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Abstract

We explore the impact of public school assignment reforms by building a house-
holds’ school choice model with two key features—(1) endogenous residential loca-
tion choice and (2) opt-out to outside schooling options. Households decide where
to live taking into account that locations determine access to schools—admissions
probabilities and commuting distances to schools. Households are heterogeneous
both in observed and unobserved characteristics. We estimate the model using
administrative data from New York City’s middle school choice system. Variation
from a boundary discontinuity design separately identifies access-to-school prefer-
ences from other location amenities. Residential sorting based on access-to-school
preference explains 30% of the gap in test scores of schools attended by minor-
ity students versus their peers. If households’ residential locations were fixed, a
reform that introduces purely lottery-based admissions to schools in lower- and
mid-Manhattan would reduce the cross-racial gap by 7%. However, households’
endogenous location choices dampen the effect by half.
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1 Introduction

Across the U.S. in 2016, 33% of K-12 students lived in a school district where they
could choose, to some degree, which public school to attend.1 Public school choice sys-
tems provide students with multiple options beyond the nearest school to their home,
standing in contrast to classic settings where students are automatically assigned to
schools based on their home addresses. Such contrast has raised hope that centralized
school assignments could decouple educational disparities from spatial disparities at
scale. However, many popular schools under a choice system give admissions prior-
ity to students from residential locations nearby, even when they accept applications
from a broader set of students (Dur, Kominers, Pathak, and Sönmez, 2013). Such
location-based admissions rules have triggered debate over the design of admissions
rules, motivated by a concern that these contribute to the continued school segrega-
tion observed in many school choice settings (Cohen, 2021).

How effectively can we desegregate schools with reforms on the location-based
admissions rules in a public school choice system? We answer this question by de-
veloping a households’ school choice model that considers two important margins
through which households may respond: residential location choice and opt-out to
outside schooling options.

The key feature of the model is households’ endogenous location choice. While pre-
vious work has documented that residential location explains half the racial gap in
test scores of schools attended by students under centralized school choice (Laverde,
2020), how households make the residential location decision has received little at-
tention in the school choice literature (e.g., Abdulkadiroğlu, Agarwal, and Pathak,
2017). In our model, households choose residential locations by considering access to
schools, which refers to both admissions probabilities and commuting distances to
schools that vary across locations.

We set up a multi-stage discrete choice model where households sequentially
choose (1) which location to live in, (2) which school to apply to, and (3) whether to
enroll in the assigned school or opt out to outside schooling options. Households have
observed and unobserved heterogeneous preferences over a set of location and school
characteristics, which leads to rich residential and school sorting patterns.

We start by providing causal evidence that households consider location-based ad-
1Based on authors’ calculation using The National Center for Education Statistics 2019 National

Household Education Surveys: Parent and Family Involvement in Education Survey.
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missions rules when deciding where to live. Our empirical context is the middle school
choice system in New York City (NYC), where 70,000 students and 700 middle schools
are matched each year. Each student has over 30 public school options to apply to, and
which Community School District (CSD)—a subdivision of the city—they reside in
largely determines the choice set and admissions probabilities. Leveraging this insti-
tutional aspect, we apply a boundary discontinuity design (BDD) to compare Census
blocks that are close to one another but located on opposite sides of a CSD bound-
ary. By doing so, we deal with the endogeneity concern that locations with higher
admissions chances to high-achieving schools might have amenities unobserved to
researchers but are observed and valued by households. Estimates indicate that Cen-
sus blocks within a CSD with one standard deviation higher school test scores have
22% more households with middle school applicants.

We use the variation from the BDD to identify how much households value access
to school relative to other location amenities. We estimate our structural model using
an extension of the expectation-maximization algorithm with a sequential maximiza-
tion step (ESM, Arcidiacono and Jones, 2003). This keeps the estimation tractable
while enabling us to jointly estimate all stages of the model to account for households’
selection into locations.

The results show that endogenizing households’ residential choice has important
implications for (1) understanding the source of school segregation under the status
quo, (2) obtaining an unbiased commuting cost estimate, and (3) predicting the impli-
cations of the counterfactual policy.

First, our estimates illustrate that households’ location choices based on location’s
access to schools play a large role in explaining which students are matched to which
schools. To show this, we shut down each part of the model in a decomposition ex-
ercise. 30% of the gap in test scores of schools attended by minorities versus non-
minorities is explained by households’ residential sorting based on locations’ access
to schools. Households’ heterogeneous preference over other location characteristics
and school characteristics explains 45% and 18% of the cross-racial gap, respectively.

Second, we find that a model that does not account for endogenous location choice
overestimates commuting costs by 15%. Our model estimates show that a median
household is willing to pay $19 per school day to reduce commuting time to school
by 50 minutes. Commuting cost is an important parameter that governs the degree
to which students take advantage of school choice options rather than applying to
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schools nearest to their residential locations. The reason for the overestimation is
that households choose locations near schools they prefer since it increases their ad-
missions probabilities. This leads to a spurious result in which they apply to schools
nearby not because they care about distance but because in their location choice they
cared about admission probability. Without correcting for households’ selection into
locations, the model would misinterpret households’ applying to schools nearby as
solely due to commuting costs. Due to residential sorting based on unobserved school
preference, this is still true when one controls for households’ observed characteris-
tics.2

Finally, we describe how households’ spatial reshuffling in response to a school
desegregation reform can affect the effectiveness of the policy. We consider a counter-
factual policy that introduces purely lottery-based admissions to schools in District 2,
the district with the highest test scores and housing costs. Covering lower- and mid-
Manhattan, District 2 has been at the center of ongoing policy debates regarding the
design of location-based admissions criteria.3 When we fix households’ residential lo-
cations, lottery-based admissions to District 2 schools would close the cross-racial gap
in school test scores by 7%. This is because some minority students residing outside
the district are assigned to District 2 schools, which pushes out non-minority District
2 residents to lower-achieving schools.

However, households’ location choices in response to the policy dampen the eq-
uity impact by half. Two types of spatial reshuffling exert opposing forces. On the
one hand, some minority households choose residential locations closer to District 2
in response to the reform. With shorter commuting distances to District 2, they are
more likely to apply to District 2 schools. Spatial reshuffling of this sort amplifies the
desegregation effect of the policy. On the other hand, most of the non-minority house-
holds who reside in District 2 under the status quo relocate out of the district. Since
other districts still have location-based admissions in place, they seek other locations
that assure higher admissions probabilities to high-achieving schools. Such spatial
reshuffling dampens the equity effect of the policy.

The equilibrium force amplifies the second reshuffling while muting the first.
This is because purely lottery-based admissions to District 2 schools induce more

2For example, a household that puts a higher value on school safety than other observably similar
households will sort into locations that increase their child’s admission chances into a safer school.

3Shapiro, Eliza, N.Y.C. to Change Many Selective Schools to Address Segregation, the New York
Times, December 18, 2020.

3

https://www.nytimes.com/2020/12/18/nyregion/nyc-schools-admissions-segregation.html


applications, and thus the equilibrium admissions cutoffs of these schools increase.
This weakens the incentive of minority households to relocate closer to District 2 but
strengthens that of non-minority households to relocate farther from District 2. We
find that households substitute between opting-out to outside schooling options and
choosing different residential locations. But, overall, opt-out plays a smaller role in
determining the effectiveness of the reform on reducing the cross-racial gap.

Related Literature We contribute to two strands of the literature. First, we extend
the school choice literature by considering households’ endogenous location choice.
While it is well known that residential location is the main source of school segre-
gation (Laverde, 2020), little is known about how households choose where to live in
response to the design of centralized school choice. Previous studies have focused on
assignment mechanisms (Abdulkadiroğlu, Che, and Yasuda, 2015; Abdulkadiroğlu,
Agarwal, and Pathak, 2017; He, 2015; Agarwal and Somaini, 2018; Che and Tercieux,
2019; Calsamiglia, Fu, and Güell, 2020); information provision (Hastings and Wein-
stein, 2008; Hoxby and Turner, 2015; Luflade, 2018; Corcoran, Jennings, Cohodes,
and Sattin-Bajaj, 2018; Chen and He, 2021; Fack, Grenet, and He, 2019; Allende,
Gallego, and Neilson, 2019); limited attention (Ajayi and Sidibe, 2020; Son, 2020);
and previously attended schools (Hahm and Park, 2022).

By modeling households’ endogenous location choices, we first compare the im-
plications of counterfactual policies when households’ residential locations are fixed
versus adjusted. This approach aligns with reduced-form evidence that access to
school shapes the composition of residents and housing costs of locations (Black, 1999;
Reback, 2005; Brunner, Cho, and Reback, 2012; Schwartz, Voicu, and Horn, 2014;
Billings, Brunner, and Ross, 2018). Moreover, we correct selection into locations in
estimating school preference to obtain an unbiased estimate of commuting costs; we
take a departure from the standard assumption in the literature that distances to
schools are uncorrelated with households’ unobserved school tastes conditional on
their observable characteristics.4

Second, this paper adds to a large body of studies on within-city residential sort-
ing, by studying households’ location choice in a newly relevant setting of centralized
school assignments. Among many papers in this literature, more closely related are

4This assumption is often found in the broader economics of education literature, which uses
distance to schools as an instrumental variable for school application and attendance (Card, 1993;
Schwartz, Stiefel, and Wiswall, 2013; Walters, 2018; Mountjoy, 2022)
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those that give special attention to schools compared with other location amenities.5

Earlier studies have focused on classical settings where each residential location is
zoned to one public school (Bayer, Ferreira, and McMillan, 2007) while incorporat-
ing limited forms of school choices such as private school vouchers or inter-district
transfers (Manski, 1992; Nechyba, 2000; Epple and Romano, 2003; Ferreyra, 2007).

Under centralized school assignments, households choose among many public
schools from a given location. This enables us to study households’ heterogeneous
values over a set of school characteristics, including commuting distance. Indeed, this
two-way heterogeneity is one of the main sources of school segregation under school
choice settings (Idoux, 2022; Hahm and Park, 2022, e.g.). In contrast, frameworks
in the location choice literature (Bayer, Ferreira, and McMillan, 2007) have consid-
ered one-dimensional school characteristics, usually mean test scores, due to lack of
variation coming from their setting where each location is zoned to one public school.

With the recent popularity of centralized school assignments, there have been a
few papers proposing a unified framework of location choice and school choice. These
include theoretical models (Xu, 2019; Avery and Pathak, 2021; Grigoryan, 2021) and
a quantitative model (Agostinelli, Luflade, and Martellini, 2021). Our paper comple-
ments theoretical models by estimating our model using data.

The closest paper to ours is by Agostinelli, Luflade, and Martellini (2021), from
which we differentiate in two respects. First, our model features rich heterogeneity
in households’ location and school preferences. For example, Grigoryan (2021) shows
that preference heterogeneity is crucial in determining the welfare implication of a
school choice design.6 We depart from the assumption that households have the same
ordinal preferences over schools. We also consider location sorting based on unob-
served school preferences to obtain unbiased commuting costs. Second, we model out-
side schooling options, another margin that some households use with the introduc-
tion of a more extensive school choice system.

Organization The remainder of the paper is organized as follows. Section 2 de-
scribes the public middle school choice system in NYC and the data. Section 3 presents

5Broader set of papers have studied how residential sorting is determined by other factors such as
access to work (Ahlfeldt, Redding, Sturm, and Wolf, 2015), ease of commuting (Barwick, Li, Waxman,
Wu, and Xia, 2021), consumption amenities (Almagro and Domınguez-Iino, 2019; Miyauchi, Nakajima,
and Redding, 2022), or neighborhood composition (Davis, Gregory, and Hartley, 2019).

6See Almagro and Domınguez-Iino (2019) for a similar discussion in a model where households have
heterogeneous preferences over a set of urban amenities.
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motivating evidence on the interaction between residential location choice and school
choice. Section 4 describes the model. Section 5 describes the empirical strategy and
presents estimation results. Section 6 investigates the source of school segregation.
Section 7 studies the equity impacts of a school desegregation reform.

2 Institutional Background and Data

2.1 Public Middle School Choice in NYC

Each year, about 70,000 entering students and 700 middle school programs partici-
pate in the NYC citywide middle school choice system. There are about 500 middle
schools. Multiple programs with separate curriculum can be offered by one school,
and students apply to each program. In the following, we use the terms “program"
and “school" interchangeably when there is no confusion. Schools that are part of the
centralized choice system are governed by the city. The property tax rate is constant
within the city and the city allocates the pooled funding to schools directly, largely
based on the number of students.7

The main round of the school choice process starts in December of students’ last
year of elementary school. Students are given a customized list of programs they
are eligible for and submit a rank-ordered list (henceforth, ROL) by designating their
preference rankings over schools. In 2014-15, the average student had about 30 choice
options. There is no list-length restriction, and students can list as many schools
as they like (an example of an ROL is in Appendix A). The city uses the student-
proposing deferred acceptance (SPDA) algorithm, which takes students’ applications,
schools’ ranking over students, and the number of seats as main inputs and produces
at most one assignment for each student (Gale and Shapley, 1962).8

Schools rank students by pre-announced admission rules, which consist of three
layers. The first is eligibility, which determines students’ school choice sets. If a stu-
dent is not eligible for a program, she is never considered by the program, even when

7In 2002, Chapter 91 (Bill A.11627/S.7456-B) was enacted to reorganize the education system and
has established centralized power. Since then, the public education system has been governed by the
Panel for Educational Policy (PEP), which has 15 members; 9 of which are nominated by the mayor. The
citywide school choice system was introduced in 2004 as part of this effort (Abdulkadiroğlu, Pathak,
and Roth, 2005).

890% of students are assigned to a program on their list. The rest are matched to their fall-back
option, which is usually a school in their attendance zone. See Appendix A for details on the timeline
and SPDA.
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there are remaining seats. Second, eligible applicants are classified into a small num-
ber of priority groups. A program considers all students in the higher-priority group
before considering any student in a lower priority group. Henceforth, we use the
term “priorities" to refer to eligibility and priority groups, if not specified. Lastly,
tie-breaking rules determine which students to admit among applicants of the same
priority group. Some programs use a nonrandom tie-breaker, which is a school-specific
function of the student’s previous year’s GPA, statewide standardized test scores, and
punctuality. The rest use a lottery system in which each student receives one lottery
number that applies to all such programs. See Appendix A for more details on the
admissions rules.

Figure 1: Geographic Divisions

Note: The city is divided into five boroughs (=counties), which are further divided into 32 school dis-
tricts and 300 middle school attendance zones.

Students’ residential locations are the main criterion for the eligibility and prior-
ity of schools. Figure 1 depicts different levels of geographic subdivisions that deter-
mine location-based admissions rules. The city is split into 5 boroughs, 32 Community
School Districts (districts, henceforth), and more than 300 attendance zones.

Depending on their eligibility criteria, middle schools are classified into zoned
programs, district programs, borough programs, and citywide programs. A student’s
residence or the location of her elementary school decides her eligibility for each type
of school.9 Of 669 programs in academic year 2014-2015, 14 were citywide programs,
27 were borough programs, 478 were district programs, and the rest (150) were zoned
programs. Schools can further assign priority based on finer geographic divisions. For

987% of 2014-15 middle school applicants attended an elementary school in their residential district.
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instance, 81 of 478 district programs gave top priority to students from a particular
attendance zone.

