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Preface

conometrics can be a fun course for both teacher and student. The real world
Enf economics, business, and government is a complicated and messy placce. tull
of competing ideas and questions that demand answers. Is it more effective to
tackle drunk driving by passing tough laws or by increasing the tax on alcohol?
Can vou make money in the stock market by buving when prices are historically
low, relative to earnings. or should you just sit tight as the random walk theory of
stock prices suggests? Can we improve elementary education by reducing class
sizes, or should we simply have our children listen to Mozarl for ten minutes a day?
Eccnometrics helps us to sort out sound ideas from crazy ones and 1o find quan-
titative answers to important quantitative questions. Econometrics opens a win-
dow on our complicated world that lets us see the relationships on which people.
businesses, and governments base their decisions.

This textbook is designed for a first course in undergraduate econometrics. It
is our expericnce that to make econometrics relevant in an introductory course,
interesting applications must metivate the theory and the theory must match the
applications. This simple principle represents a significant departure from the older
generation of econometrics books, in which theoretical models and asswmptions
do not match the applications. It is no wonder that some students question the rel-
evance of econemetrics after they spend much of their time learning assumptions
that they subsequently realize are unrealistic, so that they must then learn “solu-
tians” to “problems” that arise when the applications do not match the assump-
lions. We believe that it is far better to motivate the nced for tools with a concrete
application, and then to provide a few simple assumptions that match the appli-
cation. Because the theory is immediately refevant to the applications, this
approach can make econometrics come alive.

‘The second edition benefits from the many constructive suggestions of teach-
ers who used the first edition, while maintaining the philosophy that applications
should drive the theory, not the other way around. The single greatest change in
the second cdition js a reorganization and expansion of the material on core
regression analysis: Part 11, which covers regression with cross-sectional data, has
been expanded from four chapters 1o six. We have added new empirical examples
(as boxes) drawn from economics and finance; some new optionat sections on
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classical regression theory: and many new exercises, both paper-and-pencil and
computer-based empirical exercises using data sets newly placed on the textbook
Web site, A more detailed description of changes to the second cdition can be
found on page xxxii.

Features of This Book

This textbook differs from others in three main ways, First, we integrate real-world
questions and data into the development of the theory. and we take scriously the
substantive findings of the resulting empirical analysis. Second, our choice of top-
ics reflects modern theory and practice. Third, we provide theory and assumptions
that match the applications. Our aim is to teach students to become sophisticated
consumers of econometrics and to do so at a level of mathematics appropriate for
an introductory course.

Real-world Questions and Data

We organize each methodological topic around an important real-world question
that demands a specific numerical answer. For example, we teach single-variable
regression, multiple regression, and functional form analysis in the context of esti-
mating the effect of school inputs on school outputs. (Do smaller elementary
school class sizes produce higher test scores?) We teach panel data methods in the
context of analyzing the effect of drunk driving laws on traffic fatalities. We use
possible racial discrimination in the market for home loans as the empirical appli-
cation for teaching regression with a binary dependent variable (logit and probit).
We teach instrumental variable estimation in the context of estimating the demand
elasticity for cigarettes. Although these examples involve economic reasoning, all
can be understood with only a single intreductory course in economics, and many
can be understoed without any previous econemics coursework. Thus the instrue-
tor can focus on teaching econometrics, not microeconomics or macroeconomics.

We treat all our empirical applications seriously and in a way that shows stu-
dents how they can learn from data but at the same time be self-critical and
aware of the limitations of empirical analyses. Through each application. we
teach students to explore alternative specifications and Lhereby 10 assess whether
their substantive findings are robust. The questions asked in 1the empirical appli-
cations are important, and we provide serious and, we think. credible answers.
We encourage students and instructors to disagree, however, and invite them to
reanalyze the data, which are provided on the textbook’s companion Web site
(www.aw-hc.com/stock_watson).
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Contemporary Choice of Topics

Econometrics has come a long way in the past two decades. The topics we cover
reflect the best of contemporary applied econometrics. One can only do so much
in an introductory course. so we focus on procedures and tests that are commonly
used in practice. For example:

s Instrumental variables regression. We present instrumental variables regres-
sion as a general method for handling correlation between the error term and
aregressor, which can arise for many reasons, including omitted variables and
simultaneous causality. The two assumptions for a valid instrument—exo-
geneity and relevance—are piven equal billing. We follow that presentation
with an extended discussion of where instruments come from, and with tests
of overidentifying restrictions and diagnostics for weak instruments—and we
explain what to do if these diagnostics suggest problems.

* Program evaluation. An increasing number of econometric studies analyze
either randomized controlled experiments or quasi-experiments, also known
as natural experiments. We address these topics, often collectively referred to
as program evaluation, in Chapter 13. We present this research strategy as an
alternative approach to the problems of omitted variables, simultaneous
causality, and selection, and we assess both the strengths and the weaknesses
of studies using experimental or quasi-experimental data.

« Forecasting. The chapter on forecasting (Chapter 14) considers univariate
(autoregressive) and multivariate forecasts using time series regression, nol
large simultaneous equation structural models. We focus on simple and reli-
able tools, such as autoregressions and model sclection via an information cri-
terion, that work well in practice. This chapter also features a practically
oriented treatment of stochastic trends {unit roots), unit root tests, tests for
structural breaks (at known and unknown dates), and pseudo cut-of-sample
forecasting, all in the context of developing stable and reliable time series fore-
casting models.

+ Time series regression. We make a clear distinciton between two very difter-
ent applications of time series regression: forecasting and estimation of
dynamic causal effects. The chapter on causal inference using time series data
(Chapter 15) pays careful attention to when different estimation methods,
including generalized least squares, will or will not lead to valid causal infer-
ences, and when it is advisable to estimate dynamic regressions using OLS with
heteroskedasticity- and autocorrelation-consistent standard crrors.
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Theory That Matches Applications

Although econometric tools are best motivated by empirical applications, students
need to learn encugh econometric theory to understard the strengths and hmita-
tions of those tools, We provide a modern treatment in which the (it between the-
ory and applicalions is as tight as possible, while keeping the mathematics at a level
that requires only algebra.

Moderr cmpirical applicalions share some common characteristics: the data
sets typically are large (hundreds of observations. often more): regressors are not
fixed over repeated samples but rather are coilected by random sampling (or some
other mechanism that makes them random); the data are not normally distributed,
and there 18 no a priori reason to thik that the errors are homoskedastic {although
often there are reasons to think that they are heteroskedastic).

These observations lead to important differences betwcen the theoretical
development in this textbook and other textbooks.

* Large-sample approach. Because data sets are large. from the outset we use
large-sample normal approximations to sampling distributions for hypothesis
testing and confidence intervals. OQur experience is that it takes less iime to
teach the rudiments of large-sample approximations than to teach the Student
¢ and exact F distributions, degrees-of-freedom corrections, and so forth. This
large-sample approach also saves students the frustration ol discovering that,
because of nonnormal errors, the exact distribution theory they just mastered
isirrelevant. Once taught in the context of the sample mean. the large-sample
approach to hypothesis testing and confidence intervals carries directly
through multiple regression analysis, logit and probit, instrumental variables
estimation, and time series methods.

* Random sampling. Because regressors are rarely fixed in econotnetric appli-
cations, from the outset we treat data on all variables {dependent and inde-
pendent) as the result of random sampling. This assumption matches our initial
applications to cross-sectional data; it extends readily to panel and time series
data; and because of our large-sample approach. it poses no additional con-
ceptual or mathematical difficulties.

» Heteraskedasticity. Applied econometricians routinely use heleroskedas-
ticitv-robust standard errors to eliminate worries about whether hetero-
skedasticity is present or not. In this book. we move beyond treating
heteroskedusticity as an exception or a “problem” to be “solved”; instead. we
allow for heteroskedasticity from the outset and simply use heteroskedasticiy-
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robust standard errors. We prescnt homoskedasticity as a special case that pro-
vides a theoretical motivation for OLS.

Skilled Producers, Sophisticated Consumers

We hope that students using this book will become sophisticated consumers
of empirical analysis. To do so, they must learn not only how to use the tools of
regression analysis, but also how to assess the validity of empirical analyses pre-
sented to them.

Our approach to teaching how to assess an empirical study is threefold. First,
immediately after introducing the main tools of regression analysis, we devote
Chapter 9 to the threats to internal and external validity of an empirical study. This
chapter discusses data problems and issues of generalizing findings to other set-
tings. [t also examines the main threats to regression analysis, including omitted
variables, functional form misspecification, errors-in-variables, selection, and
simultaneity—and ways to recognize these threats in practice.

Second, we apply these methods {or assessing empirical studies to the empir-
ical analysis of the ongoing examples in the book. We do so by considering alter-
native specifications and by systematically addressing the various threats to
validity of the analyses presented in the book.

Third, to become sophisticated consumers, students need firsthand experience
as producers. Active learning beats passive learning, and econometrics is an ideal
course for active learning. For this reason, the textbook Web site features data sets,
software, and suggestions for empirical exercises of differing scopes. These web
resources have been expanded considerably for the second edition.

Approach to Mathematics and Level of Rigor

Our aim is for students to develop a sophisticated understanding of the lools of
modern regression analysis, whether the course is taught at a “high” or a “low”
level of mathematics. Parts I-IV of the text (which cover the substantive material)
are accessible to students with only precalculus mathematics. Parts 1-IV have fewer
equations, and more applications, than many introductory econometrics books,
and far fewer equations than books aimed at mathematical sections of under-
graduate courses, But more cquations do not imply a more sophisticated treat-
ment. In our experience, a more mathematical treatment does not lead to a deeper
understanding for most students.

This said, different students learn differently, and for the mathematically well-
prepared students, learning can be enhanced by a more explicitly mathematical
treatment. Part V therefore contains an introduction to econemetric theory that
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is appropriate for students with a stronger mathematical hackground. We helieve
that, when the mathematical chapters in Part V are used in conjunction with the
material in Parts I-1V, this book s suitable [or advanced undergraduate or mas-
ter's level econometrics courses.

Changes to the Second Edition

The changes introduced in the second edition fall into three categories: more
empirical examples: expanded theoretical material, especially in the treatment of
the core regression topics; and additional student exercises,

More empirical examples. The second edition retains the empirical examples
from the first edition and adds a significant number of new ones. These additional
examples include estimation of the returns to education; inference about the gen-
der gap in carnings: the difficulty of forecasting the stock market: and modeling
the volatility clustering in stock returns. The data sets for these empirical exam-
ples are posted on the course Web site. The second edition also includes more gen-
eral-interest boxes, for example how sample selection bias (“survivorship bias™)
can produce misleading conclusions about whether actively managed mutual funds
actually beat the market.

Expanded theoretical material. 'The philosophy of this and the previous edi-
tion is that the modeling assumptions should be motivated by empirical applica-
tions. For this reason, our three basic least squares assumptions that underpin
regression with a single regressor include neither normality nor homoskedastic-
ity, both of which are arguably the exception in econometric applications. This
leads directly to large-sample inference using heteroskedasticity-robust standard
crrors. Qur experience is that students do not find this difficult—in fact, what they
find difficult is the traditional approach of introducing the homoskedasticity and
normality assumptions, learning how 1o use ¢- and F-tables, then being told that
what they just learned is not reliable in applications because of the failure of these
assumptions and that these “problems” must be “fixed.” But not all instructors
sharc this view, and some find it useful to introduce the homoskedastic normal
regression model. Moreover, even if homoskedasticity is the exception instcad of
the rule, assuming homoskedasticity permits discussing the Gauss-Markov theo-
rem, a key motivation for using ordinary ieast squares (OLS).

For these reasons, the treatment of the core regression material has been sig-
nificantly expanded in the second edition. and now includes sections on the theo-
tetical motivation for OLS (the Gauss-Markov theorem). small-samiple inference
in the homoskedastic normal model, and multicollineanty and the dumny vari-
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able trap. To accommodate these new sections, the new empirical examples, the
new general-interest boxes, and the many new exercises, the core regression chap-
ters have been expanded from two to four: The linear regression model with a sin-
gle regressor and OLS (Chapler 4}); inference in regression with a single regressor
(Chapter 5); the multiple regression model and OLS (Chapter 6); and inference
in the multiple regression model (Chapter 7). This expanded and reorganized
treatment of the core regression malerial constitutes the single preatest change in
the second edition.

The second edition also includes some additional topics requested by some
instructors, One such addition is specification and estimation of models that are
nonlinear in the parameters (Appendix 81). Another is how 10 compute stan-
dard errors in panel data regression when the error lerm is serially correlated
for a given entity (clustersd standard errors; Section 10.5 and Appendix 10.2), A
third additicn is an introduction to current best practices for detecting and han-
dling weak instruments (Appendix 12.3), and a fourth addition s a treatment, in
a new final section of the last chapter (Section 18.7), of efficient estimation in
the heteroskedastic linear IV regression model using generalized mcthod of
moments.

Additional student exercises. The second edition contains many new exer-
cises, both “paper and pencil” and empirical exercises that involve the use of data
bases, supplied on the course Web site, and regression software. The data section
of the course Web site has been significantly enhanced by the addition of numer-
ous databases.

Contents and Organization

There are five parts to the textbook. This textbook assumes that the student
has had a course in probability and statistics, although we review that material in
Part 1. We cover the core matenal of regression analysis in Part 1. Parts TTT IV,
and V present additional topics that build on the core treatment in Part 1.

Part |

Chapter 1 introduces econometrics and stresses the importance of providing quan-
titative answers to quantitative questions. 1t discusses the concept of causality in
statistical studies and survevs the different types of data encountered in ccono-
metrics. Material from probabilily and statistics is reviewed in Chapters 2 and 3,
respeclively; whether these chapters are taught in a given course, or simply pro-
vided as a reference. depends on the background of the students.
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Part 11

Chapter 4 introduces regression with a single regressor and ordinary least squares
{OLS) estimation. and Chapter 5 discusses hypothesis 1ests and confidence inter-
vals in the regression model with a single regressor. In Chapter 6, siudents learn
how they can address omitted variable bias using multiple regression, thereby esti-
mating the effect of one independent variable while holding other independent
variables constant. Chapter 7 covers hypothesis fests, including F-tests. and confi-
dence intervals in multiple regression. In Chapter 8, the linear regression model
is extended to models with nonlinear population regressicn functions, with a focus
on regression functions that are linear in the parameters (so that the parameters
can be estimated by OLS). In Chapter 9, students step back and learn how to iden-
tify the strengths and limitations of regression studies, seeing in the process how
to apply the concepts of internal and external validity.

Part Ill

Part III presents extensions of regression methods. In Chapter 10, students learn
how to use panel data to control for unobserved variables that are constant over
time, Chapter 11 covers regression with a binary dependent variable. Chapter 12
shows how instrumental variables regression can be used to address a variety of
problems that produce correlation between the error term and the regressor, and
examines how one might find and evaluate valid instruments. Chapter 13 introduces
students to the analysis of data from experiments and quasi-, or natural, experi-
ments, topics often referred to as “program evaluation.”

Part IV

Part IV takes up regression with time series data. Chapter 14 focuses on {orecast-
ing and introduces various modern tools for analyzing time series regressions such
as unit root tests and tests for stability. Chapter 15 discusses the use of time series
data to estimatc causal relations, Chapter 16 presents some more advanced tools
for time scries analysis, including models of conditional heteroskedasticity.

PartV

Part 'V is an introduction o econometric theory. This part is more than an appen-
dix that fills in mathematical details omitted from the text. Rather, it is a self-con-
tained treatment of the econometric theory of estimation and inference in the
linear regression model. Chapter |7 develops the theory of regression analysis for
a single regressor: the exposition does not use matrix algebra, although it does
demand a higher level of mathematical sophistication than the rest of the text,
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TABLE | Guide to Prerequisites for Special-Topic Chapters in Parts lll, IV, and V

Prerequisite parts or choplers

| Port1 Port Il Part ) . Part IV Part V
101, 12, 14.1- 14.5-

Chopter 13 47,9 8 102 122 14.4 14.8 15 17
10 Xe X X ]
noxe X X

21122 X+ X X

23126  X? _ X2 X X X
B XX X X X
4 X xe b
15 X2 oxe b X
6 x X b X X X
s x i xx T
18 X X X X X

This tobla shows the minimum prerequisites needed to cover the material in a given chapter. For axample, estimation of
dynamic causal effects with ime series data (Chapter 15} First requires Part | {os ma«dec!:,1 depending on student preparation,
and except as noted in foomote o}, Part Il {except for chapter B; see fooinote b, and Sections 14.1-14.4.

°Chapters 10~16 use exclusively large-sample approximations to sampling distributions, so the optianal Sections 3.6 {the
Student « distribution for testing means) and 5.6 {the Student r distribution for testing regression coefficients} can be skipped.

bChapters 14-16 (the time series chaplers) can be taught without first teaching Chapter 8 [nonlinear regression functions) if
the instructor pavses o exgplain the use of logarithmic transformations ke approximate percentage changes.

Chapter 18 presents and studies the multiple regression model. instrumental vari-
ables regression, and gencralized method of moments estimation of the linear
model, all in matrix form.

Prerequisites Within the Book

Because different instructors like to emphasize different material, we wrote this
baok with diverse teaching preferences in mind. Te the maximum extent possible,
the chapters in Parts TT1. I'V. and V are “stand-alone™ in the sense that thev do not
require first teaching all the preceding chapters. The specific prerequisites for cach
chapter are described in Table 1. Although we have found that the sequence of top-
ics adopted in the textbook works well in our own courses, the chapters are written
in a way that allows instructors ta present topics in a different order if they so Jdesire.
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Sample Courses
This book accommodates several different course structures.

Standard Introductory Econometrics

This course introduces econometrics {Chapter 1} and reviews probability and sta-
tistics as needed (Chapters 2 and 3). It then moves on to regression with a single
regressor, multiple regression, the basics of functional form analysis and the eval-
uation of regression studies (all of Part IT). The course proceeds to cover regres-
sion with panel data (Chapter 10}, regression with a limited dependent variable
(Chapter 11), and/or instrurnental variables regression (Chapter 12). ay time per-
mits. The course concludes with experiments and quasi-experiments in Chapter
13, topics that provide an opportunity to return to the questions of estimating
causal effects raised at the beginning of the semester and to recapitulate core
regression methods, Prerequisites: Algebra I and introductory statistics.

Introductory Econometrics with
Time Series and Forecasting Applications

Like the standard introductory course, this course covers all of Part I (as needed)
and all of Part I1. Optionally, the course next provides a brief introduction te panel
data {Sections 10.1 and 10.2) and 1akes up instrumental variables regression
{Chapter 12, or just Sections 12.1 and 12.2). The course then proceeds to Part IV,
covering forecasting (Chapter 14) and estimation of dynamic causal effects (Chap-
ter 13). If Lime permits, the course can include some advanced topics in lime series
analysis such as volatility clustering and conditional heteroskedasticity (Section
16.5). Prerequisites: Algebra If and introductory statistics.

Applied Time Series Analysis and Forecasting

This book alse can be used for a short course on applied time series und fore-
casting, for which a course on regression analysis is a prerequisite. Some time is
spent reviewing the tools of basic regression analysis in Part [1. depending on stu-
dent preparation. The course then moves directly to Part IV and works through
forecasting (Chapter 14), estimation of dynamic causal effects (Chapter 15). and
advanced topics in time series analysis (Chapter 16). including vector autorc-
gressions and conditional heteroskedasticity. An important compenent of Lhis
course is hands-on ferecasting exercises, avatlahle to instructors on the hook's
accompanying Weh site. Prereqriisites: Algebra I und baxic introdrictory ecorio-
metrics or the equivalent.
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Introduction to Econometric Theory

This book is also suitable for an advanced undergraduate course in which the stu-
dents have a strong mathematical preparation, or for a master’s level course in
econometrics. The course briefly reviews the theory of statistics and probability as
necessary (Part I). The course introduces regression analysis using the nonmath-
ematical, applications-based treatment of Part 11. This introduction is followed by
the theoretical development in Chapters 17 and 18 (through section 18.5). The
course then takes up regression with a limited dependent variable (Chapter 11)
and maximum likelihood estimation (Appendix 11.2). Next, the course optionally
turns to instrumental variables regression and Generalized Method of Moments
{Chapter 12 and Section 18.7), time series methods (Chapter 14). and/or the esti-
mation of causal effects using time series data and generalized least squares (Chap-
ter 15 and Section 18.6). Prerequisites: calculus and introductory statistics. Chapter
18 assumes previous exposure to matrix glgebra.

Pedagogical Features

The textbook has a variety of pedagogical features aimed at helping students to
understand, to retain, and to apply the essential ideas. Chapter introductions pro-
vide a real-world grounding and motivation, as well as a brief road map high-
lighting the sequence of the discussion. Key terms are boldfaced and defined in
context throughout each chapter, and Key Concept boxes at regular intervals recap
the central ideas. General interest boxes provide interesting excursions into related
topics and highlight real-world studies that use the methods or concepts being dis-
cussed in the text. A numbered Summary concluding each chapter serves as a help-
ful framework for reviewing the main points of coverage. The questions in the
Review the Concepts section check students’ understanding of the core content,
Exercises give more intensive practice working with the concepts and techniques
introduced in the chapter, and Empirical Exercises allow the students to apply
what they have learned to answer real-world empirical questions. At the end of
the textbook, the References section lists sources for further reading. the Appen-
dfix provides statistical tables, and a Glossary conveniently defines all the key terms
in the book,

Supplements to Accompany the Textbook

The online supplements accompanying the Second Edition of Introduction to
Leonometrics include the Solutions Manual, Test Bank (by Manfred W. Keil of
Claremont McKenna College). and PowerPoint Lecture Notes with text figures,
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tables, and Key Concepts. The Solutions Manual includes solutions to all the end-
of-chapter excreises, while the Test Bank, offered in Test Generator Software (Test-
Gen with QuizMaster), provides a rich supply of easily edited test problems and
questions of various types to meet specific course needs. These resources are avail-
able for downlead from the [nstructor’s Resource Center at www.aw-be.comfire,
If instructors prefer their supplements on a CD-ROM, our Instructor's Resource
Disk, available for Windows and Macintosh, contains the PowerPoint Lecture
Notes, the Test Bank, and the Solutions Manual.

In addition, a Companion Web site. found at www.aw-be.comistock_watson,
provides a wide range of additional resources for siudents and faculty. These
include data sets [or all the text examples, replication fites for empincal results
reporied in the text, data sets for the end-of-chapter Empirical Exercises, EViews
and STATA tutorials for students. and an Excel add-in for OLS regressions,
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CHAPTER | } Economic
- Questions and Data

Ask a half dozen economeltricians what cconometrics is and you could get a
half dozen different answers. One might tcll you that cconometrics is the
science of testing economic theorigg, A second might tell you that econometrics

is the set of tools used for forecasting future values of economiy vanahles sich,

as a finn’s sales, the overall growth of the economy. or stock prices Another

might say that econometrics is the process of fitting mathematical economic
models to real-world data. A fourth might tell you that it is the scicnce and
aru of using histoncal data to make numerical, or quantitative, policy
recommendanons in government and business.

In fact, all these answers are right. At a broad level, econometrics is the

science and art of using economic theory and statistical technigues to analyze

economic dala. Econometric methods are used in many branches of economics,
including finance, labor economics, macroeconomics, micreeconomiics,
marketing, and economic policy. Economelric methods are also commonly used
in other social sciences. including political science and sociology.

This book introduces you to the core sel of methods used by
econometricians. We will use these methods to answcr a varicty of specific,
quanlitative questions taken from the world of business and government policy.
This chapter poscs four of those questions and discusses, in gencral terms, the
cconometric approach to answesing them. The chapter concludes with a survey
of the main types of data available Lo econometricians for answering these and

other quantitative economic questions.




CHAPTER 1

1.1

Economic Questions ond Dola
Economic Questions We Examine

Many decisions in economics, business, and government hinge on understanding
relationships among variables in the world around us. These decisions require
quantitative answers to quantitative questions

This book examines several quantitative guestions taken from current issues
in economics. Four of these questions concern education policy. racial bias in mort-
gage lending, cigarelte consumption, and macroeconontic [orecasting.

Question #1: Does Reducing Class Size
Improve Elementary School Education?

Proposals for reform of the U.S. public education system generate heated debate.
Many of the proposals concern the youngest students, those in elementary schools.
Elementary school education has various objectives. such as developing social
skills, but for many parents aad educators the most important objective is basic
academic learning: reading, writing, and basic mathematics One prominent pro-
posal for improving basic learning is to reduce class sizes at elementary schools.
With fewer students in the classtoom, the argument goes, each student gets more
of the teacher's attention, there are fewer class discuptions, learning is enhanced,
and grades improve.

Bul what, precisely, is the effect on elementary school cducation of reducing
class size? Reducing class size costs money: It requires hiring more teachers and,
if the school is already at capacity, building more classrooms. A decision maker
contemplating hiring more teachers must weigh these costs against the benefits.
To weigh cosis and benefits, however, the decision maker must bave a precise
quantitative understanding of the likely benefits. Is the beneficial effect on basic
learning of smaller classes large or small? 1s it possible 1hat smaller class size actu-
ally has no ctfect on basic learning?

Although common scnse and everyday experience may suggesl that more
learning occurs when there are fewer students, common scnse cannot provide a
quantitative answer to the question of what exactly is the effect on basic learning
of reducing class size. To provide such an answer, we must examine empirical
evidence—that is, evidence based on data—relating class size to basic learing in
clementary schools

In this book, we examine the relationship between class siz¢ and basic learn-
ing using data gathered from 420 California school districts in 1998, In the Cali-
fornia data, students in districts with small class sizes tend to perform better on
standardized tests than students in districts with larger classes. While this fact is
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consistent with the idea that smaller classes produce better tesi scores, il might
simply reflect many other advantages that students in districts with small classes
have over their counterparts in districts with large classes, For example, districts
with small class sizes tend to have wealthier residents than districts with large
classes, 50 students in small-class districts could have more opportunities for learn-
ing outside the classroom. It could be these extra leaming opportunities that lead
t0 higher test scores, not smaller class sizes. 1n Part 11, we use multiple regression
analvsis to isolate the effect of changes in class size from changes in other factors,
such as the economic background af the students,

Question #2: Is There Racial
Discrimination in the Market for Home Loans?

Most people buy their homes with the help of a mortgage, a large loan secured by
the value of the home. By law, U.S. lending institutions cannot take race into
account when deading to grant or deny a request for a mortgage: Applicants who
are identical in all ways but their race should be equally likely to have their mort-

gage applications approved. In theory. then, there should be 0o racial bias io mort-
gage lending.

In contrast to this theoretical conclusion, researchers a the Federa) Reserve
Bank of Boston found (using data from the early 1990s) that 28% of black appli-
cants are denied morigages, while enly 9% of white applicants are denied. Do
these data indicate that.in practice, there is racial bias in mortgage lending? If so,
how large is it?

The facl thal more black than white applicants are denied in the Boston Fed
data does not by itself provide evidence of discrimination by mortgage lenders,
because the black and while applicants differ in many ways other than their race.
Before concluding that there is bias in the mortgage market, these data musi be
examined more closely 10 see if there is a difference in the probabitity of being
denied for ntherwise ideniical applicants and. if so, whether this difference is large
or small. To do so, in Chapler 11 we introduce cconometric metbods that make it
possible to quantity the effect of race on chance of obtaining a morigage, holding
constani other applicant characteristics notably their ability to repay the loan.

p———

Question #3: How Much Do
Cigarette Taxes Reduce Smoking?

Cigarette smoking is a major public health concern worldwide. Many of Lhe
costs of smoking, such as the medical expenses of caring for those made sick by
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smoking and the less quantifiable costs to nonsmokers who prefer not to breathe
secondhand cigarette smoke, are borne by other members of society. Because
these costs are borne by people other than the smoker. there is a role for govern-
ment interveation in reducing cigarette consumplion. One of the most flexible
tools for cutting consumption is Lo increase taxes on cigarcites

Basic economics says tha if cigarette prices go up. consumption will go down.
But by how much? If the sales price goes up by 1%. by what percentage will the
quantity of cigarcttes sold decrease? The percentage change 1n the quantity
demanded resulting from a 1% increase n price is the price elasticity of demand.
If we want to reduce smoking by a certain amount. say 20%, by raising taxes, then
we necd Lo know the price elasticity to caloulate the price increase necessary to
achieve this reduction in consumption. But what is the price elasticity of demand
[or cigareltes”?

Although economic theory provides us with the concepts that help us answer
this guestion, it does not tell us the numerical value of the price clasticily of
demand. To learn the elasticity we muslt examine empirical evidence about the
behavior of smokers and potential smokers; in other words, we need to anatyze
data on cigarette consumption and prices.

The data we examme are cigareite sales, prices, taxes and personal income for
LS. stares in the 1980s and 1990s. In these data. states with low taxes, and thus low
cigarette prices, have high smoking rates, and siates with high prices have low
smoking rates. However, the analysis of these data is complicated because causal-
ity runs both ways: Low taxes lead to high demand, bul if there are many smokers
in the state then local politicians might try to keep cigarette taxes low to satisfy
their smoking constituents. [n Chapter 12 we study methods for handling this
“simultaneous causality” and use those methods to estimate the pricc elasticity of
cigarette demand.

Question #4: What Will
the Rate of Inflation Be Next Year?

It seems that people always want a sneak preview of the future. What will sales
be next year at a firm considering investing in new equipment? Wil the stock
market go up next month and, if so, by how much? Will city tax receipts next year
cover planned expenditures on city services? Will your microeconomics exam nexl
weck focus on cxternalities or monopolies? Will Saturday be a nice day to go to
the beach?
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One aspect of the fulure in which macrocconomists and financial economists
are particularly interested is the rate of overall price inflation during the next year.
A financial professional might advise a client whether to make a loan or to take
one out af a given rate ol interest, depending on her best guess of the rate of infla-
tion over the coming year. Economists al central banks like the Federal Reserve
Board in Washington, D.C., and the European Central Bank in Franklurt, Ger-
many, arc responsible for keeping the rate of price inflation under control. so their
decisions about how to set interest rates rely on the outlook lor inflation gver the
next year. If they think the rate of inflation will increase by a percentage point,
then they mighi increase interest rates by more than that to slow down an ccon-
omy thal. in their view, risks overheating. If they guess wrong, they risk causing
either an unnecessary recession or an undesirable jump in the rate of inflatjon.

Professional economists who rely on precise numerical forecasts use ccono-
melnic models to make those forecasts A forecaster’s job is to predict the future
using the past. and econometricians do this by using economic theory and statis-
tical techniques to quanltify relationships in historical data.

The data we usc to forecast inflation are the rates of inflation and uremploy-
ment in the United States An imporiant cmpirical relationship in macroeconomic
data is the “Phillips curve.” in which a currenuy low value of the unemployment
rate is associated with an increase in Lhe rate of inflation over the next year. One
ol the inflation forecasts we develop and evaluate in Chapler 14 is based on the
Phillips curve.

Quantitative Questions, Quantitative Answers

Euch of these four questions requires a numerical answer. Economic theory pro-
vides clues about thal answer—cigarette consumption ought to go down when the
price gocs up—bul the actual valuc of the number must be learned empirically.
that is. by analvzing daia. Because we usc¢ data to answer quantitative questions,
our answers always have some uncertainty: A different set of data would produce
a different numerical answer, Therefore, the conceptual framework for the analy-
sis needs to provide both a numerical answer 10 the question and a measure of
how precise the answer js.

The cunceptual framework uscd in this book is the multiple regression modcl,
the mainstav of econometrics. This mode). introduced in Part I1. provides a math-
ematical way to quantify how a change in one variable affocts another variable,
holding other things constant. For example, what effect does a change in class size
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have on test scores, holding constant student characteristics (such as famiiv
income) Lhat a school districl administrator cannot control? What effect does vour
race have on your chances of having a morigage application granted, holding con-
stant other [actors such as your ability to repay the loan? What effect does a 1'%
increase in the price of cigarettes have on cigarette consumption. halding constant
the income of smokers and potential smokers? The multiple regression model and
its extensions provide a framework for answering these questions using data and
for quantifying the uncerlainty associated with those answers.

Causal Effects and Idealized Experiments

Like many questions encountered in econometrics, the furst three questions in Sece-
tion 1.1 concern causal relationships among variables, In common usage. an action
is said to cause an puicome if the outcome is the direct resull, or consequence, of
that action. Touching a hot stove causes you to get burned; drinking water causes
you to be less thirsty; putting air in your tires causes them to inflate; putting fer-
tilizer on your tomato plants causes them to produce more tomatoes, Causulity
means that a specific action {applying fertilizer) leads to a specific, measurable
consequence (more tomataes).

Estimation of Causal Effects

How best mighl we measure the causal effect on tomato yield (measured in kilo-
grams) of applying a certain amount of fertilizer, say 100 grams of fertilizer per
squure meter?

One way to measure this causal effect is 1o conduct an experiment. In that
experiment, a horticultural researcher plants many plots of tormatoes. Each plot is
tended identically, with one exception: Some plots get 100 grams of fertilizer per
square meter, while the rest get none. Moreover, whether a plot is fertilized or not
is determined randomly by a computer, ensuring that any other differences
beiween the plots are unrelated to whether they receive fertilizer. At the end of
the growing s¢ason, the horticulturalist weighs the harvest from each plot. The dif-
ference between the average yield per square meter of the treated and untreated
plots is the effecl on lomato production of the fertilizer treatment.

This is an example of a randomized controlied expcriment. It is controlled in
the sense that there are both a control gromp that receives no trealmeat (no
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fertihzer) and a treatment group that receives the treatment (100 g/m? of fertil-
izer). It is randomized in Lhe sense that the treatment is assigned randomly. This
random assignment eliminates the possibility of a systemalic relationship between,
for example. how sunny the plot is and whether it reccives fertilizer, so that the
only systematic diffcrence berween Lhe treaiment and control groups is the ireat-
ment, [f this experiment is properly implemented on a large enough scale, then it
will yield an estimate of the causal effect on the outcome of interest (tomato pro-
duction) of the treatment (applying 100 g/m? of fertilizer).

In this boak, the causal effect is defined 10 be the effect on an outcome of a
given action or wreatmenl, as measured in an ideal randomized controlled exper-
iment. Tn such an experiment. the only systematic reason for differences in out-
comes between the treatment and control groups is the treatment itself.

It 1s possible to imagine an ideal randomized controlled experiment to answer
each ol the first three questions in Section 1.1. For example, to study class size one
can imagine randomly assigning “Ireatments” of different class sizes 1o different
groups of students. If the experiment is designed and executed so that the only sys-
tematic difference between the groups of students is their class size. then in the-
ory this experiment would esumate Ihe cffect on test scores of reducing class size.
holding all else constant.

The concept of an ideal randomized controlled expeniment is uscful because
it gives a definition of a causal effect. In pracuice, however, it is not possible to per-
form ideal experiments. In fact, experiments are rare in econometncs because
often 1hey are uncthical, impossible to execute satisfactorily, or prohibitively
expensive. The concept of the ideal randomized controlled experiment does, how-
cver, provide a theoretical benchmurk for an econometric analysis of causal effects
using actual data.

Forecasting and Causality

Although the first three questions in Section 1.1 concern causal effects, the
fourth—forecasting inflation—does not. You do not need to know a causal rela-
tionship to make a good forecast. A good way lo “[orecast” if it is raining is to
ohserve whether pedestrians are using umbrellas, but the act of using an umbrella
does not cause it to rajn.

Even though forecasling need not involve causal relationships, econoniic
theory suggests patterns and relationships that might be uscful for forecasting. As
we see in Chapter 14, multiple regression analysis allows us to quantify historical
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relationships suggesied by economic Lheory, to check whether those relationships
have been stable over time, (o make quantitative forecasts sbout the future, and
to assess the accuracy of those forecasts

Data: Sources and Types

In cconometrics, data come from one of two sources: experiments of nonexperi-
mental ghservations of the world. This book examines both experimental and pon-
experimental data sets

Experimental versus Observational Data

Experimental data come from cxperimenis designed to evaluute a treatment or
policy or 1o investigate a causal effect. For example, the state of Tennessee financed
a large randomized conlrolled experiment examining class size in the 1980s In that
cxperiment, which we examine in Chapter 13, thousands of students were ran-
domly assigned to classes of different sizes {or several vears and werce given annual
standardized tests

The ‘Tennessee class size experiment cost millions of dollars and required the
ongoing cooperation of many administrators, parents, and teachers over several
ycars. Because real-world experiments with human subjects are difficult to admin-
ister and to control, they have flaws relative to ideal randomized controiled exper-
iments. Morcover, in some circumstances experiments arc not only expensive and
difficult to administer but also unethical. (Would it be ethical 1o offer randomly
sclected tcenagers inexpensive cigarclies 10 sc¢ how many they buy?) Because of
these financial. practical. and ethical problems. experiments in economics are rare,
Instead, most economic dala are abtained by observing real-world behavior.

Data obtained by observing actual behavior outside an experimental setting
are callcd observational data. Obscrvational data are coliected using surveys, such
as a telephone survey of consurmners, and adminisirative records such as historical
records on morigage applications maintained by lending institutions.

Observational data pose major challenges 1o econometric attempts to esti-
male causal effects, and the tools of econometrics to tackle these challenges. In 1he
real world, levels of “treatment” (the amount of fertilizer in the tomato example,
the student-1eacher ratio in the class size example) are not assigned al random,
so it is difficult lo sorl out the clfect of the “trealment” from other relevant
{uctors Much of econometrics, and much of this book, is devoted to methods for
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meeting the challenges encountered when rcal-world data arc used to estimate
causal effecis

Whether the data are experimental or observaiional, data sets come in three
main lypes: cross-sectional data, time serics data, and panel data. In this book you
will encounter all three types.

Cross-Sectional Data

Dala on dilferenl entities—workers, consumers. firms, governmental units. and so
forth—I[or a single time period are called cross-sectional data. For cxample, the
data on test scores in California school districts are cross seclional. Those data are
for 420 enlities (school districts) for a single time period (1998). In peneral, the
number of entities on which we have obscrvations is denoted by »; so for exam-
ple.in the California data set n = 420.

The California test score data set contains measuremenls of several different
variables far each district. Some of these data are tabulated in'lable 1.1. Each row
lists daia for a different district. For example, the average test score for the first
district ("district #1) is 690.8; this is the average of the math and science test scores
for all fifth graders in tha1 district in 1998 on a standardized tes! (thc Stanford
Achicvement Test). The average student-teacher ratio in that district is 17.89,
that is, Lhe numbcr of studenis in district #1, divided by the number of classroom
teachers in district #1,is 17.89. Average cxpenditure per pupil in district #1 is
$6,385. The percentage of students in that district still iearning English—that is.
the percentage of students for whom English is a second language and who are
not vet proficient in English—is 0%.

The remaining rows present data for other districts. The order of the rows is
arbitrary, and the number of the district, which is called the observation sumber,
is an arbitrarily assigned number that organizes the data. As you can see in the
tabic, all the variables listed vary considerably.

With cross-sectional data, we can learn about relationships among variables
by studying differences across people, firms, or other cconomic entities during a
single lime period.

Time Series Data

Time series data arc data for a single entity (person, firm, country) collected at
multiple fime periods. Our data set on the rates of inflation and unemployment in
the United States is an example of a time series data sel. The data set contains
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TABLE 1.1 Selecied Observations on Test Scores
and Other Variahles for California School Districts in 1998
Parcentage of
Obsarvation District Avercge Student-Teacher Expenditure Students
{District) Number  Test Score [Fifth Grode) Ratio per Pupil {§) Learning English
! )8 17.89 S6185 NN%
2 661.2 J1.52 5049 4.6
3 3.6 18.70 5502 0
4 _ 64;7 o 17..‘;6_- o2 no
5 648 18.67 5236 139
a1 T oeso 2w w0 w3
419 672.2 20.20 4776 0
42( _ 6558 ) I‘-J.{H 5993 50

Note: The California test seure data set is desomibed in Appendix 4.1

observations on two variables (1he rates of inflavon and unemployment) for a
single entity (the United States) for 183 time periods. Each time period in this data
scl is a guarier of a year (the first quarter is January, February, and March: the sec-
ond quarter is April. May, and June: and so forth). The abservations in this data
sel begin in the second quarter of 1959. which is denoted 1959:11. and end in the
fourth quarter of 2004 (2004:1V). The number of cbscrvations (1hat is. ime peri-
ods) in a time series data set is denoted by T. Because there are 183 quarters from
1959:11 10 2004:1V, this data set contains 7 = 183 observalions.

Some observations in this data set are listed in Table 1.2. The data in each row
correspond 1o a ditferent time period (year and quarter). In the second quarler of
1959, [or example, the rate of price inflation was 0.7% per year at an annual rate,
In other words, if inflation had continued for 12 months at its rate during the sec-
ond quarter of 1959, the overall price ievel {as measured by the Consumer Price
index, CPI) would have increased by 0.7%. In the second quarter of 1959, the rate
of unemployment was 5.1%; that is. 5.1 % of the labor force reported that thev did
not have a job but were looking for work. In the third quarter of 1959, the rate of
CPT inflation was 2.1%, and the rate of unemployment was 5,3%.
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ot .
, Urnemployment
! Number {Yoarxguarter) (% par yaer ot on annual rate) Rote (%}
| 1 1959:11 1.7% 5.1%
2 1959:111 21 53
3 1959:1V 24 5.6
4 1960:1 X 51
5 1o60:11 24 5.2
181 2004:11 43 56
82 2004:31 1.6 5.4
153 2004: IV 3.5 5.4
Xiute The LS wnflohion and uncmployment dula sel w described in Appendia 141,

By tracking a single entity over time, 1ime series data can be used to study the
cvolution of variables over time and to forecast future values of those variables

Panel Data

Panel data, also called longitndinal data, are data for multiple entities in which
each eutity is obscerved at two or more time periods. Qur dala on cigarette con-
sumption and prices are an example of a panel data sct, and selected variables and
observatioms in that data set are listed in Table 1.3, The number of entities in a
pancl data set is denoted by n1,and the number of time periods is denoted by 7. In
the cigaretie data set. we have observations on 1 = 48 continental U.S. states (enti-
ties) for T = 11 years (lime periods) from 1985 to 1995. Thus there is a total of
n X T =48 x || = 528 observations.

Some data from the cigarctie consumption data sct are listed in Table 1.3. The
first block of 48 observations lists the data for each slate in 1985, organized alpha-
hetically from Alabama to Wyoming. The next block of 48 observations lists the
data lor 1986, and so forh, through 1995. For example, in 1985, cigarctte sales in
Arkansas were 128.5 packs per capita (the total number of packs of cigarettes sald
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TABLE 1.3 Selected Observolions on Cigarete Sales, Pricos,
and Taxes, by Siate ond Yeor for U.S. Skates, 1985-1995

Average Price Totol Taxes
OQhservation Cigoretis Sales por Poci (cigarette sxcise
Number Stare Yaar {podks per caphia] [incduding laxss] mx + soles tax)
i Alshama 1985 1165 51022 o3 !
2 Arkansas 1985 1285 1015 {R¥]}
3 Arizona 1985 104.5 1.086 1.362
- — -- _ - - -— - _ —
47 West Virginia 1985 1128 1.0%9 0.342
43 Wyoming 1985 129.4 0.935 11,2404
49 Alabama 1986 1z.2 1.080 0.334
_ _ . . _ o _ B
9 Wyoming 1986 127.8 tony? G.240
97 Alabama 1987 1158 1.§35 0335
528 Wyoming 1995 1122 1.585 0.360)

Note. The oigarctie comsumpnion dala set is descnibed in Appendix 12,

in Arkansas in 1985 divided by the total population of Arkansas in 1985 equals
128.5). The averuge price of a pack of cigarettes in Arkansas in 1985, including tax,
was $1.015, of which 37¢ wenl to federal. stale, and [ocal taxes.

Panel data can be used to lcarn about economic rulationships from the expe-
riences of the many dif(eren! entities in the data set and from the evolulion over
time of the variables for each entity.

The definitions of cross-sectional data. time series data, and pancl data are
summarized in Key Concept 1.1,
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Cross-sectional data consist of multiple entities observed at a single
time period.

Time series data cousist of a single entity observed at multiple time
periods.

Panel data (also known as longitudinal data) consist of multiple entities,
where each entity is observed at iwo or more time periods.

Summary

1. Many decisions in business and economics require quantitative estimates of how
a change in one vaniable affects another variable.

2. Conceptually, the way to estimate a causal effect is in an ideal randomized con-
trolled experiment, but performing such experimenis in economic applications s
usually unethical, impractical, or 1o expensive.

3. Econometrics provides tools for estimating causal effects using either observa-
lional (nonexperimental) data or data from real-world, imperfect experiments.

4. Cross-sectional data are gathered by observing mulliple entities at a single point
i timc; time series data are gathered by observing a single entity at multiple points
in time; and panel data are gathered by observing multiple entities, each of which
is observed at mulltiple points in lime.

Key Terms

randomized controlied experiment () cross-sectional data (11)
control group (8) observation number {11)
Ireatment group (9) time series data (11)
causal effect (9) panel data (13)
experimental data {10) longitudinal data (13)

observational data (10}
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Review the Concepts

L1 Design a hypolhetical ideal randomized eontrolled cxperiment lo study the
cffect of hours spent studying on performance on microcconomics exams.
Suggest some impediments to implementing this experiment in praclice.

1.2 Design a hypothetical idcal randomized controlled experiment 1o study the
c¢lTect on highway traffic deaths of wearing seat belts. Supgest some imped-
iments lo implementing this experiment in practice.

1.3 You are asked Lo study the relationship between hours spent on employce
training (measured in hours per worker per week) in a2 manufacturing plant
and the productivity of its workers (output per warkcr per hour). Describe:

a. an ideal randomized controlled experiment 1o measure this causal
cliect:

b. an observationul cross-sectional data set with which you could study
this effeci;

¢. an observational time series data set for studying this effcct: and

d. an observational panel data set for studying this clfect.



CHAPTER 2 [Review of Probability

This chapter reviews the core ideas of the theory of probabilitv thyf arg

needed to understand regression analysis and econometrics. We assume

that you have taken an introductory course in probability and statistics. If your
knowledge of probahility is stale, vou should refresh it by reading this chapter. If
you feel confident with the material, you still should skim the chapter and the
terms and concepts at the end to make surc you are familiar with the ideas and
notation.

Most aspects of the world around us have an element of randomness. The
theory of probability provides mathematical 1ools for quantifying and describing
this randomness. Section 2.1 revicws probahility distribulions for a single
random vartable, and Section 2.2 covers the mathematical expectation. mean,
and variance ol a single random variable. Most of the intercsting problems in
economics involve more than ong variable, and Section 2.3 introduces the basic
¢lemcnts of probability theory for two randem variables. Section 2.4 discusses
three special probability distributions that play a central role in statistics and
econametrics: the normal, chi-squared, and F distributions.

The fina! two scctions of this chapter focus an a specific source of
randomness of central importance in econometrics: the randomness that arises
hy randomly drawing a sample ol data from a larger populaticon. For example,
suppose you survey ten recent college graduates sclected at random. record (ar
“observe”) their carnings. and compute the average earnings using these len

data points (or “observalions™). Because you chose the sampic at random, you

17
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2.1

could have chosen ten different graduates by pure random chance: had you
done 5o, you would have observed ten different earnings and vou would have
computed a different sample averape. Because the average earnings vary f[rom
one randomly chosen sample (o the next. the sample average is itself 2 random
vanable. Thecefore, the sample average has a probability distribution, referred
tu as its sampling distribution because this distribution describes the different
possible vatucs of the sample average that might have occurred had a diffecent
sample been drawn.

Section 2.5 discusses random sampling and the sampling distribution of the
sample average. This sampling distribution ts, in general, complicated. When the
sample size is sufficienily large. however. the sampling distribution of the sample
average is approximalely normal, a result known as the central imit theorem,

which is discussed in Section 2.6.

Random Variables
and Probability Distributions

Probabilities, the Sample
Space, and Random Variables

Probabilities and outcomes. The gender of the next new person you meet,
your grade on an exam, and the numbet of limes your computer will crash while
you are writing a term paper all have an element of chance or randomness. In each
of these examplcs. there is something not yet known thal is eventually revealed.

The mutually exclusive potenlial results of a random process are called the
outcomes. For example, your computer might never crash, it might crash once, it
might crash twice, and so on. Only one of these outcomes will actually occur (the
outcomes are mutually exclusive), and the outcomes need not be equally likely.

The probability of an outcome is Lhe proportion of the time that the outcome
oceurs in the Jong run, If the probability of your computer not crashing while you
are wriling a term paper is 8)%. then over Lhe course of writing many lerm papers.
you will complete 80% without a crash.
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The sample space and events.  Thc sct of all possible outcomes is called the
sample space. An event is a subset of the sample space., that is, an event is a set of
one or more oulcomes. The event “my computer will crash no more than once™ is
the set consisting ol (wo outcomes: “no crashes™ and “one crash.”

Random variables. A random variable is a numerical summary of a random
outcome. The number of times your compulter crashes while you arc writing a lerm
paper is random and takes on a numerical value, so it is a random variable.

Some random variables are Jiscrele and some are continuous, As their
names suggest, a discrete rundom variable takes on only a discrete set of values,
like 0. ).2.....whereas a continuous random variable takes on a continuum of
possible values.

Probability Distribution
of a Discrete Random Variable

Probability distribution. The probability distribution of a discrete random
variable is the list of all possible values of the variable and the probabiiity that
vach value will ocour, These probabilities sum to 1.

For example, let M be the number of times your computer crashes while you
are writing a term paper. The probability distribution of the random variable M is
the list of probabilities of cach possible outcome: the probability that M = 1),
denoted Pr(M = 0), is Lhe probability of no computer crashes, Pr(M = 1) is the
probability of a single computer crash: and so forth. An ¢xample of a probability
distribution for M is given in the second row of Table 2.1: in this distribution,
if vour computer crashes four times, you will quil and wrile the paper by hand.
According 10 this disiribution, the probability of no crashes is 80%: \he probabil-
ity of one ¢rash is 10%: and the probability of two, three, or four crashes is
respectively, 6%, 3%. and 1%. These probabilities sum to 100%. This probability
distribution is plotted in Figurc 2.1,

Probabilities of events. The probabilily of an event can be computed from
the probability distribution. For exampie. the probability of the event of onc or
two crashes is the sum of Lhe probabilities of the constituent outcomes That is,
PriM=TorM=2)=Pr(M=1) + Pr(M =2} =010 + (.06 = (1.16,0r 16%.

Cumulative probability distribution. The cumulative probabitity distribution
is the probability that the random variabile is less than or equal to a particular value.
The last row of Table 2.1 gives the cumulative probability distribution of the random
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TABLE 2.1 Probability of Your Computer Crashing M Times

Ourcome (number of crashas)

| a 1 2 3 4
| Probability distribution 0.80 0.l 0.0n K w0l
| Cumulative probability distribution 0.80 0.9 0.96 Yy

L |

variable M. For example, the probability of at most one crash, Pr{(M = 1), is %0%,
which is the sum of the probabilities of no crashes (80%) and of one crash (10%).
A cumulative probabulity distribation is also referred to as 4 cumulative dis-

tribution function, a ¢.d.f., or a cumulative distribution.

The Bernoulli distribution. An important special case of a discrete random
variable is when the random variable is binary, that is, the outcomes are Jor 1. A
binary random variable is called 3 Bernoulli random variable (in honor of the
sevenleenth-century Swiss mathematician and scientist Jacob Bernoulli), and its

probability distribution is called the Bernoulli distribution,

FIGURE 2.1  Probabifity Distribution of the Number of Computer Crashes

' The height of sach bar is the probobility thot the

\ computer crashes the indicoted number of fimes.

| The height of the first bor is 0.8, so the probobility

| ot O computer croshes is 80%. The height of the
second bar is 0.1, so the probablity of | com-

: puler crash is 10%, ond 5o forth for the other bars.
|
|
I

i 1 2 i

. 1
Number of crushes
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For example, iet G be the gender of lhe next new person you meet, where
G = Qindicates thal the person is male and G = 1 indicates that she is female. The
outcomes of (& and their probabilities thus are

_ J 1 with probability p
G = {0 with probability | — p, (21)
where p is the prabability of the next new person you meet being a woman. The
probability distribution in Equation (2.1) is the Bernoulli dJistribution.

Probability Distribution
of a Continuous Random Variable

Cumulative probability distribution. The cumulative probability distribu-
tion for a conlinuous variable is defined just as it is for a discrete random variable,
That is. the cumulative probability distribution of a continuous random variable
is the probusbility that the random variable is less than or equal to a particular
value.

For example. consider a student who drives from home Lo school. This student’s
commuling time can take on a continuum of values and. because it depends on ran-
dom factors such as the weather and traffic conditions, it is natural to treat it as a
conlinuous random variable. Figure 2.2a plots a hypothctical cumulative distribu-
tion of commuting limes. For example, the probability that the commute takes less
than 15 minuies is 20% and the probabilily that it takes less than 20 minutes is 78%.

Probability density function. Because a continuous random variable can take
on a continuum of possible vaiues. the probability distribution used for discrete
variables, which lists the probability of each possible value of the random variable,
is not suitable for continuous variables. Instead. the probability is summarized by
the probability desity function. The area under the probability density function
between any 1wo points is the probability that the random variable [alls between
those two points. A probability density function is also called a p.dLf., s density
function, or simply a density.

Figure 2.2b plots the probability density [unction of commuting times corre-
sponding to the cumulative distribution in Figure 2.2a. The probability that the
commute takes between 15 and 20 minutes is given by the area under the p.d.f
between 15 minutes and 20 minutes, which is 0.58, or 58%. Equivalently, this prob-
ability can be secn on the cumulative distribution in Figure 2.2a as the difference
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| FIGURE 2.2 Cumulative Distribution and Probability Density Functions of Commuting Time

Probability
" Pr (Commeting time < 20) = 0.78
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Figure 2.2a shows the cumulative probability distribution (or ¢.d.F.) of commuting times. The probability that o com-
muting time is less than 15 minules is 0.20 (or 20%), and the probobility thot it is less thon 20 minutes is 0.78 (78%).
Figure 2.2b shows the probability density function (or p.d.F.) of commuting times. Probobilities are given by areas
under the p.d.f. The probability that o commuting fime is between 15 and 20 minutes is 0.58 (58%), ond is given by
the orea under the curve betwesn 15 ond 20 minutes.
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hetween the probability that the commute is less than 20 minutes (78%) and the
probability that it is less than 15 minutes (20% ). Thus, the probability density func-
tion and the cumulative probability distribution show the same information in dif-
ferent formats,

Expected Values, Mean, and Variance

The Expected Value of a Random Variable

Expected value. The expected value of a random variablc Y. denoted E(Y). is
the long-run avcrage value of the random variable over many repeated trials or
occurtences The expected value of a discrete random variable is computed as a
wcighted average of the possible outcomes of that random variable. where the
weights arc the probabilitics of that outcome. The expected vatue of Yis also called
the expectation of Y or the mesn of ¥ and is denoled by u.

For examplc, suppose you loan a friend $100 at 10% interest. [€ the loan is
repaid vou get $110 (the principal of $100 plus interest of $10), but (here is a risk
of 1% that your friend will defauit and you will get nothing at all. Thus, the amouni
you are rcpatd is a random variable that cquals 3110 with probability 0.99 and
cquals $1) with probability 0,01, Over many such toans, 9% of the time you would
be paid back $110, but 1% of the time vou would get nothing. so on average vou
would he repaid $110 x 0.99 + $0 X (.01 = $108.90. Thus the expected value of
your repayment (or the “*mean repayment™) is $108.90.

As a second example, consider the number of computer crashes M with the
prohability distribution given in Table 2.1. The expecled value of M is the average
number ol crashes over many term papers, weighted by the frequency with which
a crash of a given size oceurs. Accordingly,

EM=0x080+1x010+2x006+3X003+4%x001 =035. (22

Thal is, the cxpected number of computer crashes whilc writing a term paper is
0.35. Of course. Lhe actnal number of crashes must always be an integer: it makes
no sens¢ 1o say that the computer crashed (.35 limes while wriling a particular
term paper! Rather, the caleulation in Equation (2.2) means that the average num-
ber of crashes over many such term papers is 0.35.

The formula for the expecied value of a discrete random variable Y that can
lake on & different values is given as Key Concept 2.1,

Expected value of a Bernoulli random variable. Animportant special cuse
of the general formula in Key Concept 2.1 is the mean of 8 Bernoulli random
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Supposc the random variable Y takes on k possible values, y,. .. .. y,. where y,
denotes the first value, y, denotes the second value, and so forth, and that the prob-
ability that ¥ takes on y, is p,, the probability thal Y takes on y, is p,. and 50 forth.
The expected value of Y, denoted E(Y), is

R
E(Y)=y,py+papat -+ Py = ‘E;m- (2.3)

where the notation “ Ef.,y, p;” means “the sum of y, p; for { running from 1 to k.”
The expected value of Y is also called the mean of ¥ or the expectation of Y and
is denoted iy

varigble. Let G be the Bernoulli random variable with the probability disiribution
in Equation (2.1). The expected value of GG 1s

ElG)=1Xp+0x(1-p)=p. (24)

Thus the expecied value of a Bernoulli random variable is p, the probability Lhat
it takes on the value "1."

Expected value of a continuous random variable. The cxpected value ol
a continugus random variable is also the probability-weighted average of the pos-
sible cutcomes of the random vanable. Because a continuous random variable can
Llake on a continuum of possible values, the formal mathematical definition of its
expectalion involves calculus and its definition is given in Appendix 17.].

The Standard Deviation and Variance

The variance and standard deviation measure the dispersion or the “spread” of a
probability distribution. The variance of a random variable Y, denoted var(Y). is
the expecied value of the square of the deviation of Y from its mean: var(Y) =
EI(Y - ).

Because the variance invalves the square of Y, the units of the variance are
the units of the square of Y, which makes the variance awkward to interpret. It is
therefore common to measure the spread by the standard deviation. which is the
square rool of the variance and is denated oy, The standard deviation has the
same units as Y. These definilions are summarized in Key Concept 2.2,



VARIANCE AND STANDARD DEVIATION

I'he variance of the discrete random variable Y, denoted o3, is P2

k
oy =var(Y) = E(Y — iy’ = 3 i = my)* e (2.5)
i=1

ime standard deviation of Y'is oy, the square root of the variance. The units of the

standard deviation are the same as the units of Y.

For cxample. the variance of the number of computer crashes M is the prob-
ability-weighted average of the squarcd difference between M and its mean, 0.35:

var(M) = (0 — 0.35)% X 0.80 + (1 — 0.35)2 X 0.10 + (2 — 0.35)* % 0.06

+(3 - 035 x 0.03 + (4 — 0.35)? X 0.01 = 0.6475. (26)

The standard deviation of M is the square root of the variance, s0 oy, = V0.647
= 0.80.

Variance of a Bernoulli random variable. Thc mean of the Bernoulli ran-
dom variable G with probability distribution in Equation (2.1) is ug = p [Equa-
tion (2.4)] so its variance is

var(G) =od=0—plx(1=p)+ (1 =pPxp=p(l-p). (27)

Thus the standard deviation of a Bernoulli random variable iso; = Vp(1 — p).

