​​ −1​ (​Z​ i​​ − ​​ 

–
 ​​i​​ ​Q​​ ∗​),​

which is equivalent to

	​ ​Q​​ ∗​  = ​​ (B + ​∑ 
i
​ ​​ ​​ 

–
 ​​i​​ ​α​i​​ V ​((1 − ν)Id − ​​Γ – ​​i​​)​​ −1​ ​​ 

–
 ​​i​​)​​​ 

−1
​ ​∑ 

i
​ ​​ ​​ 

–
 ​​i​​ ​α​i​​ V ​((1 − ν)Id − ​​Γ – ​​i​​)​​ −1​ ​Z​ i​​,​

and ​(​​​ ​ − νId)​ is invertible if and only if the right-hand side of this equation is well 
defined and finite.

The first key observation is that for each ​i,​ the matrix ​​​ 
–
 ​​i​​ ​α​i​​ V​((1 − ν)Id − ​​Γ – ​​i​​)​​ −1​ ​​ 

–
 ​​i​​​ 

is symmetric. This follows because

(34)    ​​V​N(i)​​ ​((1 − ν)Id − ​Γ​i​​)​​ −1​  = ​ V​N(i)​​ ((1 − ν)Id − ​​i​​ ​V​N(i)​​​)​​ −1​

	 = ​ ((1 − ν) ​V​ N(i)​ −1 ​ − ​​i​​)​​ −1​.​

The second key observation is that for ​ν  ≤ ​   β ___ 
1 + β ​,​ the matrix ​​V​N(i)​​ ​((1 − ν)Id − ​Γ​i​​)​​ −1​​ 

is positive semidefinite. This is equivalent to the claim that ​(1 − ν)​V​ N(i)​ −1 ​ − ​​i​​  ≥  0.​ 

The latter follows because by Theorem 2, ​​​i​​  ≤ ​   1 ___ 
1 + β ​ ​V​ N(i)​ −1 ​.​ Thus, for ​ν  < ​   β ___ 

1 + β ​ ,​ 
the matrix ​B + ​∑ i​   ​​ ​​ 

–
 ​​i​​ ​α​i​​ V ​((1 − ν)Id − ​​Γ – ​​i​​)​​ −1​ ​​ 

–
 ​​i​​​ is positive definite and hence is 

invertible.
Fix now a market structure. Let  be the subset of exchanges for which the 

market structure is not equivalent to that of a centralized market (see Malamud 
and Rostek 2016 for a full characterization of such market structures). Then, on 
the complement of these exchanges, a straightforward application of the iteration 
procedure used for equilibrium construction in the proof of Theorem 1 implies that 
the price impacts on that subset of exchanges are strictly below ​β.​ Using continuity 
arguments it is then possible to show that the inequality ​​​i​​  ≤ ​   1 ____ 

1 + ​β​i​​
 ​ ​V​ N(i)​ −1 ​​ still holds 

when the heterogeneity in risk aversion is sufficiently small, and then the arguments 
above imply the required welfare comparison result. The proof is complete. ∎

Proof OF Proposition 4: 
Without loss of generality, we normalize the asset’s variance to 1. Let us split the 

market in two so that agents ​I − 2, I − 1, I​ trade in a separate exchange numbered ​
2.​ Furthermore, without loss of generality let us normalize ​​α​I−3​​  =  1.​ Our goal is 
to show that for sufficiently small ​ε  ≡ ​ α​3​​​ there exists a vector of initial endow-
ments such that the split market has a higher total welfare than the centralized mar-
ket. For simplicity, we assume that ​​α​1​​  = ​ α​2​​  = ​ α​3​​  =  ε.​ Denote by ​​λ​i​​​ and ​​λ​ i​ ′ ​​ the 
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price impacts in the two market structures. Then, a direct calculation implies that ​
b  = ​  3 _ 2 ​ ​ε​​ 