2.2 Data

Student and School Data Student-level data from the NYC Department of Edu-
cation (DOE) cover middle school applicants in academic year 2014-15. The data have
two crucial components for the purpose of this paper—students’ school applications
and residential Census block. The data also contain students’ enrollment decisions,
demographic characteristics, and statewide standardized test scores.10

We construct school characteristics by digitizing the Directory of Public Middle
Schools.11 It covers each program’s admissions criteria, address, performance mea-
sures, previous year’s capacity, and number of applicants. Students, parents, and
guidance counselors use this as their primary information source during the middle
school application process (Sattin-Bajaj, Jennings, Corcoran, Baker-Smith, and Hai-
ley, 2018). We augment this data by adding the number of crime incidents of different
categories in each school building from a NYC Police Department’s School Safety Re-
port.

Housing Cost and Structure Housing cost and housing characteristics are from
the NYC Department of Finance’s (DOF) Rolling Sales files. The data include the ex-
act address of each sold property, which is granular enough for us to observe on which
side of a school district boundary the property is located. We describe the cleaning
process of the DOF Rolling Sales files in detail in Appendix B.

Amenities of Residential Location We construct location amenities from various
sources. Land use comes from the Primary Land Use Tax Lot Output. We also obtain
consumption amenities such as the number of cafes from business licenses published
by NYC Consumer and Worker Protection. Next, we collect information on bus stops,
metro stations, and park areas using NYC OpenData GIS data files. We aggregate
variables to Census block level. Finally, the demographic composition of each Census
block group, such as ethnicity, age, education, and income, comes from the American
Community Survey (ACS) 5-year estimates.

10We focus on academic year 2014-15 because students can list only up to 12 middle schools in more
recent years. With this list length restriction, students have the incentive to list less preferred schools
with higher admissions chances (see Section 4).

11The city began publishing a digitized version in academic year 2017-18.
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Figure 2: Main Variables by District

(a) School Test Score (b) Sales Price ($1,000) (c) Minority Share in Schools

Note: In panels (a) and (c), we take the average of the variables across schools within each district.
The school test score is the average NYS standardized test scores of enrolled students. In panel (b), we
present the average unit sales price of residential properties in each district.

Figure 2 presents the average characteristics for each district, which demon-
strates a strong correlation among school achievement, housing cost, and share of
minorities in schools. Summary statistics of main variables are in Table B.2.

3 Motivating Data Pattern

3.1 Effect of Admissions Probability on Residential Sorting

This section presents evidence that households choose where to live by consider-
ing location-based admissions probabilities. Specifically, we show that locations with
higher admissions chances to high-achieving schools have greater number of house-
holds with middle school applicants and higher housing costs. This makes the main
motivation to model endogenous location choices under centralized school choice. More-
over, we show that these locations also have a lower minority share among households
with middle school applicants, which implies that households have heterogeneous
rates of substitution between housing cost and higher admissions chances to high-
achieving schools. The main challenge to credibly show these patterns is that loca-
tions with higher admissions chances to high-achieving schools may have amenities
unobserved to the econometrician but observed by and desirable to households, such
as a well-kept playground.

To this end, we adopt a boundary discontinuity design (BDD) (Black, 1999; Bayer,
Ferreira, and McMillan, 2007). Ideally, we would compare two locations with the same
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amenities but with different admissions probabilities to schools. BDD mimics the
ideal design by comparing locations that are within a narrow buffer around a school
district boundary but on opposite sides. The identification assumption is that unob-
served amenities are as good as random within a narrow buffer around a boundary.
This assumption likely holds if other amenities are continuous in geography.12

We consider a narrow buffer that covers locations within 0.25 miles from a bor-
der at which a pair of school districts meet. Figure 5 illustrates this idea. Tables in
Appendix B present estimates with a 0.2-mile buffer. Table B.2 presents summary
statistics of student, housing, and Census block group characteristics of all sample in
comparison to sample included in the BDD analysis. The differences in characteris-
tics largely come from the fact that we exclude Staten Island since it consists of one
school district. For example, Staten Island has larger number of White student, thus
BDD sample has smaller share of White students (8.5%) than the full sample (12.5%).

The baseline regression is as follows.

yi = β Qd(i)︸ ︷︷ ︸
district school quality

+θb(i) + f(ri) + εid . (1)

The unit of observation i is a housing transaction record when yi is the log house
sales price. The unit of observation i is a Census block when yi is the number and
characteristics of middle-school-applying residents in the block. b(i) is the boundary
region fixed effect in which i is located. f(ri) is a local cubic control for distance to the
boundary b(i), which we allow to differ by whether the district in which i is included
has higher school quality than the bordering district.

Qd(i) is district school quality, measured by the mean NYS standardized test score
of students enrolled in middle schools (previous cohorts) in the district. In the model
estimation, we consider multidimensional school “quality" measures and allow stu-
dents to have heterogeneous preferences over measures. In this section, we use a one-
dimensional measure for simplicity. Our choice of the mean test score is motivated
by Abdulkadiroğlu, Pathak, Schellenberg, and Walters (2020)’s finding that parents

12We do not apply BDD on attendance zone boundaries, because there is a concern about these
boundaries’ being determined by residents themselves. School district boundaries can be redrawn only
every 10 years, and the decision is made at city level (New York State Law 2590-B). Meanwhile, at-
tendance zone boundaries can be redrawn every year by the district council, whose members include
parents and representative students. We still consider that admissions probability chances vary across
attendance zones in the model estimation (Section 5).
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of high school students in NYC do not value school effectiveness beyond the average
test scores of students enrolled in a school.

The identification assumption is unlikely to hold if school district boundaries were
drawn to divide already divided neighborhoods; even if they were exogenously drawn
in the beginning, location amenities might have evolved differently over time on oppo-
site sides of a boundary (Baum-Snow and Ferreira, 2015). We do two things to address
these and to render causal interpretation of our estimates more plausible (Bayer, Fer-
reira, and McMillan, 2007; Kulka, 2019; Zheng, 2022).

First, we drop boundaries in which locations on opposite sides are likely to differ
in access to amenities other than schools. Thus, we exclude boundaries aligned with
a river, creek, park, highway, or borough boundary. Second, in Appendix B, we show
that neither housing characteristics nor urban amenities change sharply at school
district boundaries, which suggests that the identification assumption is plausible in
our context.

Figure 3 presents estimates β̂ for various outcomes. Tables in Appendix B present
coefficients plotted in Figure 3. For each outcome, we start from a simple BDD specifi-
cation (Equation 1). Then we present coefficients from specifications where we control
for various covariates. In each panel, the coefficient from our preferred specification
is in the rightmost.

District school quality increases the quality of schools to which residents
are assigned The top left panel of Figure 3 reports β̂ for the mean score of schools
to which middle-school-applying residents in a Census block are assigned. A one
standard-deviation increase in district school quality increases assigned schools’ test
scores of residents by 0.26 student-level standard-deviation (p-value < 0.01); we con-
trol for the resident’s ethnicity, FRL status, and test score, to absorb differences in
school applications and admissions probabilities explained by applicants’ observable
characteristics. This result implies that school district boundaries determine admis-
sions probabilities to high-achieving schools, which establishes the first stage of the
BDD.

District school quality increases housing prices The top right panel of Fig-
ure 3 reports β̂ for the log sales price of a residential unit. Including this panel, we
plot coefficients from specifications where we sequentially add housing characteris-
tics, neighbor characteristics, and urban amenities for the rest of the panels. Given
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that housing characteristics and urban amenities do not change at a boundary (Ap-
pendix B), we control for those to increase the precision of our estimates. Meanwhile,
we control for neighbor characteristics to account for the fact that households might
have preferences over neighbors’ ethnicity or median income. We interpret the esti-
mate from a model with full controls to describe the effect of district school quality.

A one standard-deviation increase in district school quality increases housing
sales price by 10% (p-value < 0.05). This implies that there is a higher demand for
locations with higher admissions probability to better-performing schools.

We present β̂ for house value and median gross rent from the ACS 5-year es-
timates in Appendix B. Estimates are 5.8% for both house value and median rent,
although the estimate is only significant for median rent (p-value < 0.1). While sold
properties might not be representative of all properties, we prefer sales prices to these
two alternatives because the ACS 5-year estimates are at Census block group level,
which is too coarse to study a change of housing costs at boundaries. In Appendix B,
we explain how we use the distribution of total population and houses across Census
blocks within each block group to weigh Census block groups in obtaining β̂.

District school quality attracts households with middle school applicants
The bottom left panel of Figure 3 reports β̂ for the number of middle school ap-
plicants residing in a Census block. A one standard-deviation increase in district
school quality increases the number of middle-school-applying residents, with β̂ =
0.79 (p-value < 0.01). An average Census block has 3.5 middle-school-applying resi-
dents, and thus this is a 22% increase from the average. This result is robust to con-
trolling for the total number of population in Census Block Group (β̂ = 0.81, p-value
< 0.01) from the ACS 5-year estimate. Thus, we exclude an explanation that Census
blocks with higher district school quality have a greater number of households with
middle school applicants merely because those blocks have more houses. Estimates
are presented in Table B.5

District school quality attracts non-minority households more The two bot-
tom panels of Figure 3 report β̂ for the share of Black and Hispanic applicants among
middle-school-applying residents in a Census block. A one standard-deviation in-
crease in district school quality decreases the share of minority applicants by 6 per-
centage points (p-value < 0.01). An average Census block has 62% Black or Hispanic
residents among middle-school-applying residents, and thus this is a 10% decrease
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from the average.

Figure 3: Estimated Effects of District School Quality on Residential Sorting

Note: The figure depicts the estimates (dots) and 95% confidence intervals (lines) of the coefficients of
district school quality on various outcomes (β in Equation 1). The dependent variable in each panel is as
follows (clockwise): (1) the mean score of the schools middle-school-applying residents in a Census block
are assigned to, (2) the log sales price of a residential unit, (3) the number of middle-school-applying
residents in a Census block, and (4) the share of Black and Hispanic applicants among those residents.
In all panels, we plot the coefficient from a simple BDD specification (Equation 1) and coefficients
from specifications that control for other variables. In the top left panel, we control for middle-school-
applying residents’ ethnicity, FRL status, and test score. In the rest of the panels, we sequentially
add housing characteristics, neighborhood characteristics, and urban amenities. Standard errors are
clustered at school district level. Housing characteristics include the space of the unit, land use of
the tax lot, number of floors, age, renovation status, and storage area of the building, all of which we
interact with a dummy if the property is coop. Neighbor characteristics include % minority, median
household income, % college-or-more-educated, and median commuting time to work at Census block
group. Urban amenities include the number of bus stops, subway stations, laundries, cafes, and crime
incidents of different categories at Census block.

3.2 The Role of Commuting Distance in School Applications

Next, we show that while students apply to geographically proximate schools, the
patterns are heterogeneous by students’ characteristics and by the achievement level
of schools near their residential locations. We run the following linear probability
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model:

100 ∗ 1(Top3)ij = αd`ij + d`ijZiβ + δJi + εij . (2)

1(Top3)ij is an indicator for whether student i lists school j in her top three
choices. j is a school for which student i is eligible. We multiply 1(Top3)ij by 100
to interpret coefficients as percentage point changes. d`ij is the driving distance in
miles between school j and student i’s residential census block `i. Zi is a vector of
student characteristics. α represents the association between distance to a school and
the propensity of students to list the school as their top choice. β shows how that
association changes by students’ characteristics. To account for the fact that the prob-
ability of choosing a specific school as the top choice mechanically decreases when the
number of eligible options increases, we control for the total number of schools for
which i is eligible (Ji). We cluster standard errors at student level.

Table 1: Commuting Distances and the Propensity of Listing as Top 3

(1) (2)

d`ij -2.460 -2.411
(0.013) (0.012)

d`ij × 1(Minority)i 0.262 0.083
(0.011) (0.011)

d`ij ×Quality of the three closest schoolsi -0.286
(0.007)

N 1,745,513 1,745,513
R2 0.062 0.063
Dep. var mean 7.895

Note: The dependent variable is a dummy if student i listed school j as one of
their top three choices, multiplied by 100 for ease of interpretation. Pairs of a stu-
dent and an eligible school within 10 miles from the student’s residential Census
block are included. The fastest driving distance between a school and a Census
block is calculated using Open Route Services. A student is a minority if she is
Black or Hispanic. Column (2) controls for the mean test score of the three clos-
est schools from i’s residential Census block `i. All columns control for the total
number of schools a student is eligible for and the interaction of distance and
student’s standardized test scores. Standard errors in parentheses are clustered
at the student level.

Columns (1) and (2) in Table 1 demonstrate that students are 2.4 percentage
points less likely to rank a school that is 1 mile farther away as their top 3 choices (p-
value < 0.01). Minority students seem to be less responsive to distance in column (1)
(β = 0.262, p-value < 0.01). In column (2), we further control for the mean test score of
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the three closest schools from student i’s residential Census block. Students are even
less likely to apply to schools farther away when nearby schools have higher qual-
ity (column (2), β = −0.286, p-value < 0.01). Importantly, controlling for the quality of
nearby schools reduces the coefficient of the minority dummy by two-thirds (β = 0.082,
p-value < 0.01). This pattern, whereby students from disadvantaged location travel
farther to schools that are higher performing than schools in their residential loca-
tion, coincides with what has been reported in previous studies (Burdick-Will, 2017;
Corcoran, 2018).

Motivated by these patterns, we model households as considering not only com-
muting distances but also other school characteristics. We also allow households to
have heterogeneous commuting costs.13

4 A Model of Location Choice, School Choice, and
Enrollment Decision

We model households’ sequential decisions of residential locations, school applica-
tions, and enrollment decisions. Location choices affect school applications and as-
signments through two channels. First, distances to schools vary by residential loca-
tion, which affects students’ school applications. Second, applicants are ranked based
on location-based priority rules, and thus two students from different locations who
are otherwise similar face different admissions probabilities. Households take these
two channels into account when choosing which location to reside in.

The model is guided by two key parameters. The first is access-to-school prefer-
ence αu. It is the weight households put on access-to-school utility that captures both
commuting distances and admissions probability, relative to other location amenities.
It also governs the extent to which counterfactual location-based priority rules would
induce households to resort across locations. The second is commuting cost βd, which
affects to what extent students apply to schools that are farther away given their
location choices as opposed to applying to only nearby schools. Together with αu, it
shapes the spatial distribution of households; for example, with infinite commuting
costs and strictly positive access-to-school utility, households would choose locations
closer to the schools they would apply to.

13This pattern is not explained by the difference in the number of schools proximate to their resi-
dential location. Students whose proximate schools are lower achieving have more schools proximate
to their residential location. We present a histogram showing this result in Appendix B.
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Next, we discuss our model in greater detail.

4.1 Household Preference, School Assignment, and Timeline

Household Heterogeneity and Preferences We use “household, applicant," and
“student” interchangeably and model the unitary decision of a household. Household i
is heterogeneous in both observable and unobservable (to the researcher) characteris-
tics, denoted as Zi and γi, respectively. Observable characteristics Zi include students’
race/ethnicity, poverty status (proxied by free and reduced-price lunch eligibility), and
test score prior to their middle school application. Unobserved (discrete) type γi (Heck-
man and Singer, 1984) captures the fact that school characteristics may be valued
differently by observably similar households.

i’s utility from living in location ` and attending school j is

Vi(`; ηi`)︸ ︷︷ ︸
utility from location

+ αu Ui(j, `; εij)︸ ︷︷ ︸
utility from school × location

. (3)

We parameterize each component as follows:

Vi(`; ηi`) = W ′
`︸︷︷︸

location char.

