
Core Selection in Auctions and Exchanges∗

Marzena Rostek† and Nathan Yoder‡

March 2015

Abstract

A designs ability to implement core outcomes is of central importance in practice.

It is well known that such implementation is possible in those one-sided environments

with the substitutes property. This paper characterizes divisible good environments in

which core-selecting design is possible, offering a unified treatment of auctions where

trade is necessarily one-sided and those where agents and the auctioneer can both

buy and sell. We show that heterogeneity in either pre-auction marginal utilities or

substitution patterns (as captured by utility Hessians) can independently challenge core

selection. In particular, core selection may fail even with a single good and even when

revenue is positive. We introduce a joint condition on preferences and equilibrium

allocations which ensures that outcomes are in the core. Our results point to the

alignment between the bidders incentives to substitute and the trades necessary to

realize the available surplus as the key to core selection.

jel codes: D44, D47. keywords: Core-selecting auction; Package auction; Package

exchange; Divisible-good auction; Complements; Substitutes; Vickrey auction.

1 Introduction

The last decade has seen significant progress concerning allocation problems, in which

traders seek to buy or sell multiple heterogeneous goods. Special attention has been given to

a design’s ability to select a core outcome – a strong efficiency criterion and a key challenge

for practical market design. When efficient implementation is the objective, the literature
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has generally considered the Vickrey mechanism, either directly or as a benchmark.1 Core

selection ensures that no coalition of participants (the bidders and the auctioneer) can do

better by trading on its own. Its absence leads to incentive problems that can compromise

virtually any aspect of design, including efficiency, revenue, and participation. These issues

(and the Vickrey auction, in general) are well understood in one-sided auctions (where all

bidders are interested in buying) for indivisible goods. In such settings, the literature has

established a close link between core selection and a goods substitutes property. In many re-

source allocation problems, however, bidders are interested in selling or buying various goods.

Likewise, the auctioneer may specifically desire to reallocate goods among the bidders, or

wish to acquire certain goods and sell others. Indeed, reallocating the spectrum controlled by

television stations into uses of higher-value is part of the the objective of the Federal Commu-

nications Commission in the U.S. spectrum auction scheduled for 2015.2 Moreover, as is the

case with spectrum, electricity, and emission permits, bidders typically have complex prefer-

ences over the goods being auctioned, and the same goods may be considered substitutes by

some bidders and complements by others;3 in particular, accommodating complementarities

is often essential. In his Fisher-Schultz lecture, Milgrom (2007) emphasized that the theory

of package exchanges has few predictive results. For markets with multiple heterogeneous

divisible goods, this paper characterizes the possibilities and limits for a core-selecting Vick-

rey design in such two-sided settings – where bidders and the auctioneer are able to both

buy and sell and bidders have heterogeneous preferences – such as auctions in which bidders

enter with non-zero endowments of the goods auctioned, or reallocating goods among the

bidders is part of the auctioneer’s objective.

Main results. Two-sidedness has important implications for core selection. To begin, since

gains from trade among agents may exist even in the absence of the auctioneer’s quantity

vector, a two-sided setting creates the possibility of additional deviations by coalitions that

do not include the auctioneer. We show, however, that the Vickrey auction is immune to such

deviations; that is, participation is not only individually but coalitionally rational. For core-

selection in two-sided divisible settings, we provide examples demonstrating that Vickrey

payoffs may not lie in the core even when goods are substitutes for all bidders. In fact, core

1 In fact, Goeree and Lien (2014) show that any core selecting auction is a Vickrey auction. Specifically,
they show that any Bayesian incentive compatible core selecting mechanism that obeys participation con-
straints is a Vickrey auction. This result is proven for indivisible goods, but can easily be shown to hold for
our divisible setting as well.

2 See http://www.fcc.gov/incentiveauctions. In applications like spectrum auctions, the auctioneer
is not necessarily constrained to allocate each bidder a nonnegative quantity of each good; bidders may wish
to switch to a different frequency or exit a market.

3 For instance, spectrum licenses differ in their geographical coverage and technical characteristics such
as interference with adjacent frequency bands; electricity contracts differ in duration and location character-
istics; government bonds have different maturities; and emission permits are issued for different time periods
and pollutants.
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selection may fail even when a single good is being auctioned – that bidders hold non-zero

endowments of the goods auctioned, for instance, may critically affect its efficiency. On the

other hand, auctions in which each bidder’s preferences exhibit rich complementarities may

yield a core outcome.

We establish a core selection condition as a joint restriction on allocations and demands.

It involves the existence of implicit packages (bundles of goods) which are substitutes for

all bidders.4 Mathematically, the condition requires that each bidder’s allocation must be

contained in the cone generated by the packages. Intuitively, the joint condition captures

that underlying the absence of incentives to deviate by coalitions of the bidders and the

auctioneer is an order of packages, common among bidders, that aligns the bidders’ incen-

tives to substitute with the trades necessary for the surplus in the auction, created by the

participants’ pre-auction endowments and the quantity auctioned, to be realized. Our core

selection condition reduces to the classic substitutes condition when the packages are just

the primitive goods and the auction is one-sided. In general, the condition ensures that a

two-sided auction for goods functions like a one-sided auction for packages.

We then ask what core selection requires in terms of the primitives. Whether the Vickrey

auction leads to core outcomes depends on how different bidders’ substitution patterns (as

captured by utility convexities (Hessians)) and marginal utilities at the initial allocation are.

With sufficient heterogeneity in substitution patterns in bidder preferences, core selection

fails independently of heterogeneity in marginal utility at the initial (pre-auction) allocations;

and with sufficient heterogeneity in the initial allocations, core selection fails independently

of heterogeneity in the substitution patterns. A preference condition establishes when we

can find packages that are substitutes. We can then characterize a set of auctioned quantity

vectors for which core selection holds. This design aspect – that the core-selection property

depends on the quantity vector – is unique to (perfectly and imperfectly) divisible goods.

Hence, insofar as the quantity vector is a choice variable for the auctioneer, it can be selected

to align the trades necessary to realize the surplus with the bidders’ incentives to substitute,

regardless of the heterogeneity in marginal utilities at the initial allocations. These results

identify settings where a designer’s choice of the Vickrey auction will not cause the incentive

problems associated with the absence of core selection.

Taken together, the core-selection results and the converses we introduce offer two general

insights. First, it is not substitutability per se that enables core selection – the Vickrey

auction yields a core outcome for a rich class of bidder valuations (utility Hessians) which

4 Authors in the literature on equilibrium existence with imperfectly divisible goods have considered
substitutes under a particular reordering of the space of goods. Examples include the gross substitutes
and complements condition of Sun and Yang (2006); its close relative, the full substitutability condition of
Ostrovsky (2008) and Hatfield et al. (2013); and, more generally, the basis changes employed in Baldwin and
Klemperer (2014). We show that the gross substitutes and complements condition is of limited use for core
selection in the one-sided auction environment on which the literature has focused. (See also Example 4.)
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may exhibit complementarities and substitutabilities and vary across bidders. Rather, a

homogeneity property underlying the preference substitution patterns is. With it, each

bidder’s quantity demanded changes in a common set of directions in response to a price

change. Second, unlike one-sided (divisible or indivisible) auctions, substitutability (in goods

or packages) is not sufficient on its own for core selection; instead, an additional condition is

needed – a positive package allocation – which in turn restricts the direction of the quantity

auctioned.

Our analysis of substitutability is cast in the language of cones, which we use to provide

a unified treatment of one- and two-sided divisible-good settings, and analytic and geometric

arguments for all main results. Generated by packages, cones can induce partial orders in

which the substitutes property holds, which in turn allow us to identify the notion of substi-

tutability relevant for understanding core selection in divisible-good markets (i.e., package

substitutability) in terms of the primitives; identify its homogeneity across bidders as cen-

tral to, but insufficient for, core selection in two-sided markets; and conveniently think about

design.

Although the Vickrey auction possesses key advantages (truthful reporting as a dominant

strategy, efficient allocation), when core selection fails, its revenue performance strictly below

the smallest auctioneer’s revenue at any core allocation, even when all bids are high, is seen as

a significant limitation in practice (e.g., Ausubel and Milgrom (2006)). In the U.S. spectrum

auctions, for example, both efficiency and revenue are mandates. However, we show that

in two-sided divisible good settings, the Vickrey mechanism may outperform the popular

uniform-price design in revenue terms, particularly in environments where it is likely to be

core-selecting.

The literature on package allocation problems for indivisible goods recognizes two central

complexity challenges. First, finding core outcomes is NP-hard in the general case. In

addition, with K goods, a bidder may be asked to report values for 2K − 1 (non-empty)

packages – unrealistic, even if K is small.5 For package allocation problems with divisible

goods, the difficulty of computing core outcomes is largely absent, but the problem of asking

bidders to consider a high-dimensional bid space is worsened: bidders may be asked to submit

demand schedules for all goods as a function of all prices, RK → RK , or, equivalently, their

valuations over the entire space of feasible allocations. However, the demand structure

(common package substitutability) we identify as facilitating core selection can enable a

reduction in the dimensionality of the bid space by removing the requirement that agents

make fully contingent bids. Instead, the designer can equivalently ask bidders to submit bids

(R → R) in K independent Vickrey auctions for packages. This is ultimately useful to the

extent that these packages have a meaning in practical applications. We argue that this is

5 De Vries and Vohra (2003) survey complexity issues associated with package designs.
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the case in many high-stakes applications, including spectrum and electricity auctions.

Related literature. The literature on core selection has largely focused on settings with

indivisible goods. This paper provides analysis of core selection in environments with multi-

unit demands. An important predecessor is Milgrom and Strulovici (2009), who examine

one-sided divisible good auctions. For divisible and indivisible goods, our results highlight

the central role that two-sidedness and heterogeneity in bidder preferences play for core

selection.6

In response to the low revenue problem of the Vickrey auction, the literature has ex-

plored core-selecting auctions (Day and Milgrom (2008)), which allow for compromising on

strategy-proofness to attain revenue objectives by modifying transfers. Variants of core-

selecting auctions include menu auctions (the pay-as-bid (Bernheim and Whinston (1986)),

the ascending proxy auction (Ausubel and Milgrom (2002), Parkes and Ungar (2000)), the

assignment auction (Milgrom (2009)), and the mechanisms resulting from the core computa-

tions in Day and Raghavan (2007), Day and Cramton (2012), Erdil and Klemperer (2010),

and Ausubel and Baranov (2010).7 Milgrom and Segal (2014) require strategy-proofness but

not the efficiency of the outcome given the bids.8

In environments with indivisible or imperfectly divisible goods, the literature has demon-

strated that substitutes properties are useful.9 In a recent contribution, Baldwin and Klem-

perer (2014) provide a geometrically beautiful characterization of equilibrium existence in a

very general framework. Like us, the authors also allow for negative allocations in indivisible-

good settings, allow for complements, and recognize that when the substitutes condition

holds for a transformed problem under a change of basis, many results continue to hold.

They focus on existence; as we show, core selection requires conditions more stringent than

substitutes when reallocation is feasible or when the property holds under a change of basis.

6 We do not require that bidders are single-minded (i.e., that they wish to acquire one good or bundle
of goods, and care only about winning or losing and the payment).

7 In light of the Vickrey auction’s poor revenue performance outside of settings where goods are substi-
tutes, the core-selecting auctions are viewed as a potential alternative to the Vickrey design in practice, if
the problem of communication complexity can be addressed (e.g., Day and Milgrom (2008)). Articles on
settings with divisible goods include Ausubel (2006), who proposed a dynamic auction design that achieves
Pareto efficiency, and Ausubel and Cramton (2004) who examine design properties of simultaneous clock
auctions.

8 We do not require that bidders are single-minded (i.e., that they wish to acquire one good or bundle
of goods, and care only about winning or losing and the payment).

9 Integer programming problems, being over a nonconvex set, are not always amenable to the strong
duality properties on which classical results for divisible goods are dependent. Variations of the substitutes
property can get around this problem; indeed, M ]-concavity, which is a strengthening of the substitutes
property, guarantees that strong duality holds – see Murota (2003). Such properties guarantee existence
of competitive equilibrium in indivisible Walrasian economies (Gul and Stacchetti (1999)), stable outcomes
in matching models (Hatfield and Milgrom (2005), Ostrovsky (2008), Hatfield et al. (2013)), in addition to
ensuring that the Vickrey auction is core-selecting (Ausubel and Milgrom (2002)).
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Additionally, while the notion of demand types in Baldwin and Klemperer (2014) allows

both substitutes and complements, the condition that the authors place on demand types

in perfectly competitive environments with imperfectly divisible goods to get existence (not

an order-theoretic result) is not order-theoretic. Our analysis of core selection (an order-

theoretic result) points to the importance of an order-theoretic property of preferences, which

admits goods complementarity and substitutability, and explores the role of (heterogeneity

in) bidder preferences.

Structure of the paper. Section 2 introduces the setting. Section 3 discusses the link

between core selection and bidder submodularity in two-sided settings. Section 4 develops

the main results: the motivating examples and characterization of core selection in two-sided

settings. Section 5 presents the converses. Section 6 establishes complexity reduction and

revenue results. Section 7 discusses extensions. All proofs are contained in the Appendix.

2 Setting

An auctioneer has a vector Q ∈ RK of K perfectly divisible goods to sell to N hetero-

geneous agents who may participate in this auction. Throughout, we denote the set and

its cardinality by the same symbol. Each agent i has a valuation for quantity obtained in

the auction10 qi and payments (transfers) to the auctioneer xi given by ui(qi) − xi, where

ui : RK → R is twice continuously differentiable and strictly concave and the images of the

marginal utilities, ∇ui(RK), are the same for all agents.11 With respect to applications, our

setting makes two innovations. We do not restrict the feasible allocations to be non-negative.

This allows accommodation of environments in which bidders and the auctioneer can buy

or sell; for instance, when bidders have non-zero endowments or short-selling is allowed.

Additionally, this allows us to consider settings in which the auctioneer seeks to reallocate

goods among the bidders, purchase goods (a procurement auction12) or has no quantity for

sale (a proper exchange).

We refer to an auction in which each agent is only able to purchase goods from the

auctioneer (who is looking to sell them) or only able to sell goods to the auctioneer (who is

10 We can think of ui as a reduced form describing the agents’ initial endowments {q0i }i and preferences
over total quantities ûi; then ui(qi) ≡ ûi(q0i +qi)− ûi(q0i ) and, in particular, ui(0) = 0. We work directly with
ui(qi), since the core-selection properties depend only on ui(qi). Our information assumptions are minimal;
we only assume that agents know their own preferences ui.