Mean and Variance of

a Linear Function of a Random Variable

This section discusscs random variables (say, X and Y ) that are related by a linear
function. For cxample, consider an income tax scheme under which a worker is
taxed at a rate of 20% on his or her earnings and then given a (tax-free) grant of

$2000. Under this tax scheme, after-1ax carnings Y arc related to pre-tax earnings
X by the equation

Y = 2000 + 0.8X. (2.8)

That is, after-tax earnings Y is 80% of pre-tax earnings X, plus $2000.
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Suppose an individual's pre-tax earnings next year are a random variable with
mean p, and variance o}. Because pre-tax earnings are random. so are after-tax
earnings. What are the mean and standard deviations of her after-tax earnings
under this tax? After taxes, her earnings are 80% of the original pre-tax carnings.
plus $2,000. Thus the expected value of her after-tax earnings is

E(Y) = py = 2000 + 08z, 9)

The variance of after-lax earnings is 1he expected value of (Y — u,)?. Because
Y=2000-08X.Y — uy = 2000 + 0.8X ~ (2000 + U.8uy) = 0.8(X — uy). Thus,
EI(Y — uy)?] = EJ[08(X — uy)?) = 0.64E[(X — my)’]- It follows that var(Y) =
0.64var{ X}, so, taking the square root of the variance, the standard deviation of Y
is

oy = 080, (2.10)

That is, the standard deviation of the distribution of her after-lax earnings is 80%
of the standard deviation of the distribution of pre-tax earnings.

This analysis can be generalized so that Y depends on X with an intercept a
(instead of $2000) and a slope b (instead of 0.8). so that

Y=a+bX (2.11)

Then the mean and variance of Y are
py=a+ bpy and {2.12)
o} = blay. {2.13)

and the standard deviation of Y is oy = bo,. The expressions in Equations (2.9)
and {2.10) are applications of the more gencral formulas in Equalions (2.12) and
(2.13) witha = 2000 and & = 0.8.

Other Measures of the Shape of a Distribution

The mean and standard deviation mecasure two important features of a distribu-
tion: its cenler (the mean) and its spread (the standard deviation). This section dis-
cusses measures of two other features of a distribution: the skewness, which

it wibnantivnm mend ph o Beaoaemin kil

measnres the lorlk Al viematemrafn A
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how thick, or *heavy,” are its tails. The mean, variance, skewness, and kurtosis are
all based on what are called the moments of a distribution.

Skewness. Figure 2.3 plots four distributions, two which are symmetric and two
which are not. Visually. the distribution in Figure 2.3d appears to deviate more
from symmetry than does the distribution in Figure 2.3c. The skewness of a distri-
bution pravides a mathematical way to describe how much a distribution deviates
from symmetry.

The skewness of the distribution of a random vanable Y is

— E
Skewness = Y. )] (2.14)

o}

where ry is the standard deviation of Y. For a symmetric distribution, a value of
Y a given amount abovc its mean js just as likely as a value of ¥ the same amount
below its mean, If so, then positive values of (Y — uy)® will be offset on average
(in expeciation) by equally likely negativc values. Thus. for a symmetric distribu-
tion, E[(Y - w&,)*] = 0: the skewness of a symmetric disiribution is zero. If a
distribution is not symmetric, then a pusitive value of (Y — py)* generally is not
offset on average by an equally likely nepative value, so the skewness is nonzero
for a distribution that is not symmetric. Dividing by ¢} in the denominator of
Equation {2.14) cancels the units of Y? in the numerator, so the skewness is unit
free; in other words, changing the units of ¥ does not change its skewness.

Below cach of the four distribulions in Figure 2.3 is its skewness. If a disini-
bution has a long right tail, positive values of (Y — )" are not [ully offset by neg-
alive values, and the skewness is positive. I a distribution has a long left tail, its
skewness is negalive.

Kurtosis. The kurtosis of a distribution is a measure of how much mass is in its
tails and, therefore. is a measure of how much of the variance of Y arises from
extreme values. An extreme value of Y is called an outlier. The greater the kurto-
sis of a distribution, the more likely are outliers.

The kurtosis of the distribution of Y is

Fl

Kurtosis = _E_[_(_Y:—P))l (2.15)
Ty

If a distribution has a large amount of mass in its tails. then some extreme depar-

tures of ¥ from its mean are likely, and these very large values will lead to large

values, on average (in expectation), of {Y — u,)'. Thus, for a distribution with a

large nmount of mass in its tails, the kurtosis will be large. Because (¥ ~ uy)* can-

not be negative, the kurtosis cannol be negative,
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Four Distributions with Different Skewness and Kurtosis

FIGURE 2.3
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(c) Skewness = —0.1_ kurtosis = 5

All of these distributions have o mean of 0 and o voriance of 1, The distributions with skewness of zero (o
and b} are symmetric; the disiributions with nonzero skewness {c and d) are not symmetric. The distributions
with kurtosis exceeding 3 (b~d) have heavy tails.

(d) Skewness = 0.6 kurtosn = 5

The kurtosis of a normally distributed random variable is 3, so a random vari-
ablc with kurtosis exceeding 3 has more mass in its tails than a normal random
variable. A distribution with kurtosis exceeding 3 is called leptokurtic or, more
simply. heavy-tailed. Like skewness, the kurtosis is unit free, so changing the units
of Y docs not change its kurtosis.

Below each of the four distributions in Figure 2.3 is its kurtosis. The distribu-
tions in Figures 2.3b—d arc heavy-tailed.
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Moments. The mean of ¥. E(Y). is also calied the first moment of ¥, and the
cxpected value of the square of Y, E( Y?).is called the second moment of Y. In
general, the expected value of Y is called the »™ moment of the random variable
Y. That is.the #" moment of Y is £(Y"). The skewness is a function of the first, sec-
ond, and third moments of ¥, and the kuriosis is a function of the first through
fourth moments of Y.

Two Random Variables

Most of the interesting questions in economics involve two or more variables. Are
college graduates mare likely 10 have a jub than nongraduates? How does the dis-
tribution of income for women compare Lo that for men? These yucstions concern
the distribution of two random variables, considered together (education and
cmplovment siatus in the first example. income and gender in the second).
Answering such questions requires an understanding of the concepts of joint, mar-
ginal, and condilional probability distributions.

Joint and Marginal Distributions

Joint distribution. Thc joint probability distribution of 1wo discrete random
variables. say X and Y, is the probability that the random variables simultaneousiy
take on certain values, say x and y. The probabilities of all possible (x.¥) combi-
nations sum to 1. The joint probability distribution can be written as the function
PriX=x.Y =y)

For example, weathcr conditions—whether or not it is raining—affect the
commuting time of the student commuter in Section 2.1. Let ¥ be a binary ran-
dom variable that equals 1 if the commule is short (less than 20 minutes) and
equals () otherwise, and let X be a binary random variable thay equals 0 if it is rain-
ing and 1 if not. Between Lhese two random variables, there are four possible out-
comes: il rains and the commute is long (X = (). ¥ = 0); rain and short commule
(X =0,Y = 1);no rain and long commute (X = 1. ¥ = 0); and no rain and short
commute (X = 1, Y = 1). The joint probability distribution is the frequency with
which each of these four outcomes occurs over many repealed commutes.

An example of a joint distribution of these (wo variables is given in Table 2.2,
According to this distribution, over many commules, 15% of the days have rain
and a long commute (X = 0. Y = 0); that is. the prababilily of a long, rainy com-
mute is 13%. or Pr(X =0, Y =0)=0.15. Also, Pr(X =0, ¥ = 1) = 0.15,
Pr(X = 1.Y =0)=0.07.and Pr(X = 1, ¥ = 1) = 0.63. These four possible out-
comus are mutually exclusive and constitute the sample space so the four proba-
bilities sum 10 1.
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TABLE 2.2 Joint Disiribution of Weather Condifions and Commeting Times

Rain (X = 0) No Rain (X = 1) Total
l Long Commute (Y = ) 0.15 0.07 0.2
Short Commute (¥ = 1) - - 0,15- E.ﬁ.'i ns
Total _030_ - _ 0.73 - 1.0

Marginal probability distribution. 'The marginu} probability distribustion of
arandom variable Y is just another name for its probability distribution. This term
is used to distinguish the distribution of Y alone (Lhe marginal distribution) from

the joint distribution of ¥ and ancther random variablc.

The marginal distribution of ¥ can be compuled from the joint distribution of
X and Y by adding up the probabilities ol all possible oulcomes [or which Y takes
on a specificd value. 1[ X can take on / diffcrent values x|.. .., x;, then the marginal

probability that ¥ takes on the value y is

!
P(Y =y) = D Pr(X =x,Y =y) (2.16)
=1

For example, in Table 22, the probability of a long rainy commute is 15% and
the prabability of a long commute with no rain is 7%, so the probability of a long
commute (rainy or nol} is 22%. The marginal disinibution of commuring times is
given in the final column of Table 2.2. Similarly, the marginal probability that it

will rain is 30%, as shown in the final row ol Table 2.2.

Conditional Distributions

Conditional distribution.  The distribulion of a random variable Y conditional
on another random variable X taking on a specilic value is called the conditional
distribution of ¥ given X. The conditionzl probability that ¥ takes on the value y

whep X takes on the value x is written Pr{¥ = y|.X = x).

For example, what is the probability of a long commute (Y = 0) if you know
it 1s raining (X = 0)? From Table 2.2, the joint probability of a rainy short com-
mute is 15% and the joint probability of a rainy long commute is 5%, so if it is
raining a long commute and a short commute are equally likely. Thus, the proba-
bilitv of a long commute (Y = 0). conditional on it being rainy (X = 0),i5 30%., or
Pr{Y = 0. X = 0) = 050, Equivalently. the marginal probability of rain is 30%: 1hat
I8, over many commutes it rains 30% of the time, Of this 30% of commutes, $0%

of the time the commute is long (0.15/0.3)),
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TABLE 2.3

Joint ond Condiional Disiributions of Computer Crashes (M and Computer Age (A)

A. Joint Distribution

M=0 M= M=2 M=3 M= Tokol

Old computer (A = 0.35 1.065 0.05 0028 n.o1 0.50
New computer (A & 1) 0.45 0035 0.01 oS 0.00 050

 Fotal 0.8 0.1 006 om 0ol 1.00

| B. Conditionol Distributions of M given A

M=0 M= M=2 Mec] M=& Tared

DPrMA = 0) 0.70 0.03 0.10 .05 002 1.00
— — - — —_— —_ = . _*

P A=1 .90 047 0.02 an u.00 1.00

In general. the conditional distribution of Y given X = x is

Pr(X =x,¥ =y)
Pr(X = x)

Pr(Y = y|X=x)= (2.17)

For example, the conditional probability of 8 long commute given that it is rainy
isPr(Y=0/X=0)=Pr(X =0,Y=0)/Pr(X = 0) = 0.15/0.30 = 0.50.

As a second example, consider a modification of the crashing computer exam-
ple. Suppose you use a compuler in the library to type your term paper and the
librarian randomly assigns you a computer from those available, half of which are
new and hall of which are old. Because you are randomly assigned Lo a computer,
the age of 1he compuier you use. A (= 1 if the computer is new, = 0if it is old), is
a random variable. Suppose the joim distribution of the random variables M and
A is given in Part A of Table 2.3. Then the conditonal distribytion of computer
crashes, given the age of the computer, is given in Parnt B of the table. For exam-
ple. the joint probability M = 0 and A = is 0.35; because halif the computers are
old. the condirional probability of no crashes, given that you are using an old com-
puter,is Pr(M = (1A = 0) = PriM = 0,A = 0)/Pr(A = () = 0.35/0.50 = 0.70.0r
70%. In contrast, the conditional probability of no crashes given that you are
assigned a new computer is 90%. According to the conditional distributions in
Part B of Table 2.3, the newer computers are less likely to crash than the old ones:

for example. the probability of three crashes is 5% with an old computer but 1%
with a new compuler.
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Conditional expectation. The conditional expectation of Y given X, also
called the conditional mean of ¥ given X, is thc mean of the conditional distribu-
tion of ¥ given X.That is, the conditional expectation is the expected value of Y,
compuiced using the conditional distribution of ¥ given X. If Y takes on k values
) 2T ¥5. then the conditional mean of ¥ given X = x is

k
E(Y|X =x)= 25 Pr(Y = y]X = 2. {2.18)
=1
For cxample, based on the conditional distributions in Table 2.3, Lhe expected
number of computer crashes. given that the computer is old. is E{M|A = ) =
0070+ 1 X013 +2x010+3x005 + 4 x0.02 = 0.56. The expecled num-
ber of computer crashes. given that the computer is new. is E(M[A = 1) = 0,14,
less than for the old computers.
The conditional expectation of ¥ given X = x is just the mean value of ¥ when
X = x.In the cxample of Table 2.3, Lhe mean number of crashes is 0.56 for old com-
puters. so the conditional expectation of ¥ given that the computer is old is 0.56.
Similarly, smong new computers, the meaa number of crashes is 0.14, that is, the
conditional expectation of ¥ given that the computer is new is 0.14.

The law of iterated expectations. The mcan of Y is the weighted average of
the conditional expectation of Y given X. weighted by the probability distribution
of X. For examplc, the mean height of adults is the weighted average of the mean
height of men and the mean height of women. weighted by the propertions of men
and women. Stated mathemalically, if X 1akes on the I values x,... .. x,, then

E(Y) = i E(Y]X = x)Pe(X = x). (2.19)
i-1

Equation (2.19) follows from Equations {2.18) and (2.17) (sec Excrcisc 2.19).
Stated differently. the expectation of Y is the expectation of the conditional
expectation of Y given X,

E(Y) = E|E(Y| X)), (2.20)

where the inner expecialion on the right-hand side of Equation (2.20) is computed
using the conditional distribution of Y given X and the outer expectation is com-
puted using the marginal distribution of X. Equation (2.20) is known as the law of
iterated expectations.

For example. the mean number of crashes M is the weighted average of the
conditional expectation of M given that it is old and the vonditional expectation
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of M given that it is new.so E(M) = E(M|A = 0) X Pr(A =0} + E(M]A =1} X
Pr{A = 1) = 0.56 X 0.50 + 0.14 % (050 = 0.35. This i8 the mean of the marginal
distribution of M, as calculated in Equation (2.2).

The law of iteraled expectations implies thal if the conditional mean of Y
given X is zero, Lhen the mean of Y is zero. This is an immediate conscquence of
Equation (2.20):if £{Y]X) = 0,then E(Y) = E[E(Y|X)] = E[0] = 0.Said differ-
ently.if the mean of ¥ given X is zero, then it must be that the probability-weighted
average of these conditional means is zero, thal is, the mean of ¥ must be zero.

The law of iterated expectations also applies to expectations that are condi-
tional on multiple random variablcs. For example, let X, Y, and Z be random vari-
ablcs that are jointly distributed. Then the law of ileratcd expectalions says that
E(Y) = E[E(Y . X,Z)).where E(Y| X, Z) is the condilional expectation of ¥ given
buth X and Z. For example. in the computer crash iliustration of Table 2.3, let P
denote the number of programs installed on the computer: then £{M| A, P)is the
expected number of crashes for a computer with age A that has P programs
installed. The expected number of crashes overall, E(M). is the weighted avcrage
of the expected number of crashes for a computer with age A and number of
programs P, weighted by the proportion of computers with that value of both A
and P.

Exercise 2.20 provides some additional propertics of conditional expectations
with multiple vaniables.

Conditional variance. The variance of ¥ conditional on X is \hc variance of
the conditional distribution of ¥ given X. Stated mathematically, the conditional
variance of ¥ given X is

var(Y|X = x) = ﬁ]y, —E(Y|X=x)PPY=y|X=x. (221
el

For example, the conditional variance of the number of crashes given that the
computer is old is var(M1A = ) = (0 — 0.56)* X 0.70 + (1 - 0.56)2 X 0.13 +
(2 - 0.56)2 x 0.10 + (3 - 0.56)2 X 0.05 + (4 — 0.56)> x 0.02 = (.99. The standard
deviation of the conditional distribution of M given that A = 0 is thus V0.99 =
0.99. The conditional variance of M given that A = | is the variance of the distri-
bution in the second row of Panel B of Table 2.3, which is .22, so the standard
deviation of M for new computers is V0.2Z = 0.47. For the conditional distribu-
tions in Table 2.3, the expected number of crashes [or new computers (0.14) is less
Lthan that for old computers (0.56). and the spread of the distribution of the num-
ber of crashes, as measured by the conditiona) standard deviation., is smaller for
new computers (0.47) than for old {3.99).
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independence

Two random variables X" and Y are independently distributed, or independent, if
knowing the value of one of the variables provides no information abou the other.
Specifically. X and Y are independent if the condilional distribution of Y given X
equals the marginal distributiop of ¥. That is. X and Y are independently distrib-
uted iL, for all values of x and y,

P(Y =y|X=x)=Pi(Y =y) ({indcpendenceof Xand Y)  (2.22)

Substituting Equarion {2.22) into Equation (2.17) gives an alternalive expres-
sion for independent random variables in texms of their joint distobution. If X and
¥ are mdependent, then

PriX=x.Y=y)=Pr(X =x)Pr(Y = y). (2.23)

That is, the joini distribution of two independent random variables is the product
of their marginai distributions

Covariance and Correlation

Covariance. One measure ol the exient 1o which two random variables move
together is their covariance. The covariance between X and Y is the expecled value
E[(X — )Y — pny)l. where py is the mean of X and py is the mean of Y. The
covariance is denoted by cov(X.Y ) or by . If X can take on / values and Y can
take on & values, then the covariance is given by whe formula

COV(X,Y) = oy = EI(X — (Y = ay)]
kot (2.24)
= E X = ey, — u)PIX = x, Y = y).

[RANNEN|

To interpret this formula. suppose that when X is grealer than its mean (so
that X — gz, is positive), then Y tends be greater than its mean {(sothat ¥ — uyis
positive), and when X is less than its mecan (3o that X ~ uy < 0), then Y tends to
be less than its mean (so that ¥ — u, < U). In both cases, the product (X' — uy)
X (Y — gy) tends to be positive. so the covariance is positive. In contrast, if X and
¥ tend Lo move in opposite dircctions (so that X is large when Y is small. and vice
versa), then the covariance is negative. Finally, if X and Y are independent. then
the covariance is zero (see Exercise 2.19).
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Correlation. Because the covanance is the product of X and Y, deviated from
their means, its units are, awkwardly. the units of X times the units of Y. This “units™
problem can make numerical values of the covariance difficult to interpret.

The correlation is an alternative measure of dependence between X and Y that
solves the “units” problem of the covariance. Specifically, the correlation between
X and Y is the covariance between X and Y, divided by their standard deviations:

com(X,Y) = oY) _ oxy (2.25)
' Vvar(X) var(y) Yo% )

Because the units of the numerator in Equation (2.25} are the same as those
of the denomuinator, the units cancel and the correlation is unittess. The random
variablcs X and Y are said to be uncorrelated if corr(X,Y) = 0.

The correlation always is between —| and 1; that is. as proven in Appen-
dix 2.1,

-l = com(X.Y) =1 (correlation incquality). {2.26)

Correlation and conditional mean. 1f the condilional mean of Y does not
depend on X, then Y and X are uncorrelated. That is,

if E(Y| X) = py. then cov(Y. X) = Dand core(Y . X) = 0. {(2.27)

We now show 1his rcsult. First suppose that Y and X have mean zero, so that
cov(Y,X) = E[(Y — uy)(X — uy)] = E(YX). By the law of iterated cxpectations
|Equation (2.20)), E(YX) = E|E£(Y|X)X] = 0 because L(Y|X) = 0.50 cov(¥YX)
= (), Equation (2.27) foilows by substituting cov(¥,X) = 0 into the definition of
correlation in Equation (2.25). If Y and X do not have mean zero, lirst subtract off
their means, then the preceding prool applies.

It is not necessarily true, however, that if X and Y are uncorvelated, then the
conditional mean of Y given X does not depend on X. Said differently, it is possi-
ble for the conditional mean of Y to be a function of X but for ¥ and X nonethe-
less to be uncorrelated. An example is given in Exercise 2.23.

The Mean and Variance
of Sums of Random Variables

The mean of the sum of 1wo random vanables, X and Y. is the sum of their means:

E(X+Y)=EX)+ E(Y)=py+ iy (2.28)
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The Distribution of Earnings in the United States in 2004

ome parenls tell their children that they will be

able to gel a betier, higher-paying job if they get
a coliege degree than if they skip higher education.
Are these parcnts right? Does the distribution of
eamings differ between workers who are college
graduates and workers who have only a bigh school
diploma. and, if s0, how? Among workers with a sim-
ilar education, does the distribution of eamings for
men and women differ? For examptle, are the best-
paid college-cducated women paid as well as the
hest-paid college-educated men?

One way to answer these gueslions is to examine
the distribution of eamings, conditional on the high-
csi educational degree achieved (high school
diploma or bachelors’ degree) and on gender. These
four conditional distributions are shown in

Figure 2.4, and the mean. standard deviation, and
some pereentiles of the conditional distributions are
presented in Tahle 2.4.! For example, the conditional
mean of carnings for women whose highest degree
is a high schoot diploma—ihat is. E( Fernings| High-
est degree = high school diploma, Gender =
Jemale)—is $13.25 per hour.

The distribution of average hourly carnings lor
femalc collcge graduates (Figure 2.4b) is shifted to
the right of the distribution for women with only a
high school degree (Figure 2.44); the sume shift can
be seen for the two groups of men (Figure 2.4 and
Figure 2.4c). For both men and women, mean earn-
ings are higher for those with a college degree (Ta-
ble 2.4, {irst numeric column). Intcrestingly, the
spread of the distribution of eamings, as measured

continued vn next page
TABLE 2.4 Summaries of the Condifonal Distribution of Average Hourly
Eamings of U.S. Full-Time Workers in 2004 Given Education Level and Gender
Percontie
Stondord 50%

Maan Dwrviation 5% {median) 753% 90
{20 Wonmten with high wwhool
dupiom, 1323 3 74 $ 879 S1202 Slnim L2075
thl Wonnen with tousr-year college
degrev 2112 11185 1314 fy 23 ntid W
oy plen with high wehowl
diplunm 171} w26 11.54 1557 21.n3 2u x5
tdy Mo with bouryear colleg
dogree TN 1487 173 2425 T EEREN]
Avurage homtly | AT abe Thye shib o el pretay woges, salarics, hpeaad Bonoses divaded Baahe numheo af b
wobhed il e distobg s wery wanmiputed et e Mareh 20805 4 arrent Popalabiog Soeses sl s o sonbod i
RYET AN v,
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by the standard deviation, is greater for those with &
callege degree than for those with 2 high school
diploma. In additian, for both men and women, the
90tk percentile of carnings is much higher for work-
crs with a college degree than for workers with only
a high school dipioma. This final comparison is con-
sistent with the parental admonition that a college
| degrec opens doors that remain closed to individu-

Another feature of these distributions is that the
distribution of carnings for men is shifted to the right
of the distribution of carninga for women. This “gen-
der gap™ in earnings is an important—and lo many,
troubling—aspect of the distribution of camings We
return 10 this 1opic in later chapters.

'The distributions were estimated using data from the
March 2005 Current Population Survey, which is discussed

' als with only a high school diploma. in more detail in Appendix 3.1,
| FIGURE 2.4  Conditional Distribution of Average Hourly Earnings of U.S.
i Full-Time Workers in 2004, Given Educotion Level ond Gender
1 The four distributions of Density Density
! sarnings ars for women 008 e
1 and men, for those with na7 o7y
i miy a h@ !dlﬂﬂl 1 U.Uﬁl-
diploma (o and ¢} and 0.5 ol
those whose highes! 0.04 o4 f
‘ dagree is from o four- L no3f
year college (b and dl. a2 nob
l Ll ik
T fens

Denity
LU

T

[N TYi'r E‘ﬂ Ws0 5'{.1 t.-'O M RO 1

() Women wich 1 high whool diploma

1,“ .‘.'n .\'n fn s'n f:n }"U 30
Doliars
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Dollars
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MEANS, VARIANCES, AND COVARIANCES OF SUMS
OF RANDOM VARIABLES

Let X, Y. and V be random variables, let uy and a{ be the mean and variance of
X.1ct oyy be the covariance between X and ¥ (and so forth for the other varn-
ables), and let @, b, and ¢ be constants, The following facts follow from the defini-
tions of the mean, variance, and covariance:

Ela + bX + ¢Y) = a + buy + cpy. (2.29)
varla = bY) = b"rr;‘. (2.30)

var(aX + bY) = @o% + 2abo gy + Vay., (2.31)
EOY2) = o e i (2.32)

covia + bX + ¢V.Y) = bayy + oy, (2.33)
E(XY) = oyy * iyity and (2.34)

corr(X.Y)| = land o yy| = \ar;r.r; {correlation inequality).  (2.35)

The variance of the sum of X and Y is the sum of their variances, plus twice their
covariance:

var(X + Y) = var(X) + var(Y) + 2c0v(X,Y) = 0} + 0} + 204y  (236)

If X and Y are independent. then the covariance is zero and the variance of their
sum is the sum of their variances:

var(X + Y) = var(X) + var(¥) = 0% + o} 237
(if X and Y are independent).

Uselul expressions for means, variances, and covariances involving weighted
sums of random variables are collected in Key Concept 2.3, The results in Key
Concept 2.3 are derived in Appendix 2.1.
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nal [.--('.‘E. '1_:”]!}' :--'!'-'ly function with

1 var

L5

is a bell-shaped curve
| ot . The area under the :'-.',:-:..'.‘\:[ p a.l
rand p + 1,96 is 0.95
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rmaol distribution is denoted N (u, )

2.4

The Normal, Chi-Squared,
Student ¢, and F Distributions

The probability distributions most often encountered in econometrics are the nor-
mal, chi-squarcd, Student 1, and F distributions.

The Normal Distribution

A continuous random variable with a normal distribution has the familiar bell-
shaped probability density shown in Figure 2.5. The specific function defining the
normal probability density is given in Appendix 17.1. As Figurce 2.5 shows, the nor-
mal density with mean u and variance o is symmetric around its mean and has
95% of its probability between u — 1.960 and 2 + 1.960.

Some special notation and terminology have been developed for the normal
distribution. The normal distribution with mean u and variance o~ is expressed
conciscly as “N(u. *).” The standard normal distribution is the normal distribu-
tion with mean g = 0 and variance o2 = | and is denoted N(0. 1). Random
variables that have a N(0. 1) distribution are often denoted by Z, and the standard
normal cumulative distribution function is denoted by the Greek letter @;
accordingly, Pr(Z = ¢) = ®(c). where c is a constant. Values of the standard nor-
mal cumulative distribution function are tabulated in Appendix Table 1.

To compule probabilities for a normal variable with a general mean and vari-
ance. it must be standardized by first subtracting the meun, then dividing the result
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COMPUTING PROBABILITIES INVOIVING
NORMAL RANDOM VARIABLES

Suppose Y is normally distributed with mean z and variance ¢%; in other words,
Y is distributed N{u, o). Then Y is standardized by subtracting its mean and
dividing by its standard deviation, that is, by computing Z = (Y — p)/o.

Let ¢, and c, denote two numbers with ¢; < ¢, and let d, = (¢, — p)/o and
dz = (Cz - “)!O'.T-hen.

Pr(Y = ¢)) = PZ = d)) = ®(dy). (2.38)
PHY=¢,) =Pr(Z = d)) = | - D(d,).and (2.39)
Pr(c;, S Y = ;) = Pr(d) = Z = dy) = D{dy) — ¥(d)). (2.40)

The normal cumulative distribution function @ is labulated in Appendix Table 1.

by the standard deviation. For example, suppose Y is distnbuted M(1,4), that s, ¥
is normally distribuled with a mean of | and a variance of 4. Whal i3 the proba-
bility that ¥ = 2—thatis. wha: is the shaded area in Figure 2.6a? The standardized
version of Y is ¥ minus its mean, divided by its standard devialtion, that is,
(Y- 1)/Va= %{Y — 1}. Accordingly, the random variable E(Y — 1) is normally
distributed with mean 7ero and variance one (se¢ Exercise 2 8); it has the standard
normal distribution shown in Figure 2.6b. Now Y = 2 is equivalent to %(Y -1)=
22 = 1), thatis, }(Y - 1) s L. Thus,

Pr(Y =2) = Pr{i(Y — 1) = 3] = PH{Z = ;) = B(0.5) = 0691,  (241)

where the value 0.691 is taken from Appendix Table 1.

The same approach can be applied Lo compute the probability that a normally
distributed random variable exceeds some value or that it falls in a certain range.
These steps arc summarized in Key Concept 2.4. The box. "A Bad Day on Wall
Street,” presents an unusual application of the cumulative normal distribution.

The normal distribution Is symmetric, so its skewness is zero. The kurtosis of
the normal distribution is 3.

The multivariate normal distribution. The normal distribution can be gen-
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My 68 Y2 When Vs Ditoued M1,

then use the stondard normol distribu-
lion fable. Y is standardized by sublract-
ing its mean (u = 1) and dividing by
its standard deviation (& = 2). The
probability that ¥ = 2 is shown in
Figure 2.60, and the corresponding
probability after stondardizing Y is
shown in Figure 2.6b. Becouse the
nmduﬁudmuhmvuhﬂm!i%
is o standard normal (Z) rondom
variable, PrlY = 2) = (5! s 23)
- Pr{Z<0.5). From Appendix Table 1,
PriZ = 0.5) = 0.691.

PrY<2) S

4] distnbubion

(a) N(1.4)

PriZ<05)

N(D, 1) distribution

 ¥=a | . = — =—
L0 0s F 5

(b) N(II, 1]

the distribution is called the multivariate normal distribution, or. if only two vari-
ables are being considered, the bivariate normal distribution. The formula for the
bivariate normal p.d.f. is given in Appendix 17.1. and the formula for the general
multivariate normal p.d.f. is given in Appendix 18.1.

The multivariate normal distribution has three important properties. If X and
Y have a bivariate normal distribution with covariance o yy. and if @ and b are two
constants, then aX + bY has the normal distribution,

aX + bY is distributed N(apy + by, 2o} + b2o} + 2abayy)

(X.Y bivariate normal) (2.42)

More generally. if n random variables have a multivariate normal distribution. then
any linear combination of these variables (such as their sum) is normally distributed.
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A Bad Day on Wall Street

n a typical day the overall value of stocks
O traded on the U.S. stock market can rise or fall
by 1% or even more. This is a lot—but nothing com-
parcd to what happened on Monday, October 19,
1987. On “Black Monduy.” the Dow Jones Industrial
Avcrage (an average of 30 large industrial stocks)
fell by 25.6%! From January 1. 1980, 1o October 16.
1987. the standard deviation of daily percentage
price changes on the Dow was 1.16%, so the drop of
25.6% was a negative return of 22(= 25.6/1.16) stan-

dard deviations. The enormity of this drop can be
seen in Figure 2.7, a plot of the daily returns on the
Dow during the 1980s.

If daily percentage price changes are normally
distributed, then the probability of a drop of at least
22 standard deviations is Pr(Z s -22) = §(-22).
You will not find this value in Appendix Table |, but
you can calculate it using a computer (try it!). This
probability is 1.4 X 10" "7, that i, 0.000 . .. . 00014,

where there are a total of 106 zeros!
continued

FIGURE 2.7 Daily Percentage Changes in the Dow Jones Industrial Average in the 1980s

During the 1980s, the Percent change
average percentoge daily il

change of “the Dow” index

was 0.05% and its standard |
deviation was | 16%. On ’
October 19, 1987—"Block
Monday” —the index fell
25.6%, or more than 22
stondard deviations.

-6

October 19, 1987

e ™%
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How small is 1.4 X 10~'%? Consider the following:
The world population is about 6 billion, so the
probability of winning a random lottery among all
living people is aboul ore in & billion, or 2 X
10~10,

The universe is believed to have existed for 15 bil-
lion years, or about § X 107 seconds, so the prob-
ability of choosing a particular second at random
from all the seconds since the beginning of time
is2x 10718

There are approximately 1072 molecules of gas
in the first kilometer above the earth's surface.
The probability of choosing one at random is
1074,

Although Wall Street did have a bad day, the fact
that it happened at all suggests that its probability
was more than 1.4 X 10797, In fact. stock price per-
centage changes have a distribulion with heavier tails
than the normat distribution: in other words. there
are more days with large positive or large negative
changes than the normal distribution would suggest.
For this reason, finance professionals use economet-
ric models in which the variance of the percentage

change in stock prices can cvolve over time, 50 some

periods have higher volaiility than others. These
models wilh changing variances are more consistent
with the very bad—and very good—days we actually
see on Wall Street.

.

Second. if a set of variables has a multivariate normal distribution, then 1he
marginal distribution of each of the variables is normal [this follows from Equa-
tion (2.42) by sellinge = L and & = 0)].

Third, if variables with a multivariate normal distribution have covariances
that equal zero, then the variables are independent. Thus, if X and Y have a
bivariate normal distribution and oy, = 0. then X and Y are independent. In
Section 2.3 it was slated that if X and Y are independent then, regardless of their
joint distribution, 74, = 0. If X and Y are jointly normally disiribuled, then
the converse is also true. This result—that zero covariance implies independence—
is a special property of the multivariate normal distribution that is not true
In general.

The Chi-Squared Distribution

The chi-squarcd distribulion is used when testing certain types of hypotheses in
statistics and econometrics

The chi-squared distribution is the distribution ol the sum of m squared inde-
pendent standard normoal random variables. This distribution depends on m, which
is called the degrees of freedom of the chi-squared distribution. For example, lex
7,.Z;, and 7. be independent siandard normal random variables. Then 77 + Z3
+ 77 has a chi-squared distribution with 3 degrees of freedom. The name for this
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distribution derives from the Greek letter used to denote it: a chi-squared distri-
bution with m degrees of freedom is denoted x2,.

Sclected percentiles of the x2, distribution are given in Appendix Table 3, For
example, Appendix Table 3 shows that the 95% percentile of the x3 distribution is
781,50 Pr(Z7 + 23 + Z3 = 781) = 0.95.

The Student ¢ Distribution

The Student ¢ distribation with m degrees of freedom is defined to be the distri-
bution of the ratio of a standard normal random variable, divided by the square
root of an independently distributed chi-squared random variable with m degrees
of [rcedom divided by m. That is let Z be a standard notmal random variahle, let
W be a random variable with a chi-squared distribulion with m degrees of [ree-
dom. and let Z and W be independently distribuled. Then the random variable
Z/N/Wim has a Student ¢ distribution {alsv called the ¢ distribotion) with m
degrecs of frecdom. This distribution is denoted ¢,,,. Sclected percentiles of the Swu-
dent ¢ distribution are given in Appendix Table 2.

The Student ¢ distribution depends on the degrees of freedom m. Thus the 95
percentile of the t,, distribution depends on the degrees of freedom m. The Siu-
dent ¢ distribulion has a bell shape similar 1¢ that of the normal distribution. but
when m is small (20 or less} it has more mass in the tails—that is it is a “fatter”
bell shape than the normal. When m is 30 or more, the Student ¢ distribution is well
approximated by the standard normal distribution. and the ¢, distribution equals
the standard normal distribution.

The F Distribution

The F distribution with m and n degrees of freedom, denoted F,, .. is defined to
be the distribution of the ratio of a chi-squared random variable with degrees of
freedom m, divided by m. lo an independently distribuled chi-squared random
variable wilh degrees of [rcedom s, divided by 1. To state this mathematically. let
W be a chi-squared random variable with m degrees of freedom and let V be a
chi-sguared random variable wilh n degrees of freedom, where W and V are inde-
pendemly distributed. Then % bas an £, , distribution—that is, an £ distribulion
with numerator degrees of freedom m and denominator degrees of freedom a.
In statistics and econometrics. an important special case of the F distribution
arises when the denominator degrees of freedom is large enough that the F, , dis-
tribution can be approximated by the £, distribution. 1n this limiling case. the
denominatar random variable V is the mean of infinilelv many chi-squared ran-
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random variable is ! (sec Exercise 2.24). Thus the F, . distribulion is the distri-
bution of a chi-squared random variable with m degrecs of freedom, divided by
m: Wim is distributcd £, .. For example, from Appendix Table 4, the 95' per-
centile of the F . distribution is 2.60, which is the same as the 95" percentile of
the x3 distribution, 7.81 (from Appendix Table 2), divided by the degrees of (ree-
dom, which is 3 (7.81/3 = 2.60).

The 90", 95™_and 99* percentiles of the £, , distribution are given in Appen-
dix ‘Table 5 {or selected vatues of m and n. For example, the 95** percentiic of the
F; o distribution is 2.92, and the 95" percentile of the F, o, distribution is 2.71. As
the denominator degrees of freedom n increases, the 95' percentile of the F, , dis-
tribution tends to the £ . limit of 2.60).

Random Sampling and
the Distribution of the Sample Average

Almost all the statistical and econometric procedures used in this book involve
averages or weighted averages of a sample of data. Characterizing (he distribu-
tions of sample averages therefore is an essenlial step toward understanding the
performance of cconometric procedures.

This scction introduces some basic concepls about random sampling and the
distributions of averages that are used throughout the hook. We begin by
discussing random sampling. The act of random sampling—that is, randomly
drawing a samplec from a larger population—has the effect of making the sample
average itsclf a random variable. Because the sample average is a random
variable, it has & probability distribution, which is called its sampling distribution.
‘T'his seclion concludes with some properties of the sampling distribution of the
sample average.

Random Sampling

Simple random sampling. Suppose our commuting student from Scction 2.1
aspires to be a slatislician and decides to record her commuting limes on various
days. She selects these days at random from the school year. and her daily com-
muting time has the cumulative distribution function in Figure 2.2a. Because these
days were selected at random. knowing the value of the commulting time on one
of these randomly selected days provides no information about the commuting
time an anolher of the days: that is, because he days were selected al random, the
values of the commuting time on each of the different days are independently
distributed random variables.
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The situation described in the previous paragraph is an example of the sim-
plest sampling scheme used in stalistics, called simple random sampling, in which
n objects are sclected at random from a popuiation (the population of commut-
ing days) and cach member of the population (each day) is cqually likely to be
included in the sampie.

The n observations in the sample are depoted ¥,...., Y, where Y, is the first
observation, Y, is the second abservation. and so forth. In the commuling
example, Y, is the commuting time on the [irst of her # randomly sclected days
and Y, is the commuting time an the i of her randomly selected days.

Because the members of the population included in the sample are selected
at random, the values of the observations Y, .. .. Y, are themselves random. If dif-
ferent members of the population are chosen, their values of Y will differ. Thus
the act of random sampling means that Y, ..., Y, can be treated as random vari-
ables. Before they are sampled. Y, ..., Y, can take on many possible values: after
they are sampled, a specific value is recorded [or cach observation.

i.i.d. draws. Because Y,,....Y, are randomly drawn from the same popula-
tion, the marginal distribution of Y, is the same foreach i = 1,..., »; this marginal
distribution is the distribution of Y in the population being sampled. When Y, has
the same marginal distnibutionfori = 1,... ,n. then ¥,...., Y, are said 1o be iden-
tically distributed.

Under simplc random sampling. knowing the value of Y; provides no infor-
mation about Y,. so the conditional distnibution uf ¥, given Y, is the same as the
marginal distribution of Y,. In other words, under simple random sampling, ¥, is
distribited independentiyof Y,..... Y,

When Y,..... Y, are drawn from the same distribution and are independently
distributed, they are said to be independently and identically distributed, or i.i.d.

Simple random sampling and i.i.d. draws are summarized in Key Concept 2.5.

The Sampling
Distribution of the Sample Average

The sample average. Y, of the n observations ¥,...., Y, is

T _ 1 _ ] Tl
Y-;(vl+vz+'..+vﬂ)_;;y,,. (2.43)
An essential concept is that the act of drawing a random sample has the effect
of making the sample average Y a random variable. Because the sample was drawn
at random, the value of each Y, is random. Because ¥,... .. Y, arc random, their
average is random. Had a different sample been drawn, then the observations and
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R I

PUNG AND 11.D, RANDOM VARIABLES

SIMPLE RANDOW

e

In a simple random sample, # objects are drawn at random from a population and
each object is equally likely to be drawn. The value of the random variable Y for
the i randomly drawn object is denoted Y;. Because cach object is equally likely
to be drawn and the distribution of ¥ is the same for all /, the random variables
Yieeeon Y, are independently and identically distributed (i.i.d.); that is, the distri-
bution of ¥, is the same for alli = 1,...,n and Y, is distributed independently of
Y...... Y, and so forth.

their sample average would have been different: the value of ¥ differs from one
randomly drawn sample 1o the next.

For example, suppose our student commuter selected five days a1 random to
record her commute times, then computed the average of those five limes. Had
she chosen five different days, she would have recorded five dillerent nmes—and
thus would have computed a dilferent value of the sample average.

Because Y is random, it has a probability distribution. The distribution of Y is
called the sampling distribation of Y, because it is the probability distribution asso-
cialed with possible values of Y that could be computed for different possible sam-
plesY,. ..., Y,

The sampling distribution of averages and weighted averages plays a central
role in statistics and econometrics. We start our discussion of the sampling distri-
bution of ¥ by computing its mean and variance under general conditians on the
population distribution of Y.

Mean and varianceof Y. Suppose that the observations Y,.... Y, ate iid.,
and let 1y and o} denote the mecan and variance of Y, (because the observations
are i.i.d. the mean and variance is the same foralli = 1,...,n). When n = 2. the
mean of the sum Y, + Y, is given by applying Equation (2.28): E(Y, + Y») = uy
+ py = 2uy. Thus the mean of the sample average is E[X(Y, + Y2)| =5 X 2uy =
iy In peneral. ’ ]

— 1 o
E(Y) = 2E(Y) = uy. (2.44)
=l
The variance of Y is found by applying Equation (2.37). For examplc. forn =
2. var(Y, + ¥;} = 2oy so |by applying Equation (2.31) with a = b = } and
cov( ¥, Y.} = O] var(Y) = ;af For general nn, because ¥... ., Y, areiid.Y, and
Y, are independently distributed for # # f, so cov(¥,.Y)) = (. Thus,
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var(Y) = v ;‘l-i)j)

" n n

=—'_.,-Elvar( - E IE cov(Y,.Y,) (2.45)
i= =l =l gre

_ oy

=%y

The standard deviation of Y is the squarc root of the variance, oy /Vn.
In summary. the mean, the variance. and the standard deviation of Y are

E(}_") = Hy, (246)

L @
varlY) =g =" and (2.47)

stddev(Y) = oy = % (2.48)

These results hold whatever Lhe distribution ol Y, is: that is, the distribution of Y,
dows not need to take on a specific form. such as the normat distribution, for Equa-
tions (2.46), (2.47), and (2.48) 10 hold.

The notation o, denoles the variance of the sampling distribution of the sam-
ple average Y. In contrast, o, is the variance of each individual Y. that is, the vari-
ance of the population distribution from which the observation is drawn. Similarly,
o7 denotes the standard deviation of the sampling distribution of Y.

Sampling distribution of Y when Y is normally distributed. Suppose thal
Y,..... Y, are iid. draws from the N(u,. o3) distribution. As stated following
Equation (2.42). the sum of # normally distributed random variables is itself nor-
mally distributed. Because the mean of ¥ is i and the variance of ¥ is «r3 /a, this
means that,if Y,,.... Y, are i.i.d. draws from the N{uy.o3). then ¥ is distnibuted
My, ot 1a),

Large-Sample Approximations
to Sampling Distributions

Sampling distributions play a central role in the development of statistical and
econometric procedures, so it is important to know, in a mathematical sense, what
the sampling distribution of Y is. There are two approaches to characterizing
sumpling distributions: an “exact” approach and an “approximate” approach.
The “exuct” approach enlails deriving a formula for the sampling distribution
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describes the distribution of ¥ for anv n is called the exact distribution or Anite-
sample distribution of Y. For example. if Y is normally distributed,and ¥,...., ¥,
are i.i.d.. then (as discussed in Section 2.5) the exact distribution of ¥ is normal
with mean u, and variance of /n. Unfortunately, if the distribution of Y is not nor-
mal, then in general the cxact sampling distribution of ¥ is very complicated and
depends on the distribution of ¥,

The “approximate” approach uses approximations to the sampling distribu-
lion that rely on the sample size being large. The large sample approximation to
the sampling distribution is often called the asymptotic distribution—"asympiotic™
because the approximations become exact in the limit that n — «. As we see
in this section, these approximations can be very accurate cven if the sample size
is only n = 30 observations. Because sample sizes used in practice in economet-
‘fics typically number in the hundreds or thousands, these asymptotic distributions
can be counted on to provide very good approximations 1o the exact sampling
distribution.

This section presents the two key tools used Lo approximate sampling distri-
butions when the sample size is large, the law of large numbers and the central
limit theorem. The law of large numbers says thal, when the sample size is large.
¥ will be close to g, with very high probability. The central limit theorem says that,
when the sample size is large, the sampling distribution of the standardized sam-
ple average, (Y — uy)/op, is approximately normal.

Although exacl sampling distributions are complicated and depend on the dis-
tribution of ¥, the asymptotic distributions are simple. Moreover—remarkably—
the asymptolic normal distribution of (Y — u,)/oy does nof depend on the
distribution of Y. This normal approximate distribution provides enormous sim-
plifications and underlies the theory of regression used throughout this book.

The Law of Large Numbers and Consistency

The law of large numbers states that. under general conditions, ¥ will be near g,
with very high probability when » is large. This is somelimes called the “law of
averages.” When a large number of random variables with the same mean are
averaged together, the large values balance the small values and their sample aver-
age is close to their common mean.

For example, consider a simplified version of out student commuter’s exper-
iment. in which she simply records whether her commute was shorl (less than 20
minutes) or long. Lel ¥, equal 1 if her commute was short on the " randomly
selected day and equal 0 if it was long. Because she used simple random sampling,
Yoo ¥Y,areild Thus. Y,.i=1,..., n are Lid, drows of a Bernaulli random
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Key CONCEPT

2.6

CONVERGENCE IN PROBABILITY, CONSISTENCY, AND THE Law
OF LARGE NUMBERS

I'he sample average Y converges in probability 10 gy (0, equivalently. Y is con-

sistent for uy) if the probability that Y is in the range gy — ¢ 10 gy + ¢ becomes
arbitrarily close to one as # increases for any constant ¢ = (.. This is written as
} * Ky

Lhe law of large numbers says thatif ¥.i= 1..... a are independently and

identically distributed with £(Y,) = py and if large outliers are unlikely (techni-

callyif var(Y)) = o3 < %).then Y —— p,.

variable, where (from Table 2.2) the probability that Y, = 1 is 0.78. Because the
expectation of a Bernoulli random variable is its success probability. £(Y;) = py
= 0.78. The samplc average Y is the fraction of days in her sample in which her
commutc was short.

Figure 2.8 shows the sampling distribution of Y for various sample sizes n.
When n = 2 (Figure 2.8a). Y can take on only three values:0, i and 1 (neither com-
mute was short, onc was short, and both were short). none of which is particularly
closc Lo the true proportion in the population, (.78. As n increases, however (Fig-
ures 2.8b—d). Y takes on more valucs and the sampling distribution becomes
tightly centered on .

The property that Y is near uy with increasing probability as n increases is
called convergence in probability or. more concisely. consistency (sec Kcy Con-
cept 2.6). The law of large numbers states that. under certain conditions, Y con-
verges in probability to uy or. equivalently, that Y is consistent for py .

The conditions for the law of large numbers that we will use in this book are
that Y, i=1..... n are i.i.d. and that the variance of Y, o}, is finitc. The mathe-
matical role of these conditions is made clear in Scction 17.2, where the law of
large numbers is proven. If the data are collected by simple random sampling. then
the i.i.d. assumption holds. The assumption that the variance is [finite says that
extremely large values of Y,—that is. outliers—are unlikely and obscrved infre-
quently; otherwise. these large values could dominate ¥ and the sample average
would be unreliable. This assumption is plausible for the applications in this book.
For examplc. because there is an upper limit to our student’s commuting time (she
could park and walk if the traffic is dreadful). the variance of the distribution of
commuting times is finite.
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The distributions ore the sampling distributions of Y, the sample averoge of n independent Bernoulli random
vanables with p = PrlY, = 1) = 0.78 [the probability of o short commute is 78%), The variance of the som-
phing distribution of Y decreoses as n gets lorger, so the sampling distribution becomes more tightly concen-

trated around its mean i = 0.78 os the sample size n increases
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The Central Limit Theorem

The central limit theorem says that. under general conditions, 1he distribution of
Y is well approximated by a normal distribution when n is lurge. Recall that the
mean of ¥ is uy and its variance is o2 = o3./n. According to the central limit the-
orem, when n is large the distribution of Y is approximately N(u,. o). As dis-
cussed at the end of Section 2.5, the distribution of ¥ is exacrly Mpuy. a’}) when
the sample is drawn from a population with the normal distribution Ny, o3).
The central limit theorem says that this same result iy approximately true when n
is large even if Y|..... Y, are not themselves normally distributed.

The convergence of the distribution of ¥ to the bell-shaped, normal approxi-
mation can be seen (a bit) in Figure 2.8. However, because the distribution gets
quite tight for large n, this requires some squinting. It would be ecasier to sec the
shape of the distribution of Y if you used a magnifying glass or had some other
way 10 zoom in or to expand the horizontal axis of the figure.

One way 10 do this is to standardize Y by subtracting its mean and dividing
by its standard deviation, so that it has a mean of 0 and a variance of 1. This leads
lo examining the distribution of the standardized version of ¥, (Y - nylloy.
According to the central limit theorem. this distribution should be well approxi-
mated by a N(0. 1) distribulion when # is large.

The distribution of the standardized average (Y - uy)/cy is plotted in Fig-
ure 2.9 for the distributions in Figure 2.8; the distributions in Figure 2.9 are exactly
the same as in Figure 2.8, except that the scale of the horizontal axis is changed so
that the standardized variable has a mean of 0 and a variance of 1. After this
change of scale, it is easy to see that. if a is large enough, the distribution of ¥ is
well approximated by a normal distribution.

One might ask. how large is “large enough™? That is. how large must » be for
the distribution of ¥ to be approximately normal? The answer is *il depends.” The
quality of the normal approximation depends on the distribution of the underly-
ing ¥, that make up the average. At one exlreme. if the Y, are themselves normally
distributed, then Y is exactly normatly distributed for all #. In contrast, when the
underlying Y; themselves have a distribution that is (ar from normal, then this
approximation can require # = 3t or even more.

This point is illustrated in Figure 2.10 for & population distribution, shown in
Figure 2.10a. that is quite different from the Bernoulli distribution. This distribu-
tion has a long right tail (it is “skewed” to the right). The sampling distribution of
¥ . after centering and scaling. is shown in Figures 2.10b, ¢, and d for » = 5.25,and
100, respectively. Although the sampling distribution is approaching the bell shape
for n =25, the normal approximation still has noticeable imperfections.
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(IGURE 2.9  Distribution of the Standardized Sample Average
of n Bernoulli Random Varicbles with p = 0.78
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The sampling distribution of ¥ in Figure 2.8 is plotted here chter standardizing Y. This centers the distribu-
tons in Figure 2.8 and magnifies the scole on the horizontal axis by a foctor of Vn. When the somple size
's lorge, the sampling distributions are increasingly well opproximated by the normal distribution (the solid
line), as predicted by the centrol limit theorem. The normal distribution is scoled so that the height of the
distributions is approximately the some in all figures.
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FIGURE 2.10 Distribution of the Standardized Sample Average of n Draws from o Skewed Distribution
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The figures show the sampling distribution of the standardized sample averoge of n drows from the skewed

[osymmetric) population distribution shown in Figure 2.10a. When n is small {n

5). the sampling distribu-

tion, like the population distribution, is skewed But when n is large [n = 100), the sampling distribution is well
approximated by a standard normal distribution (solid line), os predicted by the central limit theorem. The nor-
mal distribution is scaled so that the height of the distributions is approximately the same in all figures
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THE CENTRAL LIMIT THEOREM

27

suppose that ¥y, . ... Y, arc i.id. with E(Y,) = py and var(Y,) = o}. where
b < %, As it — =, the distribution of (Y - wy)/og (where a‘f =oiln)
necomes arbitrarily well approximated by the standard normal distribution.

By # - 100, however. the normal approximation is quite good. In fact. for i = 10
the normal approximation to the distribution of ¥ typically is very good for a wide
variety ol population distributions.

The central limit theorem is a remarkable result. While the “small a” disirib-
utions of ¥ in paris b and ¢ of Figures 2.9 and 2.10 arc complicated and guite
different from each other, the *large #” distributions in Figures 2.9d and 2.10d
are simple and, amazingly. have a similar shape. Because the distribution ot
Y approaches the normal as # grows large, Y is said to be asymptotically normally
distributed.

The convenience of the normal approximation. combined with s wide
applicability because of the central limit theorem. mahes 1t a key underpinning
of modemn applied econometrics. The central limit theorem is summarized in Key
Conceprt 2.7,

Summary

1. The probabilitics with which a random variable takes on different values arc
summarized by the cumulative distribution function, the probability distribution
function { fur discrete random variables), and the prabability density function (for
continuous random variables).

2 The expected value of a random vasiable Y (also called its mean, g, ), denoted
E(Y). is its probability-weighted average value. The variance of Y is o5 =
EI{Y = uy)’]. and the standard deviation of Y is the square root of s
VArhinee.

. Thu oinl probahilitics for two random variables X and Y are summarized by their
joint probability distribution. The conditional probability distribution of ¥ given
X == ais the probability distribution of Y, conditivnal on X taking on the value x.

4. A nermally distributed random variable has the bell-shaped probability density

in Pigure 2.5 To caleulate i prubabiliy associated with o nermal random variable,
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first standardize the variable, then use the standard normal cumulative distribu-

tion tabulated in Appendix Table 1.

5. Simple random sampling produces n random observations Y,...., Y, that are inde-
pendently and identically distributed {1.i.d.}.

6. The sample average, ¥, varies from one randomly chosen sample to the next and
thus is a random variable with a sampling distribution. If Y,.... Y are i.i.d. then:

a. the sampling distribution of ¥ has mean u, and variance o§ = a%/n;

b. the law of large numbers says that ¥ converges in probability to g,

and

¢. the central limit theorem says that the standardized version of Y.
Y - wy)! oy, has a standard normal distribution [N(0. 1) distribution]

when n is large.

Key Terms

outcomes (18)

probability (18)

sample space (19)

event (19)

discrete random variable (19)

continuous random variable (19)

probability distribution (19)

cumulative probability distribution (19)

cumulative distribution function (c.d.f.)
(20

Bermoulli random vanable (20)

Bernoulii distribution (20)

probability density function (p.d.f.) (21)

density function (21)

density (21)

expected value (23)

expcctation (23)

mean (23)

variance (24)

standard deviation (24)

moments of a distribution (27)

skcwness (27)

kurtosis (27)

outlier (27)

leptokurtic (28)

joinl probability distribution (29)
marginal probahility distribution (30)
conditional distribution (30)
conditional expectation (32)
condilional mean (32)

law of iterated expectations (32)
conditional variance {33}
independence (34)

covariance (34)

correlation (35}

uncorrelated (35)

normal distribution {39}
siandard normal distribution (39}
standardize a variablc {39)
multivariate normai disiribution {41)
bivariaie normal distribution (41)
chi-squared distribution (43)
Student r distribution (44}

F distribution (44)
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simple random sampling (46) asymptotic distribution (49)
population (46) law of large rumbers (49)
identically distributed (46) convergence in probabilily (50)
independently and identically distributed  consistency {50)

{i.i.d.) (46) central limit theorem (52)
sampling distribution (47) asympiolic normal distribution (55)

exact {finite-sample) distribution (4%)

Review the Concepts

21

22

1.3

24

2.5

2.6

2.7

Examples of random variables used in this chapter included: (a} the gender
of the next person you meet, (b) the number of times a compuler crashes.
(c) the time it takes to commute to school, (d) whether the computer you are
assigned in the library is new or old, and (e) whether it is raining or not.
Explain why each can be thought of as random.

Suppose that the random variables X and Y are independent and you know
their distributions Explain why knowing the value of X tells you nothing
aboul the vajue of Y.

Suppose that X denotes the amount of rainfall in your homelown during a
given month and Y denotes the number of children born in Los Angeles dur-
ing the same month. Are X and ¥ independent? Explain.

An economettics class has 80 students, and the mean student weight is 145
Ibs. A random sample of 4 students is selected from the class and their aver-
age weight is calculated. Will the average weight of the students in the sam-
ple equal 145 lbs.? Why or why not? Use this example to explain why the
sample average, ¥, is a random variable.

Suppose that Y. ..., , are 11.d. random variables wath a N(1, 4) distnbu-
Livn. Sketch the probability density of ¥ when # = 2. Repeat this forn = 10
and n = 100. In words, describe how the densities differ. What is the rela-
tionship between your answer and the law of large numbers?

Suppose that Y, .. ., Y, are i.i.d. random variables with the probability dis-
tribution given in Figure 2.10a. You want to caiculate Pr(Y =< 0.1). Would it
be reasonable to use ibe normal approximation if # = 57 What about n = 25
or # = 1007 Explain.

Y is a random vanable with 4, = 0, oy = 1, skewness = 0, and kurnosis =
100. Sketch a hypothetical probability distribution of ¥. Explain why n ran-
dom variables drawn from this distribution might have some large outliers.
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Exercises

2.1

22

2.

24

2.5

2.6

Let Y denote the number of “heuds" that occur when Lwo coins are tossed.

a. Derive the probability distribution of Y.
h. Derive the cumulative probability distribution of }.
¢. Derive the mean and vaniance of V.

Use the probability distriburion given in Table 2.2 to compute (a) £(Y) and
E(X): (b) o’ and g% and (¢} oy and cort(X.Y).

Using the random variables X and ¥ from Table 2.2, consider two new ran-
dom variables W =3 + &6Xand V = 20 — 7Y. Compute (a) E(W) and E(V):
(b) ofy and ¢2; and (¢) oy and corr{ W, V).
Suppose X is 4 Bernoulli random variable with P(X = 1) = p,
8. Show E(XY) = p.
b. Show E(X*) = p for k > 0.
¢. Suppose that p = ).3. Compute the mean, variance, skewness, and kur-
tasis of X. (Hint: You might find it helpful to use the formulas given in
Exercise 2.21.)
In September, Seattle’s daily high tempecature has a mean of 70°F and a
standard deviation of 7°F. What is the mean. standard deviation, and vari-
ance in °C?
The following table gives the joint probability distribution between employ-
ment status and eollege graduation among Lhose either employed or look-

ing lor work (unemployed) in the working age U.S. population. based on the
1990 U.S. Census.

Joint Distribution of Employment Statys
and College Groduation in the U.S. Population Aged 25-64, 1990

Unemployed (Y = 0) Emplayed (Y = 1) Total

Non-colleyge grads< (X - N 11,045 070 N.754 '

Cullege privds [V = 1) 1,005 1241 10240

Total 150 5411 LU
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a. Compule E(Y).

b. The unemployment rate is (he fraction of the labor force that is unem-
ployed. Show that the unemployment rate is given by 1 — E(Y).

¢. Calculate E(Y|X = 1) and E(Y|X = ().

d. Calculatc the unemployment rate for (i) college gradualtes and (1))non-
college graduates.

e. A randomly sclected member of this population reports being unem-
ployed. What is the probability that this worker is u college graduate?
A non-college graduate?

f. Are educational achievement and employmenl status independent?
Explain.