αWi + p`︸︷︷︸
housing cost

αpi + ξ`︸︷︷︸
unobserved amenities

+ ηi`︸︷︷︸
i.i.d. EVT1

, (4)

where αki = αk0 + Z ′i︸︷︷︸
student char.

αkz, for k = p,W .

Ui(j, `; εij) = X ′j︸︷︷︸
school char.

βXi + d`jβ
d
i︸ ︷︷ ︸

commuting cost

+ εij︸︷︷︸
i.i.d. EVT1

, (5)

where βki = βk0 + Z ′i︸︷︷︸
student char.

βkz + γki︸︷︷︸
unobserved type

, for k = d,X .

W` is a vector of location observable characteristics, p` is the housing cost, Zi is the
vector of student observable characteristics, Xj is the vector of school characteristics,
and d`j is the fastest driving distance between location ` and school j.

In addition, ξ` represents unobservable location amenities that are shared across
households. γi = (γXi , γdi ) is the vector of student i’s unobserved tastes over school char-
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acteristics and distance to schools, and ηi`, εij are idiosyncratic preferences shocks
over locations and schools. ηi` and εij are mutually independent and follow i.i.d ex-
treme value type 1 distribution.

i’s utility from living in location ` and attending an outside option ϑ is

Vi(`; ηi`)︸ ︷︷ ︸
utility from location

+ Uϑ
i (ϑ; εiϑ)︸ ︷︷ ︸

utility from outside option

. (6)

We consider two outside options, non-public schools ϑnp and public charter schools
ϑc.14 Non-public schools ϑnp includes private schools, homeschooling, or moving out
of NYC.15 We further allow students to have heterogeneous preferences for outside
options based on their observable characteristics. For example, non-minority students
might assign higher value to non-public schools than their peers. Mathematically,

Ui(ϑ; εiϑ) = βϑi + εiϑ︸︷︷︸
i.i.d. EVT1

(7)

βϑi = βϑ0 + Zi︸︷︷︸
student char.

βϑz , where ϑ = ϑc, ϑnp.

εiϑ follows an i.i.d extreme value type 1 distribution.

School Assignment Next, we briefly discuss how schools rank applicants. As dis-
cussed in Section 2, priority groups are largely determined by students’ residential
location `. The tie-breaker within priority groups is either a lottery or a school-specific
aggregation of students’ pre-middle-school academic measures. We capture programs’
ranking over students with a priority score, cij(`). This is the sum of an integer gij(`)
that corresponds to priority groups and decimal point τij ∈ [0, 1] that corresponds
to tie-breakers.16 Tie-breakers are either school-specific aggregation of students’ aca-
demic measures or random lottery numbers ρ. The higher a student’s cij(`), the higher
her admissions chance.

14Public charter schools are not parts of the centralized school choice system and they have separate
admissions processes.

15Although we observe that a student is not enrolled in a public school in NYC, we do not know which
non-public option a student chooses.

16For a program j with three priority groups, students in the first priority group have gij = 3. The
second and the third priority groups’ students have gij = 2 and 1, respectively. If a student is ineligible
for program j, gij = −∞
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How priority groups are determined is public information. When it comes to school-
specific aggregation of students’ academic measures, we know which inputs a school
uses—such as GPA, statewide test score, and punctuality—and the aggregated scores
among its applicants. However, the exact function that schools use to construct these
measures are unknown. We estimate school-specific linear functions of measures us-
ing a latent model and assume households form expectations (ĉij(`)) in the same way;
details are in Appendix C. Given students’ rank-ordered list and priority scores, the
city assigns students to at most one program using the SPDA algorithm. See Ap-
pendix A for a detailed explanation of the SPDA procedure.

Cutoff for each school c̄j is given as the min{cij : i ∈ Ij}, where Ij is a set of
students admitted to program j if the capacity of j is filled, and −∞ otherwise. We
assume the market is large enough (70,000 students) that an individual student con-
siders the cutoffs as given (Fack, Grenet, and He, 2019; Agarwal and Somaini, 2020;
Calsamiglia, Fu, and Güell, 2020).

Timing Figure 4 summarizes the timeline of the model and households’ informa-
tion at each stage. Households make choices on blue dots. They have full information
on their own observable characteristics (Zi) and those of schools (Xj) and residen-
tial locations (W`, p`), as well as locations’ unobserved amenities (ξ`), throughout all
stages.

Figure 4: Timeline and Information Set

Location (`) School (j) Assignment Enrollment (ϑ)

γi
ηi`

pr(ĉij(`) ≥ c̄j)

εij ji εiϑ

Note: Households make choices on blue dots. They have full information on their own observable char-
acteristics (Zi) and those of schools (Xj) and residential location (W`, p`), as well as the shared neigh-
borhood unobserved amenities (ξ`) throughout all stages. γi is the vector of student i’s unobserved
tastes over school characteristics. ηi`, εij , and εiϑ are idiosyncratic preferences shocks over locations,
schools, and outside options respectively. ji is the assignment result. pr(ĉij(`) ≥ c̄j) is the predicted
admissions probability.

Households know their unobserved tastes over school characteristics (γi) from the
beginning of the location choice stage, so these unobserved preferences influence their
residential choice. This becomes a source of bias in estimating commuting costs if
we estimate school preference without correcting for the selection into locations. For
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example, a household that values school safety more than other observably similar
households would choose locations that assure higher location-based admissions prob-
ability for safer schools. This household would apply to only nearby schools because
it already lives near its safer schools, but a model that does not correct this selection
would mistakenly justify such behavior with a high commuting cost. Together with
unobserved taste, households observe their idiosyncratic preference shocks over loca-
tions (ηi`) and form predictions on admissions probabilities to schools, pr(ĉij(`) ≥ c̄j).17

At the beginning of the school choice stage, student i observes her preference shock
over programs, εij. To sum up, households know know unobserved tastes γi but not
idiosyncratic shock εij when deciding where to live. Once the assignment is realized,
they know the exact assignment result ji. The preference shock over outside options
εiϑ is realized at the enrollment-decision stage to rationalize the fact that 7.74% of
students assigned to their top choice enroll in outside options. εiϑ is either an income
shock that affects households’ affordability for private schools (Calsamiglia, Fu, and
Güell, 2020) or charter school lotteries realized after the application stage is complete.
The idiosyncratic shock εij over assigned school does not change in the enrollment-
decision stage.18

4.2 Household’s Problem

Next, we describe the household’s problem corresponding to the blue dots in Figure 4,
which we solve backward.

Stage 4: Enrollment Residential locations and assignment results are set in pre-
vious stages. Given those, students decide whether to enroll in their assigned school,
or the non-public option, or a public charter school to maximize their utility:

U∗i (`i) ≡ max
{
Ui(ji(`i), `i; εij), Uϑ

i (ϑnp; εiϑ), Uϑ
i (ϑc; εiϑ)

}
, (8)

17The admissions cutoffs c̄j households use at this stage are calculated using observed school appli-
cation, which is a function of students’ preference shocks over programs εij that are realized in the
next period. The large market assumption establishes the internal consistency—i.e., the admissions
cutoffs are determined in the large market, and c̄j are consistent estimators of those.

18An alternative model is such that students draw new shocks on assigned schools at the enrollment
stage and the final shock is a weighted sum of the old and the new shock. However, it is impossible
to tell to what extent the idiosyncratic shock εij is time-invariant, since all other choices from the
application stage are forgone except for ji. That is, this alternative model would generate the same
school application list and enrollment decision. Such model would have been possible if students had
more than two options that are relevant at both the application stage and enrollment stage.
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where ji is the assignment outcome from the assignment stage and `i is the location
chosen in the previous stage.

Stage 3: Assignment Students are passive as their assigned school ji is determined
by their priority score at each program and admissions cutoffs, given their ROLs from
the previous stage. Mathematically,

ji(`i) ≡ f(ROLi(`i)︸ ︷︷ ︸
application list

, cij(`i; ρ)︸ ︷︷ ︸
priority score

, c̄j︸︷︷︸
cutoff vector

) . (9)

Stage 2: Application We assume that students submit an ROL following their true
preference order up to their fallback options. The fallback option is the school a stu-
dent is assigned to when rejected by all programs on her ROL—either pre-designated
zoned school or an undersubscribed school in her school district. The middle school
choice system in NYC uses the Deferred Acceptance algorithm, in which students
can list as many schools as they want, which jointly renders truth-telling—ranking
schools based on one’s true preference order—a weakly dominant strategy (Gale and
Shapley, 1962).

Stage 1: Residential Location Choice Given the solution in the subsequent pe-
riod, household i chooses the location that solves

max
`

Vi(`; ηi`)︸ ︷︷ ︸
utility from location

+ αu Eεij ,ρ,εiϑ
U∗i (`)︸ ︷︷ ︸

expected utility from enrolled school given location

, (10)

where U∗i (`) is the utility from enrolled school (Equation 8). This is is location depen-
dent because locations decide commuting costs and admissions probabilities, and as a
result, which school student i enrolls in. Households form an expectation over U∗i (`),
since they do not know their idiosyncratic preference shocks over schools and outside
options (εij and εiϑ) as well as their lottery number ρi.

4.3 Equilibrium

To define the school assignment equilibrium, we extend the supply and demand char-
acterization of Azevedo and Leshno (2016).
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Definition 4.1. An equilibrium is a pair of decisions {`i,ROLi} for each i and a vector
of admissions cutoffs {c̄j}Jj=1 where

1. Given cutoffs {c̄j}Jj=1 and the first-stage choice `i, {ROLi} is the school application
list based on i’s true preference order up to their fallback option.

2. Given {c̄j}Jj=1, `i solves i’s problem Equation 10 for each i.

3. Admissions cutoffs clear the market; i.e., Sj ≥ Dj({c̄j′}Jj′=1) for each j ∈ J . Sj is
capacity of school j and Dj({c̄j′}Jj′=1) is the aggregate demand for school j given
the cutoffs {c̄j′}Jj′=1.

Aggregate demand for schools can be further simplified by using the fact that
when students are truth-telling, the realized matching is stable—i.e., each student is
matched to her favorite feasible school. Details are in Appendix C.

4.4 Discussion

Truth-telling We consider truth-telling a reasonable assumption in our context.
There are well-known factors that make this assumption less plausible: (1) list-length
restriction (2) limited consideration set (3) application cost. First, there is no list-
length restriction in our setting. In a setting with this restriction (Luflade, 2018; Son,
2020), truth-telling is no longer a weakly dominant strategy when students really
want to be assigned to some school (Haeringer and Klijn, 2009).19 Second, students
are given a customized list of all eligible schools with an average of about 30 schools.
This stands in contrast to settings in which they have to construct a consideration
set out of hundreds of options, where they are unlikely to consider all options in their
choice set when deciding which school to apply to (Ajayi and Sidibe, 2020; Son, 2020).
Third, both monetary and psychological application cost are relatively low. There is
no application fee. Also, they can add one more school to their application list just by
marking the ranking to the customized list that they received.

Even though assuming truth-telling is reasonable in our context, it is still a weakly
dominant strategy (Artemov, Che, and He, 2017; Che, Hahm, and He, 2022). For ex-
ample, “skipping the impossible” yields the same assignment results, and detecting
impossible options is feasible given that each school’s capacity and the number of
previous year’s applicants are public information. Instead of imposing truth-telling

19List-length restrictions were introduced in NYC’s middle school choice in years more recent than
our setting.
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assumption, one can estimate the model based on stability (Fack, Grenet, and He,
2019; Agarwal and Somaini, 2020; Hahm and Park, 2022), which rely on assignment
results rather than ranking strategies, in Appendix D. While imposing a weaker as-
sumption, this estimation strategy loses the precision of estimates by focusing only
on the assignment outcome instead of the full list.

Asymmetry in Utility from Location and School In our model, utility from loca-
tions includes unobserved amenities shared by households but no household-specific
unobserved tastes. Meanwhile, utility from schools includes household-specific unob-
served taste but no unobserved quality shared by households (Equation 4).

These modeling choices are largely driven by the motivation to obtain unbiased
estimates of two key parameters—access-to-school preference αu and commuting cost
βd—while keeping the estimation tractable. Access-to-school preference αu will be bi-
ased if unobserved location amenities are correlated with access-to-school utility.20

Meanwhile, households’ sorting into locations based on household-specific unobserved
school tastes biases commuting cost βd.21

Utility from the Outside Option Utility from the outside option is not a func-
tion of school characteristics because of a lack of data on schools outside the system,
especially non-public options. It can also be a function of location. By abstracting
away from it, our location demand estimates might capture the unequal geographic
distribution of outside schooling options. For example, locations with higher median
household income would have more private schools nearby, and the estimated prefer-
ence over neighbors’ income in Section 5 might capture households’ preference over
geographic proximity to non-public options. We assume the geographical distribution
of outside options does not change under the counterfactual scenario.22

20Moreover, we lack variation to identify household-specific unobserved tastes. For example, Bayer,
McMillan, Murphy, and Timmins (2016) sets up a dynamic location choice model and uses the panel
structure of the data to identify households’ unobserved attachment to a specific location. Or, Barwick,
Li, Waxman, Wu, and Xia (2021) constructs household-specific location choice set by leveraging that
they observe when each household bought the house.

21For example, Allende (2019) and Abdulkadiroğlu, Pathak, Schellenberg, and Walters (2020) esti-
mate unobserved school quality to obtain causal estimates on how much households value peer quality
aside from other school factors such as the building quality.

22See, for example, Dinerstein and Smith (2021) to see how private schools’ entry and exit decisions
can be affected by public school policies.
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5 Estimation Procedure and Results

5.1 Identification of Key Parameters

We discuss the identification of the two key parameters of the model: access-to-school
preference αu and commuting cost βd. We also discuss the identification of price coef-
ficient αp.

The biggest concern regarding credibly identifying access-to-school preference αu

is to distinguish it from preferences on unobserved location amenities (ξ`). To this
end, we use variation from our boundary discontinuity design. Similar to Section 3,
the identification assumption is that the unobserved amenities are as good as random
within a narrow buffer around a boundary. Meanwhile, the access-to-school utility
sharply changes at a boundary, since 70% of schools give eligibility or higher priority
to students from the same school district (Section 2), and there is marked heterogene-
ity in school characteristics across districts. So intuitively, seeing that households are
more likely to live in the side of a district boundary with higher admissions probabil-
ities to schools whose characteristics are more desirable (Section 3) would lead to a
larger value of αu.

To obtain an unbiased estimate of commuting cost βdi , we need to account for the
fact that households choose locations based on their unobserved school demand γi.
When students apply to nearby schools, we need to identify to what extent this is ex-
plained by commuting costs as opposed to households’ residential sorting in order to
be assigned higher priority by the schools they prefer. If residential sorting arises only
from households’ observed characteristics, we can obtain unbiased commuting costs
by controlling for those characteristics in estimating school preference without fully
modeling residential sorting. Thus, previous papers have assumed that idiosyncratic
preference shocks and unobserved tastes over schools are independent of distances
to school conditional on student observable characteristics—i.e., (εij, γi) ⊥ dlij|Zi (e.g.,
Agarwal and Somaini, 2018; Laverde, 2020). By modeling and jointly estimating loca-
tion and school choice, we relax this assumption and allow an individual’s unobserved
type γi to be correlated with distances to schools—i.e., εij ⊥ dlij|Zi.