11 This ensures existence of a competitive equilibrium allocation in finite quantities and that aggregate
demand is everywhere well-defined. This is stronger than necessary for equilibrium existence, but allows us
to focus on core selection using the language of demand and supply without running into issues related to
invertibility of demands and supplies.

12 Procurement auctions, while one-sided, require a more careful definition of core selection – see Section
3.
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looking to buy them in a procurement auction) as one-sided. Formally, a one-sided auction

is one where bidders’ auction allocations qi are constrained to lie in the positive or negative

orthant.

(Two-sided) Vickrey auction. The most widely studied mechanism for efficient resource

allocation in transferable utility environments such as ours is the (generalized) Vickrey auc-

tion. When Q = 0, the two-sided auction becomes what has been referred to as a Vickrey

exchange.

A two-sided (demand-implemented)13 Vickrey auction of K perfectly divisible goods asks

bidders to submit (net) demand curves bi : RK → RK that are C1 and strictly downward-

sloping (i.e., have negative definite Jacobians). We assume that if only one agent were

present, the auction is cancelled and no goods are allocated;14 thus, in the analysis to follow,

there are at least two participating bidders. Otherwise, aggregating the demands of j 6= i,

gives the (inverse) residual supply curve p = Ri(qi) of bidder i; bidders receive the market-

clearing quantity, i.e., the unique solution to Ri(qi) = bi(qi), and are charged a payment of∫ qi
0
Ri(r) · dr (Figure 1). Hence, a bidder’s payoff from receiving qi is∫ qi

0

(∇ui(r)−Ri(r)) · dr.

Geometrically, residual supply is the gradient of the value function of other agents in the

coalition – the marginal cost of reallocating qi to i; it is the price that would clear the market

for Q − qi were i not present.15 If bidder i could optimize ex post, his first-order condition

would equalize his marginal utility and the marginal payment:

∇ui(qi)−Ri(qi) = 0.

Hence, submitting the inverse demand function bi(qi) = ∇ui(qi) is a weakly dominant strat-

13 It is useful to understand the Vickrey auction by thinking about its implementation by asking agents to
submit demand functions RK → RK , as we do here in our characterization of the payment rule. Given strict
concavity, this is equivalent to implementation by requiring agents to submit utility functions RK → R, as
is common in the literature.

14 In one-sided settings, the convention in the literature is to assume that if only one bidder is present,
he receives the entire quantity being auctioned for free. In a two-sided setting where Q < 0, this would
imply that a single bidder whose preferences satisfy free disposal is better off in autarky than participating
in the Vickrey auction. Therefore, we assume that with only one bidder present, the auctioneer abandons
the Vickrey mechanism, since the knowledge of the agent’s preferences that it is designed to reveal is then
unnecessary to determine the efficient allocation. This is without loss for our results when Q > 0.

15 The aggregate quantity supplied to i at p is Q−
∑
j 6=i b

−1
j (p). Given the assumption that the ∇uj(RK)

are the same, this will be a surjective and upward-sloping function on ∇uj(RK) under truthful reporting,

and we can define Ri : RK → RK by Ri(qi) =
(
Q−

∑
j 6=i(∇uj)−1

)−1
(qi). To complete the definition of

the game, we assume that if any (inverse) residual supply Ri is not well-defined, the auction is cancelled;
this has no effect on incentive compatibility.
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egy for i, since it causes the ex post FOC to be satisfied for any realization of residual

supply.

Figure 1: Vickrey auction payment, allocation, residual supply

Notes: The Vickrey auction can be implemented by soliciting downward-sloping (net) demand

schedules and clearing the market as in a standard uniform price auction, but charging bidders the

area under their residual supply curves, eliminating bidders’ price impact and incentivizing them to

bid sincerely. Bidder i’s residual supply aggregates the other agents’ quantity demanded, for every

price and mirrors the result about the vertical line at Q. The equilibrium auction allocation q∗i is

then determined by the point where i’s bid schedule intersects residual supply. Bidder i’s payment

corresponds to the area below his residual supply curve from 0 to q∗i ; this is the opportunity cost

of not allocating q∗i to the other agents.

Together with market clearing, the bidders’ demand functions bi(qi) give us the Kuhn-

Tucker conditions for the grand coalition’s optimization problem, and thus the divisible-good

Vickrey auction yields an efficient allocation. The reader may wonder: why run a two-sided

auction instead of two one-sided Vickrey auctions, whose properties are well understood in

the literature? We will show that while resulting in the same allocation, the standard design

would compromise the auctioneer’s revenue (Section 6.2).

Coalitional value function and the core. To characterize the core of the environ-

ment described above, let us label the auctioneer agent 0 and, for any coalition W ⊆ N ,

define the surplus function v : 2N ×RK → R as the maximum value of the goods allocation

among the members of W ,

v(W,Q) = max
{qi}i∈W

∑
i∈W

ui(qi) s.t.
∑
i∈W

qi = Q.

For each i, the efficient allocation q∗i : 2N+1 × RK → RK is one that maximizes the total
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utility of the bidders,

{q∗i (W,Q)}i∈W = arg max
{qi}i∈W

∑
i∈W

ui(qi) s.t.
∑
i∈W

qi = Q.

The surplus function allows us to characterize agents’ payoffs in the Vickrey auction as their

marginal product to the grand coalition, v(N)−v(N \ i).16,17 Now define the coalitional value

function V : 2N+1 × RK → R by

V (W,Q) ≡

{
v(W,Q), 0 ∈ W
v(W, 0), 0 /∈ W

.

The core is the set of payoff profiles such that no coalition can be better off by abandoning

the mechanism and trading on its own. A payoff profile π is in the core for participants Z

if
∑

i∈Z∪0 πi = v(Z) and
∑

i∈W πi ≥ V (W ) for all W ⊂ Z ∪ 0. If
∑

i∈W πi < V (W ) we

say that W blocks π. Note that we are not assuming that v(W,Q) = 0 if 0 /∈ W ; that is,

that goods cannot be redistributed among the bidders without the auctioneer. In the two-

sided auction, unless reallocation of initial endowments among agents is unnecessary (e.g.,

initial allocation is efficient) or infeasible (e.g., the auction is one-sided) and the only surplus

comes from allocating Q, agents may be able to realize gains from trade without benefit of

the auctioneer’s quantity vector.

3 Core Selection and Bidder Submodularity

Perhaps the main question that has returned attention to the Vickrey auction over the

past decade concerns the conditions under which it is core-selecting, i.e., it yields a payoff

profile that lies in the core, ensuring that no coalition can profitably persuade the auctioneer

to cancel the auction and award them the good. This has been shown to reduce to the

question of whether the coalitional value function v(W,Q) has decreasing differences in its

first argument under the usual set order ⊆ (Ausubel and Milgrom (2002)): v(W,Q) is bidder-

16 This formulation is more commonly used in the literature, and indeed, as alluded to in an earlier
footnote, the Vickrey auction can be equivalently implemented by soliciting agents’ valuations, allocating
the quantity vector efficiently, and charging a payment of ui(q

∗
i (W,Q))− v(N) + v(N \ i).

17 It is useful to recall why this payment rule results in a payoff of πi = v(N,Q) − v(N \ i, Q): Ri(qi) is
the marginal cost to the coalition N \ i of assigning qi to i, −∇v(N \ i, Q− qi). Hence,

v(N\i, Q)−
∫ q∗i (N,Q)

0

Ri(r)·dr = v(N\i, Q−q∗i (N,Q))⇔
∫ q∗i ([0,N ])

0

Ri(r)·dr = v(N\i, Q)−v(N\i, Q−q∗i (N,Q)).

Since v([0, N ], Q) = v(N \ i, Q− q∗i (N,Q)) + ui(q
∗
i (N,Q)), we have πi = qi(q

∗
i (N,Q))−

∫ q∗i (N,Q)

0
Ri(r) · dr =

v(N,Q)− v(N \ i, Q).
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submodular for the quantity vector Q if, for all coalitions W ⊆ N that include bidder j,

v(W,Q) − v(W \ j,Q) does not increase when more bidders are added to W . Intuitively,

bidders are more valuable when added to smaller coalitions than when added to larger

coalitions. Unlike one-sided auctions, in two-sided settings, to ensure core selection, we need

to consider coalitions that do not include the auctioneer: bidders may have a profitable joint

deviation to cease their participation in the auction and trade among themselves. As it turns

out, however, bidders always prefer to participate in the Vickrey auction than negotiate on

their own.

Lemma 1 (Coalitional Rationality of Participation). Coalitions which do not involve

the auctioneer never block the Vickrey payoff profile.

This new result shows that participation in the two-sided Vickrey auction is not only

individually rational, but coalitionally rational as well. For intuition, observe that setting

Q = 0 and considering the grand coalition yields the following corollary:

Corollary 1 (Vickrey (1961)). The auctioneer’s revenue in a Vickrey exchange is never

positive.

This classic no budget balance result by Vickrey (1961) implies that when Q = 0, and

thus the mechanism is only reallocating, agents are collectively better off than without the

auctioneer, as the auctioneer effectively subsidizes them. Lemma 1 generalizes this insight,

showing that every coalition is so subsidized for any Q. This need not be read as a negative

statement about Vickrey revenue: indeed, our analysis in section 6.3 will imply that when

heterogeneity in the agents’ marginal utilities at their initial endowments (i.e., with qi = 0)

is sufficiently small relative to Q, the auctioneer will make a profit (indeed, he will receive

greater revenue than he would with the common uniform-price auction design).

The many reasons to care whether a design is core selecting are well understood from

one-sided indivisible good settings (e.g., Ausubel and Milgrom (2002), Milgrom (2007)).

Those most frequently mentioned are that (a) it prevents manipulation by the bidders – shill

bidding is unprofitable (Yokoo and Matsubara (2004), Day and Milgrom (2008)); (b) the

auctioneer’s revenue is monotone in the number of bidders; and (c) no coalition of losing

bidders can profitably collude. Note that the last of these does not readily carry over to the

divisible-goods case, where the idea of a “losing bidder” is unnatural – typically, all bidders

are allocated some quantity – and collusion among bidders can be profitable. For the others,

however, we can draw similar conclusions about two-sided divisible good auctions.

Lemma 2 (Implications of Core Selection). The Vickrey auction is core selecting re-

gardless of which agents participate if, and only if, v(·, Q) is submodular.

Hence, if the Vickrey auction is core selecting for any participating agents,
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(i) The auctioneer’s revenue is increasing in the number of participating bidders;

(ii) If the potential shill bidder is not the only participant in the auction, shill bidding is

unprofitable regardless of which agents participate.18

Since, in keeping with classical auction theory, we do not in general assume that the

auctioneer has preferences over the goods he sells, the definition of the core requires the

auctioneer to receive positive revenue so that {0} does not block the payoff profile. This is

unimportant in one-sided settings with Q > 0, where the auctioneer always receives non-

negative revenue. To study core-selection in two-sided settings and in one sided settings

for procurement auctions (Q < 0), we will also consider weaker conditions under which the

payoff profile is unblocked by all W 6= 0. We say that the Vickrey auction is core-selecting

with respect to bidders if the payoff profile is unblocked by every coalition except for {0},
the auctioneer alone.

Corollary 2. The Vickrey auction is core-selecting with respect to bidders regardless of which

agents participate if, and only if, v(·, Q) is submodular on the sublattice 2N\i × {i} for each

i.

Hence, if the Vickrey auction is core selecting with respect to bidders for any participating

agents, when at least two bidders participate,

(i) The auctioneer’s revenue is increasing in the number of participating bidders;

(ii) Shill bidding is unprofitable regardless of which agents participate.

Saying that v(·, Q) is submodular on each 2N\i×{i} is equivalent to saying that v(W,Q)+

v(Z,Q) ≥ v(W ∪ Z,Q) + v(W ∩ Z,Q) for all W,Z such that W ∩ Z 6= ∅.19

4 Core Selection with Divisible Goods

This section and the next contain the main results of the paper. We begin with examples

that illustrate the key new aspects of core selection with divisible goods.

4.1 Motivating examples

The literature has established a close connection between core selection (bidder submod-

ularity)20 and the substitutes property of agents’ demands for goods.

18 More precisely, ‘unprofitable shill bidding’ means that if v is submodular for any utility profile {ui}Ni=1

in some type space U , then mimicking any set of agents with any types in U is unprofitable.
19 This corollary then follows from the observation that for potential blocking coalitions other than the

auctioneer alone, none of the terms in the proof of the first part take the empty set as an argument. The
same is true in the second part when at least two bidders participate.

20 Bidder submodularity is necessary when the objective is core selection for any agents as opposed to a
given set of participants.
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Definition 1. Goods are (weak) substitutes if the quantity each agent demands of any good

is nondecreasing in the price of every other good.

Do we have reasons to think that core selection might not hold with divisible goods? Existing

results show that when goods are substitutes and allocations are restricted to be nonnegative,

bidder submodularity holds and, thus, the Vickrey auction is core-selecting (e.g., Milgrom

and Strulovici (2009, Theorem 31)). We first show in Example 1 that, in the context of a

broader set of applications, this restriction on feasible allocations is crucial for core selection:

when the bidders and/or the auctioneer can buy and sell, the Vickrey outcome may not lie in

the core even when substitutability is trivially satisfied (e.g., in settings with only one good).

In the examples that follow, we will be working with quadratic valuations

ui(qi, θi, Si) = θ′iqi −
1

2
q′iSiqi, (1)

where Si is positive definite, for which the coalitional value function and equilibrium quan-

tities are given in closed form.21

Lemma 3 (Coalitional Value Function: Quadratic Utility). With quadratic valua-

tions, the coalitional value function is

v(W,Q) =
1

2

∑
i∈W

θ′iS
−1
i θi −

1

2

(∑
i∈W

S−1i θi −Q

)′
H(W )

(∑
i∈W

S−1i θi −Q

)
,

where H(W ) ≡
(∑

j∈W S−1j

)−1
is a harmonic mean and the competitive equilibrium quantity

of bidder i is q∗i (W,Q) = S−1i θi − S−1i H(W )
(∑

j∈W S−1j θj −Q
)

.

In particular, note that when θi = θ for each i ∈ N , v(W ) simplifies to θ′Q−1
2
Q′H(W )Q.22

Example 1 (No Core Selection with a Single Divisible Good). An auctioneer has

Q = 1 units of a divisible good for sale in a Vickrey auction. Consider bidders 1 and 2 with

21 The quadratic model is the commonly studied environment in the divisible good auctions and mi-
crostructure literature; the innovation here is allowing for heterogeneity in the utility convexities {Si}Ni=1.
By considering agents’ preferences over auction allocations ui instead of over total allocations ûi(qi) ≡
θ̂i
′
qi − 1

2q
′
iSiqi, (1) reduces heterogeneity in endowments {q0i }Ni=1 and the constant term of marginal utility

into heterogeneity in the latter alone (cf. Ft. 10): by letting θi = θ̂i − Siq0i , we have

ui(qi, θi, Si) = ûi(qi + q0i , θ̂i, Si)− ûi(0, θ̂i, Si) = θ̂′i(qi + q0i )− 1

2
(qi + q0i )′Si(qi + q0i )− (θ̂′iq

0
i −

1

2
q0i ′Siq0i ).