−1​ + ​θ​0​​, b′  = ​  3 _ 2 ​ ​ε​​ 
−1​ + ​θ​ 0​ ′ ​,​ and

 ​ ​λ​i​​  =  ​ 2ε ___ 
3
 ​  +   ​ 4 __ 

9
 ​ ​ε​​ 2​ ​ 1 − ​θ​0​​ ​α​i​​ ______ ​α​i​​ ​   +  O(​ε​​ 3​),  ​  λ​ i​ ′ ​  =  ​ 2ε ___ 

3
 ​  +   ​ 4 __ 

9
 ​ ​ε​​ 2​ ​ 1 − ​θ​ 0​ ′ ​ ​α​i​​ _______ ​α​i​​ ​   +  O(​ε​​ 3​),    i  >  3,​

while ​​λ​2​​  =  ε  −  ​θ​0​​ ​ε​​ 2​ ​ 4 _ 
5
 ​,  ​λ​ 2​ ′ ​  =  ε  −  ​θ​ 0​ ′ ​ ​​​ 2​ ​ 4 _ 

5
 ​​ , where  ​​θ​0​​  =  ​ 5 _ 2 ​ ​∑ i>3​   ​​ ​ α​ i​ −1​, ​θ​ 0​ ′ ​  =  ​ 5 _ 2 ​ ​∑ 3<i<I−2​   ​​ ​ α​ i​ −1​.​  

Denote by ​​s​ i​​  ≡ ​ (​λ​i​​ + ​α​i​​)​​ −1​​ the lifted slope of agent ​i​’s demand. Suppose also 
that ​​q​ i​ 0​  =  0​ for ​i  =  I − 2, I − 1, I.​ Then, the equilibrium allocation is given by

(35)	​ ​q​ j​​ + ​q​ j​ 0​  = ​ q​ j​ 0​ +  ​s​ j​​​(​b​​ −1​ ​∑ 
i
​ ​​ ​s​ i​​ ​α​i​​ ​q​ i​ 0​ − ​α​j​​ ​​q – ​​ j​ 0​)​.​

Let ​  =  diag(​α​i​​)​ , ​  ≡ ​ (​s​ i​​ ​b​​ −1​ ​s​ j​​)​i, j​​​ , and ​  =  diag(​s​ i​​).​ Then, denoting ​
  =  Id + ( − ),​ we get ​ ​(​q​ j​ 0​)​j​​  = ​ (​q​ j​​ + ​q​ j​ 0​)​j​​,​ and the equilibrium total welfare 

loss can be rewritten as ​​((​q​ i​ 0​))​​ 
T​ (​q​ i​ 0​),   =  (Id + ( − ))(Id + ( −  )).​  

Similarly, we use ​′, ′, ′​ to denote the corresponding objects in the split mar-
ket. Our goal is to show that there exists a vector of initial endowments ​​(​q​ i​ 0​)​i​​​ such 
that ​​(​q​ i​ 0​  )​ i​ T​  ​(​q​ i​ 0​)​i​​  > ​ (​q​ i​ 0​)​ i​ T​ ′ ​(​q​ i​ 0​)​i​​ .​ That is, the total welfare loss is higher in the 
centralized market. Equivalently, we need to show that ​max (eig( − ′ ))  >  0.​ 
Denote ​​η​i​​  ≡ ​ α​i​​ ​s​ i​​.​ Then,

(36) ​   =    +  2  −  2 +  −  −  + 

	 =  ​((​α​i​​ − 2​α​i​​ ​η​i​​ + ​α​i​​ ​η​ i​ 2​)​1​i=j​​)​i, j​​ + ​(2​b​​ −1​ + ​b​​ −2​ ​∑ 
ℓ
​ ​​ ​s​ ℓ​​ ​η​ℓ​​)​​(​η​i​​ ​η​j​​)​i, j​​

	 − ​b​​ −1​ ​(​η​i​​ ​η​j​​ (​η​i​​ + ​η​j​​))​i, j​​.​

Hence, by direct (but tedious) calculation, the difference between  and ​′​ 
(restricted to endowments corresponding to agents in the first exchange) is approx-
imately given by