Moreover, we need to identify unobserved type γi to correct for households’ selec-
tion into locations based on it. Whereas the different applications of two observably
identical students can be explained by either unobserved tastes (γi) or idiosyncratic
preference shock (εij), these two components can be disentangled for two reasons.
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First, unobserved tastes are student-specific but the preference shock is indepen-
dent across schools within each student. We observe students’ full application lists.
To what extent characteristics among the schools on a student’s ROL are correlated
helps to identify the unobserved type separate from the idiosyncratic shock (Bhat,
2000; Berry, Levinsohn, and Pakes, 2004). Second, while households choose residen-
tial locations knowing their unobserved taste, the idiosyncratic shock is realized after
location choice. Among observably similar students, variation across residents of dif-
ferent locations pins down unobserved taste, while variation among residents from
the same location are captured by the idiosyncratic preference shock.23

The final parameter to identify is the price coefficient, αp, since housing cost (p`)
is likely to be correlated with location unobserved amenities (ξ`). We instrument for
housing cost of a location with the land use of other locations that are (1) 2 miles
away from the location (2) but within 3 miles (Bayer, Ferreira, and McMillan, 2007;
Barwick, Li, Waxman, Wu, and Xia, 2021; Davis, Gregory, Hartley, and Tan, 2021).
Given a location, other locations that are far away are unlikely to share its unobserved
amenities (exclusion restriction). However, the land use of other locations that are
near enough to the location could affect its housing cost if people decide where to live
among those locations (relevance restriction).

5.2 Estimation Procedure

Challenge 1: Granularity of Location With over 38,000 Census blocks in NYC,
estimating the model at block level might decrease the precision of estimates by hav-
ing too many parameters relative to the data (Dingel and Tintelnot, 2020).24 But we
still aim to estimate the mean utility of location (δ` = W`α

W0 +p`αp0 +ξ`) to account for
the endogeneity of access-to-school and housing price (Berry, Levinsohn, and Pakes,
1995). To this end, we define neighborhoods—a unit of residential location—by merg-
ing Census blocks.

Two Census blocks are in the same neighborhood if they satisfy the following
criteria. First, they are in the same cluster when we group Census blocks based on
the distance to all schools using k-mean clustering, with k of 1,000. Second, they share
the same location-based admissions probability to all schools. Third, they are either

23In principle, we can even divide unobserved taste into two components: individual-specific and
realized at the location choice stage versus individual-specific and realized at the application stage.

24There are also many Census blocks with no middle-school-applying residents or housing transac-
tion records during the time of the study.
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both within the 0.2-mile buffer of a school district boundary or neither is.

Figure 5: Defined Neighborhoods

Note: We aggregate 38,798 Census blocks into 2,778 neighborhoods using the procedure described in
Subsection 5.2. The darker shaded neighborhoods along school district boundaries (in orange) are those
to which we apply BDD to identify access-to-school preference αu.

With this procedure, we aggregate 38,798 Census blocks into 2,778 neighborhoods.
In comparison, there are 2,165 Census tracts in NYC. Figure 5 shows the map of
neighborhoods defined by this procedure. The darker shaded neighborhoods along
school district boundaries (in orange) are those to which we apply BDD to identify
access-to-school preference αu.

Challenge 2: Computational Burden from Joint Estimation We aim to jointly
estimate all stages of the model to address the selection into locations. Full informa-
tion maximum likelihood (FIML) involves calculating a large Hessian matrix (Train,
2009), which renders the computation infeasible. See Appendix D for details on FIML.

To circumvent the computational burden, we employ the expectation-maximization
algorithm with a sequential maximization step (ESM) proposed by Arcidiacono and
Jones (2003).25 In summary, the idea is to (1) reformulate the full information likeli-
hood function into additive separable terms, each of which represents the likelihood
of each stage; (2) update estimates of each stage; and (3) iterate the procedure until
convergence.

25Dempster, Laird, and Rubin (1977) and Train (2009) show that solving the EM algorithm is iden-
tical to solving maximum likelihood estimation (MLE), and Arcidiacono and Jones (2003) prove the
consistency of estimates with a multi-stage model.
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The expectation function (reformulation) for the household i is a sum of the log
of the likelihood for each stage weighted by the conditional probability of its being
each unobserved type, given the school application and location choice observed in
the data. Then we take the sum across i’s expectation function.

E(p, γ, θ|q̂, γ̂, θ̂) = ΣiΣkq(k|xi; q̂, γ̂, θ̂)logqk (11)

+ ΣiΣkq(k|xi; q̂, γ̂, θ̂)logPLC(xi; θEC , θSC , θLC , γk)

+ ΣiΣkq(k|xi; q̂, γ̂, θ̂)logP SC(xi; θSC , γk)

+ ΣiΣkq(k|xi; q̂, γ̂, θ̂)logPEC(xi; θEC , θSC , γk) .

q(k|xi; q̂, γ̂, θ̂) is the conditional probability of being type k given data xi, calculated
using Bayes’ rule. θLC , θSC , θEC are the set of location, school, and outside option pref-
erence parameters, respectively. γi is the unobserved taste, and qk is the unconditional
probability of each type k. θ = {(θLC , θSC , θEC), {γk, qk}k} is the full set of parameters
to be estimated. PLC , P SC , PEC are the likelihood of location choice, school choice, and
enrollment choice, respectively. Likelihood functions are presented in Appendix D.

Then we update the guess on each element of θ sequentially by maximizing each
line of the expectation function. Starting from an initial guess, we iterate the updating
process until the guess of θ converges. We used squared extrapolation methods (see
Varadhan and Roland, 2008) to make convergence faster. See Appendix D for the
cookbook of the iteration process.

We update θSC , θEC , and γ using maximum likelihood estimation to obtain effi-
cient estimates of γ by exploiting full information in application lists.

Meanwhile, we update θLC using method of moments estimation to deal with the
endogeneity of price and access-to-school utility (Berry, Levinsohn, and Pakes, 1995).
Location preference parameters include those that govern heterogeneous preferences
(αWz, αpz); common preferences (αW0, αp0); and the access-to-school preference αu. To
estimate (αWz, αpz), we match the first-order condition of location choice likelihood
PLC (presented in Appendix D) with respect to αWz and αpz,
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ΣiW`iz
r
i︸ ︷︷ ︸

cov. of W and z in the data

= ΣiΣkq(k|xi; q̂, γ̂, θ̂)Σ`P
LC(`; θ̂SC , θ̂EC , θLC , γ̂k)W`z

r
i︸ ︷︷ ︸

predicted cov. of W and z

, (12)

Σip`iz
r
i︸ ︷︷ ︸

cov. of p and z in the data

= ΣiΣkq(k|xi; q̂, γ̂, θ̂)Σ`P
LC(`; θ̂SC , θ̂EC , θLC , γ̂k)p`zri︸ ︷︷ ︸

predicted cov. of p and z

, (13)

where zr is each element of observed household characteristics Z—e.g., the minority
dummy.

To obtain the remaining parameters (αW0, αp0), αu, we first search the mean utility
of location δ` = W`α

W0 + p`α
p0 + ξ` that satisfies the first-order condition of PLC with

respect to δ`, 26

Σi1(`i = `)︸ ︷︷ ︸
observed share

= ΣiΣkq(k|xi; q̂, γ̂, θ̂)PLC(`; θ̂SC , θ̂EC , θLC , γ̂k)︸ ︷︷ ︸
predicted share

, ∀` . (14)

Finally, we get (αW0, αp0, αu) by targeting the following conditions"

E(ξ`p̂IV` ) = 0 (Price IV)

E(ξ`1(right side of BD)`|BD`,1(` ∈ B(BD`; 0.25mi.)) = 0 . (BDD IV)

where p̂IV` is a vector of other observed location characteristicsW` and price IV. B(BD`; 0.25)
is the buffer around each boundary BD with a radius of 0.25 mile. The procedure con-
sists of the outer loop that searches parameters that satisfy Equation 12, 13, Price IV,
and BDD IV and the inner loop that searches δ` that satisfy Equation 14. We present
price IV regression results in Appendix D.

5.3 Estimation Results

Demand Estimates Estimates in Table 2 have expected signs. Households pre-
fer locations with higher access-to-school utility (EU, 1.419) and lower housing costs.
They prefer schools that are higher achieving and safer. There is homophily (i.e., pref-

26The process is accelerated by Newton’s nonlinear root-finding algorithm. We thank Jean-François
Houde for sharing his code.
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erence for one’s same race and FRL status) in both location and school preferences.

Willingness to pay To better interpret estimates, we calculate households’ will-
ingness to pay (WTP) for school and location characteristics in Table 3. WTP for a
one-unit increase in location characteristics for household i is given by αW

i

αp
i

. WTP for a
one-unit increase in school characteristics of all schools in a school district is the sum
of αu

αpi

∂EUi`

∂Xj
across school js in a school district of location `. This is household WTP

to ensure the increase in characteristics of the assigned school27 and is a function of
location; thus we take the average across locations. We further convert WTPs in mon-
etary terms by multiplying them by $1,366, the mean of median gross monthly rent
at the Census tract from 2014 5-year ACS estimates.

For some characteristics, households uniformly agree on what makes a location or
a school more desirable. Both the 25th and 75th percentiles of households are willing
to pay a positive amount for an increase in the median income of neighbors, mean
test score of schools, and safety of schools.28 For other characteristics, there is marked
heterogeneity in preferences. For an increase in the minority share among neighbors
or school peers, some households are willing to pay a positive amount while others
must be compensated to stay indifferent.29

Next, we present households’ WTP for a reduction in commuting time to school.
Commuting time has been used as the numéraire in previous studies on public-school
choice (Agarwal and Somaini, 2018), and we convert it into the monetary term using
housing cost. A median household is willing to pay $19 (=384/20 days) per school day
to reduce commuting to school by 50 minutes a day.

We view our WTP estimate to capture various challenges that middle school stu-
dents face during school commuting. For example, parents answer a survey by Sattin-
Bajaj and Jennings (2022) that safety on the journey to a school is a main consid-

27 ∂EUi`

∂Xj
can be simplified to βX

i Probij(`)Prob(j ∈ Ji(`; ρi)) where Probij(`) is the probability of j’s
being the most preferred feasible option for student i when she lives in `. Prob(j ∈ Ji(`; ρi)) is the
probability of j being i’s feasible choice when she lives in `.

28WTP for a one-standard-deviation increase in schools’ test score is 11.3%. Ours is slightly higher
than the range reported by previous papers (3%-10%) that study households’ WTP for a test score
increase in one school such as a zoned school or a charter school (Black, 1999; Bayer, Ferreira, and
McMillan, 2007; Zheng, 2022). In contrast, we consider a test score increase for all schools in a district.

29Bayer, McMillan, Murphy, and Timmins (2016) estimate that for a 10-percentage-point increase in
the fraction of White neighbors, an average White family in the San Francisco Bay Area is willing to
pay $2,428 annually in 2000 dollars from their dynamic location choice model, and $1,901 from their
static model. Our estimate for a similar scenario is $1,740. (= 0.7 × 704 × 12 × (0.1/0.34)), with a 0.7
adjustment to 2000 dollars using CPI (source: BLS CPI New York-Newark-Jersey City area)
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Table 2: Demand Estimates

Main Additional Effects
Type1 Type2 Type3 Black/Hisp FRL Low-achieving

Panel A: Neighborhood Demand
log(SalesPrice) -2.039 - - -0.015 -0.048 -0.035

(1.383) (0.283) (0.360) (0.272)
Frac. Black or Hisp. -3.459 - - 3.933 -0.119 0.208

(2.025) (1.727) (1.671) (1.672)
log(Med. HH Income) 2.848 - - -0.161 -1.201 -0.303

(1.991) (1.545) (1.891) (2.141)
Med. Time to Work (hr) 17.676 - - -27.016 13.242 15.394

(359.156) (278.872) (402.963) (474.360)
Med. Time to Work2 (hr) -13.456 - - 17.269 -8.257 -10.207

(247.912) (191.749) (278.871) (323.379)
EU 1.419 - - - - -

(1.276) - - - - -
Panel B: School Demand
Mean test score 0.121 0.256 0.187 0.134 - -0.253

(0.052) (0.074) (0.469) (0.029) - (0.028)
Frac. Black or Hisp. -1.722 -0.501 0.159 1.958 0.117 0.216

(0.612) (1.118) (5.442) (0.417) (0.281) (0.223)
Frac. FRL -0.771 -0.356 1.020 -0.540 0.882 -0.162

(0.865) (1.041) (5.097) (0.429) (0.220) (0.213)
Non-safety -0.059 0.003 0.027 0.018 - -

(0.008) (0.012) (0.057) (0.010) - -
Commuting Cost (mi.) 0.221 1.085 9.136 -0.084 -0.010 -0.046

(0.032) (0.054) (1.757) (0.045) (0.021) (0.014)
Prob. 0.352 0.631 0.017 - - -

(0.127) (0.083) (0.055) - - -
Panel C: Outside Option
Non-public -1.225 - - -0.136 -0.800 -0.200

(0.174) (0.135) (0.125) (0.134)
Public Charter -3.767 - - 1.883 0.173 -0.059

(0.256) (0.207) (0.152) (0.124)

Note: Standard errors in parentheses are calculated from 75 bootstrapped samples. Columns are for students’ hetero-
geneity and rows are for school and neighborhood characteristics. FRL stands for free or reduced-price lunch eligibility.
The fastest driving distance to a school is calculated using the Open Route Service. School non-safety measure is con-
structed by running a principal component analysis on crime incidence of different categories at each school building.
See Appendix D for details.
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Table 3: Willingness to Pay

Std of Var. WTP
p25 median p75

Panel A: Neighborhood Characteristics
Frac. Black or Hisp. 0.341 -704 32 71
log(Med. HH Income) 0.429 303 379 595
Med. Time to Work (min, daily) 11.52 -236 -181 -114
Panel B: School Characteristics
Time to School (min, daily) 51 -752 -384 -171
Mean test score 1.002 89 154 238
Frac. Black or Hisp. 0.28 -355 -25 11
Frac. FRL 0.173 -98 -83 -53
Safety 4.228 94 121 149

Note: The unit of willingness to pay is the mean of median gross monthly rent at
the Census tract from 2014 5-year ACS estimates, $1,366. We use the standard de-
viation of distance to the assigned schools across students. For other school charac-
teristics, we calculate the standard deviation across schools. FRL stands for free or
reduced lunch eligibility. The fastest driving time to school is calculated using the
Open Route Service. School safety is constructed by running a principal component
analysis (PCA) on crime incidence of different categories at each school building.
Appendix D has more details on the PCA result.

eration factor for school application. Such concern of parents arises because many
students commute to schools by themselves by public transportation or on foot. Mid-
dle school students are eligible for school bus service only in their first year if their
schools offer any. Moreover, we calculate from the 2017 National Household Travel
Survey that at least 70% of students in our sample commute to schools without any
adult accompanied.30 Finally, our WTP estimate is high to be interpreted as the for-
gone earning of middle school students. Adult commuters’ value of commuting time is
known to be 50%-70% of their hourly wage (Parry and Small, 2009; Purevjav, 2022),
and the minimum wage in New York in 2015 was $9.