Hence, in the quadratic model, agent i is characterized by the tuple of characteristics (θi, Si) (or equivalently,

(θ̂i, q
0
i , Si)), where Si is positive definite.

22 Also note that the difference-in-difference v(W ∪ Z) + v(W ∩ Z) − v(W ) − v(Z) is just 1
2Q
′(H(W ) +

H(Z)−H(W ∩Z)−H(W ∪Z))Q, and that the central matrix in this expression is the difference-in-difference
of the inverse slopes of coalitions’ aggregate demands.
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valuations ui(qi) = 4qi − 1
2
q2i and bidder 3 with valuation u3(q3) = 2q3 − 1

2
q23. Then, using

Lemma 3, allocations are

q∗1({1, 2, 3}, Q) = q∗2({1, 2, 3}, Q) = 4− 1

3
(4 + 4 + 2− 1) = 1 q∗3({1, 2, 3}, Q) = −1

q∗1({1, 3}, Q) = q∗2({2, 3}, Q) =
3

2
q∗3({1, 3}, Q) = −1

2

q∗1({1, 2}, Q) = q∗2({1, 2}, Q) =
1

2
q∗3({2, 3}, Q) = −1

2
,

and surpluses v(W,Q) are

v({1, 2, 3}, Q) =
1

2
(16 + 16 + 4)− 1

6
(4 + 4 + 2− 1)2 =

9

2
v({1, 3}, Q) = v({2, 3}, Q) =

15

4

v({1, 2}, Q) =
15

4
v({1}, Q) =

7

2
.

Thus, the sum of Vickrey payoffs for the coalition of the auctioneer and bidder 1 is π0 +π1 =

−v({0, 1, 2, 3}) + v({0, 1, 2}) + v({0, 1, 3}) = 3 < v({0, 1}) and so the coalition {0, 1} blocks

the Vickrey payoff imputation.23

We can glean from the literature the fact that if each of the agents’ auction allocations

were positive – that is, if the auction behaved like a one-sided one – then the payoff impu-

tation would be in the core. Instead, bidder 3 ends up selling some of her initial endowment

in the Vickrey auction. Since the Vickrey payment rule ensures that the auctioneer pays the

bidder more for this amount than he ultimately receives from the other bidders from selling

it, this makes accepting an offer to cancel the auction and avoid reallocation attractive; the

auctioneer could award all of the quantity to bidder 1 to receive a payment larger than the

Vickrey revenue.24 However, if the marginal utilities at zero auction allocation were identi-

cal (e.g., if initial allocations and marginal utilities at zero total allocation were identical),

reallocation would be unnecessary and the outcome would be in the core (cf. Theorem 3).

Conversely, goods that are not substitutes are generally viewed as a challenge to core

selection. Example 2 shows that the absence of substitutes, even for all bidders, does not

preclude Vickrey payoffs from being a core point.

23 To the best of our knowledge, we are the first to recognize the challenges that reallocation presents for
core selection. The divisible goods results of Milgrom and Strulovici (2009) focus on one-sided auctions and
do not consider quantity vectors outside the positive orthant, as do the indivisible goods results of Ausubel
and Milgrom (2002). More specifically, in the argument for divisible goods in Milgrom and Strulovici (2009,
Theorem 31), one step involves showing that descreasing differences in v(·, Q) are implied by v(W,Q) −
v(W,Q′), Q′ ≥ Q, being nondecreasing in W . This implication follows from the grand coalition receiving
fewer goods in aggregate when an additional agent participates, which is true only when that additional
agent’s allocation is positive.

24 Note that the bidder who successfully forms a coalition with the auctioneer that blocks the Vickrey
payoff need not be the one whose valuation is the highest. In Example 1, if the marginal utility intercepts
of bidders 1 and 2 were 4− ε and 4 + ε, respectively, then {0, 1} would still form a blocking coalition.
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Example 2 (Core Selection with Complement and Substitute Goods Valuations).

Suppose a seller wishes to auction vector [1 1]′ of two goods using a Vickrey auction. Consider

bidder 1 with valuation

[1, 1]qi −
1

2
q′i

[
1 −1

2

−1
2 1

]
qi,

and bidders 2 and 3 with valuations

[1, 1]qi −
1

2
q′i

[
1
2

1
4

1
4

1
2

]
qi.

Goods are complements for bidder 1, but substitutes for bidders 2 and 3. Let us calculate

allocations q∗i (W,Q),

q∗2({1, 2, 3}, Q) = q∗3({1, 2, 3}, Q) =

[
0.2857

0.2857

]
q∗1({1, 2, 3}, Q) =

[
0.4286

0.4286

]

q∗2({1, 2}, Q) = q∗3({1, 3}, Q) =

[
0.4

0.4

]
q∗1({1, 2}, Q) =

[
0.6

0.6

]

q∗2({2, 3}, Q) = q∗3({2, 3}, Q) =

[
0.5

0.5

]
q∗1({1, 3}, Q) =

[
0.6

0.6

]
,

and surpluses v(W,Q),

v({1}, Q) =
3

2
, v({2}, Q) = v({3}, Q) =

5

4
,

v({2, 3}, Q) =
13

8
, v({1, 2}, Q) = v({1, 3}, Q) =

17

10
, v({1, 2, 3}, Q) =

25

14
.

Then bidder 1 receives a payoff of 9
56

, bidders 2 and 3 receive a payoff of 3
35

, and thus the

auctioneer receives 25
14
− 9

56
− 6

35
= 407

280
; this is positive, so the auctioneer alone does not block

the Vickrey payoff profile. Trivially, no coalition of all but one agent blocks the Vickrey

payoffs. We also have 3
2
− 9

56
− 407

280
= − 4

35
< 0 and 5

4
− 3

35
− 407

280
= − 81

280
< 0, so no coalition

of one bidder and the auctioneer blocks the Vickrey payoffs. Since we know from Lemma 1

that no coalition which does not involve the auctioneer blocks the Vickrey payoff profile, it

follows that the Vickrey payoffs are in the core. Clearly, bidders 2 and 3 could have the same

complement valuation as bidder 1, and the Vickrey auction would still be core-selecting.

Why does this example work? The necessity of the substitutes condition for the Vickrey

payoffs to lie in the core has been demonstrated in a variety of environments. We will show

that it is not the presence of complementarities per se, but instead a type of heterogeneity

in substitution patterns – the second-order derivatives of agents’ utility functions – that can

challenge core selection. Anticipating our results, there is a sense in which substitution pat-

terns are symmetric across bidders in Example 2: the two utility Hessian matrices commute,
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since both have the same eigenvectors [1 1]′, [−1 1]′.25 The commutativity property allows

transforming the problem from one with heterogeneous substitutability and complementar-

ity between goods to one with substitutability between packages and, as in the example,

achieves core selection. Importantly, the ability to transform the problem into one with

strict substitutability does not generally, by itself, render the Vickrey auction core-selecting.

Rather, what matters is that the substitution patterns are not too different across agents,

as the next example demonstrates.

Example 3 (No Core Selection with Substitutes and Efficient Initial Allocation).

An auctioneer wishes to sell 1 unit of good 1 and 0 units of good 2 using a two-sided Vickrey

auction; that is, he wishes to auction the vector Q = [1, 0].26 Three bidders with the following

valuations participate

[10 10]q1−
1

2
q′1

[
0.25 0.19

0.19 1.49

]
q1, [10 10]q2−

1

2
q′2

[
5.8 0

0 5.8

]
q2, [10 10]q3−

1

2
q′3

[
3.07 3.47

3.47 4.47

]
q3.

Note that endowments and utility functions are such that no gains to trade exist prior to

the auction (i.e., marginal utilities at zero trade are the same across bidders). By Lemma 3,

since the initial allocation is efficient, if

Q′H({0, 1, 2})Q+Q′H({0, 1, 3})Q < Q′H({0, 1})Q+Q′H({0, 1, 2, 3})Q,

then

π0 + π1 = −v([0, 3]) + v([0, 2]) + v({0, 1, 3}) < v({0, 1})

and the coalition {0, 1} blocks the Vickrey allocation. This is exactly what happens, since

Q′ (H({0, 1}) +H({0, 1, 2, 3})−H({0, 1, 2})−H({0, 1, 3}))Q = Q′

[
−0.0015 0.0146

0.0146 0.2398

]
Q = −0.0015.

In this example, a positive quantity is auctioned and goods are substitutes for all bidders.

Thus, if the new quantity did not require reallocation of the goods among the bidders and

only selling, we know from the literature that core selection would hold. Because the bidders’

substitution patterns are heterogeneous, the new supply of good 1 creates gains to trade for

the bidders from reallocating good 2 and, despite the absence of gains to trade before the

auction, the reallocation is sufficient for core selection to break down.

25 Two matrices A and B commute if AB = BA. Diagonalizable matrices A and B commute if, and only
if, they have the same eigenspace.

26 Let us remark for a future reference that the logic of this example can be mimicked for the case when
the auctioneer wishes to exchange 0.5 units of good 1 for 0.9 units of good 2 using a two-sided Vickrey
auction; that is, he wishes to auction the vector Q = [0.5,−0.9].
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These examples demonstrate that, in a two-sided Vickrey auction, goods substitutability

is neither necessary (Example 2) nor sufficient (Examples 1 and 3) for a core-selecting de-

sign. Moreover, the heterogeneity in substitution patterns, as captured by utility convexities

(Example 3), and pre-auction gains from trade, as determined jointly by marginal utilities

at agents’ initial allocations (Example 1), can separately challenge core selection.27 In our

subsequent analysis, we work to characterize these challenges, and in so doing establish the

reasons that the Vickrey payoffs are in or outside the core in the above examples.

We characterize the sense in which whether the Vickrey auction fails to be core-selecting

depends on heterogeneity in substitution patterns, both across bidders and across allocations

in the domain of ui(·). In Section 4.2, we identify the notion of substitutability that is relevant

for core selection in two-sided divisible good auctions; in Section 4.3, we add a condition on

allocations.

4.2 Generalizing the substitutes property

The demand-theoretic substitutes property is a monotonicity property in the partial order

≥, relating changes in price to changes in quantity. When agents’ preferences satisfy the

substitutes condition, there are two related consequences:

• When the price of good ` increases, agents buy more of good j.

• When price vector for goods changes in a certain direction, agents’ demand vectors for

goods each move in a certain similar direction.

The literature has focused on the former, as is natural in one-sided auctions; indeed, as

will be apparent later, in this case the weaker second condition is of limited use. The latter is,

however, important in two-sided auctions, where we show that one can get additional mileage

toward understanding when core selection holds from its weaker requirements.28 Explaining

the content of the latter at the primitive level is the focus of this section. The crux of our

argument is that it is primarily the second of these that gives the substitutes condition its

power, and hence that the choice to order the space of goods by ≥ does not constrain us when

proving core selection. We show that one can use the substitutes monotonicity property in

any lattice order on RK to achieve core selection. In particular, we can endow RK with a

partial order generated by packages – bundles of goods – analogously to how ≥ is generated

27 That is, with sufficient heterogeneity in substitution patterns, core selection fails regardless of homo-
geneity in marginal utility at the initial endowment (Example 3); and with sufficient heterogeneity in the
marginal utilities, core selection fails regardless of homogeneity in the substitution patterns (Example 1).
Clearly, core selection can obtain with small enough heterogeneity in substitution patterns across bidders –
e.g., when the common eigenvectors in Example 2 are perturbed slightly – and similarly for heterogeneity in
marginal utilities at agents’ initial allocations.

28 We generalize the substitutes (monotonicity) property by dropping the first of these – the quantifier
on goods.
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by goods. We show that when we can find such packages which are substitutes, they specify

a change of basis which, when applied in either a one- or two-sided auction, allows us to

aggregate bidders’ indirect utility functions into a submodular objective function for the

social planner’s dual minimization problem, just as the usual substitutes condition does. We

also give conditions on the primitives that establish precisely when we can find packages that

are substitutes.

To develop these ideas, it will be useful to work with cones generated by packages; these

cones will in turn generate partial orders in which the substitutes property holds. Recall

that a cone C is a subset of RK such that for every vector c ∈ C, we also have ac ∈ C for all

a > 0. The dual cone of C, denoted C∗, is the set of all vectors in x ∈ RK such that x · c ≥ 0

for all c ∈ C. Geometrically, C∗ is the set of all vectors that form an acute angle with every

vector in C. A cone is pointed if −C ∩ C = {0}. A pointed cone C defines a partial order

�C on RK : x �C x′ if x − x′ ∈ C. A set of K linearly independent vectors C = {ck}Kk=1

is a basis for the cone C if C is the set of positive linear combinations of vectors in C, i.e.

C = {
∑K

k=1 ckλk | λk ≥ 0 ∀k}.
For any basis C of K linearly independent packages, the cone C they generate orders the

space of allocations by the quantity of these packages they contain; likewise, the dual cone

C∗ orders the space of prices by how expensive these packages are. Given a basis of packages

C, let T−1C be their associated (pullback) change of basis matrix, that is, the matrix whose

columns are the elements of C. This gives alternative ways to define a cone and its dual

C = {x|TCx ≥ 0} = {T−1C x|x ≥ 0}
C∗ = {T ′Cx|x ≥ 0} = {x|T−1′C x ≥ 0}

and so C = C∗∗. TC , the (polyhedral) generator for C, maps quantity vectors to their

representation as a vector of packages, and T−1′C maps price vectors to their representation

as a vector of package prices. We can also see from the above that the rows of TC form a

basis C∗ for C∗; since TCT
−1
C = IK , this C∗ consists of vectors that are orthogonal to all but

one of the vectors of C – the package that it is the price of. Thus, when we talk about the

price of a package increasing, we mean that the (goods) price vector moves in the direction

in C∗ orthogonal to each of the other packages in C.29 In the remainder of the paper, when

we talk about packages C we mean a basis of packages C, and when we talk about a cone C

29 It is important for our analysis that the packages form a basis; otherwise the packages would define
a partial order, but not a lattice order and there would be no corresponding lattice order on prices. It is
immediate that when cone C is generated by a basis, (RK ,�C) is a lattice. Clearly, x∨C y = T−1C (TCx∨TCy)
and x ∧C y = T−1C (TCx ∧ TCy). This is important because we are interested in the submodularity of the
indirect utility function for packages; for substitutes to guarantee this, we need the space of prices (which
we need the indirect utility function to be submodular in) (RK ,�C∗) to be a lattice. A finitely generated
cone C is a lattice cone if, and only if, it is generated by a cone basis consisting of K linearly independent
vectors (e.g., Aliprantis and Tourky (2007)).
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we mean a cone generated by such packages.