2.7 Ina given population of lwo-earner male/female couples, malc carnings have
a mean of $40.000 per year and a standard deviation of $12.0(X). Female carn-
ings have a mean of $435.000 por year and a standard deviation of $1K,000.
The correlation between maie and female earnings for a couple is 0.80. Let
C denote the combined earnings for a randomly selected couple.

a. What is the mean of C?

b. What is the covariance between male and femaule ¢carnings?
¢. What is the siandard deviation of C?

d. Convert the answers to (a)-(c) from $ (dollars) 10 € (curos).

2.8 The random variable Y has a mean of 1 and a variance of 4, Let Z =
; (Y — 1).Showthat o, = Oand 0% = 1.

29 Xand Y are discrete random variables with the foilowing joint distribution:

Voius of ¥
14 ’ 22 30 40 a3
1 002 008 we ok 0ol
Value of X ; 0.37 _ 11.15__" 0 IS- Q.02 R
8 02 RS .15 i 0

That is. Pr{X = 1. Y = 14) = {102, and 50 forth.
a. Calculate the probability distribution, mean, and variance of Y.

b. Caiculate the probability distribution, mean, and variance of Y given
X =8,

c. Calculate the covariance and correlation belween X and Y.



&0

CHAPTER 2  Raview of Probobility

2.10 Compute the following probabilities:
a. [{ Y is distributed N(1.4), (ind Pr(¥ = 3).
b. I['Y is distribmed N(3,9). find Pr{Y > Q).
c. If Y is distributed N(50,25).find Pr{40 = ¥ < 52).
d. If Yis distributed N(5.2), find Pr(6 < Y < B).

2.11 Compule the followmg probabilities:

a. If Yis disteibuted xi, find Pr(Y < 7.78).
b. If Y is distributed x3,. find Pr(Y > 18.31).
¢. If Yis distributed Fy, find Pr(¥ > 1.83).
d. Why are the answers 10 (b} and {c) the same?
e. If Yis disiributed x?, find Pr(¥Y = 1.0). (Hinr: Use the definition of
thex? distribution.)
2.12 Compuic the following probabilities:

If Y is distributed £,5, find Pr(¥ > 1.75).

I1'Y is distribnted to, find Pr(—1.99 < ¥ = [.99).

1f Y is disiributed N(0, 1), find Pr{—1.99 = ¥V = 1.99).

Why are the answers to (b) and (c) approximately the samc?
e. [ Yisdistributed £, find Pr(Y > 4.12).

f. If Yis distributed F; 5. find Pr(¥ > 2.79).

p n &

2.13 X is 8 Bernoulli random variable with Pr(X = 1) = 0.99, Y is distributed
N(0. 1), and W is distributed N(D. 100). Let § = XY + (1 — X)W. (That is.
S=Ywhen X =1 and § = Wwhen X =0.)

8. Show that £(Y?) = 1 and £(W?) = 100.

b. Show that £(Y?) = 0 and E(W?3) = 0, (Hin: What is the skewness for
a symmetri¢ distribution?)

¢. Show that £(Y*) = 3 and E(W*) = 3 X 1002 (Hint: Use the fact that
the kurtosis is 3 for a normal distribution.)

d. Derive E(S). £{5%). E(S?) and E($?). (Hint: Use the Jaw of iterated
expectations conditioningon X =0and X = 1))

e. Denve the skewness and kurtosis for S.

2.14 [n a population g, = 100 and a¥ = 43. Use the central limit theorem to
answer the following questions:
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a. In a random sample of size # = 100, find Pe(Y = 101},
b. In a random sample of size # = 165. find Pr(Y > 98).
¢. Ina random sample of size # = 64, find Pr(10] < Y =< 103),

2.15 Suppose Y, i=1,2..... n are i.i.d. raundom variables, each distributed
N(10,4).
a. Compule Pr(9.6 = ¥ = 10.4) when (i) » = 20,(ii) n = 100, and
(i) n = 1,000

b. Suppose ¢ is a positive number. Show that Pr(l0 —¢ =Y = 10 + ¢)
becomes close (o 1.0 as #n grows large.

c. Use your answer in {b) to argue that ¥ converges in probability to 10.

2.16 Y is distributed N(5, 100) and you want to calculate Pr{Y < 3.6). Unfortu-
naiely, you do not have your texthook and do not have access to a normal
probability table like Appendix Table 1. However. you do have vour com-
puter and a computer program that can generate i.i.d. draws from the
N(5, 100) distribution. Explain how you can usc your compuler to compute
an accurate approximation for Pr(¥Y < 3.6).

217 Y.i=1,....n,arciid. Bernoulli random variables with p = 0.4. Let Y
denote the sample mean.

2. Use the central limit lo compute approximations [or
i. Pr(Y = 0.43) when n = 100.
ii. Pr(¥Y =< 0.37) when i = 400

b. How large would n need to be to ensure that Pr(0.39 = ¥ = 041) =
0.95? (Use the centrai limit theorem to compule an approximate
answer.)

2.18 In any year. the wealher can inflict storm damage to a home. From year to
vear, the damage is random. Let Y denate the dollar value of damage in any
Riven vear. Suppose that in 95% of the years Y = $0, but in 5% of the years
Y = $20.000.

a. What is the mean and standard deviation of the damage in anv vear?

b. Consider an “insurance pool” of 100 people whose homes are sufli-
ciently dispersed so that, in any year, the damage to different homes
can be viewed as independently distributed random variables Let ¥
denole the average damage to these 100 homes in a year. (i) What is
the expected value of the average dumage ¥'? (i) What is the proba-
hility that ¥ exceeds $2000?
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2.19

.20

221

222

Coansider two random variables X and Y. Suppose thal Y takes on k values
¥i. .- ¥ aud that X takes on { values x, ... .. X

8. Show that Pr(Y = y) = %, Pr(Y = v,|X = x)Pr(X = x)). [Hint: Use
the definition of Pr(Y = y | X = x)).]

b. Use your answer to (a) to verify Equation (2.19).

¢. Suppose thal X and Y are independent. Show that ¢, = 0 and
cort( X,Y) = Q.

Coasider three random variables X, ¥, and Z. Suppose that Y takes on & val-
ues yy..... ¥ that X takes on / values xy,. .., x, and that Z takes on m val-
ues ;....,2,, Lhe joint probability distnibution of X, ¥, ZisPr(X = x, ¥V =
¥, Z = z),and the conditional probability distribution of ¥ given X and Z is

Pr(¥ = v X = r,7 =}
Pr(Y=y|X=x,Z:Z):(T(;_:},_zI?u_§_'

2. Explain how the marginal probability that Y = v can be calculated
from the joint probability distribution. [Hint: This is a generalization of
Equation (2.16).]

b. Show that E(Y) = E[E(Y| X, Z)). [Hins: This is a generalization of
Equations {2.19) and (2.20).]

X is a random variable with moments E(.X), E(X?). E(X3), and 50 forth.
a. Show E(X — p)* = E(X?) — JEXD)[EX)] + 2AEX)]

b. Show E(X - u)' = E(X*) — 4[E(X))[E(X?)] + 6| ECX)[E(XY) -
3[ECX)]E.

Suppose you have some maney to invest—for simplicity, $1—and you are
planning to put a fraction w into a stock markel mutual fund and the rest.
1 ~ w, into a bond mutual fund. Suppose that $1 invested in a s1ock fund
yields R, after one year and that $1 invesied in a bond fund yields R, that
R, is random with mean 0.08 (8%) and standard deviation 0.07. and that R,
is random with mean 0.05 (5%) and standard deviation 0.04. The correlation
between R, and R, is 0.25. If you place a fraction w of your money in the
stock fund and the rest, 1 — w, 1 the bond fund, then the return on your
investment is R = wR, + (1 — w)R,,

a. Suppose that w = 0.5. Compute the mean and standard deviation of K.

b. Suppose that w = (.75. Comtpute the mean and standard deviation
of R.

¢. What value of w makes the mean of R as large as possible? What is the
standard deviation of R for this value of w?
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d. (Harder) What is the value of w that minimizes the standard deviation
of R? (You can show this using a graph, algebra, or calculus.)

223 Thisexercise provides an example of a pair of random variables X and Y for
which (he conditional mean of ¥ given X depends on X but corr{ X, ¥} = 0.
Let X and Z be two independently distributed standard normeal random vari-
ables, andlet ¥ = X1+ Z,
2. Show that E(Y|X) = X2
b. Show that gz, = 1.

e Show that E(XY) = 0. (Hini: Use the fact that the odd moments of a
standard normal random variable are all zero.)

d. Show that cow( X, Y) = 0 and thus cort(X, Y) = 0.
2.24 Suppose Y;is distributed ii.d. N(0.¢%) fori = 1,2,....n,

2 Show that E(Y¥e?) = 1.
b. Show that W = L 3L v2is distributed x2.
c. Show that E(W) = n. [Hini: Use your answer to (a).]

d. ShowthatV = L‘ is distributed 7, _ .

2?:2"',‘
V n-1
APPENDIX

2.1 | Derivation of Results in Key Concept 2.3

This appendix derives the equauions in Key Concept 2.3,

Equation (2.29) lollows irom 1he definilion of the expectalion.

To derive Equation (2.30). use the definition of the variance to wrile. var(a + bY) =
Efla + bY — E(a + bY)P) = E{[M(Y ~ uy)F| = PEY — »y)’] = bo}.

To derive Equation (2.31), use the definition of the variance 1o write

var(aX + bY) = E{[(aX + bY) — (apy + buy)|Y
= Effa(X ~ py) + oY ~ py)P)
= Ela*(X — uy)?] + 2E[ab(X - p, (Y — py)]
+ E(X(Y - py)?)
= w’var(X) + 2abcov(X.Y) + bvar(Y)

= dlo} + 2aba oy + b}, (2.49)
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where the second equality follows by collecting terms, the third cquality foliows by expand-
ing the quadratic. and the fourth cquality foliows by the definition of the variance and
cyvanance.

To derive Equation (2.32), write E(Y3) = E{[(Y — uy} + uy]'] = E[Y - py)] +
2upE(Y = py) + py = oy + pd because E(Y ~ py) = 0.

To derive Equation (2.33), use the definition of the covarianee (o wrilc

covia + hX +eV.Y) = Ella + bX + ¢V — E{a + bX + ¢VH[Y =~ iyl
= E[[(X — )+ oV — )Y — yl}
= ElAX — oY - uy]l + E [V - 2 )[Y - py]}

=bﬂ'xy"'f0w.

(250)

which is Equation (2.33).

‘1o derive Equation (2.34), write E(XY) = E[[{X — px) + s2l(Y — py) + uyl) =
EUX = )Y ~ uy)] + oyEUY = py) + pupB(X — ) + by = Gy + iy,

Wi now prove the correlation incquality in Equation (2.35); that is, jcorr¢ X, ¥) | = 1.
Leta = —uryylard and b = 1. Applying Equation (2.31), we have that

varaX + Y) =adlay + o} + 2aryy
= (owlodY oy + o} + A-oxlal)o gy (2.51)
= 0’; - U;;y“}'i.

Because var{aX + Y) is a variance, it cannol be negative. so from the final line of Egui
tion (2.51) it must be that 0§ — v, Jorg = 0. Rearranging this inequality vields

@y s ojof  (covariance inequality). {2.52)
The covariance incquality implies thal ol f(edei) =1 or. equivalently.

oyl {oyoy)| S 1, which (using the definition of the correlation) proves the correlation
inequality. {corr{ X.Y}| = 1.



CHaPTER 3 Review of Statistics

(atislics is the science of using data 1o learn about the world around us.
S Statistical tools help to answer questions about unknown characteristics of
distributions in populations of interest. For example, whal is the mean of the
distribution of eamings of recent college graduates? Do mean carnings differ
for men und women and, if so, by how much?

These questions relate to the distribution of carnings in the population of
workers. One way (0 answer these questions would be (o perform an exhaustive
survey of the population of workers. measuring the eamings of cach worker and
thus finding the population distribution of earnings. In praclice, however, such a
comprehensive survey wounld be extremely expensive. The only comprehensive
survey of the U.S. population is the decennial census. The 2000 U.S, Census cost
$10 billion, and the process of designing the census forms, managing and
conducling the surveys. and compiling and analyzing the data takes ten years.
Despilc this exiraordinary commitment, many members of the population slip
through 1he cracks and arc not surveyed. Thus a dilferent, more practical
approach is needed.

The key insight of statistics is that one can learn aboul a population
distribution by selecting a random sample from that population. Rather than
survey the entire U.S. population, we might survey. say, 100} members of the
population. sclecied at random by simple random sampling. Using statistical
methods, we can use this sample to reach lentative conclusions—10 draw

statistical inferences—about characteristics of the full population.



66

CHAPTER 3 Review of Stafishes

3.1

‘Three types of statistical methods are used throughoul econometrics;
cstimation. hvpothesis testing. and conlidence intervals Estimation entails
computing a “best guess” numerical value tor an unknown characieristic of a
population distribution, such as its mean, from a sample of data. Hypothesis testing
entails formulating a specific hypothesis about the population, then using sample
evidence to decide whether it is true. Confidence intervals use a set of data 10
estimale an interval or range for an unknown population characteristic, Sections
3.1,3.2. and 3.3 review estimation, hypolhesis testing, and confidence intervals in
the contex! of statistical inference about an unknown population mean.

Most of the interesting questions in economics involve relationships belween
two or more variables or comparisons between different populations. For
exarmopie, is there a gap belween the mean earnings for male and female recent
college graduates? In Section 3.4, the methods for learning about the mean of a
single population in Sections 3.1-3.3 are extended to compare means in two
different populations. Section 3.5 discusses how the methods for comparing the
means of two populations can be used to estimate causal effects in experiments.
Sections 3.2-3.5 focus on the use of the normal distribution for pertorming
hypothesis 1esis and for consiructing confidence intervals when the sample size is
large. In some special circumstances, hypothesis tests and confidence intervals
can be bascd on Lhe Student ¢ distribution instead of the normal distribution;
these special circumstances are discussed in Section 3.6. The chapter concludes

with a discussion of the sample correlation and scatterplots in Section 3.7.

Estimation of the Population Mean

Suppose you want 1o know the mean value of ¥ (uy) in a population, such as the
mean earnings of women recently graduated from collcge. A natural way to esti-
mate this mean is to compute the sample average Y from a sample of # indepen-
dently and identically distributed (i.i.d.) observations, ¥,. .. .. Y, (recall that
Y,...., ¥, are iid.if they are collected by simple random sampling). This scclion
discusses estimation of .y and the properties of ¥ as an estimator of g,
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N

An estimator is a function of a sample of data to be drawn randomly from a pop-
ulation. An estimate is the numerical value of the estimator when it is actually
computed using data from a specific sample. An estimator is a random variable
pecause of randomness in selecting the sample, while an estimate i$ 2 nonrandom
number.

Estimators and Their Properties

Estimators. The sample average Y is a natural way (o estimate g, but it is not
the oaly way. For example. another way to estimate uy is simply (o use the first
observation. Y,. Both ¥ and Y, are functions of the data that arc designed to esti-
mate g, using the terminology in Key Concept 3.1, both are estimators of x,.
When evaluated in repeated samples. Y and Y, take on different values (they pro-
duce different estimates) from one sampie to the next. Thus. the estimators Y and
Y, both have sampling distributions. There are, in fact, many estimators of ., of
which ¥ and Y, are two examples.

There are many possible estimators, so what makes one estimator “hetter”
than another? Because estimators are random variables, this question can be
phrased more precisely: What are desirable characteristics of the sampling distn-
bution of an estimator? [n general, we would like an estimator that gets as close
as possible to Lhe unknown true value, at lcast in some average sense; in other
words, we would like the sampling distribution of an estimator Lo be as tightly cen-
tered on the unknown value as possible. This observation leads to three specific
desirable characteristics of an estimator: unbiasedness (a lack of bias), consistency,
and efficiency.

Unbiasedness. Suppose you evaluate an estimator many times over repeated
randomly drawn samples. It is reasonable to hope that, on average, you would get
the right answer. Thus a desirable property of an estimator is that the mean of its
sampling distribution equals wy: if 50, the estimator is said (o be unbiased.

To state this mathematically, let i, denote some estimator of uy. such as Yor
Y. The estimator 4, is unbiased if £(jty) = py. where E{ji,) is the mean of the
sampling distribution of a; otherwise, i, is biased.
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Bias, CONSISTENCY, AND EFFICIENCY

Let 2y be an estimator of uy. Then:
¢ The bias of gy 1s E(ty) = py.
* [y is an unbiased estimator of py if E(fy) = py.
* [y is a consistent estimator of py if iy — > .
* Let py be another estimator of uy. and suppose that both 2y and iy

arc unbiased. Then gy is said to be more efficient than gy if var(sy) <
\'Elf[ﬁ)’}.

Consistency. Another desirable property of an estimator fy is that, when the
sample size is large, the uncertainty aboul the value of p, arising from random
variations in the sample is very small. Stated more precisely, a desirable property
of 1y is that the probability that it is within a small interval of the true valuc u,
approaches 1 as the sample size increases. that is, iy is consistent for uy (Key Con-
cept 2.6).

Variance and efficiency Suppose you have two candidate estimators. iy, and
Ry, both of which are unbiased. How might you choose between them? One way
1o do so is lo choose the estimator with the tightest sampling distribution. This sug-
gests choosing between - and 1y by picking the estimator with the smallest vari-
ance. If 41, has a smallcr variance than gy then gy is said to be more efficient than
fy-. The terminology “efficiency” stems from the notion that. if &, has a smaller
variance than g, then it uses the information in the data more efficiently than
does piy.
Bias, consistency, and efficiency are summarized in Key Concept 3.2,

Properties of Y
How does Y fare as an estimator of i, when judged by the three criteria of bias.
consistency, and efficiency?

Bias and consistency. The sampling distribution of ¥ has already been exam-
ined in Sections 2.5 and 2.6. As shown in Section 2.5, E(Y) = uy. s0 Y is an
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unbiased estimator of uy. Similarly, the law of large numbers (Key Concept 2.6)
states that Y — . that is, Y is consistent.

Efficiency. What can be said ahout the efficiency of Y Because efficiency
entails a comparison of estimators. we need to specify the estimator or estimalors
to which Y is to be compared.

We start by comparing the efficicncy of ¥ to the estimator Y. Because
Yi..... Y, are i.i.d.. the mean of the sampling distribution of ¥ is F(Y,) = py:thus
¥, is an unbiased estimator of u,. Its variance is var(Y,) = . From Section 2.5,
the variance of Y is o3 /n. Thus, for n = 2, the variance of Y is less than the vari-
ance of Y,:that is. Y is a more cfficient estimator than Y, so, according to the eri-
terion of efficicney, ¥ should be used instead of Y,. The estimator Y, might strike
vou as an obviously poor estimator—why would you g0 10 the trouble of collect-
ing a sample of n observations only Lo throw away all but the firs1?—and the con-
cepl of ctficiency provides a formal way to show that Y is a more desirable
estimator than Y.

What about a less obviously poor estimator? Consider the weighied average
in which the observations are alternately weighted by § and §:

;; = %(%Yl + %Yz + %Y] + %Yd S o %yﬂ—l + %Yﬂ)‘ (31)

where the number of observations # is assumed (o be even for convenience. 'I'he
mean of ¥ is py and its variance is var(Y) =1 25rr§.in {Excrcise 3.11). Thus Yi is
unbiascd and, because var(Y} — > Dasn — =, ¥ is consistent. However, ¥
has a larger variance than Y. Thus Y is more cfficient than Y.

The cstimators ¥, Y,.and Y have a common mathematical structure: They are
weighted averagesof Y,..... Y, . The compansons in the previous two paragraphh
show that the weighted averages Y, and ¥ have larger variances than Y. In fact,
these conclusions reflect a more general result: ¥ is the most efficient estimator
of alf unbiased estimators that are weighted averagesof Y. .. .. Y,. Said differ-
ently, ¥ is the Best Linear Unbiased Estimator (BLUE); that is. it is the most effi-
cicnt {best) estimator among all estimators that are unbiased and are linear
functions of Y)..... Y, This result is stated in Key Concept 3.3 and is proven in
Chapter 5.

Y is the least squares estimator of py.-  Thesample average Y provides the
best fit to the data in the sense that the average squared differences between Lhe
observations and Y are the smallest of all possible estimators.
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3.8

ErricieNcy of Y: Y 1s BLUE

Let jiy be an estimator of uy that is a weighted average of Y,..., Y,. that is.
By = iE?.,a,Y,-. whereay,... \a, 8re nonrandom constants. If i, is unbiased, then
var(Y) < var(fiy) unless g2, = Y. Thus Y is the Best Linear Unbiased Estimator
(BLUE); that is, Y is the most efficient estimator of u,, among all unbiased esti-
mators that are weighted averagesof Y;,..., Y,

Consider the problem of finding the estimator m that minimizes
n
(Y, —m), (32)
i=l

which is a measure of the total squared gap or distance between the estimator m
and the sample points. Because /m is an estimator of E(Y), you can think of itas «
prediction of the value of Y}, so that the gap Y; — m can be thoughl of as a pre-
diction mistake. The sum of squared gaps in expression (3.2) can be thought of as
the sum of squared prediction mistakes.

The estimator m that minimizes the sum of squared gaps Y; — m in expression
(3.2) is called the least squares estimator. One can imagine using trial and error 1
solve the least squares problem: Try many values of m until you are satisfied thal
you have the value that makes expression (3.2) as small as possible. Alternatively,
as is done in Appendix 3.2, you can use algebra or calculus to show that choosiny
m = ¥ minimizes the sum of squared gaps in expression (3.2).s0 that Y is the Jeast
squares estimator of gy.

The Importance of Random Sampling

We have assumed that Y. ..., Y, are i.i.d. draws, such as those that would bc
obtained from simple random sampling. This assumption is important becausc
nonrandom sampling can result in Y being biased. Suppose that, to estimate thc
monthly national unemployment rate. a statistical agency adopts a samplin:
scheme in which interviewers survey working-age adults sitting in city parks a!
10:00 A.M. on the second Wedunesday of the month. Because most employed peo-
ple are at work at that hour (not sitting in the park!), the upemployed are overly
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horily before the 1936 Presidential clection, the  in 1936 many houscholds did not have cars or tele-
{.irerary Gazetie published a poll indicating that  phones, and thase that did tended 10 be richer—and
Alf M. Landon would defeal the incumbent. Franklin ~ were also more likely 1o be Republican. Because the
" D). Roosevelt, by a landslide—57% to 43%. The telephone survey did not sample randomly from the
Gazetie was right that the election was a landslide.  population but instead undersampled Democrats,
hut it was wrong about the wirmer: Roosevelt won by  1he estimator was biased and the Gazefie made an

% o 41%!

How could the Gazerte have made such a big mis- Do you Lhink surveys conducied over the Inter-
take? The Gazeite's sample was chosen from tele-  net might have a similar problem with hias?
- phone records and automobile registration files, But

embarrassing mistake.

3.2

represented in the sample, and an estimate of the unemployment rate based on
this sampling plan would be biased. This bias arises because this sampling scheme
overrepresents, or oversamples, the unemployed members of the population. This
example 15 fictitions, but the “Landon Wins!” box gives a real-world example of
biases mtroduced by sampling 1hat is nol entirely random.

It is important to design sample selection schemes i a way that minimizes
bias. Appendix 3.1 includes a discussion of what the Bureau of Labor Statistics
actually does when it conducts the U.S. Current Population Survey (CPS). the sur-
vey it uses to estimate the monthly U.S. unemployment rate.

Hypothesis Tests
Concerning the Population Mean

Many hypotheses about the world around us can be phrased as yes/no questions.
Do the mean hourly earnings of recent LS. colivge eraduates equal $2ivhour? Are
mean earnings the same for male and female college graduates? Both these ques-
tions embody specific hypotheses about the population distribution of carnings.
The statistical challenge is to answer these queslions based on a sample of evi-
dence. This section describes testing hypotheses concerning the population mean

: thosis tests

ing two populations {Are mean iRl tiiany

are taken up in Section 3.4,
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Null and Alternative Hypotheses

The starting point of statistical hypotheses Lesting is specilying the hypothesis to
be tested. called the nufl hypothesis. Hypothesis tcslinﬁ entails using datg (o com-

pare the null thlhesis to a second hypolhesis called the altemative hypothesis,
that ho the null does not.

m population mean. £(Y ). takes on a specific

value, denoted by uyo The null hypothesis is denoted #H, and thus is
Hg E(Y) = pyp. (33)

For example, the conjecture that, on average in the population. coljege graduates
eamn $20/hour consy _ 8 jon distribution of
hourly carnings. Stated mathematically, if Y is the hourly earning of a randomly
selected recent college graduale,

r_...uyl'u =201 CQUalton (o.a). -
The altermative hypothesis specifies what is true if the null hypothesis is not.

E’he mosl general alternative hypothesis is that £(Y) # uyp this is called a two-

sided alternative is, because it allows £(Y) Lo be cither less than or
grealer than gy, The two-sided alternative is wrillen as
V H:E(Y) # iy (two-sided ulternative). {3.4)

Onec-sided alternalives are also possible, and these are discussed later in this
scction.

The problem facing the stalistician is 10 use the evidence in a randomly
selected sample of data to decide whet
reject 11 in lavor of Lthe alternative hvpothesis #,. If the null hypothesis is
“accepled.” Lthis does not mean that the statistician declares il to be true; rather.
is accepted tentatively with the recognition that i1t might be rejecied later basc

on additional evidence. For this reason. statistical hypothesis testing can be posed

as either rejecting the nuljghypothesis or failing to do so.
l L&
e

p-Value

any given sample. the sample average Y will rarely be exactly equal to the
hypothesized value py,, Differences between ¥ and y, can arise because the truc




3.2 Hypothesis Teshs Concerning the Population Meon 73

rangdom sampling. [t is impossible to distinguish between these two possibilities with
certainty. Although a sample of data cannot provide conclusive cvidence about the

null hypothesis, it is possible 10 do a probabilistic calculation thal permits testing
T ﬁﬂll hmlhesis in a way that accoutji< [or sampling jipcertainty. This calcula-
tioginvolves using the dala to compute the p-value of the null hypothesm

@ The p-value, also called the significance probability. is the pr
uted in your sample, assuming the null hypothesis is correct. In the case at hand,

bution under the gullbypathesis a5 the sample average you actually computed.
or example, suppose thal, in your sample of rccent college graduates, the
average wage is $22.24. The p-value is the probability of observin Y at
least as diﬁeremmm ) as the observed
variation, assuming that the null h ypoth-

value of $22.24 by pure random sampling

say 4l %, - Iikely that the observed sam [e average of $22.24 could
mmm%-—i—'“w

uon of the p-value mathematically, let Y= denote the value
of the sample average actually computed in the data set at hand and let Pry,
denote the probability computed under the null hypothesis (that is, compured
'ussuming that £(Y;) = py,). The p-value is
!

J p-value = Pry [|Y — pyol > 1V — py o], (35)

ol

That is, the p-value is the area in the tails of the distribution of ¥ under the null
hypothesis beyond |¥ 2 — 4, o). If the p-value is large, then the observed value

Y“ is consistent with the null hypolﬁcsm. But 11 the p-vajue is small. it is
—Mmpute the p-value TS Nty TS know the sampling distribution of

Y under the null hypothesis. As discussed in Section 2.6, when the sample size is

y a normal distribulion. ypothesis, the mean of this
normal distribution is sy, so under the null hypothesis Y is distributed Ny po$),
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FIGURE 3.1 Cadleulating a p-value

The p-value is the probability of drowing o

volue of Y that differs from

vo by of least as

much os Y, In large samples, Y is distnbuted

N 7 . ] |_-F.dt'f "I\E null |
(Y — pyo)/os 18 distributed N0, 1). Thus the

prvalue is the shoded
provability outside

mﬁ 23s, 50

standard normal fail
{\" " p"?:\".

where o = o3/n.This large-sample normal approximation makes it possible (o
compute the p-value without needing to know the population distribution of Y, as
long as the sample size is large. The details of the calculation. Qgyexer.degepd on

Calculating the p-Value When oy Is Known

The calculation of the p-value when oy is known is summarized in Figure 3.1. If
the : sample size is large, then under the null hypothesis the sampling distribution
of ¥ is N(uyq rrE). where ap = o§/n. Thus, under the null hypothesis, the stan-

dardized version of ¥, (Y = yy)/ 0y, has a standard normal distribution. The

bt

p-value is the probability of obtaining a value of ¥ farther frum
under the null hypothesis or. equiv
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where @ is Lhe standard normal cumulative distribution function. That is. the
p-value is the area in the (ails of a standard normal distribution outside
* (Y“" - #r:u)!ﬂ'y.

The formula for the p-value in Equation (3.6) dgpends gndbexadanceolibe

* in general

oy must be estimated before the p-value can be computed. we now turn 1o the
problemn of estimating .

The Sample Variance, Sample

Standard Deviation, and Standard Error

‘The sample variance s is an estimator of the population variance o} the sample
standard deviation s, is an eslimator of the population standard deviation oy and

the standard error of the sample average Y is an estimator of the standard devia-
tion of 1he sampling distribution of Y.

The sample variance and standard deviation. The sample variance, s}.. is
L

§=—- S, -1 (37)

t of the sample variance,
¢ formula for the sample variance is much like the formula for the popula-
tion variance. The population variance, E(Y — uy)?, is the average value of
(Y - uy)?in the population distribution, Similarly, the sample variance is the sam-
pie average of (¥, — py)%.i = 1....,n, with two modifications; First_u . is replaced
by ¥, and second, the aver the divisor # — | instead of n.
¢ reason for the first madification—| —y—
unknown and thus must be estimated: the natural estimator of u, is Y. The rea-
son for the second mod:ﬁcauon—dmdmgww
mating .y by ¥ introdu
nin Exercise 3.18, E[(Y, - ¥))] = [(n — 1)/n|o}. Thus. £ (¥, - ¥ ) =
n E[(Y, - ¥)*] = (n — 1)} Dividingbyn — 1 in Equation (3.7) instead of n cor-
rects for this small dJownward hlas. and as a resull sy is unbiased.

Dividing by : of n is called a degrees of freedom
correction: Estimatin lh:. mean uscs up some of the information—that s, uses u
one degree o e data. so that o

remain.
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. THe StAnDARD ERROR OF ¥

rd error of Y is an esti iati Y The stan-

or by dp.When Y,.... Y, are iid.,

SE(Y) = 6y = sy/Vn. (3.8)
#

Consistency of the sample variance. The sample variance is a consistent
estimator of the population variance:

st 5 gl (3.9)

In other words, the sample variance is close to the papulation variance with high
probability when » is large,
The resultin Equation (3.9) is proven in Appendix 3.3 under the assumptions
..... Y_arei.id.and Y, has a finite fourth moment: that j b

inite; in other words. Y, must have a finite fourth moment.
—

The standard errorof Y.  Because the standard deviation of the sampling dis-
tribution of Y is oy = oy/Vn, Equation (3.9) justifies using s,/ Vi as an estima-
tor of o. The estimator of oy. 5y / Vv, is called the standard error of ¥ and is
denoted by SE(Y) or by oy (the “™ over the symbol means that this is an estima-
1or of oy,). The standard etror of Y is summarized as Key Concept 3.4.

When Y,....,Y, are i.i.d. draws from a Bernoulli distribution with succes-
probability p, the formula for the variance of Y simplifies to p(1 — p)in [sec
Equation (2.7)}. The formula for the standard error also takes on a simplc {orm
that depends only on ¥ and m: SE(Y) = VY(1 - Y)/n.

Calculating the p-Value When o Is Unknown

Because s is a consistent estimator of . the p-value can be compulted by replac-
ing «r,. in Equation (3.6) by the standard error. SE(Y) = . That is. when o i
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unknown and Y|...., Y, are i.i.d.. the p-value is caiculated using the formula

Yo ~ Hy

p-value = 2¢(— SE(?)

), (3.10)

The t-Statistic
The standardized sample average (Y — uyo)/SE(Y) plays a central role in testing

statistical hypotheses and has a special name, the s-statistic or r-(gtig

_ Y — uyp

‘= SE (3.1)

In general, a test statistic is a statistic used to perform a hypothesis test. The
f-statistic is an important example of a test statistic.

Large-sample distribution of the t-statistic. When n is large, 57 is close o
o} with high probability. Thus the distribution of the r-statistic is approximately
the same as the distribution of (¥ — py)/ay, which in turn is well approximated
by the standard normal distribution when n is large because of the central limit
theorem (Key Concept 2.7). Accardingly, under the null hypothesis,

t is approximately distributed N(O.ﬁlEor IarEe a (3.12)

The formula for the p-value in Equation (3.10) can be rewritien in terms of
the ¢-siatistic. Let 1+’ denote the value of the t-statistic actually computed:

Yo — py,

it — — 3-13
T TSEm @13)
Accordingly, when n is large, the p-value can be calculated using
p-value = 2(—;1*"'). (3.14)

As a hypothetical example, suppose that a sample of # = 200 recent college
graduates is used to Lest the null hypothesis that the mean wage, £(Y'), is $20/hour.
The sample average wage is Y% = $22.64 and the sample standard deviation is
sy = $18.14. Then the standard error of ¥ is s,/ Vi = 18.14/\/200 = 1.28. The
value of the r-statistic is 17 = (22.64 — 20)/1,28 = 2.06. From Appendix Table 1,
the p-value is 2@(~2.06) = 0.039, or 3.9%. Thal is, assuming the null hypothesis
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to be true. the probabitity of obtaining a sample average at least as different from
the null as the one aclually computed is 3.9%.

Hypothesis Testing
with a Prespecified Significance Level

When you undertake u statistical hypothesis test, you can make two types of mis-
takes: You can incorrecily reject the null hypothesis when it is troe, ar you can fail
lo reject the null hypothesis when it is false. Hypothesis lests can be performed
without computing the p-valug if you are willing to specify in advance the proba-
bility you are willing 10 tolerate of making the first kind of mistake—~thal is, of
incorrectly rejecting the n }s when it is Lrue. If you chouse a prespeci-
ied probability of rejecting the nuil hypothesis when it 1s lrue (for example, 5%,
then you will reject the null hypothesis if and only if the p-value is less than 0.05.
This approach gives preferential treaiment to the null hypotbesis, but in many
practical situations this preferential treatment is appropriate.

Hypothesis tests using a fixed significance level. Suppose it has been
decided that the hypothesis will be rejected if the p-valye % . Because
the Lails of the normeal distribution cutside = 1,96 is 5%, this gives
a simple rule:

Reject Hy if {17 > 1.96. (3.15)

That is, reject il the absolute value of the r-stalistic compuied from the sample is
greater than 1.96. If n is targe enough, then under the null hypothesis the
-statistic bas 3 M(0, 1) distribution. Thus. the probability of ecroneously rejecting
the null hypothcsis (rejecting the oull hypothesis when it is in fact true) is 5%.

This ramework for testing statistical hypotheses has some specialized termu
nology. summarized in Kev Concept 3.5. The signilicance level of the test in Equa-
tion (3.15) is 5%, the critical value of this twg-sided test is 1.96, and the rejection
region is the values of the t-statistic outside =1,96, If the 1est rejecis at the 3% sig-
nificance level, the population mean py is said to be statistically significantly dif
ferent from uyy at the 5% significance level.

Testing hypotheses using a prespecified significance level docs not require
computing p-values In the previous example of testing the hypothesis that the
mean earning of recent college graduales is $20, the z-siatistic was 2.06. This
exceeds 1.96. 5o Lhe hypothesis is rejected at the 5% level. Although performing
the test with a 5% significance Icvel is easy. reporting only whether the null
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A slatistical hypothesis test can make two types of mistakes: a type L ervor, in which
the null hypothesis is rejected when in fact it is true, and a type I error, in which
the null hypothesis is not rejected when in faét it is false. The prespecified rejec-
ton probability of a statistical hypothesis test when the null hypothesis is. true—
that is, Lhe prespecified probability of a type I error—is the significance level of
ihe test. The-critical value of the test statistic is the value of the statistic for which
the test just rejects the null hypothesis at the given significance level. The set of
values of the test stalistic for which the test rejects the null hypothesis is the rejec-
tion region. and the values of the test statistic for which it does not reject the nuil
hy pothesis is the acceptance reglon. The probability that the test actvally incor-
rectly rejects the null hypothesis when it is trug is the size of the test, and the prob-
ability that the test correctly rejects the nufl hypothesis when the alternative is true
i Lhe power of the test,

The p-value is the probability of obtaining a test statistic, by random sampling
variation, at least as adverse to the nutl hypothesis value as is the statistic actually
observed, assuming that the null hypothesis is correct. Equivalently. the p-value is
the smallest significance level at which you can reject the null hypothesis,

hypothesis is rejected at a Ercspccificd significance level conveys less information

than reporting the p-value.

What significance level should you use in practice? 1n many cascs, statis-
ticians and cconometricians use a 3% significance level. If you were Lo lest many
stidishical hypotheses at the 5% level, vou would incorrectly reject the null on aver-
age once in 20 cases. Sometimes a more conservative significance level might be
in order. For example, lepal cases sometimes invalve statistical evidence. and the
null hvpothesis could be that the defendant is not guilty; then one would want e
he quite sure that a sejection of the null (conclusion of giil() 1s aot just a result of
randem sample variation. In some legal sctlings the significance level used is 1%
or even (L.1%, 1o avoid this sort of mistake. Similarly, il a government agency i
considering permitting the sale of a new drug. a very conservative standard mighl
be in order so 1hat consumers can be sure that the drups available in the market
actually work.,
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TeSTING THE HYPOTHESIS EIY} = piye
AGAINST THE ATERNATIVE ETY) # iy

1. Compute the standard error of ¥, SE(Y) [Equation (3.8)},
2. Compute the ¢-statistic [Equation {3.13)].

3. Compute the p-value [Equation (3.14)]. Reject the hypothesis ar the 5% sig-
nificance leve! if the p-value is less than 0.05 (equivalently, if {1°| > 1.96).

Being conservative, in the sense of using a very low significance level, has a
cost; The smaller the significance level, the larger the critical value, and the more
difficult it becomes to reject the null when the null is false. In faer, the most con-
servative thiog o do is never to reject the nuil hypothesis—but if that is your view,
then you never need Lo look at any stalistical evidence, [or you will never change
your mind! The lower the significance level, the lower the power of the test. Many
economic and policy applications ¢an call for less conservatism than a lepal case,
so a 5% significance level is often considered to be a reasonable compromise.

Key Concept 3.6 summarizes hypothesis tests [or the population mean against
the two-sided alternative.

One-Sided Alternatives

In some circumstances. the alternative hypothesis might be that the mean exceeds
#yo- For example, one hopes that education helps in the labor market, so the rel-
evanl alternative to the null hypothesis that earnings are the same for college grad-
uates and nongraduates is not just that their earnings differ, but rather that
graduates earn more than nongraduates. This is called a one-sided alternative
hypothesis and can be written

H: E(Y) > py, (one-sided alternalive). (3.16)

The general approach to computing p-values and to hypothesis testing is 1he
same for one-sided alternatives as it is for two-sided alternatives, with the modifi-
cation that only large positive values of the #-statistic reject the null hypothesis.
ralher than values that are large in absolute value. Specifically. to test the one-sided
hypothesis in Equation (3.16), construct the -statistic in Equation (3.13). The p-
value is the area under the standard normal distribution to the right of the
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calculated ¢-stalistic. That is, the p-value, based on the N(0, 1) approximation to
the distribution ol the {-statistic, is

p-value = Py, (Z>1*") = ) ~ @1+, 317

The N(0, 1) critical value for a one-sided test with a 5% significance level is 1.645,
The rejection region for this test is all valucs of the r-statistic exceeding 1.645.

The one-sided hypothesis in Equation (3.16) concerns valucs of xy exceeding
Hyo- If instead the alternative hypothesis is that E(Y') < uy. then the discussion
of the previous paragraph applies except that the signs are switched; for example,
the 5% rejection region consists of values of the r-statistic less than —1.645.

Confidence Intervals
for the Population Mean

Because of random sampling error, it is impossible to learn the exact value of the
population mean of Y using only the information in a sample. However, it is pos-
sible to use data from a random sample to construct a set of values thal contains
the true population mean u, with a certain prespecified probability. Such a set is
called a confidence set. and the prespecified probability that . is contained in this
set is called the confidence level The confidence set for uy turns out to be all the
possible values of the mean between a lower and an upper limit, so that the con-
fidence sel is an interval, called a confidence interval.

Here is une way to construct a 95% confidence set [or the population mean.
Begin by picking some arbitrary value for the mcan: call this wy,. Test the null
hypothesis that gy = py,, against the alternative that uy # u,, by computing the
¢-statistic; if it 3s less than 1.96, this hypothesized value u,, is not rejected at the
5% level, and write down this nonrejected value py,, Now pick another arbitrary
value of uyq and test it; if you cannot reject it. write this value down on your list.
Do this again and again: indeed, keep doing this for all possible values of the pop-
ulation mean. Continuing this process yields the set of all values of the population
mean that cannot be rejected at the 5% level by a two-sided hypothesis test.

This list is useful because it summarizes the set of hypotheses you can and can-
not reject (at the 5% level) based on your data: If someone walks up te you with
a specific number in mind, you can tell him whether his hypothesis is rejected or
not simply by looking up his number on your handy lisl. A bit of clever reasoning
shows that this set of values has a remarkable property; The probability (hat it con-
tains the true value of the population mean is 95%.
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CONFIDENCE INTERVALS FOR THE POPULATION MEAN

A 95% two-sided confidence interval {or py is an interval construcied so that it
contains the true value of py In 95% of all possible random samples. When the
sample size n is large. 95%. 90%, and Y9% confidence intervals [or p . are

95% confidence interval for py = (Y = 1.96SE(Y)).
90% confidence interval [or gy = (Y + 1.64SE(Y)].

99% confidence interval for py = [¥ = 2.58SE(Y)).

The clever reasoning goes like this. Suppose the true valuc of p, is 21.5
(although we do not know this). Then ¥ has a normal distribution centered on
21.5, and the r-statistic testing the null hypothesis py = 21.5 has a N(0. 1) distri-
bution. Thus, if n is large, the probability of rejecting the null hypothesis .y, = 21.5
at the 5% level is 5%. But becausc you tested all possible values of the population
mean in constructing your set. in particular you tested the true value, ., = 21.5.
In 95% of all samples, you will correctly accept 21.5: this means that in Y5% of all
samples, your list will contain the true value of u,. Thus. the values on your list
constitute a 95% confidence set for yy.

This method of constructing a confidence sct is impractical. for it requires you
to test all possible values of 1y as null hypotheses. Fortunately there is a much eas-
ier approach. According to the formula for the r-statistic in Equation (3.13), a trial
value of u,,, is rejected at the 5% level if it is more than 1.96 standard crrors away
from Y. Thus the set of values of p that are not rejected at the 5% level consists
of those values within +1.96SE(Y) of Y. That is, a 95% confidence interval for u,
is Y — 1.96SE(Y) < uy <Y + 1.96SE(Y). Key Concept 3.7 summarizes this
approach.

As an example, consider the problem of constructing a 95% confidence inter-
val for the mean hourly earnings of recent college graduates using a hypothetical
random sample of 200 recent college graduates where Y = $22.64 and SE(Y) =
1.28. The 95% confidence interval for mean hourly earnings is 22.64 + 1.96 X 1.2%
= 22.64 + 251 = [$20.13. $25.15].

This discussion so far has focused on two-sided confidence intervals. Onc
could instead construct a one-sided confidence interval as the sct of values of uy
that cannot be rejected by a one-sided hypothesis test. Although one-sided confi-
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dence intervals have applications in some branches of siatistics, they are uncom-
mon in applied econometric analysis.

Coverage probabilities. The coverage probability of 1 confidence interval for
the population mean is the probability, computed over all possible random sam-
ples, that it contains the true population mean.

Comparing Means
from Different Populations

Do recent male and female college graduates earn the same amount on average?
This question involves comparing the means of two different population distribu-
tions. This section summarizes how 1o test hypotheses and how to construct
confidence intervals for the difference in the mcans from iwo different
populations.

Hypothesis Tests
for the Difference Between Two Means

Let u, be the mean hourly earning in the populalion of women recenlly gradu-
ated from college and le u,, be the population mean for recently graduated men.
Consider the null hypothesis that earnings for these two populations differ by a
cerlain amount, say d,,. Then the null hypothesis and the two-sided alternative
hypothesis are

Hep, -p, = d, vs. H'I: B — M, * d,. (3.18)

The null hypothesis that men and women in these populations have the same camn-
ings corresponds to Hj, in Equation (3.18) with d,, = 0.

Because these population means are unknown. they must be estimated [rom
samples of men and women. Supposc we have samples of n,, men and 1, women
drawn at random from their populations. Let Lhe sample average annual earningy
be Y, for men and Y, for women. Then an cstimatorof w,, — g, is ¥,, — ¥,

To test the null hypothesis that x,, — g, = dyusing Y,, — Y..we need to know
the distribution of ¥,, — ¥, Recall that Y, is, according to the central limit theo-
rem. approximately distributed N(u,,. a2,/ 1,,). where 2, is the population vari-
ance of esrnings for men. Similarly, ¥, is approximately distributed N{u,.. o2./n,).
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wherc o is the population variance of earnings for women. Also, recall from Sec-
tion 2.4 that a weighted average of two normal random variables is itself normally
distributed. Because Y,, and Y, arc canstructed from different randomly selected
samples, they are independent random variables. Thus, 7,,, — Y, is distributed
Mgy, — p,. (0;‘:'1!!,,,) + (“E-"‘"n-)]'

If 72, and o2 are known, 1ben this approximale normal distribulion can be
used to compute p-values for the test of the null hypothesis that u,, — u, = di. In
practice, however, these population variances are typically unknown so they mus:
be estimated. As before, they can be estimated using the sample variances, sZ, and
s2. where 52, is defincd as in Equation (3.7). except that the statistic is computed
only for the men in the sample, and s} is defincd similarly for Lhe women, Thus the
standard error of Y, — Y, is

_ 2 5]
SE(Y, - V.) = \I;——:' R (3.19)

|

The -slatistic for testing the null hypothesis is constructed analogously to the
+-statistic for testing a hypothesis aboul a single population mean, by subltracting
the null hypothesized value of ., — . from the estimator ¥,, — Y, and dividing
the result by the standard error of ¥, — ¥

r= %ET_?:YL_—)_;;%U (¢-statistic for comparing two means).  (3.20)
[f hoth n,, and n,_are large, Lken this /-statistic has a standard nocmal distribution.

Because the s-statistic in Equation (3.20) has a standard normal distribution
under the null hypothesis when n,, and n,, are large. the p-value of the two-sided
test is computed exactly as il was in the case of a single population; that is, the
p-value is computed using Equation (3.14).

To conduct a test with a prespecified significance level, simply calculate the
t-statistic in Equalion (3.20} and compare it 10 the appropriate critical value. For
cxample, the null hypothesis is rejected at the 5% significance level if the absolute
valuc of the r-stalistic exceeds 1.96.

If the alternative is one-sided rather than two-sided (that is, if the alternative
is that u,, — u,, > dg), then the test is modified as outlined in Section 3.2, The
p-value is computed using Equation (3.17). and a test with a 5% significance level
rejects when ¢ > 1.65.

Confidence Intervals for the Difference
Between Two Population Means

The method for constructing confidence intervals summarized in Section 3.7
extends 10 constructing a confidence interval for the difference between the
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means, d = u,, — u .. Because the hypothesized valuc dj, is rejected at the 5% level
if |1] > 1.96.d, will be in the confidence set if [¢]| < 1.96. But |¢| < |.96 means that
the estimated difference, Y, ~ ¥ .is less than 1.96 standard errors away from d,,
Thus. the 95% two-sided conlidence interval for d consists of those values ol o

within +1.96 standard errors of ¥, — Y

-

953% confidence interval ford = p,, — n, is

. _ (3.21)
(¥, - ¥.) = L96SE(Y, — V.).

With Lhese formulas in hand, the box “The Gender Gap of Earnings of Col-
lege Graduates in the ULS.” coutains an empirical investigation of gender differ-
ences in camings of 115, college graduates,

Differences-of-Means Estimation of
Causal Effects Using Experimental Data

Recall from Section 1.2 that a randomized controlled experiment randomly selects
subjects (individuals or, morc generally. entitics) from a population of interest,
then randomly assigns them either 1o a treatment group, which receives the exper-
imental trcatment, or to a control group, which does not receive Lhe treatment,.
The difference belwcen the sample means of the treatment and control groups is
an estimator of the causal effect of the treatment.

The Causal Effect as
a Difference of Conditional Expectations

The causal effect of a treatment is the expected effect on the outcome of interest
of the treatment as measured in an ideal randomized controlled experiment. This
cffect can be expressed as the difference of two conditional expectations. Specif-
ically, the causal effect on Y of ireatment level x is the difference in the conditional
expectations. E(Y| X = x) — £( Y] X = 0),where E(V| X = ) is the expected value
of Y lor the reatment proup (which receives ireatment level X = x) in an ideal
randumized controlled experiment and £(¥| X = 0) is the expected value of Y for
the control group (which reccives treatment fevel X = 0). In the context of
experiments. the causal effect is also called the treatment effect. If there are only
1wo treatment levels (that is, if the treatment is binary). then we can let X = 0
denote the control group and X = | denote the treatment group. I the treatment
is binury treatment. then the causal effect (that is, the treatment effect) is
F(YIX = 1) - E(Y|X = D) in an ideal randomized controlled experiment.



86 CHAPTER 3 Review of Siatislics

The Gender Gap of Earnings of College Graduates in the U.S.

box in Chapier 2, “The Distribution of Earn-
ings in the United States in 2004.” shows that, on
average, male college graduates earn more than
female colicge graduates What arc the recent trends
in this “gender gap™ in carnings? Social norms and
laws governing gender discrimination in the work-
place have changed subsiantially in the United
States Is the gender gap in eamings of college grad-
uates stable or has il diminished over time?

Table 3.1 gives estimates of hourly earnings for
coliege-educated full-time workers aged 25-34 in the
United States in 1992, 1996, 2000, and 2004, using
data collecied by the Carrem1 Population Survey.
Earnings for 1992, 1996, and 2000 were adjusted for
inflation by putting them in 2004 dollars using the
Consumer Price Index.! In 2004, the average hourly
earnings of the 1,901 men surveyed was $21.99, and
the standard deviation of earnings for men was

1739 women surveyed was $18.48, and e standard
deviation of ¢arnings was $8.16. Thus the estimale of
the gender gap in earnings for 2004 is $3.52 (= $21.99
— $1847), with a standard error of $0.31
(= V10391901 + B.16/1733). The 95% confi-
dence interval for the gender gap in carnings in 2004
#8352 x 1.96 x 031 = ($2.91.84.12).

The results in Table 3.1 suggest four conclusions.
Firat, the gender gap is large. An hourly gap of §3.52
might not sound like much, but over a year it adds up
to $7,040, assuming a 40-hour work week and 50 paid
weeks per year. Second. the estimated gender gup
has increased by $0.79/hour in real 1erms over this
sampie, from $2.73/hour Lo $3.52/hour; however, this
increase is nol slatistically significant at the 5% sig-
nificance level (Exercise 3.17). Third. this gap is large
if it is measured instead in percentage terms: Accord-
ing to the estimates in Table 3.1, in 2004 women

$10.39. The average hourly carnings in 2004 of the cortinued
TABLE 3.1 Trends in Hourly Eamnings in the United Shates
of Working College Groduates, Ages 25-34, 1992 1o 2004, in 2004 Dollors
Men Women Differunce, Men vi. Women
3% :
Confidara.
Intwrval
Yeor Y. [ [ Y. . n, Y, Y. S&Y_, Y., ford
1992 20.33 B.70 1592 17.60 6.90 1370 274 029 216330
- . - — — am .- |
1996 19.52 8.48 1277 1672 7.03 1235 280 N3 222 340
2000 2177 10.00 1 30} 18.21 3.20 [182 35460 .37 283420
2004 2184 10039 1901 1847 816 1739 3524 021 251-443
These estimales are computed using daty om all full-nime workers aged 25- X survesed in the Current Population Survey con
ducted in March of the nes sear (tor example, the dala for 2004 were colbected tn March 2005 The difference s sigmfivant's
diflcrenl lrom zero ab 1he **1% mgnifance evel.

L - -
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carned 16% less per hour than men did (33.52/
$21.99), more than the gap of i3% seen in 1992
($2.73/%$20.33). Fourth, the gender gap is smaller for
voung college graduates (the group analyzed in
Table 3.1) than it is for all college graduates (ana-
lyzed in Table 2.4): As reported in Table 2.4, the mean
; earnings for all college-educated women working
! full-time in 2004 was $21.12, while for men this mean
was $27.83, which corresponds 1o a gender gap of
24% [= (27.83 — 21.12)/27.83} among atl full-time
college-educated workers.

This cmpirical analysis documents that the “gen-
der gap™ in hourly carnings is farge and has been
fairly stable (or perhaps increascd slightly) over the
: recent past. The analysis does not, however, tel us
t why this gap exists. Does it arise from gender dis-
crimination in the tabor market? Does it reflect dif-
ferences in skills cxperience. or education between

men snd women? Does it rellect differences in
choice of jobs? Or is there some ather cause? We
return to these questions once we have in hand
the tools of multiple regression analysis, the topic of
Part 1.

'Because of inflation. a dollar in 1992 was worth more than
a dolbur in 200, in the sense that a dollar in 1992 could buy
more goods and services than a dotlar in 2004 could. Thus
earnings in 1992 cannet be directly compared to carnings
in 2004 without adjusting for inflation. One way 1o make
this adjustment is to use the Consumer Price Index (CPF).,
& measure of the price of a “marker basket” of consumer
poods and scrvices constructed by the Burcau of Labor Sta-
tistics, (ver the twelve years from 1992 10 2004, the price of
the CPI market basket rose by 34.6%: in other words, the
CPI basket of goods and services thut cost $100 in 1992 cost
$134.60 in 2004, To make carnings in 1992 and 2004 com-
parablc in Table 3.1, 1992 carnings are inflated by the
amount of overall CP! price inflation, that is, by multiply-
ing 1992 camnings by 1.346 to put them into “2(04 dollars.”

Estimation of the Causal
Effect Using Differences of Means

87

If the treatment in a randomized controlled experiment is binary, then the causal
effect can be estimated by the difference in the sample average outcomes between
the trealment and contro} groups. The hypothesis Lhat the (reatment is ineffective
is cquivalent to the hypothesis that the two means are the same, which can be
tested using the r-statistic for comparing (wo means, given in Equation (3.20). A
95% confidence interval for the difference in the mcans of the two groups is a 35%
confidence interval for the causal effect, so a 95% confidence interval for the
causal effect can be constructed using Equation (3.21).

A well-designed, well-run experiment can provide a compelling estimate of a
causal effect. For this reason. randomized controlled experiments are commonly
conducted in some fields, such as medicine. In economics, however, experiments
tend to be expensive, difficult to administer, and, in some cases. ethically ques-
tionable. so they remain rare. For this reason. econometricians sometimes study
“natural experiments.” also called guasi-experiments. in which some event
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unrelated Lo the treatment or subject characteristics has the effect of assigning dif-
fercent treatments to different subjects as if they had been part of a randomized
controlled experiment. The box, “A Novel Way to Boost Retirement Savings,”
provides an cxample of such a quasi-experimenl that yielded some surprising
conclusions.

Using the ¢-Statistic
When the Sample Size Is Small

In Sections 3.2 through 3.5, the r-statistic is used in conjunction with critical val-
ues from the standard normal distribution for hypothesis testing and for the con-
struction of confidence intervals. The usc of the standard normal distribution is
justified by the central limit theorem, which applies when the sample size is large.
When he sample size is small. the siandard normal distribulion can provide u poor
approximalion to the distribution of the r-statistic. If, however, the population
distribution is itself normally distributed, then the exact distribution {that is the
finitc-sample distribution; see Section 2.6) of the r-statistic testing the mean of a
single population is the Student ¢ distribution with 7 — 1 degrecs of freedom, and
crilical values can be laken from Lhe Student r distribution.

The t-Statistic and the Student ¢ Distribution

The t-statistic testing the mean. Consider the t-slatistic used v lest the
hypothesis that the mean of Y is gy, using data Y,,..., ¥,. The formula for this
statistic is given by Equation (3.10). wherc the standard error of ¥ is given hy
Equation (3.8). Substitution of the latter expression into the former viclds the for-
mula for the -statistic:

_ Y - Hyy

t = '
Vspin (3.22)

where 53 is given in Equation (3.7).

As discussed in Section 3.2, under general conditions the f-statistic has a stan-
dard normal distribution if the sample size is large and the null hypothesis iy true
[see Eguation (3.12)]. Although the standard normal approximation to the r-sta-
tistic is reliable for a wide range of distributions of Y il  is large. it can be unreli-
able if » is small. The exact distribution of the r-statistic depends on the distribution
uf ¥, and it can be very complicated. There is, however. one special case in which
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distributed, then the 1-statistic in Equation (3.22) has a Student 1 distribution with
n ~ | degrees of freedom.

To verify this resull, recall from Section 2.4 that the Student 7 distribution with
n - 1 degrees of freedom is defined to be the distribution of Z/VW/(n — 1),
where Z is a random variable with a standard normal distribution, W is a random
variable with a chi-squared distribution with n — 1 degrecs of freedom. and Z and
Warc independeny distributed. When Y5, ..., Y, are i.i.d. and the population dis-
tribution of Y is N{uy, of). the r-statistic can be wrillen as such a ratio. Specifi-
cally.let Z = (¥ — py M/ Volinandlet W = (n - 1)5%/ar}: then some algebra!
shows that the ¢-statistic in Equation (3.22) can be written as (=
ZINWiH{n — 1). Recall from Scetion 24 that if V..., Y, are i.i.d. and the pop-
ulation distribution of Y is N(gy. o3 ). then the sampling distribution of Y is exactly
N(izy, o3 /n) [or all a: thus. if the null hypothesis py = . is correct, then Z =
Y - ﬂry_n)f\/fgf}: has a standard normal distribution for all #. 1n addition, W =
(n — 1)si/o} has a x2_, distribution for all , and Y and s} are independently
distributed. [t follaws that, if the population distribution of ¥ is normal, then under
the null hvpothesis the f-statistic given in Equation (3.22) has an exacl Student ¢
distribution with # — | degrees of frecdom.

If the population distribution is normally distributed, then critical values from
the Studen!  distribution can be used to perform hypothesis tests and to construct
confidence intervals. As an example, consider a hypothetical probiem in which
19 = 2.15 and i = 20 so that the degrees of freedom is # — 1 = 19. From Appen-
dix Table 2, the 5% two-sided critical value for the 4 distribution is 2.09. Because
the r-statistic is larger in absolute value than 1he eritical value {2.15 > 2.04), the null
hypathesis would he rejecied at the 5% significance level against the two-sided
alternative. The 95% confidence interval for uy, constructed using the 4 distri-
bution, would be ¥ = 2.09S£(Y ). This confidence interval is somewhat wider than
the confidence interval constructed using the standard normal critical value ol 1.96.

The t-statistic testing differences of means. The t-statistic testing the dif-
ference of two means, given in Equation (3.20). does not have a Student ¢ distri-
bution, even if the population distribution of Y is normal. The Student ¢
distribution docs not apply here because the variance estimator used to compute
the standard error in Equation (3.19) does not produce a dcnominator in the r-sta-
tistic with a chi-squared distribution.