Overestimation of Commuting Cost Commuting cost is overestimated when we
ignore households’ residential sorting. We estimate a different version of the model
without location choice (estimates are presented in Appendix D), and find that com-
muting cost is overestimated by 15% on average (mean βdi is -0.97 in a model with
both location and school choice, and -1.11 with only school choice). Figure 6 describes
what leads the model without endogenous location choice to overestimate commuting

30To be accurate, 70% of middle school students residing in the NY-NJ-PA area, which is the finest
geography available, commute to schools without any adult accompanied.
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cost.

Figure 6: Residential Sorting on γ and the Overestimation of Commuting Cost

(a) Mean Probability of Unobserved Type (b) Location Sorting on Unobserved Type

Note: Panel (a) presents the probability of each unobserved type under each model. Panel (b) shows the
mean probability of residents’ being type 1 across residential locations.

Panel (a) shows probabilities of types (qk) from a model with both location and
school choice compared with those from a model with only school choice. In the lat-
ter, we over-classify students into the high commuting-cost type, since we rationalize
households’ applying to schools nearby as due only to high commuting costs, as op-
posed to households’ residential sorting based on unobserved school taste γi. Panel
(b) plots the mean probability of being type 1 among residents across locations. For
each student i, we calculate the probability of her being type 1 based on how well
her location and school choices can be justified by being type 1 relative to other types
(Bayes’ rule). In the absence of residential sorting based on unobserved type, the mean
probability of being type 1 among residents of a location should be similar across all
locations. In contrast to this, some locations have zero type-1 students while others
have many type-1 students, which implies sorting based on unobserved type.31

Model Fit We simulate choices using our estimates to validate whether our model
can replicate the data patterns. To minimize the idiosyncrasies coming from prefer-
ence shocks and the lottery number, we present the average over 100 simulations.

Figure 7 plots the simulated and observed moments from school and location
31There is also an idiosyncrasy coming from a finite sample. Figure D.4 compares the distribution

from the data and that from a simulation in which we allocate households randomly across locations.
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choice. Moments include the mean observable characteristics of chosen options and
the correlation between students’ characteristics and those of their chosen options.
Unsurprisingly, our targeted moments from location choice are well aligned with the
45-degree line. Meanwhile, even though we do not target school choice moments, and
rather estimate school preference parameters via MLE, our simulated moments of
school choices are close to data moments. Table D.14 presents the numbers plotted in
Figure 7.

Figure 7: Model Fit

(a) Location Choice (b) School Choice (c) Enrollment

Note: We take the average over 100 simulations with draws of η, ε, and the lottery number. Moments
include the mean observable characteristics of chosen options and the correlation between students’
characteristics and those of their chosen options. In panel (b), we focus on students’ first choice. In
panel (c), we present the fraction of students who choose each outside option.

6 Source of School Segregation

In this section, we use model estimates to identify the sources of school segregation.
Even with an extensive school choice system in place, NYC middle schools are highly
segregated.32 There are also large differences in academic achievement across these
segregated schools. In the 2014-15 academic year, classmates of minority students
(in their assigned schools) had standardized test scores than were one standard-
deviation lower than the classmates of non-minority students. In this section, we
explore which components of the model explain the cross-racial gap in the test scores
of students’ peers in their assigned schools

32In terms of racial composition, 77% of Black and Hispanic students attend schools that enroll less
than 10% of White students, while only 11% of White students and 43% of Asian students attend
schools that enroll less than 10% of White students (Cohen, 2021).
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In Table 4, we investigate to what extent the cross-racial gap in test scores is
explained by the following components of the model: access-to-school preference, het-
erogeneity in preference over location characteristics, and that over school charac-
teristics. Column (1) in Table 4 presents the cross-racial gap under the status quo;
minority students attend schools with lower test scores by one student-level standard
deviation than their non-minority peers.

Table 4: cross-racial Gap in Coassigned Peers’ Test Score

(1) (2) (3)

Status Quo
Racial Gap

Racial Gap Explained by:
Access-to-school Heterogeneous Preference over:

Preference Other Location Characteristics School Characteristics

-1.048 -0.312 -0.466 -0.182
Note: The cross-racial gap is the difference in test scores of the schools students attend for minority
and non-minority students. We shut down each channel for one household one at a time. In column

(2), we impose αu = 0. In column (3), we impose αW Z = αpZ = 0, In column (4), we impose
βXZ = βdZ = 0.

Next, columns (2) and (3) demonstrate that residential sorting is the main driver
of school segregation, which is in line with past studies (Laverde, 2020; Monarrez,
2020). We further break down what part of the gap is explained by residential sorting
based on access to school (column (2)) versus sorting based on other location ameni-
ties (column (3)). Column (2) demonstrates that 31% of the gap observed in the data
is explained by residential sorting based on access-to-school utility. In this scenario,
we shut down residential sorting based on access to school (αu = 0). Thus, households
choose locations as if they do not know that the locations chosen determine commut-
ing costs and location-based admissions probabilities to schools. The cross-racial gap
in this scenario comes from households’ heterogeneous preferences over location char-
acteristics other than access to school and those over school characteristics.

In columns (3) and (4), we investigate the role of preference heterogeneity. Column
(3) shows that households’ heterogeneous location preferences play a key role in gen-
erating school sorting. We shut down heterogeneous preferences over location char-
acteristics and price by setting αWZ = αpZ = 0; thus residential sorting is only based
on access to school. This scenario explains 46% of the gap.33 In column (4), we shut
down heterogeneous preferences over school characteristics by setting βXZ = βdZ = 0,
so that households choose locations and schools as if they have perfect consensus over

33This largely comes from heterogeneous preferences over location characteristics rather than price.
Shutting down only the heterogeneous preference over housing costs reduces the gap by only 0.009.
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what makes a school desirable, even though they disagree on what makes a location
desirable. This explains 18% of the cross-racial gap.

7 Citywide Access to Highest-achieving Schools

NYC middle schools are intensely segregated (Cohen, 2021; Idoux, 2022), and many
believe that location-based priorities are the main cause. The city has long acknowl-
edged this issue and proposed plans to relax location-based priorities, many of which
have triggered heated debate among parents, students, and educators.34

Figure 8: District 2 Characteristics

(a) Location of District 2

(1) (2)
District 2 Others

Panel A: School Characteristics
Mean z-score 1.124 -0.155
Safety -0.087 -1.145
Share Minority 0.320 0.723
N of Schools 24 646
Panel B: Neighborhood Housing Price
Unit Price (1K) 2,606 464
N of Neighborhoods 81 2,057

(b) District 2 Characteristics

Note: District 2 is the shaded area in the figure. School score is the mean of z-scores among enrolled
students from the NYS standardized Math and Language test. Housing price is the mean price of res-
idential units sold in 2013-14 located in each school district. Safety is a composite of crime incidences
of different categories at the school building. Minorities include Black and Hispanic.

We evaluate a scenario in which we introduce purely lottery-based admissions
to schools in School District 2. The district is located in lower Manhattan and has
been at the center of ongoing policy debate regarding whether to retain location-based
admissions rules.35 In District 2, the average housing cost is about six times higher

34For example, a plan to scrap all location-based priorities for high schools was canceled due to
pushbacks from parents (Russo, Barbara , Zoned High School Options for NYC Students Will Remain
in Place, NY Metro Parents, December 14 2021). Meanwhile, smaller plans have been implemented;
For example, starting in the 2019-2020 academic year, Bronx middle schools have been open to all
students in the Bronx (Zingmond, Laura, Bronx Middle School Best Tets, InsideSchools, October 20
2020).

35Shapiro, Eliza, N.Y.C. to Change Many Selective Schools to Address Segregation, the New York
Times, December 18, 2020

34
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than other districts, and the mean test score for its schools is more than 1.2 standard
deviations higher than those in other districts (Figure 8).

We compare the status quo, in which we simulate households’ location and school
choices under the current admissions rules, with the following scenarios in which
we scrap all admissions criteria—both location-based priority rules and academic
screening—for schools in District 2.

1. OnlySC + No Opt-out: Residential locations under status quo are fixed. We
report the characteristics of the schools students are assigned to.

2. LCSC + No Opt-out: Households reoptimize residential locations. We report
the characteristics of the schools students are assigned to.

3. OnlySC + With Opt-out: Residential locations under status quo are fixed. We
report the characteristics of the schools students are enrolled in, excluding those
who opt out.

4. LCSC + With Opt-out: Households reoptimize residential locations. We report
the characteristics of the schools students are enrolled in, excluding those who
opt out.

We solve the new equilibrium admissions cutoffs under the policy to address over-
subscription to popular schools, especially District 2 schools. The main outcome of
interest is the cross-racial gap in the characteristics of coassigned or coenrolled school
peers, which we interpret as the measure of inequity or school segregation. In With
Opt-out cases, we calculate the mean characteristics of students who enroll in each
school, excluding those who choose outside options.

We predict the effects of a policy that targets only one cohort of middle school
applicants. Thus, we assume that the housing market can absorb changes in the de-
mand of households with middle school applicants, who account for only 3% of the
population. We also assume that school characteristics are invariant under a new
policy. Furthermore, we compare the distribution of households across schools and
residential locations in a steady state, since we do not model moving costs.

Cross-racial Gap in Peer Characteristics Figure 9 shows the gap in coassigned
or coenrolled peers’ test scores between minority and non-minority students in each
scenario. While the reform narrows the cross-racial gap in peer test scores, house-
holds’ location choices dampen such effect. The y-axis in panel (a) is the cross-racial
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difference school peers’ standardized test scores. The policy closes the cross-racial
gap in coassigned peers’ test scores from 1.07 to 0.99, thus approximately 7%, if
households’ residential locations were fixed (No Opt-out, OnlySC).36 However, when
households reshuffle across locations, the effect reduces to 3.3% (No Opt-out, LCSC).
The cross-racial gap in assigned schools (No Opt-out) is always smaller than that in
enrolled schools (With Opt-out). But the effects of the policy and households’ en-
dogenous location choices on the cross-racial gap in enrolled schools are similar to
those on the cross-racial gap in assigned schools. In panel (b), we present the mean
of coenrolled peers’ test scores by minority and non-minority students. It shows that
the policy closes the cross-racial gap both because non-minority students enroll with
lower-achieving peers and minority students enroll with higher-achieving peers.

Figure 9: Cross-racial Gap in School Characteristics

(a) Gap in Peers’ Test Score (1 std) (b) Mean of Peers’ Test Score (1 std)

Note: Panel (a) shows the difference in mean test scores of coassigned/coenrolled peers between
Black/Hispanic and other students. Panel (b) shows the mean test score of coenrolled peers for each
group separately. We use z-scores from the NYS standardized Math and Language test.

Location Choice Patterns Next, we delve into households’ location choices to un-
derstand how those dampen the equity impact of the policy. The key is that locations
decide on commuting costs as well as location-based priorities, which together de-
termine access-to-school utility of locations. Under the status quo, households have
positive admission chances to District 2 schools only when they reside in District 2.
Hence, utility from access to District 2 schools differs only by whether a location is ei-
ther within or outside the district. On the other hand, the policy equalizes admissions

36Zooming in District 2 schools, the cross-racial gap reduces from 0.35 standard deviation to 0.15
standard deviation, thus the gap reduces by 57% among students who are assigned to District 2 schools.
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probability to District 2 schools across locations. Hence, locations differ in utility from
access to District 2 schools by their proximity to District 2. Standing in contrast to the
status quo, locations outside District 2 have different levels of utility from access to
District 2 schools from one another.

These changes in access-to-school utility result in a different reoptimization in
location choice patterns among households who live in District 2 under the status quo
(=D2 residents) and others (=Non-D2 residents). We first present the location choice
patterns of these two groups in a scenario in which we introduce purely lottery-based
admissions to District 2 schools to one household at a time. In this scenario of one
household at a time, a given household does not expect other households to modify
their behavior in response to the policy change.

Figure 10: Location Choice Patterns

(a) Non-D2 Residents (b) D2 Residents

Note: Panel (a) illustrates the location choices of Non-D2 residents, and (b) of D2 residents. The x-
axis is the average distance to schools in District 2 from locations. The y-axis is the residualized log
sales price. Each dot shows the median characteristics of locations chosen by Non-D2 residents and
D2 residents who change locations under the policy, respectively. In each panel, we plot location choice
patterns when we grant citywide access to District 2 schools to one household at a time and when we
grant citywide access to all households. For the latter, we solve equilibrium admissions cutoffs.

In Figure 10, the y-axis is the demeaned log of housing price and the x-axis is
the average distance to schools in District 2 from each location. Each dot describes
the mean characteristics of locations chosen by Non-D2 residents (panel (a)) and D2
residents (panel (b)).

In the one household at a time scenario, Non-D2 residents relocate closer to Dis-
trict 2 at the expense of higher housing costs (panel (a)). While the policy makes them
eligible to apply to and enroll in District 2 schools, such an option is not attractive
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when they stay in their baseline locations due to the high commuting cost to District
2 schools. Meanwhile, D2 residents choose locations with lower housing costs, but far-
ther from District 2 schools (panel (b)). Purely lottery-based admissions make it no
longer necessary to live in District 2 to ensure positive admissions probabilities to
District 2 schools.

In equilibrium, the location choice behaviors of Non-D2 residents are largely muted,
while those of D2 residents are reinforced. This is because citywide access to District
2 schools induces applicants from a broader area, and thus the admissions chances
to District 2 schools are lower from each household’s point of view. This makes choos-
ing locations nearer to District 2 by Non-D2 residents less attractive and choosing
locations farther from District 2 by D2 residents more attractive.

Connection between Location Choice and Peer Characteristics Table 5 re-
veals the link between households’ location choice and the school desegregation ef-
fect of the policy. Non-D2 residents’ spatial reshuffling narrows the cross-racial gap
in school characteristics. For example, by relocating, minority Non-D2 residents are
assigned to schools with a 13.7-percentage-point lower minority share. This largely
comes from their choosing locations nearer to District 2 schools and more actively
applying to and enrolling in those schools.

Table 5: From Location Choice To School Assignment

(1) (2) (3) (4)
Non-D2 Resident D2 Resident

Non-Minority Minority Non-Minority Minority
Share 33.53% 62.81% 2.72% 0.94%

Panel A: Location Choice when Granting Citywide Access to One HH at a Time
Change Location under New Policy? 0.220 0.176 0.592 0.511
Conditional on Changing Location:

∆ Frac. Minority of Assigned School 0.107 -0.137 -0.150 -0.085
∆ Mean Score of Assigned School -0.204 0.181 0.273 0.095
∆ Frac. Minority of Neighborhood 0.047 -0.216 0.147 0.344

Panel B: Location Choice in Equilibrium
Change Location under New Policy? 0.136 0.092 0.974 0.936
Conditional on Changing Location:

∆ Frac. Minority of Assigned School 0.022 -0.048 -0.186 -0.023
∆ Mean Score of Assigned School -0.211 0.030 0.281 -0.099
∆ Frac. Minority of Neighborhood 0.004 -0.042 0.130 0.416

Note: Minority includes Black or Hispanic. D2 residents are those who reside in one of the locations in District 2
under the status quo. Each column shows the mean of variables for each group.

The location choice patterns of D2 residents stand in contrast to those of Non-
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D2 residents; their spatial reshuffling dampens the equity impact of the policy. They
seek locations that come with a secured seat in higher-achieving and lower-minority
schools, and the purely lottery-based admissions to District 2 schools make locations
within District 2 less attractive. Instead, they choose locations where location-based
admissions are kept in place. By doing so, they are assigned to schools with a 15
percentage point lower minority share.