(37) ​​(​θ​0​​ − ​θ​ 0​ ′ ​)​​ −1​( − ′  )  ≈  − ​ ​ε​​ 
2​ __ 

5
 ​ ​(​1​i=j​​ ​1​i≤3​​)​i, j​​ −  ​ 11 ___ 

15
 ​ ​ε​​ 2​ ​(​η​ i​ ∗​ ​η​ j​ ∗​)​i, j​​

	                 + ​ε​​ 2​ ​((1 − ​1​i>3, j>3​​) ​κ​ij​​)​i, j​​ + ​ 4 __ 
9
 ​ ​ε​​ 2​ ​(​η​ i​ ∗​ ​η​ j​ ∗​ (​η​ i​ ∗​ + ​η​ j​ ∗​))​i, j​​ ​​

for some ​​κ​ij​​  ∈  핉,​ where ​​η​ i​ ∗​ = 1 − 0.5 ​1​i≤3​​.​ Hence, the diagonal elements of this 
matrix for all ​i  >  3​ are positive, and therefore it cannot be negative semidefinite. ∎

Proof of Proposition 5: 
Part (i) is proved in the text. Part (ii): without loss of generality, we may assume 

that there are ​5​ agents in the market. We also assume for simplicity that three low 
risk aversion agents have the same risk aversion ​​α​2​​​, and the two high risk aversion 
agents have the same risk aversion ​​α​1​​  > ​ α​2​​.​ Consider the two market structures 
similar to those from Example 5. Namely, we assume that in the more centralized 
market, two of the less risk-averse agents trade only asset ​2,​ while two high risk 
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aversion agents and the third low risk aversion agent trade both assets. Then, price 
impacts satisfy

(38) ​​ Λ​1​​  = ​​ (​(​
0
​ 

0
​ 

0
​ 

2 ​(​Λ​2​​ + ​α​2​​)​​ −1​​)​ + ​(​Λ​1​​ + ​α​1​​ V)​​ −1​ + ​(​Λ​3​​ + ​α​2​​ V)​​ −1​)​​​ 
−1

​,

	 ​ Λ​3​​  = ​​ (​(​
0
​ 

0
​ 

0
​ 

2 ​(​Λ​2​​ + ​α​2​​ )​​ −1​​)​ + 2 ​(​Λ​1​​ + ​α​1​​ V)​​ −1​)​​​ 
−1

​,

	 ​ Λ​2​​  = ​​ (​​(​(​
0
​ 

0
​ 

0
​  ​(​Λ​2​​ + ​α​2​​ )​​ −1​​)​ + 2 ​(​Λ​1​​ + ​α​1​​ V)​​ −1​ + ​(​Λ​3​​ + ​α​2​​ V)​​ −1​)​​​ 

−1

​)​​
22

​​.​​

In the less centralized market, we prohibit the third low risk aversion agent from 
trading asset ​2,​ so that

(39) ​​ Λ​ 1​ ′ ​  = ​​
(

​(​
​(​Λ​ 3​ ′ ​ + ​α​2​​)​​ −1​

​ 
0
​  

0
​ 

2 ​(​Λ​ 2​ ′ ​ + ​α​2​​)​​ −1​
​)​ + ​(​Λ​ 1​ ′ ​ + ​α​1​​ V)​​ −1​

)
​​​ 
−1

​,

	​ Λ​ 3​ ′ ​  = ​​ (​​(​(​
0
​ 

0
​ 

0
​ 

2 ​(​Λ​ 2​ ′ ​ + ​α​2​​)​​ −1​
​)​ + 2 ​(​Λ​ 1​ ′ ​ + ​α​1​​ V)​​ −1​)​​​ 

−1

​)​​
11

​​,

	​ Λ​ 2​ ′ ​  = ​​ (​​
(

​(​
​(​Λ​ 3​ ′ ​ + ​α​2​​)​​ −1​

​ 
0
​  

0
​ 

​(​Λ​ 2​ ′ ​ + ​α​2​​)​​ −1​
​)​ + 2 ​(​Λ​ 1​ ′ ​ + ​α​1​​ V)​​ −1​

)
​​​ 
−1

​)​​
22

​​.​​

When the correlation ​ρ​ is 0, the price impact of class ​1​ agents satisfies

	​ ​Λ​∗​​  =  diag(​λ​11​​, ​λ​21​​),  ​  Λ​ ∗​ ′ ​  =  diag(​λ​ 11​ ′ ​ , ​λ​ 21​ ′ ​ ),​

where ​ ​λ​i1​​  =  (2 − ​α​1​​​b​ i​​ + ​√ 
_______

 ​(​α​1​​ ​b​ i​​)​​ 2​ + 4 ​)/2​b​ i​​,​  λ​ i1​ ′ ​  =  (2 − ​α​1​​​b​ i​ ′ ​ + ​√ 
______