We argue that the key to the aggregation properties underlying the core selection results

(i.e., bidder-submodularity) is that quantity demanded across bidders changes in a com-

mon set of directions in response to a price change. This leads us to the idea of package

substitutability. Given packages C, consider bidder i’s utility maximization problem over

packages

max
qCi

ui(T
−1
C qCi )− pC · qCi ≡ ΠC

i (pC),

where the price vector pC specifies the price of each package and the quantity vector qCi is a

vector of packages. When the packages are goods, this is the usual indirect utility function

Πi(p). It is immediate that T−1C qCi (pC) = qi(T
′
CpC) and, equivalently, qCi (T−1′C p) = TCqi(p).

Definition 2. Packages are substitutes if, for any k, the quantity {qCi (pC)}k of package ck

demanded by i weakly increases when the price of any other package j 6= k increases.

Intuitively, to characterize what package substitutability means in terms of primitives,

we can relate demand behavior to the properties of the second order derivatives of the utility

function through bidders’ first-order conditions.

Lemma 4 (Goods Substitutability as a Condition on Primitives). Goods are substi-

tutes for i if, and only if, i’s indirect utility function Πi is submodular in ≥, or equivalently,

for all qi, ((D2ui(qi))
−1 + αI)RK

+ ⊆ RK
+ for some α.

Applying the inverse function theorem to i’s first-order condition tells us that Dqi(p) =

(D2ui(qi))
−1; when this matrix’s off-diagonal entries are nonnegative, then quantity de-

manded of each good is weakly increasing in the prices of the other goods. In the statement of

the Lemma, we express this geometrically as a mapping property of the matrix: (D2ui(qi))
−1,

plus some positive diagonal matrix αI, maps positive vectors to positive vectors. Theorem

1 gives a similar statement about the substitutes property for packages C.

Theorem 1 (Package Substitutability as a Condition on Primitives). Packages C
are substitutes for i if, and only if, ΠC

i is submodular in ≥, or equivalently i’s indirect utility

function Πi is submodular in �C∗, or equivalently, for all qi, ((D2ui(qi))
−1 +αT−1C T−1′C )C∗ ⊆

C.

This time, the inverse function theorem tells us that DqCi (pC) = TC(D2ui(T
−1
C qCi ))−1T ′C ;

the nonnegativity of the off-diagonal elements of this matrix can again be expressed geomet-

rically as a mapping property, this time between the package price cone C∗ and the package

cone C, as we do in the statement of the theorem. Unlike the cone generated by goods

(the positive orthant), however, the package cone and its dual need not be the same, so the

mapping property needed is slightly different.
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Figure 2: Cones and Substitutes

Notes: The figure depicts packages c1 and c2, the cone C they generate, its dual C∗, and the edges

of C∗, which are the prices of packages c1 and c2, respectively. The substitutes condition says that

the inverse Hessian matrix maps a point x in C∗ to some point y in C, minus a scalar multiple of

its dual representation T−1C T ′−1C x.

Thus, like goods substitutability, package substitutability also corresponds to decreas-

ing differences in indirect utility, but in the partial order defined by package prices rather

than by prices of goods.Theorem 1 completely characterizes the set of utility functions for

which packages are substitutes; they correspond to (and, hence, are as restrictive as) the

submodularity of the indirect utility function in the package price partial order.

What exactly are these packages in real-world terms? Consider selling two goods, wire-

less spectrum in Los Angeles and Chicago. Bidder demand for a unit of package of [1 1]′

corresponds to buying a unit of spectrum in each market, while a unit of package of [1 − 1]′

corresponds to buying a unit of spectrum in Los Angeles and selling a unit in Chicago.

Bidders might differ in which market they value spectrum in relatively more; we need not

assume that everyone’s utility over packages is increasing in the same direction. Similarly,

in electricity auctions, the goods could correspond to electricity in different locations and

package [1− 1]′ to a contract to transmit electricity from LA to Chicago. Alternatively, the

package can represent contracts to move a TV station between different frequencies. We later

discuss that the choice to characterize allocations as bundles of goods rather than packages

is not only unimportant for core selection, but need not constrain implementation either.

Generalizing substitutes from goods to packages by changing how we think of ‘more’ is thus

natural in some applications when we know how agents are likely to substitute between these

19



packages.

Let us make two final observations about the notion of substitutes. First, the demand-

theoretic notion of package substitutability is not just a property of an agent’s valuation;

rather, it is about the interaction of an agent’s utility and the choice set.30,31 In addition,

for the core selection analysis, the substitutes condition only needs to hold in a region of

the space of goods where the auction allocation will be guaranteed by assumption to lie:

precisely in the cube C ∩ (Q − C), since allocations lie in C and that the auction clears

with allocations summing to Q (feasibility). We will say packages C are substitutes on X for

bidder i if for a demanded quantity vector in a set X, a price change sufficiently small for

the demand to still be in X causes it to increase; more precisely, that is, using Theorem 1,

if ((D2ui(qi))
−1 + αT ′CTC)C∗ ⊆ C for all qi ∈ X.

4.3 Bidder submodularity when packages are substitutes

As Examples 1 and 3 show, goods substitutability is neither sufficient nor necessary

for core selection – allocations matter separately. Clearly, the same argument applies with

package substitutability, and hence the condition in Theorem 1 does not guarantee core

selection. That is, unlike one-sided settings, the submodularity of bidders’ indirect utility

functions (i.e., goods or package substitutability) is not sufficient for the submodularity of

the coalitional value function (i.e., core selection). As further hinted by the examples, (the

direction of) the quantity vector Q matters. Theorem 2 establishes a joint condition on

package substitutability and allocations as a condition for core selection.32

30 The Supplementary Material (Lemma B.1, Corollary B.2) gives a characterization of substitutes in
one-sided auctions in terms of valuations.

31 At the boundary of the choice set in a one-sided auction, what ‘substitutes’ mean at the primitive
level (i.e., ui(·)) does not change, but what ‘packages are substitutes’ means in terms of primitives changes.
Namely, unlike in the interior, when demand is on the choice set’s boundary, there are directions in which
demand is constrained not to move. Since the directions in which demand can change do not necessarily
correspond to the span of a subset of the packages, an agent may only be able to increase quantity demanded
of one package by changing the quantity he demands of the others. Hence, the conditions on the primitives
that would cause him to do so in response to some change in price will in general differ, and the map
between the properties of demand and the primitives is discontinuous at the boundary of the choice set.
This is important only when we are interested in the substitutes property for packages, not goods (and,
hence, is not a consideration in Milgrom and Strulovici (2009)). Clearly, in the indivisible goods literature,
the distinction does not arise. Let us note that this observation is also relevant for the analysis in Baldwin
and Klemperer (2014): constraining the allocation may change the (unimodal) demand types of an agent
with the same valuation.

32 The proof of Theorem 2 differs from the arguments used in the core selection result for one-sided
divisible good auctions by Milgrom and Strulovici (2009, Theorem 31), based on the submodularity of the
indirect utility function, employing which requires more assumptions. In a two-sided setting, submodularity
of the social planner’s dual objective function in (package) prices and bidders does not follow directly from
submodularity of the bidders’ indirect utility functions. Instead, we must also require that bidders’ allocations
(of packages) will be positive.
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Theorem 2 (Core Selection: Package Substitutability and Allocations). For a given

Q, the Vickrey auction is core-selecting with respect to bidders for all profiles of participants

if there exist packages C which are substitutes on C ∩ (Q − C) for all bidders, nonnegative

quantities of which are allocated to each bidder, for each coalition W ⊂ N ; that is, q∗i (W,Q) ∈
C, for all i, where C is the cone generated by C. If, in addition, for each W , the derivative

of v(W,Q) in the direction of each package in C is positive, then the Vickrey auction is core

selecting for all profiles of participants.

Relative to the literature, Theorem 2 extends sufficient conditions for core-selecting design

to auctions in which bidders and the auctioneer can all buy and sell. The condition that the

allocation must be contained in the cone generated by the packages – i.e., q∗i (W,Q) �C 0,

for all i and W – reduces to the classic substitutes condition when the packages are just the

primitive goods and the auction is one-sided, since in this case allocations are automatically

in the positive orthant. When the auction is two-sided or the packages which are substitutes

are not simply goods, the quantity of goods need not always be non-negative in the efficient

allocation, but the theorem requires that the quantity of packages must be. That is, bidders

are all “net package buyers.” Note that the direction in which Q lies is essential for this, as it

determines whether allocating nonnegative quantities of the packages to each bidder is even

possible. When the auctioneer can choose Q subject to a cost of production or an engineering

constraint, he can make core selection easier by choosing Q ∈ C. Additionally, since the

quantity vector Q plays a role in determining both the area C ∩ (Q − C) and the auction

allocations, the designer’s choice of Q can decide whether both the package substitutability

and allocation conditions are satisfied, since the former need only apply on the consumption

vectors up to Q – precisely on C ∩ (Q− C). We examine this in Section 5.2.

Why is this additional condition necessary? The allocation and derivative conditions en-

sure that, in two different respects, the two-sided auction for goods functions like a one-sided

auction for packages. First, the allocation condition ensures that we can restrict attention

to the cone C – the positive orthant in the package space. Second, the derivative condition

ensures that packages function like goods for each coalition in that more packages is bet-

ter for each, at least around Q. As we show, this ensures that the auctioneer will receive

non-negative payments for packages from all bidders, just as in a one-sided auction.

Intuitively, underlying the absence of incentives to deviate by coalitions of the bidders

and the auctioneer in one- and two-sided settings is an order of packages, common among

bidders, that (i) aligns the bidders’ incentives to substitute with the ways in which gains from

Additionally, the authors require that goods are substitutes – and hence, that bidders’ indirect utility
functions are submodular – everywhere. In a two-sided setting, making this argument with respect to a
package order would require considering prices outside of the positive orthant, because the meets or joins in
the package price order of prices inside the positive orthant may lie there. We show, however, that it is only
necessary to require substitutability where the allocations are assumed to lie – namely, on C ∩ (Q− C).
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Figure 3: Allocation condition for Theorem 2

Notes: Figure 3 shows the allocation condition of Theorem 2 with two bidders and two goods. In

the left panel, both bidders receive allocations in C, and the condition is satisfied. In the right

panel, this is no longer true.

trade in the auction, created by the available quantity Q and the differences between agents’

marginal utilities at their initial endowments, can be realized; and (ii) defines packages

that all coalitions desire, so that the auctioneer receives positive revenue.33 Note that the

reordering logic used in Theorem 2 does not require reallocation of initial endowments among

the bidders to be feasible: the package substitutability and allocation conditions give core

selection also if the auctioneer cannot reallocate goods among the bidders (i.e., is restricted

to run a one-sided auction).

Let us revisit the examples from Section 4.1 to see which conditions for core selection

in Theorem 2 are violated; Figure 3 illustrates. In Example 1, marginal utilities differ at

zero auction allocation (i.e., pre-auction gains from trade are non-zero) and core selection

fails with one good. The only possible cones are the half-lines R+ and R−; hence, for the

condition from Theorem 2 to hold, all bidders would have to be net buyers or net sellers.

In Example 2, core selection holds with complements and substitutes. As the core-selection

condition in Theorem 2 entails, through a change of basis, one can find a common set of

packages that are substitutes such that the direction defined by the auction quantities ought

to be aligned with that of (package) substitutability. In Example 3, core selection fails with

goods that are substitutes for all bidders and no gains from trade before the auction. This

33 From Lemma 2 and Corollary 2, we know that the difference between bidder-submodularity everywhere
and on the sublattices 2N−1×{i} is that positive revenue holds in the former so that the auctioneer does not
block the payoff profile. The derivative condition on v(·) in Theorem 2 (new, compared to single-object or,
more generally, one-sided auctions), when combined with the concavity of v(·), helps ensure that revenue is
non-negative by guaranteeing that v(W,Q) ≥ 0 for each W . This is necessary (but not, on its own, sufficient)
for revenue to be positive for all profiles of participants: if some coalition W with v(W,Q) < 0 participated,
revenue v(W,Q) −

∑
i∈W (v(W,Q) − v(W \ i, Q)) would be negative, since the sum terms are the agents’

Vickrey payoffs, which are always positive.
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is because the substitution patterns among the agents are sufficiently different to create a

need to reallocate goods with Q ≥ 0.

Figure 4: Core-selection condition in examples

Notes: These three panels illustrate Theorem 2 in Examples 1-3. First panel, Example 1: No

cone in R can contain both auction allocations q∗3({1, 2, 3}, Q) and q∗1 = q∗2({1, 2, 3}, Q). Second

panel, Example 2: Each of the quantity vectors lies in the cone formed by the common eigenvectors

c1 = [1 1]′ and c2 = [−1 1]′, namely, along the line c1. Third panel, Example 3: Auction allocation

q∗3({2, 3}, Q) is not in the positive orthant, R2
+,

Core selection beyond indivisible-good, one-sided auctions. Our results high-

light two general observations about core selection in divisible good, two-sided auctions.

First, relative to (divisible or not) one-sided auctions, it is non-trivial in auctions where

bidders are able to both buy and sell that the gains from trade in the auction cause the

equilibrium allocations to lie in a cone which satisfies the package substitutability prop-

erty for each agent. Clearly, in one-sided auctions with substitutes, the alignment between

substitution and gains from trade is assured; the core selection property is implied by the

aggregation of substitutes alone.

Additionally, with divisible goods (i.e., multi-unit demands), substitutability is inessen-

tial for core selection in the Vickrey auction; instead, the relevant substitutability property

is that for packages. Examples of package substitutability and the basis change idea have

recently appeared in the literature: the gross substitutes and complements (GSC ) property

(Sun and Yang (2006)), full substitutes (Ostrovsky (2008), Hatfield et al. (2013)) and the

notion of demand types in Baldwin and Klemperer (2014), which all admit complementarities

in goods. The authors apply these notions to establish equilibrium existence, whereas this

paper points to the usefulness of a basis change in identifying the key conditions underlying

core selection in the Vickrey auction. As we have shown, however, substitutability under

a change of basis alone is insufficient for core selection in two-sided divisible good settings,

as the equilibrium allocations must also lie in the cone (i.e., in the image of the positive

orthant under that change of basis).34 Example 4 illustrates how Theorem 2 contributes in

34 The basis change also suggests useful design properties (Section 6.1) and allows a unified treatment of
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the context of GSC which, to the best of our knowledge, has not been studied in relation to

core selection.