Previously, we have shown while relocation motives of Non-D2 residents are muted
in equilibrium those of D2 residents are reinforced (Figure 10). Then, Table 5 shows
relocation of Non-D2 residents amplifies the equity impact of the policy, while that
of D2 residents dampens the impact. Combined together, endogenous location choices
dampen the effect of the policy on the cross-racial test score gap, as depicted in Fig-
ure 9.

Commuting Distance to School and Welfare Another widespread concern about
relaxing the importance of location-based admissions priority is that students would
have to commute longer distances. In Table 6, we present average commuting dis-
tances to schools under each scenario by minority and non-minority students. We also
present the change in welfare, which is a number that summarizes various changes
in outcome induced by the counterfactual policy.37

Table 6: Effect on Commuting Distance and Welfare

(1) (2) (4) (5) (6) (7) (8) (9)
Distance to school ∆ Welfare (% Housing Cost)

Non-Minority Minority Non-Minority Minority Overall
Mean Mean Mean Mean Mean p50 Sum Loss Sum Gain

Baseline 1.450 1.595 - - - - - -
OnlySC 1.728 1.645 -0.074 -0.006 -0.030 0.012 894.620 591.450
LCSC 1.738 1.769 0.005 0.045 0.031 0.029 264.270 572.680

Note: Minority includes Black or Hispanic. D2 residents are those who reside in one of the locations in District 2 under
the status quo. The fastest driving distance between a school and a Census block is calculated using Open Route Services.
Welfare is measured by exante utility (Equation 10 at the chosen location), which we we convert into log housing cost. We
present the difference in welfare under the policy relative to the baseline scenario.

Commuting distances increase for both minority and non-minority students, so
37While the welfare measure is a good summary of various changes, we might want to use caution in

interpreting this. This is because our demand estimates might not represent households’ true prefer-
ences, even though they capture how households make location, school, and enrollment choices. Former
studies have documented various types of friction in location and school choices such as limited infor-
mation, limited attention, and even discrimination by landlords or schools (Christensen and Timmins,
2018; Luflade, 2018; Allende, Gallego, and Neilson, 2019; Son, 2020; Christensen, Sarmiento-Barbieri,
and Timmins, 2020; Ferreira and Wong, 2020).
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the gap is decided by which group experiences a larger increase. While the policy
narrows the cross-racial gap in commuting distance under OnlySC, households’ en-
dogenous location choice partially undoes this effect (LCSC).

Next, we calculate the change in welfare, which we measure with the ex-ante
utility (Equation 10) at each household’s optimal location. We convert the utility into
percentage housing cost for ease of interpretation. Since we restrict households from
reoptimizing locations, OnlySC mechanically gives lower welfare in comparison to
the other two scenarios.

Under OnlySC, both minority and non-minority students experience a decrease
in welfare on average. This comes from a large decrease in welfare among D2 resi-
dents, who cause the distribution of welfare change to skewed to the left. Indeed, a
median household experiences an increase in welfare by 1.2% of housing cost. The
sum of welfare losses is greater than the sum of gains by 300% of housing cost. This
suggests while the policy might be approved by the voting among these households,
it might face harder pushback from households who lose.

In the long run, where households adjust their locations (LCSC), both the average
and the median household experience welfare gain, by 3.1% and 2.9%, respectively.
The benefit is largely concentrated among minority students (a 4.5% increase), who
obtain eligibility to District 2 schools while living in affordable locations. We consider
this welfare gain an upper bound given that we assume away from moving cost.

Other Margins The counterfactual policy has effects that go beyond changing the
cross-racial test score gap, which we briefly discuss here. First, residential segrega-
tion, which we measure with an entropy-based segregation measure (Appendix E)
decreases by 1.5% by race and 10% by income. Second, the policy increases the mean
score of peers even among the lowest-performing minority students, an effect that is
also dampened by households’ location choices. There is a 6.5% increase in coassigned
peers’ test scores in OnlySC and a smaller effect (4% increase) in LCSC.

Other Policy Plans Next, we discuss the impact of another plan to introduce purely-
lottery based admissions to District 26 schools. District 26 is located in upper Queens
and features the highest mean test score of schools. The average housing unit price
was $614,000, which is about a quarter of the housing price in District 2.

Figure 11 presents the characteristics of District 26, and how the cross-racial gap
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Figure 11: Lottery-based Admissions to District 26 Schools

(a) Location of District 26 (b) Gap in Peers’ Test Score (1 std)

Note: Panel (a) shows the location of District 26. Panel (b) shows the difference in mean test scores
of coassigned/coenrolled peers between Black/Hispanic and other students. We use z-scores from the
NYS standardized Math and Language test. Under D2, we introduce purely-lottery based admissions
to schools in school District 2. Under D26, we target District 26.

changes across scenarios. First, whether and how households’ endogenous location
choices change the equity impact of the policy varies across policies. Focusing on
No Opt-out scenarios, while endogenous location choices dampen the effect of the
lottery-based admissions to District 2 schools by half, it amplifies the effect of the pol-
icy targeting District 26. This is because, in the latter scenario, minority households’
endogenous location choice responses to shorten commuting distances to District 26
schools dominate non-minority households’ location choices to get away from the pol-
icy. The lower housing cost of District 26 relative to District 2 is the key reason.

Second, the comparison across policies changes depending on if we consider house-
holds’ endogenous location choice or not. Focusing on No Opt-out scenarios, while
targeting District 2 schools seems more effective in reducing the cross-racial gap when
we take residential locations as given, households’ endogenous location choices in re-
sponse make targeting District 26 more effective.

Lastly, households substitute between opting out to outside schooling options and
reoptimizing their residential locations. While opt-out plays a minor role when we tar-
get District 2 schools, its role is more pronounced when we target District 26 schools.
This is because households who live in District 26 cannot afford all other school dis-
tricts as District 2 do. Ｔhus, they take advantage of outside options to enroll their
kids in a more preferable school when they lose the advantage in admissions changes
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to District 26 schools.

We also present results when we scrap location-based admissions to District 2
schools but with academic screening in place in Figure E.5. The policy does not close
the cross-racial gap in school peers’ test scores when households’ residential locations
are fixed. Instead, households’ spatial reshuffling rather widens the gap by 2.6%. This
is because non-minority, higher-achieving students who reside outside of District 2
are largely motivated to move locations nearby District 2, which pushes minority
students in District 2 out to schools with a higher proportion of minority peers.

8 Conclusion

Increasingly more school districts have adopted centralized school choice systems in
the hope that they can break the tie between spatial disparities and educational dis-
parities. Whether they can achieve these goals, however, crucially depends on the
extent to which students are willing to take advantage of school choice options as
well as how households respond to the policy by (1) reshuffling across locations and
(2) opt-out to other schooling options.

This paper develops a unified framework of households’ residential location choice
and school choice under a centralized school choice system. By doing so, we extend
empirical school choice literature that has studied many factors for students’ school
applications and assignments but has given little attention to endogenous residential
location choices. Residential locations determine location-based admissions probabil-
ities and commuting distances to schools, which motivates households to choose loca-
tions by considering such ties. Our framework captures this as well as the possibility
of opting out to outside schooling options. Rich heterogeneity in households’ observed
and unobserved preferences over various school and location characteristics gener-
ates sorting into locations and schools. We map the framework to New York City’s
middle school choice context, which is the largest unified district with a centralized
school choice system.

Our policy analysis shows how a radical school desegregation effort might have
a minimal effect, largely because of households’ choosing locations that can undo the
policy. The policy grants citywide access to the school district that covers lower- and
mid-Manhattan. We find that households’ spatial reshuffling dampens the policy ef-
fect by half. Some minority households choose locations from which the commute to
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top district schools is easier, which amplifies the desegregation effect. However, other
non-minority households choose locations that come with secured seats in higher-
achieving schools outside of the affected district, which undoes the effect of the policy.

Several lines of inquiry are left for future work. First, such work might quantify
the complementary effect between school desegregation policies and housing mar-
ket policies. We find that 45% of school segregation is explained by households’ het-
erogeneous preference over location characteristics other than price and access to
school. Recent evidence shows that such heterogeneity stems from information fric-
tions (Ellen, Horn, and Schwartz, 2016; Ferreira and Wong, 2020) or housing market
discrimination (Christensen and Timmins, 2018), which suggests that policy inter-
ventions can change how households choose locations. Second, although we take the
location of schools as given in the paper, future work can consider where to open a
new school or how to allocate resources to schools in different locations. Such work in-
forms policymakers’ ongoing efforts to design school choice systems that could benefit
a larger number of students.
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A Details of NYC School Choice Process

A.1 Student-Proposing Deferred Acceptance Algorithm

In detail, DA works as follows (Gale and Shapley, 1962; Abdulkadiroğlu, Pathak, and
Roth, 2005):

• Step 1
Each student proposes to her first choice. Each program tentatively assigns
seats to its proposers one at a time, following their priority order. The student is
rejected if no seats are available at the time of consideration.

• Step k ≥ 2
Each student who was rejected in the previous step proposes to her next best
choice. Each program considers the students it has tentatively assigned together
with its new proposers and tentatively assigns its seats to these students one at
a time following the program’s priority order. The student is rejected if no seats
are available when she is considered.

• The algorithm terminates either when there are no new proposals or equally
when all rejected students have exhausted their preference lists.

DA produces the student-optimal stable matching and is strategy-proof i.e., truth-
telling is a weakly dominant strategy for students.

A.2 NYC School Admission Methods

Middle school programs use a variety of admission methods—Unscreened, Limited
Unscreened, Screened, Screened: Language, Zoned and Talent Test. Unscreened pro-
grams admit students by a random lottery number, and Limited Unscreened pro-
grams use rules that give priority to those who attend information sessions or open
houses. Screened programs as well as Screened: Language programs select students
by program-specific measures such as elementary school GPA, statewide test scores,
punctuality and interviews. Zoned programs guarantee admissions or give priority to
students who reside in the school’s zone, and Talent Test programs use auditions.
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A.3 The Timeline of Admission Process

The timeline of the admission process is as follows (Corcoran and Levin (2011), Di-
rectory of NYC Public High Schools). By December, students are required to submit
their ROLs. By March, DA algorithms are run and determine students’ assignments.
Students who accept their offer finalize, and if a student rejects an offer, then she
goes to the next round. This describes the main round of the entire system. A major-
ity of students finalize in the main round (about 90% each year). Students who are
not assigned in the main round or rejected the assignment go to the Supplementary
round which is similarly organized as the main round and includes programs that
did not fill up their capacities in the main round, or programs that are newly opened.
Finally, there is an administrative round in which students who are not assigned a
school even after the second round are administratively assigned to a school.

A.4 Example of ROL

Figure A.1: Example of Customized List and Rank-Ordered List

Source: NYC DOE Middle School Directory 2014-15

B Supplementary Materials for Section 3

B.1 Cleaning Procedure of DOF Annualized Selling Record

First, we drop non-residential properties such as industrial buildings, commercial
buildings, and vacant land, based on both the tax class and building class. Then we
merge the selling record with the Primary Land Use Tax Lot Output (PLUTO) to
recover the exact location of each sold property.38 Lastly, we exclude transactions that

38Two data sets are merged based on the identifiable tax lot number. One complication is in merging
condos. The selling record has a unique id for each unit, while PLUTO for each condo. We use the
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are unlikely at arm’s-length. We drop transactions of zero price that include transfers
within a family. Also, we drop records of significantly low prices relative to other
properties of similar characteristics. Specifically, we run a hedonic pricing model that
includes tax class, assessment value, the interaction of the two, calendar time FE at
each borough, month FE by borough, building type, land area, building area, total
unit, odd shape, age, age square, garage area, the year of alteration, and commercial
area (R square = 0.67). Then we drop observations of the predicted residual is less
than 1 percentile. We run the regression separately for coops. Following Schwartz,
Voicu, and Horn (2014), we lag housing cost by one year to take into account that
there could be some time lag for school quality to be capitalized in the housing cost.

B.2 Housing Cost and Structure in ACS 5-year Estimates

While ACS 5-year estimates capture the price and characteristics of representative
housings, the biggest limitation is that each observation is at the Census block group
level, which could be too coarse to capture the change within a narrow bandwidth
around the boundary. 1,944 of 7,506 Census block groups whose centroid is within
0.2 miles from a school district boundary overlay across a school district boundary.39

Thus, the distance from the centroid of a Census block group to the closest boundary
is a crude measure of proximity to the boundary.

Table B.1: Example of Census Block Groups

Census Block Group A: Block A-1 Block A-2
Distance to Boundary (mi.) 0.15 0.28
The Number of Occupied Units 30 60

Census Block Group B: Block B-1 Block B-2
Distance to Boundary (mi.) 0.15 0.28
The Number of Occupied Units 60 30

Note: Consider two Census Block Groups A and B with the same
distance from their centroids to the nearest boundaries.

Therefore, we further exploit the variation of population density across Census
blocks within a block group. Table B.1 illustrates two exemplary cases. Consider two
census block groups A and B whose distances from their centroid to the closest bound-
aries are the same. Census block group A consists of two Census blocks, one of which
is 0.15 miles away from the boundary and the other 0.28 miles away. Note that the

Department of City Planning Property Address Directory that lists unit ids to a matching condo id.
39On the contrary, only 489 out of 38,498 Census blocks overlay across a boundary.
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two Census blocks differ in population density. Out of 90 occupied units in the block
group, two-thirds are living in A-2. Census block group B has the opposite pattern.

To consider such differences in density, we weigh Census block groups with the
percent of occupied units in Census blocks within 0.25 miles from the closest boundary
when running Equation 1. In the example, Census block group A is given a weight of
0.33, while B has a weight of 0.66. We present the estimated effects of district school
quality in Table B.8.

B.3 Evidence Supporting the Identification Assumption of BDD

The identification assumption of a boundary discontinuity design is that unobserved
location amenities are as good as random within a narrow buffer around a boundary.
While we cannot check this assumption directly, we present that other observed loca-
tion characteristics are continuous in geography, which suggests that the assumption
is plausible in this context.

Table B.9 reports estimates β̂ (Equation 1) for various housing characteristics
and urban amenities. β̂s for most of the variables are not statistically significant. One
exception is that sold properties located within a school district with higher school
quality are more likely to have been renovated (p-value < 0.05). Thus, we use resid-
ualized prices when estimating the model to absorb variations coming from housing
characteristics and urban amenities, including the renovation status.

While each variable is not the main driver of sharp change in sales price at bound-
aries (Figure 3 and Table B.4), a set of variables might. Table B.10 checks this further.
First, we run a hedonic regression of log sales prices on various housing characteris-
tics and urban amenities using transaction records within a 0.25-mile buffer around
boundaries. Then we sum variables using coefficients from the hedonic regression,
which capture the extent to which each variable explains the variation in sales prices.
Finally, we run the BDD regression (Equation 1) using the predicted prices as depen-
dent variables and check if estimates β̂ are significant.

Columns (1)-(2) of Table B.10 describe that even a very extensive set of hous-
ing characteristics and urban amenities does not explain the sharp change in sales
prices at boundaries—i.e., change in school quality is the main driver. Meanwhile, the
estimate β̂ is marginally significant (p-value < 0.1) when we include neighbors’ com-
position (column (3)), which captures households’ residential sorting at boundaries as
well as their preference over neighbors’ composition.