 ​(​α​1​​ ​b​ i​ ′ ​)​​ 2​ + 4 ​)/2​b​ i​ ′ ​​, 
where

(40) ​ 2​(2 + ​α​1​​​b​ 1​​ + ​√ 
_______

  ​(​α​1​​ ​b​ 1​​)​​ 2​ + 4 ​ )​​ 
−1

​ + ​(2 + ​α​2​​ ​b​ 1​​ + ​√ 
_______

  ​(​α​2​​ ​b​ 1​​)​​ 2​ + 4 ​)​​ 
−1

​  =  1/2,

	 2​(2 + ​α​1​​ ​b​ 2​​ + ​√ 
_______

  ​(​α​1​​ ​b​ 2​​)​​ 2​ + 4 ​)​​ 
−1

​ + 3​(2 + ​α​2​​ ​b​ 2​​ + ​√ 
_______

  ​(​α​2​​ ​b​ 2​​)​​ 2​ + 4 ​)​​ 
−1

​  =  1/2.​

At the same time, in the less centralized market, we have

(41) ​ 2​(2 + ​α​1​​ ​b​ 1​ ′ ​ + ​√ 
_________

  ​(​α​1​​ ​b​ 1​ ′ ​)​​ 2​ + 4 ​)​​ 
−1

​ + ​(2 + ​α​2​​ ​b​ 1​ ′ ​ + ​√ 
_________

  ​(​α​2​​ ​b​ 1​ ′ ​)​​ 2​ + 4 ​)​​ 
−1

​  =  1/2,

	 2​(2 + ​α​1​​ ​b​ 2​ ′ ​ + ​√ 
_________

  ​(​α​1​​ ​b​ 2​ ′ ​)​​ 2​ + 4 ​)​​ 
−1

​ + 2​(2 + ​α​2​​ ​b​ 2​ ′ ​  + ​√ 
_________

  ​(​α​2​​ ​b​ 2​ ′ ​)​​ 2​ + 4 ​)​​ 
−1

​  =  1/2.​

In particular, ​​b​ 1​​  = ​ b​ 1​ ′ ​​ and hence liquidity for the first asset is the same in 
both markets. At the same time, ​​b​ 2​ ′ ​  < ​ b​  2​​​ and hence liquidity for the sec-
ond asset is higher in the more centralized market. It is possible to show that 
when ​​α​2​​​ → 0, ​​b​ 1​​  = ​  1 __ ​α​1​​ ​ ​ 

8 _ 3 ​ + O(​α​2​​)​ and ​​λ​11​​  = ​ λ​ 11​ ′ ​   = ​  ​α​1​​ __ 3 ​ + O(​α​2​​)​ while ​​b​ 2​​  ≈ ​   3 ___ 4 ​α​2​​
 ​​ 
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and ​​λ​21​​  ≈ ​  2 ​α​2​​ ___ 3 ​ .​ At the same time, ​​b​ 2​ ′ ​  ≈ ​   ​2​​ 3/2​ ____ ​√ ____ ​α​1​​ ​α​2​​ ​ ​​ and ​​λ​ 21​ ′ ​   ≈ ​  ​√ ____ ​α​1​​ ​α​2​​ ​ ____ 
​2​​ 3/2​