"The desired expression is oblained by multiplving and dividing by Vod and collecting terms:

Vo Yy E - (r =y _ (= ”"E‘J‘r;:'

' o . -
\oxjia Norpin Noo? Vg in \ a1l

-7 -VWitn - Yy
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A Novel Way to Boost Retirement Savings

any economists think that workers tend not 10

save cnough for their retirement. Conven-
lionel methods for encouraging relirement savings
focus on financial incensives Recently, however,
cconomists have increasingly obscrved thet behav-
ior is pot always in accord with conventional cco-
nomic models. As a consequence, there has been an
upsurge in inlerest in unconventional ways Lo inflo-
ence economic decisions.

In an important study published in 2001. Brigitte
Madrian and Denpis Shea considered one such
unconventional method for stimulating retirement
savings. Many firms offer retirement savings plans in
which the firm matches. in (ull or in part. savings
taken oul of the pavcheck of participaling ¢mploy-
ces Enroliment in such plans. called 401({k) plans
after thc applicable section of the U.S. tax code. is
always optional, However. at some firms employees
are automstically enrolied in such a plan unless they
choose to opt out: at other firms employees arc
enrolled onlv if they choose to opt in. According to
conventionzl economic modcls of hehavior, the
method of enrailment—opt oul, ur opt in—should
scarcely malter: An employee who wants o change
his or her enrollment status simply tills out a form.
and the dollar value of the time required to fill out
the form is very small compared with the financial
implications of this decision. Bul, Madrian and Shea
wondered, could this conventional reasoninp be
wrong? Does the method of enroliment in a savings
Man directly affcct its enrollment rale?

To meusure the effcct of the method of enroll-
ment. Madrian and Shea studied a large firm that
changed the default option for its 401{k) plan from

nonparticipation to participation. They compared
two groups of warkers: those hired the year before
the change and not avtomatically cnrolled (but could
opt in). and those hired in the vear after the change
and automatically enrolled (but could opt out). The
financial aspects of the plan were the same. Madrian
and Shca arpued that there were no sysiematic dif-
ferences hetween the workers hired bhefore and alter
the change in the enroliment defsult. Thus. from an
econemelrician’s perspective, the change was like a
randomly assigned treatment and the causal effect of
the change could be estimated by the difference in
means between the two groups.

Madrian and Shea found that the default enroll-
ment rule made a huge difference: The enrollment
rate for the “opt-in™ (control) group was 37.4% (n =
4249}, whereas the enrollment rate for the "opl-out™
(trcatment) group was 85.9% {n = 5801). The esti-
mate of the Ircatment effect is 48.5% (= 85.9% -
37.4%). Because their sample is large. the 95% con-
fidence for the trecatment effect is tight (46.8% to
50.2%).

To economists sympathetic (o the conventional
view that the default caroliment scheme should not
matter, Madrian and Shea’s finding was astonishing.
One potential explanation for their finding is that

many workers find these plans so confusing that they .

simply (reat the default option as if it were reliable
advice; another explanation is that young workcrs
would simply rather not think about aging and
retirement. Although ncither explanation is veo-
nomically rational in a conventional sense, both are
consistent with the predictions of “buhavioral eco-

nomics.” und buth could lead 1o aceepting the default
continuel
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enrollment opiion. Inereasinely many economists are To learn more about behavioral economics and |
<tarting 1o think that such details might be as impor-  the design of retirement savings plans, see Thaler and |
tant as financial aspects for boosting enrallment in - Benartzi (2004).

retirement savings plans

A modified version of the differences-of-means r-statistic, based on a differ-
ent standard error formula—the “pooled” standard error formula—has an exact
Student r distribution when Y is normally distributed: however. the pooled stan-
dard crror formula applies only in the special case that the two groups have the
same variance or that each group has the same number of observations (Exercise
3.21). Adopt the notation of Equation (3.19). so that the two groups are denoted
as m and w. The pooled variance estimator is,

1 _ n, _
sfh?{)k‘d = F— +n -2 E (Yl - Ym)z * 2 (Yf - Y“_)! . (323)
m w - =l =1
Rroup Rroup w

where the first summation is for the observations in group m and the second sum-
mation is for the observations in group w. The pooled standard error of the dif-
ference in means isSEm,,,d(V,,, = Y,) = Spooiea X V1/n,, + 1/n,.and the pooled
1-statistic is computed using Equation (3.20), where the standard error is the
povled standard error, SEPW,“,(?,,, -Y.).

If the population distribution of Y in group m is N(u,,. a2,).if the population
distribution of Y in group w is N(u,, @2). and if the two group variances are the
samc (that is,o2, = o). then under the null hypothesis the r-statistic computed
using the pooled standard error has a Student ¢ distribution with n,,, + n,, — 2
degrees of freedom.

The drawback of using the pooled variance estimator .vf,,,‘,;ﬂ, is that it applies
only if the two population variances are the same (assuming n,, # n,.). If the pop-
ulation variances are different. the pooled variance estimator is biased and incon-
sistent. If the population variances are different but the pooled variance formula
is used. the null distribution of the pooled t-statistic is not a Student r distribution,
cven if the data are normally distributed. in fact, it does not cven have a standard
normal distribution in large samples. Therefore, the pooled standard error and the
pooled t-statistic should not be used unless you have a good reason to helicve that
the population variances are the same.
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Use of the Student ¢ Distribution in Practice

For the problem of testing the mean of ¥, the Student ¢ distribution is applicable
il the underlying population distribution of Y is normal. For economic variables,
however, normal distributions are the exception (for example, sec Lhe boxes in
Chapter 2, The Distribution of Earnings in the United States in 2004 and A Bad
Day on Wall Street™). Even if the underlying data are not normally distributed,
the normal approximation to the distribution of the /-statistic is valid if the sam-
ple size is large. Therefore, inferences—hypothesis tests and confidence intervals—
about the mean of a distribution should be based on the large-sample normal
approximation.

When comparing two means, any economic reason for two groups having dif-
ferent means typically implies that the two groups also could have different vari-
ances, Accordingly, the pooled standard error formula is inappropriate and the
correct standard evror formula, which allows for different group variances, is as
given in Equation (3.19). Even if the population distributions are normal, the -
statistic computed using the standard error formula in Equaltion (3.19) does not
have a Student r distribution. In practice, therefore, inferences ahout differences
in means should be based on Equation (3.19), used in conjunclion with the large-
sample standard normal approximation.

Even Lthough the Student ¢ disiribution is rarely applicable in economics, some
software uses the Student ¢ distribution to compute p-values and confidence inter-
vals. In practice. this does not pose a problem because the difference between the
Student ¢ distribution and the standard normal distribution is negligible il the sam-
plc size is large. For n > 15, the diffcrence in the p-values computed using the
Student  and standard nommatl distributions never exceed 0.01; for 2 > 80, they
never exceed 0.002. In mest modern applications, and in all applications in thi»
textbook, the sample sizes are in the hundreds or thousands, large enough for
the difference between the Student r distribution and the standard norma!
distribution to be negligible.

Scatterplots, the Sample
Covariance, and the Sample Correlation

What is the relationship between age and earnings? This question. like many oth-
¢rs, relates one variable. X (age). to another, ¥ (carnings). This section reviews
three ways to summarize the relationship between variables: the scatterplot, the
sample covariance. and the sample correlation coefficient.
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| FIGURE 3.2 Scaterplot of Averoge Hourly Earnings vs. Age
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Fach point in the plot represents the oge and overage earnings of one of the 200 workers in the somple. The colored
lot corresponds lo 0 40-year-old worker who earns $31.25 per hour. The data are for technicians in the information
dustry from the Morch 2005 CPS

Scatterplots

A scatterplot is a plol of » observations on X; and Y,,in which each observation is
represented by the point (X;,Y;). For example. Figure 3.2 is a scatierplot of age (X)
and hourly earnings (Y) for a sample of 200 workers in the information industry
from the March 2005 CPS. Each dot in Figure 3.2 corresponds 10 an (X, Y') pair for
one of the observations. For example one ol the workers in this samplc is 40 years
old and earns $31.25 per hour: this worker’s age and earnings are indicated by the
colored dot in Figure 3.2. The scatterplot shows a positive relationship between
age and earnings in this sample: Older workers tend to earn more than younger
workers. This rclationship is not exact, however, and earnings could not be pre-
dicted perfectly using only a person’s age.
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Sample Covariance and Correlation
The covariance and correlation were iniroduced in Section 2.3 as two propertics
of the joini probability distribution of the random variables X and Y. Because the
population distribution is unknown. in practice we do not know the population
covariance or correlation. The population covariance and correlation can. how-
ever, be estimated by taking a random sampie of n members of the population and
collecting the data (X.¥,).i = 1.....n

The sample covariance and correlation are estimators of the populalion
covariance and correlation. Like the estimators discussed previously in Lhis chap-
ter, they are computed by replacing a population average (the cxpectation) with
a sample average. The sample covariance, denoted 3, is

Syy = Fl—l E(XI - f)(}i - 7) (3‘24)

Like the sample variance, the average in Equation (3.24) is computed by dividing
by n — | instead of n: here. too, this diffcrence stems [rom using X and ¥ 1o esti-
mate the respeclive population means. When » is large. it makes litle difference
whether division isbynora — 1.

The sample correlation coefficient. or sample correlation. is denoted ryy and
is the ratio ol the sample covariance to the sample standard deviations:

.

The sampie correlation measures the strength of the linear association between X
and Y in a sample of n observations Like Lhe population correlation. the sample
correlation is unitless and lies between ~ 1 and U |ryyi =< 1.

The sample correlation equals 1 if X, = Y, for all i and equals —1 if X, = Y,
for all & More generally. the correlation is * 1 if the scatterpiot is a straight line. if
the line slopes upward, then there is a positive relationship belween X and ¥ and
the correlation is 1. If the line slopes down, then there is a negative relationship
and the correlation is -~ 1. The closer the scatterplot is 10 a straight line, the closcr
is the correlation to = 1. A high correlation coefficient does not nccessarily mean
that the {ine has a steep slope; rather, il means that the points in the scalterplot
fall very close to a straight line.

Consistency of the sample covariance and correlation. Like the sample
variance, Lhe sample covariance is consisteat. Thal is,
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Spy — Oyy. (3.26)

In other words, in large samples the sample covariance is close to the population
covariance with high probability.

The proof of the result in Equation (3.26) under the assumption that (X, ;)
are iid. and that X, and ¥, have finite fourth moments is similar to the proof in
Appendix 3.3 that the sample covariance is consistent, and is left as an exercise
(Exercise 3.20).

Because the sample variance and sample covariance are consistent, the sam-
ple correlation coclficient is consistent, thal is.ryy —— corr(X..Y,).

Example. As an example. consider the data on age and earnings in Figure 3.2,
For these 200 workers, the sample standard deviation of age is 5, = 10,75 years
and the sample standard deviation of eamings is s, = $13.7%/hour. The covariance
between age and camings is 5, = 3701 (the units are years X dollars per hour,
not readily interpretable). Thus, the correlation coefficient is r, - = 37.0M1/(10.75 X
13.79) = 0.25 or 25%. The correlation of 0.25 means thai there is a positive rela-
tuvnship between age and earnings, but as is evident in the scatterplot, this rela-
tionship is far [rom perfecl.

To verifv that the correlation does not depend on the units of mecasurement,
suppose that earnings had been reported in cents, in which case the sample stan-
dard deviations of earnings is 1379¢/hour and the covariance between age and
carnings is 3701 (units are years X cents/hour): then the correlation is 3701/(10.75
X 1379} = (.25 or 25%.

Figure 3.3 gives additional examplcs of scatterplots and correlation. Fig-
ure 3.3a shows a sirong positive linear relationship between these variables, and
the sample correlation is 01.9. Figure 3.3b shows a strong negative relationship with
a sample corrclation of —0.8. Figure 3.3c shows a scatterplol with no evident rela-
tionship. and the sample correlation is zero. Figure 3.3 shows a clear relationship:
As X increases, Y initially increases but then decreascs. Despite this discernable
relationship between X and ¥, the sample correlation is zero; the reason is that,
for these data, small values of Y are associated with both large and small values
of X,

This final example emphasizes an important point: The correlation coefficient
is a4 measure of Ynear association. There is a relationship in Figure 3.3d. but it is
not lincar.
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FIGURE 3.3  Scatterplots for Four Hypothetical Data Sets
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The scatterplots in Figures 3.30 and 3.3b show strong linear relotionships between X ond Y. In Figure 3.3¢, X is inde- ‘
pendent of Y and the two variables are uncorrelated In Figure 3.3d, the two voriobles also are uncorreloted even
though they are related nonlinearly. '

Summary

1. The sample average, Y, is an estimator of the population mean. uy. When V...
Y, are i.i.d.,
a. the sampling distribution of Y has mean uy and variance of = af./n:
b. Y is unbiascd:
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¢. by the law of large numbers, Y is consistent; and

d. by the ccntral limit theorem, Y has an approximately normal sampling
distribution when the sample size is large.

. 'The r-s\atistic is used to test the null hypothesis thal the population mean takes on
a particular value, If n is large, the (-statistic has a standard normal sampling dis-
tribution when the null hypothesis is true.

. The r-statistic can be used 1o calculate the p-value associated with the null hypoth-
esis. A small p-value is evidence thal the null hypothesis is false,

. A 95% confidence interval for iy is an inlerval constructed so that it contains the
true value of wy in 95% of repeated samples.

. Hypothesis tests and confidence intervals for the difference in the means of two
populations ar¢ conceptually similar to tests and intervals for the mean of a sin-
gle population.

. The sample correlation coelficient is an eslimator of the population correlation
coefficient and measures the linear relationship between two variables—that is,
how well their scattcrplot is approximated by a straight line.

Key Terms

cslimator (68)

estimale (68)

bias, consistency, and efficiency (68)
BLUE (69

Icast squares estimator (70)
hypothesis test (71)

null and alternative hypotheses (72}
two-sided alicrnative hypothesis (72)
p-value (significance probahility} (73)
sample variance (75)

sampie standard deviation (75)
degrees of freedom (75)

standard error of an estimator (76)
-stalistic (r-ratio} (77)

Lest statistic (77)

type L error (7))

type 11 errar (79)

significance level (79)

critical value (79)

rejection region (79)

acceptance region (79)

size of a test (79)

power (79)

one-sided alternative hypothesis (80)

confidence set (81)

confidence level (Bi)

confidence interval (R1)

coverage probability (33)

1est for the difference hetween 1wo means
(81

causal effect (85)

treatment effect (85)

scatterplot (93)

sampic covariance (94)

sample correlation coefficient (sample
correletlion) (Y4)
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Review the Concepts

31

32

33

3.4

3.5

36

A7

Explain 1he difference between the sample average Y and the population
mean.

Explain the diffcrence belween an estimator and an eslimate. Provide an
example of each.

A population distribution has a mean of 10 and a variance of 16. Determine
the mean and variance of Y [rom an i.i.d. sample from this population for
(a) 7 = 10:(b) n = 100; and {c) » = 10(10). Relate your answers to the law of
large numbers.

What role does the central imit theorem play in statistical hypothesis test-
ing? In the construction of confidence ntervais?

What is the difference between a null and allernalive hypothesis? Among
size, significance level. and power? Between a one-sided and (wo-sided alter-
nanve hypothesis?

Why does a confidence interval contain more information than the result ol
a single hypothesis test?

Explain why the differences-of-means estimator, applied to data from a ran-
domized controlled experiment, is an esumator of Lthe treatment effect.
Sketch a hypothelical scatterplot for a sample of size 10 for two random vari-
ables with a population correlauon of (a) 1.0; {(b) —1.0; (c) 0.9; (d) —0.5:
(e) 0.0

Exercises

3l

32

In a population uy = 100 and o = 43. Use the central limit theorem 1o
answer the [ollowing questions:

s In arandom sample of size n = 100, {ind Pr(Y < 101).

b. In a random sample of size # = 64. find Pr(101 < Y < 103).

¢ In arandom sample of size = = 163, (ind Pr(Y > 98).
Let Y be a Bernoulli random vanable with success probability Pr(Y = 1) =
p.andlet Y, ... Y, beiid draws from this distribution. Let p be the trav-
tion of successes (1s) in this sample.

a Showthatp =Y.

b. Show that p is an unbiascd cstimator of p.

. Shaw rthat varf Y = (1l — nl/n



Exercises 14

33  Inasurvev of 400 likely voters, 215 responded that they would vote for the
incumbent and 185 responded that they would vote for the challenger. Let
p denote the fraction of all likely voters who preferred the incumbent at the
time of the survey, and let p be the [raction of survey respondents who pre-
ferred the incumbent.

#. Use the survey results to estimate p.

b. Use the estimator of the variance of p, p(1 — p)/n, to calculate the
standard error of your estimator.

What is the p-value for the test H:p = 0.5 vs. H,:p # 0.57

2 p

What is the p-value for the test H:p = 0.5 vs. H:p > 0,57
Why do the results from () and (d) differ?

Did the survey contain statistically significant evidence that the incuom-
bent was zhead of the challenger at the time of the survey? Explain.

B

34  Using the data in Exercise 3.3:

a. Construct a 95% confidence interval for p.

b. Consiruct a Y9% confidence interval for p.

¢. Why is the interval in (b) wider than the interval in (a)?

d. Without doing any addilional calculations, test the hypothess
Hyp =0.50vs Hy:p # 0.50 at the 5% significance level.

3.5 A survey of 1035 registered votars is conducted, and the votcers are asked 1o
choose between candidate A and candidate B. Let p denote the fraction of
voters in the population who prefer candidate A, and let p denote the frac-
tion of voters in the sample who prefer Candidale A.

a. You arc interested in the competing hypotheses: H:p = 0.5 vs.
H,: p#0.5. Suppuose that you decide to reject H, if |p — 0.5] > 0.02,

i. What is the size of this test?

ii. Compule the power of this test if p = 0.53.

b. Inthe survey p = 0.54.
i. Test Hy p = 0.5 vs. Hy:p # 0.5 using a 5% significance level.
ii. Test H:p = 0.5 vs. Hy: p > 0.5 using a 5% significance level.
iti. Construct a 95% coniidence interval for p.
iv. Construct 4 99% contidence interval for p.

v. Construct a 30% confidence interval for p
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35

37

39

¢ Suppose that the survey is carried out 20 times, using independently
selected voters in cach survey. For cach of these 20 surveys, a 95%
confidence interval for p is constructed.

i» What is the probability that the true value of p is contained in all
20 of these confidence intervals?

ii. Haw many of these confidence intervals do you cxpect 10 contain
the true valuc of p?

d. In survey jargon, the “margin of error” is 1.96 X SE(/5); that is. it is }
times the length of 95% confidence interval. Suppose you wanted o
design a survey that had a margin ol crror of at most 1%. That is, you
wanted Pr{| p — p| > 0.01) = 0.05. How large should » be if the sur-
vey uses simple random sampling?

Let ¥,...., Y, beiid. draws from a distribution with mean z. A test of
Hy i = Sversus My p # 5 using the usual r-statistic yields a p-value of 0.03.

a. Does the 9% confidence interval contain x = 52 Explain.
b. Can you determine if 2 = 6 is contained in the 95% confidence inter-
val? Explain.

In a given population. 1 1% of the likely voters are African American. A sur-
vey using a simple random sample of 600 land-line tclephone numbers finds
8% African Americans. Is there evidence that the survey is biased? Explain.

A new version of the SAT test is given 10 1000 randomly selected high school
seniors, The sample mean test score is 1110 and the sample sltandard devia-
tion is 123, Construct a Y5% confidence interval for the population mean test
score for high school seniors.

Suppose that a lightbulb manufacturing plant produces bulbs with a mean
life of 2000 hours and a standard deviation of 200 hours. An inventor claims
o have developed an improved process thal produces bulbs with a longer
mean life and the same standard deviation. The plant manager randomly
selects 100 bulbs produced by the process. She says that she will believe the
inventor’s claim if the sample mcan life of the bulbs is greater than 2100
hours; otherwise. she will conclude thal the new process is no better than the
old process. Lei ¢ denote the mean of the new process. Consider the null and
alternative hypothesis H; p = 2000 vs H: 2 > 2000,

2. What is the size of the plant manager’s tesling procedure?

b. Supposc that the new process is in fact better and has a mean bulb
life of 2150 hours. What is the power of the plant manager’s testing
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What testing procedure should the plant manager use if she wants the
sizc of her testlo be 5%?

3.10 Suppose a new standardized test is given to 100 randomly sclected third-
grade students in New Jersey. The sample average scorc Y on the test is 58
points and the sample standard deviation, 5. is 8 poinis.

‘The authors plan to administer the test to all third-grade students in
New Jersey. Construct a 95% confidence interval for the mean score of
all New Jersey third praders.

Suppose the same test is given to 200 randomly selected third graders
from lowa, producing a sample average of 62 points and sample stan-
dard deviation of 11 points. Construct a %% confidence interval for
the dilference in mean scores between Iowa and New Jersey.

Can you ¢conclude with a high degree of confidence that the population
means for lowa and New Jersey students are different? (What is the
standard crror of the difference in the two sample means? What is the
p-value of the test of no difference in means versus some difference?)

3.11 Consider the estimator ?,dcfined in Equation (3.1). Show that (a) E(i") =
gy and (b) var(Y) = 1.25q0¢ /n.

3.12 To investigate possible gender discrimination in a firm, a sample of 100 men
and 64 women with similar job descriptions are selected al random. A sum-
mary of the resulting monthly salaries follows:

Avarage Solery [V} Standard Deviation {s,) n
Men $3100 5200 100
Women $2900 s 64

| R

b.

What do these data supgest about wage dilferences in the lirm? Do
they represent statistically significant evidence that wages of men and
women are different? (To answer this question, first state the nuil and
alternative hypothesis: second. compute the relevant £-statistic: third,
compulc the p-value associated with the f-statistic; and finally use the
p-value Lo answer the question.)

Do these data suggest that the firm is guilty of gender discrimination
in ils compensation policics? Explain.

3.13 Data on tifth-grade test scores (reading and mathematics) for 420 school dis-
tricts in Calilornia yield ¥ = 646.2 and standurd deviation sy = 19.5,



102

CHAPTER 3

Review of Stalistics

3.14

318

3.16

a. Construct a 95% confidence interval for the mean test score in the
population,

b. When the districts were divided into districts with small classes (<20
students per teacher) and large classes (= 20 students per teacher). the
following resulls were found:

Average Stomdord
Class Size Score () Deviction {5 n
Small 657.4 194 238
Large 6500 179 iR2

Is there statistically significant evidence that the districts wilh smaller
classes have higher average test scores? Explain.

Values of height in inches (X') and weight in pounds (¥) are recorded (rom
a sumple of 3(X) male college students. The resulting summary statistics are
X =70.5 inches; ¥ = 158 1bs; s, = 1.8 inches: s, = 14.2 Ibs; sy = 21.73
inches X |bs, and ry = 0.85. Convert Lhese statistics to the metric system
(mciers and kilograms).

The CNN/USA Today/Gallup poll conducied on September 3-5, 2004, sur-
veyed 755 Likely voters; 405 reported a preference for President George W
Bush, and 350 reporied a preference for Senator John Kerry. The CNN/USA
Taday/Gsllup poll conducted on October 1-3. 2004, surveyed 756 likely vor-
ers: 374 reported a preference for Bush. and 378 reported a preference for
Kerry.

a. Construct a 35% confidence interval for the fraction of likely voters in
the population who tavored Bush in early September 2004.

b. Construct a 95% confidence interval for the fraction of likely voters in
the population who favored Bush in early Octaber 2004.

¢ Was there a statistically significant change in voters' opinions across
the two dates?

Grades on a standardized test are known to have a mean of 1000 for students
in the United States. The test is administered to 453 randomly selected stu-
dents in Florida; in this sample. the mean is 1013 and the slandard deviation
{s)is 108.

a. Construct a 95% confidence interval for the average test score for
Florida students.
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b. Is there statistically significant evidence that Flonda students perform
diiferently than other students in the United States?

¢. Another 503 studenis are selected al random from Florida. They are
given a three-hour preparation course before the test is administered.
Their average test score is 1019 with a standard deviation of 95.

i. Construct a Y5% confidence interval for the change in average test
score associated with the prep course.

ii. [s there statistically significant evidence that the prep course
helped?

d. The onginal 453 students are given the prep course and then asked to
take the test a second time. The average change in Lheir test scores is 9
points. and the standard deviation of the change is 60 points.

i. Construct a 95% confidence interval for the change in average test
SCOres.

ii. Is there statistically significant evidence that students will perform
better on their second attempt after taking the prep course?

iii. Students may have performed better in their second attempt
because of the prep course or because they gained test-taking
experience in their first attempt. Describe an experiment that
would quaatify these twa effects.

3.17 Read the box “The Gender Gap in Earnings of College Graduates in the
Unilted States™

a. Construct 2 95% confidence interval for the change in men's average
hourly earnings between 1992 and 2004,

b. Construct a 95% confidence interval for the change in women's aver-
age hourly earnings between 1992 and 2004.

¢. Construct a 95% confidence interval for the change in the gender gap
in average hourly earnings between 1992 and 2004. ( Hint:

Y;n.]‘ﬂl - Yn-_IWZ is indcpendunl. of ?m)'.m - ?\\'.."’!H‘)
3.18 'This cxercise shows that the sample variance is an unbiased estimator of the
population variance when ¥, ..., ¥, atei.id. with mean py and variance o

8. Use Equation (2.31) to show that E[(Y, — Y)*] = var(Y,) —
2cov(Y,.Y) + var(Y).
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b. Use Equation (2.33) to show that cov(Y.Y) = o} /n.
& Usc the results in parts (a) and (b} 1o show that £{s§) = v

319 & Y isan unbiased estimator of . Is Y2 an unbiased estimator of u3?

b. Y is a consistent eslimator of uy. Is ¥2 a consisient eslimator of p3?

3.20 Suppose that{X,,Y,) are i.i.ct. with finite fourth moments. Prove that the sam-

ple covariance is a consistent estimator of the population covariance. that is,
Sxy — @ yy. where syy is defined in Equation (3.24). (Hint: Usc the
strategy of Appendix 3.3 and the Cauchy-Schwartz inequality.)

321 Show that the pooled standard error [SE ,,yq(Y,, — Y,) given following

Equation (3.23) equals the usual standard error for the difference in means
in Equation (3.19) when the two group sizes are the same {n,, = n,).

Empirical Exercise

E3l

On the 1ext Web sile www.aw-be.com/steck_watson you will find a data file
CPS92_04 tha! conlains an ¢xtended version of the dataset used in Table 3.1
of the lext [or the years 1992 and 2004, It contains data on full-lime, (ull-yeas
workers, age 25-34, with a high school diploma or B.A/B.S. as their highest
degree. A dctailcd description is given in CPS92_04_Description. available
on the Web site. Use these data to answer the following qucstions.

a. Compute the sample mean for average hourly earnings {AHE) in 199!

and in 2004. Construct a Y5% confidence interval for the population
means of AHE in 1992 and 2004 and the change between 1992 and
2004,

In 2004. 1he value of the Consumer Price Index (CPI) was 188.9. In
1992, the value of the CPI was 140.3, Repeat (a) but use AHE mca-
sured in real 2004 dollars {($2004); that is, adjusi the 1992 data for the
price inflation thal occurred between 1992 and 2004.

If you were interested in the change in workers' purchasing power
from 1992 1a 2004, would you use the resulls from (a) or from (b)?
Explain.

Use the 20X4 data to construct a 95% confidence interval for the
mean of AHE for high school graduates. Construct a 5% confidence
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interval lor the mean of AHE for workcers with a college degree. Con-
struct a 95% confidence interval for the difference between the two
means.

¢. Repeat (d) using the 1992 data expressed in $2004.

f. Did real {inflation-adjusted) wages of high school graduates increase
from 1992 to 20047 Explain. Did real wages of college graduates
increase? Did the gap between earnings of college and high school
graduates increase? Explain, using appropriate estimates, confidence
intervals. and test statistics.

g Tabie 3.1 presenis information on the gender gap for college gradu-
ates. Prepare a similar wable for high school graduates using the 1992
and 2004 data. Are there any notable differences between the resuits
for high school and college graduates?

APPENDIX
3.1 | The U.S. Current Population Survey

Each month the Burceu of Labor Statistics in the U.S. Department of Labor conducts the
“Currenl Population Survey” (CPS), which provides daia on labor foree characteristics of
the population, including the level of employment. unemployment, and earnings More than
50,000 U.S. households are surveyed cach month. Thesnmple is chusen by randomly select-
ing addresses from a databasc of addresses from e most recent decennial census aug-
mented with dila on new housing units constructed affer the last census The exact random
sampling scheme is rmther complicated (first, small geographical arcas are randomly
selected, Ihen housing units within these arcas are randomly selected ) details can he found
in the Handbook of Labor Statistics and on lhe Burcau of Labor Statistics Web sile
(www.blsgov).

The survey conducled each March is more detailed than in other months and asks
questions about camings during the previous year. The statistics in lable 3.1 were computed
using the March surveys The CPS earnings data are for full-time workers, defined to be
somebody emploved more than 35 hours per week for at least 48 weeks in the previons
vear.
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APPENDIX | Tiwo Proofs That Y Is the Least

3.2 Squares Estimator of u,
|

This appendix provides two proofs. one using calculus and one not, that Y minimizes the
sum of squared prediction mistakes in Equation (3.2)-—that is. thut ¥ is the least squares
cslimator of E(Y).

Calculus Proof

Tu minimize the sum of squared prediction misiakes, 1ake its derivative and set it to zero:
d L] ” A

— (Y, - mP=23Y, - ) = ~22 Y, + 2um = 0. (3.27
dm & i= =1

Solving for the final equation for m shows that 3 ,(Y, — m)? is minimized when
m=Y.

Non-calculus Proof

The strategy is 1o show that the difference between the least squarcs cstimator and ¥ must
be zc70, from which it follows that ¥ is the least squares estimator. Letd = ¥ — m, so that
mw=Y —dThen(Y -mPR=(Y,- (Y —dly =~ {[V,- Y]+ d)¥ = (Y, - V¥ + 2d(Y, -
Y) + d? Thus, the sum of squared prediction mistakes | Equation (3.2)] is

i;(y, - mp = i(l’, -Yy +2d§u:(Y,.—?) +nd? = iu’,- ~Y¥ end’, (329
=]

i=] =] o=

where the second equality uses the fact that 3. (Y, - ¥) = 0. Because both terms in the
final linc of Equation (3.28) are nonnegative and because the first term does not depend
ond, Z;.,(¥, — m) is minimized by choosing d 1o make the second term, ad?2. as small s
possible. This is done by setting 4 = 0, Lhat is, by seiting m = ¥, 50 that ¥ is the least squares
eslimator of E(Y).
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APPENDIX
3.3 | A Proof That the Sample Variance Is Consistent

This uppendix uses the law of large numbers to prove that the sample variance s3 is a con-
sistent estimator of the population variance o3, as stated in Equation (3.9), when ¥,.....
Y,erciid. and E(Y) <=,

First, add and subiract gy towrite (¥, - Y2 = [(Y; — ) - (Y — u) = (¥, —
=~ Y, - uy)(Y — py) + (¥ — pny)*. Substituting this expression for (Y, — ¥) into the def-
inition of s{ [Equation (3.7)). we have that

1 o =
2 . . _ T2
5y u—lz(y‘ Y)

L S (¥, - wy)? -

n-145 n

7_' 1 _"):lm —an) (Y - )+ I—_T g(if - uy)?

= (n 2 1) [%agl (Y, - #‘r)z] - (" i 1)(? - )t (3.29)

where the fin2l equality follows from the definition of ¥ [which implies that Z7_,(Y, — py)
= (Y — py)] and by collecting terms.

The law of large numbers can now be applied to the 1wo terms in the final line of Equa-
tion (3.29}. Define W, = (Y, ~ g2, )2. Now E(W)) = o (by the definition of the variance).
Because the random variables Vi, ..., Y, are i.i.d.. the vandom variables W,,..., W, are
i.id. In addition, E(W2) = E{(Y, — uy)*] < = because, by assumption, £(Y}) < «. Thus
W,...., W, areiid and var(W,) < =50 W satisGes the conditions for the law of large num-
bers in Key Concept 2.6 and W — E(W). Bu W = ' 27 (¥, - ,F and E(W,) = of.
so !l TL(Y, - uy) —> o). Abso,af{n — 1) —— .50 the first term in Equation (3.29)
converges in probability loof-. Because ¥ —5 p,. (Y - uy) —£» 050 the second term
corverges in probability to zero. Combining these results vields s3 —> a}.
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CHAPTER 4

Linear Regression
with One Regressor

state implements tough new penallies on drunk drivers: What is the cffect
Aon highway fatalities? A school district cuts the size of ily elementary
school classes: What is the effect on its students’ standardized test scores? You
successfully complete one morce year of college classes: What is the effect on
your [uture earnings?

All three of these questions are about the unknown effect of changing one
variable. X {X being penalties for drunk driving. class size. or years ol schooling),
on another variable, ¥ (¥ being highway deaths siudent test scores, or earnings).

This chapter introduces the lincar regression model relating one variablg,
X, lo another, Y. This model postulales a linear relationship belween X and Y-
Lhe slope of the line relating X and Y is the effect of a one-unit change in X'
on Y. Just as the mean of Y is an unknown characteristic of the population
distribution of Y, the slope of the line relating X and Y is an unknown
characteristic of the population joint distribution of X and Y. The econometric
prablem is 1o estimate this siope—that is to estimate the 2(fect on Y of a unit
change in X—using a sample of dara on these (wo variables

This chapter describes methods for estimating this slope using a random
sample of data on X and Y. For instance, using data on class sizes and test scores
from different school districts, we show how 10 estimate the expected cffect on
Lest scores of reducing class sizes by, say. one student per class, The slope and the
intercept of the line relating X and Y can be estimated by a method called
ordinary least squares (OLS).
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4.1 The Linear Regression Model

The superintendent of an elementary school district must decide whether to hire
addilional teachers and she wants your advice. If she hires the teachers, she will
reduce the number of students per teacher (the student-teacher ratio) by two. She
[aces a tradeoll. Parents wanl smaller classes so thal their children can receive
more individualized attention. But hiring more teachers means spending mory
money, which is not to the liking of those paying the bill! So she asks you: If she
cuts class sizes, what will the effect be on student performance?

In many school districts, student performance is measurcd by standardize!
tests, and the job status or pay of some administrators can depend in part on how
well their students do on these tests. We therefore sharpen the superintendent's
question: If she reduces the average class size by two students, what will the effect
be on standardized test scores in her district?

A precise answer to this question requires a quantitative statement about
changes. If the superintendent chariges the class size by a certain amount, what
would she expect the change in standardized test scores to he? We can write this
as a mathematical relationship using the Greek letter heta, B¢y,,qs,.. Where the sub-
script " ClassSize” distinguishes the effect of changing the class size (rom other
effects. Thus.

8 _ change in TestScore _ ATestScore
ClasSize ™ change in ClassSize  AClassSize’

4.1}

where the Greek leller A (deha) stands for “change in.” That is, By, 15 1he
change in the test score thal results from changing the class size, divided by the
change in the class size.

I you were lucky enough (0 Know By s, You would be able to tell the super-
intendenl that decreasing class size by one student would change districtwide 1ot
scores by By YOU could also answer 1he superintendent’s aclual question.
which concerned changing class size by two students per class. To do so, rearrange
Equation (4.1) so that

ATestScore = Beyusice X ACHassSize. (4.2

Suppose 1hat B, 1,.,5,.. = —0.6. Then a reduction in class size of two students pef
class would vield a predicted change in test scores of (~0.6) X (—2) = 1.2:that s
you would predict that test scores would rise by 1.2 points as a result of the redud
tiors in class sizes by two students per class
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Equation (4.1) is the definition of the slope of 4 straight line relaling test
scores and class size. This straight line can be written

TestScore = By + Briayenize X ClaxsSize, (4.3)

where B, is the intercept of this straight line, and, as before, B¢y, si:. is the slope.
According to Equation (4.3). if you knew 8, and B,..s.... not only would you be
able to determine the change in test scores a$ a district associated with a change in
class size, bul you also would be able to predict Lhe average test score itself for a
given class size.

When you propose Equation {4.3) to the superintendent. she tells you that
something is wrong with this formulation. She points out that class size is just one
of many facets of elementary education, and that two districts with the samc class

sizes will have different test scores for many reasons. One distigcl might havebele

ter leachers or it migh with comparab

all these ways, they might have different L1est scores for essentially random rea-
sons having to do with the performance of the individual studcnts on the day of Lthe
test, She is right, of course; for ali 1hese reasons, Equation (4.3) will not hold exactly
for all districts Instead, it should be viewed as a statemen| about a rclationship that
holds on average across the population of districts.

A version of this linear relationship that holds for each district must incorpo-
rate these other factors influencing test scores. including each district’s unigue
characteristics (for example, quality of their teachers, buckground of their students,
haw lucky the students were on test day). One appreach would be to list the most
important factors and to introduce them explicitly into Equation (4.3) (an idea we
return to in Chapter 6). For now, however, we simply lump all these “other fac-
tors” together and write the relationship for a given district as

TestScore = By + Bz X ClassSize + other factors. (4.4)

Thus, the test score for the district is wrilten in terms of one componenl, By +
Beus.:» X ClassSize, that represents the average effect of class size on scores in
the population of school districts and a sccond component that represents all other
{actors.

Although this discussion has focused on test scores and class size, the idea
expressed in Equation (4.4) is much more general, so it is useful to introduce more
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general nolation. Suppose you have a sample of » districts. Let ¥, be the average
test score in the * district. let X, be the average class size in the " district, and let
tt, denote the other factors influencing the test score in the i district. Then Equa-
tion (4.4) can be wrilten more generally as

Yt = B‘D + lex + "f' (45}

for each district, (that is.i = 1, ..., n). where 8, is the intercepl of this linc and 8,
is the slope. [The general notation “8,” is used for 1he slope in Equation (4.5)
inslead ol “Bey,..«.- because this equation is wrilten in terms of a gencral vari-
able X}

Equation (4.5) is the linear regression model with a single regressor. in which
Y is the dependent variable and X is the independent variable or the regressor.

The first part of Equation (4.5). 8; + 8,X..1s thc population regression line or
the population regression function. This is the relationship thal holds between Y
and X on average over the population. Thus, if you knew the value of X, accord-
ing lo this population regression line vou would predict that the value of the
dependent variable, Y. is B, + B X.

The intercept j3, and the slope B, are the coeflicients of the population regres-
sion line, also known as the eters of the population regression line. The slopc
B, is the change in ¥ associated wit .
¢ populalion regression line when X = (% it is the point al which the popula-
me cconometric applicanions, the
anion. In other applications. the

intercept has a meaningful economic inle
intercept has no real-world meaning: for example. when X is the class size. strictlv
speaking the intercept is the predicted value of test scores when there are no stu-
dents in the class! When the real-world meaning of the intcreept is nonsensical 1l
is besl to think of it mathematically as the coeflicient thas determines the level !
the regression line.

The term «, in Equation (4.5) is the errer term. The error term incorporates
all of the factors responsiblc for the difference between the i district's average
test score and the value predicted by the population regression line. This crror term
contains all the ather factors besides X that determine the value of the dependuent
variable. ¥, for a specific observation. i. In the class size example. these other fac-
tors include all the unique features of the i district that affect the performance
of its students on the tesl. including teacher quality, student economic background.
luck. and even any mistakes in grading the test.

The linear regression model and its lerminology are summurized in KoY
Concept 4.1.
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‘The lincar regression model is
Yl=ﬂn+ﬁ|XI + U,

where

the subscript i runs over observations, i = 1,....m;

Y, is the dependent variable, the regressand, or simply the lefi-hand variable;

X, is the independent variabie,the regressor, or simply the right-hand variable,
B, + B, X 18 the population regression line or population regression function,

B, is the intercept of the population regression line:

B, is the slope of the population regression line; and

1, is the error term.

Figure 4.1 summarizes the linear regression model with a single regressor for
seven hypoihetical observalions on test scores (¥') and class size (X). The popu-
lation regression line is the straight line 8, + 8,X. The population regression line
slopes down (8, < 0}, which means that districts with lower student-teacher ratios
(smaller classes) tend 10 have higher test scores. The intercept B, has a mathe-
matical meaning as the value of the Y axis intersected by the population regres-
sion line. but. as mentioned earlier. it has no real-world meaning in this example.

Because of the other factors thal determine test performance, the hypatheti-
cal obscrvations in Figure 4.1 do not fall exactly on the population regression line.
For example, the value of Y for districi #1, Y. is above the population regression
linc. This means that test scores in district #1 were better than predicted by the
population regression line, so the error term for that district, u,. is positive. In con-
trast, Y, is below the population regression line, so test scores for thal district were
worse than predicted, and 4, < 0.

Now refurn 10 your problem as advisor to the superintendent: What is the
expected effect on test scores of reducing the student—teacher ratio by two stu-
dents per lcacher? The answer is easy: The expected change is {(—2) X B,z
But what is the valuc of B¢y,.g,..?
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FIGURE 4.1 Scatter Plot of Test Score vs. Student-Teacher Ratio (Hypothefical Doto)
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4.2 Estimating the Coefficients

of the Linear Regression Model

In a practical situation, such as the application to class size and test scores. the
intcrcept B, and slope B, of the population regression linc are unknown. There-
fore, we must usc data to estimate the unknown slope and intercept of the popu-
lation regression line.

This estimation problem is similar to others you have faced in statistics. For
examplc, suppose you want to compare the mean earnings of men and women who
recently graduated from college. Although the population mean carnings are
unknown, we can estimate the population means using a random sample of mal¢
and female college graduates. Then the natural estimator of the unknown popu-
lation mean earnings for women, for example, is the average eamnings of the female
college graduatcs in the sample.

The same idea extends to the linear regression model. We do not know the
population value of By, the slope of the unknown population regressiof
linc relating X (class sizc) and Y (lest scores). But just as it was possible 1V
learn about the population mean using a sample of data drawn from thal



TABLE _41_ S;mmory of the Distribution of Student-Teacher Ratios
and Fifth-Grade Test Scores for 420 K-8 Districts in California in 1998
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Percentile

Standard 10% 25% 40% 50% 60% 75% 0% |
Average Deviation (median)

population, so is it possible to learn about the population slope By, USING a
sample of data.

The data we analvze herc consist of test scorcs and class sizes in 1999 in
420 California school districts that serve kindergarten through cighth grade. The
test score is the districtwide average of reading and math scores for fifth graders.
Cluss size can be measured in various ways. The measure used here is one of the
broadest, which is the in the district divided by the number of
teachers—that is. the districtwide student—te a arc described

n more detail in Appendix 4.1.
fable 3.' summarizes the atstnFulions of test scores and class sizes for this

sample. The average student-teacher ratio is 19.6 students per teacher and the
standard deviation is 1.9 students per teacher. The 10* percentile of the distribu-
tion of the student—teacher ratio is 17.3 (that is. only 10% of districts have stu-
dent-teacher ratios below 17.3), while the district at the 90'" percentile has a
student-tcacher ratio of 21.9.

A scatterplot of these 420 observations on test scores and the student-tcacher
ratio is shown in Figure 4.2. The sample correlation is —0.23, indicating a weak
negative relationship between the two variables. Although larger classes in this
sample tend to have lower test scores, there are other determinants of test scores
that keep the observations from falling perfectly along a straight line.

Despite this low correlation, if one could somechow draw a straight line
through these data. then the slope of this line would be an estimate of Be,,,si..
based on these data. One way to draw the line would be to take out a pencil and
a ruler and to “cycball™ the best line you could. While this method is easy. it is very
unscientific and diffcrent people will create different estimated lines.

How. then, should you choose among the many possible lines? By far the most
common way is to choose the line that produces the “least squares™ fit to these
data—that is, to use the ordinary least squares (OLS) estimator.
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FIGURE 4.2 Scaterplot of Test Score vs. Student-Teacher Ratio (California School District Data)
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The Ordinary Least Squares Estimator

The OLS estimator chooses the regression coefficients so that the estimated
regression line is as close as possible to the observed data, where closeness is mea-
sured by the sum of the squared mistakes madc in predicting Y given X.

As discussed in Section 3.1, the sample average, Y. is the least squares estima-
tor of the population mean, E(Y); that is. ¥ minimizes the total squared estimation
mistakes 3. (Y, — m)’ among all possible estimators m [see cxpression (3.2)).

The OLS estimator extends this idea to the linear regression model. Let 5,
and b, be some estimators of 8, and B,. The regression line based on these csti-
mators is by + b, X. so the value of Y, predicted using this line is b, + b  X,. Thus
the mistake made in predicting the i observationis Y; — (b, + b, X)) = ¥, = &
— b, X,. The sum of these squared prediction mistakes over all n observations 1>

E(Yi = by — b X)) (4.0)

i=1

The sum of the squared mistakes for the linear regression model in expres:
sion (4.6) is the extension of the sum of the squared mistakes for the problem of
estimating the mean in expression (3.2). In fact, if there is no regressor, then UE
does not enter expression (4.6) and the two problems are identical except for the
different notation [m in expression (3.2), b, in expression (4.6)). Just as there i< 3
unique estimator, Y. that minimizes the expression (3.2). so is there a unique pair
of estimators of 8, and B, that minimizc expression (4.6).
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THe OLS ESTIMATOR, PREDICTED VALUES, AND RESIDUALS

The OLS estimators of the slope B, and the intercept B, are

ﬁ(x,- -X)Y-7)

- s "
p=tlg————="4 (4.7)
E(Xf = X)z Y
=1
B=Y - B X. (4.8)
The OLS predicted values ¥; and residuals i are
Y,=By+BX. i=1..,n (4.9)
L=Y-Y,i=1..,n (4.10)

The estimated intercept (f!(,), slope (ﬁ,), and residval (&,) are computed [rom a
sample of # observations of X, and Y, i = 1....,n. These are estimates of the
unknown true population intercept (8,), slope {8,), and error term {u,).

The estimators of the intercept and slope that minimize the sum of squared
mistakes in expression (4.6) are called the ordinary least squares (OLS) estima-
tors of B, and ;.

OLS has its own special notation and tcrminology. The OLS eslimator of 8,
is denoied B.), and the QLS estimator of B8, is denoted B,.ThAc OI:S regression

: between Y und its predicted

I

aluerw; =Y, — Y,

You could compute the OLS estimators é(. and ,é, by trying different values
of b, and b, repeatedly until you find those that minimize the total squared mis-
takes in expression (4.6); they are the least squares estimates. This method would
be quite tedious, however. Fortunately there are [ormulas, derived by minimiz-
ing cxpression (4.6) vsing calculus, that strcamline the calculation of the OLS
estimators.

The OLS formulas and terminology are collected in Key Concept 4.2. These
formulas are implemented in virtually all statistical and spreadshcet programs,
These formulas are derived in Appendix 4.2
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OLS Estimates of the Relationship Between
Test Scores and the Student-Teacher Ratio

When OLS is used 10 estimate a line relating the student-teacher ratio to test
scores using the 420 observations in Figure 4.2, the estimated slope is —2.28 and
the estimated intercepl is 698.9. Accordingly. the OLS regression line for these 420
observations is

FestScore = 6989 — 228 x STR, (4.11)

where TestScore is the average test score in the district and STR is the
student—teacher ratio, The symbol = “ " over TessScere in Equation (4.7) indicates
that this is the predicted value based on the OLS regression line. Figure 4.3 plots
this OLS regression line superimpased over the scatterplot of Lhe data previously
shown in Figure 4.2.

The slope of —2.28 means that an increase in the student-leacher ratio by onv
student per class is, on average, associaled with a decline in districtwide 1est scores

by 2.28 points on the test. A decregsgipihoailidohlmlcachuitiatiodiedusliide 1

Wﬁﬁ points

r teacher
arger classes) is associated with poorer performance on the test.

15 now possible 10 predict the districtwide 1ext score given u value of thy
student—teacher ratio. For example, for a district with 20 students per teacher. the
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predicied test score is 698.9 — 2.28 x 20 = 653.3. Of course, this prediction will
not be exacily right because of the other factors that determine a district’s per-
formance. Bul the regression line does give a prediclion (the OLS prediction) of
whal 1est scores would be for that district, based on their student-teacher ratio,
absent those other factors.

Is this estimate of the slope large or small? To answer this, we return (o the
superintendent’s problem. Recall that she is contemplating hiring enough teach-
ers to reduce the student-teacher ratio by 2. Suppose her district is at the median
of the California districts. From Table 4.1, the median student—tcacher ratio is 19.7
and the median test score is 654.5. A reduction of 2 students per class. from 19.7
10 17.7, would move her student-teacher ratio from the 50" percentile 10 very near
the 10" percentile. This is a big change, and she would need to hire many new
teachers. Haw would it affect test scores?

According to Equation (4.11). cutting the student-teacher ratio by 2 is pre-
dicted 0 increase test scores by approximately 4.6 points: if her district’s west scores
are at the median, 654.5, they are predicled to increase to 659.1. Is this improve-
men large or small? According to Table 4.1, this improvement would move her
district from the median 10 just short of the 60" percentile. Thus. a decrease in class
size that would place her district close to the 10% with the smallest classes would
move her test scores from the S0 1o the 60°" percentile. According to these esti-
mates, at least. cutting the student-teacher ratio by a large amount (2 students per
teacher) would help and might be worth doing depending on her budgetary situ-
ation, but it would not be a panacea.

What if the superintendent were coniemplating a far more radical change,
such as reducing the student-teacher ratio from 20 students per teacher to 57
Unfortunately, the estimates in Equation (4.11) would not be very useful to her.
This regression was estimated using the data in Figure 4.2, and as the figure shows,
the smallest student—teacher ratio in these data is 14, These data contain no infor-
mation on how districis with extremely small classes perform, so thesc data alone
are not a rcliable basis for predicting the effect of a radical move to such an
extremely low student—teacher ratio.

Why Use the OLS Estimator?

‘There are both practicat and theoretical reasons to use the OLS estimators B, and
8,.Because OLS is the dominant method used in practice. it has become the com-
mon language for regression analysis throughout economics, finance (see the box),
and the social sciences more generally, Presenting resul(s using OLS (or its vari-
ants discussed later in this book ) means that you are "speaking the same language™
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fundamental idea of moder finance is that an
Ainvcstor needs 2 financial incentive o lake a
risk. Said differcmily, the expected relurn! on a risky
investment, K. must exceed the return un a safe. or
risk-free, investment, R, Thus the expected excess
return. R — R, on a risky investment, like owning
stock in a company. should be positive,

AL first it might seem like the risk of 8 stock
should be measured by its variance. Much of that
risk, however, cun be reduced by holding other
stocks in a "portfolio”—in other words, by diversify-
ing your financisl holdings. This means that the right
way 1o muasure the risk of o ytock is not by its vari-
ance but rather by its covariance with the market.

The capital asset pricing mode] {CAPM) formal-
zes this idea. According to the CAPM, the expected
e¢xeess relurn on an asscl is proportional (¢ the
expected cxeess return on a portfolio of all available
assets (the “market portfolio”™). That is the CAPM
says that

R - R = B(R,, ~ R). (4.i2)

where R, is the expected relurn on the market port-
folio and A is the coefficient in the pepulation regres-
sionuf R — R,on R, = R, In practice, Lhe risk-free
return is often taken to be the raic of inlerest on
short-term LLS, government debt. According to the
CAPM. » stock with a § < | has lexs risk than the
market portfolio and therefore hos a lower expected
excess return than (he market portfolio. {n contrast,

a stock with a 8 > | is niskier Lthan the market part-
folio and thus comands a higher expected cxcess
returp.

The ~beta” of a stack has become a workhorse
of the investment industry, and you csn oblain esti-
mated 8's for hundreds of stocks om investment
firm Web sites Those 8's typically arc estimated by
OLS regression of the actual ¢xcess return on the
stock against the actusl excess return on a broad
markel index.

The table below gives estimated @s for six US.
stocks. Low-risk consumer products firms like Kel-
logg have slocks with low 8's: riskier technology
stocks have high B's.

Mﬂ

Company

Keflogg (breakfust cereal) -0.0m
Wal-Mar! [discount retailer) 0.63
Waste Musnagement (waste disposal) 0.70
Spriat Nextel (lelecommunicalions) 0.7
Barnes and Noble (hook retailer) 102
Microsofl (software) 127
Best Buy (electzonic cquipment retpiter) 115
Amazon (online retailer) 2.65

Semre. SvartMisney <oun

"The return on an investment is the change in its prcy
pius any payoul (dividend) from {he investmenl ns & pot

ecniage of its initial price. For exumple. o stack bought on
January 1 for S100, which then paid 4 $2.50 dividend dunny
the vear and suld un December 3 lor $105. would have o
return of £ = [($105 - $100) + $2.50)/5100 = 7.5%

as other cconomists and statisticians The OLS Tormulas are buill into virtuatly -

~preadshect and statistical software packages making OLS eacv ta use.

The OLS estimatom also have desicable thearencal propesues, These are an =

ogous to e destrable properties. studied in Seehon 30000 Y as anestintator !

the populabon mean. Under the assamptions mtrodacted in Section 44 1he 018
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cslimator is unbiased and consistent. The OLS estimator is also efficient among a
certain class of unbiascd estimators; however, this efficiency result holds under
some additional special conditions, and (urther discussion of this result is deferred
until Section 5.5.

Measures of Fit

Having estimated a linear regression. you might wonder how well that regression
line describes the data. Does the regressar aceount for much or for little of the
variaticn in the dependent variable? Are the observations tightly clustered around
the regression line. or arc they spread out?

The R? and the standard error of the regression measure how well the QLS
regression line fits the data. The R? ranges between 0 and 1 and measures the frac-
tion of the variance of ¥; that is explained by X,. The standard error of the regres-
sion measures how far Y, typically is from its predicted value.

The R?

The regression R? is the fraction of the sample variance of Y, explained by (or
predicted by) X,. The definitions of the predicted value and the residual (sce Key
Concept 4.2) allow us to write the dependent variable Y, as the sum of the pre-
dicied value, ¥, plus the residual i;

Y=Y +i. (4.13)

In this notation, the R is the ratio of the sample variance of ¥, to the sample vari-
anccof Y,

Mathematically, the R® can be written as the ratio of the explained sum of
squares to the total sum of sguares. The expinined sum of squares (ESS) is the sum
of sqquared deviations of the predicted valuesof Y. f",, from their average. and the
total sum of squares (7SS) is the sum of squared deviations of Y, from ils avcrage:

ESS = (¥, - ¥)? (4.14)

TSS = iw,. - Y)Y {4.15)
i=1

Equation {4.14) uscs the fact thal the sample average OLS predicted value equals
Y (proven in Appendix 4.3),
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The R-is the ratio of the explained sum of squares 10 the total sum of squares

_ESS

2 —
R =Tss

(4.16)

Alternatively, the R? can be written in terms of the fraction of the vanance of
Y, not explained by X,. The sum of squared residusls, or SSR, is the sum of the
squared OLS residuals:

SSR = g, (4.17;
i—1
It is shown in Appendix 4.3 that 755 = ESS ~ SSR. Thus the R? aiso can be
expressed as | minus the ratio of the sum of squared residuals Lo the total sum o
squares:

SSR .

RE=1- TSS- (4.18)

Finally, the R? of the regression of Y on the single regressor X is Lhe square of the
correlation coetficient between ¥ and X.

The R? ranges between 0 and 1. Iff}, = 0, then X, explains none of the varii-
tion of Y, and the predicted value of Y; based on the regression is just the sample
average of Y, In this case, the explained sum of squares is zero and the sum ot
squarcd residuals cquals the total sum of squares: thus the R? is zero. In contrast.
if X, explains all of the variation of Y, then Y, = f’, for all i and every residual i
zero (that is, &; = 0), 50 hat ESS = TSS and R? = 1. In general, the R? does nit
take on the extreme values of 0 or 1 but falls somewhere in between. An R? near
1 indicates that the regressor is good at predicting Y,, while an R? near 0 indicates
that the regressar is not very good at predicting Y.

The Standard Error of the Regression

The standard error of the regression (SER) is an estimator of the standard
deviation of the regression error «;. The units of ; and Y, are 1he same, so the S/K
is a measure of the spread of the observations around the regression line, meu-
sured in the units of the dependent variable. For example, if the units of the depen-
dent variable are dollars, then the SER measures the magnitude of a typic.
deviation from the regression line—that is, the magnitude of a typical regressien
error—in dollars




4.3  Measures of Fif 125

Because the regression errors uy, . . ., &, are unobserved, the SER is computed
using Lheir sample counterparts, the OLS residuals &), . . . . i,. The formula for
the SER s

1

SER = s;, where 5§ = - Y=

(4.19)

where the formula for 53 uses the fact (proven in Appendix 4.3) that the sample
average of the OLS residuals is zero.

The formula for the SER in Equation (4.19) is similar to the formula for the
sample standard deviation of ¥ given in Equation (3.7) in Section 3.2, except that
Y, — Y in Equation (3.7) is replaced by &, and the divisor in Equation (3.7) is
n — 1,whercas here it isn — 2. The reason for using the divisor 4 - 2 here (instead
of n) is the same as Lhe reason for using the divisor n — 1 in Equation (3.7): It
corrects for a slight downward bias introduced because two regression coefficients
were estimated. This is called a “degrecs of freedom”™ correction: because two coef-
ficients were estimated (8, and B,), two “degrees of freedom™ of the dala were
lost, so the divisor in this factor is 1 — 2. (The mathematics behind this is discussed
in Section 5.6.) When n is large, the difference between dividing by n, by 2 — 1,0r
by n  2is negligible.

Application to the Test Score Data

Equation (4.11) reports the regression line, estimated using the California test
score data, relating Lhe standardized (est score {TestScore) to Lhe student—teacher
ratio (STR). The R? of this regression is 0.051,0r 5.1%. and the SER is 18.6.

The R? of 0.051 means that the regressor STR explains 5.1% of the variance
of the dependent variable TestScore. Figure 4.3 superimposes this regression line
on the scatterplot of the TestScore and STR data, As the scatterplot shows, the stu-
deni—teacher ratio explains some of the variation in test scores, but much varia-
tion remains unaccounted for.

The SER of 18.6 means that standard deviation of the regression residuals is
t4.6, where the units are points on the standardized Lest. Because the standard
deviation is a measure of spread, the SER of 18.6 means that there is a large spread
of the scatterplot in Figure 4.3 around Lhe regression line as measured in points
on the tesl. This large spread means that predictions of test scores made using only
the student-1eacher ratio for that district will often be wrong by a large amount.

What should we make of this low R? and large SER? The fact that the R? of
this regression is low (and the SER is large) does not, by itscll, imply that this
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4.4

regression is either “good” or “bad.” What the low R? does tell us is that other
important factors inflluence test scores. Thesc factors could include differences in
the student body across districts, differences in school quality unrelaied 10 the siu-
dent-tencher ratio, or luck on the tesl. The low R? and high SER do not tell us whar
these factors are. but they do indicate that the student—teacher ratio alone explains
only a small part of the variation in tesi scores in these daly.