55



B.4 Supplementary Tables
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Table B.2: Summary Statistics: All vs. Sample for BDD

(1) (2) (3) (4)
All < 0.25-mile Buffer

Variables mean std mean std

Panel A: Student Characteristics
Asian 0.185 0.388 0.162 0.368
Black 0.295 0.456 0.333 0.471
Hispanic 0.380 0.485 0.407 0.491
White 0.125 0.331 0.085 0.279
FRL 0.736 0.441 0.783 0.413
Standardized English Score 0.028 1.009 -0.077 0.997
Standardized Math Score 0.172 0.979 0.074 0.963
N 57,593 18,761
Panel B: Sold Properties’ Characteristics

Unit Price ($1000) 802.8 2,063 707.9 1,496
Age 70.88 32.68 80.71 97.16
Number of Floors 7.150 9.083 6.493 8.105
Coopa 0.299 0.458 0.287 0.452
Manhattan 0.245 0.430 0.170 0.376
Bronx 0.079 0.270 0.088 0.283
Brooklyn 0.263 0.440 0.441 0.497
Queens 0.319 0.466 0.300 0.458
Staten Island 0.0934 0.291 0 0
N 106,040 23,836
Panel C: Census Block Group Characteristics

Median Rent 1,404 503.4 1,255 501.5
Median Value ($1000) 636.7 355.9 612.9 331.1
Median Age 70.83 13.45 72.67 13.08
% College and Higher Degree 0.352 0.237 0.298 0.229
% Minority 0.272 0.316 0.334 0.309
N 4,828 609

Note: Source of each data set is NYC Department of Education, NYC Department
of Finance Selling Record, and ACS 5-year estimates. All from 2013 to 2017.

aWe control for properties’ co-op status in our analyses. Coops take up a large proportion of the
NYC housing market (35% of sold properties, 50% of the housing stock) with two unique features.
First, they are more common in Manhattan compared to other boroughs, and second, are cheaper to
buy but come with high monthly maintenance fees. (Susan Stellin, Co-op vs. Condo: The Differences
Are Narrowing, The New York Times, Oct. 5, 2012) Ignoring the composition of co-op and other housing
types understate housing cost in Manhattan because the Sales files cover only sold price.
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Table B.3: Effects of District School Quality on Assigned Schools’ Quality

(1) (2) (3) (4)
Bandwidth < 0.25 mile < 0.2 mile
Boundary FEs Yes Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes Yes
Student Characteristics No Yes No Yes

District School Quality 0.360 0.270 0.324 0.256
(0.074) (0.053) (0.072) (0.054)

N 16576 15809 13261 12657
R2 0.249 0.394 0.245 0.389
ȳ -0.078 -0.055 -0.092 -0.068
std(y) 0.800 0.779 0.796 0.773

Note: The dependent variable is the mean score of the schools middle-school-applying
residents in a Census block are assigned to. Sample of 5th-grade students in aca-
demic year 2014-15 living in Census blocks within a buffer from the closest school
district boundary. District school quality is measured by the mean NYS standardized
test score of students enrolled in middle schools (previous cohorts) in the district. We
use the 0.25-mile buffer in columns (1)-(2) and the 0.2-mile buffer in columns (3)-(4).
Standard errors in parentheses are clustered at school district level. The local cubic
control of distance differs at the opposite side of boundaries.
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Table B.4: Effects of District School Quality on Housing Sales Price

(1) (2) (3) (4)
Boundary FEs Yes Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes Yes
Housing Characteristics No Yes Yes Yes
Neighborhood Characteristics No No Yes Yes
Urban Amenities No No No Yes

Panel A: 0.25-mile Buffer
District School Quality 0.181 0.204 0.101 0.102

(0.061) (0.044) (0.040) (0.040)
N 23786 23786 23786 23786
R2 0.409 0.489 0.505 0.505
ȳ 12.88
std(y) 1.112
Panel B: 0.2-mile Buffer

District School Quality 0.108 0.150 0.073 0.073
(0.068) (0.049) (0.045) (0.045)

N 19057 19057 19057 19057
R2 0.401 0.480 0.493 0.494
ȳ 12.84
std(y) 1.086

Note: The dependent variable is the log sales price of a residential unit. Sample of
residential units sold within a bandwidth from the closest school district boundary.
District school quality is measured by the mean NYS standardized test score of stu-
dents enrolled in middle schools (previous cohorts) in the district. We use the 0.25-
mile buffer in columns (1)-(2) and the 0.2-mile buffer in columns (3)-(4). Standard
errors in parentheses are clustered at school district level. The local cubic control of
distance differs at the opposite side of boundaries. Housing characteristics include
the space of the unit, land use of the tax lot, number of floors, age, renovation sta-
tus, and storage area of the building, all of which we interact with a dummy if the
property is coop. Neighbor characteristics include % minority, median household in-
come, % college-or-more-educated, and median commuting time to work at Census
block group. Urban amenities include the number of bus stops, subway stations,
laundries, cafes, and crime incidents of different categories at Census block.
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Table B.5: Effects of District School Quality on the Number of Middle-school-applying
Residents

(1) (2) (3) (4) (5)
Boundary FEs Yes Yes Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes Yes Yes
Housing Characteristics No Yes Yes Yes Yes
Neighborhood Characteristics No No Yes Yes Yes
Urban Amenities No No No Yes Yes
N of Population No No No No Yes

Panel A: 0.25-mile Buffer
District School Quality 0.183 0.266 0.805 0.789 0.808

(0.176) (0.175) (0.222) (0.225) (0.219)
N 3755 3755 3755 3755 3755
R2 0.227 0.251 0.308 0.318 0.331
ȳ 3.515
std(y) 4.122
Panel B: 0.2-mile Buffer

District School Quality 0.216 0.280 0.766 0.750 0.830
(0.180) (0.183) (0.240) (0.244) (0.242)

N 2970 2970 2970 2970 2970
R2 0.223 0.246 0.295 0.303 0.313
ȳ 3.490
std(y) 4.033

Note: The dependent variable is the number of middle-school-applying residents in a Census
block. Sample of Census blocks within a bandwidth from the closest school district boundary.
District school quality is measured by the mean NYS standardized test score of students en-
rolled in middle schools (previous cohorts) in the district. We use the 0.25-mile buffer in panel
A and the 0.2-mile buffer in panel B. Standard errors in parentheses are clustered at school
district level. The local cubic control of distance differs at the opposite side of boundaries.
Housing characteristics include the space of the unit, land use of the tax lot, number of floors,
age, renovation status, and storage area of the building, all of which we interact with a dummy
if the property is coop. Neighbor characteristics include % minority, median household income,
% college-or-more-educated, and median commuting time to work at Census block group. Ur-
ban amenities include the number of bus stops, subway stations, laundries, cafes, and crime
incidents of different categories at Census block. The number of population is at Census block
group level, which we obtain from the ACS 5-year estimate.
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Table B.6: Effects of District School Quality on Minority Share of Middle-school-
applying Residents

(1) (2) (3) (4)
Boundary FEs Yes Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes Yes
Housing Characteristics No Yes Yes Yes
Neighborhood Characteristics No No Yes Yes
Urban Amenities No No No Yes

Panel A: 0.25-mile Buffer
District School Quality -0.139 -0.143 -0.065 -0.065

(0.029) (0.028) (0.016) (0.016)
N 2970 2970 2970 2970
R2 0.480 0.496 0.595 0.596
ȳ 0.620
std(y) 0.417
Panel B: 0.2-mile Buffer

District School Quality -0.132 -0.132 -0.066 -0.067
(0.034) (0.033) (0.024) (0.024)

N 2353 2353 2353 2353
R2 0.484 0.501 0.603 0.603
ȳ 0.633
std(y) 0.415

Note: The dependent variable is the share of Black and Hispanic applicants among
middle-school-applying residents in a Census block. Sample of Census blocks
within a bandwidth from the closest school district boundary. District school quality
is measured by the mean NYS standardized test score of students enrolled in mid-
dle schools (previous cohorts) in the district. We use the 0.25-mile buffer in columns
(1)-(2) and the 0.2-mile buffer in columns (3)-(4). Standard errors in parentheses
are clustered at school district level. The local cubic control of distance differs at
the opposite side of boundaries. Housing characteristics include the space of the
unit, land use of the tax lot, number of floors, age, renovation status, and storage
area of the building, all of which we interact with a dummy if the property is coop.
Neighbor characteristics include % minority, median household income, % college-
or-more-educated, and median commuting time to work at Census block group. Ur-
ban amenities include the number of bus stops, subway stations, laundries, cafes,
and crime incidents of different categories at Census block.
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Table B.7: Effects of District School Quality on Poverty Share of Middle-school-
applying Residents

(1) (2) (3) (4)
Boundary FEs Yes Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes Yes
Housing Characteristics No Yes Yes Yes
Neighborhood Characteristics No No Yes Yes
Urban Amenities No No No Yes

Panel A: 0.25-mile Buffer
District School Quality -0.139 -0.142 -0.091 -0.094

(0.038) (0.034) (0.033) (0.033)
N 2970 2970 2970 2970
R2 0.203 0.218 0.261 0.263
ȳ 0.683
std(y) 0.357
Panel B: 0.2-mile Buffer

District School Quality -0.139 -0.141 -0.099 -0.102
(0.042) (0.038) (0.037) (0.037)

N 2353 2353 2353 2353
R2 0.173 0.192 0.238 0.240
ȳ 0.698
std(y) 0.350

Note: The dependent variable is the share of free or reduced lunch eligible appli-
cants among middle-school-applying residents in a Census block. Sample of Cen-
sus blocks within a bandwidth from the closest school district boundary. District
school quality is measured by the mean NYS standardized test score of students
enrolled in middle schools (previous cohorts) in the district. We use the 0.25-mile
buffer in columns (1)-(2) and the 0.2-mile buffer in columns (3)-(4). Standard er-
rors in parentheses are clustered at school district level. The local cubic control of
distance differs at the opposite side of boundaries. Housing characteristics include
the space of the unit, land use of the tax lot, number of floors, age, renovation sta-
tus, and storage area of the building, all of which we interact with a dummy if the
property is coop. Neighbor characteristics include % minority, median household in-
come, % college-or-more-educated, and median commuting time to work at Census
block group. Urban amenities include the number of bus stops, subway stations,
laundries, cafes, and crime incidents of different categories at Census block.
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Table B.8: Effects of District School Quality on Rent and House Value

(1) (2) (3)
Boundary FEs Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes
Housing Characteristics No Yes Yes
Neighborhood Characteristics No No Yes
Urban Amenities No No No

Panel A: Log(Median Gross Rent)
District School Quality 0.163 0.159 0.058

(0.047) (0.047) (0.035)
N 1875 1873 1873
R2 0.352 0.374 0.535
ȳ 7.119
std(y) 0.377
Panel B: Log(House Value)

District School Quality 0.057 0.067 0.058
(0.066) (0.061) (0.062)

N 1332 1331 1331
R2 0.478 0.540 0.558
ȳ 13.20
std(y) 0.540

Note: The dependent variable is the log median gross rent in panel A,
and the log house value reported by homw owners in panel B. Unit of
analysis is Census block group, where we weigh block groups by the
share of occupied units in Census blocks within a 0.25-mile buffer from
the closest school district boundary (See Subsection B.2). District school
quality is measured by the mean NYS standardized test score of stu-
dents enrolled in middle schools (previous cohorts) in the district. Stan-
dard errors in parentheses are clustered at school district level. The lo-
cal cubic control of distance differs at the opposite side of boundaries.
Housing characteristics include the space of the unit, land use of the
tax lot, number of floors, age, renovation status, and storage area of the
building, all of which we interact with a dummy if the property is coop.
Neighbor characteristics include % minority, median household income,
% college-or-more-educated, and median commuting time to work at
Census block group. Urban amenities include the number of bus stops,
subway stations, laundries, cafes, and crime incidents of different cate-
gories at Census block.
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Table B.9: Housing Characteristics and Urban Amenities at School District Boundaries

(1) (2) (3) (4)

Panel A: Housing Characteristics of Sold Properties
Dependent Variable: N of Floors Coop Commercial Area (1K sqft) Renovation
District School Quality -1.55 0.076 -5.84 0.100

(1.25) (0.047) (5.53) (0.038)
N 23786 23786 23786 23786
R2 0.466 0.230 0.182 0.165
ȳ 6.498 0.288 11.19 0.809
std(y) 8.112 0.453 56.27 0.393
Panel B: Urban Amenities

Dependent Variable: Bus Stop Subway Station Laundries Café
District School Quality -0.014 -0.004 0.003 -0.004

(0.024) (0.008) (0.008) (0.007)
N 8091 8091 32340 32340
R2 0.025 0.020 0.068 0.087
ȳ 0.127 0.019 0.052 0.014
std(y) 0.413 0.140 0.252 0.157

Note: Sample of residential properties sold within a bandwidth from the closest school district boundary in Panel A.
Sample of Census block groups whose centroids are within a bandwidth from the closest school district boundary in
Panel B. Sample of Census blocks whose centroids are within a bandwidth from the closest school district boundary
in Panel C. We use 0.25 mile buffer. In panel B, Each Census block groups is weighted accroding to the procedure
explained in the appendix. Standard errors in parentheses are clustered at each tax lot, Census block group, and
Census block, respectively.We allow the local cubic control of distance to differ at the opposite side of boundaries.
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Table B.10: Effects of District School Quality on Hedonic Sales Price

(1) (2) (3)
Boundary FEs Yes Yes Yes
Local Cubic Control for Distance Yes Yes Yes
Housing Characteristics Yes Yes Yes
Neighborhood Characteristics No No Yes
Urban Amenities No Yes Yes

Panel A: 0.25-mile Buffer
District School Quality -0.027 -0.018 0.094

(0.069) (0.065) (0.052)
N 23786 23786 23786
R2 0.457 0.479 0.687
ȳ 12.88 12.88 12.88
std(y) 0.546 0.560 0.728
Panel B: 0.2-mile Buffer

District School Quality -0.021 -0.002 0.069
(0.077) (0.074) (0.057)

N 19057 19057 19057
R2 0.443 0.467 0.686
ȳ 12.84 12.84 12.84
std(y) 0.509 0.526 0.696

Note: The dependent variable is the predicted log sales price of a residential unit,
which we construct by running a hedonic regression of log sales price on covari-
ates, as explained in Subsection B.3. Sample of residential units sold within 0.25-
mile bandwidth from the closest school district boundary. District school quality is
measured by the mean NYS standardized test score of students enrolled in mid-
dle schools (previous cohorts) in the district. Standard errors in parentheses are
clustered at school district level. The local cubic control of distance differs at the
opposite side of boundaries. Housing characteristics include the space of the unit,
land use of the tax lot, number of floors, age, renovation status, and storage area
of the building, all of which we interact with a dummy if the property is coop.
Neighbor characteristics include % minority, median household income, % college-
or-more-educated, and median commuting time to work at Census block group. Ur-
ban amenities include the number of bus stops, subway stations, laundries, cafes,
and crime incidents of different categories at Census block.
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Figure B.2: Probability of Listed as Top 3 Given Distance

Note: The fastest driving distance to school is calculated using the Open Route Service (ORS). the y-
axis of the graph presents the probability of choosing school j as the top 3 choices among all schools
a student is eligible for. Lines present the probability of student i’s listing school j as one of her top 3
choices as a function of road distance between i and j, for all pairs of (i, j). We present the pattern sep-
arately for students whose neighborhood schools’ mean test score is greater/smaller than the average,
where we use the three closest schools as neighborhood schools.