Example 4 (Core Selection and Gross Substitutes and Complements). GSC implies

that there are two sets of goods K1 and K2, and that all goods in each set Kl are substitutes

for other goods in Kl but are complements for goods in K−l (e.g., left and right shoes,

production inputs, spectrum licenses). It is plain to see (and has also been noted by Baldwin

and Klemperer (2014)) that GSC is equivalent to substitutes under the basis change TGSC =

IK1 ⊕ −IK2 (i.e., goods in K1 and “negative goods” in K2 are substitutes). Unfortunately,

it is only possible for GSC to work in Theorem 2 to prove that the Vickrey outcome is core-

selecting when Qk < 0 for each k ∈ K2, since otherwise someone must receive a nonpositive

allocation of qGSCi = T−1GSCqi. In fact, even when the auctioneer seeks to acquire goods in

K2, GSC can be insufficient to ensure core selection. Suppose the auctioneer wishes to sell

Q = [2.6082 0.9203 − 0.0410]′ to three bidders with the quadratic valuations

u1(q1)=
[
42.4 21.6 1.6000

]
q1−

1

2
q′1

 9 2.52 −3.1

2.52 2.11 −1.355

−3.1 −1.355 3.6

 q1

u2(q2) =
[
59.2 21 3.2

]
q2 −

1

2
q′2

 14 2.08 −2.22

2.08 3.54 −2.37

−2.22 −2.37 3.14

 q2

u3(q3) =
[
42.4 23.8 2.2

]
q3 −

1

2
q′3

13.2 6.74 −5.1

6.74 6.19 −3.03

−5.1 −3.03 4.14

 q3.
That is, goods 1 and 2 are substitutes for each other and complements for good 3. The

bidders’ inverse Hessian matrices −S−11 ,−S−12 and −S−13 are given by, respectively,−0.1928 0.1631 −0.1047

0.1631 −0.7629 −0.1467

−0.1047 −0.1467 −0.4231

 ,
−0.0811 0.0187 −0.0432

0.0187 −0.5754 −0.4210

−0.0432 −0.4210 −0.6668

 ,
−0.2155 0.1631 −0.1461

0.1631 −0.3752 −0.0737

−0.1461 −0.0737 −0.4754

 .
Since these are also the Jacobian matrices of demand, we can see that each agent’s prefer-

ences exhibits gross substitutes and complements; that is, the packages CGSC = {[1 0 0], [0 1 0], [0 0−
1]} are substitutes for these agents. However, even though Q ∈ CGSC , we cannot use

the core selection conditions for one- and two-sided settigns. The full power of the basis change is in two-sided
settings. In one-sided auctions, the ability to repackage goods when considering their substitutability is less
likely to be useful for core selection in situations where the usual substitutes would not be, because the basis
change would have to generate a cone with a significant overlap with the positive orthant, where the alloca-
tions lie. The overlap entails that, for one-sided auctions to have good core selection properties, goods must
at least be nearly substitutes. Since a basis change is needed that maps to substitutes, complementarities
will generally be challenging.
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Theorem 2, since agent 2 does not receive an allocation in the GSC cone, CGSC , irre-

spective of which other agents participate in the auction: However, consider the packages

C = {[0.8998 − 0.1367 0.5011]′, [0.0683 1.0023 − 0.3417]′, [0.1822 − 0.6606 − 0.9112]′}.
A simple calculation shows that each −TCS−1i T ′C has positive off-diagonal entries, so C are

substitutes for each agent. Then, we have q∗i (W,Q) ∈ C for each W ⊆ {0, 1, 2, 3}. (We

report the calculation and quantities in the Supplementary Material.) It then follows from

Theorem 2 that v(·, Q) is submodular and, hence, the auction is core-selecting.

5 When Can One Expect Core Selection?

Theorem 2 pointed to the alignment between the cone generated by substitutable pack-

ages and the ways in which gains from trade in the auction are realized as the key to core

selection. Intuitively, then, any conditions on primitives that guarantee its usefulness will

restrict heterogeneity in bidder preferences. Theorem 3 presents one such condition: gains

from trade before the auction are absent, and the utility Hessians commute for all bidders

and quantities.

Theorem 3 (Core Selection: Sufficient Conditions on the Primitives I). Suppose

the bidders’ initial endowments are efficiently allocated. Packages C which are substitutes

for all bidders and such that q∗i (W,Q) ∈ C for all W ⊆ N and any Q exists if the Hessians

D2ui(qi) commute for all qi and all i. In particular, the vectors in C are an eigenbasis for

the Hessians D2ui(qi).

This is intuitive: commutativity, equivalent to simultaneous diagonalizability, captures

a homogeneity property of substitution patterns across bidders. It captures that there is

some set of implicit packages in which agents’ utility is separable:

Lemma 5 (Eigenvector Condition for Substitution Symmetry). Utility ui(·) is sep-

arable in packages C if, and only if, their scalar multiples form an orthonormal eigenbasis

for utility Hessians D2ui(qi) for each qi.
35

This explains why, contrary to what one might expect based on the literature, the

Vickrey auction is core-selecting in the environment of Example 2: the agents’ Hessians −Si
commute, and their marginal utilities at zero are identical (and so their initial endowments

are efficiently allocated among them).

More generally, we can canonically classify these eigenvector packages in a way that

makes plain what they represent: we can think of vectors which have both positive and

35 E.g., quadratic models where the Hessians are constant, or environments with Hessians which have the
same eigenvectors for all qi but different eigenvalues.
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negative entries as switching packages , in addition to at most one36 vector in the interior of

either the positive or the negative orthant, which can be interpreted as a buying package or

a selling package, respectively. In addition, there can be goods or bads (as, e.g., in the GSC

cone CGSC – see Example 4). For instance, in spectrum auctions, the buying and switching

vectors can correspond to a license for nationwide coverage and one to relocate coverage

between the East and West coast. In Example 2, c1 is a buying vector and c2 is a switching

vector.

It is important to note that these packages need not be explicitly incorporated into the

design for our results to hold; they remain valid whether the auctioneer chooses to solicit

bids for goods or for any arbitrary bundles, and we think of them in a strictly “as if” sense.

However, they will be useful in some cases for implementation (see Section 6).

5.1 The role of preference heterogeneity

Theorems 2 and 3 motivate the converses to our core selection results. Indeed, in Ex-

amples 1 and 3, we showed that, in two-sided auctions, when pre-auction marginal utilities

or substitution patterns differ significantly across agents, core selection may break down.

We show that either type of heterogeneity in the environment can separately undermine

the possibility of a core selecting design. Proposition 1 demonstrates that in fact, for any

(possibly homogeneous) profile of bidders’ utility functions over goods, there exist heteroge-

neous initial endowments such that the Vickrey outcome is not in the core for some profile

of participants.

Proposition 1 (No Core Selection: Heterogeneity in Initial Endowments I). Given

Q, for any utility profile {ui}i∈N , N ≥ 3, constant vectors {ti}i∈N exist such that for the

utility profile {ui(qi + ti)}i∈N , the Vickrey outcome is not in the core with respect to bidders

for some profile of participants.

Likewise, given some profile of utility functions in which the initial endowment is not

efficiently allocated, there exists some quantity vector Q for which the Vickrey auction is

not core selecting:

Proposition 2 (No Core Selection: Heterogeneity in Initial Endowments II). For

any utility profile {ui}i∈N such that ∇u`(0) 6= ∇uj(0) for some j, ` ∈ N , there is a Q

such that the Vickrey outcome is not in the core with respect to bidders for some profile of

participants.

36 If one eigenvector is in the interior of the positive orthant, all other eigenvectors must be switching
vectors, because they are orthogonal to it and any two vectors in the positive orthant form an acute angle
unless they are both on its boundary. If none of the eigenvectors is in the positive or negative orthants, each
is a switching vector.
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As Theorem 3 shows, conditional on the efficiency of the pre-auction allocation, com-

mutativity (homogeneity) is sufficient for core selection, for any quantity vector Q. Non-

commuting utility Hessians or nonzero pre-auction gains to trade itself do not necessarily

break core selection, as Theorem 2 shows – the outcome can be in the core for some quantity

vectors Q; sufficient homogeneity in utility Hessians rather than separability is what matters.

Isolating its effect by assuming that the initial allocation is efficient, when is homogeneity in

Hessians insufficient for core selection? The next result characterizes the answer in a coun-

terpart of Proposition 1. While we don’t have a general converse, we provide one for the

quadratic case: there, whenever there are no pre-auction gains to trade and the bidders’ sub-

stitution patterns (Hessians) are sufficiently heterogeneous, there is a uniform-across-bidders

rotation of the substitution patterns for which core selection breaks.

Proposition 3 (No Core Selection: Heterogeneity in Substitution Patterns). As-

sume that agents have quadratic valuations ui(qi) = θ′iqi − 1
2
q′iSiqi and θi = θ for all i. For

any Q, there exists a matrix A such that for the utility profile {θ′qi − q′iA
′SiAqi}i∈N , the

Vickrey outcome is not in the core for some profile of participants if S−1` H(Z \ `+Z \ j)S−1j
has a negative eigenvalue for some coalition Z ⊂ N and agents `, j ∈ Z.

To explain the role of the negative eigenvalue, let us first observe that in the quadratic

environment with efficiently allocated initial endowments, nonnegativity of the difference-in-

difference v(Z,Q) +v(Z \{`∪ j}, Q)−v(Z \ `,Q)−v(Z \ j,Q) is equivalent to its being non-

increasing in the magnitude of Q, since it is a constant times the square of that magnitude.

This difference-in-difference is just the incentive of coalition 0 ∪ Z \ {` ∪ j} to deviate and

cancel the auction. From the discussion about common θi following Lemma 3, whenever

the difference-in-difference of the inverses of the slopes of the coalitions’ aggregate demand

curves37 G(Z \ `, Z \ j) ≡ (H((Z \ `)∪ (Z \ j)) +H((Z \ `)∩ (Z \ j))−H(Z \ `)−H(Z \ j)),
a deviation matrix, has a negative eigenvalue, there is some direction (indeed, some set of

directions) in which this incentive to deviate is increasing. If Q lies in one of those directions

from the origin, then bidder submodularity breaks.38

Example 5 (No Core Selection and Additive Valuations). One of the two best known

no-core selection results for indivisible goods shows that when one agent’s preferences do not

satisfy the substitutes condition, there are some additive valuations for the other participat-

ing agents such that the auction is not core-selecting (Ausubel and Milgrom (2002)). What

are additive valuations in our divisible good, strictly concave setting? One might mean that

37 Or equivalently, of the slopes of the marginal coalitional value curves – see Section 5.2.
38 Mathematically, commutativity implies a lattice order on the Hessians. Without commutativity, the

order of the positive definite Hessians is incomplete, and in the deviation matrix, the ranking of the inverse
aggregate demand slope matrices defined by the harmonic means then depends on the vector Q they are
multiplied with; if the matrices commute, the ranking is independent of Q (Theorem 3).
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the valuation of any quantity vector is the sum of the values of the goods which comprise it,

or add the stronger requirement that the utility function’s second derivatives are the same

for each good, so that the agents’ marginal utility schedules for them differ by a constant.

That is, with divisible goods, additivity could mean that valuations are separable in goods

or that, in addition, bringing an agent’s allocation of any good k from q to q′ changes her

marginal utility for good k by the same amount as bringing her allocation of any other good

l from q to q′ changes her marginal utility for l.

However, when we add the requirement that the marginal utilities at zero auction allo-

cation are equal across agents, then with the second definition, Theorem 3 says that we will

always have core selection when N − 1 agents have additive preferences, again regardless of

the first agent’s preferences. Why? Because with this definition, the utility Hessian of each

agent with additive preferences is always a scalar multiple of the identity matrix, and hence

commutes with any K × K matrix; and since all but one agent has additive preferences,

it follows that all agents’ Hessians commute. This contrast between our result and that

of Ausubel and Milgrom (2002) is due to the lack of a restriction of allocations to binary

vectors – an agent can be allocated more than one or less than zero units of a good. Again,

with divisible goods, substitutability matters as a common monotonicity condition; then,

the result analogous to that in the literature (i.e., that core selection may fail when an agent

has preferences which do not satisfy substitutes) is Proposition 3.

Finally, let us note that the challenges for core selection that the analysis of this section

brings attention to are not due to non-concavities or non-monotonicities in individual utility

functions. Instead, well-behaved individual preferences can result in the aggregation of

agents’ valuations yielding a coalitional value function which is nonconcave (non-submodular)

on the space of bidders when their substitution patterns or initial marginal utilities are

sufficiently heterogeneous.

5.2 The role of quantity auctioned and market size

The above converses to our results characterizing environments where the Vickrey auction

yields core outcomes demonstrate that heterogeneity in either pre-auction marginal utilities

(and hence the presence of gains to trade before the auction) or in substitution patterns

(as determined by utility convexities) can challenge core selection – for a fixed number of

participants N and given the quantity vector Q. This section shows first that the profitability

of a multilateral deviation need not vanish as the number of participating bidders N becomes

large; and second that, to the extent that Q is a choice variable (e.g., if the auctioneer aims

for revenue maximization subject to a cost function or a technical constraint), the impact

of heterogeneity in the initial allocations (or pre-auction marginal utilities) on core selection

can, in fact, be mitigated by choosing the quantity vector Q large enough in an appropriate
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direction. Thus, core selection can be consistent with potentially large heterogeneity in the

initial allocations. Indeed, a new aspect of design in divisible good settings is that the

Vickrey auction’s core-selecting property depends on the number of bidders as well as the

quantity vector, separately from agents’ primitive preferences.

Are the conditions for core selection easier to satisfy in large markets (i.e., N → ∞)?

One might expect that, holding Q constant, each agent’s marginal product to the grand

coalition will vanish in the limit, and so the auctioneer will capture all surplus, rendering the

Vickrey payoffs ε-close to the core. This would indeed be the case if there was no need to

reallocate goods among the bidders (e.g., in one-sided auctions, or with no bidders wanting

to sell). It turns out that, in a two-sided auction, the auctioneer will not capture all surplus,

in general.39

Example 6 (Core Selection in Large Auctions). Suppose bidders have quadratic utili-

ties with Si = S for all i. This simplifies calculations considerably, implying H(W ) = 1
|W |S,

and using Lemma 3, we can then compute the sum of the bidders’ Vickrey payoffs:40

∑
i∈N

πi =
N

2(N − 1)

∑
i∈N

θ′iS
−1θi −

1

2(N − 1)
(
∑
j∈N

θj)
′S−1(

∑
j∈N

θj) +
1

2(N − 1)
Q′SQ.