The Least Squares Assumptions

This section presents a set of three assumptions on the linear regression model
and 1he sampling scheme undcr which OLS provides an appropriate estimator of
the unknown rcgression coefficients, 8; and 8,. Initially these assumptions mighi
appear ubstract, They do, however, have natural interpretations, and understand-
ing these assumplions is essential for understanding when QLS will—and will
nul—give useful estimates of the regression cocefficicnts,

Assumption #¥1: The Conditional Distribution
of u; Given X; Has a Mean of Zero

The Orst least aquares assumption is that the conditional distribution of u, given
X, has a mean of zero. This assumption is a formal mathemalical statement abou
the “other factors” contained in «, and asserts that these other factors are unre-
lated 10 X, in the sense that. given a value of X, the mean of the distribution of
these other factors is zcro

This is illustrated in Figure 4.4. The population regression is the relationship
that holds on average beiween class size and test scores in the population, and the
error term «, represents the other factors that lead test scores al a given district
to differ from the prediction based on the population regression linc, As shown
in Figure 4.4, at a given value of class size. say 200 studenls per class, sometimes
these other factors lead to better performance than predicted (¢, > 0) and somc:

times to worse performance (i; < ), but on average over the population the pre-
diction is right. In other words. given mmmﬂ*
; is iz shown as the distribution ol &, _being centercd on
population regression line at X,
. said differently, the s L
of zero: stated mathematically, E(u,| X; = x) = 0 or, in somewhal simpler notativr
E(u|X) =0

= 20 and, more generally, at ather values x ol %
mean
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The figurs shows the conditional probobility of test scores for districts with class sizes of 15,
20, ond 25 students. The mean of the conditiono! distribution of test scores, given the
studeni—sacher ratio, £ | Y] X), is the populofion regression line 8y + 1 X. At o given volue
of X, ¥ is distributed oround the regression line and the emmor, v = Y — {85 + £, X), haso
condibional mean of zero for all volues of X.

As shown in Figurce 4.4, the assumption that E(x,| X,) = 0 is equivalent 1o
assuming that the population regression line is the conditional mean of Y, given
X, (a mathematical proof of this is left as Exercise 4.6).

T he conditional mean of u in a randomized controlled experiment. 1Ina
randomized controlled experimentl, subjects are randomly assigned to the treat-
ment group (X = 1) or Lo the control group (X' = (}). The random assignment typ-
ically is done using a computer program that uses no information about the
subject, ensuring that X is distributed independently of all personal characteris-
tics of the subject. Random assignment makes X and & independent, which in turn
implies that the conditional mean of « given X is zero.

In observational data, X is not randomly assigned in an experiment. Instcad,
the best that can be hoped for is that X is as if randomly assigned, in the precis¢
sense that £(u,, X)) = (. Whether this assumption holds in a given empirical appli-
cation wilh observational data requires careful thought and judgment.and we
return Lo Lhis issuc repeatedly,
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Correlation and conditional mean. Recall from Section 2.3 that il the
conditional mean of one random variable given another is zero, then the two ran-
dom variables have 7ero covariance and thus are uncorrelated [Equation (2.27)).
Thus. the conditional mean assumption E(x,|X,} = U implics that X, and «, arc
uncorrelated, or corr( X, ;) = 0. Because correlation is 4 measure of lincar asso-
ciation, this implication does not go the other way: even if X, and «, are uncorre-
lated, the conditional mean of «; given X; might be nonzero. However, if X;and
are correlated, then it must be the case that E(u,) X;) is nonzero. It is therefore
often convenient Lo discuss the conditional mean assumption in terms of possible
correlation between X, and u, If X; and u; are corvetated. then the conditional
mean assumption is violated.

Assumption #2: (X,Y),i=1,...,nAre
Independently and Identically Distributed

The second least squares assumption is that (X,.Y).i = 1,...,n are independent)y
and identically distributed (i.i.d.} across observations As discussed in Section 2 =
(Key Concept 2.5}, this is a statement about how the sample is drawn. IT the obscr

vations are drawn by simple random sampling from a single large population, then
(X,Y).i=1, ..., nareiid. For example, let X be the age of a worker and Y be
his or her earnings, and imagine drawing a person al random from the population
of workers, Thai randomly drawn person will have a certain age and earnings (th.t
is, X and ¥ will take on some values). I a sample of n workers is drawn from this
population, then (XY )./ = 1,... n, necessartly have the same distribution. If they
are drawn at random they are also distributed independently from one obscrva-
tion 1o the next; thai is, they are i.i.d.

The i.i.d. assumption is a reasonable one {or many data collection schemcs
For example, survey data from a randomly chosen subset of the population ty
cally can be trcated as i.i.d.

Not all sampling schemes produce i.;.d. abservations on (X, Y.}, however. One
exarple is when the values of X are not drawn from a random sample of the pop-
utation but rather are set by a rescarcher as part of an experiment. For examplc.
suppose a horticulturalist wants 10 study the effects of different orpanic weeding
methads (X') on lomato production (V') and accordingly grows different plots ol
tomaltoes using different organic weeding techniques. If she picks the technijucs
(the level of X} to be used on the i plot and applies the same technigue Lo the "
plot in all repetitions of the experiment, then the value of X, does not change frow
ong samplc to the next. Thus X, is nonrandom (although the outcome Y, is ran-
dom). so the sampling scheme is not i.i.d. The results presented in this chapte?



8.4 The Leost Squores Assumptions 129

developed for i.i.d. regressors are also true if the regressors are nanrandom. The
case of a nonrandom regressor is, however, quite special. For example, modern
experimental protocols would have the horticulturalist assign the level of X to the
different plots using a computerized random number generator, Lhereby circum-
venting any possible bias by the horticulturalist (she might use her favorite weed-
ing method for the tomatoes in the sunniest plot). When this modern experimental
protocol is used, the level of X is random and (X.Y)) are i.i.d.

Another example of non-i.i.d. sampling is when observations refer to the same
unil of observation over lime. For example, we might have data on inventory lev-
els (¥) at a firm and the interest rate al which Lhe firm can borrow (X ). where
these data are collected over time from a specific firm; for example, they might be
recorded four times a year (quarterly) for 30 years. This is an example of time
series data, and a key feature of time senies data is that observations falling close
10 each other in time are not independent but rather tend Lo be correlated with
each vther: il interest rates are low now, they are likely to be low next quarter. This
paitern of correlation violates the “independence™ part of the i.i.d. assumption.
Time series data introduce a set of complications that are best handled afier devel-
oping the basic tools of regression analysis.

Assumption #3: Large Outliers Are Unlikely

The third least squares assumption is that large outliers—thal is, observations with
vaiues of X, and/or Y, [ar outside the usual range of the data—are unlikely. Large
autliers can make OLS regression results misleading. This potential sensitivity of
QLS to extreme oulliers is illustrated in Figure 4.5 using hypothetical data.

In this book, the assumption that large outliers are unlikely is made mathe-
manically precise by assuming that X and Y have nenzere [inite fourth moments:
0 < E(X{) < »and 0 < E(Y}) < = Another way to stalc this assumption is
that X and Y have finite kurtosis,

The assumption of finite kurtosis is used in the mathematics that justily the
large-sample approximations to the distributions of the QLS test statistics. We
encountered this assumption in Chapter 3 when discussing the consistency of the
sample variance. Specifically, Equation (3.9) states that the sample variance s} is
a consistent estimator of the population variance a3 (s3 — v3).1fY,,....Y,
are 1.i.d. and the fourth moment of Y, is finite. then the law of large numbers in
Key Concept 2.6 applies 1o the average. f' 27 (Y, — my)? a key slep in the proof
in Appendix 3.3 showing that s is consistent.

One source of large outlicrs is data entry ervors. such as a typographical error
or incorrectly using different urits for different observations: Imagine collecting
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daia on the height of students in meters but inadvertently recording one student(™
height in centimeters instead. One way Lo find outliers is to plot your data. If vou
decide that an outlier is duc to a data entry error. then you can either correct the
error or, il that is impossible. drop Lhe observation [rom vour data sel.

Data entry crrors aside, Lthe assumption of finite kurtosis is a plausible onc
in many applications with economic data. Class size is capped by the physical
capacily of a classroom: the hest you can do on a standardized 1est is to get all the
questions right and the worst you can do is to gei all the questions wrong. Because
class size and tesl scores have a finitc range. they necessarily have finite kurtosis
More generally, commonly used distributions such as the normal distribution have
four moments. Still, as a mathematical matter, some distributions have infinitw
fourth moments, and this assumption ruies cut those distribulions. If this assump-
tion holds then it is unlikely that statistical inferences using OLS will be dominated
by a few observalions

Use of the Least Squares Assumptions

The three least squares assumptions for the linear regression model are summi-
rized in Key Concept 4.3. The least squarcs assumptions play twin roles, and w¢
return to Lhem repeatedly throughoul this textbook.
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o

Y
Y, =8+ BX; + ui=1.....n where o 49

1. The error term u, has conditional mean zero given X;: E(u,| X)) = 0;

2 (XY )i = 1,...,nare independent and identically distributed (i.i.d.) draws
from their joint distribution; and

3. Large outliers are unlikely: X; and Y; have nonzero finite fourth moments.

4.5

Their first role is mathematical: If these assumptions hold, then, as is shown
in the next section. in large samples the OLS estimators have sampling distribu-
tions that are normal. In turn. this large-sample normal distribution lets us develop
methods for hypothesis iesting and constructing confidence intervals using the
OLS estimators.

Their second role is 1o organize the circumsilances that pase difficulties for
OLS regression. As we will see. the [irst lcast squares assumption is the most
important to consider in praciice. One reason why the first least squares assump-
tion might nat hold in practice is discussed in Chapter 6, and additional reasons
are discussed in Section 9.2,

It is also important 1o consider whether the second assumption holds in an
application. Although it plausibly holds in many cross-scctional data sets, the inde-
pendence assumption is inappropriate for time series data. Therefore, (he regres-
sion methods devcloped under assumption 2 require modification for some
applications with time series data.

The third assumption serves as a reminder that OLS, just like the sample
mcan. can be sensitive to large outliers. If vour data sct contains large outliers, you
should examine those outliers carefully to make sure those cbservations are cor-
rectly recorded and belong in the data set.

Sampling Distribution of the OLS Estimators

Because the OLS estimators 3, and B8, are computed from a randomiy drawn
sample, the estimators theraselves are random variables with a probability distri-
bution—the sampling distribution—that describes the values they could tike over
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differcnt possibic random samples This scclion presents these sampling distribu.
lions. In small samples, these distributions are complicated, but in large samplcs,
they are approximately normal because of the central limit theorem.

The Sampling Distribution
of the OLS Estimators

Review of the sampling distribution of Y. Rccall the discussion in Sec-
tions 2.5 and 2.6 about the sampling distribution of the sample average, Y, an esti-
maior of the unknown populalion mean of Y. uy. Because Y is calculated using a
randomly drawn sample. Y is a random variable that takes on different values from
one sample to the nexl: the probability of these dilferent values is summarized m
its sampling distribution. Although the sampling distribution of ¥ can be compli-
cated when Lhe sample size is small. it is pussible 1o make cerlain statements about
it that hold for all ». In particular, the mean of the sampling distribution is u .
that is, E(Y) = py.50 Y is an unbiased estimator of uy. I{ 7 is large. Lhen more can
be said about the sampling distribution. In particular, the central limit theorem
(Section 2.6) slates 1hat this distribution is approximately normal.

The sampling distribution of ﬁs and fil. These idcas carry over to the OLS
estimators ,é., and f!, of the unknown intercept 8, and slope 8, of the papulition
regression line. Because the OLS estimators are calculated using a random sam-
ple.ﬁo and ﬁ‘l are random variables that take on different values from one sample
lo the next; Lhe probability of these different values is summarized in their sam-
pling distributions.

Although the sampling distnbution of ,éu and ,él can be complicated when the
sample size is small, it is possible to make certain statements about it that hold {or
all n. In particular, the mean of the sampling distributions ofﬁu and ﬁl are 3, und
B,. In other words, under the least squares assumplions in Key Concept 4.3,

E(B,) = By and E(B) = B,. (4.20)

that is,ﬁuand Bt arc unbiased estimators of 8, and 8,.The proof thal ﬁ1 is unhiused
is given in Appendix 4.3 and the proof that ,Bu is unbiased is left as Excrcise 4.7

If the sample is sufficiently large. by the central limit theorem the sampling
distribution o{ﬁa and fﬁ is well approximated by Lhe bivariate normal distributien
(Section 2.4.). This implies that the marginaj distributions of ﬁ,, and Bl are normal
in large samples.
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\GE-SAMPLE DISTRIBUTIONS OF 3, AND 3,

[ the least squares assumptions in Key Concept 4.3 hold. then in large samples 8, 4.4
and 3, have a jointly normal sampling distribution. The large-sample normal

. pida s 2 . . . . .
distribution of By is N(B,, @7 ), where the variance of this distribution, &

-

Hri""
, 1 varf(X, — py)u]
g = e 4:’
%" n {var(X,)] (4.21)
I'he large-sample normal distribution of [3,. is N(B,. ”;':s.-)' where
, 1 var(Hu,) ( [
$ e, e % e e 1 g 5%
B == (ECH)F where H, ,kl«V:))" (4.22)

This argument invokes the central limit theorem. Technically. the central limit
theorem concerns the distribution of averages (like Y). If you examine the numer-
ator in Equation (4.7) for ﬁ,. you will sce that it. 100, is a typc of average—nol a
simplc average. like Y, but an average of the product. (Y, - Y)(X, — X). As dis-
cussed further in Appendix 4.3, the central limit theorem applies to this average
so that, like the simpler average Y, it is normally distributed in large samplcs.

The normal approximation to the distribution of the OLS estimators in large
samples is summarized in Key Concept 4.4. (Appendix 4.3 summarizes the deriva-
tion of these formulas.) A relevant question in practice is how large n must be for
these approximations to be reliable. In Section 2.6 we suggested that n = 100 is
sufficiently large for thc sampling distribution of Y to be well approximated by a
normal distribution. and sometimes smaller n suffices. This critcrion carries over
10 the more complicated averages appearing in regression analysis. In virtually all
muodern econometric applications n > 100, so we will treat the normal approxi-
mations 1o the distributions of the OLS estimators as reliable unless there are good
rcasons to think otherwise.

The results in Key Concept 4.4 imply that the QLS estimators arc consistent—
that is, when the sample size is large, 8, and E, will be close to the true popula-
tion coefficients B, and B, with high probability. This is becausc the variances
ﬂ"“: and ﬂ}":' of the estimators decrease 1o zero as n increases (n appcars in the
denominator of the formulas for the variances). so the distribution of the OLS esti-
mators will be tightly concentrated around their means, 8, and 8. when n is large.
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FIGURE 4.6 The Varionce of 8, ond the Vorionce of X
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Another implication of the distributions in Key Concept 4.4 is that, in gencril.
the larger the variance of X,, the smaller the variance o-gl of B,. Mathcmatically.
this arises because the variance of 8, in Equation (4.21) is inversely proportional
to the square of the variance of X: the larger is var(X;), the larger is the denomi-
nator in Equation (4.21) so the smaller is Uﬁ'.TO get a better sense of why this is
s0. Jook at Figure 4.6, which presents a scatterplot of 150 artificial data points on
X and Y. The data points indicated by the colored dots are the 75 observations
closest to X. Suppose you were asked 10 draw a line as accurately as possible
through either the colored or the black dots—which would you choose? It would
be easier to draw a precise line through the black dots, which have a larger vari-
ance than the colored dots. Similarly, the larger the variance of X. the more pre-
cise is ,é,.

The normal approximation to the sampling distribution of ﬁ., and B, is a pow-
erful tool. With this approximation in hand, we are able to develop methods fof
making inferences about the true population values of the regression coefficients
using only a sample of data.
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4.6 Conclusion

This chapter has focused on the use of ordinary lcast squares to estimate the inter-
cepl and slope of a population regression line using a sample of 7 observations on
a dependent variable, Y, and a single regressor. X. There are many ways to draw a
straight line through a scatterplot, but doing so using OLS has several virtues. If
the least squares assumptions hold, then the QLS estimators of the slope and inter-
cep! are unbiased, are consistent, and have a sampling distribution with a variance
that is inversely proportional to Lhe sample size n. Moreover. if n is large, then the
sampling distribution of the OLS estimator is normad.

These important properties of the sampling distribution of the OLS estima-
tor hold uadcer the three least squares assumptions,

The first assumplion is that the error term in the linear regression model has
a conditional mean of zero, given the regressor X. This assumption implies Lhat the
OLS estimator is unbiased.

The second assumpticn is that (X,.Y,) are i.i.d., as is the case il the data are
collected by simple random sampling. This assumption yiclds the formula, pre-
sented in Key Concept 4.4, for the variance of the sampling distribution of the OLS
estimator.

The third assumption is that large outliers are unlikely. Stated more formally,
X and Y have (inite fourth moments (finite kurtosis). The reason for this assump-
tion is that OOLS can be unreliable if there are large outliers.

The resulis in this chapter describe the sampling distribution of the OLS esti-
mator. By themselves, however, these results are not sufficicnt to test a hypothe-
sis about the value of 8y or to construct a confidence interval for 8,. Doing so0
requires an estimator of the standard deviation of the sampling distributiop—that
is, the standard error of the OLS estimator, This siep—moving from the sampling
distribution of 8, to its standard error, hypothesis tests. and confidence intervals—
is 1aken in the next chapter.

Summary

1. The population regression iine, 3, + B, X, is the mean of Y as a function of the
value of X. The slope, 8,. is the expected change in Y associated with a 1-unit
change in X The intercept. 8,, determines the level (or height) of the regression
line. Key Concept 4.1 summarizes the terminalogy of the population linear regres-
sion model.
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2.

The population regression line can be estimated using sample observalions
(Y. X).i= 1,....nbyordinary leas| squares (OLS). The OLS estimators ol the
regression intercept and slope are denoted by 8, and B,.

. The R? and standard error of the regression (SER) are measures of how close the

values of Y, are 1o the estimated regression line. The R? is between O and 1, with a
larger value indicating that the Y,'s are closer Lo the line. The standard error of the
regression is an estimator of the standard deviation of Lhe regression crror.

. There are three key assumptions for the lincar regression model: (1) The regres-

sion errors, &, have a mean ol zero conditional on Lthe regressors X, (2) the
sample observations are i.i.d. random draws [rom the population; and (3) large
outlicrs arc unlikely. If these assumptions hold, the OLS estimators 8 and 8, are
(1) unbiased: (2) consistent; and (3) normally distributed when the sample is large.

Key Terms

linear regression model with a single
regressor (114)

dependent variable (114)

independent variable (114)

regressor (114)

population regression line (114)

population regression function (1 14)

population intercept and slope (114)

population coefficients (114)

parameters (114)

error tcrm (114)

Review the Concepts

ordinary least squares (OLS) estimator
(119)

OLS regression line (119)

predicted value (119)

residual (119)

regression K2 (123)

explaincd sum of squares (£55) (123)

total sum of squares (T55) (123)

sum ol squared residuals (SSR) (124)

standard error of the regression (SFR)
(124)

least squares assumptions {126)

41 Explain the difference between B, and 8,: between the residual &, and the
regression error i,; and between the OLS predicied value Y, and E(Y,}.Y)
42 For cach leasl squares assumption, provide an example in which the assumi™
tion is valid, and then provide an example in which the assumption fails.
4.3 Sketch a hypothetical scatterplot of data for an estimated regression with
? = 0.9. Sketch a hypothetical scatterplot of data for a regression with

R =05
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Exercises

4,1 Suppose that a researcher. using dala on class size (CS) and average test
scorcs from 100 third-grade classes, estimates the QLS rcgression.

TestScore = 520.4 -~ 5.82 X CS.R? = 0.08 SER = 11.5.

a. A classroom has 22 studenls. What is the regression’s prediction for
thal classroom’s average test score?

b. Last year a classroom had 19 students, and this year it has 23 students.
What is the regression’s prediclion for Lhe change in the classroom
gverage test score?

¢. The sample average class sizc across the 100 classrooms is 21.4. What
is the sample average of the test scores across the 100 classrooms?
{(Hint: Review the formulas for the QLS estimators )

d. What is the sample standard deviation of test scores across the 100
classrooms? (Hint: Review the formulas [or the 82 and SER.)

42 Supposc that a random sample of 200 twenty-year-old men is selecied from
a population and that these mea's height and weight are recorded. A regres-
sion of weight on height yields

Weight = —99.41 + 3.94 X Height, R* = 0.81, SER = 102,

where Weight is measured in pounds and Height is measured in inches.

a, What is the regression’s weight prediction for somcone who is
70 inches tall? 45 inches tali? 74 inches tall?

b. A man has a late growth spur( and grows 1.5 inches over the course
of a year. What is the regression’s prediction for the increase in this
man’s weight?

c Suppose that inslead of measuring weight and height in pounds and
inches. these variable are measured in centimeters and kilograms.
What are the regression estimaltes {rom this new centimeter-kilogram
rcgression? (Give all results, estimated coelficients, R?, and SER.)

43 A regression of average weekly earnings (AWE, measured in doliars) on age
{measured in years) using s random sample of college-educated full-lime
workers aged 25-65 yields the following:

AWE = 696.7 + 0.6 X Age. R® = 0.023.SER = 624.1.



138 CHAPTER 8  Linear Regrassion with One Regrassor

a. Explain what the coefficient values 696.7 and Y.6 mcan.

b. The stundard error of the regression (SER) is 624.1. What are the units
of measurement for the SER (dollars? years? or is SER unit-free)?

c. The regression R?is 0.023. What are the units of measurement for the
R? (dollars? years? or is R? unit-free)?

d. What is the regression’s predicted earnings for a 25-year-old worker?
A 45-year-old worker?

e. Will the regression give reliable predictions for a 99-year-old worker?
Why or why not?

. Given what you know about the distribution of earnings. de you think
itis plausible that the distribution ol errors in the regression is nor-
mal? (Hinr: Do you Lhink that the distribution is symmetnc or
skewed? What is the smallest value of earnings, and is it consistent
with a normal distribution?)

g The average age in this sample is 41.6 years What is the average valuc
of AWE in the sample? (Hint: Review Key Concept 4.2.)

4.4 Read the box “The ‘Beta’ af a Stock” in Section 4.2.

a. Suppose that the value of 8 is greater than | for & particular stock.
Show that the variance of (R — Ry) [or this stock is greater than the
varianceof (R, — R)).

b. Suppose that the value of B is less than 1 for a particular stock. Is it
possible that variance of (R - Rf] for this stock is greater than the
variance of (R,, — R)? (Hint: Don’t forget the regression &rror.)

¢. Ina given year, 1he rate of return on 3-month Treasury bills 1s 3.5%
and the rate of return on a large diversified portfolio of stocks (the
S&P 500) is 7.3%. For each company listed in the table at the
end of the box. use the estimated value of B Lo estimate the stock’s
expected rate of return.

4,5 A prolessor decides to rua an experiment 10 mcasure the effect of time press
sure on final exam scores. He gives cach of the 400 studeants in his course 1he
same final exam, but some students have 90 minutes to complelc the exam
while others have 120 minutes. Each student is randomly assigned one of the
examination times based on the flip of a coin. Let Y; denote the number of
points scored on the cxam by the b student (0 < ¥, < 100).let X, denote the
amount of time that the student has to complete the exam (X, = %) or 120
and cansider the regression model ¥, = 8, ~ 8,X, + ..
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a. Explain what the term «; represents. Why will different students have
different values of u,?
b. Explain why £(u,} X} = 0 for this regression model.
¢. Arc the ather assumptions in Key Concepi 4.3 satisfied? Explain.
d. The estimated regression is }7', =49 + 024 X,

i. Compute the estimated regression's prediction for the average
score of students given 9% minutes to complete the exam:
120 minutes; and 150 minutes

il. Compute the estimated gain in score for a student who is given
an additional 10 minutes on the exam.

Show that the first least squares assumption, £(u,' X,) = 0. implies that
E(YJLX.-) = BI] + ler

Show that ,(‘i“ is an unbiased estimator of B, (Hint: Use the [act that ﬁ, is
unbiased, which is shown in Appendix 4.3.)

Suppose that all of the regression assumptions in Key Concept 4.3 are satis-
fied except that the first assumption is replaced with E(er,| X)) = 2. Which
parts of Kvy Concept 4.4 continue to hold? Which change? Why? (Is ﬁ,
normally distributcd in large samples with mean and variance given in Key
Concept 4.47 What about fll.?)

. A lincar regression yields 8, = 0. Show that R? = 0.
b. A lincar regression yields R? = 0. Docs this imply that f«ll =0?
Suppose that ¥, = 8, + B, X, + u,. where (X;. u,) are i.id.,,and X, is a

Bernoulli random variable with Pr(X = 1) = 0.20. When X = |.u, is N((}L4),
when X = 0,4, is N, 1).

8. Show that the regression assumptions in Key Concept 4.3 are
satished.
b. Derive an expression for the large-sample variance of B,.
[Hint: Evaluate the terms in Equation (4.21).]
Consider the regression model Y; = 8, + 81X, + u,.

a. Suppuse vou know that 8, = (). Derive a formula for the least squares
estimator of B,.

b. Suppose you know that 8, = 4. Derive a formula for the least squares
estimator of 8,.
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412 a Show that the regression R? in the regression of Y on X is the squared

value of the sample correlation between X and Y. Thal is, show that
Rt =ri,.

b. Show that the R? from the regression of Y on X is the same as the R*
from Lhe regressionof Xon Y.

Empirical Exercises

E4.1

Ed4.2

On the text Web site {www.aw-bc.com/stock_watson), you will find a data
file CPS04 that contains an extended version of the data set used in Ta-
ble 3.1 tor 2004. [t contains dala for fuli-time, full-year workers, age 25-34,
with a high school diploma or B.A./B.S. as their bighest degree. A detuilc
description is given in CPS04_Description, also available cn the Web site,
{These are the same data as in CP892_04 but are limited to the year 2004
In this exercise you will investigate Lhe relationship between a worker’s age
and carnings. (Generally, older workers have more job experience, leading
to higher producrivity and earnings.)

a. Run a regression of average hourly earnings (A H£) on age (Age).
Whal is the estimated intercept? What is the estimaled slope? Use the
estimated regression to answer this question: How much do earnings
increase as workers age by one year?

b. Bob is a 26-year-old worker. Predict Bob's earnings using the ¢sti-
mated regression. Alexis is 2 3(-vear-old worker. Predict Alexis’s
earnings using the estimaied reygression.

¢. Does age account for a large fraction of the variance in earnings
across individuals? Explam.

On the text Web site (www.aw-bc.com/stock_watson), you will find a dut:
file TeachingRatings that contains data on course evaluations. course
characteristics, and professor characteristics for 463 courses at the Univur-
sity of Texas at Auslin.' A detailed description is given in TeachingRal-
ings_Description, also available on the Web site. One of tbe characteristis
is an index of the professor’s “beauty™ as rated by a panel of six judges. In
this exercise you will investigate how course evaluations are related ta the
professor’s beauly.

Mhese daly were provided by Professor Daniel Hamermesh of the Ulneversity of exas an Austin arich
were used in his paper with Amy Purker, ~Bueauty in the Classroom: {osructors’ Pulchritude and Put
uve Pedagogical Productivity,” Econaenics of Education Review, August 2005, 2440 pp. 3n0-376
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a. Construct a scatterplot of average course evatuations (Course_Eval)
on the professor’s beauty (Heauty). Docs there appear to be a relation-
ship between the variables?

b. Run a regression of average course evaluations (Course_Eval) on
Lthe professor’s beauty (Beauty). What is the estimated intercepl?
What is the estimated slope? Explain why the estimated intercept is
equal o the sample mean of Course_Eval. (Hini: What is the sample
mean of Beauty?)

c. Professor Watson has an average value of Beauty, while Professor
Stock’s value of Beauty is one standard deviation above the average.
Predict Professor Stock's and Professor Watson's course evaluations.

d. Comment on the size of the regression’s slope. Js the estimated effect
of Beauty on Course_Eval large or small? Explain what you mean by
“large™ and “small.”

e. Does Beaury explain a large fraction of the variance in evaluations
across courses? Explain.

E4.3 On the text Web sile (www.aw-be.com/stock_watson), you will find a dara
file CollegeDistance that contains data [rom a random sample of high school
seniors interviewed in 1980 and re-interviewed in 1986. In this exercise you
will use these data to investigate the relationship between the number of
completed years of education for young adults and the distance from each
student’s high school to the nearest four-year college. (Proximity to college
lowvers the cost of education. so that students who live closer 10 a four-year
college should, oo average, complete more years of higher education.) A
deiailed description is given in CollegeDistance_Description. also available
on the Web site.2

2. Run a regression of years of completed education (ED) on distance
to the nearest collcge (Dist). where Dist is measured in tens of miles.
(For example, Dist = 2 means that the distance is 20 miles ) What is
the estimated intercept? Whal is the estimated slope? tse the esii-
mated regression (0 answer this question: How does the average value
of vears of completed schooling change when colleges are built close
to where students go to high school?

“These data were provided by Professor Ceerlin Rowse of Princelon University and were used in her
paper =~ Democratization vr Diversion” The Effect of Community Colleges on Educational Altain-
ment,” Journal of Business and Econonvic Stansies, Apnl 19951202y, pp 217-224.
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h. Bob’s high school was 2() miles from Lhe nearest college. Predicl Bob's
ycars ol completed educalion using the estimated regression. How
would the prediction change if Bob lived 10 miles from the nearest
college?

¢. Does distance 10 college explain # large fraction of the variance in
educational attainment across individuals? Explain.

d. What is the value of the standard error of the regression? What
arc the units for the standard crror (meters. grams, years, dollars. cents.
or something clse)?

E4.4 On the text Web sile (www.aw-be.com/stock_watson). you will find a daty
file Growth that contains data vn average growth rates over 1960-1995 for
65 countrics, along with variables that are potentially related to growth,
A detailed description is given in Growth_Description. also available on the
Web site. In this exercise you will investigate the relationship between
growth and trade.’

8, Construct a scatterplot of average annual growth rate (Growth) on the
average trade share {TradeShare). Does there appcar to be a relation-
ship between the variables?

b. Onc country. Malta, has a trade sharc much larger than the other
countries. Find Malta on the scatterplot. Does Malta look like an
outlier?

¢. Using all observations, run a regression of Growth on TradeShare.
What is the estimated slope’? Whal is the estimated inlercept? Use the
regression to predict the growth rate [or a country with trade share of
0.5 and with a trade share equal to 1.0

d. Estimate the samc regression excluding the data from Malla. Answer
the same questions in (c).

e. Where is Malta? Why is the Malta trade share so large? Should Maltu
be included or excluded [rom the analysis?

*Mhese duts were provided by Protessor Russ Levine of Brown University and were used snhis paps !
with Tharen Beck and Norman Loayza. “Finance and the Sourves of Grawth,” Jonomal of Finar il
Economics, 2000, 36 261-300.
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APPENDIX
4.] | The California Test Score Data Set

‘The Califarnia Standardized Testing and Reporting duta set contains data on test perfor-
mance, school characteristics. and student demogrophic backgrounds. The data used here
are from all 420 K-6 and K-8 districts in California with data available for 1998 amxd 1999,
Test scores are the average of the reading and math scores on the Stunford @ Achievement
Test, o standardized 1est administered to (ifth-grade students School characleristics {(aver-
aged across the districl) include enrollment. number of teachers (mcasured as “full-time
equivalenis™), number of computers per elassroom. and expenditures per student. The stu-
denl-teacher ratio used here is the number of students in the district, divided by the num-
ber of full-time cquivalent teachers. Demographic variables for the students also are
averaged across the district. The demographic variables include the percentage of students
who are in the public assistance program CalWaorks {formerly AFDC), the percentage of
students who qualify for a reduced price lunch, and the percentage of siudents who are Eng-
lish learners (that is, students for whom English is a second language). All of these data
were oblained from the California Depanmeni of Education (www.cde.ca.gov).

APPENDIX
4.2 | Derivation of the OLS Estimators

This appendix usex calculus to derive the {ormulas for the OLS estimstors given in Key
Concept 4.2. To minimize Lhe sum of squared prediction mistakes T, (Y, - b, - b X,)°
|Equation (4.6)]. first take the partial derivatives with respect 1o b, and b,

E::T i (Y, - b“ - b|x']3 = —Zi‘(}" - h.l — blx;) and [423}
LR ‘-
f‘%; DY, —by— b Xy = =23 (Y - by — b X)X, (4.29)

t=] =]

The OLS estimaiors, 8, and ﬁ,,are the values of b, and b, that minimize 3} (Y, — b, —
b, X,)* or. equivalently, the velues of b, and b, for which the derivatives in Equations {4.23)
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and (4.24) equal zero. Accordingly, setting Lhese derivalives equal Lo zeru, collecting terms
and dividing by n shows that the OLS estimators, B, and f;..musl satisfy the two cquations

Y -8,- B,X =0and (4.25,
1%y, -pX-8i3x-0 (4 26,
i "
Solving this pair of equations for By and B, yields

’3’ = ll;l ~ — -l = — (4.27)
. X - (X) 21X, - Xy
=t =]
Bo=V-BX. (4.28)

Equations (4.27) and (4.28) are the [ormulas for é[, and ﬁl given in Key Concept 4.2:
the formula 3, = $xy!5% 1s obtained by dividing the numerator and denominator in Equa-
tion (42N byn - 1.

APPENDIX
4.3 | Sampling Distribution of the OLS Estimator

In this appendix. we show that the OLS estimator ﬁ, is unbiased and, in largc samples, has
the normal sampling distribution given in Key Concepl 4.4,

Representation of fil in Terms of the Regressors and Errors

We start by providing an expression for 8, in terms of the regressors and crrors. Becinuse
Y, =8+ B X, tu.Y, - ¥ =B,(X;— X)+ u, - i.so the numerator of the formuli of
é, in Equation {4.27) is

S~ XY, - Ty = 30X, - XlaK, - X+ @, - @] |
=] . il . (4.29

= B Y (X — X v X (X, = X)u, — ).

-4 i=1



Sampling Distribution of the OLS Esfimator 145

Now X1 (X, — XMW, — i) = 20 (X, — X, — S0 (X, = Xt = - (X, — X u,. where
the final equality follows from the definition of X', which implies that XX - Xy =
(S5 X, — X ] = 0.Substituting 2_ (X, - X}u, ~ i) = X/, (X, = X ), into the final
expression in Equation (4.29) yields 37 ,(X; - X)(Y, - ¥) = 8 21X, - X)' +
E! (X, = X )u, Substituting this expression in turn into the formula for ,é, in Equa-
tion (4.27) viclds

) AT M
B =5 +ﬁi—“- {4.30)
o 2“’: - X)l
Y
Proof That B, Is Unbiased
‘The expectation ul',é. is oblained by taking the expectation of both sides of Eyuation (4.30).
Thas,
\ » K X
E(B) =B+ E ﬁ
W KXY
. (431)
} 2 X, ~ X)VEQ | X, X))
=g+ E =1 I a — — | = 8,
" FE}(X.- - X)z

where Lhe second eguality in Equation (4.31) follows by using the law of ileraled expecta-
tions (Scetion 2.3). By the second least squares assumption. i, is distributed independently
of X for all observations other than i. so E{u|X,. .. .. X,) = E(u,{X,). By the first
lcast squares assumption, however, E(e,) X,) = 0. [t follows that the conditional expecla-
tion in large brackets in the second line of Equation (4.31) is zerv, so that
E(B,- A,\X,..... X,) = 0.Equivalently, E(B,| X,.. .. . X,) = B,: thatis §, is condition-
ally unbiased, given X, .. .. X,. By the law of iterated expeciations EB, - 8=
EIE(B, - BuX,.....X,)| = O.sothat E(8;)} = 8, that is. 8, is unbiascd.

Large-Sample Normal Distribution of the OLS Estimator

The lurge-sample nesrmal approximation 10 the limiting distribution o[fl, {Key Concepi 4.4)
is obrained hy considering the behavior of the final 1erm in Equation (4.3)),
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First consider the numerator of this term. Because X is consistent, if the sample size
is large, X is nearly equal to u . Thus. to a close approximation, the ierm in the numerator
of Equation (4.30) is the sample average v, where v, = {X; — p )i, By the first least squares
assumplion, v, has a mean of zero. By the second least squares assumplion, v, is Lid. The
variance of v, is o = var[{X; — p,)u,] which, by the third least squares assumption. is
nonxero and Gnite. Touretare, v satisfics all the requirements of the central limit theorem
{Key Concept 2.7). Thus, v/er; is, in large samples, distributed N(0, 1), where o2 = o2/n.
Thus the distribution of ¥ is well approximated by the N{0Q, a7/n) distribution.

Nexi consider the expression in the denominater in Equation {4.30); this is the sample
variance af X (excepl dividing by # rather than # — 1. which is inconsequential if A is large).
As discussed in Section 3.2 {Equation (3.8)]. the sample variance is a consistent estimator
of the pupulation variance, so in large samples it is arbilrarily clase Lo Lhe population vari-
ance of X.

Combining these two results, we have that, in large samples, fi] — B, = vivar(X))
sa that the sampling distribution of 1'}1 i, in large samples, N(8,. tTf,). where afjl
var(v}/{var(X)]? = var[{X, — py )]/ [afvar{X)]*). which is the cxpression in Equa-
tion (4.21}.

Some Additional Algebraic Facts About OLS

The OLS residuals and predicted values satisfy:

:3:"_ i"'. =0, (4.32)

%2 =Y. (430
j_ill}ﬂ‘fa = 0and s5x = 0, und (134
7SS = SS5R + ESS. 433

Equations (4.32) through (4.35) say that the sample average of the OLS residuals is zev
the sample average of the OLS predicied values equals ¥, the sample covariance “us
between the OLS residuals and the regressors is zero; and the total sum of squares is the
sum of the sum of squared residuals and the explained sum of squares [the ESS. TS5, and
SSR are defined in Equations (4.14), (4.15). and (4.17)].
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To verify Equation (4.32). note that the definition of fl‘, lets us write the OLS residu-
alsasi, = Y, - Bﬁ - ,é,X, =(Y -Y)- fll{X, - X):thus

2‘, - _il(Y.-'l"'}—ﬁ.i',l (x, - £).

But the definition of ¥ and X imply that $7_,(Y, - ¥) = 0and 3. ,(X; - X) = 0.s0
Sy =0

To verify Equation (4.33), note that ¥, =Y, + i, so 3" Y, = I/ \¥, + S i,
=5 1}",. where Lhe second equality is a conscyuence of Equation {(4.32).

To verify Equation (4.34), note that =, ,&, = 0implics ;. ir,X, = S7..,(X; — X),
SO

_ﬁla,-x 2 (%, - F) - X, - DX - X)

x (a.36)
EY )X, - n—s.z(x Xy =0

where the final equality in Equation (4.36) is obtained using the formula for ,éj in Equa-
tion (4.27). This result, combined with the preceding results, implics that s, = 0.
Equation (4.35) follows from the previous results and some algebra:

'<|

7SS = (¥, - V) = S, -Y+7%- Py

i=] =1

=S, - )h}f‘,(v r)=+22tv -7 @
=

i~

=SSR + ESS + zza,?f - SSR + ESS.
=1

where the fnal equality follows from Sr iy = 2 By + BX,) = B2 i,
+ B, 5.1 X, = 0 by the previovs resulis.



wwree 5 | Regression with a Single
. Regressor: Hypothesis Tests
and Confidence Intervals

his chapier confimues the treatment of linear regression with a single
Trcgrcssnr. Chapier 4 explained how the OLS estimator fi, of the slope
coefficient 3, differs from onc sample 10 the next—thal is, how ﬁ1 has a sampling
distribution, [n this chaptcr, we show how knowledge of this sampling
distribution can be used to make statements about B, that uccurately summaris
the sampling uncertainty. The siarling poial is the slandard error of the OLS
estimator, which measurcs the spread ol the sampling distribution of B,.
Section 5.1 provides an expression for this slandard ecror (and for the standard
error of the QLS estimator of the intercept). then shows how 1o use ,é, and its
standard error to test hypotheses. Scction 5.2 explains how to construct
confideace mtervals for 8;. Scetion 53 (akes up the special case of a binary
regressor.

Sections 5.1-5.3 assume that the three least squares assumptions of
Chapter 4 hold. If, in addition, some stronger conditions hold, then some
stronger results can be derived regarding the distribution of the OLS estimator
One of these stronger conditions is thal the errors are homoskedastic, a conceypl
introduced in Scction 5.4. Section 5.3 presenis the Gauss-Markov theorem.
which states that, under eertain conditions, OLS is cfficient (has the smallest
variance) among a certain class of estimators. Scction 5.6 discusses the
distribution of the OLS estimator when the population disiribution of the

TCRRCSKIOn errors ts normal.
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Testing Hypotheses About
One of the Regression Coefficients

Your clieni, the superintendent, calls you with a problem. She has an angry tax-
paver in her office who asserts that cutting class size will not help boost test scores,
$0 that reducing them further is a waste of money. Class size, the taxpayer claims,
has no effect on test scores.

The taxpayer's cluim can be rephrased in the language of regression analysis.
Because the effect on test scores of a unit change in class size is 8¢, 50
the taxpayer is asserting that the population regression line is flat—that is, the
S1Ope Beuaeize O the population regression line is zero, Is there, the superintedent
asks, evidence in your samplc of 420 observations on California school districts
that this slope is nonzera? Can you reject the taxpaver's hypothesis that 8¢,,...,
= (), o1 should you accepi i1, a1 lcast tentatively pending further new evidence?

This section discusses tesis of hypolheses about the slope 8, or intercept 8, of
the population regression line. We start by discussing two-sided tests of the slope
8, in detail, then urn to one-sided tests and to tests of hypotheses regarding the
intercept 3,.

Two-Sided Hypotheses Concerning 8,

The general approach 1o tesiing hypotheses about these coefficients is the same as
lo testing hypotheses about the population mean, so we begin with a brief review.

Testing hypotheses about the population mean. Recall from Section 3.2
that the null hypothesis that the mean of Y is a specific value .y, can be written
as H,; E(Y) = u, . and the two-sided alternative is /{1 £(Y) # pyq.

The test of the null hvpothesis Hy against the Iwo-sided allernative proceeds
as in the three steps summarized in Key Concept 3.6. The first is 1o compute the
standard crror of ¥, SE(Y), which is an estimator of the standard devialion of the
sampling distribution of ¥. The second step is to compute the ¢-statistic, which has
the general form given in Key Concept 5.1; applied here, the r-statistic is
£ (Y -y )SE(Y).

The third step is to compute the p-value, which is the smallest significance level
at which the null hypothesis could be rejected, based on the test statistic aclually
abserved: equivalently, the p-valve is 1he probability of obiaining a slatistic, by ran-
dom sampling variation, at lcast as different from the null hypothesis value as is
the statistic actuaiiy observed, assutning thal the null hypothesis is correct
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In general, the r-statistic has the form
_ estimator — hypothesized value .1
! = “standard error of the estimator ° ’

(Key Concepl 3.5). Because the /-statistic has a standard normal distribution in
large samples under the pull hypothesis, lhe p-value for a two-sided hypothesis
test is 2( —[1*'|). where r*' is the valuc ol the (-statislic actually computed and
& is the cumulative standard normal distribution tabulated in Appendix Table |
Allernatively. the third step can be replaced by simply comparing the s-statistic (n
the critical value appropriate for the test with the desired significance level. For
example, a two-sided test with a 5% signilicance level would reject the null hypoth-
esis if |1™| > 1,96, In this case, the population mean is said Lo be statistically sig-
nificantly different than the hypothesized value at the 5% significance Jevel.

Testing hypotheses about the slope B,. A1 atheoretical level, the critical fua-
ture justifying the foregoing testing procedurc for the population mean is that.in
large samples, the sampling distribution of Y is approximately normal. Becausce ;5
also has a normal sampling distribution in large samples. hypotheses about the true
value of the slope B, can be wested using the same general approach.

The nuil and alternarive hypotheses need o be stated precisely before they
can be tested. The angry taxpayer's hypothesis is that 8¢, ;.. = 0. More gener-
ally. under the aull hypothesis the true population slope 8, takes on some specitic
value, B, ;. Under the two-sided alternative, 8; does not equal 8, ;. That is. the null
hypothesis and the two-sided ulternative hypothesis are

Hy B, = Bigvs Hi: By # By (two-sided alternaiive). (5.2)

To test the null bypothesis H,, we follow the same three steps as for the popula-
lion mean.

The first step is 10 compute the siandard error of fJ,. SE(ﬁl).The standard
ereor u[‘fs, is an estimator of o . the standard deviation of the sampling distribu-
tion of B,. Specifically,

SEB,) = \ir} | (5.3
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where

1 - . 3=
— ()(—.!L’)zm,I
1 n 2?;4 '

o X 1 & _ 2
[; 2 (X, - X
i=i

(5.4)

The estimator of the variance in Equation (5.4) is discussed in Appendix 5.1.
Although the formula for &é[ is complicated, in applications the standard error is
compuled by regression software so Lhal il is easy to usc¢ in practice.

The scoond slep is (o commpule the t-statistic,

- é: - .B"D
‘T USE®) ¢3)

The third step is 10 compule the p-value, the probability of observing u value
of B, at least as different from 8, ; as the estimate actually computed (8{~), assum-
ing that the null hypothesis 1s correct. Stated mathematically,

p-value = Pr,, | [|ﬁ] = Byl > Iaé';"' - B4l

1:[31 JBI u| é‘{” - 81.1:
"\ SE@B,) SEB,)

(5.6
H = Pr (iti > [¢]).

where Pry denotes the probability computed under the null hypothesis, the sec-
ond equalny follows by dw1dmg by SE(Bl ), and ¢*' is the value of the ¢-statistic
actually computed. Because {31 is approximately normally distributed in large sam-
ples, under the null hypothesis the /-statistic is approximately distributed as a stan-
dard narmal random variable, so in large samples,

pvalue = Pr{|Z| > |1=]) = 20(—|s*e!)). (5.7)

A small value of the p-value, say less than 5%. provides evidence against the
null hypothesis in the sensce that the chance of obtaining a value ol',é, by pure ran-
dom variation from one sample to the next is less than 5% if, in fact. the null
hypothesis is correct. If so, the null hypothesis is rejected al the 5% significance
level.

Alternatively, the hvpothesis can be tesied at the 5% significance level simply
by comparing the value of the r-statistic to +1.96, the critical value for a two-sided
tesl. and rejecting the null hypothesis at the 5% level if [r+!] > 1.96.

These steps are summarized in Key Concept 5.2,
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TESTING THE HYPOTHESIS B) = B, o
AGAINST THE ATERNATIVE 8, # B o

1. Compute the standard error of B,.SE(E?,) [Equation (5.3)).

2. Compute the r-statistic [Equation (3.5)].

3. Compute the p-valuc [Equation (5.7)]. Reject the hypothesis at the 5% sip-
nificance level if the p-value is less than 0.05 or. equivalently. if |17 > 1.96.

The standard error and (typically) the r-statistic and p-value testing 8, = 0 arc
computed automatically by regression software.

Reporting regression equations and application to test scores. The OLS
regression of the lest score against the student-teacher ratio, reported in Equa-
tion (4.11), yielded B,, = 698.9 and f31 = —2.28. The standard errors of these esti-
mates arc SE(B,) = 10.4 and SE(B,) = 0.52.

Because of the importance of the standard errors, by convention they arc
included when reporting the estimated OLS coelficients. Onc compact way v
report the standard errors is to place them in parentheses below the respeclive
coefficients of the OLS regression line:

———— -
TestScore = 6989 — 2.28 X STR. R? = 0.051,SER = 18.6. (5.%)
(10.4) (0.52)

Equation (5.8) also reports the regression R? and the standard crror of the regres-
sion (SER) following the cstimated regression line. Thus Equation (5.8)
provides the estimated regression line. estimates of the sampling uncertainty vl
the slope and the intercept (the standard errors). and two measures of the fit of
this regression line (the R? and the SER). This is a common format for reporting
a single regression equation. and it will be used throughout the rest of this book.

Suppose you wish to test the null hypothesis that the slope 8, is zero in the
population counterpart of Equation (5.8) at the 5% significance level. To do sv.
construct the t-statistic and compare it to 1.96. the 5% (two-sided) critical value
taken from the standard normal distribution. The r-statistic is constructed b
substituting the hypothesized value of 8, under the null hypothesis (zero), the estr-
mated slope. and its standard error from Equation (5.8) into the general formuld
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FIGURE 5.1

Calculating the p-Value of o Two-Sided Test When 9 = ~4.38

The p-value of o two-sided tes! is the
probability thot | Z. > | 19|, where
7is u standard normal random
cariable and 12 is the volue of the

» statistic colculated rom the sample.
when 1" —4.38. the p-value

s caly 0.00001.

(=438 a 438 x
The p-value is the area "

To the left of —4.38
+
the area 1o Lhe right of +4.38.

in Equation (3.5); the result is %7 = {—2.28 — 0)/0.52 = —4.38. This r-stalistic
exceeds (in absolute value) the 5% two-sided critical value of 1.96, so the null
hypothesis is rejected in favor of the two-sided alternative al Lthe 5% signilicance
level.

Alternatively, we can compute the p-value associated with r*! = ~4.38, This
probabilily is the area in the tails of standard normal distribution, ag shown in Fig-
ure 5.1. This probability is extremely small, approximately U.0030L, or 0,001 %. That
is, if the null hypothesis B, 5. = U8 true, the probability of obtuining a value of
,é, as far from the null as the value we actually oblained is extremely small, less
than (1.001%. Because Lhis event is so unlikely, it is reasonable 10 conclude that the
null hypothesis is false.

One-Sided Hypotheses Concerning B,

The discussion so far has focused on testing the hypothesis that 8, = 3, against
the hypothesis that 8, # B, . This is a two-sided hypothesis test, because under the
allernative 8, could be either larger or smaller than 8, . Sometimes, however. it is
appropriate to use a one-sided hypothesis west. For example, in the student-teacher
ralio/test score prablem, many people think that smaller classes provide a betler
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leaming cnvironment. Under that hypothesis. 8, is ncgative: Smaller classes lead
to higher scores. It might make sense, therefore, to test the null hypothesis that
B, = 0 (no effecl} against the one-sided alternative thal 8, < 0.

For a one-sided test, the null hypothesis and the one-sided alternalive hypoth-
esis are

Hy. B = Bravs Hy B, < B,o. (one-sided alternative). (5.9

where B, , is the value of £, under the null (0 in the student-teacher ratioc exam-
plc) and the alternative is that 8, is less than 8, o. If the aliernative is that 8, 15
greater than B, . the inequality in Equation (5.9) is reversed.

Because the null hypothesis is the same [or a one- and a iwo-sided hypothe-
sis test, the construction of the f-statistic is the same. The only difference between
a one- and two-sided hypothesis test is how you interpret the r-stalislic, For the
one-sided altermative in Equation {5.9), the null hypothesis is rejected against the
one-sided alternative for large negative, but not large positive, values of the -
statistic; Instead of rejecting if ¢} > 1.96, the hypothesis is rejected at the 5%
significance lcvel if 14 << —1.645.

The p-value for a one-sided test is obained from the cumulative standard nor-
mal distribulion as

p-value = Pr(Z < ')y = &™) (p-value, one-sided left-tail 1est).  (5.119)

If the alternative hypothesis is that 8, is greater than 8, ,, the inequalities
Equations (5.9) and (5.10) are rcversed, so the p-valuc is the right-tail probability.
Pr(Z = ™).

When should a one-sided test be used? In practice, one-sided alternative
hypotheses should be used only when there is a clear reason for doing so. This rea-
son could come from economic theory. prior empirical evidence, or both. How-
ever, cven if il inilially seems that the relevant alternative is one-sided. upon
refleclion this might not necessarily be so. A newly formulated drug undergoing
clinical trials actually could prove harmful because of previously unrecogisedd
side effecls. In the class size example, we are reminded of the graduation joke thal
a university’s secret of success is to admit talented students and then make sure
that the faculty stays oul of their way and does as little damage as possibic. In prac-
tice, such umbiguity often leads econometricians to use 1wo-sided tests.
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Application to test scores. The -siatistic testing the hypothesis that there
is no effect of class size on test scores [su 8, ¢ = 01in Equation (5.9)]is(*7 = —4.38.
This is less than —2.33 (the critical value for a one-sided [est with a 1% signifi-
cance level), so the null hypothesis is rejected against the one-sided alternative
at the 1% level. In fact, the p-value is less than 0.0006%, Based on these data,
you can reject the angry Laxpaver’s assertion that the negative estimate of the
slope arose purcly because of random sampling variation at the 1% significance
level.

Testing Hypotheses About the Intercept g,

This discussion has focused on testing hypotheses about the slope, 8. Occasion-
ally. however, the hypothesis concerns the intercept, 8,. The null hypothesis con-
cerning the intercept and the 1wo-sided alternative are

Hy By = Byuvs Hy: 8o # Bog  (two-sided alternative). (5.11)

The general approach Lo testing this null hypothesis consists of the three
steps in Key Concept 5.2, applied to 8, (the formula for the standard crror of
ﬁ‘o is given in Appendix 5.1). If the alternative is one-sided. this approach is
modified as was discussed in the previous subsection for hypotheses abous the
slope.

Hyvpothesis tesis are uselul if you have a specific null hvpothesis in mind (as
did our angry taxpayer). Being able Lo accept or Lo reject this null hypothesis based
on the staristical evidence provides a powerful tool for coping with the uncertainty
inherent in using a sample Lo learn about the poputation. Yet, there are many times
that no single hypothesis about a regression coefficient is dominant, and instcad
cne would like Lo know a range of values of the cocfficient that are consistent with
ithe data. This calls for constructing a confidence interval,

Confidence Intervals
for a Regression Coefficient

Because any statistical estimale of the slope 8, necessarily has sampling uncer-
tainty, we cannot determine the truc value of 8, exactly from a sample of data. It
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is, however, possible 1o usc Lthe OLS estimator and its standard error to construct
a confidence interval for the slope B8, or for the intercept B,

Confidence interval for ;. Recall that a 95% confidence interval for 8, ha-
two equivalent definitions First, it is the sct of values that cannot be rejected using
a Iwo-sided hypothesis test wilh a 5% significance level. Second, it is an intervy)
that has a 95*% probability of containing the trite value of 8,: that is.in 95% of pos.
sible samples that might be drawn. the confidence interval will contain the true
value of 8. Because this interval contains the true value in 95% of all samples. it
is said to have a conftdence level of 95%.

The reason these two definitions are equivalent is as follows. A hypothesis test
with a 5% significance lcvel will, by definition. reject the true value of B, in unly
5% of all possible samples; that is, in 95% of all possible samples the true value o
B, will noi be rejected. Because the 95% confidence interval {as defined in the (ir
definition) is the set of all values of 8, lat are not rejected at the 3% significance
level, it follows that the Lrue value of 8, will be conlained in the confidence inter.
val in 95% of all possible samples.

As in the case of a confidence interval for the population mean (Scciion 3.3).
in principle # 95% confidence inerval can be computed by testing all possible vai-
ves of 8, (that i1s. 1esling the null hypothcesis 8, = B, , for all values of 8, ;) at the
5% signilicance level using the r-statistic. The 95% confidence inferval is then
the collection of all the values of 8, that are not rejected. But conslructing the
t-statistic for all valucs of B, would take forever.

An casier way to construct the conlidence interval is to note that the r-statis
tic will reject the hypothesized value 8, , whenever 8, is outside the runge
B, = 1.96SE(B,). That is, the 95% confidence interval for 8, is the intersat
[‘él - 1.‘3&38&:‘(,{3,}.,!-3x + 1.96SE(8,)]. This argument parallels the argument uscd 10
develop a confidence interval for the population mean.

The construction of a confidence interval for 8, is summarized as hey
Concept 5.3.

Confidence interval for ﬁp' A 95% conlidence i-utervnl for By is constructed
as in Key Concept 5.3, with 8, and SE(8;,} replacing 8, and §£(88,).

Application to test scores. The OLS regression of the test score against [he
student-lcacher ralio, reported in Equation (5.8). viclded Bl = -228and SF(H)
= 0.52. The 95% twa-sided confidence interval for 8, is [-2.28 = 1.96 X 0.52]. 1
-3.30 = 8, s —1.26.The value 8, = 0is not contained in this confidence intersal
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Comzo&ﬂé&-lﬂ#ﬁﬁ?ﬂt FOR 3,

A 93% two-sided confidence interval for 8, is an interval that contains the true
value of By with a 95% probability: that is. it contains the true value of 8, in 95%
of alt possible randomly drawn samples. Equivalently, it is the set of values of 8,
that cannot be rejected by a 5% two-sided hypothesis test. When the sample size
is large, it is constructed as

95% confidence intervai for 8, =
(B, — 1.96SE(B,), B, + 1L.96SE(B))]. (5.12)

so {as we knew already from Section 5.1) the hypothesis 8, = 0 can be rejecled al
the 5% significance level.

Confidence intervals for predicted effects of changing X. The 95% con-
fidence interval for 3, can be used to construct a 95% confidence interval for the
predicied effect of a gencral change in X,

Consider changing X by a given aroount, Ax. The predicted change in Y asso-
cialcd with this change in X is 8,4 x. The population slope 8, is unknown, but
because we can construct a confidence interval for 8,. we can construct a confi-
dence interval for the predicted effect 8,4 x. Because one end of a 95% confidence
interval for B, is fﬂl - ].9655(,@1), the predicted effect of the change Ax using this
estimate of 8, is [f;1 - L 9655([3,)] X Ax. The other end of the confidence inter-
val is B1 + 1. 965[(,81) and the predicted effect of the change using that estimate
is [8, + 1.965E(3,)) X Ax. Thus a 95% confidence interval for the effect of chang-
mg « by the amount Ax can be expressed as

95% confidence interval for 1Ay =
[B,Ax — LISSE(B,) X dx, BAx + 1.96SE(B)) % Ax). (5.13)

For example, our hypothetical superintendent is contemplating reducing the
student-teacher ratio by 2. Because the 95% confidence interval for B, is
[—3.30, —1.26), the effect of reducing the student—teacher ratio by 2 could be as
areal as —3.30 X (—2) = 6.60. or as little as —1.26 x (—2) = 2.52. Thus decreas-
ing the studeni—teacher raiio by 2 is predicted to increase test scorcs by between
2.52 and 6.60 points, with a 953% confidence level.
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5.3

Regression When X Is a Binary Variable

The discussion so far has focused on the case that the regressor is a continuous
variable. Regression analysis can also be used when the regressor is hinary—than
is, when it takes on only two values, 0 or 1. For example, X might be 8 worker's
gender (= 1 if female, = 9 if male), whether a school district is urban or rurat
(= 1if urban, = 0 if rural). or whether the district’s class size is small or large
(= Lifsmall, = &iflarge). A binary variable is also called an indicator variable or
sametimes a dummy varisble.

Interpretation of the Regression Coefficients

The mechanics of regression with a binary regressor arc the same as if it is con-
tinuous. The interpretation of 8;, however, is different, and il turns out that regres.
sion with a binary variablc is equivalent to performing a dilference of means
analysis, as described in Section 3.4.