C Supplementary Materials for Section 4

C.1 Stability of Matching and Aggregate Demand

Fixing location choice `, the set of feasible schools are defined as Ji(`; ρi) = {j|cij(`; ρi) ≥
c̄j}, i.e. schools of which student i can clear the cutoffs. The set of feasible schools
changes depending on which location ` student i chooses to reside in, and the lottery
number.

Using the stability of matching and the distributional assumption on the idiosyn-
cratic preference shock over locations and schools,

Dj({c̄j′}Jj′=1) =
∫
i
Σ`

exp(Ṽi(`))
Σ`′exp(Ṽi(`′))︸ ︷︷ ︸

Demand for location `

·
∫
ρi

1(cij(`; ρi) ≤ c̄j)exp(Ũi(j, `))
Σj′1(rij′(`; ρi) ≤ c̄j′)exp(Ũi(j′, `))

dρi︸ ︷︷ ︸
Demand for school j given location `

(C.1)
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where

Ṽi(`) = W`︸︷︷︸
location char.

αwi + p`︸︷︷︸
housing cost

αpi + ξ`︸︷︷︸
unobserved amenities

+αu Eεij ,ρ,εiϑ︸ ︷︷ ︸
expected utility from school given location

(C.2)

Ũi(j, `) = Xj︸︷︷︸
school char.

βXi + d`jβ
d
i︸ ︷︷ ︸

commuting cost

(C.3)

The second component of Equation C.1 means that a student has effective demand
only when school j is feasible given location `. For schools that use lottery number to
break the tie, the feasibility depends on the lottery number ρi. We take the numerical
integration over ρi. The existence and the uniqueness of the equilibrium follow from
Azevedo and Leshno (2016). The key assumption is that the distribution of students’
priority rank cij is continuous. This ensures a small change in the cutoff c̄j′ induces a
small change in the demand for school j.

C.2 Stability of Matching and Expected Utility from School

In addition, based on the stability of assignment under DA with truth-telling, we can
simplify the indirect utility from school choice stage U∗i (`):

U∗i (`) = max{maxj∈Ji(`;ρi)Ui(ji, `; εij), Uϑ
i (ϑp; εiϑ), Uϑ

i (ϑc; εiϑ)
}

) (C.4)

With the assumption that εij, εiϑ follows i.i.d EVT1 distribution, the expected utility
from school can be simplified as follows.

Eεij ,ρ,εiϑ

= Eρ
(
µ+ log

(
Σj∈Ji(`;ρi)exp(Ũi(j, `; εij)) + exp(Ũϑ

i (ϑp; εiϑ)) + exp(Ũϑ
i (ϑc; εiϑ))

))
(C.5)
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where

Ũi(j, `) = Xj︸︷︷︸
school char.

βXi + d`jβ
d
i︸ ︷︷ ︸

commuting cost

(C.6)

Ũi(ϑ; εiϑ) = βϑi (C.7)

C.3 Estimating Program Preferences

sij is a weighted average of students’ middle school GPA, NYS math and ELA score,
and punctuality record, with the weights remaining as each program’s private infor-
mation.

However, a program j has to report the rank of sijs among its applicants for NYC
DOE to implement the centralized DA. Therefore, given any pair of students i and i′,
we observe the value of 1(sij > si′j), if both i and i′ apply to the program j. Using this,
we construct ŝij using a latent variable model by assuming

sij = Ziκj + ηij, ηij ∼ N (0, 1) (C.8)

where Zi is student characteristics that are known to compose of sij, and κj a
vector of weights which vary across js. ηij is normalized to be N (0, 1).

We estimate (κj)j using Maximum Likelihood Estimation (MLE) where the likeli-
hood function is

LLc = Πi,i′∈Aj
Pr(sij > ci′j)1(sij>ci′j)(1− Pr(sij > ci′j))1(sij<ci′j) (C.9)

where Aj is the set of applicants to program j that uses a non-random tie-breaker.

Figure C.3 shows that our simulation recovers the distribution of the preference
rank of the assigned program in the data. Both in simulation and data, around 63%
of students are assigned to the 1st- or the 2nd- ranked programs while 8% do not get
any offer from programs on the list.
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Figure C.3: Rank of Assigned School: Model and Simulation

Note: Rank is the preference rank of the assigned program. Rank 19 in the data means that the
student did not get any offer from programs included in the submitted list.

D Supplementary Materials for Section 5

D.1 Full Information Maximum Likelihood Estimation

Assuming idiosyncratic preference shocks over locations, schools, and outside options
(ηi`, εij, and εiϑ) are i.i.d, the full information log-likelihood function is as follows.

LL = Σi︸︷︷︸
3. sum over i

log
(

ΣK
k=1qk︸ ︷︷ ︸

2. sum over type

PLC(xi; θEC , θSC , θLC , γk)P SC(xi; θSC , γk)PEC(xi; θSC , θEC , γk)︸ ︷︷ ︸
1. likelihood with fixed type

)
(D.10)

xi is data, θLC is the set of location preference parameters, θSC is the set of school
preference parameters, θEC is the set of outside option preference parameters, γi is the
unobserved taste, and qk the probability of each type k. (θ = (θLC , θSC , θEC), {γk, qk}k)
is the full set of parameters to be estimated.

The likelihood function for each step is not additive separable because of γi, mak-
ing the maximization problem computationally very costly. Note that the sequential
estimation strategy in Rust (1994) is also not applicable without additive separability
of likelihoods.

69



D.2 EM Algorithm with Sequential Maximization

The conditional probability of type k given data xi and current guesses of parameters,
are derived using Bayes rule.

q(k|xi; q̂, γ̂, θ̂) = q̂kq(xi; k, q̂, γ̂, θ̂)
Σk′ q̂k′q(xi; k′, q̂, γ̂, θ̂)

(D.11)

We estimate the model using the following iterative process.

1. Initial guess of q0, γ0, θ0

2. Calculate conditional probability in Equation D.11 using the initial guess q0, γ0, θ0

3. Solve maximization problem for q. It has a closed-form solution which is

q1
k = 1

I
Σiq(k|xi; q0, γ0, θ0) (D.12)

4. Taking other parameters as given, solve the maximization problem of ??. Get
θ1
LC using the Generalized Method of Moments (GMM) procedure.

5. Taking other parameters as given, solve maximization problem of ?? using MLE,
get θ1

SC and γ1.

6. Taking other parameters as given, solve the maximization problem of ??. Get
θ1
EC using MLE.

7. Repeat 2-6 until convergence

D.3 Likelihood Function

We presents the likelihood function PLC , P SC , and PEC in this section.

For convenience, we introduced some notations.

ũiϑ = Ziβϑ (D.13)

ũij = XjβXi + c(d`ij, Zi) (D.14)

ṽi` = W`αwi + p`αpi + ξ` + Eεij ,ρi,εiϑ

{
U∗i (`)

∣∣∣`} (D.15)
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Each denotes utility from outside option ϑ, school j, and location ` at each decision
stage net of idiosyncratic preference shocks.

With the distributional assumption on ηi`, the likelihood of location choice PLC

takes a simple form.

PLC = Πi
exp(ṽi`i)

Σ`′exp(ṽi`′)
(D.16)

where `i is the observed location choice of household i.

We can extend the formula to construct the likelihood of school application P SC .
Assuming logit shock and weak truth-telling among eligible options,

P SC = Πi

exp(ũiji
1
)

Σj′∈J̃i
exp(ũi`′)︸ ︷︷ ︸

first-ranked

exp(ũiji
2
)

Σj′∈J̃i/ji
1
exp(ũi`′)︸ ︷︷ ︸

second-ranked

· · ·
exp(ũiji

li

)
Σj′∈J̃i/{ji

1,j
i
2···j

i
li−1}

exp(ũi`′)︸ ︷︷ ︸
lth
i -ranked

(D.17)

where i’s observed ranked-ordered list is {ji1, ji2, · · · , jili}, and J̃i is the set of eligible
options for i. Each term in the product represents the probability of choosing the
option among eligible options that are not ranked higher.

Similarly, the likelihood of enrollment decision is a product of each i’s likelihood,
which takes different forms depending on the observed enrollment choice.

PEC = Πi

(Σj′∈Ji
exp(ũij′)

exp(ũiµi
)

)
1(ϑi=µi)

︸ ︷︷ ︸
adjustment when choose µi

exp(ũϑi
)

exp(ũp) + exp(ũc) + Σj′∈Ji
exp(ũij′)

(D.18)

The second term denotes the probability of choosing the enrollment option out of
all available options including outside options. The first component adjusts that the
distribution of εiµi

conditional on being assigned to µi should be different from the
marginal distribution of εij and εiϑ. It is more realistic to have εiµi

preserved the same
in the application and enrollment decision stage, rather than assuming that a new εiµi

is drawn from the Gumbel distribution with a location of zero and scale normalized
to one. Without the first term, the value of private options should be underestimated.
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The proof is available upon request.

D.4 Supplementary Tables

Table D.11: Demand Estimates from OnlySC Version

Main Additional Effects
Type1 Type2 Type3 Black/Hisp FRL High-achieving

Panel A: School Demand
Mean test score 0.139 0.161 0.382 0.165 - -0.245
Frac. Black or Hisp. -2.002 -0.430 0.794 2.189 0.126 0.355
Frac. FRL -0.330 -1.077 0.947 -0.590 0.860 -0.278
Non-safety -0.036 -0.020 -0.007 0.010 - -
Distance (mi.) -0.190 -0.937 -5.331 0.096 0.012 0.029
Prob. 0.294 0.629 0.077 - - -
Panel B: Outside Option
Non-public -2.088 - - 0.227 -0.879 0.505
Public Charter -3.307 - - 1.685 -0.373 -0.178

Note: Columns are for students’ heterogeneity and rows are for school characteristics. FRL stands for
Free-or-reduced Lunch eligibility. The fastest driving distance to school is calculated using the Open
Route Service (ORS). School non-safety measure is constructed by running a Principal Component Anal-
ysis (PCA) on crime incidence of different categories at each school building.

72



Table D.12: IV Regression for Housing Cost

(1) (2)
OLS 2SLS

Dep. var: Mean utility δ`
Housing characteristics Yes Yes
Land use Yes Yes
Neighborhood characteristics Yes Yes

log(UnitHousingPrice) -0.014 -2.441**
(0.056) (0.561)

N 1690 1690
First Stage F-stat 17.76
R2 0.641 0.233
ymean -0.879 -0.879

Note: Instrument variable is the percent park area and the
percent residential area of locations that are 2 miles away
but within 3 miles from each location.

Table D.13: Principal Component of the School Safety Indices

1st Component Unexplained variance (percent)

Eigenvalue 3.246
Total variance explained 64.920
Eigenvectors:
Major Crime 0.423 41.900
Other Crime 0.502 18.280
Non-Crime Incidents 0.413 44.520
Property Crime 0.444 36.110
Violent Crime 0.449 34.570

Note: Source - School Safety Report collected by the New York City Police Department which
reports the number of crime cases at each school building. Major crimes include burglary,
grand larceny, murder, rape, robbery, and felony assault. Other crimes include many crimes
that range in severity such as arson, sale of marijuana, or sex offenses. Non-criminal incidents
include actions that are not crimes but disruptive such as disorderly conduct, loitering, and
possession of marijuana.
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Figure D.4: Location Sorting on Unobserved Type

Table D.14: Model Fit

All Minority FRL High-achieving
data model data model data model data model

Panel A1: Mean of Top 3 Ranked School Characteristics
Mean test score 0.570 0.564 0.215 0.222 0.401 0.404 0.919 0.881
% Black or Hispanic -0.107 -0.111 0.026 0.024 -0.054 -0.056 -0.212 -0.212
% FRL -0.061 -0.054 -0.004 -0.001 -0.020 -0.018 -0.115 -0.104
Non-safety -1.165 -1.091 -0.325 -0.183 -0.851 -0.810 -1.910 -1.766
Distance 1.965 2.032 1.975 2.052 1.949 1.976 1.974 2.065
Panel A2: Mean of Assigned School Characteristics

Mean test score 0.311 0.352 -0.068 0.016 0.107 0.181 0.704 0.699
% Black or Hispanic -0.098 -0.087 0.049 0.054 -0.039 -0.029 -0.204 -0.190
% FRL -0.039 -0.040 0.023 0.017 0.006 -0.001 -0.097 -0.092
Non-safety -1.037 -0.800 -0.095 0.174 -0.644 -0.493 -1.870 -1.546
Distance 1.382 1.867 1.388 1.940 1.352 1.834 1.455 1.878
Panel B: % Choosing an Outside Option

Private 5.020 5.844 4.439 5.104 4.187 4.696 5.359 6.359
Charter 4.310 4.903 6.259 7.091 5.079 5.704 3.235 3.724
Panel C: Mean of Chosen Location Characteristics

log(UnitPrice) 12.846 12.847 12.702 12.702 12.772 12.772 12.963 12.965
% Black or Hispanic 0.568 0.568 0.731 0.731 0.631 0.631 0.459 0.458
Median HH Income 10.696 10.696 10.562 10.561 10.604 10.603 10.814 10.814
Med. travel time to Work 0.759 0.759 0.772 0.772 0.770 0.770 0.747 0.747
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E Supplementary Materials for Section 7

E.1 Segregation Measure: Theil’s H Index

Theil’s H Index is also known as the Information Theory Index or the Multigroup En-
tropy Index. In this paper, we closely follow the definition used by the United States
Census Bureau to describe housing patterns (Iceland, 2004).40

First, the entropy score of the entire economy is calculated as:

E =
R∑
r=1

(Πr) log(1/Πr)

where Πr is a particular racial group r’s proportion in the whole population in the
economy. The entropy score measures the diversity in the economy, where higher
number indicates higher diversity.

Next, for each school j = 1, 2, · · · , J , the entropy score of j is calculated similarly:

Ej =
R∑
r=1

(Πr,j) log(1/Πr,j)

where Πr,j is a racial group r’s proportion in the whole population in school j.

Finally, Theil’s H index is calculated as the weighted average of deviation of each
j’s entropy from the entropy score of the entire economy, where the weight is the
number of students at each school:

H =
J∑
j=1

[
tj(E − Ej)
E · T

]

where tj is the total number of students in school j, and T = ∑J
j=1 tj is the total

number of students in the economy. By construction, H is between 0 and 1 where 0
means maximum integration (i.e., all schools have the same racial composition as the
whole economy), and 1 means maximum segregation.

E.2 Supplementary Figures

40See https://www.census.gov/topics/housing/housing-patterns/about/multi-group-entropy-
index.html
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Figure E.5: Cross-racial Gap in School Characteristics

Note: The figure shows the difference in mean test scores of coassigned/coenrolled peers between
Black/Hispanic and other students across scenarios. There are 4 different counterfactual policies. Un-
der D2, we introduce purely-lottery based admissions to schools in school District 2. Under D26, we
target District 26. Under All District, we target all schools within the system. Under D2+Academic,
we scrap location-based admissions rules among District 2 schools while keeping academic screening
in place. The dotted line presents the cross-racial gap in coassigned peers’ test scores under the status
quo. The solid line presents the cross-racial gap in coenrolled peers’ test scores under the status quo.
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