Unless {θi}i∈N are identical, this need not become small as N becomes large. In fact, with

i.i.d. private values {θi}i∈N , the Vickrey payoffs will be positive in expectation: letting

{λk}k∈K be the (orthogonal) eigenvectors of S associated with unit eigenvalues,

E

(∑
i∈N

πi

)
=
N

2

∑
k∈K

Var(λ′kθi) +
1

2(N − 1)
Q′SQ.

Suppose that instead of encouraging bidder participation, the auctioneer wishes to in-

crease the auctioned quantity. Core selection can continue to hold; however, not any increase

will work. One insight from Theorem 2 is that the elements of Q must change in such a way

that the equilibrium allocation vectors q∗i are increasing in the order defined by the packages.

Proposition 4 (Bidder-Submodularity and Quantity Auctioned). The equilibrium

package allocation vectors TCq
∗
i (W,Q) are each increasing in the direction x if, and only if,

x ∈
⋂
i∈W

(∑
j∈W D2uj(q

∗
j (W,Q))−1

)
D2ui(q

∗
i (W,Q))C.

It follows that the designer can choose Q appropriately without risk of violating the

q∗i (W,Q) �C 0 condition for core selection in Theorem 2 (that is, without causing the

39 The converses for core selection in the literature typically hold N fixed and allow a rich class of
potential valuations. This resonates with our converses in the previous section: While it is not true that a
small perturbation in valuations will take us outside the core, if the number of potential bidders grows large,
but the number of participating agents does not, bidder submodularity is harder to satisfy.

40 The Supplementary Material provides the derivation.
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auction to cease functioning like a one-sided auction for packages) if, and only if, the cone

intersection ⋂
i∈W

(∑
j∈W

D2uj(q
∗
j (W,Q))−1

)
D2ui(q

C
i (pC))C

is nonempty. If the auctioneer wishes this to be true for all coalitions W , then clearly, the

intersection over all W ⊆ N of these intersections must be nonempty as well.

Of special note is the fact that this intersection is obviously nonempty if the substitution

patterns intersection
⋂
i∈W D2ui(q

∗
i (W,Q))C is. In particular, cones C generated by packages

C which are substitutes are likely to result in this intersection being nonempty, since this

implies that each D2ui(·) maps C to −C∗;41 additionally, when C are goods, the intersection

is just that of the cones generated by the columns of the Hessians D2ui(q
∗
i (W,Q)).

We can be specific about where Q needs to be: Applying the theorem for Q = 0 and

equal marginal utilities at zero (so that the auction allocations are zero), and changing Q in

a direction in which Proposition 4 shows will cause them to increase in the order defined by

the packages �C , yields the following corollary.

Corollary 3 (Core Selection: Sufficient Conditions on the Primitives II). Suppose

that ∇ui(0) = ∇uj(0) for all i, j ∈ N . If

Q ∈ F (C) ≡
⋂
W⊆N

⋂
{xi}i∈W∈R|W |K

⋂
`∈W

(∑
`∈W

D2uj(xj)
−1

)
D2ui(xi)C,

then q∗i (W,Q) ∈ C for all W ⊆ N .

F (C) is the set of directions in which Q can move such that all bidders receive a larger

amount of each package that generates C. This result also gives another set of sufficient

conditions on primitives for core selection: knowing that C are substitutes for each bidder

and marginal utilities are equal at zero, if Q ∈ F (C), Corollary 3 and Theorem 2 imply

that the auction is core selecting with respect to bidders. That is, the allocations are in the

cone and there is no need to compute them, provided that Q in the the cone F (C); unlike

Theorem 3, separability is not required.

When it is a choice variable, the quantity auctioned gives a powerful instrument to assure

core selection (that is, to make the auction function like a one-sided auction for packages).42

41 From Theorem 1, C are substitutes if, and only if, TC(D2ui(T
−1
C qCi ))−1T ′C has nonnegative off-diagonal

entries (i.e., is the negative of an M-matrix ) and so its inverse T ′−1C (D2ui(T
−1
C qCi ))T−1C has negative entries

(since M-matrices have positive inverses).
42 For instance, choosing the quantity vector when a range of spectrum and location combinations is

feasible given engineering and interference restrictions or when the amount of nonmarket spectrum to make
available is not fixed (the case in the 2015 FCC auction) can help ensure that a Vickrey auction is core
selecting.
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The next result give conditions under which Q can be increased to bring allocations into the

cone C. This holds regardless of the presence of pre-auction gains from trade.

Corollary 4 (Core Selection: Sufficient Conditions on the Primitives III). For any

quantity vector Q and any ∆Q ∈ F (C + εT−1C 1) for some ε > 0, there exists a scalar a > 0

such that q∗i (W,Q+ a∆Q) ∈ C for all W .

In particular, regardless of heterogeneity in marginal utilities at agents’ initial allocations,

whenever packages C are substitutes and F (C+εT−1C 1) is nonempty for some ε > 0, Theorem

2 and Corollary 4 combine to show that there exists ∆Q such that for Q+ ∆Q, the Vickrey

auction is core-selecting with respect to bidders. Note that this is particularly likely to

hold in the quadratic environment, where the agents’ Hessian matrices are constant. In

fact, Corollary 4 assures that, for general utilities, Q can be increased in any direction in

F (C + εT−1C 1) to ensure that the bidders will consume positive amounts of the packages,

as long as it is increased sufficiently. This highlights another difference with indivisible

good settings: With divisible goods, so long as bidders’ substitution patterns are sufficiently

aligned, a market designer can weaken the strategic effects of Proposition 1 by appropriately

increasing the quantity vector.

Figure 5: Core selection and quantity auctioned

Notes: The left panel shows the cone F (C + εT−1C 1) and the quantity vector before and after the

change ∆Q ∈ F (C+εT−1C 1). The right panel shows the resulting change in equilibrium allocations,

bringing them inside the cone C.

6 Implementation

Clearly, our analysis applies no matter how the auctioneer chooses to characterize the set

of bundles on offer, whether it be in terms of goods (a convention we have so far chosen to
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adopt) or in terms of an alternative set of packages. Our cone characterization of package

substitutability (Theorem 1) and its application in giving sufficient conditions for core selec-

tion (Theorem 2) captures the fact that regardless of the packages employed in defining the

auction, one may be able to find implicit packages through which the auctioneer can verify

that core selection is to be expected. These implicit packages can be of more direct use in

implementation.

6.1 Separability across packages

The requirement that bidders consider all combinations of goods when submitting their

demand schedules to the auctioneer seems onerous in practice, as we mentioned in the

introduction. Our analysis suggests that in the Vickrey auction, this imposition can be

weakened considerably without changing the outcome of the auction when substitution pat-

terns between goods are “the same” (i.e., commutative) across different bidders – they have

the same eigenspace, and hence can be simultaneously diagonalized. Then we can write

D2ui(x) = T ′CMi(x)TC for each i where Mi(x) is diagonal and TC is orthogonal.43 This

means that we can define packages – the rows of TC – in which each agent’s payoff is addi-

tively separable (Lemma 5). One can then run separate auctions for each of the K packages,

knowing that bidders have no incentive to change their bid in one auction upon learning the

outcome of another. In what follows, when agents’ utilities are additively separable in pack-

ages C, assume (without loss) that the C are orthonormal and write ui(qi) =
∑K

k=1 u
k
i ({qCi }k).

In the Appendix, we show that when C are auctioned separately, truthful bidding is still a

dominant strategy.

Theorem 4 (Equivalent Implementation). Suppose that all agents’ utilities are addi-

tively separable in the packages C. When the packages C are sold in separate Vickrey auctions,

payments and allocation are the same in the K-good Vickrey auction, and market-clearing

prices are equivalent: p = T ′CpC.

Thus, knowing that utility Hessians commute is useful – apart from permitting core

selection (under the conditions in Theorem 3), by Theorem 4 and Lemma 5, commutative

Hessians allow complexity reduction.44 In some markets, indeed, one can find packages such

that all bidders’ utilities are separable; e.g., when how much total spectrum one has does not

affect the desirability of switching between licenses. Note that when reallocation is infeasible,

43 Orthogonality follows from symmetry of the Hessians.
44 One may wish that, additionally, the design does not require the bidders to submit more than is needed

for computing the payment and the allocation – this complexity reduction can be accomplished through a
dynamic implementation that induces the revelation of valuations along a path one can integrate over to
recover the Vickrey payments (e.g., as in Ausubel and Cramton (2004)).
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Theorem 4 breaks down (unless, of course, the packages are just the K goods). The reason

is that while utilities may be separable on their domain, feasibility constraints are not.

When running separate auctions for packages, knowledge of the eigenbasis by the de-

signer is critical for ensuring efficiency. Indeed, with packages other than those employed by

Lemma 5, efficiency and the dominant strategy property can be compromised under auction

separation.

6.2 Why run a two-sided auction instead of two one-sided auc-

tions?

Throughout, we have assumed that a two-sided version of the Vickrey auction (that is,

one that allows agents to both buy and sell) is being used – a one-sided Vickrey auction

would only be constrained efficient, preventing reallocation of goods among bidders. When

some agents are known to be buyers and some are known to be sellers, why not instead

accommodate the designer’s objective to both buy and sell by having him run two standard

one-sided Vickrey auctions? This may seem especially tempting in light of our conclusion

that the two-sided auction presents additional challenges for core selection. Let us call such

a design choice a split auction.

Definition 3. A split Vickrey auction is two separate Vickrey auctionsM+,M− such that

(i) (Disjoint Participation) For each i ∈ N , either i ∈ N+ and i participates in M+ or

i ∈ N− and i participates in M−;

(ii) (Clearing Rule) The outcomes of the sub-mechanisms are related by p− = p+ and

Q+ = Q−Q−.

If an agent is known to be a “seller,” then he belongs in N−; if he is known to be a “buyer,”

then he belongs in N+. The split auction idea is exemplified by the proposed design of the

2015 FCC Incentive Auction for wireless spectrum licenses.45 Such mechanisms have obvious

disadvantages in relation to true two-sided auctions: the auctioneer needs to know ex ante

who will be a buyer and who will be a seller; each agent must end up on the same side of

the market for all goods; and two separate auctions must either be run simultaneously or

one must be run repeatedly for different quantities of total trade. We add to these a result

that a split Vickrey auction always generates less revenue than the two-sided version, despite

resulting in the same allocation.

Proposition 5 (Revenue in Split vs. Two-Sided Vickrey Auction). In a split Vickrey

auction, revenue is weakly lower than in a two-sided Vickrey auction.

45 The proposed design is dynamically implemented with forward and reverse components, and a clearing
rule that equalizes price across the two one-sided mechanisms.
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6.3 Revenue

Since in divisible good settings, market clearing prices are well defined, employing a

variant of the uniform-price auction would seem to be an attractive alternative. The Vickrey

auction is often viewed as having unfavorable revenue properties, especially when compared

to the commonly used uniform-price auction. However, this is not always the case. One can

show that while the Vickrey auction creates a higher surplus compared to uniform pricing

(since the latter has an inherent inefficiency with divisible goods), it gives the auctioneer a

smaller share of it (Figure 6). Which effect dominates then determines the two auctions’

revenue ranking.

Figure 6: Revenue and surplus in Vickrey and uniform-price auctions

Notes: The figure shows a bidder i’s payment and surplus generated (i.e., ui(qi)) in the Vickrey

and uniform-price auctions for a single good. In the uniform-price auction, agents shade their bids

bUPAi inward from their marginal utility schedules bV Ai ; the market clears at the same price p∗ as

in the Vickrey auction, but at a quantity of smaller magnitude qUPAi .

When bidders have identical quadratic utilities – in particular, common valuations (i.e.,

θi = θ, for all i) that are unknown to the seller – and one good, Ausubel et al. (2014) show

that the Vickrey auction outperforms the uniform-price auction. To allow for heterogeneity

in {θi}i∈N , we compare the revenues in the two formats in the independent private values

environment with quadratic utilities.46 Proposition 6 shows that the Vickrey auction domi-

nates uniform pricing in revenue terms when heterogeneity is small; thus, in the environments

where core selection is more likely to be expected.

First, consider expected revenue in the Vickrey auction. When agents’ substitution pat-

46 In a working paper version of Ausubel et al. (2014), the authors compare Vickrey and UPA revenue
in the independent private values case with one good. Our technical contribution is the extension to the
multiple good case (a simple one, due to the package separability created by common substitution patterns).
More importantly, we use the result to provide an intuitive link between the set of environments where UPA
is outperformed by the Vickrey auction and those in which core selection is likely to hold.
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terns are common, i.e., Si = S, expected Vickrey revenue is47

E(πV A0 ) = E(v(N))− E

(∑
i∈N

πi

)
= −1

2

∑
k∈K

Var(λ′kθi)−
2N − 1

2N(N − 1)
Q′SQ+ E(θi)

′Q,

where {λk}k∈K are the (orthogonal) eigenvectors of S−1 associated with unit eigenvalues.

Immediately we can see that Vickrey revenue is decreasing in expected heterogeneity

(i.e., the variance term). When the auctioneer buys from some agents and sells to others in

the course of the auction, he is losing money on every unit he needs to reallocate (i.e., when

the auctioneer is buying, he pays more than the market clearing price, whereas he receives

less than that price when he is selling; see Figure 7). The need to reallocate arises precisely

when valuations are heterogenous; hence, he loses money when he needs to realize gains to

trade among the agents. With a large enough quantity auctioned, however, the auctioneer

will make non-negative profit – see Section 5.2.

Figure 7: When he needs to reallocate, the auctioneer loses money

Notes: To see why reallocating means the auctioneer loses money (i.e., pays more than and receives

less than price p), consider what happens when two bidders participate in a Vickrey exchange. In

Figure 1, bidder 1’s residual supply curve is just bidder 2’s bid mirrored around the y-axis. The

auction clears at q∗1, p
∗; bidder 1 makes a payment equal to the area of the smaller, darker-shaded

region, while the auctioneer must pay bidder 2 that area plus that of the larger, lighter-shaded

region.

Next, let us compute equilibrium in the uniform-price auction. Assume that agents’

Hessians −Si are common knowledge (an assumption which was unnecessary in the analysis

of the Vickrey auction). When submitting demand schedules, bidders equalize their marginal

utility with price plus price impact ∆iqi. Hence, bidders’ first order conditions that must be

47 For the derivation, see the proof of Proposition 6 in the Appendix.
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satisfied for every price by their demand schedules bi are

θi − Sibi(p) = p+ ∆ibi(p),

where price impact ∆i is the slope of the inverse residual supply curve that they face, which

is given by

Ri(qi) =

(∑
j 6=i

(∆j + Sj)
−1

)−1
(
∑
` 6=i

(∆` + S`)
−1θ` + qi −Q).