To see this. suppose you have a variable D, thal equals ¢ither O or 1, depend:
ing on whether the student-teacher ratio is less than 20:

p, = |1 if the student-teacher ratio in ™ district < 20 5.1
* | 0if the student—tcacher ratio in i district = 20, '
The poputation regression model with D, as the regressor is
Yi=Bo+ B0, +u, i=1.....n (5.15)

This is the same as the regression model with the conlinuous regressor X,. except
thal now the regressor is the binary variable D;. Because [, i» not continuous. il is
not uselul to think of 8, as a slope; indeed. because D, can 1ake on only Iwo val-
ucs, there is no “line™ so it makes no sense to talk about a slope. Thus we will n«t
refer 1o 8, as the slope in Equation (5.15): instead we will simply refer 10 8, as the
coefficient multiplying D, in this regression or, more compactly. the coefficient
on D,

If B, in Equation (5.15) is not a slope, then what is it? The best way 1o intcr-
pret B, and 8, in o regression with a binary regressor is to consider. one at a tinw
the two possible cases. D, = 0 and D; = 1.1f the student-teacher ratio is high, then
D, = 0 and Equation (5.15) becomes

Y, = B, +u (D,=0). (5.16)
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Because E(u, D)) =0, the conditional e¢xpeciation of Y, when D, =0 s
E(Y,|D, = 0) = B, that is, B8, is the population mean value of test scores when the
student-teacher ratio is high, Similarly, when D; = 1,

Y. =B+ B +u, (D;=1). (5.17)

Thus,when D, = 1. E(V | D, = 1) = 8, + B;:thatis. 8, + B, is the population mean
value of test scores when the student-teacher ratio is low.

Because B, + 8, is the population mean of ¥, when D, = | and 8, is the pop-
ulation mean of Y, when D, = (), the difference (8; + B,) — B, = B, 1s the differ-
cnce between these two means. In other words, 8, is the difference between
the conditional expectation of Y; when D, =1 and when D; =1, or B, =
E(Y'D; = 1) - E(Y,'D; = 0}). In the 1est score example. 8, is the difference
between menn test score in distnicts with low student-teacher ratios and the mean
Lest score in districts with high student-tcacher ratios.

Because B, is the difference in the population means, it makes sense that the
OLS estimator 3, is the dillerence between the sample averages of ¥; in the two
groups, and in {act this is the case.

Hypothesis tests and confidence intervals. |f the two population means are
the same. then 8, in Equation (5.15) is zero. Thus. the null hypothesis that the lwo
population means are the same can be tesied against the allcrnative hypoth-
esis that they dilfer by testing the null hypothesis #, = U against the alternative
B, # 0.This hypothesis can be tested using the procedure outlined in Section 5.1
Specifically, the null hypothesis can be rejected at the 3% Ievel against the two-
sided alternative when the OLS ¢-statistict = fa‘, J‘Sh‘(;él) exceeds 1.96 in absolute
value. Similarly, a 95% confidence interval for 8. construcled as [:3] + I.QﬁSE(fi,)
as described in Section 5.2, provides a 95% conlidenee interval for the difference
between the iwo population means.

Application to test scores. As an example, a regression of the wst score
against the studeni—teacher ratio binary variable D defined in Equation (5.14) esti-
mated by OLS using the 420 obscrvations in Figure 4.2, yields

TestScore = 650.0 + 7.4D, R = 0.035. SER = 18.7.

(1.3 (18) (5-13)
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where the standard errors of the OLS estimates of the coefficients 8, and 8, .
given in parentheses below the OLS estimates. Thus Lhe average test score for the
subsample with studeni-teachcr ratios greater Lthan or equal to 20 (that is, to,
which D = 0) is 650.0, and the average tesi score for the subsample with st
dent-1eacher ratios less than 20 (so D = 1)is 650.0 + 7.4 = 657.4. The dilfereng
between the sample average test scores for the lwo groups is 7.4. This is the O1 §
estimate of B,.the coefficient on the studeni-teacher ratio binary variable 1.

Is the difference in the populalion mean lest scores in the two groups statis.
cally significantly differcnt trom zero at the 5% level? To find oul. construct the
r-siatistic on B,: # = 7.4/ 1.8 = 4.04. This exceeds 1.96 in absolute value, s the
hypothesis that the population mean Lest scores in districts with high and low -
deni-teacher ratios is the same can be rejected at the 5% significance level,

The QLS estimalor and its standard estor can be used to consiruct a Y5% con-
fidence interval for the true difference in means. Thisis 7.4 = 196 % 1.4 ~
(3.9. 10.9)_This confidence inlerval excludes 8, = 0.su that (as we know from the
previous paragraph) the hypothesis 8, = 0 can be rejected at the 5% significance
level.

Heteroskedasticity and Homoskedasticity

Qur only assumption aboul the distribution of i, condilional on X is that il has a
mean of zera (the first least squares assumption). If, furthermore, the varwrnice of
this conditionu] distribution does not depend on X, then the errors are said 1o be
homoskedastic. This scction discusses homoskedasticity, its theoretical implica-
lions. the simplified formulas for the standard errors of the OLS estimators that
arisc if the errors arc homoskedastic, and the risks you run if you use these sim-
plified formulas in practice.

What Are

Heteroskedasticity and Homoskedasticity?

Definitions of heteroskedasticity and homoskedasticity. The crror 1
i, is homoskedastic il the variance of the conditional distribution of i, given A
constant for i = 1....,n and in particular does not depend on X,. Otherwise, the
crror lerm is heteroskedastic.
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FIGURE 5.2 An Example of Heferoskedasficity
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As an illustration. return lo Figure 4.4. The distribution of the errors «, is
shown for various values of x. Because this distribution applies specifically tar the
indicated value of x, this is the conditional distribution of i, given X; = x. As drawn
in that higure, all these conditional distributions have the same spread; more pre-
cisely, the variance of these distributions is the same for the various values of x.
Thal is. in Figure 4.4, the conditional variance of &, given X, = x does not depend
on x, so the errocs illustcated in Figure 4.4 are homoskedastic.

In contrast, Figure 5.2 illusirates a case in which the conditional distribution
of u, spreads pu1 as x increases. For small values of x, this distribution is Light. but
for larger values of , it has a greater spread. Thus, in Figure 5.2 the variance of u;
given X; = xincreases with x, so that the errors in Figure 5.2 are heteroskedastic.

The definitions ol heteroskedasticity and homoskedasticity are summarized
in Key Concept 5.4,
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The error term , is homoskedastic if the variance of the conditional distribution
of u, given X, var{u;| X; = x),is constant for{ = 1,....n, and in particular does not
depend on x. Otherwise, the error term is heteroskedastic.

Example. These terms are a mouthful and the definitions might seem abstract.
To help clarify them with an example, we digress from the studeni-teacher
rativ/test score problem and instead return to the exampte of earnings of male ver-
sus female college graduates considered in the box in Chapier 3. The Gender Gap
in Earnings of College Graduales in the United States” Let MALE, be a hinan
variable that equals 1 for male college graduates and equals 3 for female gradu-
ates. The binary variable regression modcl relating samcone’s earnings o his or
her gender is

Earnings, = By, + BMALE, + 1 (5.1

[ori=1,....n Because the regressor is binary. 8, is the differcnce in the popu-
lation means of the 1wo groups—n this case, the difference in mean carnings
between men and women who graduated from college.

The definition of homoskedasticity states thal the variance of «; does not
depend on the regressor. Here the regressor is MALE,, 5o at issue is whether the
variance of the error term depends on MALE,. In other words, is the variance of
the crror lerm the same for men and for women? If so. the error is homoskedas-
tic:if pot, it is heteroskedastic,

Deciding whether the variance of 1, depends on MALEL, requires thinking
hard about what the error term actually is. In this regard. it is useful 1o write Equ.-
tion (5.19) as two separate equations, one for men and one for women:

Farnings, = B, + 1, (women) and (5.2

2N

_h

Earnings; = B, + 8, +u, (men). (

Thus, for women, «, is the deviation of the /™ woman’s carnings from the popula:
tion mean earnings for women {8,,), und for men. u, is the deviation of the M man’s
carnings from the population mecan camings for men (8, ~ B,). Tt foltows that the
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statement, “the variance of u, does not depend on MALE,” is equivalent to the
statement, “the variance of earnings is the same for men as it is for women.” In
other words. in this example, the error term is homoskedastic if the variance of Lhe
population distribution of earnings is the same for men and women; if these vari-
ances differ, the error term is heteroskedastic.

Mathematical Implications of Homoskedasticity

The OLS estimators remain unbiased and asymptotically normal.
Because the least squares assumptions in Key Concept 4.3 place no restrictions on
the conditional variance, they apply to both the general casc of heteroskedas-
ticity and the special case of homoskedasticity. Therefore, the OLS estimators
remain unbjased and consistent ¢cven if the errors are homoskedastic. In addition,
the OLS estimalors have sampling distributions that are normal in large samples
even if the crrors are homoskedastic. Whether the errors ar¢ homoskedastic or
heteroskedastic, the QLS estimator is unbiascd, consistent, and asymptotically
normal.

Efficiency of the OLS estimator when the errors are homoskedastic, 1f
the least squares assumptions in Key Concepi 4.3 hold and 1he crrors are
homoskedastic, then the OLS eshmalors fio and ﬁ1 are eflficient among all esiima-
tors that are lincar tn Y,,..., Y, and are unbiased, conditional on X, ..., X, This
result, which is called the Gauss-Markov theorem, is discussed in Section 5.5,

Homoskedasticity-only variance formula. 1f the error term is homoskedas-
tic, then the formulas for the variances of fan and fil in Key Concept 4.4 simplify.
Consequently. if the errors are homoskedastic, then there is a specialized formula
that can be used for the standard errors of ﬁn and ﬁl. The homoskedasticity-only
standard error of B,. derived in Appendix 5.1.is SE(B,) = V&; . where &} is the
homoskedasticity-only eslimator of the variance of g,

53 = (homoskedasticity-only), (5.22)

where 57 is given in Equation (4.19). The homoskedasticity-only formula for the
standard crror of 8, is given in Appendix 5.1. In the spccial case that X is a binary
variable, the estimator of the variance of 8, under homoskedasticity (that is. the
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square of the standard crror of ,él under homoskedasticity) is the so-calted pooled
variance formuia for the difference in means, given in Equation (3.23).

Because these alternative formulas are derived [or the special case thut the
errors are homoskedastic and do not apply if the errors are heteroskedastic, they
will be referted 10 as the “homoskedasticity-only™ formulas for the vaniance and
standard error of the OLS cstimators. As the name suggests. if the errors are hel-
croskedastic, then the homoskedasticity-only standard crrors are inappropriate.
Specifically. if the errors are heteroskedastic. then the r-statistic computed using
the homoskedasticily-only standard error does not have a slandard normal distri
bution, cven in large samples. In [act, the correct critical values Lo use for this
homoskedasticity-only t-statistic depend on the precise nature of the hel
croskedasticity, so those crilical values cannot be tabulated. Similarly. if the errors
are heteroskedastic but a confidence interval is constructed as =1.96 homaoskedas.
ticity-only standard errors, in general the probability that this interval contains the
true value of the coefficicnt is not 95%, even in large samples.

In conlrast, becuuse homoskedastlcuy isa specral case of heteroskedasticily.
the estimators U‘; and frg of the varances of Bi and ,(3(, given in Equalions (3.4,
and (3.26) produce valid statistical inferences whether the errors are hul
eroskedastic or homoskedastic. Thus hypuoihesis tests and confidence intervals
based on those standard errors are valid whether or not the errors are hot-
eroskcdastic. Because the standard errors we have used so far [i.c., those based on
Equations (5.4) and (5.26)] lead to statistical inferences that are valid whether o
nol the errors are heteroskedastic. they are called heteroskedasticity-robust stan-
dard errors. Because such formuias were proposed by Eicker (1967), Hube:
(1967), and White (1980). they are also referred to as Eicker-Huber-White stan-
dard errors.

What Does This Mean in Practice?

Which is more realistic, heteroskedasticity or homoskedasticity? ‘The
answer to this question depends on the applivation. However. the issues can be
clarified by returning to the example of the gender gap in carnings among collesy
graduates. Familiarity with how people are paid in the world around us gives sonie
clues as 10 which assumption is more sensible. For many vears—and. to a less!
extent, today—women were not (ound in the top-paying jobs: There have ajway~
been poorly paid men, bul there have rarely been highly paid wamen. This sux-
gests that the distnibution of earnings among women is tighter than among me?!
{See the bax in Chapter 3,“The Gender Gap in Earnings of College Graduates in
the United States™). In other words. the variance of the crror term in Equa-
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The Economic Value of a Year of Education:

Homoskedasticity or Heteroskedasticity?

n average, workers with more education have

higher earnings than workers with less educa-
tian. But if the best-paying jobs mainly go to the col-
lege educated, it might also be that the spread of the
Jistribution of earnings is greater for workers with
more education. Dues he distribution of carnings
<pread out as education increases?

This is an empirical question, so answering il
requires analyzing data. Figure 5.3 s a scatterpiot of
the hourly earnings and the number of years of edu-
cation for a sampie of 2950 full-time workers in the
Uniled States in 2004, ages 29 and 30, with between
n.and 18 yeurs of education. The data come from the
March 2005 Current Population Survey. which is
Jeseribed in Appendix 3.1.

Figure 5.3 has two striking features The first is
1hal the mean of the distribmtion of sarnings
ireases with the number of vears of education. This
nurease iy summarized by the OLS regression line,

Farnings = -3.13 + 1.47Years Education,
{0.93) (0.0

(5.23)
R?=0130.SER = 8.77.

IMiis fine is plotted in Figure 5.3. The coefficient of
37 in the OLS regression line means that. on

average, hourly carnings increase by $1.47 for cach
additional year of education. The 95% confidence
interval for this coefficient is 1.47 * 1.96 X 0.07, or
13310 1.61.

The second striking {eature of Figure 5.3 is that
the spread of the distribution of earnings increases
with the years of education. While some workers
with many vears of education have low-paying jobs,
very few workers with fow levels of education have
high-paying jobs. This can be stated more precisely
by looking at the spread of the residuals around the
OLS regression line. For workers with ten years of
education, the standard deviation of the residuals is
$5.46; [or workers with a high school diploma, this
slandard deviation is $7.43: and for workers with a
callege degree, this standard deviation increases to
$10.78. Because these standard deviations differ for
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different tevels of education, Lhe variance of the

residuals in the regression of Eqgualion {5.23)
depends on the value of the regressor (the years of
cducalion): in other words, the regression errors are
heteroskedastic. In real-world werms, not all college
graduates will be eaming $50hour by the time they
are 29, but sume will, and workers with only ten years
of vducalion have no shot at those jobs,

FIGURE 5.3  Scotterplot of Hourly Earnings and Years of Education

for 29- 1o 30-Year Olds in the Unied States in 2004

t rurly earnings are ploted ogainst years of education

* v 2950 kbl time, 29- to 30-year-old workers. The spread .
< und the regression line increases with the yeors of education, .
" ating thot the regression errors are heteroskedastic,

Hourly earnings
1HHI r .
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*3.3

tion {5.20) for women is plausibly less than the variance of the error term in
Equation (5.21) [or men. Thus. the presence of a “glass ceiling” for women’s jobh«
and pay suggests that the crror term in the binary variable regression model in
Equation (5.19) is heteroskedastic. Unless there are compelling reasons to the con.
trary—and we can think of none—it makes sense to treat the error term in Lhi.
example as heteroskedastic.

As this example of modeling earnings illustrates, hetcroskedasticity arises
many econometric applications. At a general level. economic theory rarely gives
any reason 10 believe that the errors are homoskedastic. It thercfore is prudent to
assume that the errors might be heteroskedastic unless you have compelling
reasons to believe otherwise.

Practical implications. The main issue of practical relevance in this discus-
sion is whether onc should use heteroskedasticity-robust or homoskedasticity-only
slandard errors. In 1his regard, it is useful to imagine compuling both, then choos-
ing beiween them. I the homoskedasticity-only and helcroskedasticity-robust
standard errors are the same, nothing is losl by using 1he heteroskedasticity-robuast
standard errors; if they differ, however. then you should use the more retiable onus
that allow for heteroskedasticity. The simplest thing, then, is always ta use the
heleroskedasticity-robust standard errors.

For historical reasons, many software programs usc the homoskedasticity-only
standard errors as their default setting, 5o it is up to the user to specify the opticn
of heteroskedasticity-robust standard errors. The delails of how Lo implemcnt
heteroskedasticity-robust standard errors depend on the software package you use.

All of the empirical examples in this book employ heteroskedasticity-raobust
standard errors unless explicitly stated otherwise.!

The Theoretical
Foundations of Ordinary Least Squares

As discussed in Section 4.5. the OLS estimator is unbiased, is consistent, has a viii-
ance that is inverscly proportional 10 #, and has a normal sampling distribution

Ya casc this book is used 1n conjunction with other texis it might be helpful to note that same b ut
buoks add homoskedasticity to the list of least squares assumptiong A< just discussed. huwar ol
this additional assumpuon is nol aeeded for the validity of OLS regression analysis as lont 2
heteroskedasuaity -robust standard errors are used,

“This wenion x optronal amd s not wed in later chapier,
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when the sample size is large. In addition, under certain conditions the OLS esti-
malor is more efficient than some other candidate estimators Specifically. if the
least squares assumptions hold and if the errors are homoskedastic. then the OLS
estimator has the smallest variance of all conditionally untased estimators that
are linear functions of ¥,.. .., Y,. This section explains and discusses this result.
which is a consequence ol the Gauss-Markov theorem. The section concludes with
a discussion of alternative estimators that are more efficient than OLS when the
conditions of the Gauss-Markov theorem do not haold.

Linear Conditionally Unbiased
Estimators and the Gauss-Markov Theorem

If the three least squares assumptions (Key Concept 4.3) hold and if the errar is
homoskedastic. then the OLS estimator has the smallest variance, conditional on
X, ..., X, among all estimators in the class of linear conditionally unbiased esti-
mators. In other words, the OLS estimator is the Best Linear conditionally Unbi-
ased Estimator—than is, it is BLUE. This result extends to regression the result,
summarized in Key Concept 3.3, that the sample average Y is the most efficient
estimalor of the population mean among the class of all estimators that ure unbn-
ased and are linear [unctions {(weiglited averages) of ¥..... Y,

Linear conditionally unbiased estimators. The class of linear conditionally
unbiased estimators consists of all estimators of 8, that arce lincar functions of
Y,...., ¥, and that are unbiased, conditional on X..... X . That is, if B, is a lin-
ear estimator. then it can be wrillen as

B = SaY, (B,islinean), (5.24)
=1
where the weights a,.....a, candepend on X,.... X, butnoton Y|..... Y, . The

estimator B, is conditionally unbiased if the mcan of its conditional sampling
disiribution, given X, .. .. X,.is 8,. That is, the estimator 8, is conditionally un-
biased if

E(B,|X,.....X,) =By (B,isconditionally unbiased). {5.23)

The estimator 8, is a linear conditionally unbissed csiimator if it can be writ-
len in the form of Equation (5.24) (it is linear) and il Equation (5.25) holds (it is
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DY

THE GAUSS-MARKOV THEOREM FOR f3;

If the three least squares assumptions in Key Concept 4.3 hold and if errors o
homoskedastic. then the OLS estimator 8, is the Best (most efficient) Lincar co
ditionally Unbiased Estimator (is BLUE).

conditionally unbiascd). It is shown in Appendix 5.2 that the OLS estimator is lin-
ear and conditionally unbiased.

The Gauss-Markov theorem. The Gauss-Markov theorem states that, under
a set of conditions known as the Gauss-Markov conditions, the OLS estimator fi,
has the smallest conditional variance. given X, . ... X, of all lincar conditionally
unbiased estimators of B,: that is, the OLS estimator is BLUE. L he Gauss-Markuoy
conditions, which are statcd in Appendix 5.2. are implied by the three least squarcs
assumptions plus the assumption that the crrors are homoskedastic. Conscquently,
if the threc least squares assumptions hold and the errors are homoskedastic, then
OLS is BLUE. The Gauss-Markov thcorem is stated in Key Concept 5.5 and
proven in Appendix 5.2

Limitations of the Gauss-Markov theorem. Thc Gauss-Markov theorem
provides a thcoretical justification for using OLS. However, the theorem has 1wo
important limitations. First. its conditions might not hold in practice. In particular.
if the error term is heteroskedastic—as it often is in economic applications—then
the OLS estimator is no longer BLUE. As discusscd in Seclion 5.4. the presence
of heteroskedasticity does not pose a threat to inference bascd on heteroskedis-
ticity-robust standard errors, but it does mean that OLS is no longer the elficient
lincar conditionally unbiascd estimator. An alternative to OLS when there is het
eroskedasticity of a known form, called the weighted least squares estimator. 1
discussed below.

‘The second limitation of the Gauss-Markov theorem is that even if the con
ditions of the theorem hold, there are other candidate estimators that are not lin-
ear and conditionally unbiased; under some conditions, these other estimators 4¢
more efficient than OLS.

Regression Estimators Other Than OLS

Under certain conditions, some regression estimators arc mor efficient than Ol 5>



*3.6

5.6 Using the Stafstic in Regression When the Sample Size s Small 149

The weighted least squares estimator.  If the errors are heteroskedastic, then
QLS is no longer BLUE. If the naturc of the heteroskedastic is known—specifi-
cally, if the conditional variance of i, given X, is known up to a constant factor of
proportionality-—then it is possible to construct an estimator that has a smaller
variance than the OLS estimator. This method, called weighted least squares
{WLS), weights the " observation by the inverse of the square root of the condi-
tional variance of u, given X . Because of Lhis weighting, the crrors in this weighted
regression are homoskedastic, so OLS, when applied to the weighted data, is
BLUE. Although theoretically elegant, the practical problem with weighled least
squares is that you must know how the conditional variance of u, depends on X;
—something that is rarely Known in applications,

The least absolute deviations estimator. As discussed in Section 4.3, the
OLS estimator can be sensitive to outliers. If extreme outlicrs are not rare, then
ather estimators can be more efficient than OLS and can produce inferences thar
are more reliable. One such estimator is the least absolute deviations (LAD) esti-
mator, in which the regression cocfficients B, and 8, arc obtained by solving a min-
imization like that in Equation (4.6}, except that the absolute value of the
prediction “mistake' is used instead of its square. Thal is. the least absolute devi-
ations estimators of B, and @3, are the values of b, and b, that minimize
2ra|Y: — by — 5,X;|. In practice, this estimator is less sensitive to large outliers
in v than is OLS.

In many economic data sels, severe putliers in « are rare, so use of the LAD
estimator. or other estimators with reduced scnsitivity to outliers. is uncommon in
applications. Thus the treatment of linear regression throughout the remainder of
this fext focuses exclusively on least squares methods.

Using the ¢t-Statistic in Regression
When the Sample Size Is Small

When the sample size is small, Lhe exact distribution of the r-statistic is compli-
cated and depends on the unknown population distribution of the data. If, how-
ever, the three least squares assumptions hold. the regression errors are
bomoskedastic, and the regression errors are normally distributed, then the OLS

“This seclion is aptional and is not used in later chapters.
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estimator is normally distributed and the homoskedasticity-only f-siatistic has .
Student t distribution, These five assumptions—ihe three feasl squares assump.
tions. Lhal the errors arc homoskedastic, and that the errors are normally distrib-
uted—are collectively called the homoskedastic normal regression assumptions.

The ¢-Statistic and the Student ¢ Distribution

Recall [rom Section 2.4 that the Student r distribution with s degrees of freedom
is defincd to be the distribution of Z/V'W/m, where Z is a random variable with
a standard normal distribution, W is a random variable with a chi-squared distr.
bution with m degrees of frcedom. and Z and W are independenl. Under the nul)
hypothesis, the i-statistic computed using the homoskedasticity-only standard erron
can be wrilten in this form.

The homoskcedasticity-only ¢statistic testing By = 8, is 1 = (1-31 - ﬁ|,u)”*ﬁ :
where 6-;: is defined in Equation (5.22). Under the homoskedastic normal regrus-
sion assumptions, ¥ has a normal distribution. conditional ont X, ... X, As di
cussed in Section 5.5, the OLS estimator 18 a weighted average of Y. ..., Y, whuoie
the weights depend on X, ..., X, [see Equation (5.32) in Appendix 5.2]. Because
a weighted average of independent normal random variobles is normally distrih-
uted, B, has a normal distribution, conditional on X;.. ... X, Thus (8, - B, ) hus
a normal Jdistribution under the nult hypothesis, conditional on X, ..., X,,. [n addi-
tion. the (normalized) homoskedaslicity-only variance estimator has a chi-squarcd
distribution with n — 2 degrees of freedom, divided by n — 2, and 6-51 and B, any
independently distributed. Consequently, the homoskcdasticity-only 7-statistic b
a Student ¢ distribution with n — 2 degrees of [reedom.

This result is closely related 1o a result discusscd in Section 3.5 in the contoal
of testing for the equality of the means in iwo samples. In that problem. if the 1wv
populalion distributions are normal with the same variance and if the ¢-statistic 1~
constructed using the pooled standard error formula [Equation (3.23)]. then rhe
(pooled) r-statistic has a Student 1 distribution. When X is binary. the homoskuiay
ticity-only standard error for ﬁ, simplifies to the pooled standard error formula
for the difference of means. It follows that the resull of Section 3.5 is a special cine
of the result that. if the homoskedastic normal regression assumptions hold, then
the homoskedasticity-only regression 1-statislic has a Student ¢ distribution (¢
Exercise 5.10).

Use of the Student ¢ Distribution in Practice

If the regression error are homoskedastic and normally distributed and if the
homoskedasticity-only t-statistic is used, then critical values should be taken fronm
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the Student  distribution (Appendix Table 2) instead of the standuard normal dis-
tribution. Because the difference between the Student ¢ distribution and the nor-
mal distribution is negligible if # is moderate or large, this distinetion is relevant
only if the sample size is small.

In econometric applications, there is rarely a reason 10 believe that the errors
are homoskedastic and normally distributed. Because sample sizes typically are
large. however. inference can proceed aus deseribed in Scetions 5.1 and 5.2—that
is, by {irst computing hetcroskedasticity-robust standard errors, and then using the
standard normal distribution to compute p-valucs, hypothesis tests, and confidence
intervals.

Conclusion

Return for a moment to the problem that started Chaptler 4: the supcrintendent
who is considering hiring addilional teachers 10 cut the student—tcacher ratio. What
have we learned that she might find useful?

Qur regression analysis, based on the 420 observations for 1998 in the Cali-
fornia test score data set, showed that therc was a negative relationship between
the studeni—teacher raiio and test scorcs: Districts with smaller classes have higher
test scores. The coefficient is moderately large, in a practical sense: Districts with
2 fewer students per leacher have, on average. test scores thal are 4.6 points higher.
This corresponds to moving a district at the S0 percentile of the distribution of
lest scores 10 approximaiciy the 60™ pcreentile.

The coefficiem on the student-teacher ratio is statistically significantly dif-
feremt from O at the 5% sigmificance level. The population cocflicient might be Q,
and we might simply have estimaled our negative coellicicnt by random sampling
variation. However, the probability of doing 80 (and of oblaining a -statistic
on B, as large as we did) purely by random vanation over potential samples is
exceedingly small, approximately 0.00]1 %. A 95% confidence interval for B, is
-330=8=-126

This represents considerable progress toward answering the superintendent’s
question. Yet, a nagging concern remains. There is a negative relationship between
the student-teacher ratio and test scores, but is this relationship necessarily the
causal one that the superintendent needs to make her decision? Districts with
lower student-teacher ratios have. on average, higher test scores. But does this
mean that redwcing the student-teacher ratio will, in fact. increase scores?
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There is, in fact, reason to worty that it might not. Hiring more leachers, afic;
all, costs money, so wealthier schoo] districts can better afford smaller classes. By
students at wealthier schools also have other advantages over their poorer neigh
bors, including belter facilities, newer books. and better-paid teachers. Moreove,
students at wealthier schools lead themselves 1o come from more affluent fam;.
lies, and thus have other advantapes not diteclly associated wilh their school. Fo
example, California has a large immigrant community; thesg immigrants tend 1o
be peorer than the overall population and, in many cases, their children are nog
native English speakers. 11 thus mighl be that our ncgative estimated relationship
between test scores and the student-tcacher ralio is a consequence of large classe,
being found in conjunction with many other factors that are, in fact, the real cause
of rhe lower lest scores.

These other factars, or “omitted variables." could mezan that the OLS anulysis
dane so far has little value to the superiniendent. Indeed, it could be misleading:
Changing the student-teacher ratio alone would nol change these other factors
that determine a child’s performance at school. To addrcss this problem, we neud
a method that will allow us to isclate the effect on test scores of changing the stu-
deni-ieacher ratio, holding these other faciors constant. Thal method is multiple
regression analysis, the 1opic of Chapicr 7 and 8.

Summary

1. Hypothesis testing for regression coefficients is analogous to hypothesis 1eshing

for the population mcan: Use the e-statistic to calculale the p-values and cither
accept or reject the null hypothesis. Like a confidence interval for the populatien
mean. a 95% confidence interval for a regression coellicient is computed as the
estimator * 1.96 standard crrors.

. When X is binary, the regression model can be used 10 estimate and test hyputhe-

ses aboul the diffarence between the population means of the *X = 0" group and
the “X = 1" group.
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3. In general the error u, is heteroskedastic—that is the variance of i, al a given value

of X, var(i;| X, = r) depends on x. A special case is when the error is homoskedas-
tic, that is, var(u,| X, = x) is constant. Homoskedasticity-only standard errors do
not produce valid statistical inferences when the errors are heteraskedastic, but
helcroskedasticity-robust standard errors do.

. If the threc least squares assumption hold and if the regression errors are
homoskedastic, then, as a result of the Gauss-Markov theorcm. the OLS cstima-
tor is BLUE.

. If the three least squares assumptions hold, if the regression errors are
homoskedaslic, and if the regression errors are normally distributed. then the QLS
t-statistic computed using homoskedasticity-only standard crrors has a Student ¢
distribution when the null hypothesis is true. The difference between the Student
¢ distribution and the normal distribution is negligible if the sample size is mod-

eralc or large.

Key Terms

null hypothesis (150)

lwo-sided alternative hypothesis {150)

standard error of ,é, (131)

i-stalistic (151)

p-value (151)

confidence interval for 8, (156)

confidence level (156)

indicator vaniable {158)

dummy variable (158)

coclficient multiplying variable D, {138)

coefficient on D, (158)

heteroskedasncity and homoskedasticily
(160}

homoskedasticily-only standard crrors
(163)

beleroskedasticily-rabust standard ¢rror
(164)

best linear unbiased estimator (BLUE)
(168)

Gauss-Markov theorem (168)

weighted lcast squares (169)

homoskedastic normal regression
assumptions (170)

Gauss-Markov conditions {182)
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Review the Concepts

5.1 Outline the procedures for computing the p-value of a Iwo-sided test o
Hy juy = O using an i.i.d. set of observations Y,.i = 1,...,n. Outlinc the pro.
cedures [or computing the p-vaiue of a two-sided 1est of H,: 8, = Uin
regression model using an i.i.d. set of observations (Y, X)).i=1...., n.

52 Explain how you could use a regression model to eslimate the wage gender
gap using the data on earnings of men and women. What arc the dependent
and indcpendent variables?

53 Define homoskedasticity and heteroskedasticity. Provide a hypotheticl
empirical example in which you think the errors would be heteroskedastii.
and explain you reasoning.

Exercises

5.1 Supposc that a researcher, using data on class size (CS) and average test
scores from 100 1hird-grade classes, estimates the OLS regression,

TestScore = 5204 — S&2 X CS. R? = U8, SFR = 11.5.
(20.4) (2.21)

8. Construct a 95% confidence interval for B,. the regression slope coc!-
ficient.

b. Calculate the p-value [or the two-sided test of the null hypothesis
H,: 8, = 0. Do you reject the null hypothesis at the 5% level? At the
1% level?

¢. Calculate the p-value [or the two-sided tesi of the null hypothesis
Hy B, = —5.6.Without doing any additional calculations, determiny
whether —5.6 is contained in the 95% confidence interval for 8.

d. Construct a 9% confidence interval for 8,,.
52 Supposc that a researcher, using wage data on 250 randomly selecied mul¢

workers and 280 female workers. estimates Lhe OLS regression,

Wage = 12.52 + 2.12 x Male, R® = 0.06, SER = 4.2,
(.23) (0.36)
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where Wage is measured in $/hour and Male is a binary variable thal is equal
1o 1 if the person is a male and 0 if the person is a female. Define the wage
gender gap as the difference in mean earnings between men and women.

2.
bl

cl
d.

Whal is the estimated gender gap?

Is the ¢stimated gender gap significantly different from zero? {(Com-
pute the p-value for testing the null hypothesis that there is no gender
gap.)

Construct a Y5% confidence interval for the gender gap.

In the sample, what is the mean wage of women? Of men?

Another researcher uses these same data, but regresses Wages on
Fenale, a variabie (hat is equal to 1 if the person is female and 0 if the
person a male. What are the regression estimates calculated from this
regression?

r———

Wage = + x Female, R* = SER=__

5.3 Suppose thai a2 random sample of 200 rwenty-year-old men is selected [rom
a population and their heights and weights are recorded. A regression of
weight on height yields

54

Weight = —99.41 + 3.94 X Height, R? = 0.81, SER = 102,
(2.15) (0.31)

where Weight is measured in pounds and Height is measvred in inches A
man has a lalc growth spurt and grows 1.5 inches over the course of a year.
Coustruct a 99% confidence interval for the person’s weight gain.

Read the box “The Economic Value of a Year of Education: Heteroskedas-
ticity or Homoskedasticity?” in Section 5.4. Usc the regression reported in
Equation (5.23) to answer the following.

a. A randomly selected 30)-year-old worker reports an education level of

b.

16 years. What is the worker's expecied average hourly eamings?

A high school graduate (12 years of education) is contemplating going
10 a community college for a two-year degree. How much is Lhis
worker's average hourly earnings expected to increase?
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¢. A high school counselor tells a student that, on average, college gradu-
ates earn $10 per hour more than high school graduales. s this state-
ment consistent with the regression evidence? What range ol values is
consistent with Lhe regression evidence?

55 Inthe 1980s, Tennessee conducied an experiment ip which kindergarten stu
dents were randomly assigned to “regular” and “small” classes, and giver,
standardized tests at the end of the year. (Regular classes contained approa
imately 24 students and small classes contained approximaiely 15 students )
Suppose that, in the population, the standardized tests have a mean score of
925 points and a standard devialion of 73 points. Lel SmallClass denote o
binary variable equal 1o | if the student is assigned o a small class and ¢qgual
to 0 otherwise. A regression of Testscore on SmaflClass yields

FewrScore = 918.0 + 13.9 X SmaliClass, R? = 0.01, SER = 74.6.
(1.6) (2.5

8. Do small classes improve test scores? By how much? s the effect
large? Explain.

b. Is the estimated elfect of class size on test scores statistically signifi-
can\? Carry out a test a1 the 5% Icvel.

¢. Construct a 9% confidence interval for the ellect of SmaliClass on
test score.

5.6 Refer to the regressivn descnibed in Exercise 5.5.

a, Do you think that the regression errors plausibly are homoskedastic?

Explain,

b. SE(B,) was computed using Equation (5.3). Suppose that Lhe repres
sion erTors were homoskedastic: Would this affect the vaiidaty of the
contidence interval constructed in Exercise 5.5(¢)? Explain.

5.7 Suppose thal (Y,..X;) satisfy Lhe assumptions in Key Concept 4.3. A randon!
sample of size n = 250 is drawn and yields

Y=54+32X R =026SER=6.2.
(3.1) (1.5)
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a. Test Hy 8, = 0vs Hy B8, # 0at the 5% level.

b. Construct a 35% confidence interval for B,.

<. Suppose you lcarned that ¥, and X, were independent. Would you be
surprised? Explain.

d. Suppose that Y, and X are independcnt and many samples of size
n = 250 are drawn, regressions estimated, and (a) and (b) answered. In
whal fraction of the samples would H, from (a) be rejected? In what
fraction of samples would Lhe value 8, = 0 be included in the confi-
dence interval from (b)?

Suppose that (Y, X,) satisfy the assumptions in Key Concept 4.3 and, in addi-
tion, «; is N(0. %) and is independent of X,. A sample of size n = 30 yields

Y =432 + 61.5X, R? = 0.54, SER = 1.52,
(102) (7.4)

where the numbers in parentheses are the homoskedastic-only standard
errors for the regression coefficients,

a. Construct a 93% confidence interval for §,,.
b. Test Hy: By = 55 vs. Hy: B, # 55 at the 5% level.
c. Test Ay B, = 55vs H 1 B, > 55 at the 5% level.

Consider the regression model
Y =8X +u.

where u, and X; satisfy the assumptions in Key Concept 4.3. Let 8 denote an
estimator of § that is constructed as § = . where ¥ and X are the sample
means of ¥, and X . respectively.

2. Show that 8is a linear function of ¥,. Y,,..., Y,.
b. Show thal @ is conditionally unbiased.

Let X, denole a binary variable and consider the regression ¥, = 8, + 8, X,
+ u,. Let Y, denote Ihe sample mean for observations with X = 0 and Y,
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5.11

512

5.13

5.14

5.15

denote the sample mean for observations with X = |, Show Lhat By= V.
Byt B =Y.andB =Y, ~ Y

A random sample of workers contains n,, = {20men and n, = 131 women
The sample average of men’s weekly eamnings (Y = :.':E"’ Y, ) is$523.1.

=1
and the sample standard deviation (s,, = V- S (Y,,; = '!l’_',,)z] is $68.1
The corresponding values for women arc ¥, = $485.10 and s, = $51.10 Loy
Women denote an indicator varjable thal is equal 1o ) for women and () foy
men. and suppose that all 251 ohservations are used in the regression Y
By + By Women; ~ 1, is run. Find the OLS estimates of 8, and 8, and their

corresponding standard errors.

Starting from Equation (4.22), derive the variance of B, under homoskedas.
ticily given in Equaltion (5.28) in Appendix 5.1.

Suppose that (Y, X)) salisfy the assumptions in Key Concept 4.3 and, in adui-
tion. «, is M(0, #2) and is independent of X,

a ls ,é1 conditionally unbiascd?

b. Is B, the best linear conditionally unbiased estimator of 8,?

¢. How would your answers to (a) and (b) change if you assumed
oply that (Y, X)) satisfied ihe assumptions ip Key Concept 4.3 and
var(i,| X; = x) is constant?

d. How would your answers to (a) and (b) change if you sssumed onty
that (¥, X} satisfied the assumptions in Key Concept 4.37

Suppose that Y, = BX, + u,, where (u;,X)) satisfy the Gauss-Markov condi-
tions given in Equation {5.31).

8. Decrive the least squares estimator of 8 and show that it is a linear
funcionof ¥,...., ¥,.

b. Show that the estimator is conditionally unbiased.
¢. Derive the conditional variance of the estimator.
d. Prove that the estimalor is BLUE,

A researcher has two independent samples of observations on (Y,.X,). To b
specilic, suppose that Y, denotes carnings, X, denotes years of schooling.
the independent samples are for men and women. Write the regression 1!
menasY,;=8,,+ ,E!,,,.,)L',.,,_f + u,,,. and the regression for women as ..

=B+ B.\X.; t+u_, Let B, denote the OLS estimator constructed using
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the sample of men, B,, ; denote the OLS estimator constructed from the sam-
pie of women, and SE(B,,, ;) and SE(B“ ) denote the corrupnndmg standard
crrors. Show that the standard error of ﬁml ,Gw., is given by

SEB,,, - B.) = VISEB.DI+ (SEB, )]

Empirical Exercises

ES.1

E5.2

Using the data s¢1 CPS04 described in Empirical Exercisc 4.1, run a regres-
sion of average hourly earnings (AH E) on Age and carry out the following
exercises.

a. Is the estimated regression slope coefficient statistically significant?
That is, can you reject the nuil hypothesis H: 8, = () versus a two-
sided alternative at the 10%, 5%, or 1% significance [evel? What is the
p-value associated with coefficient’s r-stalistic?

b. Construct a 95% confidence interval for the slope coefficient.
c. Repeat (a) using only the data for high school graduates.
d. Repeat (a) using only the data for college graduates.

e. Is Lhe effeci of age on earnings differcnt for high school graduates
than for college graduates? Explain. (Hinr: See Exercise 5.15.)

Using the data set TeachingRatings described in Empirical Exercise 4.2, run
a repression of Course_Eval on Beauty. Is the estimaled regression slope
coeflicient statistically significant? That is, can you reject the null hypothe-
sis Hy: B, = (1 versus a two-sided alternative at the 10%. 5%, or 1% signifi-
cance level? What is the p-value associated with cocfficient’s f-statistic?

Using the data set CollegeDistance described in Empirical Exercise 4.3, run
a regression of years of completed education (£D) on distance to the near-
est college (Dist) and carry out the following cxercises.

a. Is the estimated regression slope coefficient statistically significant?
That is, can you rejecl the null hypothesis H,,;: 8, = 0 versus a two-

sided alternative at the 10%. 3%, or 1% significance level? What is the
p-value associated with coefficient’s f-statistic?

b. Construct a 95% confidence inlerval for the slope coefficient.

c. Run the regression using data only on females and repeat (b).
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d. Run the regression using data only on males and repeat (b).

e. Is the effect of distanrce on compleled years of education different (or
men Lhan for women? ( Hint: See Exercise 5.15.)

5.1 | Formulas for OLS Standard Errors
|

This appendix discusses the formulas for QLS standard errors. These are [irst presentod
under the lcast squares assuraptions in Key Concept 4.3, which allow for heteroskedast. -
ity: these are the “heteroskedasticity-robust ™ standard errors Formulas for the variance of
the OLS estimators and the associated standard errors are then given for the special cawe
of homoskedasticity.

Heteroskedasticity-Robust Standard Errors

The estimator @, defined in Equation (5.4) is obtained by replacing the population v.ri-
ances in Equation (4.21) by the corresponding sample variances, with a modification. The
variance in the numerator of Equation (4.21) is estimated by n—f-,_, » (X, — X )i where
the divisor n — 2 (instead of #) incorporates a degrees-of-freedom adjusiment to correct
for downward bias. analogously 10 the degrees-of-freedom adjustment used in the Jetun
tion of the SER in Section 4.3. The variancc in the denominator is estimated It
L3 (X, = XY Replacing var|(X; — py)u,] and var(X,) in Equation (421) by these 1wo
estimators viclds &f,. in Equation (5.4). The consislency ol heleroskedasticity-robust stan-
dard ertoms is discussed in Section 17.3.
The estimator of the variance of ,én is

PR Ve (5.26)
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where &, = 1 - [X 127, X?]X, The standard error of By is SE(By) = Vi . The reason-
ing behind the estimator {r;_ is the same as behind 6§| and stems from replacing population
expectations with sample averages.

Homoskedasticity-Only Variances

Under homoskedasticity. the conditional vaniance of «, given X; is a constanu
var{u,! X)) = . Tf the errors arc homoskedastic. the formulas in Key Concept 4.4 simplity

to
ul
a'gl = pos and (5.27)
» _ E(XD)
Vg, = nerd ; G2)

To derive Equation (5.27), write the numerator in Equation (4.21) us var[(X, — u )]
= E((X, - pw, ~ ENUX, - pyd))) = E{{(X, - padwl) = EL(X, = p)ud] =
E[(X, — uy)var(u, X }|.where the second equality follows because E[(X, — pxh] = 0 (by
the first kcast squares assumption) and where the final equality {ollows from the Jaw of itet-
ated expectations (Section 2.3). If u, is homoskedastic. then var{u,|X|) = a2 so
El(X, - pyPvar(n, X,)] = 02 E[(X, - ux)} = olo}. The result in Equation (5.27) follows
by substituting this expression into the numerator of Equation (4.21) and simplifying. A
similar calculation viclds Equation {5.28).

Homoskedasticity-Only Standard Errors

The homaoskedasticity-onty standard crrors are oblained by substituting sample means and
variances for the population means and variances in Equations (3.27) and (528). and by
estimalng the variance of u; by the square of the SER. The homoskedasticity-only estima-
tors of these varniances are

&;; = % (homoskedasticity-only) and (5.29)
2(‘\’: - X)!
t=1
l S k) b
n % X7 J%,
& = =L~ {homoskedasticity-only), (5.30)
2 (X, -~ Xy



CHAPTER 3

APPENDIX

5.2
|

Linear Regression with One Regressor

where s} is given in Equation {(4.19). The homoskedasticity-only standard crrors are the
square roots of 77 and Ejl_

The Gauss-Markov Conditions and
a Proof of the Gauss-Markov Theorem

As discussed in Section 5.5, the Gauss-Markov theorem siales that if the Gauss-Markoy
conditions hoid. then the OLS estimator is the best (most efficient) conditionally lineur
unbiased estimator (is BLUE). This appendix begins by slating the Gauss-Murkov conds-
tions and showing that they are implied by the three least squares condition plusy
homaoskedasiicity. We next show that the CLS estimator is a linear conditionally unbiascd
estimator. Finally, we turn 10 the proof of the theorem.

The Gauss-Markov Conditions

The three Gauss-Markov condltions are

() E( Xy . X,) =0
(ii) var(u;iX,,... X,}) =0, O0<ol<w (S.31)
(iii) E(uat, | Xy, ..., X,) = 0,i # j

where the conditions hold for i, j = 1...., n. The three conditions, respectively, state that
¢, has mean zero, thal 4, has a8 conslant vanance, and thai the errors are uncorrelated
for different observations, where all these statements hold conditionaily on all obscrvd
Xs (X, ..., X,

The Gauss-Markov conditions are implied by the three least squares assumpuons (Ko
Concept 4.3). plus the additional assumptions that Lhe errors are homoskedastic. Because
the observations are i.i.d. (Assumption 2}, E(x] X, ..., X,) = E{u,| X)), and hy Assump-
tion 1. £{i,| X,) = 0: thus condition (i) holds. Similarly, by Assumption 2, var{u,| X ..... X.}
= var{u,| X}), and because the errors arc assumed to be homoskedastic, var(u, | X,) = i
which is constant. Assumption 3 (nonzero finite fourth moments) ensures that ) < ol x
s0 condition (ii) holds. To show that condition (iii) is implied by Lhe least squares assump”
tions. note thar Efu,u, | X, ... X,) = E(u,u! X, X)) because (X,, Y}) arc Lid. by Assump”
tion 2. Assumption 2 also implies that E(u,u;| X,, X,) = E(u,i X} E(u,| X)) for i # f: becist
E(u,| X)) = 0 for all i. it follows that E(u,u,'X,.. ... X,) = 0 for ali i # j, s condition (i)
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holds Thus. the least squares assumptions in Key Concept 4.3, plus homoskedasticity of the
errors imply the Gauss-Markov conditions in Equation (5.31),

The OLS Estimator fi; is
a Linear Conditionally Unbiased Estimator

To show that ,@1 is Jinear. first note thal, because X, (X, —~ X ) = 0 (by the definition of X).
I (X - XY, - F) = 2L - X)Y, - Y EL(X, ~ X) = T (X, - X)Y, Substi-
tuling, this result into the furmula for ;‘31 in Equation (4.7) yields

DA X, - X)
g =", 2 whered, = ' -2~ (5.32)
EI(X Xy Sx, - ¥y
- et
Because the weighis a,,7 = 1..... n in Equauon (3.32) depend on X,,. ... X, bul not on
Y,....,Y, the OLS estimator S, is a linear estimator.

Under the Gauss-Markov conditions, f‘h is conditionally unbiased, and the variance of
the conditional distribution of 8;, given X,... .. X is

var(B, [ Ky... . X)) = -, (5.33)

The resuit that 8; is conditionally unbiased was previously shown in Appendix 4.3.

Proof of the Gauss-Markov Theorem

We slart by deriving some facts that hold [or all linear conditionallly unbiased estimators—
that is, for all estimators fil satisfying Equations (5.24) and (5.25). Substituting ¥, = §, +
B,X; + u,intn B, = S a,Y, and collecting terms, we have that

= ,&,(20,) + B (ga,X,) + ga'u'. (5.34)

By the lirst Gauss-Markov condition, E( S, apq| X,...., X)) = 6B X, ..., X,) =
0; thus, taking conditional expectations of both sides of Equation (3.34) yiclds
E(;é, Xpeee . X)) = Bo(Ziiia) + By (Siaya:X)). Because B_‘ is conditionally unbiased by
assumption, it must be that 8, (= ;) + B, (Zi.14,X,) = B,. but for this equality to hold
for all values of 8, and B, it must be the case that, for 8, 10 be conditionally unbiased,

Sa = 0and Sax, =1. (5.35)
i=1

il
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Under the Gauss-Murkov conditions, the variance of 8,. conditional on X|,.... X, hi
a simple farm. Substituting Equation (5.35) into Equation (5.34) yiclds 8, ~ B, = S™_,a 1,
Thus var(8,  Xy..... Xy = var{ S g, | X).... . X,) = S E) mecovia | X, . X))
appiving the second and third Gauss-Markoy conditions, the cross erms in the double sum.
miation vanish and the expression for the conditional variance simplifies to

\rar{B1 X] ..... X") = ofia,’. l’s -"'f‘.l

Nute that Equalions (5.35) and (5.36) apply 10 fi, with weights @, = a,. given in Equa-
tion {5.32).

We now show that the two restrictions in Equation (5.35) and the expression for the
conditional variance in Equation (5.36) imply that the conditional variance of 8 exceed.
the conditional variance of 8, unless B, = B, Leta, = & + d,so 37 a2 = 3" () + £}
= X8 +234d, + STl

U'sing the definition of i, we have that

g&,d, = é‘T(,\', - Y)d,/ﬁ::]{x, -Xy= (gdg, - 72 d‘)/;,(xi -Xy

where the final equality follows from Equation {(5.35) {which halds [or both g, and 4,). Thus
0'3 E:‘.lﬂ',: = U'_:, E:-;a, + oiE:.ndf = Var(ﬁ| . CTU X,)+ ufz.'qdf‘.subsliluling this result
intv Equation (5.36) yiclds

- - M
var(B,1.X . ... X)) — var(By | Xy, ... X,) = a2 S dL {5.37)
=l
Thus 31 has a greater conditional variance than 5, if 4, is nonzero forany i = §,.,..n But
ifd, = Uforall & then g, = @, andﬁ, = B,, which proves that QLS is BLUE.

The Gauss-Markov
Theorem When X Is Nonrandom

With a minor change in interpretation, the Gauss-Markov theorem also applies to nonran-
dom regressors: that is. it applies to regressors that do not change their values over repeated
samples. Spucifically. if the second least squares assumption is replaced by the assumptien
that X|..... X, are nonrandom (hxed over repeated samples) and . . . .. w, are Lid. then
the foregoing statement and proof of the Gauss-Markov theorem apply directly. except tha!
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#ll of the “conditional on X|. ..., X," statements are unnecessary hecause X, . ... X, take
on the same values from one sample 1o the nexr.

The Sample Average is the
Efficient Linear Estimator of E(Y)

An implication of the Gauss-Markov theorem is that the sample average. Y, is the most
efficicnt lincar estimator of E{Y,) when ¥,, .... Y, are ii.d To see this, consider the case
of regression without an “ X," so that the only regressor is the constant regressor X, = 1.
Then the OLS estimator 8; = ¥. 11 follows that, under the Gauss-Markov assumptions, ¥
is BLUE. Note that the Gauss-Markov requirement that the error be homoskedastic is
irrelevant in this case because there is no regressor, 30 it {ollows that ¥ is BLUE if
Yi.... Y, are i.i.d. This resull was stated previously in Key Concept 3.3,
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| Multiple Regressors

hapter 5 ended on a worried note. Although schoot districts with lower
Cstudenl-leachcr ratios tend to have higher test scores in the California
dala set, perhaps students from distrcts with small classes have other
advantages that help them perform welf on standardized tests. Could this have
produced misleading results and, if so, what can be done?

Omitted factors, such as student characieristics, can in [act make the
ordinary least squares (OLS) estimator of the effect of class size on 1est scores
misleading or. more precisely, biased. This chapter explains this “omitied
variable bias” and introduces muhiple regression. a method tha can eliminaie
omilted variable bias The key idea of muitiple regeession is thal. if we have duta
on these omitted variables, then we cap include themn as additional regressor
and thereby estimatc the effect of one regressor (the studeni-teacher ratio)
while holding constant the other variables (such as student characieristics).

This chapter explains how to estimate the coefficients of the multiple lincar
regression model. Many aspects of multiple regression parallel those of
regression with a single regressor. studied in Chapters 4 and 5. The coefficicnts
of the multiple regression model can be estimated from data using QLS. the
OLS estimators in multiple regression are random variables because they
depend on data trom 1 random sample: and in large samples the sampling

distributions of the QLS estimators are approximately normal.

Omitted Variable Bias

By focusing only on the student-tcacher ratio, the empirical analysis in Chap”
ters 4 and 5 ignored some potentially important determinants of test scores by vol-
kecling their influences in the regression error term. These omitted factors includé
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school characteristics, such as teacher quality and computer usage. and student
characlerislics. such as [amily background. We begin by considering an omitted
student characteristic that is particularly relevant in Catifornia because of its large
immigrant population: the prevalence in the school district of students who are
still learning English.

By ignoring the percentage of English learners in the district, the OLS esti-
mator of the slope in the regression of tesl scores on the student-teacher ratio
could be biased; that is. the mean of the sampling distribution of the OLS estima-
lor might not equal the true effect on test scores of a unit change in the
studeni—teacher ratio. Here is the reasoning. Students who are still learning Eng-
lish might perform worse on standardized tests than native English speakers. If
districts with large classes also have many students still learning English, then the
OLS regression of test scores on the studeni-teacher ratio could erroneously find
a correlation and produce a large estimated coellicient, when in [uct the true causal
effect of cutting class sizes on test scores is small, even zero. Accordingly, based on
the analysis of Chapters 4 aand 5. the superintendent mighi hire enough new teach-
ers to reduce the student-teacher ratio by two, but her hoped-for improvement in
test scores will fail to materialize if the true coefficient is small or zero.

A look at the California daia lends credence 1o this concern. The correlation
berween the studeni-teacher ratio and the percentage of English leamners (students
who are not native English speakers and who have not yet mastered English) in
the district is 0.19. This small but positive correlation suggests that districts with
more English learners tend to have a higher student-teacher ratio (larger classes).
If the studeni-teacher ratio were unrelated 1o the percentage of English learners.
then it would be safe 10 ignore English proficiency in the regression of 1esl scores
against the student-teacher ralio, Bul because the student-leacher ratio and the
percentage of English learmers are correlated., it is possible that the OLS coefficient
in the regression of test scores on the student-teacher ratio reflects that influence.

Definition of Omitted Variable Bias

If the regressor (the studeni-teacher ratio) is correlated with a variable that has
been omitled from the analysis (the percentage of English learners) and that deter-
mines, in part, the dependent variable (test scores), then the OLS estimator will
have omitted variable bias.

Omitred variable bias occurs when two conditions are true: (1) the omitied
variable is correlated with the included regressor; and (2) the omitted variable is
a determinant of the dependent variable. To illustrate these condilions, consider

three examples of variables that are omilted from the regression of lest scores on
the student—teacher ratio.
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Example #1: Percentage of English learners. Because the percentage
English icarners is correlated with the student-teacher ratio, the first condition fur
onutted variable bias holds. ILis plausible that students who are still learning Eng.
lish will do worse on standardized tests than native English speakers, in which cas,
the percentage of English learnecs is a determinant of test scores and Lhe secong
condition for omitted variable bias holds. Thus, the OLS estimator in the regres.
sion of test scores on the siudent-teacher catio could incorrectly reflect the influ-
ence of the omitted variable, the percentage of English learners. That is, omitting
the percentage of English learners may introduce omitted variable bias.

Example #2: Time of day of the test. Another variable omitted from the
analysis is the time of day that the test was administered. For this omitied variable,
it is plausibie that the first condition for omitted variable bias does not hold buy
the second condition does, For example. if the iinie of day of the fest varies from
one district to the next in a way that is unrelated to class size, then the time of duy
and class size would be uncorrelated so the first condition does not hold. Con-
versely, the time of day ol the test could affect scores (alertness vanies through the
school day), so the second condition holds. However, because in this example the
time that the test is administered is uncorrelated with the student-teacher ratin.
the student-teacher ratio counld nat be incorrectly picking up the “lime of day”
elfect. Thus omitling the 1une of day of the test does nol resull in omitted variahle
bias.

Example #3: Parking ot space per pupif. Another omitied vanable is park-
ing lot space per pupil (the area of the teacher parking lot divided by the number
of students). This variable satisfies the first but not the secoud condition for omil-
ted vanable bias. Specifically, schools with more teachers per pupil probably huve
more teacher parking space, so the first condition would be satisfied. However,
under the assumption that learning lakes place in the classroom, not the parking
lot, parking lot space has no direct effect on learning; thus the second condition
does nol hold. Because parking lot space per pupil is not a determinant of tust
scores, omilting it from the analysis docs not lead to omitied variable bias,
Omitted variable bias is summarized in Key Concept 6.1.

Omitted variable bias and the first least squares assumption. Omitted
variable bias means that the first least squares assumption—that E(x, | X,) = (.8
listed in Key Concept 4.3—is incorrect. To see why, recall that the error term s, 10
the linear regression model with a single regressor represents all factors, other thad
X, thal are determinants of Y,. If one of these other factors is correlated with N
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OMITTED VARIABLE BIAS IN REGRESSION
WITH A SINGLE REGRESSOR

(mitted variable bias is the bias in the OLS estimator that arises when the regres-
sor. X, is correlated with an omitted variable. For omitted variable bias to occur,
two conditions must be true:

[. X is correlated with the omitted variable.

2. The cmitted variable is a determinant of the dependent variable, Y.

this means that the ¢rror term (which contains this factor) is correlated with X .In
other words, if an omitted variable is a determinant of Y, then it is in the error
term, and if it is correlated with X, then the error term is correlated with X,
Because i, and X; are correlated. the conditional mean of i; given X ts nonzero.
This corredation therefore violates the first least squares assumption, and the con-
sequence is serious: The OLS estimator is biased. This bias does not vanish even
in very large samples, and the OLS estimator is inconsistent.

A Formula for Omitted Variable Bias

‘The discussion of the previous section about omitted variable bias can be sum-
marized mathematically by a formula for this bias. Let the correlation belween X,
and u; be corr(X,u,) = py,. Suppose thal the second and third least squares
assumptions hold, but the first does vot because py,, is nonzero. Then the OLS esti-
mator has the limit {derived in Appendix 6.1)

- U'”
B, —£5 A+ PXuer g (6.1)

Thal is, as the sample size increases, Bl 15 close to 8, + py, (o, /o) with increas.
ingly high probability.

The formula in Equation (6.1) summarizes several of the ideas discussed
above about omitied vanable bias:

1. Omitted variable bias is a problem whether the sample size is large or small,
Because ,B, does not converge in probability to the true value Bl,ﬁ, is incon-
sistent; that 15,,8] is not a consistent estimator of 8, when there is omitted vari-
able bias. The term p,., (7, /o ) in Equation (6.1) is the bias in f?, that persists
even in large samples,
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The Mozart Effect: Omitted Variable Bias?

study published in Nature in 1993 (Raoscher,
AShaw and Ky, 1993} suggested that listening Lo
Mozart for 10-15 minutes could temporarily raise
your }Q by B or 9 points. That siudy made hig news—
and politicians and parents saw an ¢asy way 10 make
their children smarter. For a while, the state of Geox-
gia even distribuicd classical music CDs to all infanis
in the state.