 ​ .​ Suppose now 
that ​ρ  ≈ ​ ρ​​ ∗​ ​√ __ ​α​2​​ ​.​ Then, ​​Γ​1​​  = ​ Γ ˆ ​ + ​√ __ ​α​2​​ ​ ​Γ​∗​​ + O(​α​2​​), ​Γ​ 1​ ′ ​  ≈ ​ Γ ˆ ​ + ​√ __ ​α​2​​ ​ ​Γ​ ∗​ ′ ​ + O(​α​2​​),​ 
where ​​Γ ˆ ​  = ​ S ˆ ​ − 0.5 ​α​1​​ ​​S ˆ ​​​ 2​​ with ​​S ˆ ​  =  diag(​( ​ ​α​1​​ __ 3 ​ + ​α​1​​)​​ 

−1​, ​α​ 1​ −1​).​ Our goal is to show 
that ​​Γ​∗​​  ≱ ​ Γ​ ∗​ ′ ​​ for some values of ​​ρ​​ ∗​.​

The first observation is that by Proposition 7 in the online Appendix, to the high-
est order (i.e., ​​√ __ ​α​2​​ ​​), ​​Λ​1​​​ only depends on ​ρ​ through ​1 − ​ρ​​ 2​  =  1 + O(​α​2​​)​ and hence ​
Λ  = ​ Λ​​ ∗​ + O(​α​2​​).​ At the same time, ignoring the terms of the order of ​​α​2​​ ,​ we have 
that

	​​ Λ​ 1​ ′ ​  = ​​
(

​(​
​(​Λ​ 3​ ′ ​)​​ −1​

​ 
0
​ 

0
​ 

2 ​(​Λ​ 2​ ′ ​)​​ −1​
​)​ + ​(​Λ​ 1​ ′ ​ + ​α​1​​ V)​​ −1​

)
​​​ 
−1

​, 

	​ Λ​ 3​ ′ ​  = ​​ (​​(​(​
0
​ 

0
​ 

0
​ 

2 ​(​Λ​ 2​ ′ ​)​​ −1​
​)​ + 2 ​(​Λ​ 1​ ′ ​  + ​α​1​​ V)​​ −1​)​​​ 

−1

​)​​
11

​​,

	​   Λ​ 2​ ′ ​  = ​​ (​​
(

​(​
​(​Λ​ 3​ ′ ​ )​​ −1​

​ 
0
​ 

0
​ 

​(​Λ​ 2​ ′ ​)​​ −1​
​)​ + 2 ​(​Λ​ 1​ ′ ​ + ​α​1​​ V)​​ −1​

)
​​​ 
−1

​)​​
22

​​.​​

Substituting ​V  =  Id + ​ρ​​ ∗​ ​√ __ ​α​2​​ ​​(​0​  1​ 
1
​ 

0
​)​​ and using the implicit function theorem, we 

get ​​Λ​ 1​ ′ ​  ≈ ​ Λ​∗​​ + ​√ __ ​α​2​​ ​​Λ ̃ ​.​ Calculating ​​Γ​ ∗​ ′ ​​ using this expression yields the required 
result.

To prove the last claims of Proposition 5, we will need the following auxiliary 
result.

Lemma 4: Within Proposition 7, let the equilibrium price impact of trader ​1​ be ​​​Λ ̃ ​​1​​.​ 
Then, any ​​​Λ ̂ ​​1​​  ≤ ​ Λ​1​​​ can be attained as an equilibrium price impact by adding an 
additional trader to the exchange.

Proof: 
See the online Appendix.

Lemma 4 implies that by adding/removing traders to/from the illiquid exchange, 
the required changes in price impact can be achieved. The claim now follows from 
Proposition 2(ii).34 Assume that the endowments are such that there is no inter-class 
trade and also no intra-class trade, except for agents of class ​1​. As we discuss in the 
main text, this can be done independently of price impacts. For simplicity, we may 
assume that the total endowment of each class is 0, so that ​Q  =  0​. We can also 
assume that class ​1​ consists of ​2​ traders with endowments ​​q​ 1​ 0​​ and ​− ​q​ 1​ 0​,​ so that we 
are free to choose this endowment without affecting aggregate risk. ∎

34 While Proposition 2(ii) only claims that ​ϒ​ may be nonmonotone in ​Λ,​ it is straightforward to show that it is 
in fact always nonmonotone in ​Λ​ when ​Λ​ is not proportional to ​​V​N(i)​​ .​ 
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