Hence, ∆i =
(∑

j 6=i(∆j + Sj)
−1
)−1

. Assuming again that Si = S for all i, we have ∆i =

∆ = 1
N−2S. Market-clearing prices can then be computed as 1

N

∑N
i=1 θi −

N−1
N(N−2)SQ. Thus,

the expected revenue in the uniform-price auction is

E(πU0 ) = E(θi)
′Q− N − 1

N(N − 2)
Q′SQ. (2)

Proposition 6 (Revenue in Vickrey vs. Uniform-Price Auctions). With quadratic

utilities ui(·), when Si = S for all i ∈ N and θi are i.i.d., the expected revenue is higher in

the Vickrey auction than the uniform-price auction if, and only if,∑
k∈K

Var(λ′kθi) <
1

(N − 1)(N − 2)
Q′SQ.

The performance of the Vickrey auction vis-á-vis the uniform-price auction in terms of

revenue depends on (i) the variance of the valuations of the “implicit packages” {λk}k∈K
(the quadratic utility term is constant), with a higher variance making the uniform-price

auction more attractive; (ii) the number of participating bidders N , with a larger number

making uniform pricing more attractive; and (iii) the sum of the quantities of the packages

{λk/||λ2k||}k∈K supplied by the auctioneer, since these are the eigenvectors of S correspond-

ing to unit eigenvalues, with a larger supply of them rendering the Vickrey auction more

attractive.

7 Extensions

We discuss three extensions; the Supplementary Material provides details. First, our

analysis so far assumes that all bidders bid for all packages. One of the enduring problems

in practical auction design is that not all bidders care about all goods; i.e., we have ui :

RKi → R, Ki ⊂ K for some i. Theorem 2 continues to hold when this is the case so long as

packages C are substitutes for all bidders; the meaning of package substitutability in terms

of primitives is slightly different from Theorem 1. Nontrivially, bidders need not be able to
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think about how much they value these packages independently of one another;48 that is, we

can still consider a bidder’s demand for each of them even if they include goods the bidder

cannot buy or sell.

Second, often, the set of feasible allocations is restricted: for instance, when reallocation

of quantity among bidders is infeasible and so bidders can only buy (or in procurement

auctions, can only sell). Theorem 2 still applies with an appropriately defined condition on

the primitives necessary for packages to be substitutes when allocations are restricted to the

positive orthant. When the packages are just goods, constraining reallocation does not cause

the conditions on the primitives for substitutes to be different.

Finally, for imperfectly divisible settings (i.e., when allocations are constrained to some

subset of ZK), we contribute a converse similar to Proposition 1 to illustrate that the issues

due to the two-sidedness that we examine, particularly those illustrated in Example 1, are

relevant beyond divisible goods. We conjecture that results analogous to ours are available in

indivisible good settings, with perhaps additional restrictions on the cones used to formulate

the idea of package substitutability due to the integer choice set.
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Appendix49

Proof of Lemma 1 (Coalitional Rationality of Participation): Suppose that Z is the
set of agents who participate. We want to show that

|W |v(Z,Q)−
∑
i∈W

v(Z \ i, Q) ≥ v(W, 0),

for all W . Denote by |W |Z the set of agents formed by replicating Z, |W | times. Note further

that |W |v(Z,Q) = v(|W |Z, |W |Q): the same price clears each of the replica economies, so

joining them together cannot change the efficient allocation and, thus, leaves total surplus

unchanged. Now note that v(|W |Z, |W |Q) ≥ v(W, 0) +
∑

i∈W v(Z \ i, Q), since in the social

planner’s problem for the grand coalition |W |Z, we could always allocate Q to the members

of each Z \ i and reallocate goods efficiently between the members of the residual coalition

W . The assertion follows. �

Proof of Lemma 2 (Implications of Core Selection): (Submodularity of v( · )⇔ core
selection) First, since 2N is a product of chains, submodularity is equivalent to decreasing
differences. Let Z be the set of participating agents. Since

∑
i∈Z πi = v(Z) by allocative

efficiency, the payoff imputation is unblocked by the union of 0 and W ⊂ Z if, and only if,

v(Z,Q)−
∑
i/∈W

πi≥ v(W,Q) ∀W ⊂ Z⇔v(Z,Q)− v(W,Q) ≥
∑
i/∈W

v(Z,Q)− v(Z \ i, Q)

⇔
∑
i/∈W

v(Z \ {j /∈W |j < i}, Q)− v(Z \ {j /∈W |j ≤ i}, Q)− v(Z,Q) + v(Z \ i, Q) ≥ 0

49 The cones in this paper are convex and pointed. Quasipositivity of A is equivalent to nonnegativity of
the off-diagonal entries of A.
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⇔
∑
i/∈W

v(Z \ {j /∈W |j < i}, Q) + v(Z \ i, Q)− v((Z \ i) ∩ (Z \ {j /∈W |j < i}), Q) −v((Z \ i) ∪ (Z \ {j /∈W |j < i}), Q) ≥ 0.

The sum terms are positive whenever v(·) is submodular in bidders. When it is not, some
difference-in-difference must be positive, and the Vickrey payoff profile for some set of par-
ticipants must be blocked by some coalition formed by excluding two participating bidders.

(⇒ (1)) We want to show that when an agent acquires some quantity by submitting more
than one bid, he can acquire the same quantity for a smaller payment by submitting one
bid. If agent i ∈ Z makes two bids bα and bβ, which are the truthful bids of some admissible
types uα and uβ, and acquires qα and qβ, then the market must clear at the same price as it
would if agent i acquired qα + qβ through a single bid, since the other agents must still be
consuming a total of Q− qα− qβ and Ri is injective. Then (from the calculations in footnote
17) shill α pays

xα = v((Z ∪ β)/i)− v(Z ∪ β/i,Q− qα) = v((Z ∪ β)/i)− v((Z ∪ β ∪ α)/i) + uα(qα)

and shill β pays

xβ = v((Z ∪ α)/i)− v((Z ∪ α)/i,Q− qβ) = v((Z ∪ α)/i)− v((Z ∪ β ∪ α)/i) + uβ(qβ).

Now suppose agent i instead made the bid bαβ = ∇v(α ∪ β, ·). This bid would yield i a
quantity of qα + qβ and cause him to pay

xαβ = v(Z/i)− v((Z ∪ α ∪ β)/i,Q− qα − qβ)

= v(Z/i)− v((Z ∪ β ∪ α)/i) + v(α ∪ β, qα + qβ)

= v(Z/i)− v((Z ∪ β ∪ α)/i) + uα(qα) + uβ(qβ).

Then, by bidder-submodularity, the following inequality holds

xαβ − xα − xβ = v(Z/i) + v((Z ∪ β ∪ α)/i)− v((Z ∪ β)/i)− v((Z ∪ α)/i) ≤ 0

and so it costs less to acquire qα + qβ with one bid than with two when coalition Z/i is
present. It follows by induction that any quantity that can be acquired with some collection
of shill bids can be acquired more cheaply with a single bid.

(⇒ (2)) When the agents in Z participate, seller revenue is∑
i∈Z

v(Z/i)− (|Z| − 1)v(Z) = v(Z/j) +
∑
i∈Z/j

(v(Z/i)− v(Z)),

choosing some j ∈ Z. Each term in the last sum increases with N , by bidder-submodularity.

The revenue difference when Z ∪ ` participate and when Z participate is v(Z)− v(Z ∪ `) +

v((Z ∪ `)/j)− v(Z/j) +
∑

i∈Z/j(v((Z ∪ `)/i)− v(Z ∪ `)− v(Z/i) + v(Z)). Each term of the

sum is weakly positive by bidder-submodularity, as is the part outside the sum. �

For Corollary 2, note that the more stringent requirement of bidder-submodularity does

not yield a stronger conclusion about shill bidding, since the empty set would only arise in
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the proof if the shill bidder was the only participant in the auction, a case in which incentives

to shill are different and primarily concern fooling the auctioneer into running the Vickrey

auction instead of canceling it.

Proof of Lemma 3 (Coalitional Value Function): The Lagrangian is

L(qW , µ) =
∑
i∈W

(
θ′iqi −

1

2
q′iSiqi

)
− µ′(

∑
i∈W

qi −Q).

The first-order condition (which is sufficient, by concavity of the objective) is

θi − Siqi = µ, ∀i ∈W.

Solving for µ in terms of primitives by finding qi and then summing across the i:

µ = H(W )

(∑
i∈W

S−1i θi −Q

)
.

Substituting back into the FOC:

θi − Siqi = H(W )

∑
j∈W

S−1j θj −Q

 , ∀i ∈W

qi = S−1i θi − S−1i H(W )

∑
j∈W

S−1j θj −Q

 , ∀i ∈W.

Now substituting our optimal choice of quantity back into the coalitional payoff:

v(W,Q) =
∑
i∈W

θ′iS
−1
i θi −

(∑
i∈W

θ′iS
−1
i

)
H(W )

(∑
i∈W

S−1i θi −Q

)

− 1

2

∑
i∈W

θ′iS
−1
i θi +

(∑
i∈W

θ′iS
−1
i

)
H(W )

(∑
i∈W

S−1i θi −Q

)

− 1

2

(∑
i∈W

S−1i θi −Q

)′
H(W )

(∑
i∈W

S−1i θi −Q

)

=
1

2

∑
i∈W

θ′iS
−1
i θi −

1

2

(∑
i∈W

S−1i θi −Q

)′
H(W )

(∑
i∈W

S−1i θi −Q

)
.

�

Proof of Lemma 4 (Goods Substitutability as a Condition on Primitives): Agent

i’s first-order condition is∇ui(qi(p))−p = 0. By the implicit function theorem, then, we have

Dpqi(p) = (D2ui(qi(p)))
−1. Hence, goods are substitutes for i exactly when the off-diagonal

entries of (D2ui(qi(p)))
−1 are nonnegative, that is, when (D2ui(qi(p)))

−1 is quasipositive.

From the envelope theorem, DΠi(p) = qi(p), so D2Πi(p) = −(D2ui(qi(p)))
−1; it follows that

(D2ui(qi(p)))
−1 is quasipositive exactly when Πi has decreasing differences. �
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Proof of Theorem 1 (Package Substitutability as a Condition on Primitives):
((1)⇔ (2)) In the package pricing UMP, the agent’s first-order condition is T−1′C ∇ui(T

−1
C qCi )−

pC = 0. By the implicit function theorem,

DqCi (pC) =
(
T−1′C D2ui(T

−1
C qCi )T−1C

)−1
= TC(D2ui(T

−1
C qCi ))−1T ′C .

Note that the envelope theorem implies that DqCi (pC) = −D2ΠC
i , so submodularity of ΠC

i

in ≥ is equivalent to quasipositivity of DqCi (pC) (and hence substitutability of packages C).
Also note that since D2Πi(p) = −(D2ui(qi(p)))

−1 from the proof of Lemma 4, the chain rule
and the above calculations imply that this is also equivalent to submodularity of Πi in �C .
This is true everywhere if, and only if, for some α we have, as desired,

TC(D2ui(x))−1T ′Cy + αy ≥ 0, ∀y ≥ 0, x ∈ RK

⇔ TC(D2ui(x))−1z + αT−1′C z ≥ 0, ∀z ∈ C∗, x ∈ RK

⇔ TC(D2ui(x))−1z + αTCT
−1
C T−1′C z ≥ 0, ∀z ∈ C∗, x ∈ RK

⇔ (D2ui(x))−1z + αT−1C T−1′C z ∈ C, ∀z ∈ C∗, x ∈ RK .

�

Proof of Theorem 2 (Core Selection: Package Substitutability and Allocations):

We want to deal with the problem where allocations are constrained to the region where we

know packages C are substitutes, because we know this problem will have the same solution

as that without such a constraint, since by assumption q∗i (W,Q) ∈ C ∩ (Q − C) for all

W ⊆ N . In order to do so, we need the following lemma, proved in the Supplementary

Material, which essentially says that when packages are locally substitutes in the original,

unconstrained problem, they are still (globally) substitutes in the new constrained one.

Lemma A.1 (Constrained Submodularity). If packages are substitutes on C∩ (Q−C),
then

Π̃C
i (pC) = max

qCi

{ui(T−1C qCi )− p′CqCi s.t. {qCi }k ∈ [0, {TCQ}k]}

is submodular.

Note that

v(W,Q) = max
{qi}i∈W

{∑
i∈W

ui(qi) s.t.
∑
i∈W

qi = Q

}

= max
{qi∈C∩(Q−C)}i∈W

{∑
i∈W

ui(qi) s.t.
∑
i∈W

qi = Q

}
(3)

= max
{qi∈C∩(Q−C)}i∈W

{∑
i∈W

ui(qi) s.t.
∑
i∈W

TCqi = TCQ

}
(4)

= min
pC

max
{qi∈C∩(Q−C)}i∈W

{∑
i∈W

ui(qi)− pC ·

(∑
i∈W

TCqi − TCQ

)}
(5)

= min
pC

{∑
i∈W

max
qi∈C∩(Q−C)

{ui(qi)− pC · TCqi}+ pC · TCQ

}
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= min
pC

{∑
i∈W

max
{qCi }k∈[0,TCQ]

{ui(T−1C qCi )− pC · qCi }+ pC · TCQ

}

= min
pC

{∑
i∈W

Π̃C
i (pC) + pC · TCQ

}
.

We write the social planner’s problem as (3) using our assumption about the efficient allo-

cation. The primal (4) and dual (5) optimization problems are equivalent since the primal

problem is maximization of a concave function over a convex region under a feasible linear

constraint, and hence Slater’s condition ensures that strong duality holds. From here we

follow the proofs of Theorems 2.6.2 and 2.7.6 in Topkis (1998):

The objective
∑

i∈W Π̃C
i (pC)+pC ·x has decreasing differences in (W, pC):

∑
i∈W (Π̃C

i (p′′′C)−
Π̃C
i (p′′C)), p′′′C > p′′C , is decreasing in W since (Π̃C

j (p′′′C) − Π̃C
j (p′′C)) < 0: the allocation chosen

by j at p′′′C is cheaper at p′′C (because qCi (p′′′C) ≥ 0) so profit must be at least as high at the

smaller price vector. Hence for all pC , p
′
C ∈ RK we have∑

i∈W∪Z Π̃C
i (p′C ∨ pC)−

∑
i∈W Π̃C

i (pC)

=
∑
i∈W∪Z Π̃C

i (p′C ∨ pC)−
∑
i∈W∪Z Π̃C

i (pC)

+
∑
i∈W∪Z Π̃C

i (pC)−
∑
i∈W Π̃C

i (pC)

≤
∑
i∈Z Π̃C

i (p′C ∨ pC)−
∑
i∈Z Π̃C

i (pC) (decreasing differences)

+
∑
i∈Z Π̃C

i (pC)−
∑
i∈W∩Z Π̃C

i (pC) (W ∪ Z −W = Z −W ∩ Z)

≤
∑
i∈Z Π̃C

i (p′C)−
∑
i∈Z Π̃C

i (pC ∧ p′C) (Lemma A.1)

+
∑
i∈Z Π̃C

i (pC ∧ p′C)−
∑
i∈W∩Z Π̃C

i (pC ∧ p′C) (decreasing differences)

=
∑
i∈Z Π̃C

i (p′C)−
∑
i∈W∩Z Π̃C

i (p′C ∧ pC).