What is the evidence for the “"Mozart effecl™? A
review of dozens of studies found that students who
take optional music or ars courses in high school do
in fact have higher English and math test scores than
those who don'L! A closer lock at these studies, how-
ever, suggests that the real reason for the betier {ost
performance has little to do with those courses,
Instead, the authors of the review suggested that the
correlation between testing well and taking art or
music could arise [rom any number of things. For
example, the academically better students might
have more time to take optional music courses or
more interest in doing so, or those schools with a
deeper music curriculum might just be better schools
across the hoard,

In the terminology of regression. the estimated
relationship between test scores and taking optional

music courses appears 10 have omitted variable bias.
By omitting [actors such as the student ‘s innate abii-
ity or Lhe overall quality of the school, studying music
appears 10 have an effect on test scores when in fact
it has none.

So is there a Mozart effeci? One way to find out
is to do a randomtized controlled experiment. (As
discussed in Chapter 4, randomized controiled
experimems eliminate omitied variable bias by ran-
domly assighing parlivipants to “treaiment” and
“control” groups.} Taken together, the many con-
trotled experiments on the Mozart effect fail to show
that listening to Mozar! improves 1Q or general test
performance. For reasons not fully understoad, how-
ever. it scems that listening 1o classical music does
help temporarily in one narrow arca: folding paper
and visualizing shapes. So the next time you cram {or
an origami cxam, try to fit in a little Mozart, 1o0.

18ec the Jowrnal of Aesthetic Edication 34: 34 (Fall'Win

ter 2000). especially the srticle by Ellen Winner and Mon-
ica Cooper. (pp. 11-76) and the one by Lois Hetland
(pp. 105-148).

2. Whether this bias is large or small in practice depends on the cotrelation jiq.
between the regressor and the crror 1erm. The larger is (p ., !, the larger i the

bias,

3. The dircelion of the has in B, depends on whether X and « are positively of
negatively correlaled. For example, we speculated that the percenlage of std-
dents lcarning English has a negative effect on district test scores {(students
still learning Fnplish have lower scores). so that the percentage of English

fearners ¢nters the error term with a negative sign. Tn our data. the fraction ot

Fnglish lcarners is positively correlaled with the student-teacher rauo
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(districts with more¢ English Icarners have larger classes). Thus Lbhe
studeni-teacher ratio (X)) would be negatively corrclated with the error term
(1), so py,, < (0 and the coelficient on the student-teacher ratio ,él would be
biased 1oward a negative number. In other words, having a small percentage
of English learners is associated both wilth high lest scores and low
student-teacher ratios, so one reason that the OLS estimator suggests that
small classes improve test scores may be that the districts with small classes
have [ewer English learners.

Addressing Omitted Variable
Bias by Dividing the Data into Groups

What can you do aboul omitied variable bias? Our superintendent is considering
increasing the number of teachers in her district, but she has no control over the
fraction of immigrants in her community. As a result, she is interested in the effect
of the student-teacher ratio on test scores. holding constant other factors, includ-
ing the perceatage of English learners. This new way of posing her question sug-
gesls that. instead of using datia for ail districts, perhaps we should focus on districts
with percentages of English learners comparable to hers. Amang this subset of dis-
tricts, do those with smaller classes do beiter on standardized tesis?

Table 6.1 reports evidence on the relalionship between class size and test
scores within districts with comparable percentages of English learners. Districts

Differences in Yest Scores for California School Disiricts with Low and High
Siudent-Teacher Rotios, by the Parcantoge of English Learners in the Dislrict
Studen-Teacher Student-Teochar Difference in Tast Scores,
Ratio < 20 Ratio = 20 Low vs. High STR
Averoge Average
Tast Score n Tost Score ] Differance Pshcrtishic
REALRITTIN 657.4 238 650.0 182 74 1.04
. P“"-'i'fll;ngc ol Enghish learners
C b, 664.5 76 665.4 7 —04 ~030
T, 6065.2 64 6618 m 33 1.13
ey, 654.9 54 £49.7 50 52 172
B, 6367 a4 634.8 sl 19 .68
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are divided iplo eight groups. First, the districts are broken into four categories
that correspond to the quarliles of the distribution of the percentage of Englixl,
learners across districts. Second, within each of Lthese four categories, districts ;.
further broken down into 1wo groups. depending on whether the student-teache,
ratio is small ($7TR < 20) or large (STR = 20).

The first row in Table 6.1 reports the overall difference in average test score,
between districts with low and high sludeni-1eacher ratios. that is. the difference
in test scores between Lthese two groups without breaking them down [urther inti,
the quartiles of English learners. {Recall that this difference was previousiv
reported in regression form in Equation (5.18) as the OLS estimate of the cocli:-
cient on D, in the regression of TestScore on Dy, where D, is a binary regressor that
equals 1 if §TR, < 20 and equals 0 otherwise.) Over the full sample of 420 districs,
the average test score is 7.4 pomts higher in districts with a low student-teacher
ralio than a high one; the -siatistic is 4.04, so the null hypothesis that the mean
test score is the same in Lhe {wo groups is rejected at the 1% signilicance fevel.

The [inal four rows in Table 6.1 report the difference in test scores between
districts with low and high student-teacher ratios, broken daown by the quartile of
the percentage of English learmers. This evidence presents a different picture. Of
the districts with the fewest English learners (< 1.9%), the average test score tur
those 76 with low studenli-teacher ratios is 664.5 and the average for the 27 with
high swudent-teacher ratios is 665.4. Thus, for the districts with the fewest English
learners, test scores were on average 0.9 points lower in the districts with low siu-
dent-teacher ratios! Tn the second quartile. districts wilh low student-teacher
ratios had test scores that averaged 3.3 points higher than those with high siu-
dent—teacher ratios: this gap was 5.2 points for the third quarlile and enly 1.9 points
for the quartile of districts with the most English learners. Once we hold the por-
centage of English learners constant, the difference in performance between di<-
tricts with bigh and low student-teacher ralios is perbaps half (or less) of the
overall estimate of 7.4 points.

At first this finding might seem puzzling. How can the overall cffect of test
scores be twice he cffect of test scores within any quartile? The answer is that the
districts with the most English lcarners tend to have both the highest
student—teacher ratios end the lowest test scores. The difference in the average test
score hetween districts in the [oweslt and highest quartile of the perccntage of Eny:
lish learners is large, approximately 30 points. The districts with few English learn-
ers tend to have lower student-leacher ratios: 74% (76 of 103) of the districts 0
the first quartile of English learners have small classes (STR < 20), while only 42"
(44 of 105) of the districts in the quartilc with the most English Jearners have small
classes $0. the districts with the most English learners have both lower test scores
and higher student-teacher ratios than the other districts
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This analysis reinforces the superintendent’s worry that omitied variable bias
is present in the regression of test scores against the student-teacher ratio. By look-
ing within quartiles of the percentage ol English learners. the Lest score differences
in the second part of Table 6.1 imprave upon the simple difference-of-means analy-
sis in the first line of Table 6.1. Still. this analvsis does not yet provide the super-
intendent with a useful estimate of the effect on test scores of changing class size,
holding constant the fraction of English learners. Such an estimate can be pro-
vided, however, using the method of multiple regression.

The Multiple Regression Model

The multiple regression model extends the single variable regression model of
Chapters 4 and 510 include additional variables as regressors. This model permits
estimaling the effect on ¥, of changing onc variable {X,) while holding the other
regressors (X;, Xy, and so forth) constant. In the class size problem, the multiple
regression model pravides a way to isolale the effect on test scores (V) of the stu-
dent-teacher ratio (X,) while holding canstant the percentage of siudents in the
district who are English lecarners (X5;).

The Population Regression Line

Suppose for the moment that there are only two independent variables, X, and
X,;. In the linear multiple regression model, the average relationship berween
thesc two independent variables and the dependent vanable, Y, is given by the lin-
ear functivn

E(Y )X\ = x, X5 = 1) = By + By = Boxa, (6:2)

where E(Y,1X|, = x,. X5, = x,) is the conditional expectation of Y, given that X;
= x, and X,, = x,. That is, if the student-teacher ratio in the " district (X,) equals
some value x; and the percentage of English learncrs in the i district (X5,) equals
x,. then the expected value of Y, given the student-teacher ratio and the percent-
age of English learners is given by Eguation (6.2).

Equation (6.2} is thc population regression line or population regression func-
fion in the multiple regression model. The coef{icient 8, is the intercept, the coef-
ficient 8, is the slope coefficient of X, or. more simply, the coefficient on X, and
the cocfficient 8, is the slope coefficient of X, or. more simply, the coefficient on
Xy, One or more of the tndependent variables in the multiple regression model
are sometimes referred to us control variables.



194

CHAPTER &6 Linear Regression with Multiple Regressors

The interpretation ol the coefficient B8, in Eguation (6.2) is different than 1
was when X, was the only regressor: In Equation (6.2), B, is the elfect on Y ol
unit change in X, holding X, constant or controlling for X,.

This interpretation of 8, follows from Lhe definition that the expected effe
on Y of a change in X, AX,, holding X, constant, is the difference between the
expected value of ¥ when the independent variables take on the values X, + AY
and X, and the expected value of ¥ when the independent variables take on the
values X, and X,. Accordingly, write the population regression [unction in Equa-
lion (6.2)as Y = B, + B, X, + B,X,, and imagine changing X, by the amount A\,
while not changing J;, that is, while holding X, constant. Because X has changed,
Y will change by some amount, say AY. After this change, the new valueof ¥, ¥ +
AY is

An equation for AY in lerms of AX| is oblained by subtracting the cquation
Y = B, + BX; + B,X; from Equation (6.3). yielding AY = 8,AX,. That is,

AY

B = A_X_l holding X, constant. (6.4)

The coefficient 8, is the effect on ¥ (the expected change in Y) of a unit change
in X}, holding X, fixed. Another phrase used to describe 3, is the partial effect un
¥ ol X,, holding X, fixed.

The inlerpretation of the intercept in the multiple regression model, 8y, is sim-
ilar 10 the interpretation of the intercepl in the single-regressor model: It is 1he
expected value of Y, when X, and X,; are zero. Simply put, the intercept §, deter:
mines how far up the Y axis the population regression line starts.

The Population Multiple Regression Model

The population regression line in Equation (6.2) is the relationship between ¥ and
X, and X, that holds on average in the population. Just as in the case of regression
with a single regressor, however, this relationship does not hold exactly becausc
many other factors influence 1he dependent variable. In addition Lo the siu-
dent—teacher ratio and the fraction of students still learning English. for example-
test scores are influenced by school characteristics, other student characteristics
and luck. Thus the population regression function in Equation (6.2) needs to b¢
augmented to incorporate these additional actors.

Just as in the case of regression with a single regressor. the factors that deter-
mine ¥ in addilion 1o X.. ancl X are ineamnrated into Faudlion (6 71 as an
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“error” term u;. This error term is the deviation of a particular observation (test
scores in the /° district in our example) from the average population relationship.
Accordingly, we have

leﬁﬂ-{—B!Xh-LBZ'Xzi_:-uHi: l,...,.ﬂ, (6.5)

where the subscript / indicates the ™ of the n observations {disiricts) in the
sample.

Equation (6.5) is the population multiple regression model when there are
lwo regressors, X, and X,

In regression with binary regressors it can be useful to treat 8, as the coeffi-
cient on a regressor that always equais 1; think of 8 as the coefficient on X, where
Xg = 1fori=1,.. . n Accordingly, the population multiple regression model in
Equation (6.5) can alternatively be written as

Y, = BpKy + B Xy + B X, +upwhere X, = 1,i=1,...,n (6.6)

The variable X, is sometimes called the constant regressor because it takes on the
same value—the value 1—for all chservations. Similarly, the intercept, B, is some-
iimes called the constant term in the regression.

The two ways of writing the population regression model, Equations (6.5) and
(6.6}, are equivalem.

The discussion so far has focused on the case of a singie additional variable,
X, In practice, however, there might be multiple factors omitted from the single-
regressor model. For example, ignoring the students’ economic background might
result in omitted variable bias. just as ignoring the fraction of English learners did.
This reasoning leads us to consider a model with three regressors or, more gener-
ally, a model that includes & regressors. The multiple regression model with &
regressors, X, Xy, - - -, Xj,. is summarized as Key Concept 6.2.

The definiuons of homoskedasticily and heleroskedasticity in the multiple
regression model are extensions of their definitions in the single-regressor model.
The error term u; in the multiple regression model is homoskedastic if the vari-
ance of the conditional distribulion of u, given X, ..., X, var(y, | Xy, ... . X). s
constant fori =1,..., n and thus does not depend on the values of X;, ... . X,
Otherwise. the error term is heteroskedastic.

The multiple regression model holds out the promise of providing just what
the superintendenl wants to know: the effect of changing the student~teacher ratio,
holding constant other faclors thal are beyond her control. These factors include
not just the percenlage of English learners. but other measurable factors that might
affeet test performance, including the cconomic background of the students, To be
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THE MUITIPLE REGRESSION MODEL

The multiple regression model is
Y=8+8X,+BXy+ -+ B Xyt+tu.i=1l....n (6.7

where

s Y,is M observation on the dependent variable: X}, Xy, . ... X, are the
7 observations on each of the k regressors; and «, is the ervar term.

* The population regression line is the relationship that hoids between Y
and the X's on average in the population:

E(Y\ X=Xy = 2. Xy = %)
=B+ Bixy ¥+ Baxa ¥ o + BiXye

e B, is the slope cocfficient on X, B, is the coefficient on X, and so on.

The coeflicient B, is the expected change in ¥, resulting from changing

X,; by one unit, holding constant X,,.....X;. The coefficients on the
other X's are interpreted similarly.

* The intercept B is the expected vatue of Y when all the X’s equal 0. The
intercept can be thought of as the coefficient on a regressor, Xy, that
equals 1 for all £

of practical help to the superintendent, however, we aeed 10 provide her with ¢t
mates of the unknown population coefficienis 8, ... .8, of the population regres-
sion mode) calculated using a sample of data. Fortunately, these coefficients vun
be estimated using ordinary leas! squares.

6.3 The OLS Estimator
in Multiple Regression

This section describes how the coefficicnts of the multiple regression madel ¢15
he estimated using OLS.
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The OLS Estimator

Secuion 4.2 shows how to cstimate the intercept and slope coefficients in the
single-regressor model by applving OLS to a sample of observations of ¥ and X.
The key idea is that these coefficients can be estimated by minimizing the sum of
squared prediction mistakes. that is. by choosing the estimators b, and b, so as to
minimize I (Y, - b, — b;X)°. The estimators that do so are the OLS estima-
tors, By and 3,.

The method of OLS also can be used to estimate the coefficients B,. 8y. . ..,
B, in the multiple regression model. Let &,,. b, ... . b, be estimators of 8,.8,.....
B;-The predicied value ol Y, calculated using these estimators, is b, + b, X|; +
+ b, X,,. and the mistake in predicting ¥, is Y, - (b, + )X, + - - + b X, ) =
Y, - by - b)X; — -+ — b X, The sum of these squared prediction mistakes over
all # observations thus is

2 (¥, = by = by Xy =+ = B X)) (68)

The sum of 1he squared mistakes for the linear regression model in expression
(6.8) is the extension of the sum of the squared mistakes given in Equation (4.6)
for the linear regression model with a single regressor.

The estimators of the coefficients B, 8, . . .. By thal minimize the sum of
syuared nusiakes in expression {6.8) are called Lhe ordinary least squares (OLS)
estimators of 8, 8,...., 8. The OLS estimators are denoted Bu ,G, {3,\

The terminology of OLS in the linear multiple regression modu.l is the same
as in the lincar regression model with a single regressor. The OLS regresswn line
is the straight line consiructed using the QLS estimators: 30 + [3le <+ 3an
The predlcted value of ¥, given X, ..., X}, based on the OLS regression line, is
Y, = By + By X, + - + BX}, The OLS residual for the ™ observalion is the dif-
ference between Y, and its OLS predicted value, that is, the QLS residual is &, =
Y - ¥,

The OLS estimators could be computed by trial and error, repeatedly trying
different valucs of bg, ..., b, unfil you are satisfied that you have minimized the
total sum of squares in expression (6.8). It is far easier, however. to use explicit for-
mulas for the OLS estimators that are derived using calculus. The formulas for the
OLS estimators in the multiple regression model arc similar to those in Key Con-
cept 4.2 [or the single-regressor model. These formulas are incorporated into mod-
ern statistical software. In the multiple regression model, the formulas are best
expressed and discussed using matrix notation, so their presentation is deferred
1o Section 8.1,
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The OLS estimators By, ;.. ... B, are the values of by, by, .. .. b, that minimize th.
sum Of SQIJII’Qd pl’CdiCEiOﬂ m.-ﬁm E:-l (Y‘ - bo - bIX“ —_—re= b‘.X“)z- Thc
OLS predicted values Y, and residuals i, are

n-ﬁa+é,xu+--- +ﬁkxﬁ.i=l....,n.and (6.1
&=Y,-Y,i=1,...n (6.1

The OLS estimators 8y, 8,, ..., 8, and residual & are computed from & sample uf
n observations of (Xy;, ..., X, Y)). i =1,..., n. These are estimators of thc
unknown true population coefficients gy, By, ... . 8, and error term. u,,

The definitions and terminology of OLS tn multiple regression are summu-
nzed in Key Concept 6.3.

Application to Test Scores
and the Student-Teacher Ratio

In Section 4.2, we used OLS to estimate the intercept and slope coefficient of the
regression relating test scores ( TestScore) to the studeni-leacher ratio (STR), using
our 420 observations for California school districts; the estimated OLS regression
ling, reporied in Equation (4.11),is

--_‘-_‘.‘-"-i-n—
TestScore = 6989 — 228 X STR. (h.11)

Qur concern has been that this relationship is misleading because the stu-
deni-teacher ratio might be picking up the effect of having many Eaglish lcarn-
ers in districts with large classes. That is, it is possible thal the OLS estimator 5
subject to omilied variable bias.

We are now in a position to address this concern by using OLS Lo estimate A
multiple regression in which the dependent variable is the lest score (¥,) and there
are two regressors: the student—teacher ratio (X} and the percentage of English



6.3 The OLS Estimalor in Mulliple Regression 199

learners io the school district {X5,) for our 420 districts (i = 1,...,420). The esu-
mated OLS regression hne for this multiple regression is

— T ——
TestScore = 68600 — 1.10 X STR — 0.65 X PaEL, (6.12}

where PoroL is the percentage of students in the district who are English learn-
ers. The OLS estimate of the intercept (Bo) is5 686.0, the OLS estimate of the coef-
ficient on the student-teacher ratio (B]) is —1.10, and the QLS estimate of the
coeflicient on the percentage English learners (ﬁz) is —0.65.

The estimated effect on test scores of a change in the student-teacher ratio in
the multiple regression is approximately half as large as when the student—teacher
ratio is the only regressor: in the single-tegressor equation | Equation (6.11)), a unit
decrease in the STR is estimated 1o increase lest scores by 2.28 poinis but in the mul-
tiple regression ¢quation [Equation {6.12}].it is esimated to increase test scores by
only 1.10 points. This dilference occurs because the coefficient on STR in the multi-
ple regression is the effect of a change in STR, holding constant (or controlling for)
PotEL, whereas in the single-regressor regression, PctEL is not held constant.

These two estimates can be reconciled by concluding that there is omitted
variable bias in the estimate in the single-regressor model in Equation (6.11). In
Section 6.1, we saw that districts with a high percentage of English learners tend
to have not only 1ow test scores but also a high student-teacher ravio. If the
fraction of English learners 1s omutted from the regression. reducing the
student—teacher ratio is eshimated to have a larger effect on test scores, but this
estimate reflects hoth the effect of a change in the student-1eacher ratio and the
omitted effect of baving fewer English learners in the district.

We have rcached the same conclusion that there is omitied variable bias in
the relationship between test scores and the student-tcacher ratio by two differ-
ent paths: the tabular approach of dividing the data into groups (Section 6.1) and
the multiple regression approach [Equation (6.12)]. Of these two methods, muiti-
ple regression has two important advantages. First, it provides a quantitative esti-
mate of the effect of a unit decrease in the student—teacher ratio, which 1s what the
superintendent needs to make her decision. Second. it readily extends to more
than two regressors, so that mulliple regression can be used to control for mea-
surable faciors olher than just the percentage of English Jearners.

The rest of this chapter is devoled to understanding and to using OLS in the
multiple regression model. Much of whal you Jearned ahout the OLS estimator
with a single regressor carries over 1o maltiple regression with few or no modifi-
cationy, so we will focus on that which is new with multiple regression. We begin
by discussing measures of fit for the multiple regression model.
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6.4

Measures of Fit in Multiple Regression

Three commonly used summary slatistics in multiple regression are the standar,|
error of the regression, the regression R, and the adjusted R (ulso known as R
All three siatistics measure how well the OLS ¢stimate of the multiple regressioy
line describes, or “fits.” the data.

The Standard Error of the Regression (SER)

The standard error of the regression (SER) estimates the standard deviation of
the error term u;. Thus, the SER is a measure of the spread of 1he distribution o[
Y around the regression line. In multiple regression, the SER is

1 2 - SSR .
= \. 2 = 2 = 3
SER = »;, where s — JEI it (6.1%

PR
where the SSR is the sum of squared residuals, SSR = T it

The only differcnce between the deflinition in Equation (6.13) and the detin-
ilion of the SER in Section 4.3 fur the single-regressor model is that here the divi-
sorisn — &k — 1 rather than n — 2. In Section 4.3, the dwvisor n — 2 (rather thun )
adjusts for the downward bias introduced by eslimating two coefficients (the slope
and intercept of the regression linc). Here. the divisor » — &k — 1 adjusts for the
downward bius introduced by estimating k + 1 coefficienis (the & slope coefh-
cients plus the intercept). As in Section 4.3, using 2 — k — 1 rather than rt is called
a degrees-of-freedom adjustment. £€ there is a single regressor, then & = |, so the
formula in Section 4.3 is Lhe same as in Equation (6.13). When # is large, the elluct
of the degrecs-of-lreedom adjustment is negligible.

The R?

The regression R? is the fraction of the sample variance of Y; explained by (or pre-
dicted by) the regressors. Equivalently, the R? is | minus the fraction of the vun-
ance of Y, not explained by the regressors.

The mathematical definition of the R? is the same as for regression with a sin-
gle regressor:

Rz _ ESS =1 - SSR {bl‘”

where the explained sum of squares is ESS = S7.,(¥, ~ ¥)?and the total sum vl
squares is 7§8 = T/ (Y, - Y).
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In multiple regression. the R? increases whenever a regressor is added, unless
the estimated coefficient on the added repressor is exactly zero. To see this, think
about starting with one regressor and then adding a second. When you use OLS
to estimate the model with both regressors, QLS finds the values of the coefficients
that minimize the sum of squared residuals. If QLS happens 10 choose the coeffi-
cient on the new regressor 1o be exactly zero, then the SSR will be the same
whether or not the sccond variable 1s included in the regression. But if QLS
chooses any value other than zero. then 1t must be that this valuc reduced the SSR
relative 1o Lhe regression that excludes this regressor. In practice it is extremely
unusual for an estimated coefficient to be exactly zero, so in gencral the SSR will
decrease when a new regressor 35 added. Bur this means that the R? generally
increases {and never decreases) when a new regressor is added.

The “Adjusted R?”

Because the R? increases when a new vanable is added, an increase in the R? does
nol mean thal adding a variable aciually improves the [it of the model. In this
sense, the R? gives an inflated estimale of how well the regression fits the dara.
One way to correct for this is to deflate or reduce 1he R> by some factor, and this
is what the adjusied R2, or R, does.

The adjusted RZ, o1 R2, is a modified version of the R? that does not neces-
sarily increase when a new regressor is added. The R? is

E‘z:l_ n-—1 SSR

R

¥
=1——

m-k-17ss T T (61)

e |

The difference between this formula and the second definition of the R? in Equa-
lion (6.14) 15 that the ratio of the sum of squared residuals to the total sum of
squares is multiplied by the factor (n — 1)/(n — k — 1). As the second expression
in Equation (6.15) shows, this means that the adjusted R* is 1 minus the ratio of
the sample variance of the OLS residuals [with the degrees-of-freedom correction
in Equation (6.13)] to the sample variance of ¥.

There are three useful things to know about the RZ. First, (n — 1)/(n — k— 1)
is always greater (han 1, so R? is always less than R,

Second, adding a regressor has two opposite cffects on the R2. Oun the one
hand. the SSR talls, which increases the R2. On the other hand, the factor (n — 1)/
{n — k — 1) increases, Whether the R? increases or decreases depends on which of
these two effects is stronger.

Third. the R can be negative, This happens when the regressors, taken
logether. reduce the sum of squared residuals by such a smiall amount that this
reduction fails 10 oflset the factor (o - 13/ (n - &k - 1),
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Application to Test Scores

Equation (6.12) reports the estimated regression line for the multiple regressio,
relating test scores {TestScore} to the student-teacher ratio (STR) and the per-
centage of English learners (PctEL). The R? for this regression line is R? = 0.42r,
the adjusted R? is R? = 0.424, and the standard error of the regression is S£.R
= 14.5.

Comparing these measures of fit with those for the regression in which Peief./,
is excluded [Equation (6.11)] shows that including PcrEL in the regression
increased the R? from 0.051 to 0.426. When the only regressor is STR, only a smuyl
fraction of the variation in JestScare is explained. however, when PorEL is adde
to the regression, more than two-fifths (42.6%) of the variation in test scores iy
explained. In this sense, including the percentage of English learncrs substantiudly
improves the fit of the regression. Because # is large and only two regressors
appear in Equation (6.12). the difference beiween R? and adjusted R? is very smul]
(R? = 0.426 versus R? = 0.424),

The SER for the regression excluding PerEL is 18.6; this value falls te 143
when PotEL is included as a second regressor. The units of the SER are points vn
the standardized test. The reduction in the SER tells us that predictions about stan-
dardized lest scores are substantially more precise if they are made using the
regression with both STR and PctEL than if they are made using the regression
with only STR as a regressor.

Using the R? and adjusted R?. The R? s useful because it quantifics the
extent o which the regressors account for, or explain. the variation in the depen-
dent variable. Nevertheless, heavy reliance on the R? (or R?) can be a trap. In appli-
cations, “maximize the R s rarely the answer 10 any economically or statistically
meaningful queslion. Instead, the decision about whether to include a variabic in
a multiple regression should be based on whether including that variable allows
you betier to estimate the causal effect of interest. We return to the issue of how
to decide which variables to include—and which to exclude—in Chapter 7. st
however, we need 10 develop methods for quantifying the sampling uncertainty of
the OLS estimator. The starting point for doing so is extending the least square
assumptions of Chapter 4 10 the case of muliiple regressors.

The Least Squares
Assumptions in Multiple Regression

. . : . l.
There are four lcast squares assumptions in the multiple regression mud‘_
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(Key Concept 4.3), extended 1o allow for multiple regressors, and these are dis-
cussed only briefly The fourth assumption is new and is discussed in more detail.

Assumption #1: The Conditional Distribution
of u; Given X, X,,, . . ., X,; Has a Mean of Zero

The first assumption is that the conditional distribution of «, given X;.....X,, has
a mean of zero. This assumption extends the first least squares assumption with a
single regressor to multiple regressors. This assumption means that sometimes Y;
is above the population regression line and sometimes Y, is below the population
regression line, but on average over the population ¥, falls on the population
regression line. Therefore, for any value of the regressors, the expected value of ¢,
is zero. As is the case for regression with a single regressor, this is the kecy assump-
tion that makes the OLS estimators unbiased. We return to omitted variable bias
in multiple regression in Section 7.3.

Assumption #2:
(th Xz,'l O ;Xk,'; Y,‘), [ = l, Y L Are lld

The second assumption is that (Xy,..., X, Y;).i = 1....,n are independently and
identically distributed (i.i.d.) random variables. This assumption holds automatically
il the dala are collected by simple random sampling. The comments on this assump-
tion appearing in Section 4.3 for a single regressor also apply to multiple regressors.

Assumption #3: Large Outliers Are Unlikely '

The third lcast squares assumption is that large outliers  that is. observations with
values far outside the usual range of (the data—are unlikely. This assumption serves
as a reminder that, as in single-regressor case, the OLS estimator of the coeflicients
in the multiple regression model can be sensitive to large outliers.

The assumption that large outliers ar¢ unlikely is made mathematically precise
by assuming that X,;, ..., X}; and ¥; have nonzero finite fourth moments:
0< E(X) <w....,0< E(X}) <xand 0 < E(Y}]) < 0. Another way 10 state this
assumption is that the dependent variable and regressors have finite kurtosis.
This assumption is used to derive the properties of OLS regression stabistics in large
samples.

Assumption #4: No Perfect Multicollinearity

The fourth assumption is new to the multiple regression model, It rules out an
inconvenient situation, called perlect multicollinearity, in which it is impossible to
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Y‘=ﬂn+ﬂixhg +Mﬁ+.+ﬁkx”+uﬂi= 1.--.,".“’"@“

1. u; has conditional mean zero given X\, Xy, ..., Xy thatis,
E(u|Xn Xo ... X)) = 0.
2. {(Xyp Xypo oo - Xy Y21 = 1,.. ., n are independently and identically distrib.
uted (i.i.d.) draws from their joint distribution.

3. Large outliers are unlikely: X,,, ..., X}, and Y, have nonzero finite fourth
momenis,

4. There is no perfect multicollinearity.

compute the OLS estimator. The regressors are said 1o be perfectly multicollinear
{or 1o exhibitl perfect multicollinearity) if one of the regressors is a perfect lincur
function of the other regressors The fourth least squares assumption is that the
regressors are not perfectly multicollincar.

Why does perfect multicollinearity make it impossible to compute the (118
estimatar? Suppase you wani io estimale the cocfficient on STR in a regresaivon
of TestScore,on STR, and PutEL . except thal you make a typographical error und
accidenially type tn STR, a second time instead of PciEL;: that is, you repress
TestScore; on STR, and STR,. This is a case of perfect multicoilinearity because e
of the regressors (the first occurrence of $TR) is 2 perfect linear function vt
another regressor (the second occurrence of STR). Depending on how your soll-
ware package handles perfect mullicollineanty, if vou Iry 10 estimate this reyro»
sion the software will do one of three things: (1) It will drop one of the occurienue®
ol STR; (2} it will refuse to calculate the OLS estimates and give an crror messagt:
or (3) it will crash the computer. The mathematical reason for (his faifurce i thitl
perfect multicollinearity produces division by zero in the OLS formulas.

At an intuitive level, perfect multicollinearity is a problem because vou wiv
asking the regression ta answer an illogical question. In multiple regression. the
cocfficient on one of the regressors is the effect of a change in that regressar, huld-
ing the other regressors constant. In the hypothetical regression of JestScore R
$TR and STR. the coelficient on the first occurrence of STR is the effect un (o™
scures of a change in STR. holding constant $7R. This makes no sense, and O1 3
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The solution to perfect multicollinearity in this hypothelical regression is sim-
ply to correct the iypo and to replacc one of the occurrences of STR with the vari-
able you originally wanted to include. This example is typical: When perfect
multicollincarity occurs. it often reflects a logical mistake in choosing the regres-
sors or some previously unrecognized feature of the data set. In general, the solu-
lion to perfect multicollinearity is to modify the regressors to eliminate the
problem.

Additional examples of periect multicollinearity are given in Section 6.7,
which also defines and discusses imperfect mullicollinearity.

The least squares assumptions for the multiple regression model are summa-
nized in Key Concept 6.4.

The Distribution of the OLS
Estimators in Multiple Regression

Because the data dilfer from one sample to the next, different samples produce
different values of the OLS esumarors. This variation across possible samples gives
rise 10 the uncertainty associated with the OLS estimators of 1he population
regression coeflicients, By, B, . . . . B, Just as in the case of regression with a single
regressor, this variation is summarized in the sampling distribution of the OLS
estimators.

Recall from Section 4.4 that, under the least squares assumptions, the OLS
estimators {B,, and B ) are unbiased and consistent estimators of the unknown
coellicients (8, and B,) in the linear regression model with a single regressor. In
addition, in large samples. the sampling distribution of Bn and ,8‘ is well approxi-
malted by a bivanate normal disiribution.

These results carry vver 1o multiple regression analysis. That is, under the feast

squares assumptions of Key Concept 6.4, the OLS estimators BU. B] ,6,. are
untbiased and consistent estimators of g, 3,, . .. . 8, in the linear muluple regres-
sion model. In large samples, the joint sampling dlsmbunon ofBo 8, ..... ﬁ,‘ is well

approximated by a multivariate normal distribution, which is the extension of the
bivariate normal distribution 1o the general casc of two or more jointly normal
random variables (Section 2.4).

Although the algebra is more complicated when there are multiple regressors.
the cenlral limil theorem applies to the OLS estimators in the multiple regression
model for the same reason that it applies to ¥ and o the OLS estimators when
there is a single regressor: The OLS estimators ,8" B,. .. Bk are averages ol the
randomly sampled data, and if the sample size is .sufflueml_v large the sampiing
distribution of those averages becomes normitl. Because the multivariate normal
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LARGE SAMPLE DISTRIBUTION OF Bo, B, - - - » By

6.7

If the least squares assumptions (Key Concept 6.4) hold. then in large samples the
OLS estimators 3, By. . .. . B, are jointly normally distributed and each 8, is di
tributed N(B,. o7 ).j = 0.....k.

distribution is best handled mathematically using matrix algebra, the expressions
for the joint distribution of the OLS estimators are deferred to Chapter 18.

Key Concepl 6.5 summarizes the result that, in large samples, the distribution
of the OLS estimators in multiple regression is approximately jointly normal. In
general. the OLS estimators are correlated; this corrclation arises from the corre-
lation between the regressors. The joint sampling distribution of the OLS estima-
tors is discussed in more detail for the case that there are two regressors and
homoskedastic errors in Appendix 6.2, and the general case is discussed in
Section 18.2.

Multicollinearity

As discussed in Section 6.5. perfect multicollinearity arises when one of the regres-
sors is a perfect linear combination of the other regressors. This section provides
some examples of perfect multicollinearity and discusses how perfect multi-
collinearity can arise, and can be avoided. in regressions with multiple binary
regressors. Imperfect multicollinearity arises when one of the regressors is very
highly correlated—but not perfectly correlated—with the other regressors. Unlike
perfect multicollincarity. imperfect multicollinearity does not prevent estimation
of the regression. nor does it imply a logical problem with the choice of regressors.
However, it does mean that one or more regression coefficients could be estimated
imprecisely.

Examples of Perfect Multicollinearity

We continue the discussion of perfect multicollinearity from Section 6.5 by exam-
ining three additional hypothetical regressions. In each. a third regressor is added
to the regression of TestScore, on STR; and PatkZL., in Equation (6.12).
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Example #1: Fraction of English learners. Lct FracEL, be the fraction of
English jearners in the i'" district. which varies between 0 and 1. If the variable
FracEL,; were included as a third regressor in addition to STR, and PorEL , the
regressors would be perfectly multicollinear. The reason is that PorEL is the per-
centage of English lcarners.so that ParEL; = 1K X FracF L, for every district, Thus
one of the regressors (PctEL,) can be wrilten as a perfect linear function of
another regressor (FracElL;).

Because of this perfect multicollinearity, it is impossible to compute the OLS
estimates of the regression of TestScore, on STR,, PctF L and FracEL,. At an intu-
itive level, OLS fails because you are asking, What is the effect of a unit change in
the percentage of English learners, holding constant the fraciion of English leara-
ers? Because the percentage of English learners and the traction of English learn-
ers move together in a perfect linear relationship, this question makes no sense
and QLS cannat answer it.

Example #2: “Not very small' classes. Let NV§, be a binary variable that
equals 1 if the student-teacher ratio in the ' district is **not very small,” specili-
cally, NVS, equals 1 if STR, = 12 and equals 0 otherwise, This regression also
exhibils perfect mulncgllinearity, but for a more subtle reason than the regression
in the previous example. There are in fact no districts in our data set with STR; <
12; a5 you can see in the scatterplot in Figure 4.2, the smallest value of STR is 14.
Thus, NVS; = 1 for all abservations. Now recall (hat the lincar regression model
with an intercept can equivalently be thought of as including a regressor. X;;, thal
equals 1 for all £, as 1s shown in Equation (6.6). Thus we can write NV§, = 1 X Xy
for all the observations in our data sel; that s, VV§; can be written as a perfect lin-
ear combination of the regressors; specifically, it equals X,

This illustrates two importani points about perfect multicollinearity. First,
when the regression includes an intercept, then one of the regressors that can be
implicated in perfect multicollinearity is the constant regressor Xy, Second, per-
{ect mullicollineanity is a statement about the dala s¢t you have on hand. While it
is possible to imagine a school district with fewer than 12 students per teacher,
there are no such districts in our data set so we cannot analyze them in our
regression.

Example #3: Percentage of English speakers. Let PctES, be the percent-
age of “English speakers™ in the i'F district, defined to be the percentage of stu-
dents who arc not English learners. Again the regressors will be perfectly
multicollinear. Like the previous example. the perfect inear relationship among
the repressors involves the constant regressor X, For every district, Pet£5, = 100
x X, - PoEL,
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This example illustrates another point: perfect multicollinearity is a feature oy
the entire set of regressors. If either the intercept (1.e., the regressor X, ) or PtE}
were excluded from this regression, the regressors would not be perfectl,
multicollinear.

The dummy variable trap. Another possible source of perfect multi.
collinearity arises when multiple binary, or dummy, variables are used as regre-.-
sors. For example, suppose you have partitioned the school districts into threc
categories: rural, suburban, and urban. Each district falls into one (and only onc)
catepory. I ot these binary variables be Rural, which equals ! [or a rural disiriy
and equals O otherwise: Suburban; and Urban,. If you include all three binary var.-
ables in the regression along with a constant, the regressors will be perfect muin-
collinearity: Because each district belongs to one and only one category, Rura/, -
Suburban, + Urban, = 1 = X|;;, where X|;; denotes the constant regressor intro-
duced in Equation (6.6}. Thus, to estimatc the regression, you must exclude onc of
these four variables, either one ol the binary indicators or the constant term. By
convention, the constant term is retained, in which case one of the binary indicu-
lors is excluded. For ¢example, if Rural; were excluded, then the coefficient on
Suburban, would be the average difference between test scores in suburban and
rural districts. holding constant the other variables in the regression.

In general, if therc are G binary variables, if each observation falls into one
and only one category, if there is an intercept in Lhe regression. and if all G binany
variables are included as regressors, then the regression will fail because of pur-
fect multicollinearity. This situation is called the dummy variable trap. The usual
way to avoid the dummy variable irap is to exclude one of the binary variables
from the multiple regression.so only G — 1 of the G binary variables are includcd
as regressors. In this case, the coefficients on the included binary variables repre:
sent the incremental cffect of being in thal category. relative 10 the base case of
the omitted calegory, holding canstant the other regressors Alternatively. all 4
binary regressors can be included if the intercept is omitted from the regresston.

Solutions to perfect multicollinearity. Perfect multicollinearity typicall
arises when a mistake has been made in specifying the regression. Sometimes (he
mistake is easy to spol {as in tbe first example) but sometimes it is not (as in (he
second example). In one way or another your software will let you know it you
make such a mistake because it cannot compute Lhe OLS estimator if you have
When your software lets you know that you have perfect mullicollinearity. "
is important that you modify your regression to ¢liminate it. Some softwarc i’
unreliable when there is perfect multicollinearity, and at a minimum you will
ceding control over your choice of regressors (o your computer if your regressof®

are rnrfactlv multirnllinaar
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Imperfect Multicollinearity

Despile its similar name, imperfect multicollinearity is conceptually quile differ-
ent than perfect multicollinearily. Imperfect multicollinearity mcans that two or
more of the regressors are highlv correlated, in the sense that there is a linear func-
tion of the regressors that is highly correlated with another regressor. Impertect
multicoilinearity does not pose any problems for the theory of the OLS estima-
tors;indeed, a purpose of O1.S is to son out the independent influences of the var-
ious regressors when these regressors are poientially correlated

If the regressors are imperfectly multicollinear, then the coefficients on at least
one individual regressor will be imprecisely estimated. For example. consider the
regression of TeutScore on STR and PeiEL. Suppose we were 1o add 2 third regres-
sor, the percenlage the district's residents who are first-generation immigrants.
First-genecation immigrants often speak English as a sccond Janguage. so the vari-
ables PrrEL and percentage immigrants will be highly correlated: Districts with
many recenl immigrants will tend to have many students who are still learning
English. Because these two variables are highly correlated, it would be diificult 1o
use these data to estimate the partial effect on lest scores of an increase in PaeEL,
holding constant the percentage immigrants. [n other words, the daia set provides
little information about what happens to test scores when the percentage of Eng-
lish learners is low but the fraction of immigrants is high, or vice versa. If the least
squares assumptions hold. theo the QLS estimator of the coefficicnt on PerEL in
this regression will be unbiased, however. it wili have a larger vaniance than if the
regressors PerEL and percentage immigrants were uncorrelated.

The effect of imperfect multicollinearity on the variance of the OLS estimators
can be scen mathematically byinspecting Equation (6.17) in Appendix 6.2, whichis
the variance of f}] in a multiple regression with two regressors (X, and X3} for the
special case of a homoskedastic error. In this case, the variance of ;31 is inversely
proportionalto1 - P?n.x,- where py x, is the corrclation between X and X, The
larger is the correlation between the two regressors, the closer is this term lo zero
and the larger is the vanance ol Bi. More generally. when multiple regressors are
imperfectly multicollinear, then the coefficients on one or more of these regressors
will be imprecisely estimated—thal is, they will have a large sampling variance.

Perlect multicollinearity is a problem that often signals the presence of a log-
ical error. In contrast, imperfect multicollinearity is not necessarily an error, but
rather just a feature of OLS, your data, and the question you are trving Lo answer.
Il the variables in your regression are the ones you meani Lo include—the ones
vou chose 10 address the potential for omitted variable bias—then imperfect mul-
ticollincarity implies that it will be difficult to estimate precisely one or more of
the partial effects using the data at hand.
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6.8 Conclusion

Repgression with a single regressor is vulnerable to omitted variable bias: [1 .,
omilted variable is a determinant of the dependent vanable and is correlated wiry
the regressor., then the OLS estimator of the slope coefficient will be biased wuny
will reflect both the effect of the regressor and the effect of the omitted variably.
Multiple regression makes it possible to mitigate omiited variable bias by in¢lu.
ing the omitted variable in the regression. The coefficient on a regressor, X in
multiple regression is Lhe partial effect of a change in X, holding constant (i,
other included regressors. In the test score example, including the percentage oof
English learners as a regressor made il possible 10 eslimate the effect on test scotey
of a change in the student-teacher ratio, holding constant the percentage of Euy.
lish learners. Doing so reduced by halt the estimated effect on test scores vl 4
change in 1he student-teacher ratio.

The statistical theory of multiple regression builds on the statistical theory of
regression with a single regressor. The least squares assumpiions for multiple
regression are extensions of the three least squares assumptions (or regression
with a single regressor, plus a fourth assumption ruling out perfect mulu-
collinearity. Because the regression coefficients are estimated using a single <um-
ple, the OLS estimators have a joint sampling distribution and, therefore. have
sampling uncertainty. This sampling uncertainty must be quantified as part of un
empirical study, and the ways to do so in the multipie regression model are the
topic of the next chapter.

Summary

. Omitted variable bias occurs when an omitted variable (1) is correlated with an

included regressor and (2) is a determinant of ¥.

. The multiple regression model is a linear regression model that includes muluply

regressors, X, X, ..., X;. Associated with each regressor is a regression coclii-
cient, 8, 8,. .. ., B;. The coefficient 8, is the expected change in ¥ assuciated with
a one-unil change in X, holding the other regressors constant. The other regre®
sion coefficicats have an analogous interpretation.

. The coefficients in muitiple regression can be estimated by OLS. When the lour

teast squares assumptions in Key Concept 6.4 are satisfied, the OLS estimators at®
unbiased, consistent, and normally distributed in large samples.

. Perfect multicollinearity, which occurs when one regressor is an exact tinctf

function of the other regressors. usually arises from a mistake in choosing which
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regressors to include in a2 multiple regression. Solving perfect multicollinearity
requires changing the set of regressors.
5. The standard error of the regression, the 82, and ihe R? are measures of fit for the

multiple regression model.

Key Terms

omitted variable bias (187)
multiple regression model (193)
population regression line (193)
population regression function (193)
intercept {193)

slope coefficient of X, (193)
coefficient on Xy; (193)

slope coefficient of X, (193)
coefficient on X,; (193)

control variable (193)

holding X, constant (194)
controlling for X (194)

partial effect (194)

Review the Concepts

population mulliple regression model
(195)

constunt regressor constant term (195)

homoskedastic (195)

heteroskedastic (195)

OLS estimators of B, 8. - - .. B, (197}

OLS regression line (197)

predicted value (197)

OLS residual (197)

R? and adjusted R? (R7) (200,201)
perfect multicollinearity or t exhibit
perfect mullicoliinearity (204)

dummy variable trap (208)

6.1 A researcher is intcresied in the effect on test scores of computer usage.

Using school district data like that used in this chapler, she regresses district
average lesl scores on the number of computers per student. Will fh be an
unbiased cstimator of the effect on Lest scures af increasing the number of
computers per student? Why or why not? 1f you think ﬁl is biased, is it biased
up or down? Why?

62 A multiple regression includes 1wo regressors: Y; = B, + B X, + B.X,, + i,
What is the expected change in Y if X increases by 3 units and X, is
unchanged? What is the expected change in Y if X, decreases by 5 units and
X, is unchanged? What is the expected change in Y if X, increases by 3 units
and X, decreascs by 5 units?

6.3 Explain why two perlectly multicollinear regressors cannot be included in a
linear multiple regression. Give two examples of a pair of perfectly multi-
collinear regressors,
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6.4 Explain why it is difficult 10 estimate precisely the partial effect of X, holy

ing X constan, if X, and X, are highly correlated.

Exercises

6.1
6.2

6.3

6.4

The firsi four exercises refer Lo Lhe table of estimated regressions on page 213,
computed using data fur 1998 from the CPS. The dala set consists ol infor-
malion on 4000 [ull-time full-year workers. The highest educational achicye.
ment for each worker was ¢ither a high school diploma or a bachelor™s degre.
The worker's ages ranged from 25 to 34 years. The data set also containgd
information on the region of the country where the person lived, marital sta-
tus, and number of children. For the purposes of Lhesc exercises let

AHE = average hourly earnings (in 1998 dollars)

College = binary variable (1 if college, 0 if high school)

Female = binary variable (1 if female, U if male)

Age = age (in years)

Niheast = binary variable {1 if Region = Northeast, 0 otherwise}
Midwest = binary variable {1 if Region = Midwest, 0 otherwise)
Sourh = binary variable (1 if Region = South, 0 otherwisc)

West = binary variable (1 if Region = Wesl. 0 olherwise)

Compute R® for each of the regressions.
Using the regression resulls in column (1):

a. Do workers wilh college degrees earn more, on average, than workers
with only high school degrees? How much more?

b. Do men eam more than women on average? How much more?
Using the regression results in column (2):

a. Is age an important determinant of earnings? Explain.
b. Sally is 29-year-old female college graduate. Betsy is a 34-year-old
female college graduate. Predict Sally’s and Belsy’s earnings.

Using the regression results in columa (3):

a. Do there appear to be important regional differences?

b. Why s the regressor West omitted from the regression? What would
happen if it was included?
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Population Survey

Results of Regressions of Averoge Hourly Earnings on Gender and Educotion
Binary Varicbles end Other Characleristics Using 1998 Doto from the Current

Dopendent vorlable: average hourly sarnings (AHE),

Regressor tn (2} (3
College (X)) 5.46 5.48 5.44
| Female (X} _ - 2&4 -262 -2.62
Ape (X:) - 0.29 I):29_
Nottheast (X,) ) ) 0_.(19_
Midwest [1}5] ) - i IJ_.6()
South (X,) - o ~02
ntercept 1269 440 178
Summaory Statistes
SER 6.27 6.22 ~.21
RE o E?ﬁ 0.1&)_ ) U194
. o - . _ -
n . 4000 4(!)0 _um

c. Juanita is a 28-vear-old female college graduate from the South. Jen-
nifer is a 28-year-old female college graduate from the Midwest. Cal-
culate the expected difference in earnings between Juanita and

Jennifer,

Data were collected from a random sample of 220 home sales from a com-
munity in 2003, Let Price denote the selling price (in $1000), BDR denote
the number of bedrooms, Barh denote the number of bathrooms. Hsize
denote the size of the house (in square {eet), Lsize denote the lof size (in
square [eet), Age denote the age of the housc (in years), and Poor denote a
binary variable that is equal o ] if the condition of the house is reporied as

“poor.” An estimated regression yiclds

Price = 119.2 + 0.485BDR + 23.4Bath + 0.156Hsize + D002 Lsize
+ 0.090Age - 48.8Poor, K2 = 0.72. SER — 41.5.
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.

d.

Suppose that a homeowner convents part of an existing family reom 1
her house into a new bathroom, What is the expecled increase in the
valuc of the house?

Suppose that a homeowner adds a new bathroom 1o her house, which
increascs the size of the house by 100 square feet. What is the expectod
increase in the value of the house?

Whal is the loss in value if a homeowner lets his house run down so
that its condition becomes *'poor™?

Compute the R? for the regression.

6.6 A researcher plans to study the causal effect of police on crime using Jia
from a randam sample of U.S. counties. He plans to regress the county s
crime rate on the (per capila) size of the county’s police force.

b.

Explain why this regression is likely to suffer from omitted variable
bias. Which variabies would you add 10 the regression to control for
impartant emitted variables?

Use your answer to (2) and the expression for omitted variable bius
given in Equation (6.1) to determine whether the regression will likcly
over- or underestimate the effect of police on the cnime rate. (That is,
do you think lhalﬁl > B8, or f-], <BgM

6.7 Critique each of the following proposed research plans. Your critique shuuld
explain any problems with the proposed research and describe hosw the
research plan might be improved. Include a discussion of any additional Jala
that need to be coliected and the appropriate statistical techniques for ana-
lyzing the data.

A researcher is interested in determining whether a large aerospasy
firm is guilty of gender bias in setting wages. To determine potential
bias, the researcher collects salary and gender information for all of
the firm’s enginects. The researcher then plans to conduct a “dilfer-
ence in means” test to determine whether the average salary for
women are significantly less than the average salary for men.

A researcher is interested in determining whether time spent in prison
has a permanent effect on a person’s wage rate. He collects data on i
random sample of people who have been out of prison for at least Lit:
leen ycars. He collecls similar data on a random sample of people fw!
have never served time in prison. The data set includes informativi of
cach person’s current wage. education, age. ethnicity, gender, tenurc
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(time in current job), occupation, and union status, as well as whether
the person was ever incarcerated. The researcher plans to estimate the
effect of incarceration on wages by regressing wages on an indicator
variable for incarceration, including in the regression the other poten-
1ial determinants of wages (education, tenure, union status, and so on).

6.8 A recent study found that the death rate for people who sleep six (o seven
hours per night is lower than the death rate for people who sleep eight or
more hours. and higher than the death rate for peoplc who sleep five or fewer
hours. The 1.1 million observations used for this study came from a random
survey of Americans aged 30 to 102. Each survey respondent was tracked for
four years. The death rate for people sleeping seven hours was calculated as
the ratio of the number of deaths over the span of the study among people
sleeping seven hours to the total number of survey respondents who slepi
seven hours This calculation was then repealed for people sleeping six hours,
and 50 on. Based on this summary. would you recommend that Americans
who sleep nine hours per night consider reducing their sleep La §ix or seven
hours il they want to prolong their lives? Why or why not? Explain.

69 (Y, X, X;) salisly the assumptions in Key Concept 6.4. You are interested
in B,, the causal effect of X, on Y. Suppose that X, and X; are uncorrelated.
You estimate 8, by regressing Y onto X, (so that X, is not included in the
regression). Does this estimator suffer from omitted variable bias? Explain.

610 (Y, X, X,) salisfy the assumptions in Key Concept 6.4; in addition,
var(u,[ X, Xy,) = 4 and var(X;)) ~ 6. A random sample of size n = 400 is
drawn from the population.

a. Assume that X, and X, are uncorrelated. Compute the variance of _él.
[Hini: Look at Equation (6.17) in the Appendix 6.2.)
b. Assume that cor{X}, X;} = 0.53. Compute the variance of é,.

¢. Comment on the following statements: “When X, and X, are corre-
lated, the variance of 3, is larger than it would be if X, and X, were
uncorrelated. Thus, if you are interested in 8,. i1 is besi to leave X, oul
of the regression if it is correlated with X"

6.11 (Requires calculus) Consider the regression model
Y= 81Xy + BpXy + u,

fori=1,..., n. (Notice that there is no constant term in Ihe regression,) Fol-
lowing analysis like that used in Appendix 4.2:
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Specify the least squares funcrion thai is minimized by OLS.

Compute the partial derivatives of the objection function with respect
lo b and b,

Suppose $7.,X,,X;, = 0.Show that 8, = ¥ X, Y/ X3.
Suppose 2. X)Xy # 0.Derive an expression for fil as a function of
the data (Y, X, Xy).i=1....,a

Suppose that the model includes an intercepl:
Y; = By + B X,, + B,X, + u;. Show that the least squares estimaltors

Empirical Exercises

E6.1 Using the data set TeachingRatings described in Empirical Exercises 4.2,
carry out the following exercises.

a.

Run a regression of Course_Eval on Beaury. What is the estimated
slope?

Run a regression of Course_Eval on Beauty, including some additional
variables to control for the type of course and professor characteris-
tics, In particular, include as additional regressors /ntro, OneCredit,
Female, Minority, and NN English, What is the estimated effect of
Beauty on Course_Evaf? Does Lhe regression in (a) suffer from impor-
tant omitied variable bias?

Professor Smith is a black male with average beauty and is a nauive

English speaker. He teaches a three-credit upper-division course. Pre-
dict Professor Smith’s course evaluation.

E6.2  Using the data set CollegeDistance described in Empirical Exercise 4.3, cufn
out the following excrcises.

a.

Run a regression of years of completed education (ED) on distance ¥
the nearest college (Dist). What is the estimated slope?

Run a regression of £D on Disi, but include some additional regre<
sors 1o control for characteristics of the student, the studeat’s family.
and the local labor market. In particular, include as additional regres
sors Byviest, Fernule, Black, Hispanic, Incomehi, Ownhome. DadColl,
Cued0, and Stwinfe80. What is the eslimated effect of Dist on £D7
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c. Is the eslimated effect of Dist on ED in the regression in (b} substan-
tively diflerent from the regression in (a)? Based on this. does the
regression in (a) seem to suffer from important omitted variable bias?

d. Compare the fit of the regression in (a) and (b) using the regression
standard errors. R? and R%. Why are the R? and R? so similar in regres-
sion (b)?

e. The value of the coefticient on DadColl is positive. What does this
coefficient measure?

f. Explain why Cue80 and Swmjg80 appear in the regression. Are the
signs of their estimated coefficients (+ or —) what you would have
beheved? Interpret the magnitudes of these coefficients

g. Bob is a black male. His high school was 20 miles [rom the nearest col-
lege. His base-year composite tesr score (Byiest) was 58. His family
income n 1980 was $26,000, and his [amily owned a home. His mother
attended college, but his father did not. The unempioymeni rate in his
county was 7.5%. and the state average manufacturing hourly wage
was $9.75. Predict Bob's years ot completed schooling using the
regression ia (b).

h. Jim has the same characteristics as Bob except that his high school was
40 miles from the nearest college. Predict Jim's years of completed
schooling using the regression in (b).

E6.3 Using the data set Growth described in Empirical Exercise 4.4, but exclud-
ing the data for Malta, carry out the fullowing exercises.

a. Construct a table that shows the sample mcan, standard deviation, and
minimum and maximum values for the series Growth, TradeShare,
YearsSchool, Oil, Rev_Coups, Assassinations, RGDP60. Include the
appropriate units for all entries.

b. Run a regression of Growth on TradeShare, YearsSchool, Rev_Coups,
Assassinations and RGDP60. Whal is the value of the coefficient on
Rev_Coups? [nterpret the value of this coefficient. [s it large or small
in a real-world seuse?

¢. Use the regression to predict the average annual growth rate for a
country that has average values for all regressors.

d. Repeat (c) but now assume that the country’s value for TradeShare is
one standard deviation above the mean.
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APPENDIX

e. Why is Qif omitted from the regression? What would happen if it were
included?

6.1 | Derivation of Equation (6.1)
I

APPENDIX

6.2
|

This sppendix presents a derivation of the formula for omilted variahle bias in Equation
{6.1). Equation (4.30) in Appendix 4.3 states that

. 150X, - Xou,
By =8+ _1"’5.'_'—_" (6.16)
“ (X - X’
i=]

Under the last two assumptions in Key Concepl 4.3, %E:-I(Xi— XPp L5 o5 and
%E:‘. (X, — X, —T= cov(u. X)) = p 0.0y Substitution of these limits into Equation
(6.16) yields Equatian (6.1).

Distribution of the QLS Estimators
When There Are Two Regressors
and Homoskedastic Errors

Although the general formula for the variance of the OLS estimators in mulliple regrey-
sion is complicated, if there are (wo regressors (k = 2) and the errors are homoskedustic.
then the formula simplifies cnough to provide some insighis into the distribution of the
OLS estimators.

Because the crrors are hamoskedastic. the conditional variance of u, can be written +
var(u,1.X;,. X3,) = 2. When there are two regressors, Xy, and .X;,, and the crror term i
homoskedastic, in large sampies the sampling distribution of B, is N(ﬁ:-ffj J.where the van-
ance of this distribution. o§ . is

2
of = %[ 1 ]Ell_ (6.17)
' L - px x lox,
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where py y, is the population correlatios between the two regressors X, and Xy and ori-‘ is
the population variance of X|.

The variance of,‘ of the sampling distribution ofﬁl depends on the squared correlation
between the regressors If X and X, arc highly correlated, either posifively or negatively,
thenp}  isclose1o1,and thus the term 1 — pf . in the denominator of Equation (6.17)
is small and the variance of 8, is larger than it would be if p v,x. were close 10 0,

Another feature of Lhe joint normal large-sample distribution of the OLS estimators
is Lhat fS, and ﬁ: are in general correlatled. When the errors arc homoskedasiic, the corre-
lation between the OLS estimators 8, and B, is the negative of the correlation berween the
TWO [egressors:

cort(BB) = Py, x. (6.18)



cHaPTER / ‘ Hypothesis Tests and
| Confidence Intervals
in Multiple Regression

s discussed in Chapter 6, multiple regression analysis provides a way to

mitigate the problem of omilled variable bias by including additiona|
regressors, thereby controlling for the effects of those additional regressors. The
coellicients of the multiple regression model can be estimated by OLS. Like all
estimalors, the OLS estimalor has sampling uncertainty because ils value ditters
from one sample to the nexl.

This chapter presents methods jor quantilying the sampling uncertainty of
Lhe OLS estimator through the use of siandard errors, stalistical hypothusis
lests, and conlidence intervals. One new possibilily thal arises in multiple
regression is a hypothesis that simullaneously involves iwo or more regression
coelficients. The general approach 1o testing such “joinl™” hypotheses involves a
new tesl statistic, the F-stalistic.