We also have p′C ∨ pC − pC = p′C − p′C ∧ pC . So for all pC , p
′
C ∈ RK ,∑

i∈Z
Π̃C
i (p′C) + p′C · TCQ+

∑
i∈W

Π̃C
i (pC) + pC · TCQ

≥
∑

i∈W∪Z
Π̃C
i (p′C ∨ pC) + p′C ∨ pC · TCQ+

∑
i∈W∩Z

Π̃C
i (p′C ∧ pC) + p′C ∧ pC · TCQ

(6)

≥ v(W ∪ Z,Q) + v(W ∩ Z,Q).

for any W,Z such that W ∩Z 6= ∅. Taking minimums over prices on the left-hand side yields

v(W ∪ Z,Q) + v(W ∩ Z,Q) ≤ v(Z,Q) + v(W,Q)

as desired, and v(·) is submodular on the sublattice 2N−1 × {i} for each i ∈ N . Now we
consider W ∩ Z = ∅. When pC , p

′
C ≥ 0, pC ∧ p′C ≥ 0 and so from (6) we have∑

i∈Z
Π̃C
i (p′C) + p′C · TCQ+

∑
i∈W

Π̃C
i (pC) + pC · TCQ ≥ v(W ∪ Z,Q) + p′C ∧ pC · TCQ

≥ v(W ∪ Z,Q) + 0 = v(W ∪ Z,Q) + v(W ∩ Z,Q). (7)

By the envelope theorem, ∇v(W,Q) = T ′C arg minpC
{∑

i∈W ΠC
i (pC) + pC · TCQ

}
, and we

43



have

T ′−1C ∇v(W,Q) = arg min
pC

{∑
i∈W

ΠC
i (pC) + pC · TCQ

}
⇒ T ′−1C ∇v(W,Q) ∈ arg min

pC

{∑
i∈W

Π̃C
i (pC) + pC · TCQ

}
.

The derivative of v(W,Q) in the direction of ck is positive means that c′k∇v(W,Q) ≥ 0.

When this is true for each ck ∈ C and for all W , then T ′−1C ∇v(W,Q) ≥ 0 since the ck form

the columns of T−1C . It follows that we can minimize the left-hand side of (7) over the positive

orthant to get v(W ∪Z,Q)+v(W ∩Z,Q) ≤ v(Z,Q)+v(W,Q) and v(·) is bidder-submodular.

The assertions follow by Lemma 2 and Corollary 2. �

Proof of Lemma 5 (Eigenvector Condition for Substitution Symmetry): Let TC
be a polyhedral generator for the cone generated by C. It follows from the chain rule that

D2
qCi
ui(T

−1
C qCi ) = T−1′C D2

qi
ui(qi)T

−1
C . Since R is a chain, ui(·) is separable in qCi if, and only if,

it is modular in qCi ; that is, if, and only if, D2
xui(T

−1
C x) is diagonal. This is true if, and only

if, we can write D2
xui(x) = T ′CMi(x)TC for diagonal Mi(x), which we can do if, and only if,

scalar multiples of C are an orthonormal eigenbasis for D2ui(x). �

Proof of Theorem 3 (Core Selection: Sufficient Conditions on the Primitives):

Matrices commute if, and only if, they have the same eigenspace; let C be their orthonormal

eigenvectors, oriented so that Q is in the cone C they generate. (Such orthogonal eigenvectors

exist because the matrices are symmetric.) By Lemma 5, ui(·) is separable in the C for each i,

implying they are substitutes for each bidder. Hence we can write ui(qi) =
∑K

k=1 u
k
i ({qCi }k)

and optimize in each package separately when computing v(·) and q∗i . For each k, if the

initial endowment is efficiently allocated among N , we have uk′i (0) = dk for each i ∈ N

and some dk. Given W ⊆ N , from the first-order conditions of the coalitional optimization

we have uk′i ({q∗Ci (W,Q)}k) = µk(W,Q) for each i and some µk(W,Q). Then for each k ∈
K, either µk(W ) ≤ dk and thus strict concavity implies {q∗Ci (W,Q)}k ≥ 0 for each i, or

µk(W,Q) > dk and thus
∑

i∈W{q∗Ci (W,Q)}k < 0 for each i. The latter is impossible since

{q∗Ci (W,Q)}k = TCQ ≥ 0. �

Proof of Proposition 1 (No Core Selection: Heterogeneity in Initial Endowments
I): Let agents 1, 2, and 3 participate; choose

t1 = 0, t2 = (∇u2)−1(∇u1(Q)), t3 =

{
0, ∇u1(Q) 6= ∇u3(0)

1, ∇u1(Q) = ∇u3(0)
.

So for coalitions {0, 1}, {0, 1, 2}, the price ∇u1(Q) clears the market, hence allocating the

entire quantity vector to bidder 1 is efficient and v(·, Q) is the same for each of them. Now

v({0, 1, 2, 3}, Q) ≥ v({0, 1, 3}, Q) because we could always allocate nothing to bidder 2 in the

grand coalition. The inequality is strict: for q2 = 0 to be efficient in the grand coalition, the

market would have to clear at ∇u1(Q) and the entire quantity vector would have to again

be allocated to bidder 1; but at such a price, bidder 3 would demand some amount different
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than zero. Then, π0 + π1 = v({0, 1, 2}, Q) + v({0, 1, 3}, Q)− v({0, 1, 2, 3}, Q) < v({0, 1}, Q),

and the coalition {0, 1} blocks the Vickrey payoff profile. �

Proof of Proposition 2 (No Core Selection: Heterogeneity in Initial Endowments

II): Let agents 1, j, and ` participate; choose Q = (∇u1)−1(∇uj(0)). The rest of the proof

follows exactly the same as that of Proposition 1, with agents 2 and 3 replaced by agents j

and ` respectively. �

Proof of Proposition 3 (No Core Selection: Heterogeneity in Substitution Pat-

terns): We first need the following result, which is proved in the Supplementary Material.

Lemma A.2 (No Core Selection: Quadratic Utilities). When agents have quadratic

valuations ui(qi) = θ′iqi − 1
2
q′iSiqi, if θi = θ for each i and S−1` H(Z \ ` + Z \ j)S−1j has a

negative eigenvalue for some coalition Z ⊂ N and agents `, j ∈ Z, then v(·, Q) is not bidder-

submodular for some Q. In particular, this implies that (H(Z) + H(Z \ {` ∪ j}) − H(Z \
j)−H(Z \ `)) has a negative eigenvalue, and that v(·, Q) is not bidder-submodular when Q

is a scalar multiple of the eigenvector associated with the negative eigenvalue.

Let A be the rotation matrix that maps Q to the eigenvector associated with the negative
eigenvalue of (H(Z) + H(Z \ {` ∪ j}) − H(Z \ `) − H(Z \ j)) that, by Lemma A.2, must

exist. Since
(∑

i∈W (A′SiA)−1
)−1

= A′H(W )A, we then have

v(Z,Q) + v(Z \ {` ∪ j}, Q) > v(Z \ `,Q) + v(Z \ j,Q)

and for some profile of participants the Vickrey outcome is not in the core by Lemma 2. �

Hence, if the difference-in-difference of the harmonic mean has a negative eigenvalue,

then there is some cone which gives no core selection when it contains Q.

Proof of Proposition 4 (Bidder-Submodularity and Quantity Auctioned): Let
p∗C(W,Q) be the market-clearing package price vector when W participate in a Vickrey
auction for Q. The envelope conditions for agents’ primal (profit-maximization) problems
yield ∇ΠC

i (pC) = qCi ⇒
∑

i∈W ∇ΠC
i (p∗C(W,Q)) = TCQ. The inverse function theorem yields

DQp
∗
C(W,Q) =

(∑
i∈W

D2ΠC
i (p∗C(W,Q))

)−1
TC =

(∑
i∈W

TCD
2ui(q

∗
i (W,Q))−1T ′C

)−1
.

From the proof of Theorem 1, DqCi (pC) = TCD
2ui(q

C
i (pC))−1T ′C , so applying the chain rule,

DQTCq
∗
i (W,Q) = TCD

2ui(q
∗
i (W,Q))−1T ′C

∑
j∈W

TCD
2uj(q

∗
j (W,Q))−1T ′C

−1 TC
= TCD

2ui(q
∗
i (W,Q))−1

∑
j∈W

D2uj(q
∗
j (W,Q))−1

−1 .
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It follows that TCq
∗
i (W,Q) are each increasing in exactly the directions in the polyhedral

cone
⋂
i∈W

(∑
j∈W D2uj(q

∗
j (W,Q))−1

)
D2ui(q

∗
i (W,Q))T−1C RK

+ . �

Lemma 6 (Dominant Strategy Property under Separability). Suppose that all agents’

utilities are additively separable in the packages C. When the C are sold in separate Vickrey

auctions, submitting the demand curves bki (pk) = (uk′i )−1(pk) for each package ck ∈ C is a

dominant strategy and therefore optimal ex post.

Proof of Lemma 6 (Dominant Strategy Property under Separability): Each agent

i’s utility is separable in the C, and by design, payments are separable in the C. Hence, the

optimality conditions in each auction are unaffected by the outcome of the others. By the

logic of Section 2.3, then, submitting bki (pk) = (uk′i )−1(pk) is a dominant strategy. �

Proof of Theorem 4 (Equivalent Implementation): (Equivalent prices and identical
allocation) Market clearing in each of the separate Vickrey auctions is given by

c′kQ =

N∑
i=1

{qCi }k ∀k ∈ K and bki (pk) = {qCi }k ∀ i ∈ N, k ∈ K.

Since utilities ui(·) are separable, for equilibrium bids this is equivalent to

TCQ =

N∑
i=1

qCi and pC = DqCi
ui(T

′
Cq

C
i ) ∀ i ∈ N,

by the previous lemma. Applying the chain rule yields pC = TC∇ui(T ′CqCi ) ∀ i ∈ N . Since

pC = TCp and qCi = TCqi, this gives us Q =
∑N

i=1 qi and p = ∇ui(qi) ∀ i ∈ N , which are just
the market clearing conditions for the K-good Vickrey auction, given equilibrium bids.
(Equal payments) In the K-good Vickrey auction, payments are given by

∫ qi
0
Ri(r) ·dr. This

integral is path-independent since DRi is symmetric, and so can alternatively be written

K∑
k=1

∫ c′kqi

0

c′kRi(rck +
∑
`<k

(c′`qi)c`)dr,

since qi = T ′CTCqi =
∑

k∈K(c′kqi)ck. We want to show that c′kRi(qi + εc`) = c′kRi(qi) for
all k, qi, ε, ` 6= k so that we can get rid of the sum inside Ri. The easiest way to do this is
to show that DtTCRi(T

′
Ct) is diagonal. The inverse function theorem and the chain rule gives

DtTCRi(T
′
Ct) = TCDRi(T

′
Ct)T

′
C

= −TC

∑
j 6=i

Duj(tj)
−1

−1 T ′C for some tj

= −

∑
j 6=i

Mj(tj)
−1

−1 for some tj ,
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for some diagonalMj(tj), by Lemma 5. Thus, we can write payments as
∑K

k=1

∫ c′kqi
0

c′kRi(rck)dr,

which is equivalent to the total payment
∑K

k=1

∫ {qCi }k
0

Rk
i (r)dr when packages are sold sepa-

rately.50 �

Proof of Proposition 5 (Revenue in Split vs. Two-Sided Vickrey Auction): In the

split auction, if i ∈ N+, i receives payoff v(N+, Q+) − v(N+ − i, Q+); if i ∈ N−, i receives

payoff v(N−, Q−)−v(N−−i, Q−). By price equalization, marginal utilities equalize across the

two submechanisms and the allocation is efficient; hence v(N,Q) = v(N+, Q+) + v(N−, Q−).

We also have, by the definition of v(·) and disjoint participation, v(W+, Q+) + v(W−, Q−) ≤
v(W+∪W−, Q). So, if i ∈ N+, i receives payoff πi = v(N+, Q+)−v(N+−i, Q+) = v(N+, Q+)+

v(N−, Q−)−(v(N+− i, Q+)+v(N−, Q−)) ≥ v(N,Q)−v((N \ i), Q); and if i ∈ N−, i receives

payoff πi = v(N−, Q−)−v(N−−i, Q−) = v(N+, Q+)+v(N−, Q−)−(v(N−−i, Q−)+v(N+, Q−))

≥ v(N,Q) − v((N \ i), Q). Since in either the split or two-sided auction, the auctioneer

receives revenue π0 = v(N,Q) −
∑N

i=1 πi, weakly higher payoffs for bidders implies weakly

lower revenue for the auctioneer. �

Proof of Proposition 6 (Revenue in Vickrey vs. Uniform-Price Auctions): The
expected revenue in the uniform price auction is computed in the main text. For the ex-
pected Vickrey revenue, E(πV A0 ) = E(v(N))−E

(∑
i∈N πi

)
, from Example 6 (derived in the

Supplementary Material) we have

E

(∑
i∈N

πi

)
=
N

2

∑
k∈K

Var(λ′kθi) +
1

2(N − 1)
Q′SQ.

Computing E(v(N)):

v(N) =
1

2

∑
i∈N

θ′iS
−1θi −

1

2N

(∑
i∈N

θi − SQ

)′
S−1

(∑
i∈N

θi − SQ

)

=
N − 1

2N

∑
i∈N

θ′iS
−1

θi − 1

N − 1

∑
j 6=i

θj

− 1

2N
Q′SQ+

1

N

(∑
i∈N

θi

)′
Q

⇒ E(v(N)) =
N − 1

2

∑
k∈K

Var(λ′kθi)−
1

2N
Q′SQ+ E(θi)

′Q

and so expected revenue in the Vickrey auction is

E(πV A0 ) = −1

2

∑
k∈K

Var(λ′kθi)−
2N − 1

2N(N − 1)
Q′SQ+ E(θi)

′Q. (8)

The ranking then follows from (2) and (8). �

50 That c′kRi(rck) = Rki (r) is implied by the equivalence result of part I of the proof.
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