Section 7.1 extends lhe methods for statistical inference in regression with 2
single regressor Lo multiple regression. Sections 7.2 and 7.3 show how 10 el
hypatheses that involve two or more regression coefficients. Section 7.4 extends
the notion of confidence intervals for a single coefficient 1o confidence sets [0
multiple coefficients. Deciding which variables to include in a regression is an
important practical issue, so Section 7.5 discusses ways to approach this
problem. In Section 7.6, we apply multiple regression analysis to oblain
improved estimates of the effect on test scores of a reduction in the

student-teacher ratio using the California tesl score data set.
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Hypothesis Tests and Confidence
Intervals for a Single Coefficient

This section describes how 1o compute the standard ervor, how 1o test hypotheses,
and how Lo construct confidence intervals for a single coefficient in a multiple
regression equation.

Standard Errors for the OLS Estimators

Recall that, in the case of a single regressor, it was possible to estimate the vari-
ance of the OLS estimator by substituting sample averages for expectations, which
led to the estimator ‘}5, given in Equation (5.4). Under the teast squares assump-
tions, the law of large numbers implies that these sample averages converge to
their populalion counterparts, so for example o'z fo4 —£5 |. The square root of
05 is the standard error of ﬁl,SE(ﬂl), an csumator of the standard deviation of
the sampling distribution of ,81

All this extends directly to multiple regression. The OLS estimalor ér of the

J regression coefficient has a standard deviation, and this standard deviation is

estimaled by its standard error, SE{ﬁJ).'Ihe formula for the standard error is moslt
easily stated using matrices (see Section 18.2). The imporiant point is that, as far
as standard errors are concerned, thete is nothing conceptually different between
the single- or multiple-regressor cascs. The key ideas—the large-sample normal-
ity of the estimators and the ability to estimate consistently the standard deviation
of their sampling distribution—are the same whether one has one, (two, or 12
regressors.

Hypothesis Tests for a Single Coefficient

Suppose that you want to test the hypothesis that a change in the studeni-teacher
ratio has no effect on test scores, holding constant the percentage of English learn-
ers in the district. This corresponds to ypothesizing that the true coefficient 8, on
the student—teacher ratio is zero in the population regression of test scores on STR
and PctEL. More generally, we might want to test the hypothesis that the rue
coelficient 8, on the J® regressor takes on some specific value. 8, ;. The null value
B, , comes either from economic theory or, as in the student-teacher ratio exam-
ple. from the decision-making context of the application. If the alternative hvpoth-
esis iy two-sided, then the two hypotheses can be written mathematically as

Hy B = Bavs H: B, # By (1wo-sided alternative). (7.1)
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1. Compute the standard error of B, SE(8,).
2. Compute the -statistic,

B; — Bio
= . 72
SE(B) 7.2
3. Compute the p-value,
p-value = 2d(—{1*)), (7.3)

where (°? is the value of the ¢statistic actually computed, Reject the hypothesis at
the 5% significance level if the p-value is less than 0.05 or, equivalently, if {¢*'{ > 1.96,

The standard error and (typically) the 1-statistic and p-value testing B; = 0 are
computed automatically by regression software.

For example, if the furst regressor is STR, then the null hypoihesis that chaning
the siudent-teacher ratio has no effect on class size corresponds to the null
hypothesis that #, = 0 {so 8,5 = 0). Our task is to test the null hypothesi~s H,
against the alternative H, using a sample of data,

Key Concept 5.2 gives a procedure for testing this null hypothesis when there
is a single regressor. The [irst step in this procedure is 1o calculate the standard
error of the cocfficient. The second step is to calculate the f-statistic using thu pen-
eral formula in Key Concept 5.1. The third step is to compule Lhe p-value o! the
lest using Lhe cumulative normal distribution m Appendix Table 1 or, alternativeld.
te compare the r-statistic lo the critical value corresponding to the desired ~ignif-
icance level ol 1he lest. The theoretical underpinring of this procedure is that the
OLS estimator has a large-sample normal distribution which, under the null
hypothesis, has as its mean the hypothesized true value, and that the variance of
this distribution can be estimated coasisiently.

This underpinning is present in muluple regression as well, As stated in Ke?
Concept 6.5, the sampling disiribution oIB is approximately normal, Undur ¢
null hypothesis the mean of this distribution is B;,. The variance of this dist! s
tion can be cstimated consistently. Therefore we can simply follow the same [P
cedure as in the single-regressor case 10 test the null hypothesis in Equation -1

The procedure for testing a hypothesis on a single coefficient in mulupk :
regression is summarized as Key Concept 7.1. The f-statistic actually computed L
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C ONFIDENCE INTERVALS FOR A SINGLE
C OEFFICIENT IN MULTIPLE REGRESSION

\ V5% two-sided conlidence interval for the coefficient B, is an interval that con- 7 2
rains the true value of B, with a 95% probahility: that is, it contains the true value

of 14 in 95% of all pussible randomly drawn samples. Equivalently. it is the set of

values of B that cannot be rejected by a 3% two-sided hypu_lﬂ;si; test. When the

sample size is large. the 95% confidence interval is

95% confidence interval for g, = {B,- = l.%SE(é,}. ,6 3 I.%SE(@}]. (7.4)

A U0% confidence interval is obtained by replacing 1.96 in Equation (7.4)
with 1.645,

denoted ' in this Key Concept. However, it is customary to denote this simply
as 1, and we adopt this simplified notation {or the rest of the book.

Confidence Intervals for a Single Coefficient

The method for constructing a confidence interval in the multiple regression
model is also the same as in the single-regressor model. This method is summa-
rized as Key Concept 7.2.

The method for conducting a hypothesis test in Key Concept 7.1 and the
method for constructing a confidence interval in Key Concept 7.2 rely on the large-
sample normal approximation to the distribution of the OLS estimator B - Accord-
ingly. it should be kept in mind that these methods for quantifying the sampling
uncertainty are only guarantced to work in large samples.

Application to Test Scores
and the Student-Teacher Ratio

Can we reject the null hypothesis that a change in the student-teacher ratio has
no effect on test scores, once we control for the percentage of English learners in
the district? What is a 95% confidence interval for the effect on test scores of a
change in the studeni—teacher ratio. controlling for the percentage of English
learners? We are now able to find out. The regression of test scores against STR
and PctEL, estimated by OLS, was given in Equation (6.12) and is restated here
with standard crrors in parentheses below the coefficients:
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TesiScore = 686.0 — 1.10 X STR —~ 0.650 X PcEL. (3.5
(87) (0.43) (0.031)

To test the hypothesis that the true coefficient on STR is 0. we first need 1,
compute the -staustic in Equation (7.2). Because the null hypothesis says tha th,
true value of this coefficient is zero, the 1-statisticisr = {(—1.10 ~ 0)/0.43 = -7 5y
The associated p-value is 20( —2.54) = 1.1%: that is. the smallest significance o
at which we can reject the null hypothesis is 1.1%. Because the p-value is less than
5%. the null hypothesis can be rejected at the 5% significance level (but not yuite
at the 1% significance level).

A 95% confidence interval for the populaiion coeflicient on STRis —1.10 =
1.96 % 0.43 = {—1.95, —.26); that iy, we can be 95% confident that the true value
of the coefficient is between —1.95 and —0.26. Interpreted in the context uf the
superintendent's interest in decreasing the studeni-teacher ratio by 2, the 459,
confidence interval for the effect on test scores of this reduction is (—1.95 x 2
=026 X 2) = (—3.90. -0.52}.

Adding expenditures per pupil to the equation Your analysis of the multi-
ple regression in Equation (7.5) has persuaded the superintendeni that, bascd on
the evidence so far, reducing class size will help test scores in her district. Now.
however, she moves on 1o 8 more nuanced question. If she is 10 hire more teach-
ers, she can pay for those teachers either through cuts elsewhere in the budget (no
new computers. reduced mainlenance, and so on). ot by asking (or an increase in
her budgel, which taxpayers do not favor. What, she asks. is the effect on test «ores
of reducing 1he student-teacher ratio. holding expenditures per pupil (and the per-
cenlage of English learners) constant?

This question can be addressed by estimating a regression of test scores on the
student-teacher ratio. lotal spending per pupil, and the percentage of Cnglish
learners. The OLS regression linc 1s

TesiScore = 6496 — 029 X STR + 3.87 X Expn — 0.656 X PctEL, {79
(15.5) (0.48) (1.59) (0.032)

where Expn is total annual expenditures per pupil in the district in thousands of
dollars.

The result is striking. Holding expenditures pet pupii and the percentags o
English learners constant, changing the student-teacher ratio is estimated 10 h*“f‘
a very small effect on test scores: The estimated coefficicat on STR is —1.1¢ "
Equation (7.5) but, after adding Expn as a regressor in Equation {7.6). it is l’“"f
—079 Mnreaver the r-statistic for Iestine that the tene value of the coefficicn? ¢
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zero is now r = (—0.29 — 0)/0.48 = —0.60, so the hvpolhesis that the papulation
value of this coefficient is indeed zero cannot be rejected even at the 10% signif-
icance level {| —0.60] < 1.645). Thus Equation (7.6) provides no ewidence that hir-
ing more leachers improves Lesl scores if overall expenditures per pupil ate held
cons{ant,

One interpretation of the regression in Equation (7.6} is that, in these Cali-
fornia data, school administrators allocate their budgets efficiently. Suppose, coun-
terfactually, that the coefficient on STR in Equation {7.6) were negative and large.
If so, school districts could raise their test scores simply by decreasing funding for
other purposes (textbooks, technology. sports, and so on) and transferring those
funds to hire more teachers, thereby reducing class sizes while holding expendi-
Lures constant. However, the small and statistically insignificant coefficient on STR
in Equalion (7.6) indicates that this transfer would have little effect on test scores.
Pul differently, districts are already allocating their funds efficiently.

Note thal the standard error on STR increascd when Expn was added, from
0.43 in Equation (7.5) 10 0.48 in Equation (7.6). This illusirates the general point,
introduced in Section 6.7 in the context of imperfect multicollinearity, that corre-
lation befween regressors (the correlation between STR and Expr is —0.62) can
make the OLS estimators less precise.

What about our angry taxpayer? He asserts that the population values of both
the coefficient on the student-teacher ratio (8,) and the coefficient on spending
per pupil (B,) are zero, that is, he hypothesizes that both #, = 0 and 3, = 0.
Although it might scem that we can reject this hypothesis because the i-statistic
testing 8, = 0 in Equation (7.6) is ¢ = 3.87/1.59 = 2.43, this reasoning 1 flawed.
The taxpayer’s hypothesis is a joint hypothesis, and to test it we need a new 1o0l,
the F-statistic.

Tests of Joint Hypotheses

This section describes how to formulate joint hypotheses on muitiple regression
coefficients and how to test them using an F-statistic.

Testing Hypotheses
on Two or More Coefficients

Joint null hypotheses. Consider the regression in Equation (7.6) of the test
score against the student-teacher ratio, expenditures per pupil, and the percent-
age of English learners. Qur angry taxpayer hypothesizes that ncither the stu-
denl-teacher ratio nor expenditures per pupil have an effeet on test scores. once
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we control for the percentage of English lcarners. Because STR is the first regry..
sor in Equation (7.6) and Expn is 1he second, we can write this bypothesis muty,.
emalicaily as

H;B,=0and8;, =0vs H,:8, * Dand/or 8, * 0. {77

The hypothesis thal both the coefficient on the student-teacher ratio (8,) nngd
the coelficicnt on expenditures per pupil (8,) are zero is an example of a juing
hvpothesis on the coellicients in the multiple regression model. In this casc, 1he
null hypothesis restricts the value of two of the coefficients. so as a matter ol 1er-
minology we can say that the null hypothesis in Equation {7.7) imposes (wo restrie.
tions on the multiple regression modek: 8, = 0and B, = 0.

In gencral. a joint hypothesis is a hypothesis that imposes two or more resiric-
lions on the regression cocfficients. We consider joint null and alternative hypothe.
ses of the furm

B, = B, B = B - .- - fOT 2 total of ¢ restrictions, vs. (78)

I1,: onc or more of the g restrictions under H, docs not hold,

where 8. 8,...... refer to different regression coefficients, and 8. 8,1 . - . . refer
1o the valucs of these coefficicnts under the null hypothesis The null hypothesis
in Equation (7.7) is an example of Equation (7.8). Another example is that. ina
regression with k = 6 regressors. the null hypothesis is that the coefficients on the
2nd_ 4% and 5'0 regressors are zero: that is. 8, = 0.8, = 0.and 85 = U, s0 that ther
are ¢ = 3 restrictions. [n general. under the null hypothesis H, there arc ¢ such
restrictions.

If any one (or more than one) of the equalities under the aull hypothesis #
in Equation (7.8) is false, then Lhe joint null hypothesis itself is false. Thus. the ulter
nalive hypothesis is thal at least one of the equalities in the null hypothesis Hi
does not hold.

Why can't ] just test the individual coefficients one at a time?  Although
it seems it should be possible to test a joint hypothesis by using the usual f-atatl
lics to Lest the restrictions one at a time. the following calculation shows that th#
approach is unreliable. Specifically. suppose thal you are inlerested in testing the
joint null hypothesis in Equation {7.6) that 8, = 0 and 8, = 0. Let 1, be the -5
listic for testing the null hypothesis that 8, = 0.and let 1, be the ¢-statistic for lf-“_'
ing the null hypothesis thal 8, = 0. What happens when you use the “one at & tim®
testing procedure: Reject the joint null hypothesis if cither ¢y or 1, cxceeds 1060

mhvalivra wnlinn?
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Because this question involves Lthe two random variables +, and 1, answering
it requires characterizing the join! sampling distribution of f, and 1. As mentioned
in Section 6.6, in large samples fi, and fi; have a joint normal distribution, so under
the joint null hypothesis the r-slatistics ¢, and f, have a bivariale normal distribu-
tion, where each r-statistic has mean equal to 0 and vanance equal to 1.

First consider the special case in which the r-siatistics are uncorrelated and
thus are independent. What is the size of the "one at a time” lesting procedure;
that is, what is the probability that you will reject the null hypothesis when it is
true? More than 5%! [n this special case we can calculate the rejection probabil-
ity of this method exactly. The null is not rejected only if both |ty < 1,96 and
2. = 1.96. Because the ¢-statistics arc independent, Pr(fr,| = 196 and /.| = 1.96)
= Pr(jt;| = 1.96) X Pr(lt; < 1.96) = 0.952 = 0.9025 = %0.25%. So the probability
of rejecting the null hypothesis when it is true is 1 — 0.95° = 9.75%. This “one at
a time"” method rejects the null too often because it gives you (oo many chances:
[{ you fail to reject using the first ¢-statistic, you get to try again using the second.

If the regressors are correlated. the situation is even more complicated. The
size of the “one at a time" procedure depends on the vaiuc of the correlation
between the regressors. Because the “one at a nme” testing approach has the
wrong size—that i, its rejection rate under the null hypothesis docs not equal the
desired significance level—a new approach is needed.

One approach is 10 modify the “one at a ime"” method so that it uses differ-
eni critical values that ¢nsure that its size equals its significance level. This method,
called the Bonferrom method, is described in Appendix 7.1, The advantage of the
Bonferroni method is that it applies very generally. Its disadvantage is that it can
have low power, it frequentiy fails ko reject the null hvpothesis whean in fact the
alternative hypothesis is true,

Fortunately, there is another approach to testing joint hypotheses that is more
powerful, especially when the regressors are highly correlated. That approach is
based on the Fstatistic.

The F-Statistic

The F-statistic is vsed to test joint hypothesis about regression cocfficients. The
formulas for the F-staustic are integrated into modern regression sofiware.
We [irst discuss the case of two restrictions. then turn o the genceral case of ¢
restrictions.

The F-statistic with ¢ = 2 restrictions. When the joint null hypothesis has
the two restrictions that 8, = 1 and 8, = (), the F-statistic comhines the two t-sta-
tistics ) and s~ using the formula
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1 "E + ‘% - 2be'r,l.:.lli'i‘ -
F=5( 1 -7 ) o
hd;

where p, , is an estimator of the correlation between the two r-statistics

To undersiand the F-statistic in Equation (7.9), first suppose that we know i 4
the t-statistics are uncorrclated so we can drop the terms involving p, , . 150, Equy.
tion {7.9) simplifies and F = i(:f + £3): that is. Lhe F-statistic is Lhe average ot 1h,
squared /-statistics Under the null hypothesis, £, and ¢+, are independent stand:rg
normal random variables (because the -statistics are uncorrelated by assumptiun),
so under the null hvpothesis F has an F,, distribution (Section 2.4). Undct the
altermative hypothesis that either 8, 1s nonzero or 3, is nonzero {or both). Ihey
either ¢7 or 13 (or both) will be large, leading the test to reject the null hvpothesis

In general (he s-statistics are correlated, and 1the formula for the F-statisticn
Equation (7.9) adjusts for this correlation. This adjustment is made so that, under
the null hypothesis, the F-statistic has an £, , distribution in Jarge samples whuiher
or not the r-statistics are correlated.

The F-statistic with q restrictions. The formula for the heteroskedastivity-
robust F-statistic testing the g restrictions of the joint null hypothesis in Equution
(7.8} is given in Section 18.3. This formula is incorporated into regression software.
making \he F-statistic easy 10 compute iz practice.

Under the null hypothesis, the F-statistic has a sampling distribution that. in
large samples, is given by the £, distribution. That is, in large samples. under the
null hypathesis

the Festatistic is distributed £, . (710}

Thus the critical values for the F-statistic can be obtained from the tables of
the F, . distribution in Appendix Table 4 for the appropriate value of ¢ and the
desired significance level.

Computing the heteroskedasticity-robust F-statistic in statistical
software. [f the F-stalistic is computed using the general heteroskedasticit¥”
robust formula, its large-n distribution under the null hypothesis is F, , regardie®
of whether the errors are homoskedastic or heleroskedastic. As discussed i
Section 5.4, for historical reasons most statistical software computes homoskda®
ticity-only standard errors by default. Consequently, in some software pachag+
you must select a “robust” option so that the F-siatistic is computed using eV
croskedasticity-robust standard errors (and. more gencrally, a heteroskedasticit!
robust estimate of the “covariance matrix™). The homoskedasticity-only versi?
of the F-statistic is discussed ai the end of this section.
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Computing the p-value using the F-statistic. Thc p-value of the F-statistic
can be computed using the large-sample £, . approximation to its distribution. Let
F™! denote the value of the F-statistic actually computed. Because the F-statistic
has a large-sample F_ ., distnibution under the null hypothesis. the p-value is

p-value = PrF, . > F*'). (7.11)

The p-value in Equation (7.11) can he evaluated using a table of the F, , dis-
tribution (or, alternatively, a table of the xé distribution, because a xﬁ-distributed
random variable is g limes an F, ,-distributed random variable). Alternatively. the
p-value can be evaluated using a computer, because [ormulas for the cumulative
chi-squared and F distributions have been incorporated into most modern statis-
lical software.

The “overall’ regression F-statistic. The “overall” regression F-statistic
Lests the joint hvpothesis that aff the slope coefficients are zero. That is, the null
and alternative hypotheses are

H:B, =08,=0,....8,=Uvs H:B, # Catleastonej, j=1,....k (7.12)

Under this null hypothesis, none of 1he regressors explains any of the variation in
Y,. although Lhe intercept (which under the null hypothesis is the mean of Y,) can
be nonzero. The null hypothesis in Equation (7.12) is a special case of the general
null hypothesis in Equation (7.8), and 1he overall regression F-statistic is the
F-statistic computed for the null hypothesis in Equation (7.12). In large samples,
the overall regression F-statistic has an F . distribution when the null hypothesis
is true.

The F-statistic when q = I. When ¢ = |.the F-siatistic tests a single restric-
tion. Then the joint null hypothesis reduces to the null hypothesis on a single
regression coefficient, and the F-statistic is the square of the ¢-stalistic,

Application to Test Scores
and the Student-Teacher Ratio

We are now able to test the null hypothesis that the coefficients on botk the stu-
dent-tcacher ratio and cxpenditures per pupil are zero. against the allernative that
at lcasi one coelficient is nonzero, controlling for the percentage of English learmn-
ers in the district.

To test this hypothesis. we need Lo compulce the heteroskedasticity-robust F-
statistic of the test that 8, = Oand 8, = 1) using Lhe regression of TestScore on STR,
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Expn, and Po1EL reported in Equation (7.6). This F-statistic 1s 5.43. Under the nu
hypothesis, in large samples this statistic has an [, , distribution. The 5% critic,y)
value of the F, . distribulion is 3.00 (Appendix Tabie 4}, and the 1% critical value
is 4,61, The value of the F-statistic computed from the data, 543, exceeds 4.6y
the nuil hypothesis is rejected at the 1% level. It is very unlikely that we wouid
have drawn a sample that produced an F-statistic as large as 5.43 if the null hypul.
esis really were true (the p-value is 0.005). Based on the evidence in Equation (7 )
as summarized in this F-statistic, we can reject the taxpayer’s hypothesis that nei.
ther the student-teacher ratio nor expenditures per pupil have an effect vn vy
scores (holding constant the percentage of English learners).

The Homoskedasticity-Only F-Statistic

One way to restate the question addressed by the F-stalistic is lo ask whether
relaxing 1he g resiriclions that constitule the null hypothesis improves the fil of
the regression by enough that this improvement is unlikely to be the resull mereiy
of random sampling variation if the null hypothesis is Lrue. This restatement sug-
gests that there is a link between the F-statistic and the regression R%: A large F-
statistic should, it seems, be associated with a substantial increase in the R2. In fact,
if the error «; is homoskedastic, this intuition has an exact mathematical expres
sion. That is. if 1he error term is homoskedaslic, the F-stalislic can be written in
terms of the improvement in the fit of the regression as measured cither by the
sum of squared residuals or by the regression R’. The resulting F-statisuc is
referred o as the homoskedasticity-only F-statistic, because it is valid only il the
error term is homoskedastic. In contras, the heteroskedasticity-robust F-statistic
compuled using the formula in Seclion 18.3 is valid whether the error term is
homoskedastic or heteroskedastic. Despite this significant limitation ot the
homoskedasticity-only F-statistic, its simple formula sheds light on what the /-sta-
tistic is doing. In addition, the simple formula can be computed using standaird
regression output. such as might be reported in 2 table thal includes regression
R%'s but not F-statislics.

The homoskedasticity-only F-stalistic is computed using a simple formuts
based on the sum of squared residuals from twa regressions. In the first regressiot:
called the restricted regression, the null hypothesis is foreed to be true, When the
null hypothesis is of the ype in Equation {7.8), where all the hypothesized values
are 7ero. the restricted regression is the regression in which those cocfficients A1
sel to zero, that is, the relevant regressors are excluded from the regression. In the
second regression, called the nnrestricted regression, the alternative hypothests "
allowed to be true. If the sum of squarcd residuals is sufficiently smaller in the un”
stricted than the restricted regression, then the lest rejects the null hypothesis
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The bormoskedasticity-oply F-statistic is piven by the farmula

F= (SSRrﬂmrrrd' - 55 Rumrurl'ﬂfd) }q
SSR&muﬂrfﬂru' f(n— kumﬂmcrrd - 1)

(7.13)

where SSR,,..,.c..s 1 the sum of squared residuals from the restricted regression,
S8R, estricteq 18 the sum of squared residuals from the unrestricted regression. g is
the number of restrictions under the null hypothesis, and k.., . wa 15 the RUmMber
of regressors in the unrestricted regression. An alternative equivalent formula for
the homoskedasticity-only F-stalistic is based on the R? of the two regressions:

R, canicres — R /
F = l igz uﬂ!d'tl'rlﬂl‘d‘" er;:rrdrd) q — . (7[4)
( - unrcsm'ﬂcn") (n T Runresricred l)

It the errors are homoskedastic, then the difference between the homoskedas-
ticity-only F-slanstic computed using Equation (7.13} or (7.14) and the het-
eroskedasticity-robust F-statistic vanishes as the sample size n increases. Thus, if
the errors are homoskedastic, the sampling distribution of lhe rule-of-thumb F-
statistic under the null hypothesis is, in large samples, £, ..

These rule-of-thumb formulas are easy to compute and have an intuitive inter-
pretation in terms of how well the unrestricted and resiricted regressions fit Lhe
data. Unfortunately, they are valid only if the errors are homoskedastic. Because
homoskedasticily is a special case thal cannol be counted on in apphcations with
economic data, or more generally with daia sets typically found in the social sci-
ences. in practice the hornoskedasticity-only F-statistic is not 2 satisfactory substi-
tute for the heleroskedasticity-robust F-statistic.

Using the homoskedasticity-only F-statistic when n is small. [f the errors
are homoskedastic and are 1.1.d. normally distribuled, then the homoskedasticity-
only F-stalistic defined in Equations (7.13) and (7.14) hasan £, _, dis-
tribution vnder the null hypothesis. Critical values [or this distribution, which
depend oo both ¢ and 72 — ke — 1 are given in Appendix Table 5. As dis-
cussed in Section 2.4.1he F,,,_, _ _  _; distribution converges 1o the £, . distri-
bution as n increases; for large sample sizes. the dilferences between Lhe two
distributions are negligible. For small samples, however. the two sels of critical val-
ues differ.

Application to Test Scores and the Student-Teacher Ratio. To test the nuil
hypothesis that the population coefficients on STR and Expn are (0, controlling for
PctEL, we need to compute the SSR (or R°) for the restricted and unrestricted
regression. The unrestricted regression has the regressors STR, Expn, and PorEL,
and is given in Equation (7.6); its R? is 0.4366; that is, &2 = (.4366, The

wnrearricied
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7.3

restricted regression imposes the joint null hypothesis that the true coelficients ,)p
STR and Expn are zero: that is.under the null hypothesis STR and Expndonot eniy;
the population regression, although PctEL does {the null hypothesis dues a
restrict the cocfficient on PerEL). The restricied regression, estimated by OLS

—-'-"'"'_'-"“-—-._
TestScore = 664.7 — 0671 X PctEL, R? = ).4149. (7.15
(1.0} (0.032)

$O R}, rirea = 0.4149. The number of restrictions is ¢ = 2, the number of obser a.
tions is n = 420, and the number of regressors in the unrestricted regression s &
= 3, The homoskedaslicity-only F-statistic, compuled using Equation (7.14),1s

F = [(0.4366 — 0.4149)/2]/[(1 ~ 0.4366)/(420 - 3 — 1)} = 8.0L.

Because 801 exceeds the ] % critical value of 4.61, the hypothesis is rejected at Lthe
1% level using this rule-of-thumb approach.

This cxample illustrates the advantages and disadvantages of the homoskedas-
licity-only F-statistic. Its advantage is that it can be computed using a calculaior.
Its disadvantage is that the values of the homoskedasticity-only and het-
eroskedasticity-robust F-statistics can be very different: The heteroskedasticity-
robust Fslatistic Lesting this joint hypothesis is 5.43, quite dilferent from the less
reliable homoskedasticity-only rule-of-thumb value of 8.01.

Testing Single Restrictions
Involving Multiple Coefficients

Sometimes economic theory suggests a single restriclion thal involves two or mait
regression coefficients, For example, theory might suggest a null hypothesis of the
form 8, = B, ihat is, the effects of the first and second regressor are the same. in
this case, the task is to test this null hypothesis against the alternative that the (w0
coellicients differ:

HyB, =B, vs. Il B, # B (718

This null hypothesis has a single restriction, so ¢ = 1. but that restrictio?
involves multiple coefficients (8, and B.). We need to modily 1he method®
presented so far to test this hypothesis. There are 1wo approaches; which one wilt
be casiest depends on your software.
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Approach #1: Test the restriction directly. Somec statistical packages have
a specialized command designed Lo test restrictions like Equation (7.16) and the
result is an F-statistic that, because ¢ = 1, has an [, distribution under the null
hypothesis. (Recall [rom Scction 2.4 that the square of a standard normal random
variable has an £, .. distribution, so the 95% percentile of the /|, distribution s
1.96% = 3.84.)

Approach #2: Transform the regression. [ your statistical package cannot
test the restriction directly. the hypothesis in Equation (7.16) can be tested using
a trick in which the original regression equation is rewritten to turn the restriction
in Equation (7.16) into a restriclion on a single regression cocftticient. To be con-
crete, suppose therc are only two regressors, X; and X5, in the regression, so the
population regression has the form

Y, =By + B Xy, + BaXy + u, (7.17)

Here is the trick: By subtracting and adding 8,X;, we have that 8, X, t 8, X5,
= B Xy, — BXy + BaXyy + BaXy (By - B)Xy + Bu(X )+ Xy = v X 1 B,
where y; = 8, — B,and W, = X|; ~ X,, Thus, the population regression in Equa-
tion (7.17) can be rewritten as

Y= By viXy t BW +ou, (7.18)

Because the coefficient y| in this equation is v, = 8, — ;. under the null hypoth-
esis in Equation (7.16). ¥. = 0 while undcr the alternative, ¥ # 0. Thus. by turn-
ing Equation (7.17) into Equation (7.18). we have turned a restriction on two
regression coefficients into a restriction on a single regression cocflicient,

Because the restriction now involves the single coefficient vy, the null hvpoth-
esis in Equation (7.16) can be tested using the ¢-statistic method of Section 7.1, In
practice. this is done by first consiructing the new regressor W, as the sum of the
two original regressars, then estimating the regression of Y, on X and W, A 95%
confidence interval for the difference in the coefficients 8, — B; can be calcuiated
as y, = 1.96SE(y,).

This methed can be extended to other restrictions on regression equations
using the same trick {see Exercise 7.9).

The two methods (Approaches #1 and #2) are equivalent, in the sense that the
F-statistic from the first method equals the square of the r-statistic from the sec-
ond mcthod.
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7.4

Extension to q > I. 1o general it is possible to have ¢ restrictions under
null hypothesis in which some or all of these restrictions involve mulliple coct™.
cients. The F-sratistic of Section 7.2 extends to this type of joint hypothesis. The 4.
staiistic can be computed by either of the 1wo methods just discussed for ¢ =
Precisely how best to do this in practice depends on the specilic regression seqp
ware being used.

Confidence Sets for Multiple Coefficients

This section explains how ta construct a confidence set for two of more regression
coefficients. The method is concepmally similar 1o the method in Seciion 7.1 Lo
constructing a confidence set for a single coefficient using the ¢-statistic, exc pt
that the conlidence sel [or multiple coelficients is based on the F-statistic,

A 95% confidence set for two or more coefficients is a st Lhat contains the
true populalion values of these coefficients in 95% of randomly drawn sampies,
‘Thus, a confidence sct is the generalization 10 Lwo or more coellicients of a cont-
dence interval for a single coefficient.

Recall that a Y5% confidence interval is compuled by finding the set ol vul-
ues of the coefficients that are not rejected using a £-statistic al the 5% significance
level. This approach can be extended to the case of multiple coefficients. To muke
this concrete, suppose you are inlerested in construcling a confidence set for 1wo
coefficients, B, and B,. Section 7.2 showed how to use the F-statistic to 1est a ot
null hypothesis that 8, = 8, gand 8, = B, Suppose you were to test every pussi
ble value of 8,4 and B, at the 5% level. For each pair of candidates (8, . f5+.)-
you construct the F-statistic and reject it if it exceeds the 5% critical value ot 31X,
Because the test has a 5% significance level, the frue population values of 8. and
B, will not be rejected in 95% of al) samples Thus, the set of values not rejecied a1
the 5% level by Lhis F-statistic constitutes a 95% confidence set for g, and 5.

Although this meihod of trying all possible values of 8, ,and B, works in the
ory, in practice it is much simpler 10 use an explicit formula for the confidency ot
This [ormula for the confidence set for an arbitrary number of coeflicicnts is hased
on the formula for 1he F-siatistic. When there are (wo coefficicnts. the rexulting
confidence seus are ellipses,

As an illustrarion, Figure 7.} shows a 95% confidence set (confidence vl
for the coefficients on the student-teacher ratio and expenditure per pupil
holding constant 1he percentage of English learners, based on the ¢stunated repiv®
sion in Equation (7.6).This ellipse does not include the point (0,0}, This means thal
the null hypothesis that these two coefficients are both zeto is rejected using the
F-statistic at the 5% significance level, which we already knew from Section 7
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FIGURE 7 'I 95% Confidence Set for Coefficients on STR ond Expn from Equation (7.6) |
The 95% confidence set Coetlicient on Expn (ﬁ.}
+ the coefficients on STR (3, Y i
and Expn (3;] is on ellipse. The 8 |ﬂ
ellipse contains the pairs of val _ 954 Confidence Set
Les K_FH and 93

ecled using ﬂ“;e F-stalistic at

Lha 5%

, that cannot be }
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7.5

The confidence ellipsc is a fat sausage with the long part of the sausage oriented
in the lower-left/upper-right direction. The reason for this orientation is that the
estimated correlation between B, and B; is positive, which in turn arises because
the correlation between the regressors STR and Expn is negative (schools that
spend more per pupil tend to have fewer students per teacher).

Model Specification
for Multiple Regression

The job of determining which variables to include in multiple regression—that is,
the problem of choosing a regression specification—can be quite challenging, and
no single rule applies in all situations. But do not despair. because some useful
guidelines are available. The starting point for choosing a regression specification
is thinking through the possible sources of omitted variablc bias. It is important to
rely on your expert knowledge of the empirical problem and to focus on obtain-
ing an unbiased cstimate of the causal effect of interest: do not rely solely on purely
statistical measures of fit such as the R2 or R2.
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Omitted Variable Bias in Multiple Regression

The OLS estimators of the coefficients in multiple regression will have omitic.s
variable bias if an omitted determinant of Y; is correlated with at least one of th,
regressors. For example, students from affluent familics often have more learniny
opportunities than do their less affluent peers. which could lead to better ey
scores. Moreover, if the districl is a wealthy one, then the schools will tend 1o hav,
larger budgets and lower student-teacher ratios. If so, 1he affluence of the student.,
and the studeni-teacher ratio would be negatively correlated, and the OLS vsii-
mate of the coefficient on the student-1eacher ratio would pick up the effect it
average district income, even after controliing lor the percentage of English lcarn-
ers. In short, omitting the students” economic background could lead 10 omitte)
variable bias in the regression of tesl scores on the student-teacher ratio and the
percentage of English learners.

The general condilions [or omitted variable bias in multiple regression are
simiar o those for a single regressor: If an omitted variable is a determinant ot ¥
and if it is correlaled wilh at least one of the regressors, then the OLS estimators
will have omitted variable bias. As was discussed in Section 6.6, the OLS estin-
tors are correlated, so in general the OLS estimators of all Lthe coefficients will b
biased. The two conditions for omitled variable bias in multiple rcgression are
summarized in Key Concepl 7.3.

At a mathematical level, if the rwo conditions for omitted variable bias are
satisfied, then at least one of the regressors is correlated with the error term. This
means that the conditional expectation of , given X, . ... X}, is nonzero. so that
the first least squares assumplion is violated. As a result, the omitled variable bias
persists even if the sample size is large. that is, omitted variable bias implies that
the OLS estimators are inconsistent,

Model Specification in Theory and in Practice

In theory, when data are available on the omitted variable, the solution to omil-
ted variable bias is to include the omilled variable in the regression. In practice.
however, deciding whether 1o include a particular variable can be difficuit and
requires judgment.

Qur approach to the challenge of potential omitted variable bias is twofcId
Firs(, a core or base set of regressars should be chosen using a combination of
expert judgment. economic theory. and knowledge of how the data were callected:
the regression using this base set of regressors is sometimes referred to as a bas€
specification. This base specificalion should contain the variables of primary inte (-
¢st and the control variables suggested by expert judgment and economic theu¥-
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OMITI'E_iJ VARIABLE Bias IN MULTIPLE REGRESSION

Omitted vatiable bias is the bias in the OLS estimator that arises when one or
mote included regressors are correlated with an omitted variable. For omitted vari-
able bias to arise, two things must be true;

i. At least one of the included regressors must be correlated with the omitted
variable.

2. The omitted variable must be a determinant of the dependent variable, Y.

Expert judgment and economic theory are rarely decisive, however, and often the
variables suggested by economic theory are not the ones on which you have data,
Therefore the next siep is o develop a list of candidate alternative specifications.
that is, alternative sets of regressors. If the estimates of the cocfficients of interest
are numerically similar across the alternative specitications. then this provides evi-
dence that the estimates from your base specification are reliable. If, on the other
hand, the estimates of the coefficients of interest change substantially across spec-
ifications, this often provides evidence that the original specification had omitted
variable bias. We elaborate on this approach to mode) specification in Section 9.2
after studying some tools for specifying regressions.

Interpreting the R?
and the Adjusted R? in Practice

An RZor an R? near | meaps that the regressors are good at predicting the values
of the dependent variable in the sample. and an R? or an R? near 0 means they are
not. This makes these statistics useful summaries ol the predictive ability of the
regression. However. il is easy to read more into them than they deserve.

There are four potential pitfalls to guard against when using the R? or R

1. An increase in the R* or R* does not necessarily mean that an added vari-
able is statistically significant. The R? increases whenever you add a regres-
sor, whether or nol it is statistically significant. The R? does not always
increase, but if it does this docs not necessarilv mean that the coefficient on
that added regressor is statistically significant. To ascertain whether an added
variable is statistically significant, you need to perform a hvpothesis test using
the -stalistic.
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R? AND. R?_ WhiAr THEY Tew You—

/HAT THEY DON'T

The R? and R? tell you whelher the regressors are good at predicting, or “explain .

ing," the values of the dependent variable in the saropie of data on hand. If the &°
(or RY) is nearly 1, then the regressors produce good predictions of the dependen:
variable in that sample, in the sense that the variance of the QLS residual is smal)
compared 1o the variance of the dependent variabie. If the R? (or R?) is nearly ¢
the opposite is true.

oM

The R? and R? do NOT tell you whether:

. An included variable is statistically significant;

The regressors are a true cause of the movemcnts in the dependent variable;
There is omitted variable bias; or

You have chosen the most appropriate set of regressors.

A high R? or R? does not mean thai the regressors are a true cause of the
drpendent variable. Imagine regressing test scores against parking lot e
per pupil. Parking lot arca is corrclated with the student—teacher ratio, with
whether the schoo! ts in a suburb or a city. and possibly with district income —
all tings that are correlated with test scores. Thus the regression of test scores
on parking lot area per pupil coutd have a high R? and 2. but the relationship
Is not causal (try telling the superintendent that the way to increase test scores
is 1o increase parking space!).

A high R? or R? does not mean there is no omitted variable bias. Recall the
discussion of Section f.1, which concerned omitted variable bias in the rewros
sion of test scores on the student—teucher ratio. The R? of the regression net!
came up because it played no logical role in this discussion. Omitted variable
bias ¢an oceur in regressions with a low R?, a moderate K2, or a high £°. Cen
versely.a low R” does notimply that there necessarily is omitted variable biis

A high R* or R? does not necessarily mean you have the most appropriat¢
ser of regressors, nor does a low R2or R? necessarily mean you have an inap-
propriate set of regressors, The question of what constitutes the right sct of
regressors in multiple regression is difficull and we return (o it throughout (hi*
textbuok. Decisions about the repressors must weigh issues of omitted Vit
able hias, data availability, data quality. and. most importantly, economt
theory and the nature of the substantlive questions being addressced. None ol
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these questions can be answered simply by having a high (or low) regression
Rlor R

‘These points are summarized in Key Concept 7.4,

Analysis of the Test Score Data Set

This section presents an analysis of the cffcct an test scores of the student-teacher
ratio using the California data set. Qur primary purpose is to provide an cxample
in which multiple regression analysis is used to mitigate omitted variable bias.
Our secondary purpose is to demonstrate how to use a table to summarize regres-
sion resulis

Discussion of the base and alternative specifications. This analysis focuses
on estimating the effect on test scores of a change in the student-teacher ratio,
holding consrant student characteristics that the superintendent cannot conlirol.
Many {actors poientially aflect the average test score in a district. Some of the fac-
tors that could affect Lest scores are correlated with the student—teacher ratio. so
omitting them from the regression will result in omitied variable bias. I data are
available on these omilted vanabies, the solution to this problem is to include them
as additional regressors in the multiple regression. When we do this. the coellicient
on the student-teacher ratio is the effect of a change in the studeni—teacher ratio,
holding constant these other factors.

Here we consider three variables that control for background characteristics
of the students thai could affect test scores. One of these control variables is the
one we have used previously, the fraciion of students who are still learning Eng-
lish. The two other variables are new and control [or the economic background of
the students, There is no perfect measure of economic background in the data sct,
so instead we use two imperfect indicators of low income in the district. The first
new variable is the percentage of siudenis who arc eligible for reeciving a subsi-
dized or free lunch at school. Students are eligible for this program if their family
income is l¢ss than a ceriain threshold (approximately 150% of the poverty linc).
The second new variable is the percentage of students in the district whose fami-
lies qualify for a California income assistance program. Families are eligible for
this income assistance program depending in part on their family income, but the
threshold is lower (stricter) than the threshold for the subsidized lunch program.
These iwo variables thus measure the fraction of economically disadvantaged chil-
dren in the district: although they are related. 1they are not perfectly correlated
{their correlation cocfficient is 0.74). Although theory suggests that economic
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background could be an important omitted factor. theory and expert judgment J,,
nol really help us decide which of these two variables (percentage eligible for
subsidized lunch or percentage eligible for income assistance) is a better measurr
of background. For our base specification, we choose the percentage eligible for .,
subsidized lunch as the economic background variable, but we consider an alie: -
native specificalion that includes the other variable as wel).

Scalierplots of tests scores and these variables are presented in Figure 7 2
Each of these variables exhibits a negative correlation with test scores. The corre.
lation between test scores and the percentage of English learners is —0.64; betweon
test scores and the percentage eligible for a subsidized lunch is —0.87; and betwuen
test scores and the percentage qualifying for income assistance is —0.63.

What scale should we use for the regressors? A praciical question that
arises in regression analysis is what scale you sheuld use for the regressors, In Fig-
ure 7.2, the units of the variables are percent, so the maximum possible range of
the data is 0 to 100. Alternatively, we could have defined these variables to be a
decimal fraction rather than a percent; for example, PetEL could be replaced
the fraction of English learners, FracEL (= PctEL/100). which would ranyge
between 0 and 1 instead of between ) and 100. Moure gencrally, in regression analy-
sis some decision usually needs to be made about the scale of both the dependuent
and independent variables How. then. should you choose the scale, or unils, at 1he
variables?

The general answer to the question of choosing the scale of the variables 1w
make the regression results easy 10 read and to interpret. [n the test score apph-
cation, Lthe natural unit for the dependent vaniable is the score of the test itsell In
the regression of TesiScore on STR and PctEL reported in Equation (7.5). the
coefficient on PctEL is —0.650. If instead the regressor had been FracEl.. the
regression would have had an identical R? and SER; however. the coelfficient on
FracF L would have been —65.0. In the specification with Pe/EL, the coeflicicnt
is the predicted change in test scores for a one-percentage-point increase in 1:ng-
lish learners, holding STR constant; in the specification with FracEL, the coclli
cient is the predicled change in tesl scores for an increase by 1 in the fraction of
English learners—that is, for a 100-perceniage-point-increase—holding STR con-
stant. Although these two specifications are mathematically equivatent. for i
purposes of interpretation the one with PctEL seems. to us. more natural.

Another consideration when deciding on a scale is to choose the units ol the
regressors so that the resulting regression coefficients are easy 1o read. For exant
ple. if a regressor is measured in dollars and has a coefficicnt of 000000356, 11

easier to read if the regressor is converted to millions of dollars and the coeffivient
3 Shis renorred
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FIGURE 7.2  Scatterplots of Test Scores vs. Three Student Characteristics
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The scaterplots show a negative relationship between test scores and (o) the percentage of English learners (correla-
has = —0.64), (b) the percentage of students qualifying for a subsidized lunch (correlation = —0.87); and (c) the
percentage quolrfymg for income assistance (correlation = - 0.63).

Tabular presentation of result. We are now faced with a communication
problem. What is the best way to show the results from several multiple regres-
sions that contain diff¢rent subscts of the possible regressors? So [ar. we have pre-
sented regression results by writing oul the estimated regression equalions, as in
Equation (7.6). This works well when there are only a few regressors and only a
few equations. but with more regressors and cquations this method of prescnta-
tion can be confusing. A better way 10 communicate the results of several regres-
sions is in a table.

Table 7.1 summarizes the results of regressions of the test score on various sets
of regressors. Each column summarizes a separate regression. Each regression has
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TABLE 7.1 Resubs of Regressions of Tast Scoras on the Student-Teacher Ratio and Student
Charadleristic Control Variables tUsing California Elementary School Districts

Dependant variable: avarage test score in the districe.

Regrassor 4] 2) 3 (4} (51
Student-teacher ratio (X)) — 228+ -1.10* —1.00* =1.31% -1.0t"
(0.52) (0.43) 0.27) (0.34) 0.27)
Percent English learners (X,) —0.850"* —[.122% —0.488*s  —0]30n-
{0.031) (0.033) (0.030) (0.036)
Percenl cligible for subsidized lunch (X4) — 05474+ —{.52y-
(0.024) (0.03%)
Percent on public income assistance (X)) —0.790* 0.04%

(0.063) {D.059}

698 95+ 686.0"* 700.2** 698.0+* 04+

Inlcreept
(10.4) &.7) (56) (6.9) 55 |
Summary Statistics ‘
SER 18.58 14.46 9.08 11.65 908 |
R _ T o9 044 0 066 073
—ﬂ o o _;20 T _420 - ‘g_ S 420 _420

These regressions were cstimatad using the data on K-8 school districts in Calitorma. described in Appendix 4.1. Standard errors
are given in parentheses under coefficients The individual coefficient is statistically significant at the *5% level or ** 1% sigmib
cance level using a two-sided test.

the same dependent variable, test score. The entries in the first five rows arc the
estimated regression coefficients, with their standard errors below them in paren-
theses The asterisks indicate whether the (-statistics, testing the hypothesis that
the relevant coefficient is zero. is significant at the 5% level (one asterisk) or 1he
1% level (two asterisks). The final three rows contain summary stalistics for the
regression {the standard error of the rcgression, SER, and the adjusted R?. R°) and
the sample size (which is the same for all of the regressions. 420 observations}.

All the information that we have presented so far in equation format appear™
as a column of his table. For example, consider the regression of the test scuiv
against the student—tcacher ratio, with no control variables. In ¢guation form. thi¥
regression is

TostScore = 698.9 — 228 X STR, R? = 0.049, SER = 1858.n = 420. (719
(10.4) (0.52)
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All this information appears in column (1) of Table 7.1. The estimated coefficient
ob the student-teacher ratio (—2.28) appears in the first row of numerical entries,
and its standard error (0.52) appears in parentheses just below the estimated coel-
ficient. The intercept (698.9) and its standard exror (10.4) are given in the row
labeled “Intercept.” (Sometimes you will see this row labeled “constant” because,
as discussed in Section 6.2, the intercept can be viewed as the coelficient on a regres-
sor that is always equal to 1.) Similarly, the R2 (0.049). the SER (18.58), and the sam-
ple size n (420) appear in the final rows. The blank entries in the rows of the other
regressors indicate that those regressors are not included in this regression.

Although the table does nol report -statistics, these can be computed from
the information provided; for example, the r-siatisbic testing the hypothesis that
the coefficient on the student—teacher ratia in column (1) is zero is —2.28/0.52 =
—4.38. This hypothesis is rejected at the 1% level, which is indicated by the dou-
ble asterisk next to the estimaicd ceefficient in the table.

Regressions that include the control variables measuring student characteris-
tics are reported in columns (2)—(5). Column (2), which reports the regression of
test scores on the student—teacher ratio and on the percentage of English leamn-
ers, was previously stated as Equation (7.5).

Column (3) presents the base specification, in which the regressors are the s(u-
dent-teacher ratio and two control variables. the percentage of English learners
and the percentage of students eligible for a free lunch.

Columns (4) and (5) present alternative specifications that examine the effect
of changes in the way the economic background of the students is measured. In
column (4}, the percentage of students on income assistance is included as a regres-
sor, and in ¢column (5) both of the economic background variables are included.

Discussion of empirical results. These rcsulis sugges! three conclusions:

1. Controlling for these student characteristics culs the effect of the student-
teacher ratio on lest scores approximately in halL This estimated effect is not
very seasitive to which specific control variables are included in the regres-
sion. In all cases the coefficient on Lhe student-teacher ratio remains statisti-
cally significant at the 5% level. In the four specifications with control
variables, regressions (2)—(5). reducing the student-teacher ratio by one stu-
dent per (eacher is estimated (o increase average test scores by approximately
one point, holding constant siudent charactenistics.

2. The student characteristic variables are very useful predictors of test scores.
The student-teacher ratio alone explains only a small fraction of the variation
in test scores: The R in column (1) is 0.049. The R° jumps, however, when the
student characteristic variables are added. For example, the 8% in the base
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7.7

specification, regression (3), is 0.773. The signs of the coefficients on the stu.
dent demographic variables are consistent with the patierns seen in Figure 77
Districts with many English leamers and districts with many poor children
have lower test scores.

tad

The control variables are nol always individually statistically significant: I
specification (5). the hypothesis that the coefficient on Lhe percentage guuli-
fving lor income assistance is zero is not rejected at the 5% level (the 7-staln.-
tic is —0.82}. Because adding Lhis control variable to the base specilication (3)
has a negligible cffect on the estimated coefficient for the student-teacher
ratio and its standard error. and because the coefficient on this control van-
able is not significant in specification (5). this additional control variable s
redundant, at least for the purposes of this analysis.

Conclusion

Chapter 6 began wilh a concem: In the regression of tesl scores against the stu-
dent-teacher ratio, omitted student characteristics that influence test scores might
be correlated with the student-teacher ratio in the district, and if so the stu-
dent-teacher ratio in the district would pick up the effect on test scores of these
omilled student characteristics. Thus, the OLS estimator would have omitted vari-
able bias. To mitigale this potential omitted varible bias, we augmented the regres-
sion by including variables that control for various student characteristics (the
percentage of English learners and iwo measures of student economic back-
ground). Doing so cuts the estimated effect of a unit change in the student-tcacher
ralio in half, although it remains possible (o reject the null hypothesis that the
population effect on Lest scores, holding these control variables constant, is 2010
al the 5% significance Jevel. Because they eliminate omitted variable bias arising
from these student characteristics, these multiple regression estimates. hypothesis
tests, and confidence intervals are much more useful for advising the superintens
dent than the single-regressor estimates of Chapters 4 and 5.

The analysis in this and the preceding chapter has presumed that the popula-
tion regression function is linear in the regressors—that is, that the conditional
cxpectation of Y, given Lhe regressors is a straight line. There is, however, no par-
ticular reason to Lthink this is so. In fact, the effect of reducing the student-teache?
ratio might be quite different in districts with large classes than in districts that
alrcady have smail classes. )f so. Lhe population regression line is not lincar in the
X's but ruther is a nonlincar function of the X 5. To extend our analysis to regres
sion functions thal are nonlinear in the X"s. however, we need Lthe tools dcvclupcd
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Summary

1. Hypothesis tests and confidence intervals for a Ningle rcgrc“im coefficient are
carried out using essenlially the same procedurey, that were jgsed in the one-vari-
able linear regression model of Ch.apter 5. For ey ample. & 95 % confidence inter-
val for B, is given by 8, * 1.965E(8,).

2. Hypotheses involving more than one restriction o), the mefﬁ".icnls are called joint

hypotheses. Joint hypotheses can be tested using g Fostatist!S

. Regression specificaiion proceeds by [irst deu:r:him. nga ba*® specification cho-

sen to address concern about omitted variable bi,‘& Th:‘. base SPecification can be
modified by including additional regressors thai uddress o' polential sources
of omitted variable bias. Simply choosing the SPeein ation with the highest R?can
lead 1o regression models that do not estimate th. causal c"ccl of inlerest.

»

Key Terms

restrictions (226) homosk::d;,,\iti('_it v-only F-statistic (231)
joint hypothesis (226) 95% mnﬁut‘:nce‘scl @ )

F-statistic (227) base speci nt:ali on (23&}

restricted regression (230) alternative specifi catic™ (237)
unrestricted regression (230) Bonferronj test {251)

Review the Concepts

7.1 Explain how you would test the null hypmhcsis that #* = 0 in the multiple
regression model, Y; = B, + 8,X); + B,X,, | . Explai® how you would test
the null hypothesis that 8, = 0. Explain how . . 14 test the joint hypoth-
esis that 8; = 0and B = 0. Why isn't the vy 00 o6 e 10T teSt implied by
the results of the [irsi two tests?

7.2 Provide an example of a regression that Ay ably wou /1 have a high value
of R° but would producc biased and incon\iswn; estifators of the regres-
sion cocfficient(s). Explain why the R?is likgpy (o be pish- Explain why the
OLS esumators would be biased and i““’"ui;{ ent.
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Exercises

1.1

The first six exercises refer (o Lhe table of estimated regressions on page 247
computed using dala for 1998 from the CPS. The data set consists ot il .
mation on 4000 full-time full-year workers The highest educational achig, .
ment for each worker was either a high school diploma or a bachelor'y
degree. The worker’s ages ranged from 25 to 34 years. The data sct also cop.
tained information on the region of the country where the person lived, m,r.
ital status, and number of children. For the purposes of these exercises Ivt

AHE = average hourly earnings (in 1998 dollars)

College = binary variable (1 if college, 0 if high schoal)

Femaie = binary variable (1 i female, G if male)

Age = age (in years)

Ntheast = binary variable (1 ¥ Region = Northeast, U oiherwise)
Midwest = binary variable (1 if Region = Midwest, () otherwise)
South = binary variable (1 if Region = South, 0 oltherwise)

West = binary variable (1 if Region = West, 0 otherwise)

Add“*" (5%) and “**" (1%} to the table to indicate Lhe statistical signifi-
cance ol the coefficients.

7.2 Using the regression results in column (1):

a. Is the collcge-high school earnings difference estimated from this
regression statistically sigmificant at the 5% leve!? Construct a 957
confidence inlerval of the difference.

b. Is the male—female earnings difference estimated from this regression
statistically significant at the 5% level? Construct a 95% confidence
inlerval for the difference.

7.3 Using the regression results in column (2):

74

8. Is age an imporant determinant of earnings? Use an approprialv »1-
tistica) 1est and/or confidence interval to explain your answer.

b. Sallyis a 29-year-old female college graduale. Betsy is a Jd-year-old
female college graduate. Construct a 95% confidence interval for 1he
expected difference between their earnings.

Using the regression resuits in column (3):

a. Do Lhere appear 1o be important regional differences? Use an appr™
priale hypothesis lest to explain your answer.
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' Variables and Other Characeristics Using 1998 Dala from the Current Populafion Survey

| pepencent varioble: averoge heurly samings {AHE}.

Regressor n (2) 3
College (X)) 5.46 5.48 544
{121) o) {021
female (Xs) -264 -2.62 -2.62
{0.20) (0.20) {0.20)
Age (X3} 0.29 0.29
(0.04) (0.04)
 Nurtheast (X, 069
{0.30)
Midwest (X) 0.60
(0.28)
South {X,) -0.27
{0.26)
Intercept 1269 440 375
(0.14) (1.05) (1.06)
Summary Statistics ond Joint Tests
F-siatistic for regional cffects = 0 6.10
SR 6.27 6.22 6.21
R 0.176 0.19%0 0.194
n 4000 4000 4000

—

7.5

b. Juanita is a 28-year-old female college graduate from 1he South. Molly
is a 28-year-old female college graduate from the West. Jenniferis a

28-year-old female college graduate from the Midwest.

i. Construct a 95% conlfidence interval for the difference in expected
eamings between Juanita and Molly.

ii. Explain how you would construct a2 95% confidence interval for
the difference in expected earnings between Juanita and Jeanifer.
(Hint: What would happen if you included West and excluded Mid-

wesf from the regression?)

The regression shown in column (2) was ¢stimated again, this 1ime using data
from 1492 (4000 observations selected at random from the March 1993 CPS,
converied into 1998 dollars using the consumer price index). The results are
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AHE = 0.77 + $.29College — 2.59Female + 0.40Age, SER = 585, R? = 0.21.
(0.98) (0.20) (0.18) {0.03)

Comparing this regression to the regression for 1998 shown in column (7
was there a siatistically significant change in tbe coefficient on College”

7.6 Evaluate 1he [ollowing statement: “In all of the regressions. Lhe coefficieny
on Female is negative, large, and statistically sigmificant. This provides strony
slatistical evideace of gender discrimination in the US. [abor market.”

7.7 Queslion 6.5 reporied the following regression {where standard errors have
been added):

Price = 1192 + 04858DR + 234Bwh + 0.156Hsize + 0.002Lsize
(239) (2.61) (8.94) (0.011) (0.00048)

+ 0.0Y0Age — 48.8Pvor, R = 072, SER = 415
(0311)  (10.5)

8. Is the coefficient on BDR statistically significantly dilferent from
zero?

b, Typically five-bedroom houses sell for much more than two-bedroom
houses. Is this consistent with your answer o (a) and wilh the regres-
sion more generally?

¢. A homeowner purchases 2000 square feet from an adjacent lot. Con-

struct a 99% confident interval for the change in the value of her
house.

d. Lot size is measured in square feet. Do you think thal another scalc
might be more appropriate? Why or why not?

e. The F-statistic [or omitting BDR and Age from the regression is F -
0.08. Are the cocfficients on BDR and Age statistically different from
zero at the 10% level?

7.8 Referring lo Table 7.1 in the text:

a. Construct the R? for each of the regressions.

b. Construct the homoskedasticity-only £-statistic for testing 83 = 84 ~ L
in the regression shown in column (5). Is the statistic significant al the
% level?

¢. Test By = B, = 0in the regression shown in cotumn (5) using the Bon-
ferroni test discussed in Appendix 7.1.
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d. Conslruct a 99% confidence interval for 8, for the regression in
cotumn 5.

7.9 Consider the regression model Y, = B, + B, X; + B-X5; — u,. Use “"Approach
#2” from Section 7.3 1o transform the regression s0 that you can use a I-sta-
tistic to tesl

a. By =By
b. B, + aB. = 0, where a is a constant,

¢ B, + By = 1. (Hint: You must redefine the dependent variable in the
regression. )

7.10 Equadons (7.13) and (7.14) show two formulas for the homoskcedasticity-
only Fstatistic. Show that the two formulas are equivalent.

Empirical Exercises

E7.1 Usc the data set CP804 described in Empirical Exercise 4.1 to answer 1he
following questions.

a. Run a regression of average hourly carnings (AHF) on age (Age).
What is the estimated intercept? What is the estimated slape?

b. Run a regression of AHE on Age, gender (Female), and education
{Bachelor). What is the estimated effect of Age on carnings? Conslruct
2 95% confidence interval for the coefficient on Age in the regression.

¢. Are the resulls from the regression in (b) substantively different from
the results in (a) regarding the cffects of Age and AHE? Does the
regression in (a) seem to suffer from umitted variable bias?

d. Bob is a 26-year-old male worker with a high school diploma. Predict
Bob’s camnings using the estimated rcgression in (b). Alexis is a 3(0-
year-old female worker with a collepe degree. Predict Alexis's earnings
using the regression.

e. Comparec the fit of the regression in (a) and (b) u